WO2022052911A1 - 一种含铅物料的高炉回收冶炼设备及其方法 - Google Patents

一种含铅物料的高炉回收冶炼设备及其方法 Download PDF

Info

Publication number
WO2022052911A1
WO2022052911A1 PCT/CN2021/116926 CN2021116926W WO2022052911A1 WO 2022052911 A1 WO2022052911 A1 WO 2022052911A1 CN 2021116926 W CN2021116926 W CN 2021116926W WO 2022052911 A1 WO2022052911 A1 WO 2022052911A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
furnace
recovery system
gas
blast furnace
Prior art date
Application number
PCT/CN2021/116926
Other languages
English (en)
French (fr)
Inventor
孙中强
孙长照
Original Assignee
沈阳东大山汇环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳东大山汇环境科技有限公司 filed Critical 沈阳东大山汇环境科技有限公司
Publication of WO2022052911A1 publication Critical patent/WO2022052911A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • C22B13/025Recovery from waste materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the technical field of environmental protection, and particularly relates to a blast furnace recovery and smelting equipment for lead-containing materials and a method thereof.
  • waste batteries are mainly lead metal and lead sulfate waste liquid. Because lead is a heavy metal, battery waste is classified as hazardous waste. .
  • the current lead-containing hazardous waste treatment technologies all have the problem of flue gas treatment. This is because the low-temperature vapor pressure of lead is very high, so it is difficult for the heavy metals in the flue gas to meet the standard, especially the treatment of lead sulfate waste liquid is almost a lead smelting process. , process pollution is difficult to control, and energy consumption is also high. Therefore, in order to solve the problem of environmental protection, it is urgent to develop an environmentally friendly lead-containing material smelting technology.
  • the present invention provides a blast furnace recovery and smelting equipment for lead-containing materials and a method thereof, which utilizes the blast furnace smelting process to smelt and recover lead-containing materials, and utilizes the lead vapor pressure difference generated by the temperature difference of flue gas in the blast furnace,
  • the lead-containing furnace gas is introduced into the lead recovery system for repeated recovery, and then the lead-recovered furnace gas is sent back to the furnace.
  • the charge goes down and is gasified and recycled again. Lead cannot escape from the furnace.
  • the furnace gas is blast furnace gas, which is all recycled after leaving the blast furnace.
  • the recovered blast furnace gas does not contain lead components, so there will be no lead when the gas burns. pollution occurs.
  • a blast furnace recovery and smelting equipment for lead-containing materials comprising a blast furnace 1, a powder storage tank 2, a mixer 3, a coal injection distributor 4, a lower annular flue 5, an upper annular flue 6, a furnace gas lead recovery system I12, Furnace gas lead recovery system II13, blower I14, blower II15, nitrogen sweeper 16;
  • the top of the blast furnace 1 is provided with a feeding port 7, and the furnace wall at the bottom end is provided with a lead discharge port 8; the melting section of the blast furnace 1 is provided with a furnace wall injection feeding hole 9, and the transition section is 800-650 ° C furnace temperature.
  • a furnace wall air inlet hole 10 is arranged at the furnace wall, and a furnace wall air return hole 11 is arranged at the furnace temperature of 600 ⁇ 350 °C in the transition section;
  • the powder storage tank 2 is provided with a gas feeding system; the coal injection distributor 4 is connected with a coal injection gun;
  • the furnace gas lead recovery system I12 is composed of a lead collector 12.1 and a lead collecting tank 12.2 arranged at the bottom of the lead collector 12.1.
  • the upper part of the lead collector 12.1 is provided with a release pipe, and the release pipe is provided with a release valve 12.3;
  • the The lead collecting tank 12.2 is provided with a lead discharge pipe, and the lead discharge pipe is provided with a discharge valve 12.4;
  • the furnace gas lead recovery system II13 is composed of a lead collector 13.1 and a lead collecting tank 13.2 arranged at the bottom of the lead collector 13.1.
  • the upper part of the lead collector 13.1 is provided with a release pipe, and the release pipe is provided with a release valve 13.3;
  • the The lead collecting tank 13.2 is provided with a lead discharge pipe, and the lead discharge pipe is provided with a discharge valve 13.4;
  • the feeding port 7 of the blast furnace 1 is connected to the external waste battery plate processing system 25 through a pipeline;
  • the top feeding port of the powder storage tank 2 is connected to the external waste battery waste liquid drying material crushing system 26 through a pipeline, and the waste battery
  • the waste liquid drying material pulverization system 26 is connected to the waste battery waste liquid treatment system 27;
  • the discharge port at the bottom end of the powder storage tank 2 is connected to the inlet of the mixer 3 through a pipeline, and the outlet of the mixer 3 is directly connected to the coal injection distributor 4, and the coal injection distributor 4 is connected to the coal injection through a branch pipe.
  • the gun, the coal injection gun is inserted into the furnace wall injection feeding hole 9;
  • the furnace wall air-inducing hole 10 is connected to the lower annular flue 5 through a branch pipe, and the lower annular flue 5 is connected to the flue gas inlet of the furnace gas lead recovery system I12 and the furnace gas lead recovery system II13 through a three-way pipe branch;
  • the smoke outlets of the gas lead recovery system I12 and the furnace gas lead recovery system II13 are merged and connected to the upper annular flue 6 through a three-way pipe, and the upper annular flue 6 is connected to the furnace wall gas return hole 11 through a branch pipe;
  • the nitrogen sweeper 16 is respectively connected to the furnace gas lead recovery system I12 and the furnace gas lead recovery system II13 through pipes, and a valve 16.1 is provided on the connecting pipeline between the nitrogen sweeper 16 and the furnace gas lead recovery system I12; A valve 16.2 is provided on the connecting pipe between the boiler 16 and the furnace gas lead recovery system II13;
  • the blower I14 is connected to the furnace gas lead recovery system I12 through a pipeline, and the blower II15 is connected to the furnace gas lead recovery system II13 through a pipeline;
  • the lower annular flue 5 and the branch connection pipeline of the furnace gas lead recovery system I12 are provided with two valves 17 for the first intake of smoke and two valves for the second intake of smoke 18;
  • the branch connection pipe of II13 is provided with two valves for the first smoke inlet valve 19 and the second smoke inlet valve 20;
  • the branch connection pipe between the furnace gas lead recovery system I12 and the upper annular flue 6 is provided with a smoke outlet valve. 21 and two valves 22 for exiting smoke; two valves are provided on the branch connecting pipeline of described furnace gas lead recovery system II13 and upper annular flue 6;
  • a valve is provided on the connecting branch pipe of the lower annular flue 5 and the furnace wall air inlet hole 10; the connecting branch pipe of the upper annular flue 6 and the furnace wall air return hole 11 is provided with a valve;
  • a valve is provided on the connecting and merging pipeline of the furnace gas lead recovery system I12 and the furnace gas lead recovery system II13 and the upper annular flue 6;
  • the number of the furnace wall injection feeding holes 9 is N, N ⁇ 2; the number of the coal injection guns is the same as the number of the furnace wall injection feeding holes 9; the coal injection guns are heat-resistant stainless steel pipes;
  • the number of the furnace wall air-induction holes 10 is M, and M ⁇ 2; the inner side of the lower annular flue 5 is provided with the same number of holes as the furnace wall air-induction holes 10;
  • the number of the furnace wall air return holes 11 is M, and M ⁇ 2; the inner side of the upper annular flue 6 is provided with the same number of holes as the furnace wall air return holes 11;
  • the motors of the blower I14 and the blower II15 are frequency conversion motors.
  • a blast furnace recovery and smelting method for lead-containing materials using the above-mentioned blast furnace recovery and smelting equipment for lead-containing materials, the method comprises the following steps:
  • Step 1 preprocessing:
  • the waste battery is split, and the large lead plate is pretreated in the waste battery plate treatment system 25, and the large lead plate is cut into small pieces that are convenient for feeding to obtain the pretreated plate material;
  • the waste liquid is composed of lead sulfate, sulfuric acid and water, the waste liquid is pretreated in the waste battery waste liquid treatment system 27, and the waste liquid is mixed with lime powder to make calcium sulfate, calcium hydroxide, calcium oxide, lead sulfate Mix the solids, and then the mixed solids are pulverized in the waste battery waste liquid drying material pulverization system 26, and the pulverization particle size is ⁇ 80 mesh to obtain the pretreatment powder;
  • the pretreated plate stock is added to the blast furnace 1 through the feeding port 7 through the feeding system; the pretreated powder is added to the powder storage tank 2 through the pipeline, and the gas delivery system of the powder storage tank 2 transports the pretreated powder through the pipeline. It is mixed into the mixer 3, and then injected into the coal injection distributor 4 along with the injection fuel, distributed to the coal injection gun through the coal injection distributor 4, and finally injected into the blast furnace through the injection feed hole 9 of the furnace wall. 1;
  • Normal iron smelting is carried out in blast furnace 1.
  • the smelting charge is sinter, pellets, porous coke and smelting solvent.
  • the temperature of molten iron at the bottom of the blast furnace is 1400 ⁇ 1500 °C.
  • the flue gas temperature on the top of the furnace is 150 ⁇ 250°C, and the inside of the furnace is a reducing atmosphere;
  • the metal lead in the plate material added through the feeding port 7 begins to melt at 327°C, and flows through the charge to the lower part of the furnace and sinks into the bottom of the furnace; at the same time, there will be a small amount of lead in the process of flowing down.
  • the vaporization rises, and the lead vapor is adsorbed by porous coke and sinter in layers during the rising process, or is cooled and solidified on the surface of the charge by the low-temperature charge, and then descends with the charge, the temperature rises after descending, and the lead is vaporized again.
  • the lead-containing flue gas at the temperature range of 800 ⁇ 650°C in the blast furnace 1 is led out through the air inlet hole 10 of the furnace wall and enters the lower annular flue 5;
  • the lead sulfate in the mixed powder sprayed into the blast furnace 1 is rapidly decomposed into sulfur oxide and lead oxide at a temperature above 1800 ° C, and then the lead oxide becomes gaseous and is reduced to metallic lead by carbon monoxide and carbon, Metal lead is vaporized immediately. After the lead vapor rises, it is condensed into liquid lead when it encounters the low-temperature charge, and then flows down and sinks into the bottom of the furnace; sulfur oxide is reduced to hydrogen sulfide, and carbonyl sulfide is discharged out of the furnace with the furnace gas and is desulfurized by gas.
  • start the furnace gas lead recovery system I12 or the furnace gas lead recovery system II13 first connect the nitrogen sweeper 16 to the high-pressure nitrogen source, and open the nitrogen valve 16.1 or nitrogen valve 16.2, open the release valve 12.3 or the release valve 13.3, and discharge the lead to the furnace gas. Inject nitrogen into the recovery system I12 or the furnace gas lead recovery system II13, and replace the air with nitrogen; then turn on the blower I14 or blower II15; then open the first outlet valve 21 and the second outlet valve 22 or open the first outlet valve 23 and the outlet.
  • the second smoke valve 24, and finally the first smoke inlet valve 17 and the second smoke inlet valve 18 are gradually opened, or the first smoke inlet valve 19 and the second smoke inlet valve 20 are gradually opened.
  • the extracted flue gas enters the furnace gas lead recovery system I12 or the furnace gas lead recovery system II13 through the pipeline, and is cooled and cooled to capture lead, zinc, cadmium, light metal oxides and salts, and the cooled lead liquid, zinc, Cadmium, light metal oxides and salts flow into the lead collecting tank 12.2 or lead collecting tank 13.2;
  • the unliquefied flue gas in the furnace gas lead recovery system I12 or the furnace gas lead recovery system II13 enters the upper annular flue 6 through the pipeline, and passes through the furnace The wall return holes 11 lead back into the blast furnace 1 .
  • the air pressure of the flue gas drawn from the 10 places of the furnace wall air inlet holes after decompression by the resistance of the pipeline and the resistance of the furnace gas lead recovery system is greater than the air pressure of the flue gas in the furnace at the 11 places of the air return holes of the furnace wall;
  • the cooling of the furnace gas lead recovery system I12 and the furnace gas lead recovery system II13 adopts tubular or plate heat exchange
  • the cooling and cooling medium of the furnace gas lead recovery system I12 and the furnace gas lead recovery system II13 adopts air cooling, and the air source is provided by the blower I14 or the blower II15.
  • the blast furnace recovery and smelting equipment for lead-containing materials and the method thereof of the present invention have the following beneficial effects:
  • the blast furnace recovery lead smelting method of the present invention does not produce lead loss, and can increase the lead recovery amount.
  • the waste liquid in the storage battery is mainly lead sulfate, sulfuric acid and water.
  • the waste liquid is mixed with lime powder
  • the calcium oxide in the lime powder reacts with the sulfuric acid in the waste liquid to generate calcium sulfate
  • the water in the waste liquid is mixed with the oxidized lime.
  • Calcium reacts to generate calcium hydroxide, making it a mixture of dry lead sulfate, calcium sulfate, calcium hydroxide and calcium oxide, and pulverized into powder, which is convenient for feeding and maintains a stable blast furnace smelting environment.
  • the vapor pressure of lead at this temperature is almost zero.
  • the invention completes the lead-out flue gas recovery process in the middle of the blast furnace, so the vapor pressure of lead in the upper part of the blast furnace is in an unsaturated state, and there are zinc and cadmium metals more active than lead in the furnace, so lead oxide will not be produced. In actual operation, lead is hardly detected in the gas, which ensures the normal operation of the blast furnace.
  • the method of extracting flue gas from the equipment of the present invention is to open a plurality of air-inducing holes around the blast furnace wall.
  • the specific number of openings depends on the size and cost of the equipment. , the design is flexible.
  • the present invention adopts two sets of furnace gas lead recovery systems, one for use and one for backup, alternate use to prevent equipment failure and facilitate continuous production.
  • the equipment of the present invention recovers lead is attached to the ironmaking process, not a special lead production equipment, there is no requirement for the recovery rate, so the gas temperature drop and heat loss can be minimized under the condition that the gas permeability of the charge can be guaranteed.
  • the air permeability of the blast furnace becomes poor, more furnace gas needs to be drawn out to accelerate the reduction of the lead vapor pressure in the furnace.
  • the air permeability of the blast furnace is normal, less furnace gas can be drawn out. Flexible adjustment to save operating costs.
  • the present invention can recycle waste batteries while smelting iron and steel, and kill two birds with one stone. And it will not cause lead pollution to the gas and slag, and the molten iron does not increase the lead content, so the invention is a very good process in terms of metal yield and pollutant discharge, and the energy consumption is also very low. .
  • the invention has no secondary pollution risk, almost zero lead discharge; less investment and low operating cost in the use of the existing iron-smelting blast furnace; and no waste is generated.
  • the present invention also recovers part of low-temperature gasifiable metals such as zinc and cadmium, and also can remove part of light metal oxides and salts, which is beneficial for improving blast furnace air permeability, improving material reactivity, reducing system resistance, It is of great significance to improve the smelting intensity.
  • the invention can solve the problem of affecting the permeability of materials in the smelting of high-lead ore and high-lead waste, so the equipment is also suitable for smelting other high-lead materials, and can also be used as a lead smelting equipment.
  • the present invention can solve the problem that the blast furnace smelting light metal oxides enriches and blocks the charge, so the equipment and method are suitable for the treatment of iron-containing wastes in hydrometallurgy.
  • Fig. 1 is the structural representation of the blast furnace recovery and smelting equipment of a kind of lead-containing material in embodiment 1 of the present invention: in the figure, 1-blast furnace, 2-powder storage tank, 3-mixer, 4-coal injection distributor, 5- Lower annular flue, 6-upper annular flue, 7-top feed port, 8-lead discharge port, 9-furnace wall injection feed hole, 10-furnace wall air inlet hole, 11-furnace wall return air hole, 12 - Furnace gas lead recovery system I, 12.1-lead collector, 12.2-lead collecting tank, 12.3-discharge valve, 12.4-discharge valve, 13-furnace gas lead recovery system II, 13.1-lead collector, 13.2-lead collector Tank, 13.3-vent valve, 13.4-discharge valve, 14-blower I, 15-blower II, 16-nitrogen sweeper, 16.1-nitrogen valve, 16.2-nitrogen valve, 17-smoke one valve, 18-smoke inlet Two
  • Fig. 2 is the lower annular flue sectional view of the blast furnace recovery smelting equipment of a kind of lead-containing material in the embodiment of the present invention 1: among the figure, 1-blast furnace, 5-lower annular flue, 10-furnace wall air duct;
  • Example 3 is a sectional view of an upper annular flue of a blast furnace recovery and smelting equipment for lead-containing materials in Example 1 of the present invention: in the figure, 1-blast furnace, 6-upper annular flue, and 11-furnace wall return air hole.
  • An iron and steel enterprise is doing battery recycling and transformation in a 230-cubic-meter blast furnace.
  • a blast furnace recovery and smelting equipment for lead-containing materials includes a blast furnace 1, a powder storage tank 2, a mixer 3, a coal injection distributor 4, a lower annular flue 5, and an upper annular flue 6 , Furnace gas lead recovery system I12, furnace gas lead recovery system II13, blower I14, blower II15, nitrogen sweeper 16;
  • the top of the blast furnace 1 is provided with a feeding port 7, and the furnace wall at the bottom end is provided with a lead discharge port 8; the melting section of the blast furnace 1 is provided with a furnace wall injection feeding hole 9, and the transition section is provided at a furnace temperature of 780°C There are 8 furnace wall air inlet holes 10, and 8 furnace wall air return holes 11 are arranged 3.5 meters above the furnace wall air inlet hole 10 at a furnace temperature of 500°C;
  • the powder storage tank 2 is provided with a gas feeding system; the coal injection distributor 4 is connected with a coal injection gun;
  • the furnace gas lead recovery system I12 is composed of a lead collector 12.1 and a lead collecting tank 12.2 arranged at the bottom of the lead collector 12.1.
  • the upper part of the lead collector 12.1 is provided with a release pipe, and the release pipe is provided with a release valve 12.3;
  • the The lead collecting tank 12.2 is provided with a lead discharge pipe, and the lead discharge pipe is provided with a discharge valve 12.4;
  • the furnace gas lead recovery system II13 is composed of a lead collector 13.1 and a lead collecting tank 13.2 arranged at the bottom of the lead collector 13.1.
  • the upper part of the lead collector 13.1 is provided with a release pipe, and the release pipe is provided with a release valve 13.3;
  • the The lead collecting tank 13.2 is provided with a lead discharge pipe, and the lead discharge pipe is provided with a discharge valve 13.4;
  • the feeding port 7 of the blast furnace 1 is connected to the external waste battery plate processing system 25 through a pipeline;
  • the top feeding port of the powder storage tank 2 is connected to the external waste battery waste liquid drying material crushing system 26 through a pipeline, and the waste battery
  • the waste liquid drying material pulverization system 26 is connected to the waste battery waste liquid treatment system 27;
  • the discharge port at the bottom end of the powder storage tank 2 is connected to the inlet of the mixer 3 through a pipeline, and the outlet of the mixer 3 is directly connected to the coal injection distributor 4, and the coal injection distributor 4 is connected to the coal injection through a branch pipe.
  • the gun, the coal injection gun is inserted into the furnace wall injection feeding hole 9;
  • the furnace wall air-inducing hole 10 is connected to the lower annular flue 5 through a branch pipe, and the lower annular flue 5 is connected to the flue gas inlet of the furnace gas lead recovery system I12 and the furnace gas lead recovery system II13 through a three-way pipe branch;
  • the smoke outlets of the gas lead recovery system I12 and the furnace gas lead recovery system II13 are merged and connected to the upper annular flue 6 through a three-way pipe, and the upper annular flue 6 is connected to the furnace wall gas return hole 11 through a branch pipe;
  • the nitrogen sweeper 16 is respectively connected to the furnace gas lead recovery system I12 and the furnace gas lead recovery system II13 through pipes, and a valve 16.1 is provided on the connecting pipeline between the nitrogen sweeper 16 and the furnace gas lead recovery system I12; A valve 16.2 is provided on the connecting pipe between the boiler 16 and the furnace gas lead recovery system II13;
  • the blower I14 is connected to the furnace gas lead recovery system I12 through a pipeline, and the blower II15 is connected to the furnace gas lead recovery system II13 through a pipeline;
  • the lower annular flue 5 and the branch connection pipeline of the furnace gas lead recovery system I12 are provided with two valves 17 for the first intake of smoke and two valves for the second intake of smoke 18;
  • the branch connection pipe of II13 is provided with two valves for the first smoke inlet valve 19 and the second smoke inlet valve 20;
  • the branch connection pipe between the furnace gas lead recovery system I12 and the upper annular flue 6 is provided with a smoke outlet valve. 21 and two valves 22 for exiting smoke; two valves are provided on the branch connecting pipeline of described furnace gas lead recovery system II13 and upper annular flue 6;
  • a valve is provided on the connecting branch pipe of the lower annular flue 5 and the furnace wall air inlet hole 10; the connecting branch pipe of the upper annular flue 6 and the furnace wall air return hole 11 is provided with a valve;
  • a valve is provided on the connecting and merging pipeline of the furnace gas lead recovery system I12 and the furnace gas lead recovery system II13 and the upper annular flue 6;
  • the coal injection distributor 4 is provided with 8 branch pipes to be connected with 8 coal injection guns, and the 8 coal injection guns are respectively inserted into the 8 furnace wall injection feeding holes 9;
  • the motors of the blower I14 and the blower II15 are frequency conversion motors.
  • a blast furnace recovery and smelting method for lead-containing materials using the above-mentioned blast furnace recovery and smelting device for lead-containing materials, the method comprises the following steps:
  • Step 1 preprocessing:
  • the waste battery is split, and the large lead plate is pretreated in the waste battery plate treatment system 25, and the large lead plate is cut into small pieces that are convenient for feeding to obtain the pretreated plate material;
  • the waste liquid is composed of lead sulfate, sulfuric acid and water, the waste liquid is pretreated in the waste battery waste liquid treatment system 27, and the waste liquid is mixed with lime powder to make calcium sulfate, calcium hydroxide, calcium oxide, lead sulfate Mix the solids, and then the mixed solids are pulverized in the waste battery waste liquid drying material pulverization system 26, and the pulverization particle size is ⁇ 80 mesh to obtain the pretreatment powder;
  • the pretreated plate stock is added to the blast furnace 1 through the feeding port 7 through the feeding system; the pretreated powder is added to the powder storage tank 2 through the pipeline, and the gas delivery system of the powder storage tank 2 transports the pretreated powder through the pipeline. It is mixed into the mixer 3, and then injected into the coal injection distributor 4 along with the injection fuel, distributed to the coal injection gun through the coal injection distributor 4, and finally injected into the blast furnace through the injection feed hole 9 of the furnace wall. 1;
  • Normal iron smelting is carried out in blast furnace 1.
  • the smelting charge is sinter, pellets, porous coke and smelting solvent.
  • the temperature of molten iron at the bottom of the blast furnace is 1400 ⁇ 1500 °C.
  • the flue gas temperature on the top of the furnace is 150 ⁇ 250°C, and the inside of the furnace is a reducing atmosphere;
  • the metal lead in the plate material added through the feeding port 7 begins to melt at 327°C, and flows through the charge to the lower part of the furnace and sinks into the bottom of the furnace; at the same time, there will be a small amount of lead in the process of flowing down.
  • the vaporization rises, and the lead vapor is adsorbed by porous coke and sinter in layers during the rising process, or is cooled and solidified on the surface of the charge by the low-temperature charge, and then descends with the charge, the temperature rises after descending, and the lead is vaporized again.
  • the lead-containing flue gas at the temperature range of 800 ⁇ 650°C in the blast furnace 1 is led out through the air inlet hole 10 of the furnace wall and enters the lower annular flue 5;
  • the lead sulfate in the mixed powder sprayed into the blast furnace 1 is rapidly decomposed into sulfur oxide and lead oxide at a temperature above 1800 ° C, and then the lead oxide becomes gaseous and is reduced to metallic lead by carbon monoxide and carbon, Metal lead is vaporized immediately. After the lead vapor rises, it is condensed into liquid lead when it encounters the low-temperature charge, and then flows down and sinks into the bottom of the furnace; sulfur oxide is reduced to hydrogen sulfide, and carbonyl sulfide is discharged out of the furnace with the furnace gas and is desulfurized by gas.
  • the lead recovery system I12 is used for lead recovery.
  • the nitrogen sweeper 16 is connected to the high-pressure nitrogen source, and the nitrogen valve 16.1 is opened, and the opening valve 12.3 is opened.
  • the blower I14 then open the first smoke outlet valve 21 and the second smoke outlet valve 22, and finally gradually open the first smoke inlet valve 17 and the second smoke inlet valve 18, and control the smoke inlet valve. 30%;
  • the extracted flue gas enters the furnace gas lead recovery system I12 through the pipeline, and is cooled and cooled to capture lead, zinc, cadmium, light metal oxides and salts, and the cooled lead liquid, zinc, cadmium, light metal oxides and salts flow into the collector.
  • the lead collector 12.1 adopts plate heat exchange.
  • the medium for cooling and cooling adopts air cooling, and the air source is provided by the blower I14.
  • the pretreated plate material of the present embodiment is evenly added with the charging charge of the blast furnace, and the coke ratio is calculated and adjusted according to the added amount, and the coke ratio is adjusted by increasing the coke ratio by 45 kg per ton of lead; the coke ratio of the charging charge is first increased by 150 kg coke per ton powder, During the operation, fine-tuning was made according to the change of furnace temperature. In this case, the coke ratio was actually increased by 120 kg/ton of powder.
  • the discharge valve of the furnace gas lead recovery system I is opened to discharge lead for the first time, and then the lead is discharged regularly according to the lead collection speed and the volume of the lead collecting tank; the equipment is operated for 8 hours to do the first discharge of lead at the bottom of the blast furnace , and then discharge lead once or twice a day, which is determined according to the amount of lead-containing materials input into smelting.
  • lead recovery system I of furnace gas When the lead recovery system I of furnace gas is running for two months, the lead outlet is blocked once. The operation of lead recovery system I of furnace gas is stopped and repaired. At the same time, lead recovery system II of furnace gas is started for recovery without delaying continuous production.
  • the total lead recovery rate of the lead recovered by the upper lead collector and the lead discharged from the lead discharge port at the bottom of the blast furnace is over 99%.
  • the crude lead collected by the lead removal equipment contains some zinc and cadmium metals, and the three metals are separated during refining.
  • the maximum amount of mixed powder is 55 tons per day, and the maximum amount of electrode plate waste is added from the top of the furnace is 100 tons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

一种含铅物料的高炉回收冶炼设备及其方法,所属环保技术领域,设备包括高炉、粉剂储罐、混料器、喷煤分配器、下环形烟道、上环形烟道、炉气铅回收系统Ⅰ、炉气铅回收系统Ⅱ、鼓风机Ⅰ、鼓风机Ⅱ、氮气清扫器。本发明利用高炉冶炼工艺过程对含铅物料进行冶炼回收,利用高炉内烟气温度差产生的铅蒸气气压差,将含铅炉气部分引入铅回收系统进行反复回收。本发明在冶炼钢铁的同时,对废旧电池进行回收处理,一举两得。且不会对煤气和炉渣造成铅污染,铁水也没有铅含量增加,而且能耗也很低。本发明没有二次污染风险,铅排放几乎为零;利用现有炼铁高炉改造投资少,运行成本低;没有任何废弃物产生。

Description

一种含铅物料的高炉回收冶炼设备及其方法 技术领域
本发明属于环保技术领域,特别涉及一种含铅物料的高炉回收冶炼设备及其方法。
背景技术
近几年由于汽车和电动车的迅速发展,废旧蓄电池量剧增,废电池中除含有部分塑料壳体外,主要是铅金属和硫酸铅废液,因为铅是重金属,所以电池废弃物属于危废。目前的含铅危废处理技术都存在烟气治理的难题,这是因为铅的低温蒸汽压很高,所以烟气的重金属很难达标,尤其是硫酸铅废液的处理几乎就是一个铅冶炼过程,过程污染很难控制,能耗也高。因此,为了解决环保难题,迫切需要开发环保型含铅物料冶炼技术。
技术解决方案
为解决上述技术问题,本发明提供一种含铅物料的高炉回收冶炼设备及其方法,利用高炉冶炼工艺过程对含铅物料进行冶炼回收,利用高炉内烟气温度差产生的铅蒸气气压差,将含铅炉气部分引入铅回收系统进行反复回收,然后将回收铅后的炉气再送回炉内,未被捕捉的铅蒸气进入炉内后在随炉气上升过程中被低温炉料捕捉,然后跟随炉料下行再次被气化、再次被回收,铅无法逃出炉外,炉气为高炉煤气,出高炉后全部被回收利用,回收的高炉煤气中不含铅的成分,因此煤气燃烧时不会有铅污染发生。其具体技术方案如下:
一种含铅物料的高炉回收冶炼设备,包括高炉1、粉剂储罐2、混料器3、喷煤分配器4、下环形烟道5、上环形烟道6、炉气铅回收系统Ⅰ12、炉气铅回收系统Ⅱ13、鼓风机Ⅰ14、鼓风机Ⅱ15、氮气清扫器16;
所述高炉1的顶端设置有进料口7,底端炉壁设置有排铅口8;所述高炉1的融化段设置有炉壁喷吹进料孔9,过渡段800~650℃炉温处设置有炉壁引气孔10,过渡段600~350℃炉温处设置有炉壁回气孔11;
所述粉剂储罐2设置有气体输料系统;所述喷煤分配器4连接有喷煤枪;
所述炉气铅回收系统Ⅰ12由铅收集器12.1和设置在铅收集器12.1底部的集铅槽12.2组成,所述铅收集器12.1上部设置有放散管,放散管设置有放散阀门12.3;所述集铅槽12.2设置有排铅管,排铅管设置有排料阀门12.4;
所述炉气铅回收系统Ⅱ13由铅收集器13.1和设置在铅收集器13.1底部的集铅槽13.2组成,所述铅收集器13.1上部设置有放散管,放散管设置有放散阀门13.3;所述集铅槽13.2设置有排铅管,排铅管设置有排料阀门13.4;
所述高炉1的进料口7通过管道连接外部的废旧蓄电池极板处理系统25;所述粉剂储罐2的顶端进料口通过管道连接外部的废旧蓄电池废液干燥物粉碎系统26,废旧蓄电池废液干燥物粉碎系统26连接废旧蓄电池废液处理系统27;
所述粉剂储罐2底端出料口通过管道连接混料器3的进口,所述混料器3的出口与喷煤分配器4直接相连,所述喷煤分配器4通过支管连接喷煤枪,喷煤枪插入炉壁喷吹进料孔9;
所述炉壁引气孔10通过支管连接下环形烟道5,所述下环形烟道5通过三向管道分支连接炉气铅回收系统Ⅰ12和炉气铅回收系统Ⅱ13的进烟口;所述炉气铅回收系统Ⅰ12和炉气铅回收系统Ⅱ13的出烟口通过三向管道合并连接上环形烟道6,所述上环形烟道6通过支管连接炉壁回气孔11;
所述氮气清扫器16通过管道分别连接炉气铅回收系统Ⅰ12和炉气铅回收系统Ⅱ13,所述氮气清扫器16与炉气铅回收系统Ⅰ12的连接管道上设置有阀门16.1;所述氮气清扫器16与炉气铅回收系统Ⅱ13的连接管道上设置有阀门16.2;
所述鼓风机Ⅰ14通过管道连接炉气铅回收系统Ⅰ12,所述鼓风机Ⅱ15通过管道连接炉气铅回收系统Ⅱ13;
所述下环形烟道5与炉气铅回收系统Ⅰ12的支路连接管道上设置有进烟一道阀门17和进烟二道阀门18两道阀门;所述环形烟道5与炉气铅回收系统Ⅱ13的分支连接管道上设置有进烟一道阀门19和进烟二道阀门20两道阀门;所述炉气铅回收系统Ⅰ12与上环形烟道6的支路连接管道上设置有出烟一道阀门21和出烟二道阀门22两道阀门;所述炉气铅回收系统Ⅱ13与上环形烟道6的支路连接管道上设置有出烟一道阀门23和出烟二道阀门24两道阀门;
所述下环形烟道5与炉壁引气孔10的连接支管上设置有阀门;所述上环形烟道6与炉壁回气孔11的连接支管上设置有阀门;
所述炉气铅回收系统Ⅰ12和炉气铅回收系统Ⅱ13与上环形烟道6的连接合并管道上设置有阀门;
所述炉壁喷吹进料孔9的数量为N个,N≥2;所述喷煤枪数量与炉壁喷吹进料孔9数量相同;所述喷煤枪为耐热不锈钢管;
所述炉壁引气孔10的数量为M个,M≥2;所述下环形烟道5的内侧开设与炉壁引气孔10相同数量的孔;
所述炉壁回气孔11的数量为M个,M≥2;所述上环形烟道6的内侧开设与炉壁回气孔11相同数量的孔;
所述鼓风机Ⅰ14和鼓风机Ⅱ15的电机为变频电机。
一种含铅物料的高炉回收冶炼方法,采用上述一种含铅物料的高炉回收冶炼设备,方法包含如下步骤:
步骤1,预处理:
将废旧蓄电池进行拆分,将大块铅板在废旧蓄电池极板处理系统25中进行极板预处理,大块铅板剪成便于上料的小块,得到预处理极板料;废旧蓄电池中的废液由硫酸铅、硫酸和水组成,将废液在废旧蓄电池废液处理系统27中进行预处理,将废液与石灰粉混合,制成硫酸钙、氢氧化钙、氧化钙、硫酸铅混合固体,然后混合固体在废旧蓄电池废液干燥物粉碎系统26进行粉碎处理,粉碎粒度≤80目,得到预处理粉剂;
步骤2,加料:
将预处理极板料通过上料系统经过进料口7加入至高炉1中;将预处理粉剂通过管道加入至粉剂储罐2中,粉剂储罐2的气体输送系统将预处理粉剂通过管道输送至混料器3中进行混料,然后随着喷吹燃料一同喷入喷煤分配器4,经喷煤分配器4分配给喷煤枪,最后经炉壁喷吹进料孔9喷入高炉1内;
步骤3,冶炼:
高炉1中进行正常炼铁,冶炼炉料为烧结矿、球团矿、多孔焦炭和冶炼溶剂,高炉底部铁水温度在1400~1500℃,喷煤风口区域,即炉壁喷吹进料孔9区域温度在1800~2300℃,炉顶排烟温度在150~250℃,炉内为还原性气氛;
(1)经进料口7加入的极板料中的金属铅在327℃时开始熔化,并穿过炉料向炉子下部流淌,沉入炉底;同时会有少量铅在向下流淌过程中高温汽化上升,铅蒸汽在上升过程中被多孔焦炭和烧结矿多层吸附,或者被低温炉料冷却凝固在炉料表面,然后随炉料下行,下行后温度升高,铅再次被汽化,最后在不同温度区域达到平衡,高炉1内800~650℃温区处的含铅烟气经炉壁引气孔10引出,进入下环形烟道5;
(2)喷入高炉1内的混合粉剂中的硫酸铅,在1800℃以上的温度,迅速分解成氧化硫和氧化铅,紧接着氧化铅变为气态,并被一氧化碳和碳还原成金属铅,金属铅紧接着被汽化,铅蒸汽上升后遇到低温炉料冷凝成液态铅,进而向下流淌,沉入炉底;氧化硫被还原成硫化氢、羰基硫随炉气排出炉外,被煤气脱硫环节捕捉脱除,或被铁水吸收,使铁水增硫;混合粉剂中的硫酸钙进入炉渣;混合粉剂中的氢氧化钙分解成水和氧化钙,氧化钙随软熔带滴落的铁进入底部熔池,并被炉渣捕捉成为造渣材料;
步骤4,回收:
启动炉气铅回收系统Ⅰ12或炉气铅回收系统Ⅱ13,首先将氮气清扫器16接通高压氮气源,并打开氮气阀门16.1或氮气阀门16.2,打开放散阀门12.3或放散阀门13.3,向炉气铅回收系统Ⅰ12或炉气铅回收系统Ⅱ13中注入氮气,以氮气置换空气;然后开启鼓风机Ⅰ14或鼓风机Ⅱ15;之后打开出烟一道阀门21、出烟二道阀门22或打开出烟一道阀门23、出烟二道阀门24,最后逐渐开启进烟一道阀门17、进烟二道阀门18,或逐渐开启进烟一道阀门19、进烟二道阀门20,通过控制进烟阀门,控制烟气引出量在20~30%;引出的烟气通过管道进入炉气铅回收系统Ⅰ12或炉气铅回收系统Ⅱ13,进行降温冷却捕捉铅、锌、镉、轻金属氧化物及盐,冷却后的铅液、锌、镉、轻金属氧化物及盐流入集铅槽12.2或集铅槽13.2;炉气铅回收系统Ⅰ12或炉气铅回收系统Ⅱ13内未液化的烟气,经管道进入上环形烟道6,并通过炉壁回气孔11引回至高炉1中。
上述方法中,炉壁引气孔10处引出烟气经管道阻力和炉气铅回收系统阻力减压后的气压大于炉壁回气孔11处炉内烟气气压;
上述方法中,炉气铅回收系统Ⅰ12和炉气铅回收系统Ⅱ13的降温采用管式或板式换热;
上述方法中,炉气铅回收系统Ⅰ12和炉气铅回收系统Ⅱ13的降温冷却的介质采用风冷,风源由鼓风机Ⅰ14或鼓风机Ⅱ15提供。
有益效果
本发明的一种含铅物料的高炉回收冶炼设备及其方法,与现有技术相比,有益效果为:
一、正常炼铁炉料中都会有少量铅,炉底有部分铅沉积,所以铁水中的铅基本是饱和态,本发明的高炉回收铅冶炼方法不会产生铅的损失,可以提高铅回收量。
二、蓄电池里的废液主要是硫酸铅、硫酸和水,本发明将废液与石灰粉混合,石灰粉中的氧化钙与废液中的硫酸反应生成硫酸钙,废液里面的水与氧化钙反应生成氢氧化钙,使其成为干状的硫酸铅、硫酸钙、氢氧化钙和氧化钙的混合物,并粉碎成粉剂,便于加料,保持稳定的高炉冶炼环境。
三、由于硫酸铅和硫酸钙的加入,会有部分硫被铁水吸收进入铁水,使铁水增硫,所以本发明方法产出的铁水硫含量比较高,生产的铁水可以用于对硫要求不高的铸件生产。
四、由于高炉炉顶温度较低,一般不会超过250℃,这个温度时铅的蒸汽压几乎为零。本发明在高炉中部完成了引出烟气回收铅处理,所以高炉上部铅的蒸汽压为非饱和态,另外炉内还会有比铅更活泼的锌、镉金属,因此不会产生氧化铅。实际运行中煤气中也几乎检测不到铅,保障了高炉正常运行。
五、由于喷入炉内的硫酸铅都分解成气态物质,没有机会进入炉渣,所以铅不会对高炉渣造成排放超标。实际运行中也没有发现炉渣的铅含量增加,保障了炉渣无害。
六、本发明设备引出烟气方式是环绕高炉炉壁开设多个引气孔,开孔越多,除铅效果越好,对高炉运行影响越小,具体开孔的数量根据设备大小和成本而定,设计灵活。
七、本发明采用两套炉气铅回收系统,施行一用一备,交替使用防止设备失效,便于连续生产。
八、本发明设备回收铅是依附于炼铁工艺中,并非专门的铅生产设备,没有回收率的要求,因此在能够保证炉料透气性的情况下可尽量减少煤气温降,减少热量损失,在高炉透气性变差时需要多引出炉气,加速降低炉内铅蒸气压,高炉透气性正常时可以少引出炉气。灵活调节,节省运行成本。
九、本发明在冶炼钢铁的同时,对废旧电池进行回收处理,一举两得。且不会对煤气和炉渣造成铅污染,铁水也没有铅含量增加,所以发明无论是从金属收得率考虑,还是从污染物排放角度考虑,都是个非常好的工艺,而且能耗也很低。本发明没有二次污染风险,铅排放几乎为零;利用现有炼铁高炉改造投资少,运行成本低;没有任何废弃物产生。
十、本发明在回收铅的同时,还会回收部分锌、镉等低温可气化金属,也可以脱除一部分轻金属氧化物及盐,对改善高炉透气性、改善物料反应活性、减少系统阻力、提高冶炼强度意义重大。
十一、本发明可以解决高铅矿冶炼和高铅废料冶炼中影响物料透气性问题,因此该设备也适用于其它高铅物料冶炼,也可以作为一种铅冶炼设备。
十二、本发明可以解决高炉冶炼轻金属氧化物富集糊堵炉料问题,因此该设备和方法适用于湿法冶金的含铁废料处理。
附图说明
图1为本发明实施例1一种含铅物料的高炉回收冶炼设备的结构示意图:图中,1-高炉,2-粉剂储罐,3-混料器,4-喷煤分配器,5-下环形烟道,6-上环形烟道,7-顶端进料口,8-排铅口,9-炉壁喷吹进料孔,10-炉壁引气孔,11-炉壁回气孔,12-炉气铅回收系统Ⅰ,12.1-铅收集器,12.2-集铅槽,12.3-放散阀门,12.4-排料阀门,13-炉气铅回收系统Ⅱ,13.1-铅收集器,13.2-集铅槽,13.3-放散阀门,13.4-排料阀门,14-鼓风机Ⅰ,15-鼓风机Ⅱ,16-氮气清扫器,16.1-氮气阀门,16.2-氮气阀门,17-进烟一道阀门,18-进烟二道阀门,19-进烟一道阀门,20-进烟二道阀门,21-出烟一道阀门,22-出烟二道阀门,23-出烟一道阀门,24-出烟二道阀门,25-废旧蓄电池极板处理系统,26-废旧蓄电池废液干燥物粉碎系统,27-废旧蓄电池废液处理系统,箭头表示物流方向。
图2为本发明实施例1一种含铅物料的高炉回收冶炼设备的下环形烟道截面图:图中,1-高炉,5-下环形烟道,10-炉壁引气孔;
图3为本发明实施例1一种含铅物料的高炉回收冶炼设备的上环形烟道截面图:图中,1-高炉,6-上环形烟道,11-炉壁回气孔。
本发明的实施方式
下面结合具体实施案例和附图1-3对本发明作进一步说明,但本发明并不局限于这些实施例。
实施例1
某钢铁企业在230立方米高炉做蓄电池回收改造。
如图1-3所示,一种含铅物料的高炉回收冶炼设备,包括高炉1、粉剂储罐2、混料器3、喷煤分配器4、下环形烟道5、上环形烟道6、炉气铅回收系统Ⅰ12、炉气铅回收系统Ⅱ13、鼓风机Ⅰ14、鼓风机Ⅱ15、氮气清扫器16;
所述高炉1的顶端设置有进料口7,底端炉壁设置有排铅口8;所述高炉1的融化段设置有炉壁喷吹进料孔9,过渡段780℃炉温处设置有8个炉壁引气孔10,在炉壁引气孔10上方3.5米500℃炉温处设置有8个炉壁回气孔11;
所述粉剂储罐2设置有气体输料系统;所述喷煤分配器4连接有喷煤枪;
所述炉气铅回收系统Ⅰ12由铅收集器12.1和设置在铅收集器12.1底部的集铅槽12.2组成,所述铅收集器12.1上部设置有放散管,放散管设置有放散阀门12.3;所述集铅槽12.2设置有排铅管,排铅管设置有排料阀门12.4;
所述炉气铅回收系统Ⅱ13由铅收集器13.1和设置在铅收集器13.1底部的集铅槽13.2组成,所述铅收集器13.1上部设置有放散管,放散管设置有放散阀门13.3;所述集铅槽13.2设置有排铅管,排铅管设置有排料阀门13.4;
所述高炉1的进料口7通过管道连接外部的废旧蓄电池极板处理系统25;所述粉剂储罐2的顶端进料口通过管道连接外部的废旧蓄电池废液干燥物粉碎系统26,废旧蓄电池废液干燥物粉碎系统26连接废旧蓄电池废液处理系统27;
所述粉剂储罐2底端出料口通过管道连接混料器3的进口,所述混料器3的出口与喷煤分配器4直接相连,所述喷煤分配器4通过支管连接喷煤枪,喷煤枪插入炉壁喷吹进料孔9;
所述炉壁引气孔10通过支管连接下环形烟道5,所述下环形烟道5通过三向管道分支连接炉气铅回收系统Ⅰ12和炉气铅回收系统Ⅱ13的进烟口;所述炉气铅回收系统Ⅰ12和炉气铅回收系统Ⅱ13的出烟口通过三向管道合并连接上环形烟道6,所述上环形烟道6通过支管连接炉壁回气孔11;
所述氮气清扫器16通过管道分别连接炉气铅回收系统Ⅰ12和炉气铅回收系统Ⅱ13,所述氮气清扫器16与炉气铅回收系统Ⅰ12的连接管道上设置有阀门16.1;所述氮气清扫器16与炉气铅回收系统Ⅱ13的连接管道上设置有阀门16.2;
所述鼓风机Ⅰ14通过管道连接炉气铅回收系统Ⅰ12,所述鼓风机Ⅱ15通过管道连接炉气铅回收系统Ⅱ13;
所述下环形烟道5与炉气铅回收系统Ⅰ12的支路连接管道上设置有进烟一道阀门17和进烟二道阀门18两道阀门;所述环形烟道5与炉气铅回收系统Ⅱ13的分支连接管道上设置有进烟一道阀门19和进烟二道阀门20两道阀门;所述炉气铅回收系统Ⅰ12与上环形烟道6的支路连接管道上设置有出烟一道阀门21和出烟二道阀门22两道阀门;所述炉气铅回收系统Ⅱ13与上环形烟道6的支路连接管道上设置有出烟一道阀门23和出烟二道阀门24两道阀门;
所述下环形烟道5与炉壁引气孔10的连接支管上设置有阀门;所述上环形烟道6与炉壁回气孔11的连接支管上设置有阀门;
所述炉气铅回收系统Ⅰ12和炉气铅回收系统Ⅱ13与上环形烟道6的连接合并管道上设置有阀门;
所述喷煤分配器4设8根支管与8支喷煤枪连接,8支喷煤枪分别插入8个炉壁喷吹进料孔9;
所述鼓风机Ⅰ14和鼓风机Ⅱ15的电机为变频电机。
一种含铅物料的高炉回收冶炼方法,采用上述一种含铅物料的高炉回收冶炼装置,方法包含如下步骤:
步骤1,预处理:
将废旧蓄电池进行拆分,将大块铅板在废旧蓄电池极板处理系统25中进行极板预处理,大块铅板剪成便于上料的小块,得到预处理极板料;废旧蓄电池中的废液由硫酸铅、硫酸和水组成,将废液在废旧蓄电池废液处理系统27中进行预处理,将废液与石灰粉混合,制成硫酸钙、氢氧化钙、氧化钙、硫酸铅混合固体,然后混合固体在废旧蓄电池废液干燥物粉碎系统26进行粉碎处理,粉碎粒度≤80目,得到预处理粉剂;
步骤2,加料:
将预处理极板料通过上料系统经过进料口7加入至高炉1中;将预处理粉剂通过管道加入至粉剂储罐2中,粉剂储罐2的气体输送系统将预处理粉剂通过管道输送至混料器3中进行混料,然后随着喷吹燃料一同喷入喷煤分配器4,经喷煤分配器4分配给喷煤枪,最后经炉壁喷吹进料孔9喷入高炉1内;
步骤3,冶炼:
高炉1中进行正常炼铁,冶炼炉料为烧结矿、球团矿、多孔焦炭和冶炼溶剂,高炉底部铁水温度在1400~1500℃,喷煤风口区域,即炉壁喷吹进料孔9区域温度在1800~2300℃,炉顶排烟温度在150~250℃,炉内为还原性气氛;
(1)经进料口7加入的极板料中的金属铅在327℃时开始熔化,并穿过炉料向炉子下部流淌,沉入炉底;同时会有少量铅在向下流淌过程中高温汽化上升,铅蒸汽在上升过程中被多孔焦炭和烧结矿多层吸附,或者被低温炉料冷却凝固在炉料表面,然后随炉料下行,下行后温度升高,铅再次被汽化,最后在不同温度区域达到平衡,高炉1内800~650℃温区处的含铅烟气经炉壁引气孔10引出,进入下环形烟道5;
(2)喷入高炉1内的混合粉剂中的硫酸铅,在1800℃以上的温度,迅速分解成氧化硫和氧化铅,紧接着氧化铅变为气态,并被一氧化碳和碳还原成金属铅,金属铅紧接着被汽化,铅蒸汽上升后遇到低温炉料冷凝成液态铅,进而向下流淌,沉入炉底;氧化硫被还原成硫化氢、羰基硫随炉气排出炉外,被煤气脱硫环节捕捉脱除,或被铁水吸收,使铁水增硫;混合粉剂中的硫酸钙进入炉渣;混合粉剂中的氢氧化钙分解成水和氧化钙,氧化钙随软熔带滴落的铁进入底部熔池,并被炉渣捕捉成为造渣材料;
步骤4,回收:
采用炉气铅回收系统Ⅰ12进行铅回收,首先将氮气清扫器16接通高压氮气源,并打开氮气阀门16.1,打开放散阀门12.3,向炉气铅回收系统Ⅰ12中注入氮气,以氮气置换空气;然后开启鼓风机Ⅰ14;之后打开出烟一道阀门21、出烟二道阀门22,最后逐渐开启进烟一道阀门17、进烟二道阀门18,通过控制进烟阀门,控制烟气引出量在20~30%;引出的烟气通过管道进入炉气铅回收系统Ⅰ12,进行降温冷却捕捉铅、锌、镉、轻金属氧化物及盐,冷却后的铅液、锌、镉、轻金属氧化物及盐流入集铅槽12.2;炉气铅回收系统Ⅰ12内未液化的烟气,经管道进入上环形烟道6,并通过炉壁回气孔11引回至高炉1中;炉壁引气孔10处引出烟气经管道阻力和炉气铅回收系统阻力减压后的气压大于炉壁回气孔11处炉内烟气气压。
上述方法中,铅收集器12.1采用板式换热。
上述方法中,降温冷却的介质采用风冷,风源由鼓风机Ⅰ14提供。
本实施例的预处理极板料随高炉入炉料均匀加入,并根据加入量计算调整焦比,按照每吨铅增加焦比45公斤调整;入炉料焦比先按照每吨粉剂增加150公斤焦炭,运行过程中根据炉温变化做微调,本案实际增加焦比120公斤/吨粉剂。
本实施例设备运行4~5小时后,打开炉气铅回收系统Ⅰ的排料阀门首次排铅,然后根据铅收集速度和集铅槽容积定期排铅;设备运行8小时做首次高炉底部排铅,之后每天排铅一到两次,根据冶炼投入含铅物料量确定。
炉气铅回收系统Ⅰ运行两个月时发生一次排铅口堵塞,停止炉气铅回收系统Ⅰ运行,并维修;同时启动炉气铅回收系统Ⅱ进行回收,不耽误连续生产。
根据两个月投入产出测算,上部铅收集器回收的铅和高炉底部排铅口排铅合计铅回收率在99%以上。在除铅设备收集的粗铅中含有部分锌、镉金属,在精炼时将三种金属分离。
设备运行四个月过程中,除一次炉气除铅设备排铅口堵塞之外,没有发生任何问题,运行一切正常,没有因为处理铅废料影响炉料透气性。除铅系统每天最多排铅5吨,不排铅时炉料透气性变差,排铅后很快改善炉料透气性。高炉煤气始终没有发现有铅成分,炉渣也没有铅浓度变化;
本实施例高炉运行期间每天最多喷吹混合粉剂量55吨,最多从炉顶加极板废料100吨。
 

Claims (10)

  1. 一种含铅物料的高炉回收冶炼设备,其特征在于,包括高炉(1)、粉剂储罐(2)、混料器(3)、喷煤分配器(4)、下环形烟道(5)、上环形烟道(6)、炉气铅回收系统Ⅰ(12)、炉气铅回收系统Ⅱ(13)、鼓风机Ⅰ(14)、鼓风机Ⅱ(15)、氮气清扫器(16);
    所述高炉(1)的顶端设置有进料口(7),底端炉壁设置有排铅口(8);所述高炉(1)的融化段设置有炉壁喷吹进料孔(9),过渡段800~650℃炉温处设置有炉壁引气孔(10),过渡段600~350℃炉温处设置有炉壁回气孔(11);
    所述粉剂储罐(2)设置有气体输料系统;所述喷煤分配器(4)连接有喷煤枪;
    所述炉气铅回收系统Ⅰ(12)由铅收集器(12.1)和设置在铅收集器(12.1)底部的集铅槽(12.2)组成,所述铅收集器(12.1)上部设置有放散管,放散管设置有放散阀门(12.3);所述集铅槽(12.2)设置有排铅管,排铅管设置有排料阀门(12.4);
    所述炉气铅回收系统Ⅱ(13)由铅收集器(13.1)和设置在铅收集器(13.1)底部的集铅槽(13.2)组成,所述铅收集器(13.1)上部设置有放散管,放散管设置有放散阀门(13.3);所述集铅槽(13.2)设置有排铅管,排铅管设置有排料阀门(13.4);
    所述高炉(1)的进料口(7)通过管道连接外部的废旧蓄电池极板处理系统(25);所述粉剂储罐(2)的顶端进料口通过管道连接外部的废旧蓄电池废液干燥物粉碎系统(26),废旧蓄电池废液干燥物粉碎系统(26)连接废旧蓄电池废液处理系统(27);
    所述粉剂储罐(2)底端出料口通过管道连接混料器(3)的进口,所述混料器(3)的出口与喷煤分配器(4)直接相连,所述喷煤分配器(4)通过支管连接喷煤枪,喷煤枪插入炉壁喷吹进料孔(9);所述炉壁引气孔(10)通过支管连接下环形烟道(5),所述下环形烟道(5)通过三向管道分支连接炉气铅回收系统Ⅰ(12)和炉气铅回收系统Ⅱ(13)的进烟口;所述炉气铅回收系统Ⅰ(12)和炉气铅回收系统Ⅱ(13)的出烟口通过三向管道合并连接上环形烟道(6),所述上环形烟道(6)通过支管连接炉壁回气孔(11);
    所述氮气清扫器(16)通过管道分别连接炉气铅回收系统Ⅰ(12)和炉气铅回收系统Ⅱ(13),所述氮气清扫器(16)与炉气铅回收系统Ⅰ(12)的连接管道上设置有阀门(16.1);所述氮气清扫器(16)与炉气铅回收系统Ⅱ(13)的连接管道上设置有阀门(16.2);
    所述鼓风机Ⅰ(14)通过管道连接炉气铅回收系统Ⅰ(12),所述鼓风机Ⅱ(15)通过管道连接炉气铅回收系统Ⅱ(13);
    所述下环形烟道(5)与炉气铅回收系统Ⅰ(12)的支路连接管道上设置有进烟一道阀门(17)和进烟二道阀门(18)两道阀门;所述环形烟道(5)与炉气铅回收系统Ⅱ(13)的分支连接管道上设置有进烟一道阀门(19)和进烟二道阀门(20)两道阀门;所述炉气铅回收系统Ⅰ(12)与上环形烟道(6)的支路连接管道上设置有出烟一道阀门(21)和出烟二道阀门(22)两道阀门;所述炉气铅回收系统Ⅱ(13)与上环形烟道(6)的支路连接管道上设置有出烟一道阀门(23)和出烟二道阀门(24)两道阀门。
  2. 根据权利要求1所述的一种含铅物料的高炉回收冶炼设备,其特征在于,所述下环形烟道(5)与炉壁引气孔(10)的连接支管上设置有阀门;所述上环形烟道(6)与炉壁回气孔(11)的连接支管上设置有阀门。
  3. 根据权利要求1所述的一种含铅物料的高炉回收冶炼设备,其特征在于,所述炉气铅回收系统Ⅰ(12)和炉气铅回收系统Ⅱ(13)与上环形烟道(6)的连接合并管道上设置有阀门。
  4. 根据权利要求1所述的一种含铅物料的高炉回收冶炼设备,其特征在于,所述炉壁喷吹进料孔(9)的数量为N个,N≥2;所述喷煤枪数量与炉壁喷吹进料孔(9)数量相同;所述喷煤枪为耐热不锈钢管。
  5. 根据权利要求1所述的一种含铅物料的高炉回收冶炼设备,其特征在于,所述炉壁引气孔(10)的数量为M个,M≥2;所述下环形烟道(5)的内侧开设与炉壁引气孔(10)相同数量的孔。
  6. 根据权利要求1所述的一种含铅物料的高炉回收冶炼设备,其特征在于,所述炉壁回气孔(11)的数量为M个,M≥2;所述上环形烟道(6)的内侧开设与炉壁回气孔(11)相同数量的孔。
  7. 根据权利要求1所述的一种含铅物料的高炉回收冶炼设备,其特征在于,所述鼓风机Ⅰ(14)和鼓风机Ⅱ(15)的电机为变频电机。
  8. 一种含铅物料的高炉回收冶炼方法,采用上述一种含铅物料的高炉回收冶炼设备,方法包含如下步骤:
    步骤1,预处理:
    将废旧蓄电池进行拆分,将大块铅板在废旧蓄电池极板处理系统(25)中进行极板预处理,大块铅板剪成便于上料的小块,得到预处理极板料;废旧蓄电池中的废液由硫酸铅、硫酸和水组成,将废液在废旧蓄电池废液处理系统(27)中进行预处理,将废液与石灰粉混合,制成硫酸钙、氢氧化钙、氧化钙、硫酸铅混合固体,然后混合固体在废旧蓄电池废液干燥物粉碎系统(26)进行粉碎处理,粉碎粒度≤80目,得到预处理粉剂;
    步骤2,加料:
    将预处理极板料通过上料系统经过进料口(7)加入至高炉(1)中;将预处理粉剂通过管道加入至粉剂储罐(2)中,粉剂储罐(2)的气体输送系统将预处理粉剂通过管道输送至混料器(3)中进行混料,然后随着喷吹燃料一同喷入喷煤分配器(4),经喷煤分配器(4)分配给喷煤枪,最后经炉壁喷吹进料孔(9)喷入高炉(1)内;
    步骤3,冶炼:
    高炉(1)中进行正常炼铁,冶炼炉料为烧结矿、球团矿、多孔焦炭和冶炼溶剂,高炉底部铁水温度在1400~1500℃,喷煤风口区域,即炉壁喷吹进料孔(9)区域温度在1800~2300℃,炉顶排烟温度在150~250℃,炉内为还原性气氛;
    (a)经进料口(7)加入的极板料中的金属铅在327℃时开始熔化,并穿过炉料向炉子下部流淌,沉入炉底;同时会有少量铅在向下流淌过程中高温汽化上升,铅蒸汽在上升过程中被多孔焦炭和烧结矿多层吸附,或者被低温炉料冷却凝固在炉料表面,然后随炉料下行,下行后温度升高,铅再次被汽化,最后在不同温度区域达到平衡,高炉(1)内800~650℃温区处的含铅烟气经炉壁引气孔(10)引出,进入下环形烟道(5);
    (b)喷入高炉(1)内的混合粉剂中的硫酸铅,在1800℃以上的温度,迅速分解成氧化硫和氧化铅,紧接着氧化铅变为气态,并被一氧化碳和碳还原成金属铅,金属铅紧接着被汽化,铅蒸汽上升后遇到低温炉料冷凝成液态铅,进而向下流淌,沉入炉底;氧化硫被还原成硫化氢、羰基硫随炉气排出炉外,被煤气脱硫环节捕捉脱除,或被铁水吸收,使铁水增硫;混合粉剂中的硫酸钙进入炉渣;混合粉剂中的氢氧化钙分解成水和氧化钙,氧化钙随软熔带滴落的铁进入底部熔池,并被炉渣捕捉成为造渣材料;
    步骤4,回收:
    启动炉气铅回收系统Ⅰ(12)或炉气铅回收系统Ⅱ(13),首先将氮气清扫器(16)接通高压氮气源,并打开氮气阀门(16.1)或氮气阀门(16.2),打开放散阀门(12.3)或放散阀门(13.3),向炉气铅回收系统Ⅰ(12)或炉气铅回收系统Ⅱ(13)中注入氮气,以氮气置换空气;然后开启鼓风机Ⅰ(14)或鼓风机Ⅱ(15);之后打开出烟一道阀门(21)、出烟二道阀门(22)或打开出烟一道阀门(23)、出烟二道阀门(24),最后逐渐开启进烟一道阀门(17)、进烟二道阀门(18),或逐渐开启进烟一道阀门(19)、进烟二道阀门(20),通过控制进烟阀门,控制烟气引出量在20~30%;引出的烟气通过管道进入炉气铅回收系统Ⅰ(12)或炉气铅回收系统Ⅱ(13),进行降温冷却捕捉铅、锌、镉、轻金属氧化物及盐,冷却后的铅液、锌、镉、轻金属氧化物及盐流入集铅槽(12.2)或集铅槽(13.2);炉气铅回收系统Ⅰ(12)或炉气铅回收系统Ⅱ(13)内未液化的烟气,经管道进入上环形烟道(6),并通过炉壁回气孔(11)引回至高炉(1)中。
  9. 根据权利要求8所述的一种含铅物料的高炉回收冶炼方法,其特征在于,炉壁引气孔(10)处引出烟气经管道阻力和炉气铅回收系统阻力减压后的气压大于炉壁回气孔(11)处炉内烟气气压。
  10. 根据权利要求8所述的一种含铅物料的高炉回收冶炼方法,其特征在于,炉气铅回收系统Ⅰ(12)和炉气铅回收系统Ⅱ(13)的降温采用管式或板式换热;炉气铅回收系统Ⅰ(12)和炉气铅回收系统Ⅱ(13)的降温冷却的介质采用风冷,风源由鼓风机Ⅰ(14)或鼓风机Ⅱ(15)提供。
PCT/CN2021/116926 2020-09-14 2021-09-07 一种含铅物料的高炉回收冶炼设备及其方法 WO2022052911A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010959069.2A CN111910083A (zh) 2020-09-14 2020-09-14 一种含铅物料的高炉回收冶炼设备及其方法
CN202010959069.2 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022052911A1 true WO2022052911A1 (zh) 2022-03-17

Family

ID=73266991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116926 WO2022052911A1 (zh) 2020-09-14 2021-09-07 一种含铅物料的高炉回收冶炼设备及其方法

Country Status (2)

Country Link
CN (1) CN111910083A (zh)
WO (1) WO2022052911A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004784A (zh) * 2023-10-07 2023-11-07 山西建龙实业有限公司 一种高炉喷吹煤粉用氮气的预热系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910083A (zh) * 2020-09-14 2020-11-10 沈阳东大山汇环境科技有限公司 一种含铅物料的高炉回收冶炼设备及其方法
CN113857204A (zh) * 2021-09-11 2021-12-31 徐婷 一种危险固体废弃物铅回收设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950236A (zh) * 2018-08-03 2018-12-07 个旧市沙甸永和冶炼厂 一种清洁高效处理含铅废渣的工艺
CN111349793A (zh) * 2020-04-16 2020-06-30 沈阳东大山汇环境科技有限公司 一种高炉或竖炉的锌回收方法及其装置
CN111910083A (zh) * 2020-09-14 2020-11-10 沈阳东大山汇环境科技有限公司 一种含铅物料的高炉回收冶炼设备及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108950236A (zh) * 2018-08-03 2018-12-07 个旧市沙甸永和冶炼厂 一种清洁高效处理含铅废渣的工艺
CN111349793A (zh) * 2020-04-16 2020-06-30 沈阳东大山汇环境科技有限公司 一种高炉或竖炉的锌回收方法及其装置
CN111910083A (zh) * 2020-09-14 2020-11-10 沈阳东大山汇环境科技有限公司 一种含铅物料的高炉回收冶炼设备及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004784A (zh) * 2023-10-07 2023-11-07 山西建龙实业有限公司 一种高炉喷吹煤粉用氮气的预热系统
CN117004784B (zh) * 2023-10-07 2023-11-28 山西建龙实业有限公司 一种高炉喷吹煤粉用氮气的预热系统

Also Published As

Publication number Publication date
CN111910083A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2022052911A1 (zh) 一种含铅物料的高炉回收冶炼设备及其方法
CN110423854B (zh) 一种电能全氢闪速还原直接炼钢系统及工艺
CN104212930B (zh) 一种二步法冶炼铁水的baosherex炼铁工艺
CN110438277B (zh) 一种旋风闪速还原直接炼钢系统及工艺
Wang et al. Current status and development trends of innovative blast furnace ironmaking technologies aimed to environmental harmony and operation intellectualization
CN105087844B (zh) 高炉渣余热回收与直接还原联合生产系统及方法
Yu et al. A review on reduction technology of air pollutant in current China's iron and steel industry
CN112981027A (zh) 一种钢铁厂含铁含锌固体废料直接熔炼工艺装置
CN108517387B (zh) 一种转炉煤气净化及余热回收利用系统
CN102277463B (zh) 一种还原炉及生产直接还原铁的装置
CN214694260U (zh) 一种钢铁厂含铁含锌固体废料直接熔炼工艺装置
CN113337661B (zh) 一种双熔池炉改性处理熔融态钢渣的方法
CN114032347A (zh) 基于外部预热炉料的氢气竖炉炼铁装置及其炼铁方法
CN102268502A (zh) 用还原回转窑冶炼难选铁矿(渣)制取海绵铁的方法
CN108822898B (zh) 一种全氧全煤炼铁技术的煤气提质与回收工艺
CN115491453B (zh) 一种PLCsmelt熔融还原炼铁方法及装置
CN115896379A (zh) 一种利用废钢进行炼铁的欧冶炉系统和使用方法
CN212713694U (zh) 一种含铅物料的高炉回收冶炼设备
CN214327826U (zh) 一种冶金含锌灰悬态熔融还原回收氧化锌的治理及利用装置
CN101565767A (zh) 一种熔融还原炼铁方法
CN1302122C (zh) 在竖炉中具有挥发性再生金属回收功能的还原熔炼方法
CN112391535A (zh) 一种冶金含锌灰悬态熔融还原回收氧化锌的治理及利用装置和方法
CN114216124A (zh) 一种废旧电路板资源化处理系统及工艺
CN115449573B (zh) 一种节能环保型高炉及高炉炼铁工艺
CN109628676A (zh) 一种直接生产纯净铁水的短流程工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865965

Country of ref document: EP

Kind code of ref document: A1