WO2022052805A1 - 具有抑制振动的部件的刀具 - Google Patents

具有抑制振动的部件的刀具 Download PDF

Info

Publication number
WO2022052805A1
WO2022052805A1 PCT/CN2021/114491 CN2021114491W WO2022052805A1 WO 2022052805 A1 WO2022052805 A1 WO 2022052805A1 CN 2021114491 W CN2021114491 W CN 2021114491W WO 2022052805 A1 WO2022052805 A1 WO 2022052805A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
accommodating cavity
cross
tool
vibration
Prior art date
Application number
PCT/CN2021/114491
Other languages
English (en)
French (fr)
Inventor
孙思叡
Original Assignee
上海名古屋精密工具股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海名古屋精密工具股份有限公司 filed Critical 上海名古屋精密工具股份有限公司
Publication of WO2022052805A1 publication Critical patent/WO2022052805A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/003Milling-cutters with vibration suppressing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D77/00Reaming tools
    • B23D77/003Reaming tools with means for preventing chatter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/007Weight compensation; Temperature compensation; Vibration damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/70Drills with vibration suppressing means

Definitions

  • the present invention relates to a tool for machining, in particular to a tool with significantly reduced vibration during cutting, so as to realize the finishing of workpieces and shorten the processing cycle of products.
  • Cutting tools include turning tools, planing tools, milling tools, outer surface broaches and files, etc., which are tools used for cutting processing in machinery manufacturing, and are mainly used for cutting metal materials.
  • the cutting tool includes an edge, a structure for breaking or rolling up chips, a structure for removing or storing chips, and a structure for adding or discharging cutting fluid, etc. Among them, the edge is the main structure of the cutting tool for cutting.
  • the tool will inevitably vibrate during cutting, which will damage the surface of the processed product, reduce the surface roughness, and shorten the tool life.
  • the aspect ratio of the boring tool cannot exceed 5 times. It can be seen that how to avoid or reduce the vibration of the tool during processing to improve the surface quality of the processed product and prolong the tool life is an important issue. Avoiding or reducing the vibration of the tool during processing mainly depends on improving the dynamic stiffness of the tool itself, that is, The improvement of static stiffness and damping is achieved, and the improvement of the surface quality of the processed product can be achieved by improving the dynamic balance characteristics of the tool itself.
  • Unbalanced vibration is the main factor that troubles the normal operation of rotating machinery.
  • the existing technology mainly starts from two aspects: design and processing.
  • design stage As much as possible, use modern technical means such as computer-aided engineering (CAE) to analyze the tool body in advance, and try to achieve the design. of symmetry.
  • CAE computer-aided engineering
  • the dynamic balance of the tool is detected online and the weight of each part of the tool is fine-tuned to achieve dynamic balance by punching/milling/installing counterweight screws according to the detection results.
  • the existing technology mainly adopts two technical routes: active vibration suppression and passive vibration suppression.
  • the former is mainly to add an electromagnetic or mechanically driven vibration source at the rear end of the tool (the end connected to the spindle), and the vibration source is used to offset the vibration of the machining by emitting a vibration of the same amplitude as the vibration frequency caused by the machining but in the opposite direction. It is adopted abroad.
  • the frequency-amplitude-adjustable vibration source is generally used to match different working conditions; the latter is mainly to set a cavity in the center of the tool and put a damping block or damping liquid (hereinafter referred to as the damping mechanism) in it.
  • the damping mechanism damping block or damping liquid
  • the damping mechanism is generally made of high-density metal such as lead or cemented carbide (in some light cutting cases, damping fluid can also be used instead), and rubber damping blocks need to be placed at both ends to form a damping system, while rubber During use, the damping block will continue to deteriorate and lose due to factors such as heat, which will cause damping coefficient attenuation or damping fluid leakage, and eventually lead to the attenuation of the vibration-suppressing effect, which has to be replaced regularly, which increases labor intensity and system instability. , especially in relatively harsh conditions (high temperature, rapid temperature difference), such tools cannot be used for a long time.
  • the design size of the high-density metal block is related to the vibration frequency, that is, a metal block of one specification can only play a vibration suppression effect on a specific specification tool under specific processing parameters. Come over to promote vibration (vibration), which greatly limits the wide use of such tools. In fact, the working conditions of customers on site are very different, and the processing parameters are also different, and the customized design of large-density metal blocks for customers is greatly It increases the complexity of manufacturing and reduces the economics of cutting tool products.
  • the damping mechanism is set at the center of the tool circumference to obtain the largest damping cavity size as possible.
  • additional design is required.
  • the mechanical structure of the machine can ensure that the damping mechanism is installed at the same time as the central water outlet, which greatly increases the complexity of design and production and reduces the economy of the tool.
  • An object of the present invention is to provide a tool with good dynamic balance characteristics, which eliminates the need to fine-tune the weight of each part of the tool by drilling/milling/installing counterweight screws.
  • Another object of the present invention is to provide a tool, which can suppress or reduce the occurrence of vibration during cutting and improve the surface quality of the processed product.
  • Another object of the present invention is to provide a tool, so that the use parameters of the tool are greatly improved, and better vibration suppression performance can be exerted under various processing parameters.
  • Another object of the present invention is to provide a tool, which can greatly improve the use parameters of the tool, and at the same time reduce the complexity of the design and manufacture of the tool.
  • the fifth object of the present invention is to provide a tool, which can reduce the vibration pattern on the surface of the processed product, improve the quality of the processed surface, and shorten the processing time.
  • a tool includes a shank mountable to a rotating machine, and an axis from the shank to a cutting end.
  • the body of the tool is in the shape of a rod or rod, and the outer shape is mostly a cylinder, including at least two dimensions in the axial direction and the radial direction.
  • the axis is the central axis passing through the center of the circle at both ends of the cylinder.
  • An accommodating cavity is arranged on the body, and some granular substances are placed in the accommodating cavity to form a vibration-suppressing component.
  • the accommodating cavity is generally arranged along the axial direction of the body, and the section of the body and the section of the accommodating cavity are simultaneously obtained along the radial direction of the body.
  • the distance between the section center of the accommodating cavity and the section center of the main body is greater than 0, such as: but not limited to greater than 0.005mm, especially greater than 0.5mm, and the shape of the cross-section of each accommodating cavity is: but not limited to: circle, ellipse, polygon and "8" shape, etc.
  • 50% to 90% of the volume of the accommodating cavity is used for placing granular substances, especially 70% of the volume of the accommodating cavity.
  • the cross section of the accommodating cavity is circular, and its diameter is 5% to 40% of the diameter of the cutting part of the tool, especially 10% to 35%.
  • the granular material made of metal is preferred to obtain better vibration reduction effect, such as: but not limited to metals such as lead, copper, tungsten, and metal carbide materials with high density such as tungsten carbide, with a particle size of 1mm ⁇ 0.003mm, these substances are used in the present invention alone or in combination.
  • Another kind of tool includes a body and two vibration-suppressing components, each vibration-suppressing component includes an accommodating cavity, and granular substances are placed in the accommodating cavity.
  • Each accommodating cavity is generally arranged along the axial direction of the body, and the section of the body and the section of each accommodating cavity are simultaneously obtained along the radial direction of the body.
  • the center of the cross-section of the body is at least deviated from the line connecting the centers of the cross-sections of the two accommodating cavities.
  • Another kind of tool includes a body and more than three vibration-suppressing components, each vibration-suppressing component includes an accommodating cavity, and granular substances are placed in the accommodating cavity.
  • Each accommodating cavity is generally arranged along the axial direction of the body, and the section of the body and the section of each accommodating cavity are simultaneously obtained along the radial direction of the body.
  • the center of the cross-section of the body is at least deviated from the line connecting the centers of the cross-sections of the two accommodating cavities.
  • Another kind of tool includes a body and more than three vibration-suppressing structures, and each vibration-suppressing structure includes an accommodating cavity, and granular substances are placed in the accommodating cavity.
  • Each accommodating cavity is generally arranged along the axial direction of the body, and the section of the body and the section of each accommodating cavity are simultaneously obtained along the radial direction of the body.
  • the center of the cross-section of the body deviates from the line connecting the centers of the cross-sections of any two accommodating cavities, and is not concentric with the center of the cross-section of the body, so that the tool can be easily corrected for dynamic balance during manufacture (adjust the tool by different amounts of concentricity. Center of gravity), thereby eliminating the subsequent dynamic balancing weight reduction process, reducing the production process and improving the tool performance and product appearance.
  • vibration-suppressing component is arranged along the axial direction of the tool body.
  • These vibration-suppressing components are distributed unevenly in the radial direction of the body and the circumferential direction of the body, which can not only reduce the precision requirements for tool manufacturing (that is, to reduce the difficulty of manufacturing), it can also conveniently combine the asymmetry in the design of the tool itself to carry out the corresponding distribution design, without affecting the design parameters of the tool itself, and does not affect the processing requirements of the tool.
  • the cutter provided by the present invention can freely adjust the filling ratio of the granular material in each accommodating cavity by setting each accommodating cavity and placing granular substances in each accommodating cavity, and weights are carried out according to the dynamic balance requirement. to adjust the dynamic balance.
  • the vibration phenomenon of the cutting tool is significantly reduced or decreased during the cutting process, and the vibration cutting pattern on the surface of the processed product disappears, which meets the requirements of the roughness of the processed surface, not only the processing quality is significantly improved, but also the processing cycle of the product is also significantly improved. Shorten, reduce the processing steps, and significantly increase the benefits.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a cutter of the present invention
  • Fig. 2 is a schematic diagram of an angle of a section obtained along the radial direction of the tool body shown in Fig. 1;
  • FIG. 3 is a schematic cross-sectional view of an embodiment of the cutter of the present invention.
  • FIG. 4 is a schematic diagram of an angle of a radially obtained cross-section of the tool body shown in FIG. 3;
  • FIG. 5 is a schematic cross-sectional view of an embodiment of the cutter of the present invention.
  • FIG. 6 is a schematic diagram of an angle of a cross section obtained in the radial direction of the tool body shown in FIG. 5;
  • FIG. 7 is a schematic diagram of an embodiment of a cross-section of the vibration suppressing component of the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of the cross section of the vibration suppressing component of the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of the cross section of the vibration suppressing member of the present invention.
  • the tool includes a shank 20 having a longitudinal axis 10 and a shank 20 that can be mounted on a rotating machine.
  • the end of the workpiece opposite to the shank forms a cutting portion 30 for performing cutting processes such as hole machining, forming and milling Machining, reaming and grinding, etc.
  • the body of the tool is in the shape of a rod or a rod, and the shape is mostly a cylinder, including at least two dimensions in the axial direction and the radial direction.
  • the axis 10 is the central axis passing through the centers of both ends of the cylinder.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a cutter of the present invention
  • FIG. 2 is a schematic view of another angle of the cutter shown in FIG. 1
  • the tool includes a body 100 and a member 200 for suppressing vibration.
  • the vibration-suppressing component 200 includes an accommodating cavity 210 and some granular substances 220 placed in the accommodating cavity 210 .
  • the accommodating cavity is generally arranged along the axial direction of the body, and the section 110 of the body and the section 230 of the accommodating cavity are simultaneously obtained along the radial direction of the body 100 .
  • the shape of the cross-section 230 of the accommodating cavity is, but not limited to, a circle, an ellipse, a polygon, and an "8" shape, etc., see FIGS. 7 , 8 and 9 .
  • the distance D between the center 231 of the section 230 of the accommodating cavity and the center 111 of the section 110 of the body is greater than 0, eg, greater than 0.005 mm, especially greater than 0.5 mm. The skilled person will understand that the distance D cannot be greater than the diameter of the section of the body. 50% to 90% of the volume of the accommodating cavity is used for placing the particulate matter 220, especially 70% of the volume of the accommodating cavity.
  • the accommodating cavity in this embodiment is cylindrical, and its diameter is 5% to 40% of the diameter of the cutting part of the tool, such as but not limited to 10%, 11%, 12%, 13%, 14%, 15%, 16% , 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33 %, 34% and 35%.
  • the granular material 220 is made of metal, such as lead, copper, tungsten and other metals, and tungsten carbide and other metal carbide materials with a high density, and the particle size is 1 mm ⁇ 0.003 mm.
  • FIG. 3 is a schematic cross-sectional view of an embodiment of a cutter according to the present invention
  • FIG. 4 is a schematic view of an angle of the cross-section obtained in the radial direction of the cutter body shown in FIG. 3
  • the tool body 100 and two vibration-suppressing components 200 each include an accommodating cavity 210 and particles made of metal placed in the accommodating cavity 210 like substance 220.
  • Each accommodating cavity 210 is generally arranged along the axial direction of the body, and the section 110 of the body and the section 230 of each accommodating cavity are simultaneously obtained along the radial direction of the body.
  • the outer shape of the cross section 230 of the accommodating cavity is circular, and the outer shape of the section 110 of the main body is circular.
  • the center of the cross-section 110 of the body is at least deviated from the line L1 connecting the centers of the cross-sections of the two accommodating cavities.
  • 50% to 90% of the volume of each accommodating cavity 210 is used to place the granular material 220, and the corresponding distribution design is carried out in combination with the asymmetry in the design of the tool itself, and the amount of granular material placed in each accommodating cavity is the same or Different, does not affect the design parameters of the tool itself, does not affect the processing requirements of the tool.
  • FIG. 5 is a schematic cross-sectional view of an embodiment of a cutter according to the present invention
  • FIG. 6 is a schematic view of an angle of the cross-section obtained in the radial direction of the cutter body shown in FIG. 5
  • each vibration-suppressing structure includes an accommodating cavity and a granular material made of metal placed in the accommodating cavity.
  • Each accommodating cavity is generally arranged along the axial direction of the body, and the section 110 of the body and the section 230 of each accommodating cavity are simultaneously obtained along the radial direction of the body.
  • the outer shape of the cross section 230 of the accommodating cavity is circular, and the outer shape of the section 110 of the main body is circular.
  • the center 111 of the section 110 of the body is at least deviated from the line L1 connecting the centers of the sections 230 of the two accommodating cavities.
  • the center 111 of the cross-section 110 of the body is deviated from the lines L2, L3, L4 connecting the centers of the cross-sections of any two accommodating cavities.
  • the distances D2 and D3 between the intersection of the connecting line L3 and the two orthogonal diameters passing through the center 111 and the center 111 are 0.0617 mm and 0.0253 mm, respectively.
  • the two-edge forming face milling cutter (five times diameter) with a diameter of D40 and a length of 200 is processed.
  • the original processing parameters are S800F50 (ie, the speed is 800, the feed is 50), and the speed reduction at the bottom surface is S100F10. It still has obvious tool vibration phenomenon. The roughness of the processed surface is seriously out of tolerance.
  • Two D12 ⁇ 40 long accommodating cavities are added asymmetrically to the body of this kind of reamer. After 70% of the volume of metal particles is placed in the cavity, the roughness is greatly improved under the original processing parameters. (Ra0.8) and qualified. After the processing parameters are increased to S8000F1500 (the processing efficiency is increased by 300 times), the machined surface roughness is still qualified (Ra1.1), and the vibration suppression ability has not been significantly reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

一种具有抑制振动的部件的刀具,包括本体(100),在本体上设置至少1个抑制振动的部件(200),抑制振动的部件(200)包括1个容置腔(210),在容置腔内放置一些颗粒状物质(220)。容置腔整体上沿本体的轴向布置,沿本体径向同时得到本体的截面(110)和容置腔的截面(230),容置腔的截面的中心和本体的截面中心距离大于0。刀具应用于切削加工中,刀具的振动现象显著减少或下降,被加工产品表面的振刀纹消失,符合加工表面粗糙度的要求,不仅加工质量显著提高,产品的加工周期也显著缩短,加工工序减少。

Description

具有抑制振动的部件的刀具 技术领域
本发明涉及一种用于机加工的刀具,尤其涉及一种在实施切削加工中,振动现象显著降低的刀具,实现对工件的精加工,缩短产品的加工周期。
背景技术
切削刀具包括车刀、刨刀、铣刀、外表面拉刀和锉刀等,是机械制造中用于切削加工的工具,其主要用于切削金属材料。切削刀具包括刃、使切屑断碎或卷拢的结构、排屑或容储切屑的结构,以及用于加入或排出切削液的结构等。其中,刃是切削刀具实施切削加工的主要结构。
刀具在切削中不可避免会发生振动,进而破坏了被加工产品的表面,降低表面粗糙度,并伴随着刀具寿命的缩短。尤其是在深孔镗铣加工中,由于刀具自身长径比很大又是单向受力,十分容易发生激烈的振动导致加工不能,通常镗刀的长径比不能超过5倍。由此可见,如何避免或者减少刀具在加工中的振动以提高被加工产品表面质量并延长刀具寿命就是一个重要问题,避免或者减少刀具的在加工中的振动主要依靠提高刀具自身的动刚度,即提高静刚度和阻尼实现,而提高被加工产品表面质量则可以靠提高刀具自身的动平衡特性来实现。
不平衡振动是困扰旋转机械正常工作的主要因素。为解决刀具的动平衡问题,现有技术主要从设计和加工两个方面入手,首先在设计阶段尽量多采用计算机辅助工程(CAE)等现代技术手段预先对于刀体进行分析,尽量做到设计上的对称。其次,在刀具加工完成后,对刀具进行动平衡在线检测并依据检测结果通过打孔/铣面/安装配重螺钉等方式对刀具各部分的重量进行微调以实现动平衡。
为了抑制或减少刀具在切削中发生振动的情形,提高被加工的产品表面质量,现有技术主要通过主动抑制振动和被动抑制振动两条技术路线。前者主要是在刀具后端(连接主轴的一端)追加电磁或机械驱动的振动源,通过该振动源发出与加工造成的振动频率幅度相当但方向相反的振动来抵消加工的振动,这种技术主要为国外采用,在实际使用中,一般采用频率振幅可调型振动源以匹配不同工况;后者主要是在刀具中心设置空腔并在其中置入阻尼块或阻尼液(下称阻尼机构),在加工时通过阻尼机构的阻尼运动吸收振动动能从而减少加工振动,这种技术路线实施上较为简易,因而得到相对广泛的使用。
采用阻尼机构的被动抑制振动技术具有如下缺点:
1、阻尼机构一般采用铅或硬质合金等等大密度金属制成(在一些轻切削案例里也可以用阻尼液代替),其两端需要置入橡胶阻尼块密封才能构成阻尼系统,而橡胶阻 尼块在使用中会因受热等工况因素不断发生劣化损耗,进而造成阻尼系数衰减或阻尼液泄露,并最终导致抑制振动的效果衰减而不得不定期更换,增加使用劳动强度和系统不稳定性,特别是在相对恶劣(高温、急速温差)的工况下此类刀具无法长期使用。
2、大密度金属块的设计尺寸与振动频率有关,即一种规格的金属块仅能对特定加工参数条件下的特定规格刀具起到振动抑制作用,在非设计参数段使用,有时还会反过来促进振动(激振),这大大限制了该类刀具的广泛使用,而实际上客户现场工况条件千差万别,加工参数也不一而终,而为客户量身定制设计大密度金属块又大大增加了生产制造的复杂性,使得刀具产品的经济性下降。
3、为了获得更好的抑制振动效果,阻尼机构都设置于刀具圆周中心处以获得尽量大的阻尼腔体尺寸,当刀具中心有孔时(一般为了导出冷却液以冷却刀具前端)需要额外设计复杂的机械结构才能保证中心出水的同时搭载阻尼机构,这大大增加设计与生产的复杂性并降低了刀具的经济性。
4、在刀具出厂前进行动平衡修正额外增加了工序,提高了生产成本并减慢了交货速度。
发明内容
本发明的一个目的在于提供一种刀具,具有良好的动平衡特性,无需再通过打孔/铣面/安装配重螺钉等方式对刀具各部分的重量进行微调。
本发明的另一个目的在于提供一种刀具,使得在切削中发生振动的情形得到抑制或减少,提高被加工产品的表面质量。
本发明的再一个目的在于提供一种刀具,使得刀具的各项使用参数得到大幅提高,在各种加工参数下都能发挥较好的振动抑制性能。
本发明的又一个目的在于提供一种刀具,使得刀具的各项使用参数得到大幅提高,同时降低刀具的设计和制造的复杂程度。
本发明的第五个目的在于提供一种刀具,减少被加工产品的表面的振刀纹,提高加工表面的质量,缩短加工时间。
一种刀具,包括可安装到旋转机械上的柄部,以及由此柄部至切削端部的一条轴线。通常的,刀具的本体的呈棒状或杆状,外形以圆柱体居多,至少包括轴向和径向两个维度。轴线即为过圆柱体两端圆心的中轴线。
在本体上设置1个容置腔,在容置腔内放置一些颗粒状物质,而形成1个抑制振动的部件。容置腔整体上沿本体的轴向布置,沿本体径向同时得到本体的截面和容置腔的截面。容置腔的截面中心和本体的截面中心距离大于0,如:但不限于大于0.005mm,尤其是大于0.5mm,各个容置腔的截面的形状如:但不限于圆形、椭圆形、多边形和“8”字形等。
50%~90%的容置腔体积被用于放置颗粒状物质,尤其是70%的容置腔体积。
优先选择容置腔的截面为圆形,其直径为刀具切削部直径的5%~40%,尤其是 10%~35%。
优先选择金属制成的颗粒状物质,以获得更好的减振效果,如:但不限于铅、铜、钨等金属,以及碳化钨等密度较大的金属碳化物材质,粒径为1mm~0.003mm,这些物质单独或组合应用于本发明。
另一种刀具,其包括本体,以及2个的抑制振动的部件,各个抑制振动的部件包括1个容置腔,在容置腔内放置颗粒状物质。各个容置腔整体上沿本体的轴向布置,沿本体径向同时得到本体的截面和各个容置腔的截面。本体的截面的中心至少偏离于两个容置腔的截面的中心的连线之外。
另一种刀具,其包括本体,以及3个以上的抑制振动的部件,各个抑制振动的部件包括1个容置腔,在容置腔内放置颗粒状物质。各个容置腔整体上沿本体的轴向布置,沿本体径向同时得到本体的截面和各个容置腔的截面。本体的截面的中心至少偏离于两个容置腔的截面的中心的连线之外。
另一种刀具,其包括本体,以及3个以上的抑制振动的结构,各个抑制振动的结构包括1个容置腔,在容置腔内放置颗粒状物质。各个容置腔整体上沿本体的轴向布置,沿本体径向同时得到本体的截面和各个容置腔的截面。本体的截面的中心偏离于任意两个容置腔的截面的中心的连线之外,不与本体的截面中心同心,使得刀具在制造时可以方便地进行动平衡修正(通过不同心量调节刀具重心),从而取消后续的动平衡减重工序,减少生产流程的同时提高了刀具性能和产品外观。
本发明技术方案实现的有益效果:
本发明提供的刀具,在沿刀具本体的轴向设置的1件以上抑制振动的部件,这些抑制振动的部件呈本体径向和本体圆周方向的不均等分布,不仅能够降低对刀具制造的精度要求(即减少制造难度),还能方便地结合刀具自身设计上的不对称性,进行相应的分布设计,不影响刀具自身的设计参数,不影响刀具的加工要求。
本发明提供的刀具,通过设置各个容置腔,并在各个容置腔内放置颗粒状物质,就能够自由调节各个容置腔内的颗粒状物质的填充比例,并按照动平衡要求进行配重以起到调节动平衡的作用。
本发明提供的刀具,在切削加工中,刀具的振动现象显著减少或下降,被加工产品表面的振刀纹消失,符合加工表面粗糙度的要求,不仅加工质量显著提高,产品的加工周期也显著缩短,加工工序减少,效益显著增加。
附图说明
图1为本发明刀具一实施例的剖面示意图;
图2为沿图1所示的刀具本体的径向所得截面一角度的示意图;
图3为本发明刀具一实施例的剖面示意图;
图4为图3所示的刀具本体的径向所得截面一角度的示意图;
图5为本发明刀具一实施例的剖面示意图;
图6为图5所示的刀具本体的径向所得截面一角度的示意图;
图7为本发明抑制振动部件的截面一实施例的示意图;
图8为本发明抑制振动部件的截面另一实施例的示意图;
图9为本发明抑制振动部件的截面另一实施例的示意图。
具体实施方式
以下结合附图详细描述本发明的技术方案。本发明实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
本实施例中,刀具包括具有一条纵向轴线10,和可安装到旋转机械上的柄部20,与柄部相反的工件一端形成切削部30,用于实施切削加工:如:孔加工、成型铣加工、铰加工和磨削加工等。通常的,刀具的本体呈棒状或杆状,外形以圆柱体居多,至少包括轴向和径向两个维度。轴线10即为过圆柱体两端圆心的中轴线。
图1为本发明刀具一实施例的剖面示意图,图2为图1所示的刀具另一角度的示意图。如图1和图2所示,刀具包括本体100,以及抑制振动的部件200。抑制振动的部件200包括1个容置腔210,以及放置在容置腔210内的一些颗粒状物质220。容置腔整体上沿本体的轴向布置,沿本体100径向同时得到本体的截面110和容置腔的截面230。
容置腔的截面230的外形如:但不限于圆形、椭圆形、多边形和“8”字形等,参见图7、图8和图9。容置腔的截面230的中心231和本体的截面110的中心111的距离D大于0,如:大于0.005mm,尤其是大于0.5mm。技术人员能够理解,距离D不能大于本体的截面的直径。50%~90%的容置腔体积被用于放置颗粒状物质220,尤其是70%的容置腔体积。本实施例的容置腔呈圆柱状,其直径为刀具切削部直径的5%~40%,如:但不限于10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%和35%。
颗粒状物质220由金属制成,如:铅、铜、钨等金属,以及碳化钨等密度较大的金属碳化物材质,粒径为1mm~0.003mm。
图3为本发明刀具一实施例的剖面示意图,图4为图3所示的刀具本体的径向所得截面一角度的示意图。图如3和图4所示,刀具本体100,以及2个抑制振动的部件200,各个抑制振动的部件包括1个容置腔210,以及放置在容置腔210内的由金属制成的颗粒状物质220。各个容置腔210整体上沿本体的轴向布置,沿本体径向同时得到本体的截面110和各个容置腔的截面230。容置腔的截面230的外形为圆形,本体的截面110的外形为圆形。本体的截面110的中心至少偏离于两个容置腔的截面的 中心的连线L1之外。各个容置腔210体积的50%~90%被用于放置颗粒状物质220,结合刀具自身设计上的不对称性,进行相应的分布设计,各个容置腔内放置颗粒状物质的量相同或不同,不影响刀具自身的设计参数,不影响刀具的加工要求。
图5为本发明刀具一实施例的剖面示意图,图6为图5所示的刀具本体的径向所得截面一角度的示意图。图如5和图6所示,刀具本体,以及3个以上抑制振动的部件,各个抑制振动的结构包括1个容置腔,以及放置在容置腔内的由金属制成的颗粒状物质。各个容置腔整体上沿本体的轴向布置,沿本体径向同时得到本体的截面110和各个容置腔的截面230。容置腔的截面230的外形为圆形,本体的截面110的外形为圆形。本体的截面110的中心111至少偏离于两个容置腔的截面230的中心的连线L1之外。本体的截面110的中心111偏离于任意两个容置腔的截面的中心的连线L2,L3,L4之外。连线L3与过中心111的两条正交直径所成的交点与中心111的距离D2和D3分别为0.0617mm和0.0253mm。
加工直径D40长200的两刃成型面铣刀(五倍径),其原加工参数为S800F50(即转速800,进给50),底面处降速为S100F10,依然具有明显的振刀现象,产品被加工表面粗糙度严重超差,对该种铰刀的本体上非对称增加两个D12×40长容置腔,在腔内置入70%体积地金属颗粒后,原加工参数下粗糙度大幅改善(Ra0.8)并合格,加工参数升至S8000F1500后(加工效率提升300倍),加工表面粗糙度依然合格(Ra1.1),抑振能力未见显著衰减。
加工直径D110长210的长柄成型铰刀,原加工参数加工振刀严重,零件孔壁布满振刀纹。对该种铰刀的本体上非对称增加6个D16×38长容置腔,在腔内置入金属颗粒后形成具有抑制振动部件的刀具,并再次以相同参数加工相同的零件孔壁后,零件孔壁上振刀纹消失,粗糙度合格(Ra1.2)。

Claims (13)

  1. 一种刀具,包括本体,其特征在于在所述的本体上设置至少1个抑制振动的部件,所述抑制振动的部件包括1个容置腔,在所述的容置腔内放置一些颗粒状物质;
    所述的容置腔整体上沿所述本体的轴向布置,沿所述的本体径向同时得到本体的截面和容置腔的截面,所述容置腔的截面的中心和所述本体的截面中心距离大于0。
  2. 根据权利要求1所述的刀具,其特征在于所述容置腔的截面的中心和所述本体的截面中心距离大于0.005mm。
  3. 根据权利要求1所述的刀具,其特征在于所述容置腔的截面的中心和所述本体的截面中心距离大于0.5mm。
  4. 根据权利要求1所述的刀具,其特征在于所述容置腔的截面的形状为圆形、椭圆形、多边形和“8”字形。
  5. 根据权利要求1所述的刀具,其特征在于50%~90%的容置腔体积被用于放置所述的颗粒状物质。
  6. 根据权利要求1所述的刀具,其特征在于70%的容置腔体积被用于放置所述的颗粒状物质。
  7. 根据权利要求1所述的刀具,其特征在于所述容置腔的截面为圆形,截面的直径为刀具切削部直径的5%~40%。
  8. 根据权利要求1所述的刀具,其特征在于所述容置腔的截面为圆形,截面的直径为刀具切削部直径是10%~35%。
  9. 根据权利要求1所述的刀具,其特征在于所述的颗粒状物质粒径为1mm~0.003mm。
  10. 根据权利要求1所述的刀具,其特征在于所述的颗粒状物质选自于铅、铜、钨和碳化钨之一种或几种。
  11. 根据权利要求1所述的刀具,其特征在于所述的抑制振动的部件为2个,所述的本体的截面的中心至少偏离于两个容置腔的截面的中心的连线之外。
  12. 根据权利要求1所述的刀具,其特征在于所述的抑制振动的部件为3个以上,所述的本体的截面的中心至少偏离于任意两个容置腔的截面的中心的连线之外。
  13. 根据权利要求1所述的刀具,其特征在于所述的抑制振动的部件为3个以上,所述的本体的截面的中心至少偏离于任意两个容置腔的截面的中心的连线之外。
PCT/CN2021/114491 2020-09-14 2021-08-25 具有抑制振动的部件的刀具 WO2022052805A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010965582.2A CN111975048A (zh) 2020-09-14 2020-09-14 具有抑制振动的部件的刀具
CN202010965582.2 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022052805A1 true WO2022052805A1 (zh) 2022-03-17

Family

ID=73449792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114491 WO2022052805A1 (zh) 2020-09-14 2021-08-25 具有抑制振动的部件的刀具

Country Status (2)

Country Link
CN (1) CN111975048A (zh)
WO (1) WO2022052805A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111975048A (zh) * 2020-09-14 2020-11-24 上海名古屋精密工具股份有限公司 具有抑制振动的部件的刀具
CN112743426B (zh) * 2020-12-24 2023-02-03 华中科技大学 一种机器人磨抛加工的接触振动抑制方法及系统
US11819925B2 (en) * 2021-09-30 2023-11-21 Kennametal Inc. Damper system for cutting tool
CN114535628B (zh) * 2022-04-25 2022-07-15 成都市鸿侠科技有限责任公司 一种基于襟翼滑轨加工用刀具及其加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221303A (ja) * 1990-01-23 1991-09-30 Mitsubishi Materials Corp ボーリングバー
CN102275086A (zh) * 2011-08-04 2011-12-14 中国科学院过程工程研究所 一种阻尼减振刀杆
CN102666005A (zh) * 2009-10-30 2012-09-12 优开洼精工株式会社 工具保持体
CN105817680A (zh) * 2015-01-23 2016-08-03 钴碳化钨硬质合金公司 具有可调谐无源吸振器组件的工具夹持器
CN111975048A (zh) * 2020-09-14 2020-11-24 上海名古屋精密工具股份有限公司 具有抑制振动的部件的刀具
CN212734346U (zh) * 2020-09-14 2021-03-19 上海名古屋精密工具股份有限公司 具有抑制振动的部件的刀具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221303A (ja) * 1990-01-23 1991-09-30 Mitsubishi Materials Corp ボーリングバー
CN102666005A (zh) * 2009-10-30 2012-09-12 优开洼精工株式会社 工具保持体
CN102275086A (zh) * 2011-08-04 2011-12-14 中国科学院过程工程研究所 一种阻尼减振刀杆
CN105817680A (zh) * 2015-01-23 2016-08-03 钴碳化钨硬质合金公司 具有可调谐无源吸振器组件的工具夹持器
CN111975048A (zh) * 2020-09-14 2020-11-24 上海名古屋精密工具股份有限公司 具有抑制振动的部件的刀具
CN212734346U (zh) * 2020-09-14 2021-03-19 上海名古屋精密工具股份有限公司 具有抑制振动的部件的刀具

Also Published As

Publication number Publication date
CN111975048A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2022052805A1 (zh) 具有抑制振动的部件的刀具
CN106001611B (zh) 一种精密高速断续超声振动切削方法
Liu et al. Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP)
US20060275090A1 (en) Tool having damper, cutting method using the same, and manufacturing method of impeller or guide vane of fluid machine
JP2015083333A (ja) 可搬式装置と共に使用するための超音波機械加工用組立体
US3820422A (en) Cantilever tool mandrel
Sathishkumar et al. Impact of particle damping parameters on surface roughness of bored surface
CN104428093A (zh) 用于轴钻孔的校准头
CN110773782B (zh) 一种喷油嘴安装孔用金刚石复合铣刀
CN204867481U (zh) 带支撑分段复合结构阻尼减振镗杆
Noma et al. High-precision and high-efficiency micromachining of chemically strengthened glass using ultrasonic vibration
CN104107938A (zh) 一种新型消失模切削加工专用刀具
US8875367B2 (en) Increased process damping via mass reduction for high performance milling
CN212734346U (zh) 具有抑制振动的部件的刀具
CN214392488U (zh) 一种用于复合材料钻孔用环形刀具
CN206028771U (zh) 一种防震镗铣复合刀具
CN207480340U (zh) 一种斜螺旋加工单元与加工设备
CN212042839U (zh) 一种数控机床用铣刀
Kuriyagawa et al. Development of micro ultrasonic abrasive machining system (1st report, studies in micro ultrasonic abrasive machining)
CN105312856B (zh) 一种旋梭梭床的加工方法
Azlan et al. Experimental investigation of surface roughness using ultrasonic assisted machining of hardened steel
CN113696349B (zh) 一种pcd切削钻头及应用其的加工方法
CN220111129U (zh) 一种成组碾米砂轮
JP2021062430A (ja) 穴加工方法および中ぐり工具
CN205764064U (zh) 一种用于深孔加工台阶孔锥度圆弧过渡的镗刀体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865861

Country of ref document: EP

Kind code of ref document: A1