WO2022052663A1 - 生物特征感测装置 - Google Patents

生物特征感测装置 Download PDF

Info

Publication number
WO2022052663A1
WO2022052663A1 PCT/CN2021/110043 CN2021110043W WO2022052663A1 WO 2022052663 A1 WO2022052663 A1 WO 2022052663A1 CN 2021110043 W CN2021110043 W CN 2021110043W WO 2022052663 A1 WO2022052663 A1 WO 2022052663A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sensing
area
module
sensing device
Prior art date
Application number
PCT/CN2021/110043
Other languages
English (en)
French (fr)
Inventor
周正三
林冠仪
傅同龙
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Priority to KR1020237008005A priority Critical patent/KR20230047473A/ko
Priority to US18/043,403 priority patent/US20230334897A1/en
Publication of WO2022052663A1 publication Critical patent/WO2022052663A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B19/00Indicating the time by visual means
    • G04B19/30Illumination of dials or hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns
    • G06V40/145Sensors therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the present invention relates to a biometric sensing device, and more particularly, to a device for performing biometric sensing using defective light fields.
  • Today's mobile electronic devices (such as mobile phones, tablet computers, notebook computers, etc.) are usually equipped with user biometric systems, including different technologies such as fingerprints, face shape, iris, etc., to protect personal data security, such as application in Portable devices such as mobile phones or smart watches also have the function of mobile payment, and biometric identification has become a standard function for users.
  • the trend of narrow frame makes the traditional capacitive fingerprint keys no longer used, and then evolves new miniaturized optical imaging devices (some are very similar to traditional camera modules, with Complementary Metal-Oxide Semiconductor (Complementary Metal-Oxide Semiconductor) Semiconductor (CMOS) Image Sensor (abbreviated as CIS) sensing element and optical lens module).
  • CMOS Complementary Metal-Oxide Semiconductor
  • CIS Image Sensor
  • the miniaturized optical imaging device is placed under the screen (it can be called under the screen), and the light is partially transmitted through the screen (especially the organic light emitting diode (Organic Light Emitting Diode, OLED) screen).
  • OLED Organic Light Emitting Diode
  • the image of the object, especially the fingerprint image can be called under-screen fingerprint sensing (Fingerprint On Display, FOD).
  • the under-screen fingerprint sensor In addition to correctly sensing the fingerprint, the under-screen fingerprint sensor also needs to determine the authenticity of the finger, so as to prevent someone from using a fake fingerprint or fake finger that forged another person's fingerprint to pass the authentication by impersonating another person.
  • the current counterfeiting technology is becoming more and more sophisticated. For example, you can use 2D images or 3D printing to make a mold, and then use this mold to fill in various silicones and pigments to make fake fingers, or you can copy another person's fingerprints.
  • a transparent or skin color film is attached to the surface of the finger, making it difficult to identify fake fingers with a transparent film attached.
  • This fake finger recognition technology requires special attention when sensing fingerprints under the screen, because the display screen may obscure some of the finger features and affect the recognition results.
  • an object of the present invention is to provide a biometric sensing device, which utilizes the incident light field with defects provided by different regions of the digital light emitting module to sense the scattering, reflection and/or light guiding properties of an object for incident light. Wait for the optical response to obtain data to identify the authenticity of the object.
  • the present invention provides a biometric sensing device, which at least includes: a digital light-emitting module, including a first area and a second area, wherein the first area emits incident light; and a sensing module, set Below the digital light emitting module, wherein in a first mode, the second area does not emit light with the same wavelength as the incident light, so that the digital light emitting module provides a defect light field to illuminate an object above the digital light emitting module, the object The light generated in response to the defect light field is received by the sensing module.
  • a digital light-emitting module including a first area and a second area, wherein the first area emits incident light
  • a sensing module set Below the digital light emitting module, wherein in a first mode, the second area does not emit light with the same wavelength as the incident light, so that the digital light emitting module provides a defect light field to illuminate an object above the digital light emitting module, the object The light generated in response to the defect light field is received by the sensing module.
  • the incident light of the incident light field with defects can be used to detect the optical response of the object to the incident light, as a basis for spectral characteristics and/or authenticity judgment.
  • FIG. 1 shows a schematic diagram of a biometric sensing device according to a first embodiment of the present invention.
  • FIG. 2 shows a schematic diagram of the digital lighting module applicable to FIG. 1 .
  • FIG. 3 shows a top view of the light-emitting state of the digital light-emitting module.
  • FIG. 4 is a schematic diagram showing the sensing results of genuine and fake fingers.
  • FIG. 5 is a plan view showing another example of the light-emitting state of the digital light-emitting module.
  • FIG. 6 is a plan view showing yet another example of the light-emitting state of the digital light-emitting module.
  • Figure 7 shows a schematic diagram of an object acting as a waveguide and causing scattered light.
  • 8A-8C show schematic diagrams of three different patterns of scattered light.
  • the present invention mainly uses a defect light field to perform biometric sensing, and the defect light field is provided by the first area and the second area of the light-emitting module, wherein the wavelength of the light in the first area is different from the wavelength of the light in the second area, Or the first region emits light and the second region does not emit light, that is, the first region emits specific light and the second region does not emit specific light.
  • the spectral properties of the object are obtained through the interaction between the material of the object and the reflection, scattering, absorption and/or conduction of the spectrum , and can even further judge the authenticity of the object.
  • the secondary outgoing light field is defined as the light field of the defect light field that penetrates the object again after entering the object, so it includes the light field generated after the incident light field advances a certain distance.
  • the spectral characteristics of the material of the object can be determined, and the application can include, for example, the anti-counterfeiting function of biometric identification, but of course it is not limited to this.
  • FIG. 1 shows a schematic diagram of a biometric sensing device according to a first embodiment of the present invention, wherein the light emitted by the light-emitting unit 11 strikes an object F (especially a close-up object) to generate scattering, reflection, absorption and/or conduction situation.
  • object F especially a close-up object
  • the following description takes the finger as the object F as an example, but the present invention is not limited to this. As shown in FIG.
  • the finger when the incident light L1 of the light emitting unit 11 hits the incident point P1 on the finger, for example, the finger responds to the incident light L1 and outputs the reflected light to be measured, which includes the incident light to be measured L2 and the diffused light to be measured L6, and the light to be measured at the incident point L2 includes scattered light L3 and specular reflection light L4 that are scattered and specularly reflected by the skin, respectively.
  • the diffused light to be measured L6 the diffused light to be measured also has scattered light, but for the sake of simplicity, the diffused light to be measured L6 is summed up and explained here.
  • the intensity of the diffused light to be measured L6 decreases with the distance from the incident point P1, because different fingers have different surface roughness or light absorption and penetration characteristics, so the incident light to be measured L2 and the diffused light to be measured L6 can reflect the material properties of the finger, and even further judge the authenticity of the finger.
  • the light L2/L6 shown in the figure here is only for a brief description. In fact, within a short light diffusion distance, the light to be measured at the incident point will contain a part of the light to be measured. This is because the light to be measured is diffused. From the incident point P1 to the outside, it belongs to the continuous outgoing distribution.
  • FIG. 2 shows a schematic diagram of the digital lighting module applicable to FIG. 1 .
  • a biometric sensing device 100 can be designed, which at least includes a digital light emitting module 10 , a sensing module 20 and an optional processor 30 .
  • the light-emitting unit 11 of FIG. 1 can form a digital light-emitting module 10 to provide a single-spectrum or multi-spectrum light source.
  • the optional processor 30 means that the processor 30 may be an element built into the biometric sensing device 100 , or an element externally connected to the biometric sensing device 100 .
  • the digital light emitting module 10 is used for emitting a light source whose brightness, spectrum and pattern can be controlled, and can be controlled to have at least two regions, such as a first region 12 and a second region 14 .
  • the digital light-emitting module 10 can be an OLED screen, a micro light-emitting diode (Micro LED, ⁇ LED) screen or other current or future screens that can provide digital light sources, and has a plurality of light-emitting units 11, of which the first The area 12 includes light-emitting units LS that are lit, forming a bright area; while the second area 14 includes light-emitting units LS that are not lit, forming a dark area.
  • the first area 12 and the second area 14 emit light of different wavelengths, and the sensing module can also be equipped with different wavelength filters to identify the light of different wavelengths.
  • the sensing module 20 is disposed below the digital light emitting module 10 , for example, below the display screen, and is used for sensing the biological characteristics of the object F above the digital light emitting module 10 .
  • the sensing module 20 can be a fingerprint sensor, which can be a thin-type, lens-type, or an in-screen optical fingerprint sensor such as OLED or ⁇ LED.
  • the sensing module 20 can sense biometric features such as blood vessel images and blood oxygen concentration images of fingers.
  • the sensing module 20 may include a sensing chip 21 and an optical-mechanical module 25.
  • the optical-mechanical module 25 is disposed above the sensing chip 21, and the sensing chip 21 has a plurality of sensing pixels 22 arranged in an array.
  • the sensing pixels 22 form an incident point sensing area 23 for sensing the incident light to be measured L2, and another part of the sensing pixels 22 form a diffusion sensing area 24 to sense the diffused light to be measured L6.
  • the incident point sensing region 23 may receive some components that diffuse the light to be measured L6, and this does not depart from the technology of the present invention.
  • the optomechanical module 25 may be a lens-type optical engine, a collimator-type optical engine, or the like. Since the incident light L2 to be measured is close to the incident point sensing area 23, the intensity distribution of the incident point sensing area 23 below it is also similar to the original light field of the incident point P1.
  • the diffused light to be measured L6 diffuses in, for example, the skin and exits, and is then sensed by the diffused sensing area 24 disposed below it. Understandably, the longer the diffusion distance, the weaker the outgoing intensity. Therefore, the light intensity of the sensing signal obtained from the midpoint of the incident point sensing area 23 to the diffusion sensing area 24 decreases according to the distance, which approximates an exponential decay, as shown by the curve ED. Therefore, the light intensity and curve distribution of the incident point sensing area 23 and/or the diffusion sensing area 24 can be selected to perform the interpretation of the spectral properties of the object F.
  • the processor 30 is directly or indirectly electrically connected to the digital lighting module 10 and the sensing module 20 .
  • the processor 30 controls the first area 12 to emit incident light L1 to illuminate the object F and controls the second area 14 not to emit light.
  • the object F responds to the light to be measured according to the output of the incident light L1 so that the sensing module 20 can sense the light.
  • a sensing signal is detected.
  • the first area 12 and the second area 14 emit light with different wavelengths, and the light with a specific wavelength is selected to enter the sensing pixel 22 by setting filters of different wavelengths in the sensing module 20 .
  • the digital light emitting module 10 partially emits the incident light L1, and partially does not emit light with the same wavelength as the incident light L1, so that the second region 14 does not emit light with the same wavelength as the incident light L1 in the first region 12, which can provide
  • the light generated by the object F reacting to the defect light field (including the incident light L1 ) is received by the sensing module 20 through the digital light emitting module 10 to obtain a sensing signal. Since the material and roughness of the surface of the object can determine the degree of optical response, the spectral properties of the object F can be interpreted through the sensing signal, and the authenticity of the object F can even be further judged.
  • the criterion for judgment may be a database established with test data obtained from tests performed in the above-mentioned light-emitting state (first mode) for, for example, real objects and fake objects.
  • the processor 30 further configures the relative positional relationship between the first area 12 and the second area 14, so that the incident light L2 and the diffuse light L6 to be measured can obtain good sensing, so as to provide More reliable interpretation and/or judgment results.
  • the first region 12 emits green light with a specific spectrum, while the second region 14 does not emit light, so that the incident light L2 and the diffused light L6 can pass through the second region 14 to be detected by the sensing module. 20 to receive, through the sensing results corresponding to the intensity distribution of green light obtained by the plurality of sensing pixels 22 under the second area 14, the intensity and the divergence angle of the light to be measured at the incident point L2 can be determined and the light to be diffused to be measured can be determined The transmission distance of L6, thereby determining the spectral characteristics of the object F.
  • the first area 12 emits white light of mixed spectrum, while the second area 14 does not emit light.
  • the first region 12 emits green light with a specific spectrum
  • the second region 14 emits light with a wavelength different from that of the first region 12, and the intensity distribution of the green light obtained by the sensing pixel 22 is different. From the sensing result, the same judgment and spectral characteristic determination as in the first example can also be made.
  • the sensing results of some sensing pixels 22 can be used as data for spectral characteristic interpretation and or anti-counterfeiting identification, and the sensing results of other sensing pixels can be used as biometric sensing data.
  • the processor 30 can also set a second mode (sensing mode) different from the first mode.
  • the sensing mode the digital light-emitting module 10 is not divided into a light-emitting area (the first area 12 ) and a non-light-emitting area.
  • the area (the second area 14), that is, under the coverage area of the object F, is a light-emitting area.
  • the sensing module 20 can obtain a second sensing signal corresponding to the biological feature of the object F, and the processor 30 can obtain the second sensing signal by comparing the difference between the second sensing signal and the aforementioned sensing signal.
  • FIG. 3 shows a top view of the light-emitting state of the digital light-emitting module 10 .
  • the first region 12 and the second region 14 together provide an annular light field. That is, an inner band 12A and an outer band 12B of the digital light emitting module 10 constitute a first area 12 that emits light, and a middle band between the inner band 12A and the outer band 12B constitutes a second region that does not emit light.
  • Zone 14 the second zone 14 has a radial dimension d.
  • the radial dimension d is larger than the period of the fingerprint (approximately 300 to 400 microns).
  • FIG. 4 is a schematic diagram showing the sensing results of real and fake fingers, wherein the vertical axis represents the intensity of the sensing pixels, the horizontal axis represents the positions of the sensing pixels, and from left to right represents the sensing directly below the inner circle 12A in FIG. 3 .
  • the position of the pixel is to the position of the sensing pixel directly below the outer band 12B. As shown in FIG.
  • the intensity curve C1 of the real finger and the intensity curve C2 of the fake finger have a considerable difference in the radial dimension d, which corresponds to the above-mentioned area that does not emit specific light, while the radial dimension d
  • the concave phenomenon of the intensity curve within the range represents the contribution of the first region outside the radial dimension d that emits the specific light to the second region that does not emit the specific light, and the contribution is related to the characteristics of the finger. If the second area emits the same specific light as the first area, a sensing result representing this contribution cannot be obtained.
  • a real finger scatters light to a higher degree than a fake finger, so the decrease in intensity below the non-illuminated area is less than that of a fake finger.
  • the authenticity of the finger can be identified through the intensity curve.
  • the opposite curve that is, there is another strength curve C3 whose strength value is higher than that of the strength curve C1, because the comparison between real and fake hands is relative rather than absolute, so under the same system , the strength curves C2 and C3 at both ends of the strength curve C1 of the real hand are different from the material properties of the real hand.
  • FIG. 5 is a plan view showing another example of the light-emitting state of the digital light-emitting module.
  • this example is similar to Fig. 3, the difference is that there are two middle ring bands forming the second area. That is, the inner band 12A, the outer band 12B and the first middle band 12C of the digital light emitting module 10 constitute the first light-emitting area 12, and the inner band 12A, the outer band 12B and the first middle band 12C The second middle ring band 14B and the third middle ring band 14C in between constitute the second area 14 that does not emit light.
  • the radial dimension d of at least one of the second middle ring band 14B and the third middle ring band 14C is greater than the period of the fingerprint.
  • FIG. 6 is a plan view showing yet another example of the light-emitting state of the digital light-emitting module. As shown in FIG. 6 , this example is similar to FIG. 3 , except that the second region 14 includes at least one geometric region 14D, which may have a circle or other geometric shape represented by a solid line. Of course, in other examples, the second region 14 may also have multiple geometric regions 14E represented by dotted lines. The advantage of the multiple regions is that the data corresponding to the geometric regions 14D and 14E obtained by the sensing module 20 can be accumulated and counted. , the stability of the identification is further increased, and the effect of the present invention can also be achieved by sensing the contribution of the light to be measured to the geometric region 14D (14E).
  • the contribution of the light to be measured to the second area 14 can also be measured by using a single non-luminous circular area or an acyclic area of other geometric shapes, as a basis for judging the characteristics of the object.
  • the radial dimension of the geometric region 14D ( 14E ) is greater than the period of the fingerprint.
  • Figure 7 shows a schematic diagram of an object acting as a waveguide and causing scattered light.
  • the object F provides a waveguide for the incident light L1, and the incident light L1 with a certain incident angle enters the dermis layer F2 from the epidermis layer F1 of the object F and then exits to become the diffused light to be measured L6.
  • the incident light L1 The transmission distance is determined by the light absorption coefficient and/or spectral properties of the object F.
  • the travel route in the epidermis layer F1 and the dermis layer F2 is represented by a straight line, the content of the present application is not limited to this, because the tissues in the epidermis layer F1 and the dermis layer F2 may still cause the above isotropy or The state of progress of anisotropic diffusion.
  • the sensing results (corresponding to the above-mentioned sensing signals) of the diffused light to be measured L6 by the plurality of sensing pixels 22 in FIG. 7 the transmission distance of the incident light L1 can be deduced, and the light absorption coefficient and/or spectrum can be determined by the transmission distance.
  • the light absorption coefficient and/or spectral characteristics the light guiding characteristics of the object F can be known, and the authenticity can also be further judged.
  • P( ⁇ ) represents the intensity of scattered light, which can form a curve HG
  • ⁇ s represents the scattering coefficient of the object
  • ⁇ a represents the light absorption coefficient of the object
  • represents the reflection angle of the light to be measured L2 at the incident point.
  • the following is defined as the scattering angle
  • g represents the anisotropy factor of the material of the object, and different materials have different g values.
  • the sensing results of the plurality of sensing pixels 22 in FIG. 7 for the light to be measured L2 at the incident point it can be determined whether the intensity distribution curve of the scattered light conforms to the known curve HG. Therefore, the properties of the material can be identified using the anisotropy level corresponding to the g value.
  • the above-mentioned functions are preferably sensed with a single-spectrum light source to obtain anisotropic scattering effects.
  • FIG. 8A-8C show schematic diagrams of three different patterns of scattered light.
  • the distribution of the intensity of scattered light with a g value of 0 is a circle whose center is a dot on the X-Y coordinate.
  • the intensity distribution of scattered light with a g value of 1/6 is a circle whose center is the right side of the dot on the X-Y coordinate, where the -X direction is the direction of the incident light.
  • the distribution of the intensity of scattered light with a g value of 0.7 is an ellipse, and the left end point thereof is the dot of the X-Y coordinate.
  • the g value is approximately equal to 0.7.
  • the processor 30 can deduce the distribution of P( ⁇ ) according to the sensing results of the plurality of sensing pixels 22 in FIGS. 8A to 8C , and the g value can be judged by the distribution, and the authenticity can be judged by the g value. .
  • the light guiding characteristics of the object F can be determined by judging the transmission distance of the incident light L1, and/or the anisotropy level of the object F can be determined by judging the intensity distribution curve of the scattered light, and then according to the above-mentioned database or contribution degree as a crop The basis for interpretation or authenticity judgment of the spectral properties of body F.
  • the incident light of the digital light emitting module that partially emits light and partially does not emit light or partially emits specific light and partially does not emit the specific light can be used to detect the scattering, reflection,
  • the sensing results of absorption and/or light guiding properties are compared with the sensing data obtained by sensing the object in response to the non-defective light field or other databases about real and fake objects, as the basis for interpreting spectral properties or for judging authenticity .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种生物特征感测装置,该装置至少包含:一数字发光模块,包含一第一区与一第二区,其中第一区发出入射光;以及一感测模块,设置于数字发光模块的下方,其中于一第一模式下,第二区不发出与入射光具有相同波长的光,以使数字发光模块提供一缺陷光场来照射数字发光模块上方的一物体,物体反应缺陷光场所产生的光被感测模块接收。

Description

生物特征感测装置 技术领域
本发明是有关于一种生物特征感测装置,且特别是有关于利用缺陷光场来执行生物特征感测的装置。
背景技术
现今的移动电子装置(例如手机、平板电脑、笔记本电脑等等)通常配备有使用者生物识别系统,包括了例如指纹、脸型、虹膜等等不同技术,用以保护个人数据安全,其中例如应用于手机或智能型手表等携带型装置,也兼具有行动支付的功能,对于使用者生物识别更是变成一种标准的功能,而手机等携带型装置的发展更是朝向全屏幕(或超窄边框)的趋势,使得传统电容式指纹按键无法再被继续使用,进而演进出新的微小化光学成像装置(有的非常类似传统的相机模块,具有互补式金属氧化物半导体(Complementary Metal-Oxide Semiconductor(CMOS)Image Sensor(简称CIS))感测元件及光学镜头模块)。将微小化光学成像装置设置于屏幕下方(可称为屏下),透过屏幕部分透光(特别是有机发光二极体(Organic Light Emitting Diode,OLED)屏幕),可以撷取按压于屏幕上方的物体的图像,特别是指纹图像,可以称为屏幕下指纹感测(Fingerprint On Display,FOD)。
屏幕下指纹感测除了要能正确地感测到指纹以外,也需要判断手指的真伪,以防止某人利用伪造另一人的指纹之假指纹或假手指来假冒另一人而通过认证。目前的仿冒技术也越来越精进,譬如可以利用2D影像或3D列印制作一个模具,再利用此模具填入各种不同的硅胶和色素制成假手指,或者也可以将另一人的指纹复制成透明或肤色薄膜附加到手指表面,使得附加有透明薄膜的假手指难以被辨别出。这种假手指辨识技术在屏幕下指纹感测时特别需要注意,因为显示屏幕可能会遮蔽部分手指的特征而影响辨识结果。
鉴于以上说明,对于判断真实手指的机构及方法,着实有更进一步的改良需求,以防止假手指通过指纹感测。
发明内容
因此,本发明的一个目的是提供一种生物特征感测装置,利用数字发光模块的不同区域所提供的具有缺陷的入射光场,感测物体对于入射光的散射、反射及/或导光特性等 等光学反应,以获得辨识物体真伪的数据。
为达上述目的,本发明提供一种生物特征感测装置,至少包含:一数字发光模块,包含一第一区与一第二区,其中第一区发出入射光;以及一感测模块,设置于数字发光模块的下方,其中于一第一模式下,第二区不发出与入射光具有相同波长的光,以使数字发光模块提供一缺陷光场来照射数字发光模块上方的一物体,物体反应缺陷光场所产生的光被感测模块接收。
通过上述的实施例,可以利用具有缺陷的入射光场的入射光,检测物体对于入射光的光学反应,作为光谱特性及/或真伪判断的依据。
为让本发明的上述内容能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
图1显示依据本发明第一实施例的生物特征感测装置的示意图。
图2显示可应用于图1的数字发光模块的示意图。
图3显示数字发光模块的发光状态的俯视图。
图4显示真伪手指的感测结果的示意图。
图5显示数字发光模块的发光状态的另一例的俯视图。
图6显示数字发光模块的发光状态的又另一例的俯视图。
图7显示物体当作波导及造成散射光的示意图。
图8A至图8C显示三种不同的散射光的图案的示意图。
附图标号:
C1,C2,C3:强度曲线
d:径向尺寸
ED:曲线
F:物体
F1:表皮层
F2:真皮层
HG:曲线
L1:入射光
L2:入射点待测光
L3:散射光
L4:镜面反射光
L6:扩散待测光
P1:入射点
P2:位置
10:数字发光模块
11:发光单元
12:第一区
12A:内圈带
12B:外圈带
12C:第一中圈带
14:第二区
14B:第二中圈带
14C:第三中圈带
14D,14E:几何区域
20:感测模块
21:感测芯片
22:感测像素
23:入射点感测区
24:扩散感测区
25:光机模块
30:处理器
100:生物特征感测装置
具体实施方式
本发明主要是利用缺陷光场来执行生物特征感测,缺陷光场由发光模块的第一区及第二区所提供,其中第一区的光的波长与第二区的光的波长不同,或第一区发光而第二区不发光,也就是第一区发出特定光,而第二区不发出特定光。利用缺陷光场打在不同物体上所产生的散射、反射、吸收及/或传导的不同情形,通过物体的材料与光谱的反射、散射、吸收及/或传导的交互作用来获得物体的光谱性质,甚至可以进一步判断该物 体的真伪。配合控制发出特定光的区域及不发出特定光的区域来提供缺陷光场(亦称非均匀光场),可以感测到经过反射、散射、吸收及/或二次出射光场而获得光谱感测结果,其中二次出射光场被定义成缺陷光场进入物体后再次穿透该物体的光场,故包含了入射光场前进一段距离后所产生的光场。依据此光谱感测结果可以判断物体的材料光谱特性,在应用上可以包含例如做为生物识别的防伪功能,但是当然不限定于此。
图1显示依据本发明第一实施例的生物特征感测装置的示意图,其中发光单元11发出的光线打在物体F(特别是距离近的物体)上而产生散射、反射、吸收及/或传导的情形。以下以手指当作物体F作为例子说明,但并非将本发明限制于此。如图1所示,当发光单元11的入射光L1打在譬如手指上的入射点P1时,手指反应入射光L1而输出反应待测光,其包含入射点待测光L2及扩散待测光L6,而入射点待测光L2包含分别被皮肤散射(scatter)及镜面反射(specular reflection)的散射光L3及镜面反射光L4。另外,会有部分光穿透皮肤而进入手指中,也会在手指内部有多重的散射及反射,因此衍生了类似光的等向性或非等向性扩散前进,就像是从入射点P1向外扩散,再因上述各种效应使光由远离入射点P1的皮肤表面的位置P2穿透出射,可以称之为扩散待测光L6。当然,扩散待测光也会带有散射的光,只是为了简化起见,在此加总而成扩散待测光L6解释之。扩散待测光L6的强度是随着远离入射点P1的距离而变小,因为不同的手指有不同的表面粗糙度或光线吸收及穿透特性,所以入射点待测光L2及扩散待测光L6可以反应手指的材料特性,甚至更进一步判断手指的真伪。当然这里的图所显示的光L2/L6仅为了做简要的描述,实际上在短的光扩散距离内,入射点待测光会包含部分扩散待测光的成分,这是因为扩散待测光从入射点P1开始往外,是属于连续性出射分布的。
图2显示可应用于图1的数字发光模块的示意图。如图2与图1所示,为了测量上述反应待测光,可以设计一种生物特征感测装置100,至少包含一数字发光模块10、一感测模块20及一可选的处理器30。图1的发光单元11可以组成数字发光模块10,以提供单光谱或多光谱的光源。可选的处理器30表示处理器30可以是内建于生物特征感测装置100中的元件,也可以是外接于生物特征感测装置100的元件。
数字发光模块10用于发出可控制亮度、光谱及图案的光源,可以被控制成具有至少两个区域,例如是第一区12与第二区14。于一例子中,数字发光模块10可以为OLED屏幕、微型发光二极体(Micro LED,μLED)屏幕或其他现在或未来的可以提供数字光源的屏幕,并具有多个发光单元11,其中第一区12包含点亮的发光单元LS,形成亮区;而第二区14包含不点亮的发光单元LS,形成暗区。于另一例子中,第一区12与第二区 14发出不同波长的光线,这时感测模块也可以搭配不同的波长滤波器来鉴别不同波长的光线。
感测模块20设置于数字发光模块10的下方,例如可在显示屏下方,用于感测数字发光模块10上方的物体F的生物特征。于本例中,感测模块20可以为一指纹感测器,其可以是薄型、透镜型或OLED或μLED等等屏内光学指纹感测器。当然,于另一例中,感测模块20可以感测手指的血管图像、血氧浓度图像等生物特征。可以理解的,感测模块20可以包含一感测芯片21及一光机模块25,光机模块25设置于感测芯片21上方,感测芯片21具有排列成阵列的多个感测像素22,其中一部分的感测像素22构成一入射点感测区23用以感测入射点待测光L2,而另一部分的感测像素22构成一扩散感测区24来感测扩散待测光L6。本领域技术人员可知,入射点感测区23可能会接收些许扩散待测光L6的成分,而此并不脱离本发明的技术。光机模块25可以是透镜型光学引擎、准直器型光学引擎等等。入射点待测光L2由于距离入射点感测区23近的原因,使得到达其下方的入射点感测区23的强度分布也近似于入射点P1原来的光场。扩散待测光L6在例如皮肤中扩散而出射,然后被设置于其下方的扩散感测区24感测到。可以理解的,扩散距离越远,出射强度越弱。因此,从入射点感测区23的中点往外到扩散感测区24所获得的感测信号的光强度依距离递减,近似指数型的衰减(Exponential Decay),如曲线ED所示。因此,可以选择采用入射点感测区23及/或扩散感测区24的光强度及曲线分布来进行物体F的光谱性质的判读。
处理器30直接或间接电连接至数字发光模块10及感测模块20。于一第一模式下,处理器30控制第一区12发出入射光L1照射于物体F并且控制第二区14不发光,物体F依据入射光L1输出反应待测光以让感测模块20感测得到一感测信号。或者第一区12与第二区14发出不同波长的光线,而通过感测模块20中设置不同波长的滤波器来选择特定波长的光线进入感测像素22。因此,数字发光模块10局部发出入射光L1,且局部不发出与入射光L1具有相同波长的光,让第二区14不发出与第一区12的入射光L1具有相同波长的光,可提供缺陷光场,让物体F反应缺陷光场(包含入射光L1)所产生的光通过数字发光模块10被感测模块20接收而得到感测信号。由于物体表面的材料及粗糙程度可以决定光学反应的程度,故通过此感测信号,可以判读物体F的光谱性质,甚至可进一步判断物体F的真伪。判断的基准可以是对譬如真物体与假物体,在上述发光状态(第一模式)下所做测试获得的测试数据所建立的数据库。于另一例子中,通过处理器30进一步配置第一区12与第二区14的相对位置的关系,可以让入射点待测光L2及扩 散待测光L6获得到良好的感测,以提供更可靠的判读及/或判断结果。
于第一例中,第一区12发出特定光谱的绿光,而第二区14不发光,以让入射点待测光L2及扩散待测光L6可以通过第二区14而被感测模块20接收,通过对应于第二区14下方的多个感测像素22所获得的绿光的强度分布的感测结果,即可判断入射点待测光L2的强度及发散角及扩散待测光L6的传递距离,藉此决定物体F的光谱特性。于第二例中,第一区12发出混合光谱的白光,而第二区14不发光,此状态下所感测的是多重光谱的光线的散射情形,通过感测像素22所获得的白光的强度分布的感测结果,亦可作出相同于第一例的判断及光谱特性的决定。于第三例中,第一区12发出特定光谱的绿光,而第二区14发出具有与第一区12的光不同波长的光,通过感测像素22所获得的绿光的强度分布的感测结果,亦可作出相同于第一例的判断及光谱特性的决定。
在第一模式下,可以利用某些感测像素22的感测结果当作光谱特性判读及或防伪辨识的数据,利用其他的感测像素的感测结果当作生物特征感测数据。当然,也可以由处理器30另外设置一个不同于第一模式的第二模式(感测模式),于感测模式下,数字发光模块10就没有分成发光区(第一区12)与不发光区(第二区14),也就是物体F的覆盖范围下都是发光区。此外,于感测模式下,感测模块20可以获得对应于物体F的生物特征的一第二感测信号,处理器30通过比对第二感测信号与前述感测信号的区别,可以获得入射点待测光L2与扩散待测光L6对不打光的第二区14的贡献度,此贡献度可以当作物体F的特性(例如真伪)判断依据。
图3显示数字发光模块10的发光状态的俯视图。如图3所示,第一区12与第二区14共同提供一个环状光场。亦即,数字发光模块10的一内圈带12A与一外圈带12B构成发光的第一区12,而内圈带12A与外圈带12B之间的一中圈带构成不发光的第二区14,第二区14具有径向尺寸d。于一指纹感测的例子中,径向尺寸d大于指纹的周期(大约是300至400微米)。
图4显示真伪手指的感测结果的示意图,其中纵轴代表感测像素的强度,横轴代表感测像素的位置,由左至右代表位于图3的内圈带12A正下方的感测像素的位置到外圈带12B正下方的感测像素的位置。如图4所示,真手指的强度曲线C1与假手指的强度曲线C2在径向尺寸d上具有相当的差异,径向尺寸d对应于上述不发出特定光的区域,而在径向尺寸d范围内的强度曲线下凹的现象代表径向尺寸d范围以外的发出特定光的第一区对不发出特定光的第二区的贡献度,此贡献度与手指的特性有关。如果第二区与第一区发出相同的特定光,则无法获得代表此贡献度的感测结果。真手指的光散射 程度比假手指高,因此,在不打光的区域的下方的强度降低幅度小于假手指。通过所述强度曲线即可辨识手指的真伪。当然也会有相反的曲线可能性,也就是有另一强度曲线C3的强度值高于强度曲线C1,因为真假手比较是比较相对性,而不是绝对值的比较,故在相同的系统下,位于真手的强度曲线C1的两端的强度曲线C2与C3都是相异于真手的材料特性。
图5显示数字发光模块的发光状态的另一例的俯视图。如图5所示,本例类似于图3,差异点在于有两个中圈带构成第二区。亦即,数字发光模块10的内圈带12A、外圈带12B与第一中圈带12C构成发光的第一区12,而内圈带12A、外圈带12B与第一中圈带12C之间的第二中圈带14B与第三中圈带14C构成不发光的第二区14。于一指纹感测的例子中,第二中圈带14B与第三中圈带14C的至少其中一个的径向尺寸d大于指纹的周期。
图6显示数字发光模块的发光状态的又另一例的俯视图。如图6所示,本例类似于图3,差异点在于有第二区14包含至少一个几何区域14D,其可以具有以实线表示的圆形或其他几何形状。当然于其他例子中,第二区14也可以更具有以虚线表示的多个几何区域14E,多个区域的好处是可以累积及统计感测模块20所感测获得的对应几何区域14D与14E的数据,更增加鉴别的稳定性,通过感测反应待测光对几何区域14D(14E)的贡献度,亦可达到本发明的功效。可以理解的,利用单一不发光的圆形区域或其他几何形状的非环状区域,亦可测得反应待测光对第二区14的贡献度,作为物体的特性判断依据。于一指纹感测的例子中,几何区域14D(14E)的径向尺寸大于指纹的周期。
图7显示物体当作波导及造成散射光的示意图。如图7所示,物体F对于入射光L1提供一个波导,某些入射角的入射光L1从物体F的表皮层F1进入真皮层F2再出射成为扩散待测光L6,换言之,入射光L1的传递距离受到物体F的光吸收系数及/或光谱特性所决定。虽然在表皮层F1与真皮层F2的行进路线是以直线路线来表示,但并未将本申请内容限制于此,因为表皮层F1与真皮层F2中的组织仍有会造成上述等向性或非等向性的扩散前进的状况。依据图7的多个感测像素22对扩散待测光L6的感测结果(对应于上述感测信号),可以推导出入射光L1的传递距离,通过此传递距离判别光吸收系数及/或光谱特性,通过光吸收系数及/或光谱特性可以得知物体F的导光特性,也可进一步作真伪判断。
另外,某些入射角的入射光从表皮层F1进行散射,依据Henyey-Greenstein相位函数(phase function)的方程式1:
Figure PCTCN2021110043-appb-000001
其中P(θ)表示散射光的强度,可以形成一曲线HG,σ s表示物体的散射系数,σ a表示物体的光吸收系数,θ表示入射点待测光L2的反射角度,于散射的情况下定义为散射角度,g表示物体的材料的各向异性因子(anisotropy factor),不同的材料具有不同的g值。依据图7的多个感测像素22对入射点待测光L2的感测结果,可以判读散射光的强度分布曲线是否符合已知的曲线HG。因此,可以利用对应于g值的各向异性水平(anisotropy level)来辨识材料的特性。上述的函数较佳是以单光谱的光源进行感测,以获得各向异性的散射效果。
图8A至图8C显示三种不同的散射光的图案的示意图。如图8A所示,g值为0的散射光的强度的分布为圆形,其圆心为X-Y座标的圆点。如图8B所示,g值为1/6的散射光的强度的分布为圆形,其圆心为X-Y座标的圆点的右边,其中-X方向为入射光的方向。如图8C所示,g值为0.7的散射光的强度的分布为椭圆形,其左端点为X-Y座标的圆点。以真手指而言,g值大约等于0.7。因此,处理器30依据图8A至图8C的多个感测像素22的感测结果,可以推导出P(θ)的分布,通过此分布可以判别g值,通过此g值可以作真伪判断。
因此,可以通过判断入射光L1的传递距离以决定物体F的导光特性,及/或判断散射光的强度分布曲线以决定物体F的各向异性水平,再根据上述数据库或贡献度来当作物体F的光谱性质的判读依据或真伪判断依据。
通过上述实施例的防伪生物特征感测装置,可以利用局部发光配合局部不发光或局部发特定光配合局部不发该特定光的数字发光模块的入射光,检测物体对于入射光的散射、反射、吸收及/或导光特性的感测结果,比对物体反应非缺陷光场而被感测获得的感测数据或其他有关真假物体的数据库,作为光谱性质的判读依据或真伪判断的依据。
在较佳实施例的详细说明中所提出的具体实施例仅用以方便说明本发明的技术内容,而非将本发明狭义地限制于上述实施例,在不超出本发明的精神及权利要求范围的情况下,所做的种种变化实施,皆属于本发明的范围。

Claims (19)

  1. 一种生物特征感测装置(100),其特征在于,至少包含:
    一数字发光模块(10),包含一第一区(12)与一第二区(14),其中所述第一区(12)发出入射光(L1);以及
    一感测模块(20),设置于所述数字发光模块(10)的下方,
    其中于一第一模式下,所述第二区(14)不发出与所述入射光(L1)具有相同波长的光,以使所述数字发光模块(10)提供一缺陷光场来照射所述数字发光模块(10)上方的一物体(F),所述物体(F)反应所述缺陷光场所产生的光被所述感测模块(20)接收。
  2. 根据权利要求1所述的生物特征感测装置(100),其特征在于,所述第二区(14)不发光。
  3. 根据权利要求1所述的生物特征感测装置(100),其特征在于,所述第二区(14)发出与所述入射光(L1)不同波长的光线。
  4. 根据权利要求3所述的生物特征感测装置(100),其特征在于,通过所述感测模块(20)的一滤波器来选择特定波长的光线。
  5. 根据权利要求1所述的生物特征感测装置(100),其特征在于,所述物体(F)依据所述入射光(L1)输出反应待测光,所述感测模块(20)感测所述反应待测光以获得一感测信号。
  6. 根据权利要求5所述的生物特征感测装置(100),其特征在于,所述反应待测光包含:
    入射点待测光(L2),为所述入射光(L1)的一部分打在所述物体(F)的一入射点(P1)后反射的光;以及
    扩散待测光(L6),为所述入射光(L1)的另一部分进入所述物体(F)后扩散前进后,从远离所述入射点(P1)的一位置(P2)出射的光。
  7. 根据权利要求6所述的生物特征感测装置(100),其特征在于,所述感测模块(20)包含:
    一入射点感测区(23),感测所述入射点待测光(L2);及
    一扩散感测区(24),感测所述扩散待测光(L6)。
  8. 根据权利要求6所述的生物特征感测装置(100),其特征在于,还包含一处理器(30),电连接至所述数字发光模块(10)及所述感测模块(20),其中所述处理器(30)依据所述感测信号推导出P(θ)的分布,通过所述分布以判别g值,通过所述g值作判断,其 中,
    Figure PCTCN2021110043-appb-100001
    其中P(θ)表示所述入射点待测光(L2)的强度,σ s表示所述物体的散射系数,σ a表示所述物体的光吸收系数,θ表示所述入射点待测光(L2)的反射角度,g表示所述物体的各向异性因子。
  9. 根据权利要求5所述的生物特征感测装置(100),其特征在于,还包含一处理器(30),电连接至所述数字发光模块(10)及所述感测模块(20),其中所述处理器(30)还设置不同于所述第一模式的一第二模式,于所述第二模式下,感测模块(20)可以获得对应于所述物体(F)的生物特征的一第二感测信号,所述处理器(30)通过比对所述第二感测信号与所述感测信号的区别,可以获得所述反应待测光对所述第二区(14)的贡献度,当作所述物体(F)的特性判断依据。
  10. 根据权利要求1所述的生物特征感测装置(100),其特征在于,所述数字发光模块(10)为一OLED屏幕或一μLED屏幕。
  11. 根据权利要求1所述的生物特征感测装置(100),其特征在于,所述第一区(12)与所述第二区(14)提供一个环状光场当作所述缺陷光场。
  12. 根据权利要求1所述的生物特征感测装置(100),其特征在于,所述数字发光模块(10)至少包含:
    一内圈带(12A)与一外圈带(12B),构成所述第一区(12),其中所述第二区(14)位于所述内圈带(12A)与所述外圈带(12B)之间。
  13. 根据权利要求12所述的生物特征感测装置(100),其特征在于,所述第二区(14)具有大于指纹的周期的径向尺寸。
  14. 根据权利要求1所述的生物特征感测装置(100),其特征在于,所述数字发光模块(10)至少包含:
    一内圈带(12A)、一外圈带(12B)与一第一中圈带(12C),构成所述第一区(12);及
    一第二中圈带(14B)与一第三中圈带(14C),位于所述内圈带(12A)、所述外圈带(12B)与所述第一中圈带(12C)之间,并且构成所述第二区(14)。
  15. 根据权利要求14所述的生物特征感测装置(100),其特征在于,所述第二中圈带(14B)与所述第三中圈带(14C)的至少其中一个具有大于指纹的周期的径向尺寸。
  16. 根据权利要求1所述的生物特征感测装置(100),其特征在于,所述第二区(14)包 含至少一几何区域(14D),所述至少一几何区域(14D)具有大于指纹的周期的径向尺寸。
  17. 根据权利要求1所述的生物特征感测装置(100),其特征在于,还包含一处理器(30),电连接至所述数字发光模块(10)及所述感测模块(20),其中所述处理器(30)依据一数据库判断所述物体(F)的真伪,其中所述数据库是依据真物体与假物体,在所述第一模式下所做测试获得的测试数据所建立。
  18. 根据权利要求1所述的生物特征感测装置(100),其特征在于,所述第二区(14)包含多个几何区域(14D,14E),使得所述感测模块(20)所感测获得的对应所述多个几何区域(14D,14E)的数据可以被累积及统计,以增加鉴别的稳定性。
  19. 根据权利要求1所述的生物特征感测装置(100),其特征在于,还包含一处理器(30),电连接至所述数字发光模块(10)及所述感测模块(20),其中所述处理器(30)依据所述感测模块(20)的一感测信号推导出所述缺陷光场的所述入射光(L1)的传递距离,通过所述传递距离判别所述物体(F)的光吸收系数,通过所述光吸收系数得知所述物体(F)的导光特性。
PCT/CN2021/110043 2020-09-08 2021-08-02 生物特征感测装置 WO2022052663A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237008005A KR20230047473A (ko) 2020-09-08 2021-08-02 생체인식 센서
US18/043,403 US20230334897A1 (en) 2020-09-08 2021-08-02 Biometrics sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063075472P 2020-09-08 2020-09-08
US63/075,472 2020-09-08
US202063112058P 2020-11-10 2020-11-10
US63/112,058 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022052663A1 true WO2022052663A1 (zh) 2022-03-17

Family

ID=78253881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110043 WO2022052663A1 (zh) 2020-09-08 2021-08-02 生物特征感测装置

Country Status (5)

Country Link
US (1) US20230334897A1 (zh)
KR (1) KR20230047473A (zh)
CN (2) CN215867958U (zh)
TW (2) TWM620622U (zh)
WO (1) WO2022052663A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230047473A (ko) * 2020-09-08 2023-04-07 이지스 테크놀로지 인크. 생체인식 센서
TWI819969B (zh) * 2022-12-09 2023-10-21 大陸商廣州印芯半導體技術有限公司 不同單位像素收發光線的全面屏顯示裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709700A (zh) * 2019-01-16 2019-05-03 柳州阜民科技有限公司 一种显示装置及使用该显示装置的电子设备
CN110046564A (zh) * 2019-04-02 2019-07-23 深圳市合飞科技有限公司 一种多光谱活体指纹识别设备及识别方法
CN111368801A (zh) * 2020-03-27 2020-07-03 吉林求是光谱数据科技有限公司 真假指纹识别装置及其识别方法
CN111540084A (zh) * 2020-04-15 2020-08-14 吉林求是光谱数据科技有限公司 一种具有真假指纹识别功能的指纹锁及其识别方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128717A1 (de) * 2001-06-13 2002-12-19 Tst Touchless Sensor Technolog Verfahren und Vorrichtung zur Erkennung natürlicher Haut
CN102499647B (zh) * 2011-11-14 2013-11-27 重庆大学 一种多模式低相干散射光谱仪
US11010588B2 (en) * 2015-06-18 2021-05-18 Shenzhen GOODIX Technology Co., Ltd. Large-sensing-area under-display optical sensor
WO2016205832A1 (en) * 2015-06-18 2016-12-22 Shenzhen Huiding Technology Co., Ltd. Multifunction fingerprint sensor having optical sensing capability
WO2017070711A1 (en) * 2015-10-23 2017-04-27 Shenzhen Huiding Technology Co., Ltd. Optical fingerprint sensor and packaging
EP3254235B1 (en) * 2016-01-31 2023-07-12 Shenzhen Goodix Technology Co., Ltd. Under-screen optical sensor module for on-screen fingerprint sensing
CN206075299U (zh) * 2016-07-06 2017-04-05 格林比特(天津)生物信息技术有限公司 一种带伪指纹识别的活体指纹采集装置
US10331939B2 (en) * 2017-07-06 2019-06-25 Shenzhen GOODIX Technology Co., Ltd. Multi-layer optical designs of under-screen optical sensor module having spaced optical collimator array and optical sensor array for on-screen fingerprint sensing
WO2020215292A1 (zh) * 2019-04-25 2020-10-29 深圳市汇顶科技股份有限公司 光学指纹识别装置、电子设备和指纹识别方法
CN211319244U (zh) * 2020-01-22 2020-08-21 深圳市汇顶科技股份有限公司 指纹检测的装置和电子设备
KR20230047473A (ko) * 2020-09-08 2023-04-07 이지스 테크놀로지 인크. 생체인식 센서

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709700A (zh) * 2019-01-16 2019-05-03 柳州阜民科技有限公司 一种显示装置及使用该显示装置的电子设备
CN110046564A (zh) * 2019-04-02 2019-07-23 深圳市合飞科技有限公司 一种多光谱活体指纹识别设备及识别方法
CN111368801A (zh) * 2020-03-27 2020-07-03 吉林求是光谱数据科技有限公司 真假指纹识别装置及其识别方法
CN111540084A (zh) * 2020-04-15 2020-08-14 吉林求是光谱数据科技有限公司 一种具有真假指纹识别功能的指纹锁及其识别方法

Also Published As

Publication number Publication date
TWM620622U (zh) 2021-12-01
TW202211087A (zh) 2022-03-16
CN215867958U (zh) 2022-02-18
US20230334897A1 (en) 2023-10-19
CN113591723A (zh) 2021-11-02
KR20230047473A (ko) 2023-04-07

Similar Documents

Publication Publication Date Title
US10282582B2 (en) Finger biometric sensor for generating three dimensional fingerprint ridge data and related methods
CN109643379B (zh) 指纹识别方法、装置和电子设备
CN208861297U (zh) 光学传感器模块和电子设备
US10885299B2 (en) Electronic device including pin hole array mask above optical image sensor and laterally adjacent light source and related methods
US10360431B2 (en) Electronic device including pin hole array mask above optical image sensor and related methods
WO2020124511A1 (zh) 指纹识别方法、指纹识别装置和电子设备
WO2018045813A1 (zh) 一种纹路识别器件及电子设备
US8768015B2 (en) Determination device, fingerprint input device, determination method, and determination program
WO2022052663A1 (zh) 生物特征感测装置
US9342729B2 (en) Fake fingerprint detection system
WO2021146976A1 (zh) 指纹检测的装置和电子设备
CN111727439A (zh) 用于皮肤印纹和文件的直接光学捕获的设备
CN211319244U (zh) 指纹检测的装置和电子设备
US11837029B2 (en) Biometric authentication device and biometric authentication method
CN108803781B (zh) 具有光学成像传感器的平板显示器
KR20210040897A (ko) 모바일 장치용 광학식 지문센서, 광학식 지문센서를 구비한 모바일 장치 및 그 지문센서의 지문 이미지 획득방법
US11893100B2 (en) Spoof detection based on specular and diffuse reflections
US11900715B2 (en) Spoof detection based on specular and diffuse reflections
KR20200137777A (ko) 모바일 장치용 광학식 지문센서, 광학식 지문센서를 구비한 모바일 장치 및 그 지문센서의 지문 이미지 획득방법
WO2018185992A1 (ja) 生体認証装置、及び方法
WO2021111684A1 (ja) 撮影装置および認証装置
JP2018005723A (ja) 生体認証装置
Lee et al. 42‐5: Spoof Detection Scheme for Optical Fingerprint Sensors under the Display
EP4172859A1 (en) Electronic device comprising a biometric optical sensor module
CN115273157A (zh) 指纹识别装置以及指纹检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237008005

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21865719

Country of ref document: EP

Kind code of ref document: A1