WO2022052328A1 - 一种基于黎曼几何的自然动作脑电识别方法 - Google Patents
一种基于黎曼几何的自然动作脑电识别方法 Download PDFInfo
- Publication number
- WO2022052328A1 WO2022052328A1 PCT/CN2020/132579 CN2020132579W WO2022052328A1 WO 2022052328 A1 WO2022052328 A1 WO 2022052328A1 CN 2020132579 W CN2020132579 W CN 2020132579W WO 2022052328 A1 WO2022052328 A1 WO 2022052328A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- eeg
- riemannian
- natural
- point
- tangent
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000011159 matrix material Substances 0.000 claims abstract description 21
- 238000004458 analytical method Methods 0.000 claims abstract description 15
- 238000001914 filtration Methods 0.000 claims abstract description 5
- 230000002159 abnormal effect Effects 0.000 claims description 6
- 210000004556 brain Anatomy 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000002790 cross-validation Methods 0.000 claims description 2
- 238000004422 calculation algorithm Methods 0.000 abstract description 5
- 238000003672 processing method Methods 0.000 abstract description 3
- 238000011160 research Methods 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/02—Preprocessing
- G06F2218/04—Denoising
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
Definitions
- the invention belongs to the technical field of EEG signal processing and application, and in particular relates to a natural action EEG recognition method based on Riemannian geometry, which is used for classifying and recognizing EEG signals when a user performs natural actions.
- Brain-computer interface technology starts from recording brain signal activity, detects the user's natural behavior through signal processing, sends appropriate control signals to external devices according to the user's intention, and controls the peripheral devices to complete corresponding operations.
- the EEG signals in the motor-related cortex will have a slow, small, negative drift, known as the motor-related potential (MRCP).
- MCP motor-related potential
- signal processing of motion-related potentials there are relatively few researches on signal processing of motion-related potentials, and EEG recognition of natural movements has become a research trend, and methods based on Riemannian geometry have begun to show good prospects compared with traditional classification algorithms. Therefore, the study of natural motion EEG recognition method based on Riemannian geometry can provide an efficient signal processing method, which has important application value and practical urgency.
- the present invention discloses a natural action EEG recognition method based on Riemannian geometry, provides an efficient signal processing method, the algorithm is novel and efficient, has high reliability, and has important application value and practical urgency.
- a natural action EEG recognition method based on Riemannian geometry comprising the following steps:
- L is the sampled time domain length of the EEG signal
- the second-order statistical information of the EEG signal X(t) contains the separable information of the brain state, and the covariance feature is the most commonly used second-order statistical feature of the EEG signal. Therefore, we can obtain the covariance feature of the EEG signal X(t) as:
- the collected EEG signals contain m trials, and the covariance features can be regarded as points Pi (1 ⁇ i ⁇ m) on the Riemannian manifold, and they are projected to the tangent plane with the Riemann mean point P as the tangent point, and the projection to The point on the tangent plane corresponds to S i , then there are:
- shrinking linear discriminant analysis is used on the Riemann geometric tangent space to classify the above EEG sample features.
- the algorithm is novel and efficient.
- the traditional processing algorithm mainly identifies the amplitude of the EEG signal in the traditional classifier, while the present invention extracts the effective period of EEG analysis through the natural operating force information, and based on the current better performance
- the Riemannian geometry method for EEG recognition in a shrunk linear discriminant classifier is a novel and efficient method.
- FIG. 1 is a flow chart of a natural action EEG recognition method based on Riemannian geometry of the present invention.
- Figure 2 is a schematic diagram of the Riemannian manifold and tangent plane of the present invention.
- FIG. 3 is a flow chart for solving the Riemann mean point of the present invention.
- a method for EEG recognition of natural movements based on Riemannian geometry includes the following steps:
- L is the sampled time domain length of the EEG signal
- the second-order statistical information of the EEG signal X(t) contains the separable information of the brain state, and the covariance feature is the most commonly used second-order statistical feature of the EEG signal. Therefore, we can obtain the covariance feature of the EEG signal X(t) as:
- the collected EEG signals include m trials. After the above steps are processed, the covariance characteristics of the multi-channel EEG signals generated by each trial are Pi (1 ⁇ i ⁇ m), and they are projected to the Riemann mean point P. is the tangent plane of the tangent point, and the point projected onto the tangent plane corresponds to S i , then there are:
- the Riemann mean point can be obtained according to the Riemann geodetic distance, and the calculation method is as follows:
- ⁇ i is the ith eigenvalue of P1-1 P2
- the Riemann center point of the sample is
- the above-mentioned Riemann center point solution has no analytical solution.
- the preferred solution is to solve it through iteration, and an approximate solution can be obtained.
- the iterative process is shown in Figure 3.
- the intra-class dispersion matrix is defined as
- the shrinkage parameter ⁇ [0, 1] can be selected by the cross-validation method, and the selectable shrinkage parameter is 0.05.
- I is the identity matrix and v is defined as the mean of the covariance matrix traces: d is the dimension of the feature space.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
Claims (5)
- 一种基于黎曼几何的自然动作脑电识别方法,其特征在于:包括以下步骤:(1)、多通道脑电信号采集采集多通道脑电信号X(t),设N个通道的脑电信号为X(t)=[x(t),…,x(t+L-1)]∈R N×L]其中,L是脑电信号的采样后的时域长度,t时刻的采样信号为x(t)=[x 1(t),...,x N(t)] T∈R N;(2)通过分析剔除干扰大的通道在实际脑电采集过程中,由于脑电帽电极的阻抗、接触不良的问题,会给通道带来干扰,在脑电信号波形中出现异常幅值和异常峰值,需要观察分析后剔除;(3)对余下的多通道信号进行零相位滤波。在脑电信号的采集过程中,会引入工频干扰,采用50Hz的零相位陷阱滤波器进行滤除,另外由于自然动作产生的MRCP低频分量携带着运动信息,因此使用通带范围为0.3Hz~3Hz的零相位带通滤波器滤除噪声;(4)脑电信号时域截取在脑电信号采集过程中,为了提取包含运动信息最丰富的时段,根据在自然动作执行时的力信息确定动作开始的时刻,对开始执行的前后几秒时间段进行截取,用于后续协方差矩阵计算;(5)计算多通道信号的协方差矩阵脑-机接口中,脑电信号X(t)的二阶统计信息包含了大脑状态的可分信息,而协方差特征是脑电信号的最常用二阶统计特征;因此我们可以求得脑电信号X(t)的协方差特征为(6)将协方差特征投影到黎曼几何切空间,切点为黎曼均值;采集的脑电信号包含m次试验,协方差特征可以看作黎曼流形上的点Pi(1≤i≤m),将它们投影到以P点为切点的切面上,记投影到切平面上的点对应为S i,则有:S i=log P(Pi)=P 1/2log (P -1/2P iP -1/2)P 1/2其中P点为黎曼均值点,正定矩阵空间上任意两点P1,P2的黎曼距离为:其中,σi是P1 -1P2的第i个特征值,则根据黎曼测地距离可求出样本黎曼中心点:(7)在切空间中用收缩线性判别分析(sLDA)进行分类经过投影后,在黎曼几何切空间上使用收缩线性判别分析,对上述脑电信号样本特征进行分类。
- 根据权力要求1所述一种基于黎曼几何的自然动作脑电识别方法,其特征在于,所述的黎曼切点为黎曼均值点,计算黎曼均值点没有近 似解,通过迭代进行求解。
- 根据权力要求1所述一种基于黎曼几何的自然动作脑电识别方法,其特征在于,所述的零相位滤波包括陷阱滤波器和带通滤波器,滤除工频干扰以及与运动相关电位无关的频带。
- 根据权力要求1所述一种基于黎曼几何的自然动作脑电识别方法,其特征在于,所述的脑电信号时域截取需要以自然动作力信息作为参考,选择运动开始的前后两秒内的数据,包含了关键的分类信息。
- 根据权力要求1所述一种基于黎曼几何的自然动作脑电识别方法,其特征在于,所述的sLDA分类器的收缩参数使用交叉验证法选择收缩参数,确定收缩方向。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010938581.9 | 2020-09-09 | ||
CN202010938581.9A CN112036354B (zh) | 2020-09-09 | 2020-09-09 | 一种基于黎曼几何的自然动作脑电识别方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022052328A1 true WO2022052328A1 (zh) | 2022-03-17 |
Family
ID=73585166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/132579 WO2022052328A1 (zh) | 2020-09-09 | 2020-11-30 | 一种基于黎曼几何的自然动作脑电识别方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112036354B (zh) |
WO (1) | WO2022052328A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115114953A (zh) * | 2022-05-20 | 2022-09-27 | 华南理工大学 | 一种基于循环神经网络的情绪脑信号识别方法 |
CN116982993A (zh) * | 2023-09-27 | 2023-11-03 | 之江实验室 | 一种基于高维随机矩阵理论的脑电信号分类方法及系统 |
CN118228054A (zh) * | 2024-05-23 | 2024-06-21 | 天津大学 | 基于黎曼几何的脑电信号空间滤波器训练方法及装置 |
CN118395245A (zh) * | 2024-07-01 | 2024-07-26 | 湘江实验室 | 基于黎曼流形的实时脑电信号自适应分类方法及系统 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112651432A (zh) * | 2020-12-15 | 2021-04-13 | 华南师范大学 | 基于xdawn空间滤波器和黎曼几何迁移学习的p300脑-机接口系统 |
CN113171111B (zh) * | 2021-04-25 | 2022-03-29 | 北京理工大学 | 一种上肢运动方向神经解码方法和装置 |
CN113495550B (zh) * | 2021-06-30 | 2022-10-28 | 北京空间飞行器总体设计部 | 一种基于黎曼度量的航天器故障检测方法 |
CN113974658B (zh) * | 2021-10-28 | 2024-01-26 | 天津大学 | 基于eeg分时频谱黎曼的语义视觉图像分类方法及装置 |
CN114366129B (zh) * | 2021-12-31 | 2024-05-03 | 西安臻泰智能科技有限公司 | 一种脑机接口手功能康复训练系统和方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109657642A (zh) * | 2018-12-29 | 2019-04-19 | 山东建筑大学 | 一种基于黎曼距离的运动想象脑电信号分类方法及系统 |
US10299694B1 (en) * | 2018-02-05 | 2019-05-28 | King Saud University | Method of classifying raw EEG signals |
CN111191509A (zh) * | 2019-11-28 | 2020-05-22 | 燕山大学 | 基于scsp-lda的脑电信号特征提取与分类方法 |
CN111259741A (zh) * | 2020-01-09 | 2020-06-09 | 燕山大学 | 一种脑电信号分类方法及系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3335630A1 (en) * | 2016-12-15 | 2018-06-20 | Mensia Technologies | Improved signal quality index of multichannel bio-signal using riemannian geometry |
CN111265212A (zh) * | 2019-12-23 | 2020-06-12 | 北京无线电测量研究所 | 一种运动想象脑电信号分类方法及闭环训练测试交互系统 |
CN111310656A (zh) * | 2020-02-13 | 2020-06-19 | 燕山大学 | 基于多线性主成分分析的单次运动想象脑电信号识别方法 |
-
2020
- 2020-09-09 CN CN202010938581.9A patent/CN112036354B/zh active Active
- 2020-11-30 WO PCT/CN2020/132579 patent/WO2022052328A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10299694B1 (en) * | 2018-02-05 | 2019-05-28 | King Saud University | Method of classifying raw EEG signals |
CN109657642A (zh) * | 2018-12-29 | 2019-04-19 | 山东建筑大学 | 一种基于黎曼距离的运动想象脑电信号分类方法及系统 |
CN111191509A (zh) * | 2019-11-28 | 2020-05-22 | 燕山大学 | 基于scsp-lda的脑电信号特征提取与分类方法 |
CN111259741A (zh) * | 2020-01-09 | 2020-06-09 | 燕山大学 | 一种脑电信号分类方法及系统 |
Non-Patent Citations (2)
Title |
---|
LUO HUI: "Study on EEG Feature Extraction based on Motor Imagery", XINXI YU DIANNAO - CHINA COMPUTER & COMMUNICATION, XINXI YU DIANNAO ZAZHISHE, CN, no. 13, 8 July 2016 (2016-07-08), CN , pages 82 - 83, XP055911543, ISSN: 1003-9767 * |
ZHOU XIAOYU, MINPENG XU, XIAOLIN XIAO, LONG CHEN, XIAOSONG GU, DONG MING: "A review of researches on electroencephalogram decoding algorithms in brain-computer interface", SHENGWU YIXUE GONGCHENGXUE ZAZHI = JOURNAL OF BIOMEDICAL ENGINEERING, SICHUAN DAXUE HUAXI YIYUAN, CN, vol. 36, no. 5, 25 October 2019 (2019-10-25), CN , pages 856 - 861, XP055911544, ISSN: 1001-5515, DOI: 10.7507/1001-5515.201812049 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115114953A (zh) * | 2022-05-20 | 2022-09-27 | 华南理工大学 | 一种基于循环神经网络的情绪脑信号识别方法 |
CN115114953B (zh) * | 2022-05-20 | 2024-04-09 | 华南理工大学 | 一种基于循环神经网络的情绪脑信号识别方法 |
CN116982993A (zh) * | 2023-09-27 | 2023-11-03 | 之江实验室 | 一种基于高维随机矩阵理论的脑电信号分类方法及系统 |
CN116982993B (zh) * | 2023-09-27 | 2024-04-02 | 之江实验室 | 一种基于高维随机矩阵理论的脑电信号分类方法及系统 |
CN118228054A (zh) * | 2024-05-23 | 2024-06-21 | 天津大学 | 基于黎曼几何的脑电信号空间滤波器训练方法及装置 |
CN118395245A (zh) * | 2024-07-01 | 2024-07-26 | 湘江实验室 | 基于黎曼流形的实时脑电信号自适应分类方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN112036354B (zh) | 2022-04-29 |
CN112036354A (zh) | 2020-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022052328A1 (zh) | 一种基于黎曼几何的自然动作脑电识别方法 | |
CN107157477B (zh) | 脑电信号特征识别系统及方法 | |
CN107844755B (zh) | 一种结合dae和cnn的脑电信号特征提取与分类方法 | |
Alturki et al. | Common spatial pattern technique with EEG signals for diagnosis of autism and epilepsy disorders | |
Anderson et al. | Geometric subspace methods and time-delay embedding for EEG artifact removal and classification | |
CN114224360B (zh) | 一种基于改进emd-ica的eeg信号处理方法、设备及存储介质 | |
Yang et al. | Improved time-frequency features and electrode placement for EEG-based biometric person recognition | |
CN114578963B (zh) | 一种基于特征可视化和多模态融合的脑电身份识别方法 | |
CN110135285A (zh) | 一种使用单导设备的脑电静息态身份认证方法及装置 | |
CN111310656A (zh) | 基于多线性主成分分析的单次运动想象脑电信号识别方法 | |
Gao et al. | Real-time removal of ocular artifacts from EEG based on independent component analysis and manifold learning | |
CN106485208A (zh) | 单通道脑电信号中眼电干扰的自动去除方法 | |
CN109009098B (zh) | 一种运动想象状态下的脑电信号特征识别方法 | |
Ramos-Aguilar et al. | Analysis of EEG signal processing techniques based on spectrograms | |
CN109375776A (zh) | 基于多任务rnn模型的脑电信号动作意图识别方法 | |
CN108470182B (zh) | 一种用于非对称脑电特征增强与识别的脑-机接口方法 | |
Liu et al. | Identification of anisomerous motor imagery EEG signals based on complex algorithms | |
Haloi et al. | Selection of appropriate statistical features of EEG signals for detection of Parkinson’s disease | |
Liu et al. | Classification of ECoG motor imagery tasks based on CSP and SVM | |
Ahmed et al. | Effective hybrid method for the detection and rejection of electrooculogram (EOG) and power line noise artefacts from electroencephalogram (EEG) mixtures | |
Gao et al. | An ICA/HHT hybrid approach for automatic ocular artifact correction | |
Tang et al. | L1-norm based discriminative spatial pattern for single-trial EEG classification | |
CN114781461B (zh) | 一种基于听觉脑机接口的目标探测方法与系统 | |
Siviero et al. | Motor-imagery EEG signal decoding using multichannel-empirical wavelet transform for brain computer interfaces | |
CN114027840A (zh) | 基于变分模态分解的情绪脑电识别方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20953113 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20953113 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20953113 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.10.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20953113 Country of ref document: EP Kind code of ref document: A1 |