WO2022052186A1 - 一种液压泵控制方法、装置和医用水刀 - Google Patents

一种液压泵控制方法、装置和医用水刀 Download PDF

Info

Publication number
WO2022052186A1
WO2022052186A1 PCT/CN2020/117999 CN2020117999W WO2022052186A1 WO 2022052186 A1 WO2022052186 A1 WO 2022052186A1 CN 2020117999 W CN2020117999 W CN 2020117999W WO 2022052186 A1 WO2022052186 A1 WO 2022052186A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pump
control
upper computer
servo driver
servo motor
Prior art date
Application number
PCT/CN2020/117999
Other languages
English (en)
French (fr)
Inventor
宋翀绂
孙未
廖令葵
Original Assignee
惠州海卓科赛医疗有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州海卓科赛医疗有限公司 filed Critical 惠州海卓科赛医疗有限公司
Publication of WO2022052186A1 publication Critical patent/WO2022052186A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments
    • A61B2017/32032Fluid jet cutting instruments using cavitation of the fluid

Definitions

  • the invention relates to the technical field of water jets, in particular to a hydraulic pump control method, a device and a medical water jet.
  • Water jet that is, using water as the knife, whose real name is high-pressure water jet cutting technology, is favored because cold cutting does not change the physical and chemical properties of the material.
  • the drive control system of medical waterjet technology generally uses embedded systems such as single-chip microcomputer, DSP, or Windows system as the control unit, and at the same time uses the AC servo system as the drive unit to control the hydraulic pump, so that the static power provided by the hydraulic pump is used. The pressure is converted into the power of the water jet, so that the water jet has good flow characteristics.
  • the control process of these control systems is complex, and it is not easy to control the hydraulic pump, resulting in inaccurate cutting.
  • the purpose of the embodiments of the present invention is to provide a hydraulic pump control method, a device and a medical water jet.
  • the structure is simple and the control process is simple, and it has better system stability and higher control accuracy. .
  • an embodiment of the present invention provides a method for controlling a hydraulic pump, including:
  • the PLC module obtains the electrical signal of the pump body switch; wherein the pump body switch is used to output the electrical signal according to the change of the rotational position of the clamping knob of the hydraulic pump;
  • the PLC module generates a digital signal according to the electrical signal, and sends the digital signal to the host computer through a preset serial communication protocol;
  • the host computer sends corresponding control commands to the DC servo driver according to the digital signal
  • the DC servo driver controls the DC servo motor according to the control instruction, so that the DC servo motor drives the hydraulic pump.
  • the serial port communication protocol is an RS485 serial port communication protocol or an RS232 serial port communication protocol.
  • the method also includes:
  • the pressure sensor acquires the pressure signal of the hydraulic pump, and sends the pressure signal to the upper computer;
  • the upper computer adjusts the control instruction according to the pressure signal.
  • the method also includes:
  • the DC servo driver acquires the working parameters of the DC servo motor, and sends the working parameters to the host computer; wherein the working parameters include at least one of the motor speed, current and torque;
  • the upper computer adjusts the control command sent to the DC servo drive according to the working parameters.
  • the DC servo motor drives the hydraulic pump through a transmission system.
  • the embodiment of the present invention also provides a hydraulic pump control device, including:
  • the pump body switch is used to output an electrical signal according to the change of the rotation position of the clamping knob of the hydraulic pump
  • the PLC module is used to obtain the electrical signal of the pump body switch, generate a digital signal according to the electrical signal, and send the digital signal to the host computer through a preset serial communication protocol;
  • the upper computer is used to send corresponding control commands to the DC servo drive according to the digital signal
  • a DC servo driver for controlling the DC servo motor according to the control command
  • a DC servo motor is used to drive the hydraulic pump through the transmission system.
  • the serial port communication protocol is an RS485 serial port communication protocol or an RS232 serial port communication protocol.
  • the hydraulic pump control device further includes:
  • a pressure sensor for acquiring the pressure signal of the hydraulic pump and sending the pressure signal to the upper computer
  • the upper computer is further configured to adjust the control instruction according to the pressure signal.
  • the DC servo driver is also used to obtain the working parameters of the DC servo motor, and send the working parameters to the upper computer; wherein, the working parameters include the motor speed, current and torque at least one of;
  • the upper computer is further configured to adjust the control instructions sent to the DC servo driver according to the working parameters.
  • an embodiment of the present invention further provides a medical water jet, which includes a hydraulic pump and the hydraulic pump control device described in any of the above embodiments.
  • the hydraulic pump control method, device and medical water jet disclosed in the present invention receive the electrical signal sent by the switch of the pump body due to the start of the hydraulic pump through the PLC module, and the PLC module converts the electrical signal into a digital signal and generates a digital signal.
  • the digital signal is sent to the host computer, so that the host computer generates a control command according to the digital signal, and sends the control command to the DC servo driver, and the DC servo driver controls the DC servo motor according to the control command to realize the pressure control of the hydraulic pump.
  • the hydraulic pump control method, device and medical water jet disclosed in the present invention have simple structure and simple control process, and have better system stability and higher control precision.
  • FIG. 1 is a flowchart of a hydraulic pump control method provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a hydraulic pump control device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another hydraulic pump control device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a medical water jet provided by an embodiment of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • FIG. 1 is a flowchart of a hydraulic pump control method provided by an embodiment of the present invention, and the hydraulic pump control method includes:
  • the PLC module obtains the electrical signal of the pump body switch; wherein, the pump body switch is used to output the electrical signal according to the change of the rotational position of the clamping knob of the hydraulic pump;
  • the PLC module generates a digital signal according to the electrical signal, and sends the digital signal to the host computer through a preset serial communication protocol;
  • the host computer sends a corresponding control command to the DC servo driver according to the digital signal;
  • the DC servo driver controls the DC servo motor according to the control instruction, so that the DC servo motor drives the hydraulic pump.
  • the pump body switch is a photoelectric switch, which is connected to the I/O interface of the PLC module, and the main function of the pump body switch is according to the rotation position of the clamping knob of the hydraulic pump.
  • the change of the photoelectric switch causes the light source of the photoelectric switch to be blocked or not blocked, so as to output an electrical signal to the PLC module.
  • the pump body switch adopts a photoelectric switch to sense whether the pump body is locked.
  • the light source of the photoelectric switch will be shielded, and the photoelectric switch will output a digital signal (electrical signal) to the PLC module.
  • the PLC module converts this digital signal into a control command and feeds it back to the host computer.
  • the photoelectric switch does not output digital signals (electrical signals).
  • the signal is converted into different control commands and fed back to the upper computer, and the upper computer judges whether the pump body is locked according to different input control commands.
  • PLC Programmable logic Controller
  • programmable logic controller an electronic system for digital operation, specially designed for application in industrial environment. It uses a type of programmable memory to store programs internally, execute user-oriented instructions such as logic operations, sequence control, timing, counting and arithmetic operations, and control various types of machinery through digital or analog input/output or production process.
  • PLC module When the PLC module is put into operation, its working process is generally divided into three stages, namely input sampling, user program execution and output refresh. Completing the above three stages is called a scan cycle. During the whole operation period, the CPU of the PLC module repeatedly executes the above three stages at a certain scanning speed.
  • the serial port communication protocol is an RS485 serial port communication protocol or an RS232 serial port communication protocol.
  • the PLC module converts the electrical signal into a digital signal and sends the digital signal to the upper computer.
  • the host computer generally refers to a computer that can directly issue control commands.
  • the command issued by the host computer (industrial serial port screen) is first given to the lower computer (DC servo driver), and then the lower computer (DC servo driver) is interpreted according to this command.
  • the controller and the service provider are the upper computer (industrial serial screen), and the controlled person and the served person are the lower computer (DC servo drive), which can also be understood as The relationship between the master and the slave, the host computer connects the DC servo driver and the PLC module through the RS232 or RS485 serial bus, and different communication protocols can be used between them, such as RS232 serial communication, or RS485 serial communication. communication.
  • step S3 the host computer generates a control command according to the digital signal, and sends the control command to the DC servo driver.
  • step S4 the DC servo driver controls the driving of the DC servo motor according to the control instruction, so as to realize the pressure control of the hydraulic pump.
  • the DC servo motor drives the hydraulic pump through a transmission system.
  • the method further includes:
  • the pressure sensor acquires the pressure signal of the hydraulic pump, and sends the pressure signal to the host computer;
  • the upper computer adjusts the control instruction according to the pressure signal.
  • the pressure sensor is used to connect to the pressure detection end of the hydraulic pump.
  • the pressure sensor is connected to the upper computer, and after collecting the pressure signal of the hydraulic pump, the pressure sensor feeds back the pressure signal to the upper computer, so that the upper computer outputs according to the pressure signal More precise control commands.
  • the method further includes:
  • the DC servo driver acquires the working parameters of the DC servo motor, and sends the working parameters to the host computer; wherein the working parameters include at least one of the motor speed, current and torque;
  • the upper computer adjusts the control instruction sent to the DC servo driver according to the working parameter.
  • the DC servo driver feeds back the detected motor speed, current, torque and other data to the host computer, and adjusts the relationship and change between the motor speed, current, torque, etc. and the pressure through the control algorithm of the host computer software. It is convenient to debug the pressure range that meets the product requirements.
  • the electrical signal sent by the switch of the pump body and generated by the start of the hydraulic pump is received by the PLC module, and the PLC module converts the electrical signal into a digital signal and sends the digital signal to the upper level. so that the host computer generates control commands according to the digital signals, and sends the control commands to the DC servo driver, and the DC servo driver controls the DC servo motor according to the control commands to realize the pressure control of the hydraulic pump.
  • the control process of the hydraulic pump control method disclosed in the present invention is simple, and has better system stability and higher control precision.
  • FIG. 2 is a schematic structural diagram of a hydraulic pump control device 10 provided by an embodiment of the present invention.
  • the hydraulic pump control device 10 includes: a host computer 101 , a DC servo driver 102 , a DC servo motor 103 , and a transmission system 104 , PLC module 105 and pump body switch 106; wherein,
  • the pump body switch 106 is used for outputting an electrical signal according to the change of the rotational position of the clamping knob of the hydraulic pump 20;
  • the PLC module 105 is used for acquiring the electrical signal of the pump body switch 106, generating a digital signal according to the electrical signal, and sending the digital signal to the host computer 101 through a preset serial communication protocol;
  • the host computer 101 is used to issue corresponding control commands to the DC servo driver 102 according to the digital signal;
  • a DC servo driver 102 for controlling the DC servo motor 103 according to the control instruction
  • the DC servo motor 103 is used to drive the hydraulic pump 20 through the transmission system 104 .
  • the pump body switch 106 is a photoelectric switch, which is connected to the I/O interface of the PLC module 105 .
  • the main function of the pump body switch 106 is based on the rotational position of the clamping knob of the hydraulic pump 20 .
  • the change causes the light source of the photoelectric switch to be blocked or not blocked, so as to output an electrical signal to the PLC module 105, and the PLC module 105 converts the electrical signal into a digital signal and sends the digital signal to the host computer 101.
  • the motor 101 generates a control command according to the digital signal, and sends the control command to the DC servo driver 102, and the DC servo driver 102 controls the DC servo motor 103 to drive according to the control command, so as to realize the The pressure control of the hydraulic pump 20 is described.
  • the hydraulic pump control device 10 disclosed in the present invention has a simple structure and a simple control process, and has better system stability and higher control precision.
  • the hydraulic pump control device 10 further includes: a first relay 107 , a first DC switching power supply 108 , a second relay 109 , a second DC switching power supply 110 , a start button 111 and a foot switch 112 ;in,
  • the first relay 107 is respectively connected to the PLC module 105 and the first DC switching power supply 108, and the first DC switching power supply 108 is also connected to the DC servo driver 102; the second relay 109 is respectively connected to The host computer 101, the PLC module 105 and the second DC switching power supply 110, the second DC switching power supply 110 is also connected to the PLC module 105; the start button 111 is connected to the PLC module 105; The foot switch 112 is connected to the PLC module 105; the host computer is respectively connected to the DC servo driver 102 and the PLC module 105 through a bus.
  • the host computer 101 generally refers to a computer that can directly issue control commands.
  • the command issued by the host computer 101 is first given to the lower computer (the DC servo driver 102 ), and then the lower computer (the DC servo driver 102 ) is sent to the lower computer (DC servo driver 102 ).
  • the command it is interpreted as the corresponding sequence signal to directly control the corresponding device (DC servo motor 103), the controller and the service provider are the upper computer 101 (industrial serial port screen), and the controlled and served are the lower computer (DC servo driver).
  • the host computer 101 can also be understood as the relationship between the host and the slave, the host computer 101 connects the DC servo driver 102 and the PLC module 105 through the RS232 or RS485 serial bus, and different communication protocols can be used between them.
  • the first relay 107 and the second relay 109 are electronic control devices, which have a control system (also known as an input loop) and a controlled system (also known as an output loop), and are usually used in automatic control circuits. In fact, it is an "automatic switch" that uses a smaller current to control a larger current. Therefore, it plays the role of automatic adjustment, safety protection, and conversion circuit in the circuit.
  • the PLC module 105 determines whether to output power to the input terminal of the first relay 107 according to different digital inputs.
  • the different input states of the first relay 107 determine the on and off of its output, so as to control the power on and off of the host computer 101 and the DC servo driver 102, and play a role in safety protection.
  • PLC Programmable logic Controller
  • programmable logic controller an electronic system for digital operation, specially designed for application in industrial environment. It uses a type of programmable memory to store programs internally, execute user-oriented instructions such as logic operations, sequence control, timing, counting and arithmetic operations, and control various types of machinery through digital or analog input/output or production process.
  • PLC module 105 When the PLC module 105 is put into operation, its working process is generally divided into three stages, namely input sampling, user program execution and output refresh. Completing the above three stages is called a scan cycle. During the entire running period, the CPU of the PLC module 105 repeatedly executes the above three stages at a certain scanning speed.
  • the working principle of the first DC switching power supply 108 and the second DC switching power supply 110 is different from that of the linear power supply.
  • the linear power supply makes the power transistor work in the linear mode, while the DC switching power supply makes the power transistor work in the conduction mode. In other words, it is realized by "chopping", that is, the amplitude of the input DC voltage is chopped into a pulse voltage equal to the amplitude of the input voltage.
  • This working principle of the switching power supply makes the volt-ampere product applied to the power transistor very small (in the on state, the voltage is low and the current is large; in the off state, the voltage is high and the current is small), that is, the loss generated on the power transistor. very small.
  • the DC switching power supply is mainly composed of the main circuit, the control circuit, the detection circuit and the auxiliary power supply. The functions of each part are as follows:
  • the main circuit can be divided into impulse current limiting part, input filtering part, rectification and filtering part, inverter part, output rectification and filtering part.
  • the inrush current limiting part is responsible for limiting the inrush current on the input side at the moment when the power is turned on;
  • the input filter part is responsible for filtering clutter;
  • the rectifying and filtering part is responsible for rectifying the AC power of the grid into direct current;
  • the inverter part is responsible for rectifying the formed direct current Converted to high-frequency alternating current;
  • the output rectification and filtering part is responsible for providing stable and reliable DC power;
  • the control circuit is responsible for controlling the inverter to stabilize the output and providing various protection measures for the circuit
  • the detection circuit is responsible for providing various parameters and data in operation
  • (4)Auxiliary power supply is used to realize the software (remote) start of the power supply and supply power for the normal operation of the circuit.
  • the start button 111 is a button switch used to turn on or off the control circuit to control the operation of mechanical and electrical equipment.
  • the start button 111 adopts a self-resetting normally open button, and its working principle is that when the button is pressed, the contact moves (the normally open contact is closed), and the circuit is connected; when the button is released, the contact is reset under the action of the reaction force spring. , the circuit is disconnected.
  • the main function of the start button 111 is to control the startup and shutdown of the system.
  • the foot switch 112 is a switch that controls the on-off of the circuit by stepping on or stepping on it. It is used to replace the hands to achieve the purpose of operation when the hands cannot reach.
  • the foot switch 112 contains three groups.
  • the switch values are upshift, downshift, and running stop.
  • the pump body switch 106 uses a photoelectric switch to sense whether the pump body is locked. When the pump body is inserted and locked, the light source of the photoelectric switch will be shielded, and the photoelectric switch will output a digital signal (electrical signal) to the PLC module 105. The PLC module 105 converts this digital signal into a control command and feeds it back to the host computer 101. When the pump body is unlocked and removed, the light source of the photoelectric switch is not blocked by objects, and the photoelectric switch does not output digital signals (electrical signals). Similarly, the PLC module 105 The signal is converted into different control commands and fed back to the upper computer 101, and the upper computer 101 judges whether the pump body is locked according to different input control commands.
  • the hydraulic pump control device 10 further includes a pressure sensor (not shown in the figure), the pressure sensor is used to connect to the pressure detection end of the hydraulic pump 20 .
  • the pressure sensor is connected to the upper computer 101. After the pressure sensor collects the pressure signal of the hydraulic pump 20, the pressure signal is fed back to the upper computer 101, so that the upper computer 101 can make the The above pressure signal outputs more precise control commands.
  • the hydraulic pump control device 10 further includes a communication module (not shown in the figure), and the communication module is connected to the upper computer 101 .
  • the communication module includes at least one of a 4G module, a 5G module, and a Bluetooth module.
  • the host computer 101 sends the working status and control details of the hydraulic pump 20 to a monitoring center or a server through the communication module, so that the staff can adjust gears at any time or monitor the hydraulic pump in real time.
  • the hydraulic pump control device 10 disclosed in the present invention receives the electrical signal sent by the pump body switch 106 due to the start of the hydraulic pump through the PLC module, and the PLC module 105 converts the electrical signal into a digital signal and converts the digital signal into a digital signal.
  • Send to the host computer 101 so that the host computer 101 generates a control command according to the digital signal, and sends the control command to the DC servo driver 102, and the DC servo driver 102 controls the DC servo motor 103 according to the control command to realize the pressure control of the hydraulic pump .
  • the hydraulic pump control device 10 disclosed in the present invention has a simple structure and a simple control process, and has better system stability and higher control precision.
  • FIG. 4 is a schematic structural diagram of a medical water jet provided by an embodiment of the present invention.
  • the medical water jet includes a hydraulic pump 20 and the hydraulic pump control device 10 described in any of the above embodiments.
  • the medical water jet disclosed in the present invention receives the electrical signal sent by the pump body switch 106 due to the start of the hydraulic pump through the PLC module 105, and the PLC module 105 converts the electrical signal into a digital signal and sends the digital signal.
  • the host computer 101 so that the host computer 101 generates a control command according to the digital signal, and sends the control command to the DC servo driver 102, and the DC servo driver 102 controls the DC servo motor 103 according to the control command to realize the pressure control of the hydraulic pump.
  • the medical water jet disclosed in the present invention has a simple structure and a simple control process, and has better system stability and higher control precision.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Automation & Control Theory (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种液压泵(20)控制方法,包括:响应于启动操作,PLC模块(105)获取泵体开关(106)的电信号(S1);其中,泵体开关(106)用于根据液压泵(20)的卡紧旋钮的旋转位置的变化输出电信号;PLC模块(105)根据该信号生成数字信号,并通过预设的串口通信协议将该数字信号发送给上位机(101)(S2);该上位机(101)根据该数据信号发出对应的控制指令给直流伺服驱动器(102)(S3);该直流伺服驱动器(102)根据该控制指令控制直流伺服电机(103),以使该直流伺服电机(103)驱动该液压泵(20)(S4)。还提供了一种液压泵控制装置(10)和一种医用水刀。相比于传统驱动控制系统,该系统结构简单、控制流程简单,具有更好的稳定性和更高精度。

Description

一种液压泵控制方法、装置和医用水刀 技术领域
本发明涉及水刀技术领域,尤其涉及一种液压泵控制方法、装置和医用水刀。
背景技术
水刀,即以水为刀,本名高压水射流切割技术,以其冷切割不会改变材料的物理化学性质而备受青睐,后经技术不断改进,极大的提高了水刀的切割速度和切割厚度,现在水刀已经广泛应用于医疗、陶瓷、玻璃、金属、复合材料等众多行业中。目前,医用水刀技术的驱动控制系统一般采用单片机、DSP等嵌入式系统或Windows系统做为控制单元,同时采用交流伺服系统作为驱动单元,用于控制液压泵,从而将液压泵所提供的静压转换为水射流的动力,让水射流具有良好的流动特性。但是,这些控制系统的控制流程复杂,不易控制液压泵,导致无法准确切割。
发明内容
本发明实施例的目的是提供一种液压泵控制方法、装置和医用水刀,相比于传统的驱动控制系统,结构简单以及控制流程简单,具有更好的系统稳定性和更高的控制精度。
为实现上述目的,本发明实施例提供了一种液压泵控制方法,包括:
响应于启动操作,PLC模块获取泵体开关的电信号;其中,所述泵体开关用于根据液压泵的卡紧旋钮的旋转位置的变化输出电信号;
所述PLC模块根据所述电信号生成数字信号,并通过预设的串口通信协议将所述数字信号发送给上位机;
所述上位机根据所述数字信号发出对应的控制指令给直流伺服驱动器;
所述直流伺服驱动器根据所述控制指令控制直流伺服电机,以使所述直流伺服电机驱动所述液压泵。
作为上述方案的改进,所述串口通信协议为RS485串口通信协议或RS232串口通信协议。
作为上述方案的改进,所述方法还包括:
压力传感器获取所述液压泵的压力信号,并将所述压力信号发送给所述上位机;
所述上位机根据所述压力信号调整所述控制指令。
作为上述方案的改进,所述方法还包括:
所述直流伺服驱动器获取所述直流伺服电机的工作参数,并将所述工作参数发送给所述上位机;其中,所述工作参数包括电机转速、电流和扭矩中的至少一种;
所述上位机根据所述工作参数调整发送给所述直流伺服驱动器的控制指
令。
作为上述方案的改进,所述直流伺服电机通过传动系统驱动所述液压泵。
为实现上述目的,本发明实施例还提供了一种液压泵控制装置,包括:
上位机、直流伺服驱动器、直流伺服电机、传动系统、PLC模块和泵体开关;其中,
泵体开关,用于根据液压泵的卡紧旋钮的旋转位置的变化输出电信号;
PLC模块,用于获取泵体开关的电信号,根据所述电信号生成数字信号, 并通过预设的串口通信协议将所述数字信号发送给上位机;
上位机,用于根据所述数字信号发出对应的控制指令给直流伺服驱动器;
直流伺服驱动器,用于根据所述控制指令控制直流伺服电机;
直流伺服电机,用于通过传动系统驱动所述液压泵。
作为上述方案的改进,所述串口通信协议为RS485串口通信协议或RS232串口通信协议。
作为上述方案的改进,所述液压泵控制装置还包括:
压力传感器,用于获取所述液压泵的压力信号,并将所述压力信号发送给所述上位机;
则,所述上位机还用于根据所述压力信号调整所述控制指令。
作为上述方案的改进,所述直流伺服驱动器还用于获取所述直流伺服电机的工作参数,并将所述工作参数发送给所述上位机;其中,所述工作参数包括电机转速、电流和扭矩中的至少一种;
所述上位机还用于根据所述工作参数调整发送给所述直流伺服驱动器的控制指令。
为实现上述目的,本发明实施例还提供一种医用水刀,包括液压泵和上述任一实施例所述的液压泵控制装置。
与现有技术相比,本发明公开的液压泵控制方法、装置和医用水刀,通过PLC模块接收泵体开关发送的因液压泵启动产生的电信号,PLC模块将电信号转换为数字信号并将数字信号发送给上位机,以使上位机根据数字信号生成控制指令,并将该控制指令发送给直流伺服驱动器,直流伺服驱动器根据控制指令控制直流伺服电机以实现对液压泵的压力控制。相比于传统的驱动控制系统,本发明公开的液压泵控制方法、装置和医用水刀的结构简单以 及控制流程简单,具有更好的系统稳定性和更高的控制精度。
附图说明
图1是本发明实施例提供的一种液压泵控制方法的流程图;
图2是本发明实施例提供的一种液压泵控制装置的结构示意图;
图3是本发明实施例提供的另一种液压泵控制装置的结构示意图;
图4是本发明实施例提供的一种医用水刀的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
参见图1,图是1本发明实施例提供的一种液压泵控制方法的流程图,所述液压泵控制方法包括:
S1、响应于启动操作,PLC模块获取泵体开关的电信号;其中,所述泵体开关用于根据液压泵的卡紧旋钮的旋转位置的变化输出电信号;
S2、所述PLC模块根据所述电信号生成数字信号,并通过预设的串口通信协议将所述数字信号发送给上位机;
S3、所述上位机根据所述数字信号发出对应的控制指令给直流伺服驱动器;
S4、所述直流伺服驱动器根据所述控制指令控制直流伺服电机,以使所述直流伺服电机驱动所述液压泵。
具体地,在步骤S1中,所述泵体开关为光电开关,连接在所述PLC模块的I/O接口,所述泵体开关的主要功能是根据所述液压泵的卡紧旋钮的旋转位置的变化使光电开关的光源被遮挡或不遮挡,以输出电信号给所述PLC模块。
进一步地,所述泵体开关采用光电开关感应泵体是否锁好,当插入泵体锁好时,光电开关光源会受到遮蔽,光电开关则输出数字信号(电信号)给所述PLC模块,所述PLC模块将此数字信号转换为控制指令反馈给上位机,当解锁取下泵体时,光电开关光源不受物体遮蔽,光电开关不输出数字信号(电信号),同样所述PLC模块将该信号转换为不同控制指令反馈给所述上位机,所述上位机根据不同输入控制指令判断泵体是否锁好。
PLC英文全称是:Programmable logic Controller,可编程逻辑控制器,一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。当所述PLC模块投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,所述PLC模块的CPU以一定的扫 描速度重复执行上述三个阶段。
具体地,在步骤S2中,所述串口通信协议为RS485串口通信协议或RS232串口通信协议。所述PLC模块将电信号转换为数字信号并将数字信号发送给所述上位机。
示例性的,所述上位机一般指可以直接发出操控命令的计算机,上位机(工业串口屏)发出的命令首先给下位机(直流伺服驱动器),下位机(直流伺服驱动器)再根据此命令解释成相应的时序信号直接控制相应设备(直流伺服电机),控制者和提供服务者是上位机(工业串口屏),被控制者和被服务者是下位机(直流伺服驱动器),也可以理解为主机和从机的关系,所述上位机通过RS232或RS485串口总线连接所述直流伺服驱动器和所述PLC模块,他们之间可以采用不同的通讯协议,可以有RS232串口通讯,或者采用RS485串行通讯。
具体地,在步骤S3中,所述上位机根据所述数字信号生成控制指令,并将所述控制指令发送给所述直流伺服驱动器。
具体地,在步骤S4中,所述直流伺服驱动器根据所述控制指令控制所述直流伺服电机驱动,以实现对所述液压泵的压力控制。所述直流伺服电机通过传动系统驱动所述液压泵。
可选地,所述方法还包括:
S11、压力传感器获取所述液压泵的压力信号,并将所述压力信号发送给所述上位机;
S12、所述上位机根据所述压力信号调整所述控制指令。
示例性的,所述压力传感器用于连接所述液压泵的压力检测端。所述压力传感器连接所述上位机,所述压力传感器在采集到所述液压泵的压力信号 后,将所述压力信号反馈给所述上位机,以使所述上位机根据所述压力信号输出更为精准的控制指令。
可选地,所述方法还包括:
S21、所述直流伺服驱动器获取所述直流伺服电机的工作参数,并将所述工作参数发送给所述上位机;其中,所述工作参数包括电机转速、电流和扭矩中的至少一种;
S22、所述上位机根据所述工作参数调整发送给所述直流伺服驱动器的控制指令。
示例性的,所述直流伺服驱动器把检测到的电机转速、电流、扭矩等数据反馈给上位机,经过上位机软件的控制算法以调节电机转速、电流、扭矩等与压力之间的关系及变化情况,便于调试出符合产品要求的压力范围。
与现有技术相比,本发明公开的液压泵控制方法,通过PLC模块接收泵体开关发送的因液压泵启动产生的电信号,PLC模块将电信号转换为数字信号并将数字信号发送给上位机,以使上位机根据数字信号生成控制指令,并将该控制指令发送给直流伺服驱动器,直流伺服驱动器根据控制指令控制直流伺服电机以实现对液压泵的压力控制。相比于传统的驱动控制系统,本发明公开的液压泵控制方法的控制流程简单,具有更好的系统稳定性和更高的控制精度。
参见图2,图2是本发明实施例提供的一种液压泵控制装置10的结构示意图,所述液压泵控制装置10包括:上位机101、直流伺服驱动器102、直流伺服电机103、传动系统104、PLC模块105和泵体开关106;其中,
泵体开关106,用于根据液压泵20的卡紧旋钮的旋转位置的变化输出电 信号;
PLC模块105,用于获取泵体开关106的电信号,根据所述电信号生成数字信号,并通过预设的串口通信协议将所述数字信号发送给上位机101;
上位机101,用于根据所述数字信号发出对应的控制指令给直流伺服驱动器102;
直流伺服驱动器102,用于根据所述控制指令控制直流伺服电机103;
直流伺服电机103,用于通过传动系统104驱动所述液压泵20。
具体地,所述泵体开关106为光电开关,连接在所述PLC模块105的I/O接口,所述泵体开关106的主要功能是根据所述液压泵20的卡紧旋钮的旋转位置的变化使光电开关的光源被遮挡或不遮挡,以输出电信号给所述PLC模块105,所述PLC模块105将电信号转换为数字信号并将数字信号发送给所述上位机101,所述上位机101根据所述数字信号生成控制指令,并将所述控制指令发送给所述直流伺服驱动器102,所述直流伺服驱动器102根据所述控制指令控制所述直流伺服电机103驱动,以实现对所述液压泵20的压力控制。相比于传统的驱动控制系统,本发明公开的液压泵控制装置10结构简单以及控制流程简单,具有更好的系统稳定性和更高的控制精度。
进一步地,参见图2,所述液压泵控制装置10还包括:第一继电器107、第一直流开关电源108、第二继电器109,第二直流开关电源110、启动按钮111和脚踏开关112;其中,
所述第一继电器107分别连接所述PLC模块105和所述第一直流开关电源108,所述第一直流开关电源108还连接所述直流伺服驱动器102;所述第二继电器109分别连接所述上位机101、所述PLC模块105和所述第二直流开关电源110,所述第二直流开关电源110还连接所述PLC模块105;所述启 动按钮111连接所述PLC模块105;所述脚踏开关112连接所述PLC模块105;所述上位机通过总线分别连接所述直流伺服驱动器102和所述PLC模块105。
示例性的,所述上位机101一般指可以直接发出操控命令的计算机,上位机101(工业串口屏)发出的命令首先给下位机(直流伺服驱动器102),下位机(直流伺服驱动器102)再根据此命令解释成相应的时序信号直接控制相应设备(直流伺服电机103),控制者和提供服务者是上位机101(工业串口屏),被控制者和被服务者是下位机(直流伺服驱动器102),也可以理解为主机和从机的关系,所述上位机101通过RS232或RS485串口总线连接所述直流伺服驱动器102和所述PLC模块105,他们之间可以采用不同的通讯协议,可以有RS232串口通讯,或者采用RS485串行通讯。
所述第一继电器107和所述第二继电器109是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。在本发明实施例中,当所述启动按钮111开关触点动作导通时,所述PLC模块105根据不同的开关量输入判定是否给所述第一继电器107的输入端进行电量输出,所述第一继电器107不同的输入状态决定其输出端的导通和断开,从而控制上位机101和直流伺服驱动器102的开机和关机,起到安全保护作用。
PLC英文全称是:Programmable logic Controller,可编程逻辑控制器,一种数字运算操作的电子系统,专为在工业环境应用而设计的。它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算,顺序控制,定时,计数与算术操作等面向用户的指令,并通过数字或模拟式输入/输出控制各种类型的机械或生产过程。当所述PLC模块105投入运行后,其工作过程一般 分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,所述PLC模块105的CPU以一定的扫描速度重复执行上述三个阶段。
所述第一直流开关电源108和所述第二直流开关电源110的工作原理不同于线性电源,线性电源是让功率晶体管工作于线性模式下,而直流开关电源是让功率晶体管工作于导通和关断两种工作状态下,换言之是通过“斩波”,即把输入直流电压的幅值斩成与输入电压幅值相等的脉冲电压来实现的。开关电源的这种工作原理使得加于功率晶体管上的伏安乘积很小(导通状态下,电压低,电流大;关断状态下,电压高,电流小),即功率晶体管上产生的损耗很小。直流开关电源主要由主电路、控制电路、检测电路和辅助电源四大部分构成。各部分的作用如下:
⑴主电路又可分为冲击电流限幅部分、输入滤波部分、整流与滤波部分、逆变部分、输出整流与滤波部分。其中,冲击电流限幅部分负责限制电源接通瞬间输入侧的冲击电流;输入滤波器部分负责过滤杂波;整流与滤波部分负责将电网交流电源整流为直流电;逆变部分负责将整流形成的直流电转变为高频交流电;输出整流与滤波部分负责提供稳定可靠的直流电源;
⑵控制电路负责控制逆变器使输出稳定,并为电路提供各种保护措施;
⑶检测电路负责提供运行中的各种参数和数据;
⑷辅助电源用于实现电源的软件(远程)启动,为电路的正常运行供电。
所述启动按钮111为用来接通或者开断控制电路的按钮开关,控制机械与电气设备的运行。所述启动按钮111采用自复位常开按钮,其工作原理是按下按钮,触点动作(常开触点闭合),电路接通;松开按钮,在反力弹簧的作用下,触点复位,电路断开。在本发明实施例中,所述启动按钮111主要 作用是控制系统开机和关机。
所述脚踏开关112是一种通过脚踩或踏来控制电路通断的开关,使用在双手不能触及的情况中以代替双手达到操作的目的,本发明实施例中脚踏开关112含有3组开关量,分别是加档、减档、运行停止。当所述PLC模块105接收到脚踏开关不同的开关量输入时,所述PLC模块105都将它们转换为相关控制指令反馈给上位机101,然后上位机101给下位机控制指令从而实现加档、减档、运行停止操作。
所述泵体开关106采用光电开关感应泵体是否锁好,当插入泵体锁好时,光电开关光源会受到遮蔽,光电开关则输出数字信号(电信号)给所述PLC模块105,所述PLC模块105将此数字信号转换为控制指令反馈给上位机101,当解锁取下泵体时,光电开关光源不受物体遮蔽,光电开关不输出数字信号(电信号),同样所述PLC模块105将该信号转换为不同控制指令反馈给所述上位机101,所述上位机101根据不同输入控制指令判断泵体是否锁好。
可选地,所述液压泵控制装置10还包括压力传感器(图中未示出),所述压力传感器用于连接所述液压泵20的压力检测端。所述压力传感器连接所述上位机101,所述压力传感器在采集到所述液压泵20的压力信号后,将所述压力信号反馈给所述上位机101,以使所述上位机101根据所述压力信号输出更为精准的控制指令。
可选地,所述液压泵控制装置10还包括通信模块(图中未示出),所述通信模块与所述上位机101连接。所述通信模块包括4G模块、5G模块、蓝牙模块中的至少一种。所述上位机101通过所述通信模块将所述液压泵20的工作状态、控制详情的发送到监控中心或服务器等平台,便于工作人员随时调档或实时对液压泵进行监控。
与现有技术相比,本发明公开的液压泵控制装置10,通过PLC模块接收泵体开关106发送的因液压泵启动产生的电信号,PLC模块105将电信号转换为数字信号并将数字信号发送给上位机101,以使上位机101根据数字信号生成控制指令,并将该控制指令发送给直流伺服驱动器102,直流伺服驱动器102根据控制指令控制直流伺服电机103以实现对液压泵的压力控制。相比于传统的驱动控制系统,本发明公开的液压泵控制装置10的结构简单以及控制流程简单,具有更好的系统稳定性和更高的控制精度。
参见图4,图4是本发明实施例提供的一种医用水刀的结构示意图,所述医用水刀包括液压泵20和上述任一实施例所述的液压泵控制装置10。
具体的所述液压泵控制装置10的工作过程请参考上述实施例所述的液压泵控制装置10的工作过程,在此不再赘述。
与现有技术相比,本发明公开的医用水刀,通过PLC模块105接收泵体开关106发送的因液压泵启动产生的电信号,PLC模块105将电信号转换为数字信号并将数字信号发送给上位机101,以使上位机101根据数字信号生成控制指令,并将该控制指令发送给直流伺服驱动器102,直流伺服驱动器102根据控制指令控制直流伺服电机103以实现对液压泵的压力控制。相比于传统的驱动控制系统,本发明公开的医用水刀的结构简单以及控制流程简单,具有更好的系统稳定性和更高的控制精度。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种液压泵控制方法,其特征在于,包括:
    响应于启动操作,PLC模块获取泵体开关的电信号;其中,所述泵体开关用于根据液压泵的卡紧旋钮的旋转位置的变化输出电信号;
    所述PLC模块根据所述电信号生成数字信号,并通过预设的串口通信协议将所述数字信号发送给上位机;
    所述上位机根据所述数字信号发出对应的控制指令给直流伺服驱动器;
    所述直流伺服驱动器根据所述控制指令控制直流伺服电机,以使所述直流伺服电机驱动所述液压泵。
  2. 如权利要求1所述的液压泵控制方法,其特征在于,所述串口通信协议为RS485串口通信协议或RS232串口通信协议。
  3. 如权利要求1所述的液压泵控制方法,其特征在于,所述方法还包括:
    压力传感器获取所述液压泵的压力信号,并将所述压力信号发送给所述上位机;
    所述上位机根据所述压力信号调整所述控制指令。
  4. 如权利要求1所述的液压泵控制方法,其特征在于,所述方法还包括:
    所述直流伺服驱动器获取所述直流伺服电机的工作参数,并将所述工作参数发送给所述上位机;其中,所述工作参数包括电机转速、电流和扭矩中的至少一种;
    所述上位机根据所述工作参数调整发送给所述直流伺服驱动器的控制指令。
  5. 如权利要求1所述的液压泵控制方法,其特征在于,所述直流伺服电机通过传动系统驱动所述液压泵。
  6. 一种液压泵控制装置,其特征在于,包括:上位机、直流伺服驱动器、直流伺服电机、传动系统、PLC模块和泵体开关;其中,
    泵体开关,用于根据液压泵的卡紧旋钮的旋转位置的变化输出电信号;
    PLC模块,用于获取泵体开关的电信号,根据所述电信号生成数字信号,并通过预设的串口通信协议将所述数字信号发送给上位机;
    上位机,用于根据所述数字信号发出对应的控制指令给直流伺服驱动器;
    直流伺服驱动器,用于根据所述控制指令控制直流伺服电机;
    直流伺服电机,用于通过传动系统驱动所述液压泵。
  7. 如权利要求6所述的液压泵控制装置,其特征在于,所述串口通信协议为RS485串口通信协议或RS232串口通信协议。
  8. 如权利要求6所述的液压泵控制装置,其特征在于,所述液压泵控制装置还包括:
    压力传感器,用于获取所述液压泵的压力信号,并将所述压力信号发送给所述上位机;
    则,所述上位机还用于根据所述压力信号调整所述控制指令。
  9. 如权利要求6所述的液压泵控制装置,其特征在于,所述直流伺服驱动器还用于获取所述直流伺服电机的工作参数,并将所述工作参数发送给所述上位机;其中,所述工作参数包括电机转速、电流和扭矩中的至少一种;
    所述上位机还用于根据所述工作参数调整发送给所述直流伺服驱动器的控制指令。
  10. 一种医用水刀,其特征在于,包括液压泵和上述权利要求6~9中任一项所述的液压泵控制装置。
PCT/CN2020/117999 2020-09-14 2020-09-27 一种液压泵控制方法、装置和医用水刀 WO2022052186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010959104.0A CN112196780A (zh) 2020-09-14 2020-09-14 一种液压泵控制方法、装置和医用水刀
CN202010959104.0 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022052186A1 true WO2022052186A1 (zh) 2022-03-17

Family

ID=74014854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117999 WO2022052186A1 (zh) 2020-09-14 2020-09-27 一种液压泵控制方法、装置和医用水刀

Country Status (2)

Country Link
CN (1) CN112196780A (zh)
WO (1) WO2022052186A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112196780A (zh) * 2020-09-14 2021-01-08 惠州海卓科赛医疗有限公司 一种液压泵控制方法、装置和医用水刀
CN213870213U (zh) * 2020-09-14 2021-08-03 惠州海卓科赛医疗有限公司 一种液压泵控制装置和医用水刀
CN117073891B (zh) * 2023-08-14 2024-04-02 苏州润弘安创自动化科技有限公司 水刀设备的压力监测系统、方法、终端及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2578797Y (zh) * 2002-10-23 2003-10-08 沈阳黎明航空发动机(集团)有限责任公司 检测涡轮叶片水流量的装置
WO2010005896A1 (en) * 2008-07-08 2010-01-14 Parker-Hannifin Corporation High pressure intensifier system
CN105587714A (zh) * 2016-03-23 2016-05-18 海航高科秦皇岛科技有限公司 一种伺服阀液压测试系统
CN106063718A (zh) * 2016-07-19 2016-11-02 屈小丰 一种水刀清创设备及其制作方法
CN107402104A (zh) * 2017-09-06 2017-11-28 远景能源(江苏)有限公司 液压扳手作业自动检查系统及方法
CN112196780A (zh) * 2020-09-14 2021-01-08 惠州海卓科赛医疗有限公司 一种液压泵控制方法、装置和医用水刀

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201667631U (zh) * 2010-02-11 2010-12-08 利德国际企业有限公司 一种无刷直流电机及其控制装置和使用它的液压系统
CN109164732A (zh) * 2018-08-23 2019-01-08 惠州海卓科赛医疗有限公司 一种控制电路系统
CN109372832B (zh) * 2018-12-21 2020-01-03 合肥工业大学 一种工况变化下的双变量液压系统能耗优化方法
CN111070772A (zh) * 2019-11-28 2020-04-28 枣庄冠龙机械有限公司 一种液压机节能控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2578797Y (zh) * 2002-10-23 2003-10-08 沈阳黎明航空发动机(集团)有限责任公司 检测涡轮叶片水流量的装置
WO2010005896A1 (en) * 2008-07-08 2010-01-14 Parker-Hannifin Corporation High pressure intensifier system
CN105587714A (zh) * 2016-03-23 2016-05-18 海航高科秦皇岛科技有限公司 一种伺服阀液压测试系统
CN106063718A (zh) * 2016-07-19 2016-11-02 屈小丰 一种水刀清创设备及其制作方法
CN107402104A (zh) * 2017-09-06 2017-11-28 远景能源(江苏)有限公司 液压扳手作业自动检查系统及方法
CN112196780A (zh) * 2020-09-14 2021-01-08 惠州海卓科赛医疗有限公司 一种液压泵控制方法、装置和医用水刀

Also Published As

Publication number Publication date
CN112196780A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2022052186A1 (zh) 一种液压泵控制方法、装置和医用水刀
CN108374448A (zh) 一种工业再生水恒压供水系统
ZA200700069B (en) A control device for a power supply with zero power consumption in standby mode
CN105971864B (zh) 泵组驱动系统
CN102449308A (zh) 油压系统的油压泵的操作装置及方法
CN102644616B (zh) 一种控制系统
CN204886764U (zh) 一种伺服电动执行机构
CN111935352B (zh) 基于手机app蓝牙的宽禁带半导体器件的bldc远程控制系统
WO2022052185A1 (zh) 一种液压泵控制装置和医用水刀
CN210825482U (zh) 一种具有动态调整策略的沼液膜浓缩控制装置
US20170223903A1 (en) Method of controlling speed change of a pruning machine
CN208618482U (zh) 一种工业再生水恒压供水系统
CN105974906A (zh) 一种双监控-激活测控装置
CN106523340B (zh) 变频空压机压力传感器断线故障处理系统及方法
CN101840209A (zh) 智能电动执行机构
CN201301797Y (zh) 闭环变量泵控制器
CN202815644U (zh) 大功率全自动智能交流稳压电源
CN206515671U (zh) 一种汽轮机控制器
CN110526307B (zh) 一种具有动态调整策略的沼液膜浓缩控制装置和方法
CN201716555U (zh) 智能电动执行机构
CN205644149U (zh) 电磁式振打控制器
CN215672638U (zh) 一种液压泵控制装置和医用水刀
CN102880128A (zh) 一种用于海上工程的锚机变频控制系统设备
CN201078841Y (zh) 一种多模式交流异步电动机运行控制装置
CN2138309Y (zh) Plc机控制自动供水设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952973

Country of ref document: EP

Kind code of ref document: A1