WO2022051987A1 - 一种沿海地区风能和太阳能综合利用系统 - Google Patents

一种沿海地区风能和太阳能综合利用系统 Download PDF

Info

Publication number
WO2022051987A1
WO2022051987A1 PCT/CN2020/114500 CN2020114500W WO2022051987A1 WO 2022051987 A1 WO2022051987 A1 WO 2022051987A1 CN 2020114500 W CN2020114500 W CN 2020114500W WO 2022051987 A1 WO2022051987 A1 WO 2022051987A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
cold
output end
compressed air
expander
Prior art date
Application number
PCT/CN2020/114500
Other languages
English (en)
French (fr)
Inventor
贡茅
Original Assignee
周连惠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周连惠 filed Critical 周连惠
Priority to PCT/CN2020/114500 priority Critical patent/WO2022051987A1/zh
Publication of WO2022051987A1 publication Critical patent/WO2022051987A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously

Definitions

  • the invention relates to the technical field of energy saving and environmental protection, in particular to a system for comprehensive utilization of wind energy and solar energy in coastal areas.
  • the power generation cost of distributed photovoltaics in Zhejiang is the power supply cost, and the power supply cost is 0.42 yuan/kWh.
  • the power generation cost of the photovoltaic power station is 0.23 yuan/kWh, and the transmission cost of the UHV DC line and the power grid at the sending and receiving end is 0.26 yuan.
  • the transmission cost has reached 0.49 yuan. /kWh, higher than the cost of distributed photovoltaics at the receiving end”.
  • the straight-line distance between Ningdong and Zhejiang is less than 2,000 kilometers, which is only half of the sea-facing countries such as Australia to Singapore. Then the cost of the Australia-Singapore seawater power transmission project is not twice as simple, and the expensive submarine cable manufacturing, laying, and wiring is also superimposed. damage, maintenance and many other factors.
  • the canopy photovoltaic power generation panel has a larger area, which can not only make full use of solar power generation, but also block the sun in a large area and turn waste into treasure, which is also conducive to cooling vehicles and the city.
  • the purpose of the present invention is to provide a comprehensive utilization system of wind energy and solar energy in coastal areas to solve the deficiencies of the prior art.
  • the present invention is implemented by the following technical solutions: a comprehensive utilization system for wind energy and solar energy in coastal areas, including windmills, air compressors directly connected to the windmills, electric air compressors, heat exchange heat Water pool, ice-water mixture cold water pool, deep-sea compressed air bag, compressed air expander, liquefied gas gasification expander, low-boiling-point working medium steam turbine and corresponding three generating sets, cold water distribution pipe network system, hot water distribution pipe network system , and the photovoltaic power generation panels arranged on the water surface, the roofs of high-rise buildings, windows, glass curtain walls, and highway and railway canopies;
  • the board is connected to the electric air compressor through the output end of the power distribution system.
  • the windmill is directly connected to the air compressor, and the huge heat generated by the electric air compressor to compress the air enters the hot pool coil for heat exchange and cooling, and then is connected to the deep sea compressed air by the pipeline.
  • Airbag the gas output end of the deep-sea compressed air airbag is first connected to the automatic flow control valve and then enters the compressed air expander, and the power output end of the compressed air expander is connected to the generator; the cold energy generated by the operation of the compressed air expander passes through
  • the pipeline is output to the liquefied gas station, the liquid output end of the liquefied gas station is connected to the liquefied gas gasification expander through the valve, and the output end of the power output end of the liquefied gas gasification expander is connected to the generator.
  • the windmill is directly connected to the air compressor and the heat energy output end of the electric air compressor is connected to a heat exchange hot water pool, and the heat energy of the heat exchange hot water pool is used to heat a low-boiling-point working fluid turbine, and the low-boiling-point working fluid steam turbine
  • the power output is connected to the generator.
  • the cold energy output end of the liquefied gas gasification expander is connected to the seawater ice-making pool after passing through the low-temperature engineering cold storage, and the obtained sea-ice ice crystals and cold exhaust gas enter the ice-water mixture cold water pool together [A3];
  • the liquefied gas expander will output the cold energy through the pipeline to the low-temperature engineering cold storage, and then pass it through the central cold storage, food factory and other cascades, and all the residual cold of the cooling unit is used.
  • the heat exchange hot water pool is connected to high-rise buildings and other units requiring heat energy through a hot water distribution pipe network system.
  • the power generation and output of the multiple generator sets are coordinated and controlled by the power distribution center, the generators are connected to the high-rise building complex through the power grid to supply power to the high-rise building complex, and the power output end of the generator is also connected to the power distribution center, so The power distribution center is also connected to the hydrogen production module of water electrolysis, and the generated hydrogen is input into the natural gas pipeline network and delivered to the gas users in a certain proportion.
  • the power distribution center coordinates the release of compressed air from the submarine airbag and the compressed air generated by the air compressor directly connected to the windmill to jointly supply the compressed air expander to work and generate electricity during rainy days and when there is little or no photovoltaic power at night, and at the same time coordinate
  • the liquefied gas station generates cold energy to supply the liquefied gas gasification expander to work and generate electricity, and to coordinate the work of the low-boiling-point working fluid steam turbine to generate electricity.
  • the present invention builds super-large heat-exchange hot water pools and ice-water mixture cold pools in coastal countries (such as Singapore, Australia) or coastal areas, installs windmills in high-rise buildings in the city, and installs windmills on the roofs, windows, glass curtain walls, and paths of high-rise buildings in cities.
  • Canopy photovoltaics installed above roads and railways, and photovoltaic power generation panel systems built on water (sea, lake) surfaces, windmills in high-rise buildings can finally convert wind energy into electrical energy by "compressing ⁇ expanding air", and at the same time
  • the cold energy generated by the expanded air is stored in the cold water pool of ice-water mixture
  • the cold energy generated by the gasification of the liquefied gas in the liquefied gas station is stored in the cold water pool of the ice-water mixture
  • the kinetic energy generated by the gasification of the liquefied gas in the liquefied gas station is converted into electrical energy.
  • the cold energy stored in the cold pool of ice-water mixture can be used by the city to adjust the indoor temperature.
  • Fig. 1 is the wind power and cold energy utilization subsystem principle block diagram of a kind of coastal area wind energy and solar energy comprehensive utilization system of the embodiment of the present invention
  • FIG. 2 is a schematic block diagram of a thermal energy utilization subsystem of a coastal area wind energy and solar energy comprehensive utilization system according to an embodiment of the present invention.
  • a comprehensive utilization system of wind energy and solar energy in coastal areas includes windmills set on high-rise buildings, air compressors directly connected to the windmills, electric air compressors, heat exchange hot water pools, and ice-water mixture cooling systems.
  • the power output end of the low-boiling-point working fluid steam turbine is connected to the generator.
  • the compressed air expander, the liquefied gas gasification expander, and the low-boiling-point working fluid steam turbine can convert wind energy and solar energy into heat energy, cold energy, and electric energy for building use.
  • the air compressed by the air compressor directly connected to the windmill and the electric air compressor is input to the deep-sea compressed air bag, and the high-pressure air stored in the air bag is used to drive the compressed air expander to work.
  • the low-boiling-point working fluid is the use of underground hot water or other waste heat to heat a certain gas and make it enter the power generation system of the steam turbine, also known as the intermediate medium method or the low-boiling-point working fluid cycle.
  • the low-boiling-point working fluid steam turbine utilizes the heat in the thermal insulation hot water pool to generate electricity, and converts the heat energy into electrical energy.
  • the cold energy output end of the liquefied gas gasification expander passes through the low-temperature engineering cold storage, and then is connected to the seawater ice-making pool, and the obtained sea-ice ice crystals and cold exhaust gas enter the ice-water mixture cold pool together [A4]; the compressed air expands After the cold energy generated by the operation of the machine is output to the liquefied gas station through the pipeline, the liquefied gas gasification expander will output the cold energy through the pipeline to the low-temperature engineering cold storage, and then connect to the seawater ice-making pool.
  • a cold pool of ice-water mixture, ice crystals can store more cold energy with an 80-fold phase change.
  • the cold energy output end of the cold water pool of ice-water mixture is also connected to high-rise buildings through the ice-water distribution pipe network system; the cold energy generated by the operation of the compressed air expander is also output to the low-temperature engineering cold storage through branch pipes.
  • the cold energy output end of the liquefied gas station and the liquefied gas gasification expander are all utilized according to the temperature gradient, first go to the unit that needs cryogenic (liquefied gas station, low temperature engineering cold storage), and then connect seawater ice making, ice water mixture cooling. pool.
  • the cold energy stored in the liquefied gas station or other low-boiling-point working fluid can be used in low-temperature engineering cold storage (such as food factories, seafood factories), and used in some The areas that require refrigeration and quality are cooled, and the cold energy is also delivered to the building for cooling or other purposes.
  • the heat exchange hot water pool is connected to a high-rise building complex through a hot water distribution pipe network system.
  • the windmill is directly connected to the air compressor and the electric air compressor to compress the air, which will generate heat energy, which is output to the heat exchange hot water pool, and provides the households with hot water for daily life through the heat exchange hot water pool.
  • the generator is connected to the high-rise building complex through the power transmission and distribution center and the power grid to supply power to the high-rise building complex
  • the power output end of the generator is also connected to the power distribution center
  • the power distribution center is also connected to the electrolysis water hydrogen production module to supply power to the high-rise building complex.
  • the excess photovoltaic power during the day is used to electrolyze water to produce hydrogen and oxygen.
  • the compressed air released from the submarine airbag and the compressed air generated by the air compressor directly connected to the windmill are jointly supplied to the compressed air expander to work and generate electricity.
  • the liquefied gas station generates cold energy to supply the liquefied gas gasification expander to work and generate electricity, and to coordinate the work of the low-boiling-point working fluid steam turbine to generate electricity.
  • the working principle of the present invention is:
  • the above-mentioned windmills receive wind energy several times stronger than those on the ground (the high-altitude turbine generator developed by Altaeros, a subsidiary of the Massachusetts Institute of Technology, generates 2-3 times as much power as the ground).
  • the compressed air of the compressed air expander needs to absorb heat during the expansion process, thereby generating cold air.
  • the cold air is utilized according to the temperature gradient, first to the unit that needs cryogenic (liquefied gas station, low temperature engineering cold storage), and then connected to the ice-water mixture Cold pool.
  • the cold pool of ice-water mixture distributes its cold energy to each household in the high-rise building complex through the air-conditioning distribution pipe network system.
  • the water valve can be adjusted in each room to accurately control the temperature to achieve the most comfortable temperature in the room, or input to other cooling projects. in the cold storage.
  • the invention breaks the existing conventional wind power generation/storage, the windmill directly drives the air compressor to compress the air, the compressed air drives the expander, and generates a large amount of cold air for the building to directly supply cold air and fresh air, and saves the need for power generation, cooling, and replacement.
  • the output end of the air compressor is also connected to the deep-sea compressed air bag, and the deep-sea compressed air bag is connected to the compressed air expander.
  • the air compressed by the air compressor is first input to the deep-sea compressed air bag.
  • the high-pressure air stored in the air bag is used to drive the compressed air expander.
  • the power output end of the compressed air expander drives the generator system to generate electricity.
  • the compressed air of the air expander needs to absorb heat during the expansion process, and then generate cold air.
  • the cold air is used according to the temperature gradient. First, go to the unit that needs deep cooling (liquefied gas station, low temperature engineering cold storage), and then connect seawater to make ice. Pool, ice-water mixture cold pool.
  • the compressed air output end of the air compressor is connected to the submarine airbag with a depth of 5-600 meters through hundreds of kilometers of pipelines, saving land space, and the huge seawater pressure (pressure) equivalent to 60 atmospheres will replace most of the expensive pressure-resistant containers. Under the cooperation of other heavy objects or subsea piles, the compressed air subsea airbag is restrained.
  • the large amount of liquefied natural gas (equivalent to one million tons of compressed and liquefied special refrigerant) purchased by the city has potential huge mechanical energy and huge cooling capacity.
  • the power output end of the liquefied gas gasification expander drives the generator system to work, and the gasification of liquefied natural gas also absorbs heat, and then the cold gas generated can be input to the low temperature engineering cold storage and the ice-water mixture cold pool in sequence according to the temperature gradient, as the cold gas resource for cooling .
  • the invention also includes photovoltaic power generation panels arranged on urban roads, highways and railway canopy systems, and water surface floating photovoltaic power generation panels arranged on the water surface.
  • the photovoltaic power generation panels are connected to the electric air compressor through the output end of the power distribution system.
  • the solar energy is fully utilized to generate electricity.
  • the road is equipped with a canopy and a photovoltaic greenhouse to realize the complementation of road and light.
  • the greenhouse blocks the strong sunlight for the vehicles on the road, so the air-conditioning load required by the vehicle will be significantly reduced, and the vehicle will greatly save energy.
  • the wheels slip to improve safety, and the electricity from the upper surface of the greenhouse can be transmitted to the catenary cable on the back of the shed at zero distance, imitating the electrified railway and creating an electrified highway.
  • floating photovoltaic power generation does not require a support frame, it is easy to clean the sand and sand, and it is also directly cooled by water, so the power generation efficiency is high.
  • Using solar power to generate electricity can enter the power grid for households to use, and can also drive electric air compressors to compress air, and complement the direct drive compressors of windmills, thereby realizing air compression and power generation. The principle has been explained above, and will not be repeated here.
  • Low-boiling-point working fluid is a power generation system that uses ambient heat, underground hot water or other waste heat to heat a certain gas and make it enter the power generation system for steam turbine operation, also known as intermediate medium method or low-boiling-point working fluid cycle.
  • the low-boiling-point working fluid turbine utilizes ambient thermal energy, multi-energy complementation, and high heat in the thermally insulated hot water pool to generate electricity by absorbing heat step by step, reducing the ambient temperature and converting waste heat thermal energy into electrical energy.
  • the large amount of heat generated by the air compressor during operation does not further increase the temperature of the city, but also makes full use of its thermal energy to generate electricity or supply hot water.
  • the present invention builds super-large heat-exchange hot water pools, ice-water mixture cold water pools in coastal countries (such as Singapore, Australia) or coastal areas, installs windmills in high-rise buildings in cities, and installs windmills on the roofs, windows and glass of high-rise buildings in cities.
  • the photovoltaic power generation panel system is constructed on the curtain wall, highway, railway canopy and on the water (sea, lake) surface, which can finally convert wind energy into electricity through the method of "compression ⁇ expansion air" through the windmills in the high-rise buildings, and at the same time expand the air.
  • the generated cold energy is stored in the cold pool of ice-water mixture
  • the cold energy generated by the gasification of liquefied gas in the liquefied gas station is stored in the cold pool of ice-water mixture
  • the kinetic energy generated by the gasification of the liquefied gas in the liquefied gas station is converted into electricity.
  • the cold energy stored in the cold pool of ice-water mixture can be used by the city to adjust the indoor temperature.
  • the photovoltaic power generation panels on all road canopy systems in the city, and the floating photovoltaic power generation panels set on the water surface to generate solar power making full use of solar energy and the regional characteristics of coastal countries, the use of solar power generation can enter the power grid for households.
  • Electricity can drive electric air compressors to compress air, complementing the direct drive compressors of windmills, thereby realizing air compression for cheap heating, heat storage, energy storage, power generation and cooling, and cold storage.
  • a large amount of heat generated by the air compressor is stored in the thermal insulation hot water pool, and the thermal energy stored in the thermal insulation hot water pool is then used to generate electricity through a low-boiling-point working fluid turbine, converting the thermal energy into electrical energy.
  • the final energy of the whole system comes from solar energy and wind energy. During the conversion process, the heat energy and cold energy are recycled, and they are not discharged into the natural space to affect the climate, saving energy and environmental protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)

Abstract

一种沿海地区风能和太阳能综合利用系统,风车动力输出端与风车直连空气压缩机连接,光伏发电板输出端与电动空气压缩机连接,风车直连空气压缩机、电动空气压缩机气体输出端连接深海压缩空气气囊,深海压缩空气气囊的气体输出端连接压缩空气膨胀机,压缩空气膨胀机动力输出端连接发电机;液化气站液体输出端连接液化气气化膨胀机,液化气气化膨胀机动力输出端连接发电机;风车直连空气压缩机、电动空气压缩机的热能输出端连接换热热水池,换热热水池热能输出端连接低沸点工质汽轮机,低沸点工质汽轮机的动力输出端连接发电机。整个系统绝大部分能源来源于太阳能、风能,期间转换过程中的热能、冷能均实现了循环利用,节能环保。

Description

一种沿海地区风能和太阳能综合利用系统 技术领域:
本发明涉及节能环保技术领域,尤其涉及一种沿海地区风能和太阳能综合利用系统。
背景技术:
临海国家或者沿海地区的跨海、海底输电工程被世界各国公认为最复杂困难的大型工程之一,其应用于近海风电场也存在许多技术问题,当然经济问题更不容小觑,海底高压电缆需要巨额投资成本,由于所处恶劣的环境,运营维护的成本极高。另外,利用电池来大规模储存光伏电力,成本也是极为高昂不可取的,这些都被近年来的储电、输电遭遇的技术和经济问题所证实。
虽然目前还没有相应的长距离海底电缆工程来类比,但可用中国陆上长距离特高压输电工程来比较。杜祥琬院士与曾鸣教授联合署名文章说:“以宁东-浙江特高压直流输电线路为例,浙江地区分布式光伏的发电成本即为供电成本,供电成本为0.42元/千瓦时,宁夏地区集中式光伏电站的发电成本为0.23元/千瓦时,特高压直流线路与送受端电网的输电成本为0.26元,在不考虑送端配套火电建设与调峰成本的情况下,输电成本已达到0.49元/千瓦时,高于受端分布式光伏成本”。宁东-浙江直线距离不到2000公里,只是临海国家比如澳洲到新加坡的一半,那么澳-新的穿越海水输电工程成本就不是简单的两倍,还要叠加昂贵的海底电缆制造、铺设、线损、维护等等许多因素。
另外,现有的沿海地区高楼林立,有很强的上升气流,其建筑物周围会出现局部强风区,当海风遇到建筑物的阻碍时,风向和风速会发生改变,出现风切变,在建筑物的夹缝或洞口部位,由于风流的截面突然变小,出现峡管效应,形成强劲的峡谷风或穿堂风;城市的高楼大厦,特别是“双塔”结构建筑之间的通道处很容易产生“文氏效应”,形成“风口”现象。由于双塔主体楼的横截面都是弧形的,能将风“挤”向中间,如果能将这些优质风力资源利用进行风力压缩空气冷、热、气、电综合利用将极大有利于节能环保。其次,有些沿海地区的水域面积较大,适合建设水面漂浮式光伏发电系统,充分利用太阳能资源,而且不占用有限的陆地资源。再次,对于一些降雨频繁的临海国家或者沿海地区比如新加坡,一般在小路 小道都建有雨棚用于市民遮阳避雨和通行,这些雨棚很有特色,如果把这个特色扩展到公路、铁路上方,那雨棚光伏发电板面积更大,不仅能充分利用太阳能发电,而且大面积遮挡阳光变废为宝还有利于给车辆和城市降温。但是,现有技术还没有实现上述方案的具体专利申请。
发明内容:
本发明的目的在于提供一种沿海地区风能和太阳能综合利用系统,以解决现有技术的不足。本发明由如下技术方案实施:一种沿海地区风能和太阳能综合利用系统,包括设置在高楼建筑群上和楼与楼空隙处的风车、风车直连空气压缩机、电动空气压缩机、换热热水池、冰水混合物冷水池、深海压缩空气气囊、压缩空气膨胀机、液化气气化膨胀机、低沸点工质汽轮机以及对应的三个发电机组、冷水分配管网系统、热水分配管网系统、以及设置在水面、高楼建筑屋顶、窗户、玻璃幕墙和公路、铁路雨棚上的光伏发电板;所述高楼建筑群上的风车动力输出端与风车直连空气压缩机连接,所述光伏发电板经配电系统输出端与电动空气压缩机连接,所述风车直连空气压缩机、电动空气压缩机压缩空气产生的巨热,进入热水池盘管换热冷却后再由管道连接深海压缩空气气囊,所述深海压缩空气气囊的气体输出端先连接流量自动控制阀门后进入压缩空气膨胀机,所述压缩空气膨胀机动力输出端连接发电机;所述压缩空气膨胀机运转产生的冷能通过管道输出到液化气站,所述液化气站的液体输出端经由阀门连接液化气气化膨胀机,所述液化气气化膨胀机动力输出端输出端连接发电机。
优选的,所述风车直连空气压缩机、电动空气压缩机的热能输出端连接换热热水池,所述换热热水池的热能用来加热低沸点工质汽轮机,所述低沸点工质汽轮机的动力输出端连接发电机。
优选的,所述液化气气化膨胀机冷能输出端通过低温工程冷库后,再连通到海水制冰池,所得海冰冰晶和冷尾气一同进入冰水混合物冷水池[A3];所述压缩空气膨胀机运转产生的冷能通过管道输出到液化气站后,液化气膨胀机将冷能通过管道输出到低温工程冷库,再经中央冷库、食品厂等梯级传递,所有用冷单位的余冷连通到海水制冰池,获取的海水冰晶优质淡水和冷尾气,最后都输入到冰水混合物保温冷水池,所述冰水混合物保温冷水池冷能输出端还通过冰水分配管网系统连接高楼建筑群;当液化天然气库、低温工程等不需要那么多冷量时所述压缩空气膨胀机运转产生的冷能还可通过分支管道输出到低温工程、中央冷库。
优选的,所述换热热水池热通过热水分配管网系统连接高楼建筑群和其它需要热能的单位。 优选的,所述多个发电机组由配电中心协调控制发电量和输出,所述发电机通过电网连接高楼建筑群为高楼建筑群供电,所述发电机电能输出端还连接配电中心,所述配电中心还连接电解水制氢模块,产生的氢气输入天然气管网按一定比例混合输送给用气单位。
优选的,所述配电中心在阴雨天和晚间少有或没有光伏电力时,协调释放海底气囊的压缩空气与风车直连空气压缩机产生的压缩空气共同供给压缩空气膨胀机工作发电,同时协调液化气站产生冷能供给液化气气化膨胀机工作发电,以及协调低沸点工质汽轮机工作发电。
本发明的优点:
本发明通过在临海国家(比如新加坡、澳大利亚)或者沿海地区修建超大换热热水池、冰水混合物冷水池,在城市的高楼群中安装风车,在城市高楼顶、窗户、玻璃幕墙上、小路、公路、铁路上方安装的雨棚光伏和水(海、湖)面上建设的光伏发电板系统,可以通过高楼群中的风车将风能通过“压缩→膨胀空气”的方式最终转换为电能,同时将膨胀空气产生的冷能通过冰水混合物冷水池储存,将液化气站的液化气气化产生的冷能通过冰水混合物冷水池储存,将液化气站的液化气气化产生的动能转换为电能。冰水混合物冷水池储存的冷能可以供城市调节室内温度。同时结合城市公路、铁路雨棚系统上的光伏发电板,以及设置在水面上的水面漂浮式光伏发电板进行太阳能发电,充分利用太阳能和沿海国家地域特点。另外,空气压缩机工作时产生的大量热量通过保温热水池储存,保温热水池储存的热能再通过低沸点工质汽轮机进行发电,将热能转化为电能。整个系统的绝大部分能量来源于太阳能、风能,期间转换过程中的热能、冷能均实现了循环利用,没有排放到自然空间中给气候带来影响,节能环保。
附图说明:
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的一种沿海地区风能和太阳能综合利用系统的风力和冷能利用子系统 原理框图;
图2为本发明实施例的一种沿海地区风能和太阳能综合利用系统的热能利用子系统原理框图。
具体实施方式:
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1、2所示,一种沿海地区风能和太阳能综合利用系统,包括设置在高楼建筑群上的风车、风车直连空气压缩机、电动空气压缩机、换热热水池、冰水混合物冷水池、深海压缩空气气囊、压缩空气膨胀机、液化气站、液化气气化膨胀机、低沸点工质汽轮机、冷水分配管网系统、热水分配管网系统、发电机以及设置在水面、高楼建筑屋顶和公路雨棚上的光伏发电板;高楼建筑群上的风车动力输出端与风车直连空气压缩机连接,光伏发电板输出端与电动空气压缩机连接,风车直连空气压缩机、电动空气压缩机的气体输出端连接深海压缩空气气囊,深海压缩空气气囊的气体输出端连接压缩空气膨胀机,压缩空气膨胀机动力输出端连接发电机;液化气站的液体输出端连接液化气气化膨胀机,液化气气化膨胀机动力输出端连接发电机;风车直连空气压缩机、电动空气压缩机的热能输出端连接换热热水池,换热热水池热能输出端连接低沸点工质汽轮机,低沸点工质汽轮机的动力输出端连接发电机。通过这些结构设计,实现了通过压缩空气膨胀机、液化气气化膨胀机、低沸点工质汽轮机将风能、太阳能转换为热能、冷能、电能供建筑使用。其中,经过风车直连空气压缩机、电动空气压缩机压缩后的空气输入到深海压缩空气气囊,这些存储在气囊中的高压空气用于驱动压缩空气膨胀机工作。另外,低沸点工质是利用地下热水或其它余热来加热某种气体,使其进入汽轮机工作的发电系统,又称中间介质法或低沸点工质循环。本实施例中通过低沸点工质汽轮机利用保温热水池中热量进行发电,将热能转化为电能。
本实施例中,液化气气化膨胀机冷能输出端通过低温工程冷库后,再连通到海水制冰池,所得海冰冰晶和冷尾气一同进入冰水混合物冷水池[A4];压缩空气膨胀机运转产生的冷能通过 管道输出到液化气站后,液化气气化膨胀机将冷能通过管道输出到低温工程冷库,再连通到海水制冰池,海冰冰晶优质淡水与冷尾气一起输入冰水混合物冷水池,冰晶以80倍相变能储存更多冷能。冰水混合物冷水池冷能输出端还通过冰水分配管网系统连接高楼建筑群;压缩空气膨胀机运转产生的冷能还通过分支管道输出到低温工程冷库。液化气站和液化气气化膨胀机的冷能输出端均按温度梯度利用的方式,先去需要深冷的单位(液化气站、低温工程冷库),然后连接海水制冰、冰水混合物冷水池。通过上述方式不仅实现了液化气气化膨胀机的发电,还将存储于液化气站或者其他低沸点工质的冷能可以用于低温工程冷库(比如食品厂、海鲜厂),用在对一些需要制冷保质的领域进行降温,也将冷能输送到建筑内用于降温或者其他用途。
本实施例中,换热热水池热通过热水分配管网系统连接高楼建筑群。风车直连空气压缩机、电动空气压缩机压缩空气,将产生热能,热能输出到换热热水池,通过换热热水池为住户提供日常生活用热水。
本实施例中,发电机通过输配电中心和电网连接高楼建筑群为高楼建筑群供电,所述发电机电能输出端还连接配电中心,所述配电中心还连接电解水制氢模块将白天多余的光伏电力去电解水制氢、氧。通过上述方式将压缩空气膨胀机、液化气气化膨胀机、低沸点工质汽轮机转换的电能供建筑内日常用电,或者用于通过海水制备氢气。
本实施例中,配电中心在阴雨天和晚间少有或没有光伏电力时,协调释放海底气囊的压缩空气与风车直连空气压缩机产生的压缩空气共同供给压缩空气膨胀机工作发电,同时协调液化气站产生冷能供给液化气气化膨胀机工作发电,以及协调低沸点工质汽轮机工作发电。
本发明的工作原理是:
首先,在临海国家(比如新加坡、澳大利亚)或者沿海地区修建超大换热热水池、冰水混合物冷水池,在城市的高楼群中安装风车,在城市高楼上、公路雨棚上和水(海、湖)面上建设光伏发电板系统。
在建筑物的夹缝或洞口部位,由于风流的截面突然变小,出现峡管效应,形成强劲的峡谷风 或穿堂风;城市的高楼大厦,特别是“双塔”结构建筑之间的通道处很容易产生“文氏效应”,形成“风口”现象。由于双塔主体楼的横截面都是弧形的,能将风“挤”向中间,这些风吹动风车,风车直接驱动空压机压缩空气,压缩空气带动膨胀机工作,压缩空气膨胀机的动力输出端驱动发电机系统进行发电,上述风车比平地风车接收了几倍强度(麻省理工学院的下属公司Altaeros研发的高空涡轮发电机,发电量是地面的2-3倍)的风能。同时压缩空气膨胀机的压缩空气膨胀过程中需要吸热,进而产生冷气,这些冷气按温度梯度利用的方式,先去需要深冷的单位(液化气站、低温工程冷库),然后连接冰水混合物冷水池。冰水混合物冷水池将其冷能通过冷气分配管网系统分配到高楼建筑群的各家各户,各房间可调节水阀精确控制温度,达到本房间最舒适的温度,或者输入到其他降温工程的冷库中。本发明打破了现有的常规风力发电/储电,风车直接驱动空压机压缩空气,压缩空气带动膨胀机,产生大量的冷气为大楼集中直供冷气和新鲜空气,省却了发电供冷、换气的大量电力。
另外,空气压缩机输出端还连接深海压缩空气气囊,深海压缩空气气囊连接压缩空气膨胀机。经过空气压缩机压缩后的空气先输入到深海压缩空气气囊,这些存储在气囊中的高压空气用于驱动压缩空气膨胀机工作,压缩空气膨胀机的动力输出端驱动发电机系统进行发电,同时压缩空气膨胀机的压缩空气膨胀过程中需要吸热,进而产生冷气,同理这些冷气按温度梯度利用的方式,先去需要深冷的单位(液化气站、低温工程冷库),然后连接海水制冰池、冰水混合物冷水池。空气压缩机压缩空气输出端通过几百公里的管道连通5—6百米深的海底气囊,节省陆地空间,相当于60个大气压的巨大海水压力(压强)将代替大部分昂贵的耐压容器,在其它重物或海底桩基的配合下把压缩空气海底气囊束缚住。
其次,城市回收外购的大量液化天然气(相当于压缩液化了的百万吨特殊制冷剂)具有潜在的巨大机械能和巨大冷量,液化气站的液化天然气输入到液化气气化膨胀机工作,液化气气化膨胀机的动力输出端驱动发电机系统工作,同时液化天然气气化也吸热,进而产生冷气可以按温度梯度依次输入到低温工程冷库、冰水混合物冷水池,作为降温的冷气资源。
本发明还包括设置在城市小路、公路、铁路雨棚系统上的光伏发电板,以及设置在水面上的水面漂浮式光伏发电板,光伏发电板经由配电系统输出端连接电动空压机。通过设置在城乡所有道路雨棚系统上的光伏发电板,以及设置在水面上的水面漂浮式光伏发电板,充分利用太阳能进行发电。给道路搭上遮雨棚兼光伏大棚,实现路光互补,大棚给道路的车辆挡住强 烈阳光,那么车辆所需空调负荷会显著降低,车辆大幅节省能源,大棚的遮风挡雨保持路面干爽,减少车轮打滑提高安全性,大棚光伏上表面发出的电力可零距离传输到棚背面的接触网电缆,效仿电气化铁路、打造出电气化公路。其次,漂浮式光伏发电,不需要支撑架,容易清洗灰沙,还直接水冷却,发电效率高。利用太阳能发电可以进入电网供住户使用,也可以驱动电动空气压缩机对空气进行压缩,对风车直接驱动压缩机进行互补,进而实现空气压缩发电,原理上述已经说明,这里不再赘述。
电动空气压缩机或者风车直连压缩机工作时,会产生大量热量,这些热量如果散发到楼宇之间中,将使得本来就炎热的国家更加炎热,本发明将压缩机热能输出端连通设置在陆地上的保温热水池,保温热水池的热能输出端连通低沸点工质汽轮机组,低沸点工质汽轮机动力输出端连接发电机。低沸点工质是利用环境热能、地下热水或其它余热来加热某种气体,使其进入汽轮机工作的发电系统,又称中间介质法或低沸点工质循环。本实施例中通过低沸点工质汽轮机利用环境热能、多能互补、及保温热水池中的高热,逐级梯级吸热进行发电,降低了环境温度,将余热热能转化为电能。通过这种设计不仅使得空气压缩机工作时产生的大量热量没有进一步促使城市温度升高,还充分利用了其热能进行发电或者供热水。
综上,本发明通过在临海国家(比如新加坡、澳大利亚)或者沿海地区修建超大换热热水池、冰水混合物冷水池,在城市的高楼群中安装风车,在城市高楼顶上、窗户、玻璃幕墙、公路、铁路雨棚上和水(海、湖)面上建设光伏发电板系统,可以通过高楼群中的风车将风能通过“压缩→膨胀空气”的方式最终转换为电能,同时将膨胀空气产生的冷能通过冰水混合物冷水池储存,将液化气站的液化气气化产生的冷能通过冰水混合物冷水池储存,将液化气站的液化气气化产生的动能转换为电能。冰水混合物冷水池储存的冷能可以供城市调节室内温度。同时结合城市所有道路雨棚系统上的光伏发电板,以及设置在水面上的水面漂浮式光伏发电板进行太阳能发电,充分利用太阳能和沿海国家地域特点,利用太阳能发电可以进入电网供住户使用,多余电力可以驱动电动空气压缩机对空气进行压缩,与风车直接驱动压缩机进行互补,进而实现空气压缩廉价制热、储热、储能再发电兼制冷、储冷。另外,空气压缩机工作时产生的大量热量通过保温热水池储存,保温热水池储存的热能再通过低沸点工质汽轮机进行发电,将热能转化为电能。整个系统的最终能源来源于太阳能、风能,期间转换过程中的热能、冷能均实现了循环利用,没有排放到自然空间中给气候带来影响,节能环保。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之 内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种沿海地区风能和太阳能综合利用系统,其特征在于,包括设置在高楼建筑群楼顶上和楼宇之间的风车、风车直连空气压缩机、电动空气压缩机、换热热水池、冰水混合物冷水池、深海压缩空气气囊、压缩空气膨胀机、液化气气化膨胀机、低沸点工质汽轮机、冷水分配管网系统、热水分配管网系统、发电机以及设置在水面、高楼建筑屋顶、窗户、玻璃幕墙和公路、铁路雨棚上的光伏发电板;所述高楼建筑群上的风车动力输出端与风车直连空气压缩机轴连接,所述光伏发电板输出端与配电中心连接后再与电动空气压缩机连接,所述风车直连空气压缩机、电动空气压缩机运转产生的压缩热空气经过热水池盘管换热后,再经由单向阀、长管道连通到深海压缩空气气囊,所述深海压缩空气气囊的气体输出端连接自动控制阀们后进入压缩空气膨胀机,所述压缩空气膨胀机动力输出端连接发电机;所述压缩空气膨胀机运转产生的冷能通过管道输出到液化气站,所述液化气站的输出端连接液化气气化膨胀机,所述液化气气化膨胀机动力输出端连接发电机。
  2. 根据权利要求1所述的一种沿海地区风能和太阳能综合利用系统,其特征在于,所述风车直连空气压缩机、电动空气压缩机的热能输出端连接换热热水池,所述换热热水池热能输出端连接低沸点工质汽轮机,所述低沸点工质汽轮机的动力输出端连接发电机。
  3. 根据权利要求1所述的一种沿海地区风能和太阳能综合利用系统,其特征在于,所述液化气气化膨胀机冷能输出端通过低温工程冷库后,再连通到海水制冰池,所得海冰冰晶和冷尾气一同进入冰水混合物冷水池;所述压缩空气膨胀机运转产生的冷能通过管道输出到液化气站后,其次液化气站将降级的冷能通过管道输出到低温工程、冷库后,再连通到冰水混合物冷水池,所述冰水混合物冷水池冷能输出端还通过冰水分配管网系统连接高楼建筑群;所述压缩空气膨胀机运转产生的冷能还通过管道输出到低温工程冷库。
  4. 根据权利要求2所述的一种沿海地区风能和太阳能综合利用系统,其特征在于,所述换热热水池热通过热水分配管网系统连接高楼建筑群。
  5. 根据权利要求1或2所述的一种沿海地区风能和太阳能综合利用系统,其特征在于,所述发电机通过电网连接高楼建筑群为高楼建筑群供电,所述发电机电能输出端还连接配电中心,所述配电中心还连接电解水制氢模块。
  6. 根据权利要求1所述的一种沿海地区风能和太阳能综合利用系统,其特征在于,所述配电中心在阴雨天和晚间少有或没有光伏电力时,协调释放海底气囊的压缩空气与风车直连空气压缩机产生的压缩空气共同供给压缩空气膨胀机工作发电,同时协调液化气站产生冷能供给液化气气化膨胀机工作发电,以及协调低沸点工质汽轮机工作发电。
PCT/CN2020/114500 2020-09-10 2020-09-10 一种沿海地区风能和太阳能综合利用系统 WO2022051987A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114500 WO2022051987A1 (zh) 2020-09-10 2020-09-10 一种沿海地区风能和太阳能综合利用系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114500 WO2022051987A1 (zh) 2020-09-10 2020-09-10 一种沿海地区风能和太阳能综合利用系统

Publications (1)

Publication Number Publication Date
WO2022051987A1 true WO2022051987A1 (zh) 2022-03-17

Family

ID=80632439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114500 WO2022051987A1 (zh) 2020-09-10 2020-09-10 一种沿海地区风能和太阳能综合利用系统

Country Status (1)

Country Link
WO (1) WO2022051987A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010013633U1 (de) * 2010-09-25 2011-02-10 Rolfs, Abram Kombination einer Windkraftanlage bzw. Photovoltaikanlage mit einer Kältemittel-Wärmepumpen-Anlage
KR101391994B1 (ko) * 2013-12-06 2014-05-07 정의섭 작동유체의 회수를 이용한 베인터빈엔진 및 이를 가지는 발전장치
CN105257354A (zh) * 2015-09-26 2016-01-20 贡茅 压缩空气储能的风光互补冷热气电新能源系统
CN106907203A (zh) * 2017-04-01 2017-06-30 三峡大学 风光互补的空气压缩储能与发电一体化系统
CN108757282A (zh) * 2018-05-25 2018-11-06 西安交通大学 海上无坝抽水压缩空气储能系统及方法
CN109916112A (zh) * 2019-03-18 2019-06-21 贡茅 建筑一体化雨水收集、风光制冷热、跨季多能互补利用系统
CN109959057A (zh) * 2019-03-27 2019-07-02 山东星火科学技术研究院 一种风能和太阳能综合储能供热系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010013633U1 (de) * 2010-09-25 2011-02-10 Rolfs, Abram Kombination einer Windkraftanlage bzw. Photovoltaikanlage mit einer Kältemittel-Wärmepumpen-Anlage
KR101391994B1 (ko) * 2013-12-06 2014-05-07 정의섭 작동유체의 회수를 이용한 베인터빈엔진 및 이를 가지는 발전장치
CN105257354A (zh) * 2015-09-26 2016-01-20 贡茅 压缩空气储能的风光互补冷热气电新能源系统
CN106907203A (zh) * 2017-04-01 2017-06-30 三峡大学 风光互补的空气压缩储能与发电一体化系统
CN108757282A (zh) * 2018-05-25 2018-11-06 西安交通大学 海上无坝抽水压缩空气储能系统及方法
CN109916112A (zh) * 2019-03-18 2019-06-21 贡茅 建筑一体化雨水收集、风光制冷热、跨季多能互补利用系统
CN109959057A (zh) * 2019-03-27 2019-07-02 山东星火科学技术研究院 一种风能和太阳能综合储能供热系统

Similar Documents

Publication Publication Date Title
US11060742B2 (en) PVT heat pump system capable of achieving day-night time-shared combined cooling, heating and power using solar radiation and sky cold radiation
CN113006889B (zh) 一种绝热的近等温压缩空气储能系统及其运行方法
CN101738001A (zh) 一种太阳能、地源热泵和水蓄冷的复合能量系统
CN106050571B (zh) 一种基于风光互补的通信基站综合能源供给系统及方法
CN105736056B (zh) 液态空气储能系统
CN111022139A (zh) 一种燃煤发电机组耦合液化空气储能发电系统
CN109506289A (zh) 太阳能-增强型地源热泵联合供能系统及其运行方法
CN110966779A (zh) 一种使用建材化pv/t板及蓄能型建材的太阳能热泵系统
CN204827549U (zh) 一种管网天然气压力能及冷能回收的高效利用系统
WO2022051987A1 (zh) 一种沿海地区风能和太阳能综合利用系统
CN204371437U (zh) 一种超临界高效发电系统
CN101408358A (zh) 廉价高效制取清洁能源的方法及装备
CN103511204A (zh) 吸热式太阳能热风发电站
CN102913394B (zh) 风力发电低温蓄能系统及蓄能与供电方法
CN101275540B (zh) 陶瓷太阳能集热场热水发电装置
CN206817585U (zh) 热水型太阳能浅层地热能热电联产一体化系统
CN201830181U (zh) 悬浮式太阳能发电装置
CN1609446A (zh) 一种发电方法
CN202926531U (zh) 风力发电低温蓄能系统
WO2016078566A1 (zh) 超临界流体动力系统及其控制方法
CN203214248U (zh) 一种空气动力长输管道发电系统
CN203257541U (zh) 热电联供的压缩空气储能系统
CN112524821A (zh) 一种太阳能蓄热系统以及供暖系统
CN106300437A (zh) 水电站水力光伏联合发电方法
CN105927490B (zh) 分布式高压空气能源输送系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952775

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20952775

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20952775

Country of ref document: EP

Kind code of ref document: A1