WO2022050387A1 - Novel enzyme specific to phosphatidylglycerol - Google Patents

Novel enzyme specific to phosphatidylglycerol Download PDF

Info

Publication number
WO2022050387A1
WO2022050387A1 PCT/JP2021/032497 JP2021032497W WO2022050387A1 WO 2022050387 A1 WO2022050387 A1 WO 2022050387A1 JP 2021032497 W JP2021032497 W JP 2021032497W WO 2022050387 A1 WO2022050387 A1 WO 2022050387A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
amino acid
seq
plc
phosphatidylglycerol
Prior art date
Application number
PCT/JP2021/032497
Other languages
French (fr)
Japanese (ja)
Inventor
大助 杉森
聖人 梶山
Original Assignee
大助 杉森
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大助 杉森 filed Critical 大助 杉森
Publication of WO2022050387A1 publication Critical patent/WO2022050387A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • C12P7/20Glycerol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to a novel protein having a phosphatidylglycerol (PG) hydrolytic decomposing ability and a method for using the same.
  • PG phosphatidylglycerol
  • PLC phospholipase C
  • PG-PLC PG-specific PLC
  • PG-PLC PG-specific PLC
  • the PG-PLC of the present invention has also made it possible to efficiently obtain a specific glycerol phosphoric acid.
  • the present invention provides, for example, the following items.
  • (Item 1) A phospholipase C polypeptide having substrate-specific hydrolysis resolution for phosphatidylglycerol.
  • (Item 2) (I) Amino acids corresponding to 56L, 59FVG61, 204IPGI207, 209AW210, and 316GGFA320 of the amino acid sequence represented by SEQ ID NO: 2 and / or (ii) H43 and H409 of the amino acid sequence represented by SEQ ID NO: 2.
  • the polypeptide according to item 1 which has an amino acid corresponding to.
  • the polypeptide according to item 2 further comprising an amino acid corresponding to D41, D103, N191, H364, and H407 of the amino acid sequence represented by SEQ ID NO: 2.
  • the amino acid sequences represented by SEQ ID NO: 2 are 40T to 75T, 100T to 120L, 184P to 197V, 205P to 227K, 266F, 271L, 296Y to 297Y, 310L to 322S, 363S to 366T, 378R to 384R, 406G to 409H.
  • the polypeptide of item 3 further comprising an amino acid corresponding to 432S-435D.
  • a phospholipase C having a phosphatidylglycerol hydrolysis resolution which is the following polypeptide (a), (b) or (c).
  • (Item 7) The polypeptide according to any one of items 1 to 6, which is derived from a microorganism belonging to the order Actinomycetales.
  • (Item 8) A polynucleotide according to any one of (a) to (f) below, which encodes a phospholipase C polypeptide having substrate-specific hydrolytic resolution with respect to phosphatidylglycerol.
  • A Nucleotide containing the base sequence represented by SEQ ID NO: 1
  • B Polynucleotide containing a base sequence complementary to the base sequence represented by SEQ ID NO: 1
  • c Polynucleotides and stringents of (b) Nucleotide (d) that hybridizes under various conditions In the nucleotide sequence represented by SEQ ID NO: 1, one or more bases are deleted, substituted, or imparted with the nucleotide sequence (e).
  • f A polynucleotide containing a base sequence having at least about 80% identity with the base sequence represented by SEQ ID NO: 1 (item 9).
  • a recombinant vector containing the polynucleotide according to item 8. (Item 10) A transformant containing the recombinant vector according to item 9. (Item 11) A method for producing a polypeptide having substrate-specific hydrolysis resolution with respect to phosphatidylglycerol, comprising a step of producing the polypeptide from a transformant containing the polynucleotide according to item 8. (Item 12) A method for degrading phosphatidylglycerol using the polypeptide according to any one of items 1 to 7.
  • (Item 13) A method for producing sn-glycerol-1-phosphate, sn-glycerol-3-phosphate, and / or diacylglyceride from phosphatidylglycerol using the polypeptide according to any one of items 1 to 7.
  • (Item 14) A composition for degrading phosphatidylglycerol, which comprises the polypeptide according to any one of items 1 to 7.
  • FIG. 1 shows the relationship between the type of medium and the activity of PG-PLC.
  • the PG-PLC activity when cultured using ISP2 medium was normalized as 100%.
  • FIG. 2 shows the results of SDS-PAGE (separation gel concentration 12%) analysis of purified PG-PLC.
  • Lane M marker
  • lane 1 purified PG-PLC (0.03 mg-protein / ml, 0.3 ⁇ g-protein).
  • FIG. 3-1 shows the effect of pH on PLC activity. Using POPG as a substrate, enzyme activity was measured at 37 ° C. in various 0.16 M buffers. The buffer used is Ac-Na ( ⁇ ), BisTris-HCl ( ⁇ ), MES-NaOH ( ⁇ ), or Tris-HCl ( ⁇ ).
  • FIG. 1 shows the relationship between the type of medium and the activity of PG-PLC.
  • the PG-PLC activity when cultured using ISP2 medium was normalized as 100%.
  • FIG. 2 shows the results of SDS-P
  • FIG. 3-2 shows the effect of temperature on PLC activity.
  • enzyme activity was measured at 0.16 M MES-NaOH (pH 6.0) at each temperature.
  • FIG. 4-1 shows the pH stability of PLC. Purified enzyme samples were incubated at 4 ° C. for 4 hours in each 50 mM buffer. Residual activity was measured in 0.16 M MES-NaOH (pH 6.0) at 55 ° C. using POPG as a substrate. The buffer used for incubation is Ac-Na ( ⁇ ), MES-NaOH ( ⁇ ), or Tris-HCl ( ⁇ ).
  • FIG. 4-2 shows the temperature stability of the PLC.
  • FIG. 5-1 shows the effect of metal ions on PG-PLC activity when POPG is used as a substrate. Enzyme activity was measured at 55 ° C. in 0.2 M MES-NaOH (pH 6.0).
  • FIG. 5-2 shows the effect of the surfactant on the PG-PLC activity when POPG is used as a substrate. Enzyme activity was measured at 55 ° C. in 0.2 M MES-NaOH (pH 6.0).
  • FIG. 5-2 shows the effect of the surfactant on the PG-PLC activity when POPG is used as a substrate. Enzyme activity was measured at 55 ° C. in 0.2 M MES-NaOH (pH 6.0).
  • FIG. 6 shows the substrate specificity of the purified enzyme sample. Enzyme (PLC) activity was measured at 55 ° C. in 0.2M MES-NaOH (pH 6.0).
  • FIG. 7 shows the peptide sequences obtained by LC-MS analysis and the protein sequences obtained from the database matching these peptide sequences.
  • FIG. 8 shows the base sequence of the PG-PLC gene obtained by DNA sequencing.
  • FIG. 9-1 shows an enzymatic reaction (substrate POPG, reaction temperature 45 ° C., buffer: 0.16M MES-NaOH (pH 6.0). The horizontal axis is the enzyme reaction time, vertical axis) using the culture supernatant of the 20 ° C. culture. The axis shows the amount of G3P produced.
  • 9-2 shows an enzymatic reaction (substrate POPG, reaction temperature 45 ° C., buffer: 0.16M MES-NaOH (pH 6.0)) using a crude protein solution (CFE) cultured at 30 ° C., and the horizontal axis is an enzymatic reaction. The time and the vertical axis indicate the amount of G3P produced.
  • the amino acid residues presumed to be involved in substrate binding based on the predicted three-dimensional structure of PG-PLC using SwissModel are shown. The amino acid residue is surrounded by a frame.
  • phospholipid is a general term for lipids having a phosphoric acid ester and a phosphonic acid ester.
  • Glycerophospholipid which is the main component of the cell membrane composed of a lipid bilayer and has a glycerol as a skeleton, is one of them.
  • Glycerophospholipids In glycerophospholipids, fatty acids are bound to the sn-1 and sn-2 positions of glycerol, and phosphoric acid is bound to the sn-3 position. Glycerophospholipids are further classified by the phospholipid hydrophilic moiety (X in the above structural formula) that binds to this phosphoric acid.
  • PA phosphatidylic acid
  • PC phosphatidylcholine
  • PE phosphatidylethanolamine
  • PS phosphatidylserine
  • inositol if it is serine. If it is, it is called phosphatidylinositol (PI), and if it is glycerol, it is called phosphatidylglycerol (PG).
  • PI phosphatidylinositol
  • PG phosphatidylglycerol
  • phosphatidylglycerol means that a fatty acid is ester-bonded to the sn-1 position and the sn-2 position of glycerol, phosphoric acid is ester-bonded to the sn-3 position, and glycerol is further added to the phosphoric acid.
  • cardiacolipin also known as diphosphatidylglycerol; CL
  • CL diphosphatidylglycerol
  • hydrolysis refers to a mode of bond cleavage by the reaction of AB + H 2 O ⁇ A—OH + B—H.
  • An enzyme that hydrolyzes is called a “hydrolase”, its ability is called “hydrolytic resolution”, and its strength (height) is called “activity”, “hydrolyzing activity”, or “enzyme activity”.
  • Hydrolysis resolution / activity can be examined, for example, by measuring a decrease in the concentration of the substrate to be hydrolyzed or by measuring an increase in the concentration of a product produced by hydrolysis.
  • phospholipase refers to an enzyme that hydrolyzes glycerophospholipids. Phospholipases are classified according to the site that hydrolyzes glycerophospholipids, phospholipase A1 degrades the ester bond at the sn-1 position of glycerol, phospholipase A2 degrades the ester bond at the sn-2 position of glycerol, and phospholipase B degrades the ester bond at the sn-2 position of glycerol. The ester bonds at both the sn-1 and sn-2 positions of the above are decomposed, and both release fatty acids.
  • Phospholipase C decomposes the ester bond on the glycerol skeleton side of the phosphodiester bond connecting glycerol and X
  • phospholipase D decomposes the ester bond on the opposite side of the glycerol skeleton of the phosphodiester bond. Therefore, in the present specification, "phospholipase C (PLC)" decomposes the ester bond on the glycerol skeleton side of the phosphodiester bond bound to the glycerol skeleton among the phospholipases that hydrolyze glycerophospholipids, and the phosphate is bound.
  • PLC phospholipase C
  • identity refers to the proportion of residues having the same amino acid when comparing a plurality of amino acid sequences.
  • homology when comparing multiple amino acid sequences, if the amino acids are the same, or if the amino acids are not the same but have the same properties, they are treated as homologous and are homologous. Refers to the percentage of residues.
  • an enzyme catalyzes a chemical reaction and has specificity for the type of reaction and specificity for a substrate.
  • an enzyme is "substrate-specific” when it selectively catalyzes a chemical reaction to a particular chemical, that is, to a chemical other than the particular chemical. It means that the chemical reaction is not catalyzed or the degree of catalysis is weak enough.
  • an enzyme or polypeptide is "substrate-specific with respect to phosphatidylglycerol", “phosphatidylglycerol-specific” or "PG-specific” as the pH of the enzyme or polypeptide is 6.0, 55 ° C. When the water resolution of PG under the condition of 5 minutes is 100%, the water resolution for substrates other than PG selected from the group consisting of PA, PE, PC, CL, PS, and PI is at most about 30% or less. It means that it is.
  • polynucleotide that hybridizes under stringent conditions refers to a polynucleotide that hybridizes under well-known conditions commonly used in the art.
  • a polynucleotide can be obtained by using a polynucleotide selected from the polynucleotides of the present invention as a probe and using a colony hybridization method, a plaque hybridization method, a Southern blot hybridization method, or the like. Specifically, using a filter on which DNA derived from the genome or its digest, colonies or plaques is immobilized, hybridization is performed at 65 ° C. in the presence of 0.7 to 1.0 M NaCl, and then 0.1.
  • Stringent conditions are usually about 5 ° C. to about 30 ° C., preferably about 10 ° C. to about 25 ° C. lower than the melting temperature (Tm) of the complete hybrid, under conditions where a specific hybrid is formed.
  • Tm melting temperature
  • the condition may be such that DNAs having 90% or more homology hybridize with each other and DNAs having lower homology than that do not hybridize with each other.
  • a complete hybrid in the temperature range of Tm to (Tm-30) ° C., preferably Tm to (Tm-20) ° C., and the composition of 1 ⁇ SSC (1-fold concentration SSC solution) is 150 mM.
  • vector refers to a gene construct capable of transferring a polynucleotide sequence of interest into a cell of interest.
  • vectors can be self-sustainingly replicated in host cells such as prokaryotic cells, yeast, animal cells, plant cells, insect cells, animal individuals and plant individuals, or can be integrated into chromosomes, and are the poly of the present invention. Examples include those containing a promoter at a position suitable for transcription of a nucleotide.
  • the vector into which the gene is incorporated is not particularly limited, but a phage, plasmid, or cosmid that can grow autonomously in the host microorganism and constructed for gene recombination is suitable, and the phage vector is, for example, Escherichia coli.
  • a microorganism belonging to the above is used as a host, ⁇ gt / ⁇ C, ⁇ gt / ⁇ B and the like can be used.
  • Examples of the plasmid vector include Novagen's pET vector, Takarabio's pCold I to IV, pCold TF, Promega's pFN18A HaloTag T7Flexi Vector, pFN18K HaloTag T7FlexR , PACYC184, pUC12, pUC13, pUC18, pUC19, pUC118, pIN I, BluescriptKS +, etc., pWH1520, pUB110, pKH300PLK, etc. Hosts such as HisT, pIJ680, pIJ702, pTONA, etc.
  • an expression system using the methanol-utilizing yeast Pichia plasmid as a host an expression system using the filamentous fungus Aspergillus oryzae or Aspergillus niger, or the like, such as YRp7, pYC1, and YEp13, can also be used.
  • various cell-free protein expression systems can also be used.
  • the Ministerial Ordinance stipulates the diffusion prevention measures, etc. that should be taken for industrial use, etc., among the second-class use of genetically modified organisms, etc.
  • a recombinant vector into which the above-mentioned gene of the present invention is inserted is preferable.
  • the promoter is not particularly limited as long as it can be expressed in the host.
  • the recombinant vector of the present invention can be prepared by a method known to those skilled in the art using, for example, the gene of the present invention and the above-mentioned vector.
  • sn-glycerol-1-phosphate (G1P) and “sn-glycerol-3-phosphate (G3P)” are compounds represented by the following chemical formulas in which phosphoric acid is bound to glycerol, respectively.
  • diaacylglycerol refers to a fatty acid ester of glycerol to which two acyl groups are bonded, which is also referred to as diglyceride.
  • 1,2-diacylglycerol represented by the following chemical formula is known to be important as an intermediate for biosynthesis of phospholipids or triglycerides.
  • Diacylglycerol (In the formula, R 1 and R 2 are arbitrary acyl groups, respectively)
  • PLC decomposes the ester bond on the glycerol skeleton side of the phosphodiester bond bound to the glycerol skeleton to produce a phospholipid hydrophilic moiety to which phosphoric acid is bound, and DG.
  • Hydrolysis of PG with PLC produces DG and glycerol phosphate, for example, as shown in the reaction formula below. If the phospholipid hydrophilic moiety is phospho- (3'-sn-glycerol) as glycerol phosphate, G3P Is generated, and if it is phospho- (1'-sn-glycerol), G1P is generated.
  • R 1 and R 2 are arbitrary acyl groups, respectively
  • Glycerol phosphate has a chiral center and contains three positional isomers containing a set of mirror isomers (G1P, sn-glycerol-2-phosphate (G2P), and G3P; G1P and G3P are mirror isomers). It is a compound having. Even in this glycerol phosphate, a reagent from which only a specific enantiomer is separated is expensive. On the other hand, by using the PG-PLC of the present invention, it becomes possible to inexpensively and efficiently produce glycerol phosphate, which is a positional isomer such as G1P and G3P, by hydrolyzing PG.
  • polypeptide in one aspect, provides a polypeptide having a hydration decomposing ability of PG.
  • the polypeptide may be an artificially synthesized polypeptide or a biologically derived polypeptide.
  • the polypeptide may contain non-naturally occurring amino acids.
  • the two acyl groups contained in the PG of the present invention may be the same acyl group or different acyl groups. Further, it may be saturated or unsaturated. In one embodiment, the acyl group contained in the PG of the present invention may be a saturated fatty acid such as palmitic acid, stearic acid, arachidic acid, behenic acid, or linolenic acid, palmitoleic acid, oleic acid, gondonic acid, erucic acid, or.
  • a saturated fatty acid such as palmitic acid, stearic acid, arachidic acid, behenic acid, or linolenic acid, palmitoleic acid, oleic acid, gondonic acid, erucic acid, or.
  • Monounsaturated fatty acids such as nervonic acid, n-6 ( ⁇ 6) series polyunsaturated fatty acids such as linolenic acid, ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid, arachidonic acid, or docosapentaenoic acid, or It may be derived from n-3 ( ⁇ 3) series polyunsaturated fatty acids such as ⁇ -linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, or docosahexaenoic acid, but is not limited to these (Kihara).
  • the acyl group may be derived from palmitoleic acid, stearic acid, palmitoleic acid, oleic acid, linoleic acid, arachidonic acid, docosapentaenoic acid, or docosapentaenoic acid, and in a particularly preferred embodiment, the acyl group. May be derived from oleic acid, linoleic acid, arachidonic acid, docosapentaenoic acid, or docosapentaenoic acid.
  • the polypeptide of the invention may have hydrolytic resolution regardless of the acyl group contained in the PG. This is because the polypeptide of the invention is a PLC, which degrades the phosphodiester bond at the sn-3 position to which the phosphate group is attached, rather than the sn-1 or sn-2 position to which the acyl group is attached. Because.
  • the polypeptide of the invention lacks one or more amino acids in (a) the amino acid sequence represented by SEQ ID NO: 2 or (b) the amino acid sequence represented by SEQ ID NO: 2.
  • Methods of deleting, substituting or imparting an amino acid, comprising a polypeptide comprising a substituted or imparted amino acid sequence are known to those of skill in the art.
  • the number of deleted, substituted or conferred amino acids that the polypeptide of the invention may contain is not significantly altered in function (if substantially equivalent), i.e., substrate specificity. However, for example, when the water resolution of PG under the condition of pH 6.0, 55 ° C.
  • the number may be 100 or more, 100 or less, 50 or less, 25 or less, and preferably 10 or less. , More preferably 5 or less.
  • the amino acid mutation may be an artificial mutation or a naturally occurring mutation. In fact, in the field of enzyme engineering focusing on the function of the enzyme and its amino acid sequence, for example, even if 100 or more amino acid mutations are added to the short-chain L-threonine dehydrogenase (about 350 amino acid length).
  • the polypeptide of the invention comprises (c) a polypeptide comprising an amino acid sequence having at least about 80% identity with the amino acid sequence represented by SEQ ID NO: 2.
  • the identity may be at least 80%, preferably at least 90%, and even more preferably at least 95%, as long as it has the substrate specificity intended in the present invention.
  • Methods for searching for protein identity and homology include integrated databases such as NCBI, EBI, SIB, or Genomenet, base sequence databases such as GenBank, EMBL, or DDBJ, PIR, Swiss-Prot. , UniProt, Entrez Protein, or a protein database such as PRF, which can be done via the Internet using software such as BLAST or FASTA.
  • amino acid deletions, substitutions, or additions to the polypeptide of the invention are made without impairing the function and properties of the polypeptide of the invention.
  • Deletions, substitutions, and additions of these amino acids may be at the N-terminus, C-terminus, or anywhere in the amino acid sequence.
  • Amino acid deletions, substitutions, and additions are, for example, the result of ligation of the tag and restriction enzyme site of the vector when introducing the polypeptide encoding the polypeptide of the invention into the multicloning site of the vector. It may be an amino acid imparted to the N-terminal and / or C-terminal of the peptide.
  • a signal sequence may be imparted to the polypeptide of the present invention, and a method of imparting a signal sequence to a polypeptide to manipulate the localization of the polypeptide is known in the art.
  • the signal sequences used include signal peptides such as endoplasmic reticulum transport signal, retention signal in the endoplasmic reticulum cavity, mitochondrial transport signal, nuclear translocation signal, membrane mooring signal, secretory signal, or cell membrane permeation peptide, myristoylation, etc. Examples thereof include, but are not limited to, a signal sequence for undergoing a lipid modification of, or a signal sequence for undergoing a sugar chain modification such as glycosylation.
  • Cell membrane permeation peptides include Tat signal peptides and Sec signal peptides, and periplasm transition signals include alkaline phosphatase signals, PelB signals and OpPA signals (Sigma, pFLAG-ATS), and other Penestratin peptides, Polyarginin peptides, Transportin peptides, Pep-.
  • periplasm transition signals include alkaline phosphatase signals, PelB signals and OpPA signals (Sigma, pFLAG-ATS), and other Penestratin peptides, Polyarginin peptides, Transportin peptides, Pep-.
  • One peptide, LL-37 peptide, or Pep-7 peptide, SKIK tag is known, but is not limited to these (Naoki Kajiwara and Tadashi Shibasaki, "Cell Membrane Permeable Peptide", Nikkei Journal, 141,220-221 ( 2013)).
  • OpPA and PelB may be fused, such as OpPA / PelB and SKIK / PelB, or vice versa.
  • the polypeptide of the present invention comprises a plurality of domains, and it is possible to prepare a chimeric protein in which one or a plurality of specific domains that are a part of the polypeptide of the present invention are fused with a label.
  • a chimeric protein in which one or a plurality of specific domains that are a part of the polypeptide of the present invention are fused with a label.
  • How to make chimeric proteins is known in the art. For example, it can be presented on the cell surface such as a cell membrane or a cell wall by fusion with GFP or fusion with the C-terminal region of ⁇ -aglutinin and a GPI-anchored signal sequence.
  • polypeptides of the invention have a substrate binding site.
  • the substrate binding site may comprise, for example, the amino acids corresponding to 56L, 59FVG61, 204IPGI207, 209AW210, and 316GGFA320 of the amino acid sequence represented by SEQ ID NO: 2, or selected from these amino acids. May be done. Since these amino acid residues are hydrophobic, they are considered to interact with the acyl group of PG.
  • the polypeptides of the invention have catalytic residues that interact with the substrate.
  • the catalytic residue may contain, for example, the amino acids corresponding to H43 and H409 of the amino acid sequence represented by SEQ ID NO: 2, or may be selected from these amino acids.
  • the polypeptides of the invention have active central amino acid residues that interact with the substrate.
  • the active central amino acid residue may include, for example, the amino acid residues corresponding to D41, D103, N191, H364, and H407 of the amino acid sequence represented by SEQ ID NO: 2, or may be selected from these amino acids. It may contain catalytic residues.
  • the substrate binding site is, for example, 40T to 75T, 100T to 120L, 184P to 197V, 205P to 227K, 266F, 271L, 296Y to 297Y, 310L to 322S, 363S to 366T of the amino acid sequence represented by SEQ ID NO: 2. It may contain amino acids corresponding to 378R to 384R, 406G to 409H, and 432S to 435D, or may be selected from these amino acids.
  • the polypeptides of the invention are zinc-dependent phospholipase C signatures derived from one or more prokaryotic organisms (HYx- [GT] -D- [LIVMAF]-[DNSH] -x-. P-x-H- [PA] -x-N; Kim, Y.G. et al., Structural and Functional Analysis of the Lmo2642 Cyclic Nucleotide Phosphodiesterase.
  • the "amino acid corresponding to a certain amino acid residue” means that the amino acid residue A'in the polypeptide A is used as a substrate when comparing a certain polypeptide A with another polypeptide B.
  • amino acid residue B' When it is an important residue in the interaction of, it means an amino acid residue B'that interacts with a substrate similar to the amino acid residue A'in polypeptide B. Therefore, for example, since polypeptide A contains a signal sequence but does not contain polypeptide B, the primary structural position of amino acid residue A'in polypeptide A (that is, the amino acid residue number when counted from the N-terminal). And, even if the position of the amino acid residue B'in the corresponding polypeptide B is different, if the role in the interaction with the substrate is the same, the amino acid residue B'is the amino acid residue A'. It can be said that it is an amino acid corresponding to.
  • the amino acid sequence (SEQ ID NO: 16) of a part of the mature protein (SEQ ID NO: 2) is referred to by various actinomycetes. It has been found to be conserved among the proteins it has, and the substrate binding site, active central amino acid residue, and catalytic residue are included in this conserved sequence. Therefore, for example, for the residue A'belonging to the substrate binding site of the polypeptide of the present invention, this amino acid residue is conserved, and in the polypeptides of other actinomycetes, the primary structural position is different, but the role in substrate binding is different. It is easily inferred that a similar amino acid residue B'is present.
  • amino acid residues can be identified to some extent. Therefore, for amino acid residues contained in conserved sequences containing substrate binding sites, active center residues, and catalytic centers, there are significant or similar amino acid residues between prokaryotes, or at least between actinomycetes. , This can be found by sequence comparison. Furthermore, even among all living organisms, amino acid residues including substrate binding sites, active center residues, and catalytic centers are conserved according to the closeness of the species, and amino acids corresponding to or similar to certain amino acid residues are found. would be possible.
  • Methods for predicting active central amino acid residues and substrate binding sites are known in the art, and protein databases (such as SwissProt and SwissModel) are used to obtain structural and / or functionally similar protein conformational information. Based on the structure, the structure of the protein can be predicted. Since the three-dimensional structure information of the structural and / or functionally similar proteins obtained from these databases also includes the positional information of the substrate or the substrate-like compound and the ligand such as the metal ion and the catalytic residue information, the predicted structure of the target protein Can also estimate the site of interaction with the substrate. Further, there is also known a method of estimating an interaction site with a substrate by docking simulation analysis of a substrate or a substrate-like compound using software such as AutoDock.
  • the label may be a label with a fluorescent molecule, a label with a radioactive substance, a label with a metal, a label with an enzyme, or a label with a tag, a compound that binds to an enzyme such as an inhibitor, or PEG. It may be a compound to be modified such as (polyethylene glycol), or these may be used in combination.
  • the label may be bound, adsorbed or coated, and its principle includes adhesion utilizing any physicochemical interaction or reaction including covalent bonds and hydrophobic interactions.
  • the labeling with a fluorescent molecule is for fluorescence microscopy and may be a fluorescent molecule such as rhodamine or FM dye or a fluorescent protein such as GFP.
  • the label with a fluorescent molecule may change its brightness due to binding to various biomolecules such as phospholipids and proteins, or may reversibly fade.
  • the labeling with radioactive material is 3 H, 14 C, 32 P, 33 P, 35 S, or 125 I, preferably 3 H, 14 C, or 35 S.
  • the metal labeling is for electron microscopy and may be a labeling with gold, uranium, tungsten, or vanadium.
  • the enzymatic labeling may be luciferase, ⁇ -galactosidase, peroxidase, alkaline phosphatase, or the like.
  • tag labeling has the effect of increasing the solubility of recombinantly expressed proteins: GST tag, Halo tag, TF tag, FLAG tag, HA tag, His tag, Myc tag, V5 tag, S tag, E. It may be a tag, a T7 tag, a VSV-G tag, a Glu-Glu tag, a Strept-tagII, a CBD tag, a CBP tag, an Fc tag, a GST tag, an MBP tag, a Trx tag, a biotin-streptavidin tag, or the like.
  • the polypeptide of the present invention may have substrate-specific water resolution with respect to PG.
  • the substrate-specific water resolution is 30% for other substrates under the condition of pH 6.0, 55 ° C., and 5 minutes, where the water resolution of PG is 100%. 20% or less, 15% or less, 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, Alternatively, it may be determined by 0% or less.
  • the other substrate is a phospholipid, for example, may be selected from the group consisting of PA, PE, PC, CL, PS, and PI, preferably CL. In a more preferred embodiment, other substrates may include PA, PE, PC, CL, PS, and PI.
  • the optimum pH of the polypeptide of the invention is in the range of about pH 5.5 to pH 6.5.
  • the lower limit of pH at which the polypeptide of the invention is allowed to act is pH 4, preferably pH 5.0, at pH 5.5, which exhibits an action of 90% or more compared to maximum activity. Is particularly preferable.
  • the upper limit is pH 10, preferably pH 8.5, and is particularly preferably pH 6.5, which exhibits an action of 90% or more as compared with the maximum activity.
  • the optimum temperature for the polypeptide of the invention is about 53-57 ° C.
  • the lower limit of the temperature at which the polypeptide of the invention is allowed to act is 30 ° C, preferably 37 ° C, at 50 ° C, which exhibits an action of 80% or more compared to the maximum activity. Is particularly preferable.
  • the upper limit is 67 ° C., preferably 65 ° C., and 60 ° C., which exhibits an action of 80% or more as compared with the maximum activity, is particularly preferable.
  • the reaction time of the polypeptide of the present invention may be changed as long as the intended degradation of PG can be achieved.
  • the reaction time is about 15 seconds or longer, preferably about 1 minute or longer, and more preferably about 3 minutes or longer.
  • the upper limit of the reaction time is not particularly limited, but it may be preferably about 30 minutes or less, more preferably about 15 minutes or less, and particularly preferably about 10 minutes or less.
  • the method for measuring the water resolution by the polypeptide of the present invention includes a method for measuring a decrease in the concentration of a substrate due to hydrolysis and a method for measuring an increase in the concentration of a decomposition product due to hydrolysis.
  • a method for measuring an increase in the concentration of a decomposition product due to hydrolysis includes a method for measuring the concentration of the decomposition product and a method for further decomposing the decomposition product to measure the concentration.
  • a method of measuring the concentration of a decomposition product using an enzyme or a radioisotope can be mentioned.
  • an enzyme and a Trinder reagent for example, an enzyme and a Trinder reagent (TODB, TOOS, phenol, and a halogenated phenol derivative are condensed in the presence of peroxidase) are condensed.
  • Trinder reagent TODB, TOOS, phenol, and a halogenated phenol derivative are condensed in the presence of peroxidase
  • Methods using (reagents utilizing color development), molybdenum blue method, malakite green method, and improved methods thereof (BIOMOL (registered trademark) Green, etc.) are known.
  • the composition of the solution containing the PLC and substrate can be modified by one of ordinary skill in the art.
  • the solution may comprise a buffer, wherein the buffer is acetate buffer (Ac-Na), phosphate buffer, citrate buffer, citrate phosphate buffer, borate buffer, tartrate buffer, Tris buffer (Tris). -HCl), Bis-Tris buffer, MES buffer (MES-NaOH), HEEPS buffer, or phosphate buffer, but is not limited thereto.
  • the solution may contain metal ions or metal ion chelators, such as Al 3+ , Ca 2+ , Mg 2+ , Li 2+ , Na + , Mn 2+ , Fe 3+ , Li + , Cu.
  • the metal ion chelator may be, but is not limited to, EDTA, EGTA, BAPTA, DTPA, HEADTA, NTA, DTPA, GLDA, TTHA, HIDA, DHEG and the like.
  • the solution may contain a surfactant, which includes Triton® X-100, Triton® X-114, Nonidet P40, Tween® 20. , Sodium deoxycholate, Tween® 80, Briji35, and sodium cholate, but are not limited thereto.
  • the polypeptide of the invention may be of a microorganism belonging to the order Actinomycetales.
  • the microorganism belonging to the family Pseudonocardiace is preferable among the microorganisms belonging to the order Actinomycetales
  • the microorganism belonging to the genus Amycolatopsis is particularly preferable among the microorganisms belonging to the family Pseudonocardiace
  • Amycolatopsis is a microorganism belonging to the genus Amycolatopsis is, for example, "Bergey's Manual 2nd Edition (2001)", “Classification of microorganisms. Identification experiment method-Focusing on molecular genetics and molecular biology methods (Springer Lab Manual) Springer Fairlark Tokyo, September 2001 ”, etc., and commercially available identification test products (for example, BIOMERIEUX) It may be confirmed by the method of use, the method of outsourcing to "Technosuruga Lab Co., Ltd. (Shizuoka City, Shizuoka Prefecture)", etc. Furthermore, those strains are found in Amycolatopsis sp.
  • Methods for measuring the molecular weight of the polypeptide of the present invention are known to those skilled in the art, for example, electrophoresis using Native-PAGE or SDS-PAGE, gel filtration chromatography, HPLC, mass analysis, ultracentrifugation. It can be measured by a precipitation equilibrium method using a separation device, a light scattering method using dynamic light scattering (DLS), or the like.
  • the molecular weight of the polypeptide of the present invention can be from about 49,000 Da to about 59,000 Da, preferably from about 52,000 Da to about 56,000 Da, as measured by electrophoresis using SDS-PAGE. , More preferably about 54,000 Da.
  • the molecular weight of the polypeptide of the present invention can be about 51,000 Da to about 62,000 Da, preferably about 54,000 Da to about 58,000 Da, when estimated from SEQ ID NO: 2, which is an amino acid sequence excluding the signal sequence. It can be, more preferably about 56,000 Da.
  • the present specification provides a polynucleotide encoding the above-mentioned polypeptide.
  • the polynucleotide may be DNA or RNA. In the case of RNA, T may be changed to U from the described sequence.
  • the polynucleotide may be single-stranded or double-stranded.
  • the polynucleotide of the present invention is a polynucleotide containing (a) a base sequence represented by SEQ ID NO: 1 and (b) a base sequence complementary to the base sequence represented by SEQ ID NO: 1. c) Containing a polynucleotide that hybridizes with the polynucleotide of (b) under stringent conditions, stringent conditions are defined herein.
  • the polynucleotide of the invention comprises (d) a polynucleotide comprising a base sequence in which one or more bases have been deleted, substituted or added in the base sequence represented by SEQ ID NO: 1.
  • the number of deletions, substitutions or imparted bases that the polynucleotides of the invention may contain will not significantly change the function of the expressed polypeptide (provided they are substantially equivalent).
  • the substrate specificity is, for example, pH 6.0, 55 ° C.
  • the water resolution of PG under the condition of 5 minutes is 100%
  • other substrates PA, PE, PC, CL, PS, And if the water resolution for one or more of PIs) is at most 30% or less
  • the number may be 300 or more, 300 or less, 200 or less, and preferably 100 or less.
  • the mutation of the base may be an artificial mutation or a mutation occurring in the natural world.
  • the polynucleotide of the invention comprises (e) a polynucleothio comprising a base sequence containing a base sequence synonymous with the base sequence represented by SEQ ID NO: 1, and a species of organism expressing this polynucleotide.
  • the base sequence can be changed according to the codon frequency without changing the amino acid sequence. Methods of changing the codon frequency and base sequence in each species are known to those of skill in the art.
  • the polynucleotide of the invention comprises (f) a polynucleotide comprising a base sequence having at least about 80% identity with the base sequence represented by SEQ ID NO: 1.
  • the identity may be at least 80%, preferably at least 90%, more preferably at least 95%, as long as the encoded polypeptide has the substrate specificity intended in the present invention. May be.
  • the present specification provides a recombinant vector containing a polynucleotide encoding a polypeptide having a hydration resolution of PG, and a transformant containing the recombinant vector.
  • the vectors that can be used include, but are not limited to, plasmid vectors, cosmid vectors, phage vectors, viral vectors, or transposon vectors. In the present invention, any vector can be used as long as the polynucleotide sequence of interest can be transferred into the cell of interest.
  • the vector is introduced by the lipofection method, the electric perforation method, the calcium phosphate method, etc., the gene knock-in using the CRISPR-Cas9 system, and the DNA injection into the fertilized egg nucleus.
  • Examples include, but are not limited to, gene knock-in, gene knock-in using homologous recombination, and the like.
  • the host organism to which the gene can be introduced as a transformant is not limited as long as it is an organism capable of introducing a recombinant vector and expressing a target protein.
  • Host organisms that can be used include, for example, germs such as Bacillus subtilis, Bacillus subtilis, or fungi such as Escherichia coli, fungi such as yeast or mold, cultured cells derived from plants such as Chinese hamster ovaria, or HEK cells, HeLa cells, or CHO cells. Examples include, but are not limited to, cultured cells derived from mammals such as.
  • the present specification provides a method for producing a polypeptide having a hydration decomposing ability of PG.
  • the method for producing a polypeptide comprises culturing a transformant to produce the polypeptide.
  • the method for producing a polypeptide further comprises the step of purifying the polypeptide of interest.
  • Experimental methods using polypeptides are known to those skilled in the art and are described, for example, in Tairo Oshima et al. (Editor), "Post-Sequence Protein Experimental Method", Tokyo Kagaku Dojin, Volumes 1 to 4.
  • the transformant used to produce the polypeptide is E. coli.
  • Methods for culturing Escherichia coli and expressing proteins are known to those skilled in the art, and are described in, for example, Hiroki Nakayama and Takahito Nishikata, "Bio-Experiment Illustrated 1 Basics of Molecular Biology Experiments", Shujunsha, etc. There is.
  • the step of purifying a polypeptide from a cultured transformant may include a step of extracting the polypeptide from cultured cells, and may further include a step of purifying the target polypeptide.
  • the polypeptide produced by the cells may be secreted into the culture medium, distributed in the cytoplasm, or distributed on the cell membrane or periplasm.
  • the polypeptide produced by the cell may degrade the PG contained in the cell membrane of the cultured cell and be secreted extracellularly or periplasm.
  • the cells when the polypeptide is distributed in the cytoplasm, periplasm, or cell membrane, the cells are collected by centrifugation or the like, and then mechanically disrupted using a homogenizer or the like, or ultrasonic waves are used.
  • the cells are destroyed by a crushing method, a crushing method using a dairy pot and a dairy stick, or a chemical cell lysis method using lysozyme or a surfactant, and unnecessary fractions are removed by centrifugation or the like.
  • the polypeptide may be extracted by concentrating the required fraction.
  • the protein when the polypeptide is secreted into the culture medium, the protein may be extracted by collecting the culture medium and removing unnecessary cell debris and the like by centrifugation.
  • the polypeptide when extracting a polypeptide, may be efficiently extracted by using a precipitation method in which the polypeptide is precipitated with a precipitating agent and centrifuged.
  • a precipitating agent include, but are not limited to, chaotropic salts such as ammonium sulfate, water-soluble polymers such as polyethylene glycol or dextran, acids such as trichloroacetic acid or hydrochloric acid, and organic solvents such as acetone or alcohol.
  • the preferred precipitant is ammonium sulphate, ethylene glycol, or dextran, which is less likely to denature the polypeptide, more preferably ammonium sulphate.
  • a surfactant when extracting a polypeptide, may be added to solubilize the polypeptide, if necessary.
  • Surfactants include Triton® X-100, Triton® X-114, Nonidet P40, Tween® 20, Sodium Deoxycholate, Tween® 80, Briji35, and Cole. Examples include, but are not limited to, sodium acid.
  • the extracted polypeptide may be purified by a chromatographic method.
  • the procedure of the chromatography method is known to those skilled in the art, and gel filtration chromatography using the size of the molecule, cation exchange chromatography and anion exchange chromatography using charge, and hydrophobic interaction chromatography using hydrophobicity. Examples include imaging and reverse phase chromatography, as well as affinity chromatography for purification utilizing binding affinity. These chromatographic methods may be used alone or in combination.
  • affinity chromatography for that tag may be used if the purified polypeptide has a label such as a tag.
  • the polypeptides of the invention may be purified in combination with reciprocal hydrophobic action chromatography, anion exchange chromatography, and gel filtration chromatography.
  • a column may be used, or a batch method using a chromatography carrier may be used.
  • the concentration of the purified polypeptide may be measured and combined with the above-mentioned method for measuring the water resolution of the polypeptide to measure the specific activity of the polypeptide.
  • Methods for measuring the concentration of a polypeptide include absorptiometry (absorptiometry, Bradford, WST, Biuret, Lowry, and BCA), fluorescence, and electrophoresis. However, it is not limited to these (Yoshio Suzuki, “Method for quantifying total protein", Bunseki, 1, 2-9 (2018)).
  • the absorptiometry method is preferable, and the BCA method is more preferable.
  • the invention provides a method of using a polypeptide having PG water decomposing ability.
  • this method of use provides a method of degrading PG with a polypeptide and a method of producing G1P and G3P, and DG from PG.
  • the PG in the method using the polypeptide of the present invention may be of biological origin or may not be of biological origin.
  • the phospholipids that make up the cell membrane of bacteria contain about 10 to 25% of PG, which is higher than that of eukaryotic cell membranes. .. Therefore, it is conceivable to react the polypeptide of the present invention with the cell membrane of a bacterium to produce glycerol phosphate.
  • the organism used is assumed to be any organism as long as it contains PG.
  • it may be a prokaryote, a eukaryote, or an organism contained in excess sewage sludge, waste agricultural products, or waste plants, and is not particularly limited.
  • eukaryotes include molds, yeasts and mushrooms
  • prokaryotes such as archaea and eubacteria include actinomycetes, Bacillus subtilis, and Escherichia coli, but Escherichia coli with established treatment is preferable.
  • As a method for obtaining a large amount of E. coli not only a laboratory method using a culture solution but also a method for culturing E. coli using biomass, which is a resource derived from a renewable organism, is assumed.
  • Biomass includes waste paper, livestock manure, food waste, construction waste, sawmill residue, black liquor, and waste-based biomass such as sewage sludge, rice straw, wheat straw, rice husks, non-food parts of agricultural products, and forest land. Examples include unused biomass such as residual material, and resource crops such as corn and sugar cane cultivated for the purpose of using as biomass.
  • waste-based biomass such as sewage sludge, rice straw, wheat straw, rice husks, non-food parts of agricultural products, and forest land.
  • examples include unused biomass such as residual material, and resource crops such as corn and sugar cane cultivated for the purpose of using as biomass.
  • the phospholipid hydrophilic moieties of PG in E. coli cell membranes are predominantly phospho- (1'-sn-glycerol) type and, for example, above 40 ° C.
  • E. coli when E. coli is cultured in an environment that increases the rate at which E. coli synthesizes phospho- (3'-sn-glycerol) type PG, for example, under high temperature conditions of 50 ° C., about 25% of the total PG is phospho- (3'-sn-glycerol). Since it becomes a 3'-sn-glycerol) type PG, G3P can be efficiently obtained by hydrolyzing the PG with the polypeptide of the present invention.
  • a method for recovering E. coli from biomass is known to those skilled in the art, and examples thereof include recovery of E. coli from a liquid component in biomass, washing of biomass with water, and recovery of E. coli from a washing solution.
  • the phospholipid may be extracted from the recovered E. coli and then reacted with the polypeptide having the hydration decomposing ability of PG.
  • a method for extracting a phospholipid from Escherichia coli is known to those skilled in the art, and examples thereof include a Brich-Dyer method using an organic solvent such as chloroform and methanol, and a Folch method. If necessary, thin layer chromatography, solid phase extraction, high performance liquid chromatography and the like may be performed.
  • the phospholipid may not be extracted from E. coli, and the polypeptide having the hydration decomposing ability of PG may not be purified.
  • PG-PLC when PG-PLC is expressed in E. coli cells, it decomposes PG contained in the cell membrane of E. coli to produce glycerol phosphate and PG. -PLC is secreted extracellularly. Then, the PG-PLC secreted extracellularly can decompose PG contained in the cell membrane of other Escherichia coli to produce glycerol phosphate. Therefore, in one embodiment, E.
  • coli expressing the polypeptide is grown in the biomass without purifying the polypeptide and extracting phospholipids, which is then added to the cell membrane of the same or heterologous E. coli in the biomass.
  • the PG may be cleaved and the obtained glycerol phosphate may be recovered.
  • the method using the polypeptide of the present invention is preferably carried out in a liquid, and an aqueous phase and an organic solvent phase are assumed as the liquid, and the method is preferably carried out in the aqueous phase.
  • the composition of the solution containing the polypeptide and PG can be modified by one of ordinary skill in the art.
  • the solution may comprise a buffer, wherein the buffer is acetate buffer (Ac-Na), phosphate buffer, citrate buffer, citrate phosphate buffer, borate buffer, tartrate buffer, Tris buffer (Tris). -HCl), Bis-Tris buffer, MES buffer (MES-NaOH), HEEPS buffer, or phosphate buffer, but is not limited thereto.
  • the solution may contain metal ions or metal ion chelators, such as Al 3+ , Ca 2+ , Mg 2+ , Li 2+ , Na + , Mn 2+ , Fe 3+ , Li + , Cu. It may be, but is not limited to, 2+ , Co 2+ , Zn 2+ , and the like.
  • the metal ion killer may be, but is not limited to, EDTA, EGTA, BAPTA, DTPA, HEADTA, NTA, DTPA, GLDA, TTHA, HIDA, DHEG and the like.
  • the solution may contain a surfactant, which includes Triton® X-100, Triton® X-114, Nonidet P40, Tween® 20. , Sodium deoxycholate, Tween® 80, Briji35, and sodium cholate, but are not limited thereto.
  • a surfactant which includes Triton® X-100, Triton® X-114, Nonidet P40, Tween® 20. , Sodium deoxycholate, Tween® 80, Briji35, and sodium cholate, but are not limited thereto.
  • the glycerol phosphoric acid produced by using the polypeptide of the present invention may remain mixed with raw materials or other components, but may be purified so as not to contain impurities according to the purpose and use.
  • Methods for purifying glycerol phosphate are well known in the art, and include thin layer chromatography, recrystallization of glycerol phosphate as a salt with calcium or sodium (Japanese Patent Laid-Open No. 2014-189552; Ryo Fujimori). Toshi and Yoshito Takatsu, "Material Cycle Using Used CaO Catalysts in Biodiesel Production", Proceedings of the Biomass Science Conference, 13 (0), 121-122, 2018).
  • Glycerol phosphate produced using the polypeptide of the present invention is expected to contain a large amount of specific enantiomers of G1P or G3P, but the purity of the enantiomers is further increased by a method known in the art. You may.
  • the optical resolution method for the enantiomer include a crystallization method (priority crystallization method, diastereomer method, inclusion complex method, method using preferential enrichment, etc.), HPLC method using a chiral column, and the like. Will be.
  • composition containing polypeptide provides a composition for degrading PG containing the polypeptide of the invention.
  • the composition containing the polypeptide of the invention may be sold as a kit.
  • the composition containing the polypeptide of the invention may be a solution, a frozen solution of the solution, or a dried solution (by vacuum drying, lyophilization, spray drying, etc.). Includes, for example, pH buffers, salts, surfactants, reducing agents, metal chelators, freeze protectants (such as glycerol or ethylene glycol), preservatives (such as sodium azide or thimerosal), and protease inhibitors. But it may be.
  • a glycerol solution containing the polypeptide or a lyophilized product containing the polypeptide is preferred.
  • Example 1 Screening for acquisition of PG-PLC-producing bacteria and taxonomic identification for genus determination of PG-PLC-producing bacteria] (experimental method)
  • the reagents used in the experiment are as follows. Bacto-Malt extract (Becton Dickinson, model number 218630), Yeast Extract BSP-B (Oriental Yeast Co., Ltd.), L- ⁇ -Phosphatidylgycerol, Egg (PG, Avanti Polar Yeast Co., Ltd.) Model number 46261003), L- ⁇ -glycellophothsite oxidase (GPO, Toyobo Co., Ltd., model number G3O-321), 4-Aminoantipyrine (4-AA, Nacalai Tesque, model number 01907), N, N-Bis (4-sulfobutyl) -3.
  • -Methylaniline, disposable salt TODB, Dojin Chemical Research Institute, model number OC22
  • G3P is oxidized by glycerol-3-phosphate oxidase (GPO) to generate hydrogen peroxide.
  • GPO glycerol-3-phosphate oxidase
  • the generated hydrogen peroxide quantitatively oxidatively condenses 4-aminoantipyrine (4-AA) with N, N-Bis (4-sulfovutyl) -3-methylaniline and disodium salt (TODB) by the action of peroxidase (POD). It produces a reddish-purple quinoimine dye.
  • the water resolution of PLC can be measured by measuring the intensity of this color development at an absorbance (A 550 ) of 500 to 630 nm, particularly 550 nm. Using the measurement method, it was examined whether or not PLC that hydrolyzes PG was present in the supernatant of the culture solution of the screening strain. The amount of enzyme that produces 1 ⁇ mol of G3P per 1 min was defined as 1 U.
  • the NT115 strain was included in the cluster composed of the genus Amycolatopsis. It showed a molecular phylogenetic position different from that of known species. Therefore, from the result of this 16SrDNA partial base sequence analysis, the NT115 strain is Amycoloptissis sp. Attributed. This result was also in agreement with the result of simple morphological observation.
  • Example 2 Purification of PLC secreted and produced by NT115 strain outside the cells
  • Amycolatopsis sp Purification of NT115 strain PLC
  • ISP2 medium and 3 glass beads were placed in a culture test tube ( ⁇ 18 ⁇ 180 mm) and sterilized by autoclave (121 ° C., 15 min). After cooling, 50 ⁇ l of a 10% (v / v) glycerol stock suspension of NT115 strain was inoculated in a clean bench and cultured with reciprocating shaking at 28 ° C. and 160 spm for 2 days to prepare a preculture solution.
  • Dialysis PPG fraction is transferred to a dialysis membrane (Sanko Pure Medicine, cellulose tube 36/32) and dialyzed twice with 20 mM Tris-HCl (pH 9.0), which is 10 times the sample volume (buf exchange; 1h, 12h).
  • GCQ Giga Cap Q-Toyopearl Column Chromatography
  • SDS-PAGE analysis The SDS-PAGE method was performed according to the method of Laemmli. A silver staining kit (Aproscience) was used to detect protein bands, and the procedure was performed according to the instruction manual.
  • Example 3 Analysis of various characteristics of PG-PLC] (experimental method) Except for the substrate specificity test, the enzyme activity was measured by the method described in Example 1. In the substrate specificity test, 1-palmitoyl-2-oleoyl-sn-glycello-3-phopsphoglycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycello-3-phopsphocholine (POPC), 1-palmit as substrates.
  • POPG 1-palmitoyl-2-oleoyl-sn-glycello-3-phopsphocholine
  • POPC 1-palmit as substrates.
  • POPE 2-oleoyl-sn-glycello-3-phopsphoethanolamine
  • POPI 1-palmitoyl-2-oleoyl-sn-gycero-3-phopsphoinositol
  • POPS 1-palmitoyl-2-oleoyl-sn- POPS
  • POPA 1-palmitoyl-2-oleoyl-sn-glycello-3-phopsphate
  • CL L- ⁇ -phospatidyglycerol
  • BIOMOL Green (registered trademark) Reagent hereinafter abbreviated as BG
  • Alkaline phosphatase Oriental Yeast Co., Ltd., derived from calf small intestine, hereinafter abbreviated as CIAP
  • the enzyme solution (purified PG-PLC sample) to be added to the enzyme reaction solution was 0.05 U / ml, 1.50 U / mg-protein or more, and was appropriately diluted so that the substrate consumption was about 10%.
  • the pH was stable in a wide range from pH 4.0 to pH 9.0.
  • the temperature was stable up to 50 ° C., and the activity was halved at 60 ° C.
  • Substrate specificity As shown in Fig. 6, it showed no activity on PC, PE, and CL, showed no activity on PA (data not shown), and had almost no effect on anything other than PG. It can be determined that the enzyme is a PG-specific PLC.
  • Example 4 PG-PLC sequence
  • Example 4 Peptide sequence determination After electrophoresis of PG-PLC by SDS-PAGE, a band was excised, and trypsin treatment and LC-MS analysis were performed at Antegral Co., Ltd. to analyze the amino acid sequence.
  • the peptide sequences obtained by LC-MS analysis and the protein sequences obtained from the database matching these peptide sequences are shown in FIG.
  • the gray highlight part is the sequence that matches the peptide sequence of this enzyme.
  • Forward primers of amino acid SEQ ID NO: 6 to SEQ ID NO: 5 and reverse primers of amino acid SEQ ID NO: 8 to SEQ ID NO: 7 were designed and PCR was performed.
  • the PCR conditions are as follows.
  • the amplified fragment obtained by PCR at 94 ° C. for 1 minute ⁇ (98 ° C., 10 seconds ⁇ 55 ° C., 15 seconds ⁇ 68 ° C., 45 seconds) for 25 cycles and 68 ° C. for 5 minutes was used as a cloning vector pMD20 (Takara Bio). After ligation, Escherichia coli DH5alpha was transformed and cultured, and the recombinant plasmid was recovered and purified.
  • iPCR inverse PCR
  • the 5'and 3'undeciphered regions were decoded, and the full-length sequence of this enzyme gene (the sequence of SEQ ID NOs: 1 and 2 with the signal sequences of SEQ ID NOs: 3 and 4 added) was decoded.
  • the amino acid sequence shown in FIG. 8 was obtained.
  • the signal sequence consisting of 25 amino acids is shown as SEQ ID NO: 4
  • the base sequence thereof is shown as SEQ ID NO: 3
  • the amino acid sequence of the mature protein consisting of 514 amino acids is shown in SEQ ID NO: 2
  • the base sequence thereof is shown in SEQ ID NO: 2. Shown as 1.
  • Example 5 Production of heterologous recombinant PG-PLC and decomposition of Escherichia coli PG
  • the DNA encoding PG-PLC set forth in SEQ ID NO: 1 obtained in Example 4 was PCR amplified using the primers of SEQ ID NOs: 13 and 14, gel electrophoresis was performed, and the amplified band was excised and purified.
  • the PCR conditions are as follows. 94 ° C, 1 minute ⁇ (98 ° C, 10 seconds ⁇ 64 ° C, 15 seconds ⁇ 68 ° C, 1 minute 15 seconds) for 25 cycles, 68 ° C, 5 minutes, pET-24a (+) after HindIII digestion, gel electrophoresis It was run, cut out and purified.
  • PG-PLC / pET-24a (+) containing the polynucleotide encoding the polypeptide of the invention. It was created. Therefore, 21 amino acids consisting of MASMTGGGQQMGRGSQFQLRRQ containing the T7 epitope derived from the multicloning site (MCS) are added to the N-terminal side of the PG-PLC mature sequence.
  • PG-PLC / pET-24a (+) was transformed into Zip Competent Cell BL21 (DE3) (biodynamics, product number: DS255), cultured on LB agar medium containing a final concentration of 50 ⁇ g / mL kanamycin, and PG- PLC / pET-24a (+) / BL21 (DE3) was obtained. It also contains kanamycin at a final concentration of 50 ⁇ g / mL Overnight express instant TB medium. The cells were inoculated into 5 mL (liquid medium) and cultured at 20 ° C. or 30 ° C. for 1 day to express PG-PLC.
  • glycerol phosphate can be obtained from Escherichia coli, a biomass that can grow in large quantities.
  • Example 6 Estimation of catalyst (active) central site and substrate binding site.
  • the structures and sequences on the database predict the three-dimensional (stereo) structure of PG-PLC based on existing proteins. Based on the above, the amino acids that serve as the catalytic (active) central site and substrate binding site of the enzyme were estimated.
  • PG-PLC protein family to which PG-PLC belongs was investigated using Pfam, which is a database of protein domain motifs, and CATH, which is a database of protein conformations and families. Then, using any of the databases, PG-PLC was presumed to belong to the metal ion-requiring phospholipase, and the prokaryotic zinc-dependent (requiring) phospholipase C signature (HYx- [GT]. -D- [LIVMAF]-[DNSH] -x-P-x-H- [PA] -x-N) had five sequences. Furthermore, when the three-dimensional (three-dimensional) structures of the proteins belonging to this family were compared, the structures were similar.
  • PG-PLC In order to predict the structure of PG-PLC, a protein having a similar three-dimensional (three-dimensional) structure in amino acid sequence was investigated using SwissModel, which is a database of protein three-dimensional structure. Then, a metal ion-requiring phosphoesterase called 2xmo was found, and a three-dimensional structure model of PG-PLC was obtained based on the three-dimensional structure of 2xmo.
  • the three-dimensional structure model of PG-PLC was compared with four types of PLCs with known structures. As a result, it was considered that each PLC had a pocket rich in acidic amino acids near the center of the protein, and the substrate was bound to this pocket. Furthermore, when the position of the substrate in a PG non-specific PLC (for example, PC-specific PLC) having a known structure was applied to PG-PLC and the amino acid residues in contact with the substrate were estimated, the amino acid residues obtained in FIG. 10 were obtained.
  • a PG non-specific PLC for example, PC-specific PLC
  • SEQ ID NO: 2 was sequenced among various actinomycetes using BLAST. Compared. As a result, in the amino acids at positions 35 to 488 of SEQ ID NO: 2 (AFV ... SYN; SEQ ID NO: 16), high sequence homology and similarity were observed among more than 25 types of actinomycetes, and the substrate binding site, It was shown that the active central amino acid residue, and the catalytic residue, are conserved across species at least among the actinomycetes. In addition, in the analysis by Pfam, the amino acids at positions 36 to 409 of SEQ ID NO: 2 are the Metallophos motif (Pfam). It was assigned as an accession ID: PF00149).
  • SEQ ID NO: 1 Amycolatopsis sp. Nucleobase sequence of PG-PLC from which it was derived
  • SEQ ID NO: 2 Amycolatopsis sp. Derived PG-PLC mature protein sequence
  • SEQ ID NO: 3 Amycolatopsis sp. Nucleobase sequence of the signal sequence of PG-PLC in FIG.
  • Signal sequence of PG-PLC in 5 Forward primer for sequence identification of PG-PLC SEQ ID NO: 6: Amino acid sequence corresponding to the primer of SEQ ID NO: 5
  • SEQ ID NO: 7 Reverse for sequence identification of PG-PLC Primer
  • SEQ ID NO: 8 Amino acid sequence corresponding to the primer of SEQ ID NO: 7
  • SEQ ID NO: 9 Partial base sequence of the identified PG-PLC SEQ ID NO: 10: Partial amino acid sequence of the identified PG-PLC SEQ ID NO: 11: PG-PLC Primer for iPCR 1 for sequence identification of SEQ ID NO: 12: Primer 2 for iPCR for sequence identification of PG-PLC SEQ ID NO: 13: Forward primer for subcloning SEQ ID NO: 14: Reverse primer for subcloning SEQ ID NO: 15: Amino acid SEQ ID NO: 16 containing the MCS-derived T7 epitope imparted to the N-terminal of PG-PLC during E.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present inventor found a novel PG-specific phospholipase C (PG-PLC) from a microorganism belonging to Actinomycetales. Glycerol phosphate is a compound that has a chiral center and occurs as three positional isomers including a pair of enantiomers (G1P, G2P, and G3P; G1P and G3P being enantiomers). A reagent, which comprises a specific enantiomer of glycerol phosphate having been isolated alone, is expensive. By hydrolyzing PG with the use of the PG-PLC according to the present invention, in contrast thereto, glycerol phosphate in the form of positional isomers such as G1P and G3P can be efficiently produced at low cost.

Description

ホスファチジルグリセロール特異的な新規酵素Phosphatidylglycerol-specific novel enzyme
 本発明は、ホスファチジルグリセロール(PG)の加水分解能を有する新規なタンパク質およびその使用方法に関する。 The present invention relates to a novel protein having a phosphatidylglycerol (PG) hydrolytic decomposing ability and a method for using the same.
 基質特異的な酵素の開発は種々の分野において有用である。ところで、ホスホリパーゼC(PLC)に関する研究報告例は多数あるが(特開2006-223119号公報)、PG特異的PLC(PG-PLC)の報告は本発明者が知る限りない。 Development of substrate-specific enzymes is useful in various fields. By the way, although there are many examples of research reports on phospholipase C (PLC) (Japanese Patent Laid-Open No. 2006-223119), the report of PG-specific PLC (PG-PLC) is not known to the present inventor.
特開2006-223119号公報Japanese Unexamined Patent Publication No. 2006-223119
 発明者らは、ホスホリパーゼを探索したところ、放線菌目に属する微生物からPG特異的なPLC(PG-PLC)を見出した。本発明のPG-PLCにより、特定のグリセロールリン酸を効率的に得ることも可能になった。 When the inventors searched for phospholipase, they found PG-specific PLC (PG-PLC) from microorganisms belonging to the order Actinomycetales. The PG-PLC of the present invention has also made it possible to efficiently obtain a specific glycerol phosphoric acid.
 本発明は、例えば以下の項目を提供する。
(項目1)
 ホスファチジルグリセロールに対して基質特異的な加水分解能を有する、ホスホリパーゼCポリペプチド。
(項目2)
 (i)配列番号2で表されるアミノ酸配列の、56L,59FVG61,204IPGI207,209AW210,および316GGFA320に相当するアミノ酸、および/または
 (ii)配列番号2で表されるアミノ酸配列の、H43,およびH409に相当するアミノ酸を有する、項目1に記載のポリペプチド。
(項目3)
 配列番号2で表されるアミノ酸配列の、D41、D103、N191、H364、およびH407に相当するアミノ酸をさらに有する、項目2に記載のポリペプチド。
(項目4)
 配列番号2で表されるアミノ酸配列の、40T~75T、100T~120L、184P~197V、205P~227K、266F、271L、296Y~297Y、310L~322S、363S~366T、378R~384R、406G~409H、および432S~435Dに相当するアミノ酸をさらに含む、項目3に記載のポリペプチド。
(項目5)
 ホスファチジルグリセロールの加水分解能を有するホスホリパーゼCであって、以下の(a)、(b)または(c)であるポリペプチド。
(a)配列番号2で表されるアミノ酸配列を含むポリペプチド
(b)配列番号2で表されるアミノ酸配列において1もしくは複数個のアミノ酸が欠失、置換または付与されたアミノ酸配列を含むポリペプチド
(c)配列番号2で表されるアミノ酸配列と少なくとも約80%の同一性を有するアミノ酸配列を含むポリペプチド
(項目6)
 標識をさらに含む、項目1~5のいずれかに記載のポリペプチド。
(項目7)
 放線菌(Actinomycetales)目に属する微生物に由来する、項目1~6のいずれか一項に記載のポリペプチド。
(項目8)
 ホスファチジルグリセロールに対して基質特異的な加水分解能を有するホスホリパーゼCポリペプチドをコードする、以下の(a)~(f)のいずれかであるポリヌクレオチド。
(a)配列番号1で表される塩基配列を含むポリヌクレオチド
(b)配列番号1で表される塩基配列と相補的な塩基配列を含むポリヌクレオチド
(c)(b)のポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド
(d)配列番号1で表される塩基配列において1もしくは複数個の塩基が欠失、置換または付与された塩基配列を含むポリヌクレオチド
(e)配列番号1で表される塩基配列と同義なコドンを含む塩基配列を含むポリヌクレオチド
(f)配列番号1で表される塩基配列と少なくとも約80%の同一性を有する塩基配列を含むポリヌクレオチド
(項目9)
 項目8に記載のポリヌクレオチドを含む組換えベクター。
(項目10)
 項目9に記載の組換えベクターを含む形質転換体。
(項目11)
 ホスファチジルグリセロールに対して基質特異的な加水分解能有するポリペプチドの製造方法であって、項目8に記載のポリヌクレオチドを含む形質転換体から該ポリペプチドを生産する工程を含む、製造方法。
(項目12)
 項目1~7のいずれか一項に記載のポリペプチドを用いる、ホスファチジルグリセロールの分解方法。
(項目13)
 項目1~7のいずれか一項に記載のポリペプチドを用いて、ホスファチジルグリセロールからsn-グリセロール-1-リン酸、sn-グリセロール-3-リン酸、および/またはジアシルグリセリドを製造する方法。
(項目14)
 項目1~7のいずれか一項に記載のポリペプチドを含有する、ホスファチジルグリセロールを分解するための組成物。
The present invention provides, for example, the following items.
(Item 1)
A phospholipase C polypeptide having substrate-specific hydrolysis resolution for phosphatidylglycerol.
(Item 2)
(I) Amino acids corresponding to 56L, 59FVG61, 204IPGI207, 209AW210, and 316GGFA320 of the amino acid sequence represented by SEQ ID NO: 2 and / or (ii) H43 and H409 of the amino acid sequence represented by SEQ ID NO: 2. The polypeptide according to item 1, which has an amino acid corresponding to.
(Item 3)
The polypeptide according to item 2, further comprising an amino acid corresponding to D41, D103, N191, H364, and H407 of the amino acid sequence represented by SEQ ID NO: 2.
(Item 4)
The amino acid sequences represented by SEQ ID NO: 2 are 40T to 75T, 100T to 120L, 184P to 197V, 205P to 227K, 266F, 271L, 296Y to 297Y, 310L to 322S, 363S to 366T, 378R to 384R, 406G to 409H. , And the polypeptide of item 3, further comprising an amino acid corresponding to 432S-435D.
(Item 5)
A phospholipase C having a phosphatidylglycerol hydrolysis resolution, which is the following polypeptide (a), (b) or (c).
(A) Polypeptide containing the amino acid sequence represented by SEQ ID NO: 2 (b) Polypeptide containing an amino acid sequence in which one or more amino acids are deleted, substituted or imparted in the amino acid sequence represented by SEQ ID NO: 2. (C) A polypeptide comprising an amino acid sequence having at least about 80% identity with the amino acid sequence represented by SEQ ID NO: 2 (item 6).
The polypeptide of any of items 1-5, further comprising a label.
(Item 7)
The polypeptide according to any one of items 1 to 6, which is derived from a microorganism belonging to the order Actinomycetales.
(Item 8)
A polynucleotide according to any one of (a) to (f) below, which encodes a phospholipase C polypeptide having substrate-specific hydrolytic resolution with respect to phosphatidylglycerol.
(A) Nucleotide containing the base sequence represented by SEQ ID NO: 1 (b) Polynucleotide containing a base sequence complementary to the base sequence represented by SEQ ID NO: 1 (c) Polynucleotides and stringents of (b) Nucleotide (d) that hybridizes under various conditions In the nucleotide sequence represented by SEQ ID NO: 1, one or more bases are deleted, substituted, or imparted with the nucleotide sequence (e). A polynucleotide containing a base sequence containing a codon synonymous with the represented base sequence (f) A polynucleotide containing a base sequence having at least about 80% identity with the base sequence represented by SEQ ID NO: 1 (item 9).
A recombinant vector containing the polynucleotide according to item 8.
(Item 10)
A transformant containing the recombinant vector according to item 9.
(Item 11)
A method for producing a polypeptide having substrate-specific hydrolysis resolution with respect to phosphatidylglycerol, comprising a step of producing the polypeptide from a transformant containing the polynucleotide according to item 8.
(Item 12)
A method for degrading phosphatidylglycerol using the polypeptide according to any one of items 1 to 7.
(Item 13)
A method for producing sn-glycerol-1-phosphate, sn-glycerol-3-phosphate, and / or diacylglyceride from phosphatidylglycerol using the polypeptide according to any one of items 1 to 7.
(Item 14)
A composition for degrading phosphatidylglycerol, which comprises the polypeptide according to any one of items 1 to 7.
図1は、培地の種類とPG-PLCの活性の関係を示す。ISP2培地を用いて培養した場合のPG-PLC活性を100%として正規化した。FIG. 1 shows the relationship between the type of medium and the activity of PG-PLC. The PG-PLC activity when cultured using ISP2 medium was normalized as 100%. 図2は、精製PG-PLCのSDS-PAGE(分離ゲル濃度12%)分析結果を示す。レーンM:マーカー、レーン1:精製PG-PLC(0.03mg-protein/ml、0.3μg-protein)。FIG. 2 shows the results of SDS-PAGE (separation gel concentration 12%) analysis of purified PG-PLC. Lane M: marker, lane 1: purified PG-PLC (0.03 mg-protein / ml, 0.3 μg-protein). 図3-1は、PLC活性に対するpHの影響を示す。POPGを基質として用い、酵素活性は0.16Mの各種バッファー中、37℃で測定した。用いたバッファーはAc-Na(〇)、BisTris-HCl(△)、MES-NaOH(●)、またはTris-HCl(□)である。FIG. 3-1 shows the effect of pH on PLC activity. Using POPG as a substrate, enzyme activity was measured at 37 ° C. in various 0.16 M buffers. The buffer used is Ac-Na (〇), BisTris-HCl (Δ), MES-NaOH (●), or Tris-HCl (□). 図3-2は、PLC活性に対する温度の影響を示す。POPGを基質として用い、酵素活性は各温度で0.16M MES-NaOH(pH6.0)中で測定した。FIG. 3-2 shows the effect of temperature on PLC activity. Using POPG as a substrate, enzyme activity was measured at 0.16 M MES-NaOH (pH 6.0) at each temperature. 図4-1は、PLCのpH安定性を示す。精製酵素サンプルを50mMの各バッファー中、4℃で4時間インキュベートした。残存活性を、POPGを基質として用い、55℃で0.16M MES-NaOH(pH6.0)中で測定した。インキュベーションに用いたバッファーはAc-Na(□)、MES-NaOH(△)、またはTris-HCl(〇)である。FIG. 4-1 shows the pH stability of PLC. Purified enzyme samples were incubated at 4 ° C. for 4 hours in each 50 mM buffer. Residual activity was measured in 0.16 M MES-NaOH (pH 6.0) at 55 ° C. using POPG as a substrate. The buffer used for incubation is Ac-Na (□), MES-NaOH (Δ), or Tris-HCl (〇). 図4-2は、PLCの温度安定性を示す。精製酵素サンプルを各温度で0.2M MES-NaOH(pH6.0)中で30分間インキュベートした。残存活性を、POPGを基質として用い、55℃で0.2M MES-NaOH(pH6.0)中で測定した。FIG. 4-2 shows the temperature stability of the PLC. Purified enzyme samples were incubated in 0.2 M MES-NaOH (pH 6.0) at each temperature for 30 minutes. Residual activity was measured in 0.2 M MES-NaOH (pH 6.0) at 55 ° C. using POPG as a substrate. 図5-1は、POPGを基質として用いた際のPG-PLC活性に対する金属イオンの影響を示す。酵素活性は55℃、0.2M MES-NaOH(pH6.0)中で測定した。FIG. 5-1 shows the effect of metal ions on PG-PLC activity when POPG is used as a substrate. Enzyme activity was measured at 55 ° C. in 0.2 M MES-NaOH (pH 6.0). 図5-2は、POPGを基質として用いた際のPG-PLC活性に対する界面活性剤の影響を示す。酵素活性は55℃、0.2M MES-NaOH(pH6.0)中で測定した。FIG. 5-2 shows the effect of the surfactant on the PG-PLC activity when POPG is used as a substrate. Enzyme activity was measured at 55 ° C. in 0.2 M MES-NaOH (pH 6.0). 図6は、精製酵素サンプルの基質特異性を示す。酵素(PLC)活性は55℃、0.2M MES-NaOH(pH6.0)中で測定した。FIG. 6 shows the substrate specificity of the purified enzyme sample. Enzyme (PLC) activity was measured at 55 ° C. in 0.2M MES-NaOH (pH 6.0). 図7は、LC-MS解析により得られたペプチドの配列、およびこれらのペプチド配列と合致するデータベースから得られたタンパク質配列を示す。FIG. 7 shows the peptide sequences obtained by LC-MS analysis and the protein sequences obtained from the database matching these peptide sequences. 図8は、DNAシークエンシングにより得られたPG-PLC遺伝子の塩基配列を示す。FIG. 8 shows the base sequence of the PG-PLC gene obtained by DNA sequencing. 図9-1は、20℃培養の培養上清を用いた酵素反応(基質POPG、反応温度45℃,緩衝液:0.16M MES-NaOH(pH6.0)。横軸は酵素反応時間、縦軸はG3P生成量を示す。FIG. 9-1 shows an enzymatic reaction (substrate POPG, reaction temperature 45 ° C., buffer: 0.16M MES-NaOH (pH 6.0). The horizontal axis is the enzyme reaction time, vertical axis) using the culture supernatant of the 20 ° C. culture. The axis shows the amount of G3P produced. 図9-2は、30℃培養の粗タンパク質液(CFE)を用いた酵素反応(基質POPG、反応温度45℃,緩衝液:0.16M MES-NaOH(pH6.0)。横軸は酵素反応時間、縦軸はG3P生成量を示す。FIG. 9-2 shows an enzymatic reaction (substrate POPG, reaction temperature 45 ° C., buffer: 0.16M MES-NaOH (pH 6.0)) using a crude protein solution (CFE) cultured at 30 ° C., and the horizontal axis is an enzymatic reaction. The time and the vertical axis indicate the amount of G3P produced. SwissModelを利用したPG-PLCの予測立体構造に基づく、基質結合に関与すると推定されたアミノ酸残基を示す。当該アミノ酸残基を枠で囲っている。The amino acid residues presumed to be involved in substrate binding based on the predicted three-dimensional structure of PG-PLC using SwissModel are shown. The amino acid residue is surrounded by a frame.
[用語の定義]
 本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
[Definition of terms]
It should be understood that the terms used herein are used in the meaning commonly used in the art unless otherwise noted. Accordingly, unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In case of conflict, this specification (including definitions) takes precedence.
 本明細書において「約」は、特に別の定義が示されない限り、示された値±10%を指す。 As used herein, "about" refers to the indicated value ± 10% unless otherwise defined.
 本明細書において「リン脂質」は、リン酸エステルおよびホスホン酸エステルを有する脂質の総称である。脂質二重膜から成る細胞膜の主成分であり、グリセロールを骨格とするグリセロリン脂質はその1種である。
グリセロリン脂質:
Figure JPOXMLDOC01-appb-C000001

グリセロリン脂質では、グリセロールのsn-1位とsn-2位とに脂肪酸が、sn-3位にリン酸が結合している。このリン酸に結合するリン脂質親水部分(上記の構造式中のX)により、グリセロリン脂質はさらに分類される。最も単純にリン脂質親水部分が水素であればホスファチジン酸(PA)、コリンであればホスファチジルコリン(PC)、エタノールアミンであればホスファチジルエタノールアミン(PE)、セリンであればホスファチジルセリン(PS)、イノシトールであればホスファチジルイノシトール(PI)、グリセロールであればホスファチジルグリセロール(PG)と称される。したがって、本明細書において「ホスファチジルグリセロール」とは、グリセロールのsn-1位とsn-2位とに脂肪酸がエステル結合し、sn-3位にリン酸がエステル結合し、さらにリン酸にグリセロールが結合したリン脂質を指す。また、特殊な構造を有するリン脂質として「カルジオリピン」(別名ジホスファチジルグリセロール;CL)が知られている。これは2つのPGがそのグリセロールを共有しながら連結しており、四本のアシル鎖に由来する疎水性と2つのリン酸の負電荷を帯びた極性を示す構造を有するリン脂質であり、PGのpKaが約3であることからCLも同様にpH3以上では50%以上が負電荷を帯びていると考えられている。
ホスファチジルグリセロール:
Figure JPOXMLDOC01-appb-C000002
As used herein, "phospholipid" is a general term for lipids having a phosphoric acid ester and a phosphonic acid ester. Glycerophospholipid, which is the main component of the cell membrane composed of a lipid bilayer and has a glycerol as a skeleton, is one of them.
Glycerophospholipids:
Figure JPOXMLDOC01-appb-C000001

In glycerophospholipids, fatty acids are bound to the sn-1 and sn-2 positions of glycerol, and phosphoric acid is bound to the sn-3 position. Glycerophospholipids are further classified by the phospholipid hydrophilic moiety (X in the above structural formula) that binds to this phosphoric acid. The simplest is phosphatidylic acid (PA) if the hydrophilic part of the phospholipid is hydrogen, phosphatidylcholine (PC) if it is choline, phosphatidylethanolamine (PE) if it is ethanolamine, phosphatidylserine (PS), inositol if it is serine. If it is, it is called phosphatidylinositol (PI), and if it is glycerol, it is called phosphatidylglycerol (PG). Therefore, in the present specification, "phosphatidylglycerol" means that a fatty acid is ester-bonded to the sn-1 position and the sn-2 position of glycerol, phosphoric acid is ester-bonded to the sn-3 position, and glycerol is further added to the phosphoric acid. Refers to bound phospholipids. In addition, "cardiolipin" (also known as diphosphatidylglycerol; CL) is known as a phospholipid having a special structure. This is a phospholipid in which two PGs are linked while sharing their glycerol, and has a structure showing hydrophobicity derived from four acyl chains and negatively charged polarity of two phosphoric acids. Since the pKa of the above is about 3, it is also considered that 50% or more of CL is negatively charged at pH 3 or higher.
Phosphatidylglycerol:
Figure JPOXMLDOC01-appb-C000002
 本明細書において「加水分解」とは、A-B+HO→A-OH+B-Hの反応による結合切断の一様式を指す。加水分解を行う酵素を「加水分解酵素」と言い、その能力を「加水分解能」、その能力の強さ(高さ)を「活性」、「加水分解活性」、または「酵素活性」と言う。加水分解能・活性は、例えば、加水分解される基質の濃度減少を測定するか、加水分解により生じる産物の濃度上昇を測定することで調べられる。 As used herein, the term "hydrolysis" refers to a mode of bond cleavage by the reaction of AB + H 2 O → A—OH + B—H. An enzyme that hydrolyzes is called a "hydrolase", its ability is called "hydrolytic resolution", and its strength (height) is called "activity", "hydrolyzing activity", or "enzyme activity". Hydrolysis resolution / activity can be examined, for example, by measuring a decrease in the concentration of the substrate to be hydrolyzed or by measuring an increase in the concentration of a product produced by hydrolysis.
 本発明において「ホスホリパーゼ」は、グリセロリン脂質を加水分解する酵素を指す。ホスホリパーゼは、グリセロリン脂質を加水分解する部位により分類され、ホスホリパーゼA1はグリセロールのsn-1位のエステル結合を分解し、ホスホリパーゼA2はグリセロールのsn-2位のエステル結合を分解し、ホスホリパーゼBはグリセリンのsn-1位およびsn-2位の両方のエステル結合を分解し、いずれも脂肪酸を遊離する。ホスホリパーゼCは、グリセロールとXを結ぶホスホジエステル結合のグリセロール骨格側のエステル結合を分解し、ホスホリパーゼDはホスホジエステル結合のグリセロール骨格とは反対側のエステル結合を分解する。したがって、本明細書において「ホスホリパーゼC(PLC)」は、グリセロリン脂質を加水分解するホスホリパーゼのなかでも、グリセロール骨格に結合したホスホジエステル結合のグリセロール骨格側のエステル結合を分解し、リン酸が結合したリン脂質親水部分(リン酸エステル化合物)、およびジアシルグリセロールを産出する酵素を指す。
PLCによる加水分解様式:
Figure JPOXMLDOC01-appb-C000003
In the present invention, "phospholipase" refers to an enzyme that hydrolyzes glycerophospholipids. Phospholipases are classified according to the site that hydrolyzes glycerophospholipids, phospholipase A1 degrades the ester bond at the sn-1 position of glycerol, phospholipase A2 degrades the ester bond at the sn-2 position of glycerol, and phospholipase B degrades the ester bond at the sn-2 position of glycerol. The ester bonds at both the sn-1 and sn-2 positions of the above are decomposed, and both release fatty acids. Phospholipase C decomposes the ester bond on the glycerol skeleton side of the phosphodiester bond connecting glycerol and X, and phospholipase D decomposes the ester bond on the opposite side of the glycerol skeleton of the phosphodiester bond. Therefore, in the present specification, "phospholipase C (PLC)" decomposes the ester bond on the glycerol skeleton side of the phosphodiester bond bound to the glycerol skeleton among the phospholipases that hydrolyze glycerophospholipids, and the phosphate is bound. Refers to an enzyme that produces a phospholipid hydrophilic moiety (phosphodiester compound) and diacylglycerol.
Hydrolysis mode by PLC:
Figure JPOXMLDOC01-appb-C000003
 本明細書においてアミノ酸配列の「同一性」とは、複数のアミノ酸配列を比較したときに、アミノ酸が同一である残基の割合を指す。なお、アミノ酸配列の相同性においては、複数のアミノ酸配列を比較したときに、アミノ酸が同一であるか、またはアミノ酸が同一ではないが同じ性質を持つアミノ酸である場合には相同として扱い、相同な残基の割合を指す。 As used herein, the term "identity" of an amino acid sequence refers to the proportion of residues having the same amino acid when comparing a plurality of amino acid sequences. Regarding the homology of amino acid sequences, when comparing multiple amino acid sequences, if the amino acids are the same, or if the amino acids are not the same but have the same properties, they are treated as homologous and are homologous. Refers to the percentage of residues.
 一般に酵素は、化学反応を触媒し、その反応の種類に対する特異性と基質に対する特異性とを有する。本明細書において酵素が「基質特異的」であるとは、その酵素が特定の化学物質に対して選択的に化学反応を触媒すること、つまり酵素が特定の化学物質以外の化学物質に対して化学反応を触媒しないか、触媒の程度が十分に弱いことを意味する。本明細書において、ある酵素またはポリペプチドが「ホスファチジルグリセロールに対して基質特異的」、「ホスファチジルグリセロール特異的」または「PG特異的」とは、当該酵素またはポリペプチドのpH6.0、55℃、5分間の条件におけるPGの加水分解能を100%とした場合に、PA、PE、PC、CL、PS、およびPIからなる群から選択されるPG以外の基質に対する加水分解能が高くとも約30%以下であることをいう。 In general, an enzyme catalyzes a chemical reaction and has specificity for the type of reaction and specificity for a substrate. As used herein, an enzyme is "substrate-specific" when it selectively catalyzes a chemical reaction to a particular chemical, that is, to a chemical other than the particular chemical. It means that the chemical reaction is not catalyzed or the degree of catalysis is weak enough. As used herein, an enzyme or polypeptide is "substrate-specific with respect to phosphatidylglycerol", "phosphatidylglycerol-specific" or "PG-specific" as the pH of the enzyme or polypeptide is 6.0, 55 ° C. When the water resolution of PG under the condition of 5 minutes is 100%, the water resolution for substrates other than PG selected from the group consisting of PA, PE, PC, CL, PS, and PI is at most about 30% or less. It means that it is.
 本明細書において「ストリンジェントな条件下でハイブリダイズするポリヌクレオチド」とは、当該分野で慣用される周知の条件においてハイブリダイズするポリヌクレオチドを指す。本発明のポリヌクレオチド中から選択されたポリヌクレオチドをプローブとして、コロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法あるいはサザンブロットハイブリダイゼーション法などを用いることにより、そのようなポリヌクレオチドを得ることができる。具体的には、ゲノムあるいはその消化物、コロニーあるいはプラーク由来のDNAを固定化したフィルターを用いて、0.7~1.0M NaCl存在下、65℃でハイブリダイゼーションを行った後、0.1~2倍濃度のSSC(saline-sodium citrate)溶液(1倍濃度のSSC溶液の組成は、150mM 塩化ナトリウム、15mM クエン酸ナトリウムである)を用い、65℃条件下でフィルターを洗浄することにより同定できるポリヌクレオチドを意味する。ストリンジェントな条件は、通常、完全ハイブリッドの融解温度(Tm)より約5℃~約30℃、好ましくは約10℃~約25℃低い温度であって、特異的なハイブリッドが形成される条件であり、例えばJ.Sambrookら,Molecular Cloning,ALaboratory Mannual,Second Edition,Cold Spring Harbor Laboratory Press(1989)に記載されている条件が挙げられる。また、例えば、90%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件であってもよい。具体的には、例えば、完全ハイブリッドのTm~(Tm-30)℃、好ましくはTm~(Tm-20)℃の温度範囲で、かつ1×SSC(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウム)、好ましくは0.1×SSCに相当する塩濃度でハイブリダイズを行う条件が挙げられる。 As used herein, the term "polynucleotide that hybridizes under stringent conditions" refers to a polynucleotide that hybridizes under well-known conditions commonly used in the art. Such a polynucleotide can be obtained by using a polynucleotide selected from the polynucleotides of the present invention as a probe and using a colony hybridization method, a plaque hybridization method, a Southern blot hybridization method, or the like. Specifically, using a filter on which DNA derived from the genome or its digest, colonies or plaques is immobilized, hybridization is performed at 65 ° C. in the presence of 0.7 to 1.0 M NaCl, and then 0.1. Identified by washing the filter under 65 ° C. conditions using a ~ 2x concentration SSC (saline-sodium polynucleotide) solution (the composition of the 1x concentration SSC solution is 150 mM sodium chloride, 15 mM sodium citrate). Means a polynucleotide that can. Stringent conditions are usually about 5 ° C. to about 30 ° C., preferably about 10 ° C. to about 25 ° C. lower than the melting temperature (Tm) of the complete hybrid, under conditions where a specific hybrid is formed. Yes, for example, J. The conditions described in Sambrook et al., Molecular Cloning, ALaboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989) can be mentioned. Further, for example, the condition may be such that DNAs having 90% or more homology hybridize with each other and DNAs having lower homology than that do not hybridize with each other. Specifically, for example, a complete hybrid in the temperature range of Tm to (Tm-30) ° C., preferably Tm to (Tm-20) ° C., and the composition of 1 × SSC (1-fold concentration SSC solution) is 150 mM. Sodium chloride (15 mM sodium citrate), preferably conditions for hybridizing at a salt concentration corresponding to 0.1 × SSC.
 本明細書において「ベクター」または「組換えベクター」とは、目的のポリヌクレオチド配列を目的の細胞へと移入させることができる遺伝子構築物をいう。そのようなベクターとしては、原核細胞、酵母、動物細胞、植物細胞、昆虫細胞、動物個体および植物個体などの宿主細胞において自立複製が可能、または染色体中への組込みが可能で、本発明のポリヌクレオチドの転写に適した位置にプロモーターを含有しているものが例示される。遺伝子を組み込むベクターは特に限定されないが、宿主微生物体内で自律的に増殖しうるファージ、プラスミド、またはコスミドのうち遺伝子組換用として構築されたものが適しており、ファージベクターとしては、例えば、大腸菌に属する微生物を宿主とする場合にはλgt・λC、λgt・λB等が使用できる。プラスミドベクターとしては、例えば、大腸菌を宿主とする場合には、Novagen社のpETベクター、タカラバイオ社のpCold I~IV、pCold TF、プロメガ社のpFN18A HaloTag T7Flexi Vector、pFN18K HaloTag T7Flexi Vector又はpBR322、pBR325、pACYC184、pUC12、pUC13、pUC18、pUC19、pUC118、pIN I、BluescriptKS+等、バチラス・サチリスを宿主とする場合にはpWH1520、pUB110、pKH300PLK等、ブレビバチラスを宿主とする場合にはpNY326、pNCMO2やpNC-HisTなど、放線菌を宿主とする場合にはストレプトミセス属ならpIJ680、pIJ702、pTONA等、ロドコッカス属なら北海道システム・サイエンス社のpTipシリーズ、pCPiシリーズやpNitシリーズなど、酵母、特にサッカロマイセス・セレビジアエを宿主とする場合にはYRp7、pYC1、YEp13等、メタノール資化酵母Pichia pastorisを宿主とする発現系や糸状菌Aspergillus oryzaeやAspergillus nigerを利用した宿主とする発現系なども使用できる。さらに、各種無細胞タンパク質発現系なども使用できる。本発明の組換えベクターは、安全性が確認されているという観点から、遺伝子組換え生物等の第二種使用等のうち産業上の使用等に当たって執るべき拡散防止措置等を定める省令(平成十六年財務省、厚生労働省、農林水産省、経済産業省、環境省令第一号)別表第一号の規定に基づき経済産業大臣が定めるGILSP遺伝子組換え微生物の、別表第一に掲げられたベクターに、上記の本発明の遺伝子が挿入された組換えベクターが好ましい。プロモーターは宿主中で発現できるものであれば特に限定されない。本発明の組換えベクターは、例えば本発明の遺伝子及び上記のベクターを用いて、当業者に公知の手法で作成することができる。 As used herein, the term "vector" or "recombinant vector" refers to a gene construct capable of transferring a polynucleotide sequence of interest into a cell of interest. Such vectors can be self-sustainingly replicated in host cells such as prokaryotic cells, yeast, animal cells, plant cells, insect cells, animal individuals and plant individuals, or can be integrated into chromosomes, and are the poly of the present invention. Examples include those containing a promoter at a position suitable for transcription of a nucleotide. The vector into which the gene is incorporated is not particularly limited, but a phage, plasmid, or cosmid that can grow autonomously in the host microorganism and constructed for gene recombination is suitable, and the phage vector is, for example, Escherichia coli. When a microorganism belonging to the above is used as a host, λgt / λC, λgt / λB and the like can be used. Examples of the plasmid vector include Novagen's pET vector, Takarabio's pCold I to IV, pCold TF, Promega's pFN18A HaloTag T7Flexi Vector, pFN18K HaloTag T7FlexR , PACYC184, pUC12, pUC13, pUC18, pUC19, pUC118, pIN I, BluescriptKS +, etc., pWH1520, pUB110, pKH300PLK, etc. Hosts such as HisT, pIJ680, pIJ702, pTONA, etc. for the genus Streptomyces, and pTip series, pCPi series, pNit series, etc. of Hokkaido System Science Co., Ltd. for the genus Rhodococcus, especially Saccharomyces cerevisiae. In this case, an expression system using the methanol-utilizing yeast Pichia plasmid as a host, an expression system using the filamentous fungus Aspergillus oryzae or Aspergillus niger, or the like, such as YRp7, pYC1, and YEp13, can also be used. Furthermore, various cell-free protein expression systems can also be used. From the viewpoint that the safety of the recombinant vector of the present invention has been confirmed, the Ministerial Ordinance (Heisei 10) stipulates the diffusion prevention measures, etc. that should be taken for industrial use, etc., among the second-class use of genetically modified organisms, etc. Six years Ministry of Finance, Ministry of Health, Labor and Welfare, Ministry of Agriculture, Forestry and Fisheries, Ministry of Economy, Trade and Industry, Ministry of Environment Ordinance No. 1) Vectors listed in Appendix 1 of GILSP transgenic microorganisms specified by the Minister of Economy, Trade and Industry based on the provisions of Appendix 1. A recombinant vector into which the above-mentioned gene of the present invention is inserted is preferable. The promoter is not particularly limited as long as it can be expressed in the host. The recombinant vector of the present invention can be prepared by a method known to those skilled in the art using, for example, the gene of the present invention and the above-mentioned vector.
 本明細書において「sn-グリセロール-1-リン酸(G1P)」および「sn-グリセロール-3-リン酸(G3P)」は、グリセロールにリン酸が結合した、それぞれ以下の化学式で表される化合物を指す。
sn-グリセロール-1-リン酸:
Figure JPOXMLDOC01-appb-C000004

sn-グリセロール-3-リン酸:
Figure JPOXMLDOC01-appb-C000005

G1PおよびG3Pは鏡像異性体の関係にある。これらは命名法により様々な名前で呼ばれ、G1Pは、L-グリセロール-1-リン酸またはD-グリセロール-3-リン酸とも呼ばれ、G3PはL-グリセロール-3-リン酸またはD-グリセロール-1-リン酸とも呼ばれる。また、本明細書において「ジアシルグリセロール」(DG)は、ジグリセリドとも称される、グリセロールの脂肪酸エステルのうちアシル基2個が結合しているものを指す。中でも、以下の化学式で表される1,2-ジアシルグリセロールはリン脂質またはトリグリセリドの生合成の中間体として重要であることが知られている。
ジアシルグリセロール:
Figure JPOXMLDOC01-appb-C000006

(式中、RおよびRは、それぞれ任意のアシル基である)
In the present specification, "sn-glycerol-1-phosphate (G1P)" and "sn-glycerol-3-phosphate (G3P)" are compounds represented by the following chemical formulas in which phosphoric acid is bound to glycerol, respectively. Point to.
sn-glycerol-1-phosphate:
Figure JPOXMLDOC01-appb-C000004

sn-glycerol-3-phosphate:
Figure JPOXMLDOC01-appb-C000005

G1P and G3P are related to enantiomers. These are referred to by various names by nomenclature, G1P is also called L-glycerol-1-phosphate or D-glycerol-3-phosphate, and G3P is L-glycerol-3-phosphate or D-glycerol. Also called -1-phosphate. Further, in the present specification, "diaacylglycerol" (DG) refers to a fatty acid ester of glycerol to which two acyl groups are bonded, which is also referred to as diglyceride. Among them, 1,2-diacylglycerol represented by the following chemical formula is known to be important as an intermediate for biosynthesis of phospholipids or triglycerides.
Diacylglycerol:
Figure JPOXMLDOC01-appb-C000006

(In the formula, R 1 and R 2 are arbitrary acyl groups, respectively)
 上記の用語の定義で記載したように、PLCは、グリセロール骨格に結合したホスホジエステル結合のグリセロール骨格側のエステル結合を分解し、リン酸が結合したリン脂質親水部分、およびDGを産出する。PGをPLCで加水分解すると、例えば以下の反応式のように、DGとグリセロールリン酸とが生じ、グリセロールリン酸として、リン脂質親水部分がホスホ-(3’-sn-グリセロール)であればG3Pが生じ、ホスホ-(1’-sn-グリセロール)であればG1Pが生じる。
Figure JPOXMLDOC01-appb-C000007

(式中、RおよびRは、それぞれ任意のアシル基である)
As described in the definition of the above term, PLC decomposes the ester bond on the glycerol skeleton side of the phosphodiester bond bound to the glycerol skeleton to produce a phospholipid hydrophilic moiety to which phosphoric acid is bound, and DG. Hydrolysis of PG with PLC produces DG and glycerol phosphate, for example, as shown in the reaction formula below. If the phospholipid hydrophilic moiety is phospho- (3'-sn-glycerol) as glycerol phosphate, G3P Is generated, and if it is phospho- (1'-sn-glycerol), G1P is generated.
Figure JPOXMLDOC01-appb-C000007

(In the formula, R 1 and R 2 are arbitrary acyl groups, respectively)
 鏡像異性体を有する化合物では特定の鏡像異性体を分離するためには複雑な操作が必要であり、分離により得られる化合物試薬は一般に高価である。グリセロールリン酸はキラル中心を有し、1組の鏡像異性体を含む3つの位置異性体(G1P、sn-グリセロール-2-リン酸(G2P)、およびG3P;G1PとG3Pとは鏡像異性体)を有する化合物である。このグリセロールリン酸においても、特定の鏡像異性体のみを分離した試薬は高価である。これに対して、本発明のPG-PLCを用いることにより、PGを加水分解することでG1PやG3Pなどの位置異性体であるグリセロールリン酸を安価に効率的に製造することが可能になる。 A compound having an enantiomer requires a complicated operation to separate a specific enantiomer, and the compound reagent obtained by the separation is generally expensive. Glycerol phosphate has a chiral center and contains three positional isomers containing a set of mirror isomers (G1P, sn-glycerol-2-phosphate (G2P), and G3P; G1P and G3P are mirror isomers). It is a compound having. Even in this glycerol phosphate, a reagent from which only a specific enantiomer is separated is expensive. On the other hand, by using the PG-PLC of the present invention, it becomes possible to inexpensively and efficiently produce glycerol phosphate, which is a positional isomer such as G1P and G3P, by hydrolyzing PG.
[実施形態]
 以下の実施形態では、本発明の好ましい実施形態について述べる。なお、以下に提供される実施形態は、本発明をよりよく理解するために提供されるものであり、本発明の範囲が以下の記載に限定されることを意図したものではないことを理解されたい。
[Embodiment]
The following embodiments describe preferred embodiments of the present invention. It is understood that the embodiments provided below are provided for a better understanding of the present invention and are not intended to limit the scope of the invention to the following description. sea bream.
(ポリペプチド)
 1つの局面において本明細書は、PGの加水分解能を有するポリペプチドを提供する。ポリペプチドは、人工的に合成されたポリペプチドであってもよく、生物由来のポリペプチドであってもよい。ポリペプチドは、天然に存在しないアミノ酸を含んでもよい。
(Polypeptide)
In one aspect, the present specification provides a polypeptide having a hydration decomposing ability of PG. The polypeptide may be an artificially synthesized polypeptide or a biologically derived polypeptide. The polypeptide may contain non-naturally occurring amino acids.
 1つの実施形態において、本発明のPGに含まれる2本のアシル基は、同一のアシル基であってもよく、異なるアシル基であってもよい。また、飽和していても不飽和であってもよい。1つの実施形態において、本発明のPGに含まれるアシル基は、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、またはリグノセリン酸などの飽和脂肪酸、パルミトレイン酸、オレイン酸、ゴンド酸、エルカ酸、またはネルボン酸などの1価不飽和脂肪酸、リノール酸、γ-リノレン酸、ジホモ-γ-リノレン酸、アラキドン酸、またはドコサペンタエン酸などのn-6(ω6)系列の多価不飽和脂肪酸、あるいはα-リノレン酸、ステアリドン酸、エイコサテトラエン酸、エイコサペンタエン酸、またはドコサヘキサエン酸などのn-3(ω3)系列の多価不飽和脂肪酸に由来してもよいが、これらに限定されない(木原章雄,「脂肪酸の多彩な代謝,生理機能と関連疾患」,生化学,82(7),591-605,(2010))。好ましい実施形態において、アシル基は、パルミチン酸、ステアリン酸、パルミトレイン酸、オレイン酸、リノール酸、アラキドン酸、ドコサペンタエン酸、またはドコサヘキサエン酸に由来してもよく、特に好ましい実施形態において、アシル基は、オレイン酸、リノール酸、アラキドン酸、ドコサヘキサエン酸、またはドコサペンタエン酸に由来してもよい。1つの実施形態において、本発明のポリペプチドは、そのPGに含まれるアシル基が上記のいずれであっても、加水分解能を有し得る。これは、本発明のポリペプチドがPLCであり、PLCは、アシル基が結合するsn-1位またはsn-2位ではなく、リン酸基が結合するsn-3位のホスホジエステル結合を分解するためである。 In one embodiment, the two acyl groups contained in the PG of the present invention may be the same acyl group or different acyl groups. Further, it may be saturated or unsaturated. In one embodiment, the acyl group contained in the PG of the present invention may be a saturated fatty acid such as palmitic acid, stearic acid, arachidic acid, behenic acid, or linolenic acid, palmitoleic acid, oleic acid, gondonic acid, erucic acid, or. Monounsaturated fatty acids such as nervonic acid, n-6 (ω6) series polyunsaturated fatty acids such as linolenic acid, γ-linolenic acid, dihomo-γ-linolenic acid, arachidonic acid, or docosapentaenoic acid, or It may be derived from n-3 (ω3) series polyunsaturated fatty acids such as α-linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, or docosahexaenoic acid, but is not limited to these (Kihara). Akio, "Various Metaunsaturated Fatty Acids, Physiological Functions and Related Diseases," Biochemistry, 82 (7), 591-605, (2010)). In a preferred embodiment, the acyl group may be derived from palmitoleic acid, stearic acid, palmitoleic acid, oleic acid, linoleic acid, arachidonic acid, docosapentaenoic acid, or docosapentaenoic acid, and in a particularly preferred embodiment, the acyl group. May be derived from oleic acid, linoleic acid, arachidonic acid, docosapentaenoic acid, or docosapentaenoic acid. In one embodiment, the polypeptide of the invention may have hydrolytic resolution regardless of the acyl group contained in the PG. This is because the polypeptide of the invention is a PLC, which degrades the phosphodiester bond at the sn-3 position to which the phosphate group is attached, rather than the sn-1 or sn-2 position to which the acyl group is attached. Because.
 1つの実施形態において、本発明のポリペプチドは、(a)配列番号2で表されるアミノ酸配列、または(b)配列番号2で表されるアミノ酸配列において1もしくは複数個のアミノ酸が欠失、置換または付与されたアミノ酸配列を含むポリペプチドを含み、アミノ酸を欠失、置換または付与する方法は当業者に公知である。1つの実施形態において、本発明のポリペプチドが含み得る欠失、置換または付与されたアミノ酸の数は、機能が大きく変化しなければ(実質的に同等の機能であれば)、つまり基質特異性が、例えばpH6.0、55℃、5分間の条件におけるPGの加水分解能を100%とした場合に、この条件における他の基質(PA、PE、PC、CL、PS、およびPIのうちの1または複数)に対する加水分解能が高くとも30%以下であれば、100個以上であってよく、100個以下、50個以下、25個以下であってもよく、好ましくは10個以下であってよく、さらに好ましくは5個以下である。また、アミノ酸の変異は人為的な変異であってもよく、自然界で発生した変異であってもよい。実際、酵素の機能とそのアミノ酸配列とに着目した酵素工学の分野においては、例えば、短鎖型L-スレオニン脱水素酵素(約350アミノ酸長)に対して100個以上のアミノ酸変異を加えても基質特異性および比活性は維持され、さらには耐熱性が向上したことが報告されている(Nakano S.et.al.,Benchmark Analysis of Native and Artificial NAD+-Dependent Enzymes Generated by a Sequence-Based Design Method with or without Phylogenetic Data.Biochemistry 2018,372-3732)。 In one embodiment, the polypeptide of the invention lacks one or more amino acids in (a) the amino acid sequence represented by SEQ ID NO: 2 or (b) the amino acid sequence represented by SEQ ID NO: 2. Methods of deleting, substituting or imparting an amino acid, comprising a polypeptide comprising a substituted or imparted amino acid sequence, are known to those of skill in the art. In one embodiment, the number of deleted, substituted or conferred amino acids that the polypeptide of the invention may contain is not significantly altered in function (if substantially equivalent), i.e., substrate specificity. However, for example, when the water resolution of PG under the condition of pH 6.0, 55 ° C. for 5 minutes is 100%, one of the other substrates (PA, PE, PC, CL, PS, and PI) under this condition. Or, as long as the water resolution for (s) is at most 30% or less, the number may be 100 or more, 100 or less, 50 or less, 25 or less, and preferably 10 or less. , More preferably 5 or less. In addition, the amino acid mutation may be an artificial mutation or a naturally occurring mutation. In fact, in the field of enzyme engineering focusing on the function of the enzyme and its amino acid sequence, for example, even if 100 or more amino acid mutations are added to the short-chain L-threonine dehydrogenase (about 350 amino acid length). It has been reported that the substrate specificity and specific activity were maintained, and that the heat resistance was further improved (Nakano S. et. Al., Benchmark Analysis of Native and Artificial NAD + -Dependent Enzymes Generated by with or without Phylogenetic Data. Biochemistry 2018, 372-3732).
 1つの実施形態において、本発明のポリペプチドは、(c)配列番号2で表されるアミノ酸配列と少なくとも約80%の同一性を有するアミノ酸配列を含むポリペプチドを含む。同一性は、本発明において意図される基質特異性を有する限りにおいて、少なくとも80%であってよく、好ましくは少なくとも90%であってよく、さらに好ましくは、少なくとも95%であってよい。 In one embodiment, the polypeptide of the invention comprises (c) a polypeptide comprising an amino acid sequence having at least about 80% identity with the amino acid sequence represented by SEQ ID NO: 2. The identity may be at least 80%, preferably at least 90%, and even more preferably at least 95%, as long as it has the substrate specificity intended in the present invention.
 タンパク質の同一性、相同性の検索の方法は当業者に公知であり、NCBI、EBI、SIB、またはゲノムネットなどの統合データベース、GenBank、EMBL、またはDDBJなどの塩基配列データベース、PIR、Swiss-Prot、UniProt、Entrez Protein、またはPRFなどのタンパク質データベースにおいて、BLASTまたはFASTAなどのソフトウェアを利用して、インターネットを通じて行うことができる。 Methods for searching for protein identity and homology are known to those of skill in the art and include integrated databases such as NCBI, EBI, SIB, or Genomenet, base sequence databases such as GenBank, EMBL, or DDBJ, PIR, Swiss-Prot. , UniProt, Entrez Protein, or a protein database such as PRF, which can be done via the Internet using software such as BLAST or FASTA.
 1つの実施形態において、本発明のポリペプチドを使用する際には、本発明のポリペプチドの機能および特性を損なうことなく、本発明のポリペプチドに対してアミノ酸の欠失、置換、または付与を施すことができる。これらのアミノ酸の欠失、置換、および付与は、アミノ酸配列のN末端、C末端、または途中のどこであってもよい。アミノ酸の欠失、置換、および付与は、例えば、本発明のポリペプチドをコードするポリヌクレオチドをベクターのマルチクローニングサイトに導入する際にベクターの有するタグおよび制限酵素サイトなどが連結された結果、ポリペプチドのN末端および/またはC末端に付与されたアミノ酸であってもよい。1つの実施形態において、本発明のポリペプチドにシグナル配列を付与してもよく、ポリペプチドにシグナル配列を付与してポリペプチドの局在を操作する方法は本分野において公知である。用いられるシグナル配列としては、小胞体輸送シグナル、小胞体内腔での保持シグナル、ミトコンドリアへの輸送シグナル、核移行シグナル、膜係留シグナル、分泌シグナル、または細胞膜透過ペプチドなどのシグナルペプチド、ミリストイル化などの脂質修飾を受けるためのシグナル配列、またはグリコシル化などの糖鎖修飾を受けるためのシグナル配列などが挙げられるが、これらに限定されない。細胞膜透過ペプチドとしては、Tatシグナルペプチド、Secシグナルペプチドなど、ペリプラズム移行シグナルとしてはalkaline phosphatase シグナル、PelBシグナルやOmpAシグナル(Sigma、pFLAG-ATS)など、他Penetratinペプチド、Polyargininペプチド、Transportinペプチド、Pep-1ペプチド、LL-37ペプチド、またはPep-7ペプチド、SKIKタグが既知であるが、これらに限定されない(梶原直樹および芝崎太,「細胞膜透過性ペプチド」,日薬理誌,141,220-221(2013))。さらに、複数種のシグナルあるいはタグを自由に組み合わせた融合シグナル・タグであっても良い。たとえばOmpA/PelBやSKIK/PelBなどのようにOmpAとPelB、SKIKとPelB、OmpAとSKIKを融合してもよく、あるいはそれらの逆の順で融合しても良い。 In one embodiment, when the polypeptide of the invention is used, amino acid deletions, substitutions, or additions to the polypeptide of the invention are made without impairing the function and properties of the polypeptide of the invention. Can be applied. Deletions, substitutions, and additions of these amino acids may be at the N-terminus, C-terminus, or anywhere in the amino acid sequence. Amino acid deletions, substitutions, and additions are, for example, the result of ligation of the tag and restriction enzyme site of the vector when introducing the polypeptide encoding the polypeptide of the invention into the multicloning site of the vector. It may be an amino acid imparted to the N-terminal and / or C-terminal of the peptide. In one embodiment, a signal sequence may be imparted to the polypeptide of the present invention, and a method of imparting a signal sequence to a polypeptide to manipulate the localization of the polypeptide is known in the art. The signal sequences used include signal peptides such as endoplasmic reticulum transport signal, retention signal in the endoplasmic reticulum cavity, mitochondrial transport signal, nuclear translocation signal, membrane mooring signal, secretory signal, or cell membrane permeation peptide, myristoylation, etc. Examples thereof include, but are not limited to, a signal sequence for undergoing a lipid modification of, or a signal sequence for undergoing a sugar chain modification such as glycosylation. Cell membrane permeation peptides include Tat signal peptides and Sec signal peptides, and periplasm transition signals include alkaline phosphatase signals, PelB signals and OpPA signals (Sigma, pFLAG-ATS), and other Penestratin peptides, Polyarginin peptides, Transportin peptides, Pep-. One peptide, LL-37 peptide, or Pep-7 peptide, SKIK tag is known, but is not limited to these (Naoki Kajiwara and Tadashi Shibasaki, "Cell Membrane Permeable Peptide", Nikkei Journal, 141,220-221 ( 2013)). Further, it may be a fusion signal tag in which a plurality of types of signals or tags are freely combined. For example, OpPA and PelB, SKIK and PelB, OpPA and SKIK may be fused, such as OpPA / PelB and SKIK / PelB, or vice versa.
 本発明のポリペプチドは複数のドメインからなり、本発明のポリペプチドの一部である1または複数個の特定のドメインと標識とを融合したキメラタンパク質を作製することができる。キメラタンパク質の作り方は本分野において公知である。例えば、GFPとの融合やα―アグルチニンのC末端領域とGPIアンカー付加シグナル配列との融合により、細胞膜や細胞壁など細胞表面に提示させることができる。 The polypeptide of the present invention comprises a plurality of domains, and it is possible to prepare a chimeric protein in which one or a plurality of specific domains that are a part of the polypeptide of the present invention are fused with a label. How to make chimeric proteins is known in the art. For example, it can be presented on the cell surface such as a cell membrane or a cell wall by fusion with GFP or fusion with the C-terminal region of α-aglutinin and a GPI-anchored signal sequence.
 一般に、酵素活性または基質結合に関わる重要なアミノ酸残基を変化させずに、これら以外のアミノ酸残基を変異させることでアミノ酸配列の相同性を低く保ちながら、もとの酵素と類似した、またはさらに向上された機能および特性を有する新規な酵素を作成することができる。このような特性を有するタンパク質・ペプチド・酵素を作成する方法は、本分野において公知である。したがって、このような方法により作製された、アミノ酸配列間の相同性は低くいが、配列番号2で表されるPG-PLCと類似した特性を有するポリペプチドも、本願の範囲に含まれる。1つの実施形態において、本発明のポリペプチドは、基質結合部位を有する。1つの実施形態において、基質結合部位は、例えば、配列番号2で表されるアミノ酸配列の、56L,59FVG61,204IPGI207,209AW210,および316GGFA320に相当するアミノ酸を含んでもよく、または、これらのアミノ酸から選択されてもよい。これらのアミノ酸残基は、疎水性であることから、PGのアシル基に相互作用すると考えられる。1つの実施形態において、本発明のポリペプチドは、基質と相互作用する触媒残基を有する。触媒残基は、例えば、配列番号2で表されるアミノ酸配列のH43、およびH409に相当するアミノ酸を含んでもよく、または、これらのアミノ酸から選択されてもよい。1つの実施形態において、本発明のポリペプチドは、基質と相互作用する活性中心アミノ酸残基を有する。活性中心アミノ酸残基は、例えば、配列番号2で表されるアミノ酸配列の、D41、D103、N191、H364、およびH407に相当するアミノ酸残基を含んでもよく、またはこれらのアミノ酸から選択されてもよく、触媒残基を含んでもよい。基質結合部位は、例えば、配列番号2で表されるアミノ酸配列の、40T~75T、100T~120L、184P~197V、205P~227K、266F、271L、296Y~297Y、310L~322S、363S~366T、378R~384R、406G~409H、および432S~435Dに相当するアミノ酸を含んでもよく、または、これらのアミノ酸から選択されてもよい。1つの実施形態において、本発明のポリペプチドは、1つまたは複数の原核生物由来亜鉛依存性ホスホリパーゼCシグネチャー(H-Y-x-[GT]-D-[LIVMAF]-[DNSH]-x-P-x-H-[PA]-x-N;Kim,Y.G.et al.,Structural and Functional Analysis of the Lmo2642 Cyclic Nucleotide Phosphodiesterase from Listeria Monocytogenes.Protein(2011))を有してもよい。ここで、本願明細書において、「あるアミノ酸残基に相当するアミノ酸」とは、あるポリペプチドAと別のポリペプチドBとを比較する際にポリペプチドAにおいてあるアミノ酸残基A’が基質との相互作用において重要な残基であった場合に、ポリペプチドBにおいてアミノ酸残基A’と同様の基質と相互作用するアミノ酸残基B’を意味する。そのため、例えば、ポリペプチドAがシグナル配列を含むがポリペプチドBが含まなかったために、ポリペプチドAにおけるアミノ酸残基A’の一次構造的位置(つまりN末端から数えたときのアミノ酸残基番号)と、これに相当するポリペプチドBにおけるアミノ酸残基B’の位置とが異なる場合であっても、基質との相互作用における役割が同様であれば、アミノ酸残基B’はアミノ酸残基A’に相当するアミノ酸であると言える。さらに、特定の理論に束縛されることを望むものではないが、本発明のポリペプチドにおいて、成熟タンパク質(配列番号2)の一部のアミノ酸配列(配列番号16)については、種々の放線菌の有するタンパク質間で保存されていると判明しており、基質結合部位、活性中心アミノ酸残基、および触媒残基は、この保存された配列に含まれる。そのため、例えば、本発明のポリペプチドの基質結合部位に属する残基A’について、このアミノ酸残基が保存され、他の放線菌のポリペプチドにおいて、一次構造的位置が異なるが基質結合における役割が同様であるアミノ酸残基B’が存在することが容易に推測される。つまり、当業者は当該タンパク質の一次構造(アミノ酸配列)から容易に立体構造を予測でき、かなりの精度で構成アミノ酸の空間的位置を予測可能であるため、3次元構造上類似位置に配置されるアミノ酸残基をある程度特定できる。したがって、基質結合部位、活性中心残基、および触媒中心を含む保存された配列に含まれるアミノ酸残基について、原核生物間では、あるいは少なくとも放線菌間では、相当あるいは類似するアミノ酸残基が存在し、配列比較によりこれを見出すことができる。さらには全生物間においても、基質結合部位、活性中心残基、および触媒中心を含むアミノ酸残基が種の近縁性に応じて保存され、あるアミノ酸残基に相当あるいは類似するアミノ酸を見出すことが可能であろう。 In general, mutating other amino acid residues without altering important amino acid residues involved in enzyme activity or substrate binding keeps the amino acid sequence homology low, similar to or similar to the original enzyme. New enzymes can be created with further improved functions and properties. Methods for producing proteins, peptides and enzymes having such properties are known in the art. Therefore, a polypeptide produced by such a method, which has low homology between amino acid sequences but has similar properties to PG-PLC represented by SEQ ID NO: 2, is also included in the scope of the present application. In one embodiment, the polypeptides of the invention have a substrate binding site. In one embodiment, the substrate binding site may comprise, for example, the amino acids corresponding to 56L, 59FVG61, 204IPGI207, 209AW210, and 316GGFA320 of the amino acid sequence represented by SEQ ID NO: 2, or selected from these amino acids. May be done. Since these amino acid residues are hydrophobic, they are considered to interact with the acyl group of PG. In one embodiment, the polypeptides of the invention have catalytic residues that interact with the substrate. The catalytic residue may contain, for example, the amino acids corresponding to H43 and H409 of the amino acid sequence represented by SEQ ID NO: 2, or may be selected from these amino acids. In one embodiment, the polypeptides of the invention have active central amino acid residues that interact with the substrate. The active central amino acid residue may include, for example, the amino acid residues corresponding to D41, D103, N191, H364, and H407 of the amino acid sequence represented by SEQ ID NO: 2, or may be selected from these amino acids. It may contain catalytic residues. The substrate binding site is, for example, 40T to 75T, 100T to 120L, 184P to 197V, 205P to 227K, 266F, 271L, 296Y to 297Y, 310L to 322S, 363S to 366T of the amino acid sequence represented by SEQ ID NO: 2. It may contain amino acids corresponding to 378R to 384R, 406G to 409H, and 432S to 435D, or may be selected from these amino acids. In one embodiment, the polypeptides of the invention are zinc-dependent phospholipase C signatures derived from one or more prokaryotic organisms (HYx- [GT] -D- [LIVMAF]-[DNSH] -x-. P-x-H- [PA] -x-N; Kim, Y.G. et al., Structural and Functional Analysis of the Lmo2642 Cyclic Nucleotide Phosphodiesterase. Here, in the present specification, the "amino acid corresponding to a certain amino acid residue" means that the amino acid residue A'in the polypeptide A is used as a substrate when comparing a certain polypeptide A with another polypeptide B. When it is an important residue in the interaction of, it means an amino acid residue B'that interacts with a substrate similar to the amino acid residue A'in polypeptide B. Therefore, for example, since polypeptide A contains a signal sequence but does not contain polypeptide B, the primary structural position of amino acid residue A'in polypeptide A (that is, the amino acid residue number when counted from the N-terminal). And, even if the position of the amino acid residue B'in the corresponding polypeptide B is different, if the role in the interaction with the substrate is the same, the amino acid residue B'is the amino acid residue A'. It can be said that it is an amino acid corresponding to. Furthermore, although it is not desired to be bound by a specific theory, in the polypeptide of the present invention, the amino acid sequence (SEQ ID NO: 16) of a part of the mature protein (SEQ ID NO: 2) is referred to by various actinomycetes. It has been found to be conserved among the proteins it has, and the substrate binding site, active central amino acid residue, and catalytic residue are included in this conserved sequence. Therefore, for example, for the residue A'belonging to the substrate binding site of the polypeptide of the present invention, this amino acid residue is conserved, and in the polypeptides of other actinomycetes, the primary structural position is different, but the role in substrate binding is different. It is easily inferred that a similar amino acid residue B'is present. That is, since a person skilled in the art can easily predict the three-dimensional structure from the primary structure (amino acid sequence) of the protein and predict the spatial position of the constituent amino acids with considerable accuracy, they are arranged at similar positions in the three-dimensional structure. Amino acid residues can be identified to some extent. Therefore, for amino acid residues contained in conserved sequences containing substrate binding sites, active center residues, and catalytic centers, there are significant or similar amino acid residues between prokaryotes, or at least between actinomycetes. , This can be found by sequence comparison. Furthermore, even among all living organisms, amino acid residues including substrate binding sites, active center residues, and catalytic centers are conserved according to the closeness of the species, and amino acids corresponding to or similar to certain amino acid residues are found. Would be possible.
 活性中心アミノ酸残基および基質結合部位を予測する方法は本分野において公知であり、タンパク質のデータベース(SwissProtやSwissModelなど)を利用して構造および/または機能類似タンパク質の立体構造情報を入手し、この構造をもとに、当該タンパク質の構造を予測することができる。これらのデータベースによって入手した構造および/または機能類似タンパク質の立体構造情報には基質あるいは基質類似化合物等や金属イオンなどのリガンドの位置情報や触媒残基情報も含まれるため、対象タンパク質の予測構造においても基質との相互作用部位を推定することができる。また、基質あるいは基質類似化合物等をAutoDock等のソフトウエアを利用してドッキングシミュレーション解析することで基質との相互作用部位を推定する方法も知られている。 Methods for predicting active central amino acid residues and substrate binding sites are known in the art, and protein databases (such as SwissProt and SwissModel) are used to obtain structural and / or functionally similar protein conformational information. Based on the structure, the structure of the protein can be predicted. Since the three-dimensional structure information of the structural and / or functionally similar proteins obtained from these databases also includes the positional information of the substrate or the substrate-like compound and the ligand such as the metal ion and the catalytic residue information, the predicted structure of the target protein Can also estimate the site of interaction with the substrate. Further, there is also known a method of estimating an interaction site with a substrate by docking simulation analysis of a substrate or a substrate-like compound using software such as AutoDock.
 1つの実施形態において、標識は、蛍光分子による標識、放射性物質による標識、金属による標識、酵素による標識、またはタグによる標識であってもよく、阻害剤などのように酵素に結合する化合物やPEG(ポリエチレングリコール)のように修飾する化合物であってもよく、これらを組み合わせて用いてもよい。また、標識を、結合しても吸着してもコーティングしても良く、その原理としては共有結合や疎水相互作用などを含むあらゆる物理化学的相互作用や反応を利用した付着を含む。1つの実施形態において、蛍光分子による標識は、蛍光顕微鏡観察のためのものであり、ローダミンまたはFM色素などの蛍光分子であってもよく、GFPなどの蛍光タンパク質であってもよい。蛍光分子による標識は、リン脂質やタンパク質など様々な生体分子との結合により輝度が変化してもよく、可逆的に退色してもよい。1つの実施形態において、放射性物質による標識は、H,14C,32P,33P,35S,または125Iであり、好ましくはH,14C,または35Sである。1つの実施形態において、金属による標識は電子顕微鏡観察のためのものであり、金、ウラン、タングステン、またはバナジウムを用いた標識であってよい。1つの実施形態において、酵素による標識は、ルシフェラーゼ、β-ガラクトシダーゼ、ペルオキシダーゼ、またはアルカリフォスファターゼなどによる標識であってよい。1つの実施形態において、タグによる標識は、組換え発現タンパク質の可溶性を高める作用があるGSTタグ、Haloタグ、TFタグ、FLAGタグ、HAタグ、Hisタグ、Mycタグ、V5タグ、Sタグ、Eタグ、T7タグ、VSV-Gタグ、Glu-Gluタグ、Strep-tagII、CBDタグ、CBPタグ、Fcタグ、GSTタグ、MBPタグ、Trxタグ、またはビオチン-ストレプトアビジンタグなどであってよい。 In one embodiment, the label may be a label with a fluorescent molecule, a label with a radioactive substance, a label with a metal, a label with an enzyme, or a label with a tag, a compound that binds to an enzyme such as an inhibitor, or PEG. It may be a compound to be modified such as (polyethylene glycol), or these may be used in combination. In addition, the label may be bound, adsorbed or coated, and its principle includes adhesion utilizing any physicochemical interaction or reaction including covalent bonds and hydrophobic interactions. In one embodiment, the labeling with a fluorescent molecule is for fluorescence microscopy and may be a fluorescent molecule such as rhodamine or FM dye or a fluorescent protein such as GFP. The label with a fluorescent molecule may change its brightness due to binding to various biomolecules such as phospholipids and proteins, or may reversibly fade. In one embodiment, the labeling with radioactive material is 3 H, 14 C, 32 P, 33 P, 35 S, or 125 I, preferably 3 H, 14 C, or 35 S. In one embodiment, the metal labeling is for electron microscopy and may be a labeling with gold, uranium, tungsten, or vanadium. In one embodiment, the enzymatic labeling may be luciferase, β-galactosidase, peroxidase, alkaline phosphatase, or the like. In one embodiment, tag labeling has the effect of increasing the solubility of recombinantly expressed proteins: GST tag, Halo tag, TF tag, FLAG tag, HA tag, His tag, Myc tag, V5 tag, S tag, E. It may be a tag, a T7 tag, a VSV-G tag, a Glu-Glu tag, a Strept-tagII, a CBD tag, a CBP tag, an Fc tag, a GST tag, an MBP tag, a Trx tag, a biotin-streptavidin tag, or the like.
 本発明のポリペプチドは、PGに対して基質特異的な加水分解能を有してよい。1つの実施形態において、基質特異的な加水分解能は、pH6.0、55℃、5分間の条件におけるPGの加水分解能を100%とした場合に、この条件における他の基質に対する加水分解能が30%以下、20%以下、15%以下、10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、1%以下、または0%以下であることにより定められてよい。ここで、他の基質はリン脂質であり、例えば、PA、PE、PC、CL、PS、およびPIからなる群から選択されてよく、好ましくはCLである。さらに好ましい実施形態において、他の基質は、PA、PE、PC、CL、PS、およびPIを含んでよい。 The polypeptide of the present invention may have substrate-specific water resolution with respect to PG. In one embodiment, the substrate-specific water resolution is 30% for other substrates under the condition of pH 6.0, 55 ° C., and 5 minutes, where the water resolution of PG is 100%. 20% or less, 15% or less, 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, Alternatively, it may be determined by 0% or less. Here, the other substrate is a phospholipid, for example, may be selected from the group consisting of PA, PE, PC, CL, PS, and PI, preferably CL. In a more preferred embodiment, other substrates may include PA, PE, PC, CL, PS, and PI.
 1つの実施形態において、本発明のポリペプチドの至適pHは、約pH5.5~pH6.5の範囲である。1つの実施形態において、本発明のポリペプチドを作用させる際のpHの下限はpH4であり、好ましくはpH5.0であり、最大活性と比較して90%以上の作用を示すpH5.5であれば特に好ましい。上限は、pH10であり、好ましくはpH8.5であり、最大活性と比較して90%以上の作用を示すpH6.5であれば特に好ましい。 In one embodiment, the optimum pH of the polypeptide of the invention is in the range of about pH 5.5 to pH 6.5. In one embodiment, the lower limit of pH at which the polypeptide of the invention is allowed to act is pH 4, preferably pH 5.0, at pH 5.5, which exhibits an action of 90% or more compared to maximum activity. Is particularly preferable. The upper limit is pH 10, preferably pH 8.5, and is particularly preferably pH 6.5, which exhibits an action of 90% or more as compared with the maximum activity.
 1つの実施形態において、本発明のポリペプチドの至適温度は、約53~57℃である。1つの実施形態において、本発明のポリペプチドを作用させる際の温度の下限は、30℃であり、好ましくは37℃であり、最大活性と比較して80%以上の作用を示す50℃であれば特に好ましい。上限は、67℃であり、好ましくは65℃であり、最大活性と比較して80%以上の作用を示す60℃であれば特に好ましい。 In one embodiment, the optimum temperature for the polypeptide of the invention is about 53-57 ° C. In one embodiment, the lower limit of the temperature at which the polypeptide of the invention is allowed to act is 30 ° C, preferably 37 ° C, at 50 ° C, which exhibits an action of 80% or more compared to the maximum activity. Is particularly preferable. The upper limit is 67 ° C., preferably 65 ° C., and 60 ° C., which exhibits an action of 80% or more as compared with the maximum activity, is particularly preferable.
 1つの実施形態において、本発明のポリペプチドの反応時間は、PGの意図した分解が達成できる範囲で変更してもよい。反応時間は、約15秒以上、好ましくは約1分以上、更に好ましくは約3分以上である。反応時間の上限は特にないが、好ましくは約30分以下、更に好ましくは約15分以下、特に好ましくは約10分以下であり得る。 In one embodiment, the reaction time of the polypeptide of the present invention may be changed as long as the intended degradation of PG can be achieved. The reaction time is about 15 seconds or longer, preferably about 1 minute or longer, and more preferably about 3 minutes or longer. The upper limit of the reaction time is not particularly limited, but it may be preferably about 30 minutes or less, more preferably about 15 minutes or less, and particularly preferably about 10 minutes or less.
 加水分解能の測定方法は、当業者に公知である。1つの実施形態において、本発明のポリペプチドによる加水分解能の測定方法としては、加水分解による基質の濃度減少を測定する方法、および加水分解による分解産物の濃度増加を測定する方法が挙げられる。1つの実施形態において、加水分解による分解産物の濃度増加を測定する方法は、分解産物の濃度を測定する方法と、分解産物をさらに分解して濃度を測定する方法を含む。1つの実施形態において、酵素または放射性同位体を用いて分解産物の濃度を測定する方法が挙げられる。1つの実施形態において、PLCによる分解産物の濃度を酵素を用いて測定する方法としては、例えば、酵素およびトリンダー試薬(ペルオキシダーゼ存在下で、TODB、TOOS、フェノール、およびハロゲン化フェノール誘導体などが縮合し呈色することを利用した試薬)を用いた方法、モリブデンブルー法、マラカイトグリーン法、およびこれらを改良した方法(BIOMOL(登録商標)Greenなど)が知られている。 A method for measuring the water resolution is known to those skilled in the art. In one embodiment, the method for measuring the water resolution by the polypeptide of the present invention includes a method for measuring a decrease in the concentration of a substrate due to hydrolysis and a method for measuring an increase in the concentration of a decomposition product due to hydrolysis. In one embodiment, a method for measuring an increase in the concentration of a decomposition product due to hydrolysis includes a method for measuring the concentration of the decomposition product and a method for further decomposing the decomposition product to measure the concentration. In one embodiment, a method of measuring the concentration of a decomposition product using an enzyme or a radioisotope can be mentioned. In one embodiment, as a method for measuring the concentration of decomposition products by PLC using an enzyme, for example, an enzyme and a Trinder reagent (TODB, TOOS, phenol, and a halogenated phenol derivative are condensed in the presence of peroxidase) are condensed. Methods using (reagents utilizing color development), molybdenum blue method, malakite green method, and improved methods thereof (BIOMOL (registered trademark) Green, etc.) are known.
 1つの実施形態において、PLCと基質を含む溶液の組成は当業者により変更され得る。1つの実施形態において、溶液はバッファーを含んでもよく、バッファーは、酢酸バッファー(Ac-Na)、リン酸バッファー、クエン酸バッファー、クエン酸リン酸バッファー、ホウ酸バッファー、酒石酸バッファー、Trisバッファー(Tris-HCl)、Bis-Trisバッファー、MESバッファー(MES-NaOH)、HEPESバッファー、またはリン酸バッファーであってよいが、これらに限定されない。1つの実施形態において、溶液は金属イオンまたは金属イオンのキレーターを含んでもよく、金属イオンとしては、Al3+、Ca2+、Mg2+、Li2+、Na、Mn2+、Fe3+、Li、Cu2+、Co2+、またはZn2+などであってよいが、これらに限定されない。金属イオンのキレーターとしては、EDTA、EGTA、BAPTA、DTPA、HEDTA、NTA、DTPA、GLDA、TTHA、HIDA、またはDHEGなどであってよいが、これらに限定されない。1つの実施形態において、溶液は、界面活性剤を含んでもよく、界面活性剤としては、Triton(登録商標) X-100、Triton(登録商標) X-114、ノニデットP40、Tween(登録商標) 20、デオキシコール酸ナトリウム、Tween(登録商標) 80、Briji35、およびコール酸ナトリウムなどが挙げられるが、これらに限定されない。 In one embodiment, the composition of the solution containing the PLC and substrate can be modified by one of ordinary skill in the art. In one embodiment, the solution may comprise a buffer, wherein the buffer is acetate buffer (Ac-Na), phosphate buffer, citrate buffer, citrate phosphate buffer, borate buffer, tartrate buffer, Tris buffer (Tris). -HCl), Bis-Tris buffer, MES buffer (MES-NaOH), HEEPS buffer, or phosphate buffer, but is not limited thereto. In one embodiment, the solution may contain metal ions or metal ion chelators, such as Al 3+ , Ca 2+ , Mg 2+ , Li 2+ , Na + , Mn 2+ , Fe 3+ , Li + , Cu. It may be, but is not limited to, 2+ , Co 2+ , Zn 2+ , and the like. The metal ion chelator may be, but is not limited to, EDTA, EGTA, BAPTA, DTPA, HEADTA, NTA, DTPA, GLDA, TTHA, HIDA, DHEG and the like. In one embodiment, the solution may contain a surfactant, which includes Triton® X-100, Triton® X-114, Nonidet P40, Tween® 20. , Sodium deoxycholate, Tween® 80, Briji35, and sodium cholate, but are not limited thereto.
 1つの実施形態において、本発明のポリペプチドは、放線菌(Actinomycetales)目に属する微生物のものであってよい。微生物は、放線菌目に属する微生物の中でもPseudonocardiaceae科に属する微生物が好ましく、Pseudonocardiaceae科に属する微生物の中でもAmycolatopsis属に属する微生物が特に好ましく、Amycolatopsis属に属する微生物の中でもAmycolatopsis sp.が好ましい。土壌、湖沼、海、生物の表面や体腔内等から分離した菌株が、Amycolatopsis属に属する微生物であるかどうかは、例えば「Bergey’s Manual 第2版(2001年)」、「微生物の分類・同定実験法-分子遺伝学・分子生物学的手法を中心に(Springer Lab Manual)シュプリンガー・フェアラーク東京、2001年9月」等に記載の方法、市販の同定検査用製品(例えばBIOMERIEUX社)を使用する方法、「株式会社テクノスルガ・ラボ(静岡県静岡市)」等に委託する方法等により確認すればよい。さらにそれらの菌株が、Amycolatopsis sp.であるかどうかは、「Stackebrandt E.、Ebers J.:Taxonomic parameters revisited:tarnished gold standards,Microbiology today,nov,152-155頁、2006年」に記載の方法等により判断すればよい。すなわち、DNA-DNAハイブリダイゼーションで70%以上の相同性がある、または16s rRNAが98.5%以上同一であれば同属同種と判断できる。好ましくはDNA-DNAハイブリダイゼーションで70%以上の相同性があれば同属同種と判断することができる。 In one embodiment, the polypeptide of the invention may be of a microorganism belonging to the order Actinomycetales. As the microorganism, the microorganism belonging to the family Pseudonocardiace is preferable among the microorganisms belonging to the order Actinomycetales, the microorganism belonging to the genus Amycolatopsis is particularly preferable among the microorganisms belonging to the family Pseudonocardiace, and the microorganism belonging to the genus Amycolatopsis sp. Is preferable. Whether or not the strain isolated from the soil, lakes, sea, the surface of living organisms, the inside of the body cavity, etc. is a microorganism belonging to the genus Amycolatopsis is, for example, "Bergey's Manual 2nd Edition (2001)", "Classification of microorganisms. Identification experiment method-Focusing on molecular genetics and molecular biology methods (Springer Lab Manual) Springer Fairlark Tokyo, September 2001 ”, etc., and commercially available identification test products (for example, BIOMERIEUX) It may be confirmed by the method of use, the method of outsourcing to "Technosuruga Lab Co., Ltd. (Shizuoka City, Shizuoka Prefecture)", etc. Furthermore, those strains are found in Amycolatopsis sp. Whether or not this is the case is described in "Checkebrand E., Evers J .: Taxonomy parameters reviewed: tarnished gold standards, Microbiology today, nov, p. 152-155, 2006". That is, if there is 70% or more homology in DNA-DNA hybridization, or if 16s rRNA is 98.5% or more the same, it can be judged to be the same genus and the same species. Preferably, if DNA-DNA hybridization has 70% or more homology, it can be determined to be of the same genus and species.
 本発明のポリペプチドの分子量を測定する方法は当業者に公知であり、例えば、Native-PAGEやSDS-PAGEを用いた電気泳動法、ゲルろ過クロマトグラフィー法、HPLC法、質量分析法、超遠心分離装置を用いた沈降平衡法、または動的光散乱(DLS)を用いた光散乱法などにより測定できる。本発明のポリペプチドの分子量は、SDS-PAGEを用いた電気泳動法で測定した場合、約49,000Da~約59,000Daであり得、好ましくは約52,000Da~約56,000Daであり得、さらに好ましくは約54,000Daであり得る。本発明のポリペプチドの分子量は、シグナル配列を除いたアミノ酸配列である配列番号2から推測した場合、約51,000Da~約62,000Daであり得、好ましくは約54,000Da~約58,000Daであり得、さらに好ましくは約56,000Daであり得る。 Methods for measuring the molecular weight of the polypeptide of the present invention are known to those skilled in the art, for example, electrophoresis using Native-PAGE or SDS-PAGE, gel filtration chromatography, HPLC, mass analysis, ultracentrifugation. It can be measured by a precipitation equilibrium method using a separation device, a light scattering method using dynamic light scattering (DLS), or the like. The molecular weight of the polypeptide of the present invention can be from about 49,000 Da to about 59,000 Da, preferably from about 52,000 Da to about 56,000 Da, as measured by electrophoresis using SDS-PAGE. , More preferably about 54,000 Da. The molecular weight of the polypeptide of the present invention can be about 51,000 Da to about 62,000 Da, preferably about 54,000 Da to about 58,000 Da, when estimated from SEQ ID NO: 2, which is an amino acid sequence excluding the signal sequence. It can be, more preferably about 56,000 Da.
(ポリヌクレオチド)
 1つの局面において本明細書は、上記のポリペプチドをコードするポリヌクレオチドを提供する。ポリヌクレオチドは、DNAであってもよく、RNAであってもよい。RNAの場合、記載の配列からTがUに変えられていてもよい。ポリヌクレオチドは、1本鎖であってもよく、2本鎖であってもよい。
(Polynucleotide)
In one aspect, the present specification provides a polynucleotide encoding the above-mentioned polypeptide. The polynucleotide may be DNA or RNA. In the case of RNA, T may be changed to U from the described sequence. The polynucleotide may be single-stranded or double-stranded.
 1つの実施形態において、本発明のポリヌクレオチドは、(a)配列番号1で表される塩基配列、(b)配列番号1で表される塩基配列と相補的な塩基配列を含むポリヌクレオチド、(c)(b)のポリヌクレオチドとストリンジェントな条件でハイブリダイズするポリヌクレオチドを含み、ストリンジェントな条件は本明細書で定義されている。1つの実施形態において、本発明のポリヌクレオチドは、(d)配列番号1で表される塩基配列において1もしくは複数個の塩基が欠失、置換または付与された塩基配列を含むポリヌクレオチドを含み、塩基を欠失、置換または付与する方法は当業者に公知である。1つの実施形態において、本発明のポリヌクレオチドが含み得る欠失、置換または付与された塩基の数は、発現されるポリペプチドの機能が大きく変化しなければ(実質的に同等の機能であれば)、つまり基質特異性が、例えばpH6.0、55℃、5分間の条件におけるPGの加水分解能を100%とした場合に、この条件における他の基質(PA、PE、PC、CL、PS、およびPIのうちの1または複数)に対する加水分解能が高くとも30%以下であれば、300個以上であってよく、300個以下、200個以下であってよく、好ましくは100個以下であってよく、さらに好ましくは15個以下である。また、塩基の変異は、人為的な変異であってもよく、自然界で発生した変異であってもよい。 In one embodiment, the polynucleotide of the present invention is a polynucleotide containing (a) a base sequence represented by SEQ ID NO: 1 and (b) a base sequence complementary to the base sequence represented by SEQ ID NO: 1. c) Containing a polynucleotide that hybridizes with the polynucleotide of (b) under stringent conditions, stringent conditions are defined herein. In one embodiment, the polynucleotide of the invention comprises (d) a polynucleotide comprising a base sequence in which one or more bases have been deleted, substituted or added in the base sequence represented by SEQ ID NO: 1. Methods of deleting, substituting or imparting a base are known to those skilled in the art. In one embodiment, the number of deletions, substitutions or imparted bases that the polynucleotides of the invention may contain will not significantly change the function of the expressed polypeptide (provided they are substantially equivalent). ), That is, when the substrate specificity is, for example, pH 6.0, 55 ° C., and the water resolution of PG under the condition of 5 minutes is 100%, other substrates (PA, PE, PC, CL, PS, And if the water resolution for one or more of PIs) is at most 30% or less, the number may be 300 or more, 300 or less, 200 or less, and preferably 100 or less. Well, more preferably 15 or less. Further, the mutation of the base may be an artificial mutation or a mutation occurring in the natural world.
 1つの実施形態において、本発明のポリヌクレオチドは、(e)配列番号1で表される塩基配列と同義なコドンを含む塩基配列を含むポリヌクレオチオを含み、このポリヌクレオチドを発現させる生物種のコドン頻度に合わせてアミノ酸配列を変えずに塩基配列を変更することができる。各生物種におけるコドン頻度と塩基配列の変更法は当業者に公知である。1つの実施形態において、本発明のポリヌクレオチドは、(f)配列番号1で表される塩基配列と少なくとも約80%の同一性を有する塩基配列を含むポリヌクレオチドを含む。同一性は、コードされるポリペプチドが本発明において意図される基質特異性を有する限りにおいて、少なくとも80%であってよく、好ましくは少なくとも90%であってよく、さらに好ましくは、少なくとも95%、であってよい。 In one embodiment, the polynucleotide of the invention comprises (e) a polynucleothio comprising a base sequence containing a base sequence synonymous with the base sequence represented by SEQ ID NO: 1, and a species of organism expressing this polynucleotide. The base sequence can be changed according to the codon frequency without changing the amino acid sequence. Methods of changing the codon frequency and base sequence in each species are known to those of skill in the art. In one embodiment, the polynucleotide of the invention comprises (f) a polynucleotide comprising a base sequence having at least about 80% identity with the base sequence represented by SEQ ID NO: 1. The identity may be at least 80%, preferably at least 90%, more preferably at least 95%, as long as the encoded polypeptide has the substrate specificity intended in the present invention. May be.
(組換えベクターおよび形質転換体)
 1つの局面において本明細書は、PGの加水分解能を有するポリペプチドをコードするポリヌクレオチドを含む組換えベクターと、組換えベクターを含む形質転換体とを提供する。1つの実施形態において、使用され得るベクターとしては、例えば、プラスミドベクター、コスミドベクター、ファージベクター、ウイルスベクター、またはトランスポゾンベクターが挙げられるが、これらに限定されない。本発明では、目的のポリヌクレオチド配列を目的の細胞へと移入させることができさえすれば、どのようなベクターでも使用され得る。
(Recombinant vector and transformant)
In one aspect, the present specification provides a recombinant vector containing a polynucleotide encoding a polypeptide having a hydration resolution of PG, and a transformant containing the recombinant vector. In one embodiment, the vectors that can be used include, but are not limited to, plasmid vectors, cosmid vectors, phage vectors, viral vectors, or transposon vectors. In the present invention, any vector can be used as long as the polynucleotide sequence of interest can be transferred into the cell of interest.
 標的遺伝子を含む組換えベクターとして標的細胞に導入する方法としては、リポフェクション法、電気穿孔法、リン酸カルシウム法などによるベクターの導入、CRISPR-Cas9システムを用いた遺伝子ノックイン、受精卵核へのDNA注入による遺伝子ノックイン、相同組換えを用いた遺伝子ノックイン等が挙げられるが、これらに限定されない。 As a method of introducing into the target cell as a recombinant vector containing the target gene, the vector is introduced by the lipofection method, the electric perforation method, the calcium phosphate method, etc., the gene knock-in using the CRISPR-Cas9 system, and the DNA injection into the fertilized egg nucleus. Examples include, but are not limited to, gene knock-in, gene knock-in using homologous recombination, and the like.
 形質転換体として遺伝子導入され得る宿主生物としては、組換えベクターを導入できて標的タンパク質を発現できる生物であれば制限はない。使用され得る宿主生物としては、例えば、放線菌、枯草菌、または大腸菌などの細菌、酵母またはカビなどの真菌、シロイヌナズナなどの植物に由来する培養細胞、あるいは、HEK細胞、HeLa細胞、またはCHO細胞などの哺乳動物由来の培養細胞が挙げられるが、これらに限定されない。 The host organism to which the gene can be introduced as a transformant is not limited as long as it is an organism capable of introducing a recombinant vector and expressing a target protein. Host organisms that can be used include, for example, germs such as Bacillus subtilis, Bacillus subtilis, or fungi such as Escherichia coli, fungi such as yeast or mold, cultured cells derived from plants such as Chinese hamster ovaria, or HEK cells, HeLa cells, or CHO cells. Examples include, but are not limited to, cultured cells derived from mammals such as.
(ポリペプチドの製造方法)
 1つの局面において本明細書は、PGの加水分解能を有するポリペプチドを製造する方法を提供する。1つの実施形態において、ポリペプチドの製造方法は、形質転換体を培養してポリペプチドを生産させる工程を含む。1つの実施形態において、ポリペプチドの製造方法はさらに、目的のポリペプチドを精製する工程を含む。ポリペプチドを用いた実験法は当業者に公知であり、例えば、大島泰郎ら(編集),「ポストシークエンスタンパク質実験法」,東京化学同人,第1巻~第4巻に記載されている。
(Method for producing polypeptide)
In one aspect, the present specification provides a method for producing a polypeptide having a hydration decomposing ability of PG. In one embodiment, the method for producing a polypeptide comprises culturing a transformant to produce the polypeptide. In one embodiment, the method for producing a polypeptide further comprises the step of purifying the polypeptide of interest. Experimental methods using polypeptides are known to those skilled in the art and are described, for example, in Tairo Oshima et al. (Editor), "Post-Sequence Protein Experimental Method", Tokyo Kagaku Dojin, Volumes 1 to 4.
 1つの実施形態において、ポリペプチドの製造に用いる形質転換体は、大腸菌である。大腸菌を培養し、タンパク質を発現させる方法は当業者に公知であり、例えば、中山広樹・西方敬人,「バイオ実験イラストレイテッド1 分子生物学実験の基礎」,秀潤社などに記載されている。 In one embodiment, the transformant used to produce the polypeptide is E. coli. Methods for culturing Escherichia coli and expressing proteins are known to those skilled in the art, and are described in, for example, Hiroki Nakayama and Takahito Nishikata, "Bio-Experiment Illustrated 1 Basics of Molecular Biology Experiments", Shujunsha, etc. There is.
 1つの実施形態において、培養した形質転換体からポリペプチドを精製する工程は、培養細胞からポリペプチドを抽出する工程を含んでもよく、さらに、目的のポリペプチドを精製する工程を含んでもよい。1つの実施形態において、細胞により生産されたポリペプチドは、培養液中に分泌されてもよく、細胞質中に分布してもよく、細胞膜上あるいはペリプラズムに分布してもよい。1つの実施形態において、細胞により生産されたポリペプチドは、培養細胞の細胞膜に含まれるPGを分解して細胞外またはペリプラズムに分泌されてもよい。1つの実施形態において、ポリペプチドが細胞質中、ペリプラズム、または細胞膜上に分布する場合には、細胞を遠心分離などにより回収した後、ホモジナイザーなどを用いた機械的な破砕法、超音波を用いた破砕法、または乳鉢と乳棒とを用いた破砕法などにより、あるいはリゾチームまたは界面活性剤を用いた化学的な細胞溶解法により細胞を破壊して、遠心分離などにより不要な画分を除去する、または必要な画分を濃縮するなどによりポリペプチドを抽出してもよい。1つの実施形態において、ポリペプチドが培養液中に分泌されている場合には、培養液を回収し、不要な細胞片などを遠心分離により除去することでタンパク質を抽出してもよい。1つの実施形態において、ポリペプチドを抽出する際には、沈殿剤によりポリペプチドを沈殿させて遠心分離する沈殿法を用いて効率的にポリペプチドを抽出してもよい。沈殿剤としては、硫酸アンモニウムなどのカオトロピック塩、ポリエチレングリコールまたはデキストランなどの水溶性ポリマー、トリクロロ酢酸または塩酸などの酸、およびアセトンまたはアルコールなどの有機溶媒が挙げられるが、これらに限定されない。好ましい沈殿剤は、ポリペプチドを変性させにくい、硫酸アンモニウム、エチレングリコール、またはデキストランであり、さらに好ましくは硫酸アンモニウムである。1つの実施形態において、ポリペプチドを抽出する際には、必要に応じて、界面活性剤を添加してポリペプチドを可溶化してもよい。界面活性剤としては、Triton(登録商標) X-100、Triton(登録商標) X-114、ノニデットP40、Tween(登録商標) 20、デオキシコール酸ナトリウム、Tween(登録商標) 80、Briji35、およびコール酸ナトリウムなどが挙げられるが、これらに限定されない。 In one embodiment, the step of purifying a polypeptide from a cultured transformant may include a step of extracting the polypeptide from cultured cells, and may further include a step of purifying the target polypeptide. In one embodiment, the polypeptide produced by the cells may be secreted into the culture medium, distributed in the cytoplasm, or distributed on the cell membrane or periplasm. In one embodiment, the polypeptide produced by the cell may degrade the PG contained in the cell membrane of the cultured cell and be secreted extracellularly or periplasm. In one embodiment, when the polypeptide is distributed in the cytoplasm, periplasm, or cell membrane, the cells are collected by centrifugation or the like, and then mechanically disrupted using a homogenizer or the like, or ultrasonic waves are used. The cells are destroyed by a crushing method, a crushing method using a dairy pot and a dairy stick, or a chemical cell lysis method using lysozyme or a surfactant, and unnecessary fractions are removed by centrifugation or the like. Alternatively, the polypeptide may be extracted by concentrating the required fraction. In one embodiment, when the polypeptide is secreted into the culture medium, the protein may be extracted by collecting the culture medium and removing unnecessary cell debris and the like by centrifugation. In one embodiment, when extracting a polypeptide, the polypeptide may be efficiently extracted by using a precipitation method in which the polypeptide is precipitated with a precipitating agent and centrifuged. Precipitants include, but are not limited to, chaotropic salts such as ammonium sulfate, water-soluble polymers such as polyethylene glycol or dextran, acids such as trichloroacetic acid or hydrochloric acid, and organic solvents such as acetone or alcohol. The preferred precipitant is ammonium sulphate, ethylene glycol, or dextran, which is less likely to denature the polypeptide, more preferably ammonium sulphate. In one embodiment, when extracting a polypeptide, a surfactant may be added to solubilize the polypeptide, if necessary. Surfactants include Triton® X-100, Triton® X-114, Nonidet P40, Tween® 20, Sodium Deoxycholate, Tween® 80, Briji35, and Cole. Examples include, but are not limited to, sodium acid.
 1つの実施形態において、抽出されたポリペプチドは、クロマトグラフィー法により精製されてよい。クロマトグラフィー法の手順は当業者に公知であり、分子のサイズを利用したゲルろ過クロマトグラフィー、電荷を利用した陽イオン交換クロマトグラフィーおよび陰イオン交換クロマトグラフィー、疎水性を利用した疎水性相互作用クロマトグラフィーおよび逆相クロマトグラフィー、ならびに結合親和性を利用した精製するアフィニティークロマトグラフィーが挙げられる。これらのクロマトグラフィー法は、単独で用いられてもよく、組み合わせて用いられてもよい。1つの実施形態において、精製されるポリペプチドがタグなどの標識を有する場合には、そのタグを対象としたアフィニティークロマトグラフィーを用いてもよい。例えば、上記のようにpETベクターシステムを用いた場合には、発現されたタンパク質には、Hisタグ、T7タグ、Strepタグなどのタグ標識が取り付けられており、これらのタグに対する結合親和性を用いてタンパク質を精製する方法が本分野において公知である。1つの実施形態において、本発明のポリペプチドを、相互性疎水作用クロマトグラフィー、陰イオン交換クロマトグラフィー、およびゲルろ過クロマトグラフィーを組み合わせて精製してもよい。なお、クロマトグラフィー法についてはカラムを用いても良いし、クロマトグラフィー担体を用いたバッチ法で良い。 In one embodiment, the extracted polypeptide may be purified by a chromatographic method. The procedure of the chromatography method is known to those skilled in the art, and gel filtration chromatography using the size of the molecule, cation exchange chromatography and anion exchange chromatography using charge, and hydrophobic interaction chromatography using hydrophobicity. Examples include imaging and reverse phase chromatography, as well as affinity chromatography for purification utilizing binding affinity. These chromatographic methods may be used alone or in combination. In one embodiment, if the purified polypeptide has a label such as a tag, affinity chromatography for that tag may be used. For example, when the pET vector system is used as described above, tag labels such as His tag, T7 tag, and Strep tag are attached to the expressed protein, and the binding affinity for these tags is used. Methods for purifying proteins are known in the art. In one embodiment, the polypeptides of the invention may be purified in combination with reciprocal hydrophobic action chromatography, anion exchange chromatography, and gel filtration chromatography. As the chromatography method, a column may be used, or a batch method using a chromatography carrier may be used.
 精製されたポリペプチドの濃度を測定して、上記のポリペプチドの加水分解能の測定法と組み合わせて、ポリペプチドの比活性を測定してもよい。ポリペプチドの濃度測定の方法は当業者に公知であり、吸光光度法(紫外吸光光度法、Bradford法、WST法、Biuret法、Lowry法、およびBCA法)、蛍光法、および電気泳動法が挙げられるが、これらに限定されない(鈴木祥夫,「総タンパク質の定量法」,ぶんせき,1,2-9(2018))。好ましくは吸光光度法であり、さらに好ましくはBCA法である。 The concentration of the purified polypeptide may be measured and combined with the above-mentioned method for measuring the water resolution of the polypeptide to measure the specific activity of the polypeptide. Methods for measuring the concentration of a polypeptide are known to those skilled in the art and include absorptiometry (absorptiometry, Bradford, WST, Biuret, Lowry, and BCA), fluorescence, and electrophoresis. However, it is not limited to these (Yoshio Suzuki, "Method for quantifying total protein", Bunseki, 1, 2-9 (2018)). The absorptiometry method is preferable, and the BCA method is more preferable.
(ポリペプチドの使用方法)
 1つの局面において、本発明は、PGの加水分解能を有するポリペプチドの使用方法を提供する。1つの実施形態において、この使用方法は、ポリペプチドを用いてPGを分解する方法、およびPGからG1PおよびG3P、およびDGを製造する方法を提供する。
(How to use polypeptide)
In one aspect, the invention provides a method of using a polypeptide having PG water decomposing ability. In one embodiment, this method of use provides a method of degrading PG with a polypeptide and a method of producing G1P and G3P, and DG from PG.
 1つの実施形態において、本発明のポリペプチドを用いる方法におけるPGは、生物由来であってもよく、生物に由来しないものであってもよい。特定の理論に束縛されることを望むものではないが、細菌の細胞膜を構成するリン脂質にはPGが約10~25%程度含まれており、これは真核生物の細胞膜と比較して高い。そのため、細菌の細胞膜に対して本発明のポリペプチドを反応させてグリセロールリン酸を製造することが考えられる。1つの実施形態において、用いられる生物はPGを含むものであればあらゆる生物が想定される。例えば、原核生物であっても良く、真核生物であっても良く、また下水余剰汚泥や廃棄農作物、廃棄植物に含まれる生物であっても良く、特に限定されるものではない。例えば、真核生物ではカビ、酵母、キノコなどの、古細菌、真性細菌などの原核生物では、放線菌、枯草菌、または大腸菌などが挙げられるが、好ましくは、扱いの確立されている大腸菌である。大腸菌を多量に得る方法としては、培養液を用いた実験室的な方法だけではなく、再生可能な生物由来の資源であるバイオマスを用いた大腸菌の培養方法が想定される。バイオマスとしては、廃棄紙、家畜糞尿、食品廃棄物、建築廃材、製材工場残材、黒液、および下水汚泥などの廃棄物系バイオマス、稲藁、麦藁、籾殻、農作物の非食部、および林地残材などの未利用バイオマス、ならびにバイオマスとして利用することを目的に栽培されたトウモロコシおよびサトウキビなどの資源作物などが挙げられる。特定の理論に束縛されることを望むものではないが、大腸菌の細胞膜におけるPGのリン脂質親水部分は、主にホスホ-(1’-sn-グリセロール)型であり、そして、例えば40℃以上の高温にするなど培養条件を変えることでホスホ-(3’-sn-グリセロール)型の割合を高められることが報告されている(藤島祐典ら,「海洋細菌に存在するホスファチジルグリセロールの立体異性体」;板橋豊,2002年度実績報告書「水圏生物におけるD型リン脂質の分析法,分布および生理機能」,https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-13460088/134600882002jisseki/)。そのため、大腸菌により合成されたPGを本発明のポリペプチドにより加水分解することで、G1Pを効率的に得ることができる。さらに、大腸菌がホスホ-(3’-sn-グリセロール)型のPGを合成する割合を高めるような環境、例えば50℃の高温条件下などで大腸菌を培養すると総PGの約25%がホスホ-(3’-sn-グリセロール)型のPGになるため、本発明のポリペプチドによりPGを加水分解することにより、G3Pを効率的に得ることもできる。 In one embodiment, the PG in the method using the polypeptide of the present invention may be of biological origin or may not be of biological origin. Although we do not want to be bound by a specific theory, the phospholipids that make up the cell membrane of bacteria contain about 10 to 25% of PG, which is higher than that of eukaryotic cell membranes. .. Therefore, it is conceivable to react the polypeptide of the present invention with the cell membrane of a bacterium to produce glycerol phosphate. In one embodiment, the organism used is assumed to be any organism as long as it contains PG. For example, it may be a prokaryote, a eukaryote, or an organism contained in excess sewage sludge, waste agricultural products, or waste plants, and is not particularly limited. For example, eukaryotes include molds, yeasts and mushrooms, and prokaryotes such as archaea and eubacteria include actinomycetes, Bacillus subtilis, and Escherichia coli, but Escherichia coli with established treatment is preferable. be. As a method for obtaining a large amount of E. coli, not only a laboratory method using a culture solution but also a method for culturing E. coli using biomass, which is a resource derived from a renewable organism, is assumed. Biomass includes waste paper, livestock manure, food waste, construction waste, sawmill residue, black liquor, and waste-based biomass such as sewage sludge, rice straw, wheat straw, rice husks, non-food parts of agricultural products, and forest land. Examples include unused biomass such as residual material, and resource crops such as corn and sugar cane cultivated for the purpose of using as biomass. Although not bound by any particular theory, the phospholipid hydrophilic moieties of PG in E. coli cell membranes are predominantly phospho- (1'-sn-glycerol) type and, for example, above 40 ° C. It has been reported that the proportion of phospho- (3'-sn-glycerol) type can be increased by changing the culture conditions such as increasing the temperature (Yunori Fujishima et al., "Phosphatidylglycerol stereoisomer present in marine bacteria". Yutaka Itahashi, 2002 Performance Report "Analysis, Distribution and Physiological Functions of D-Type Phospholipids in Aquatic Organisms", https://kaken.nii.ac.jp/report/KAKENHI-PROJECT-13460088/134600882002jisseki /) .. Therefore, G1P can be efficiently obtained by hydrolyzing PG synthesized by Escherichia coli with the polypeptide of the present invention. Furthermore, when E. coli is cultured in an environment that increases the rate at which E. coli synthesizes phospho- (3'-sn-glycerol) type PG, for example, under high temperature conditions of 50 ° C., about 25% of the total PG is phospho- (3'-sn-glycerol). Since it becomes a 3'-sn-glycerol) type PG, G3P can be efficiently obtained by hydrolyzing the PG with the polypeptide of the present invention.
 1つの実施形態において、バイオマスから大腸菌を回収する方法は、当業者に公知であり、バイオマス中の液体成分から大腸菌を回収する、およびバイオマスを水で洗い洗浄液から大腸菌を回収するなどが挙げられる。1つの実施形態において、回収した大腸菌からリン脂質を抽出してから、PGの加水分解能を有するポリペプチドとリン脂質を反応させてもよい。一般に、大腸菌からリン脂質を抽出する方法は当業者に公知であり、例えば、クロロホルム・メタノールなどの有機溶媒を用いたBligh-Dyer法、およびFolch法などが挙げられる。必要に応じて、薄層クロマトグラフィー、固相抽出、および高速液体クロマトグラフィーなどを施してもよい。他方、1つの実施形態において、リン脂質は大腸菌から抽出されていなくてもよく、さらに、PGの加水分解能を有するポリペプチドも精製されていなくてもよい。特定の理論に束縛されることを望むものではないが、PG-PLCが大腸菌の細胞内に発現された場合、その大腸菌の細胞膜に含まれるPGを分解してグリセロールリン酸を製造するとともに、PG-PLCが細胞外に分泌される。そして、細胞外に分泌されたPG-PLCは、他の大腸菌の細胞膜に含まれるPGを分解してグリセロールリン酸を製造し得る。したがって、1つの実施形態において、ポリペプチドの精製およびリン脂質の抽出を行うことなく、ポリペプチドを発現させた大腸菌をバイオマス中で増殖させ、これにバイオマス中の同種または異種の大腸菌の細胞膜中のPGを切断させ、得られたグリセロールリン酸を回収してもよい。 In one embodiment, a method for recovering E. coli from biomass is known to those skilled in the art, and examples thereof include recovery of E. coli from a liquid component in biomass, washing of biomass with water, and recovery of E. coli from a washing solution. In one embodiment, the phospholipid may be extracted from the recovered E. coli and then reacted with the polypeptide having the hydration decomposing ability of PG. Generally, a method for extracting a phospholipid from Escherichia coli is known to those skilled in the art, and examples thereof include a Brich-Dyer method using an organic solvent such as chloroform and methanol, and a Folch method. If necessary, thin layer chromatography, solid phase extraction, high performance liquid chromatography and the like may be performed. On the other hand, in one embodiment, the phospholipid may not be extracted from E. coli, and the polypeptide having the hydration decomposing ability of PG may not be purified. Although we do not want to be bound by a specific theory, when PG-PLC is expressed in E. coli cells, it decomposes PG contained in the cell membrane of E. coli to produce glycerol phosphate and PG. -PLC is secreted extracellularly. Then, the PG-PLC secreted extracellularly can decompose PG contained in the cell membrane of other Escherichia coli to produce glycerol phosphate. Therefore, in one embodiment, E. coli expressing the polypeptide is grown in the biomass without purifying the polypeptide and extracting phospholipids, which is then added to the cell membrane of the same or heterologous E. coli in the biomass. The PG may be cleaved and the obtained glycerol phosphate may be recovered.
 本発明のポリペプチドを用いる方法は、液体中で行われることが好ましく、液体として水相および有機溶媒相が想定され、水相で行われることが好ましい。1つの実施形態において、ポリペプチドとPGとを含む溶液の組成は当業者により変更され得る。1つの実施形態において、溶液はバッファーを含んでもよく、バッファーは、酢酸バッファー(Ac-Na)、リン酸バッファー、クエン酸バッファー、クエン酸リン酸バッファー、ホウ酸バッファー、酒石酸バッファー、Trisバッファー(Tris-HCl)、Bis-Trisバッファー、MESバッファー(MES-NaOH)、HEPESバッファー、またはリン酸バッファーであってよいが、これらに限定されない。1つの実施形態において、溶液は金属イオンまたは金属イオンのキレーターを含んでもよく、金属イオンとしては、Al3+、Ca2+、Mg2+、Li2+、Na、Mn2+、Fe3+、Li、Cu2+、Co2+、またはZn2+などであってよいが、これらに限定されない。金属イオンのキレーターとしては、EDTA、EGTA、BAPTA、DTPA、HEDTA、NTA、DTPA、GLDA、TTHA、HIDA、またはDHEGなどであってよいが、これらに限定されない。1つの実施形態において、溶液は、界面活性剤を含んでもよく、界面活性剤としては、Triton(登録商標) X-100、Triton(登録商標) X-114、ノニデットP40、Tween(登録商標) 20、デオキシコール酸ナトリウム、Tween(登録商標) 80、Briji35、およびコール酸ナトリウムなどが挙げられるが、これらに限定されない。 The method using the polypeptide of the present invention is preferably carried out in a liquid, and an aqueous phase and an organic solvent phase are assumed as the liquid, and the method is preferably carried out in the aqueous phase. In one embodiment, the composition of the solution containing the polypeptide and PG can be modified by one of ordinary skill in the art. In one embodiment, the solution may comprise a buffer, wherein the buffer is acetate buffer (Ac-Na), phosphate buffer, citrate buffer, citrate phosphate buffer, borate buffer, tartrate buffer, Tris buffer (Tris). -HCl), Bis-Tris buffer, MES buffer (MES-NaOH), HEEPS buffer, or phosphate buffer, but is not limited thereto. In one embodiment, the solution may contain metal ions or metal ion chelators, such as Al 3+ , Ca 2+ , Mg 2+ , Li 2+ , Na + , Mn 2+ , Fe 3+ , Li + , Cu. It may be, but is not limited to, 2+ , Co 2+ , Zn 2+ , and the like. The metal ion killer may be, but is not limited to, EDTA, EGTA, BAPTA, DTPA, HEADTA, NTA, DTPA, GLDA, TTHA, HIDA, DHEG and the like. In one embodiment, the solution may contain a surfactant, which includes Triton® X-100, Triton® X-114, Nonidet P40, Tween® 20. , Sodium deoxycholate, Tween® 80, Briji35, and sodium cholate, but are not limited thereto.
 本発明のポリペプチドを用いて製造されたグリセロールリン酸は、原料または他の成分が混在したままであってもよいが、目的や用途に合わせて不純物を含有しないように精製してもよい。グリセロールリン酸の精製方法は、本分野で周知であり、薄層クロマトグラフィー、およびグリセロールリン酸をカルシウムまたはナトリウムとの塩としてからの再結晶化などが挙げられる(特開2014-189552;藤森亮利および高津淑人,「バイオディーゼル生成における使用済みCaO触媒を用いたマテリアルサイクル」,バイオマス科学会議発表論文集,13(0),121-122,2018)。本発明のポリペプチドを用いて製造されたグリセロールリン酸は、G1PまたはG3Pの特定の鏡像異性体を多く含むことが予想されるが、本分野で公知の方法により鏡像異性体の純度をさらに高めてもよい。鏡像異性体の光学分割法としては、結晶化法(優先晶出法、ジアステレオマー法、包接錯体法、および優先富化を利用した方法など)、およびキラルカラムを用いたHPLC法などが挙げられる。精製されたグリセロールリン酸の鏡像異性体を判別する方法は本分野において公知であり、旋光分散(ORD)測定法、円二色(CD)測定法、エックス線結晶構造解析、および核磁気共鳴装置、などが挙げられる。 The glycerol phosphoric acid produced by using the polypeptide of the present invention may remain mixed with raw materials or other components, but may be purified so as not to contain impurities according to the purpose and use. Methods for purifying glycerol phosphate are well known in the art, and include thin layer chromatography, recrystallization of glycerol phosphate as a salt with calcium or sodium (Japanese Patent Laid-Open No. 2014-189552; Ryo Fujimori). Toshi and Yoshito Takatsu, "Material Cycle Using Used CaO Catalysts in Biodiesel Production", Proceedings of the Biomass Science Conference, 13 (0), 121-122, 2018). Glycerol phosphate produced using the polypeptide of the present invention is expected to contain a large amount of specific enantiomers of G1P or G3P, but the purity of the enantiomers is further increased by a method known in the art. You may. Examples of the optical resolution method for the enantiomer include a crystallization method (priority crystallization method, diastereomer method, inclusion complex method, method using preferential enrichment, etc.), HPLC method using a chiral column, and the like. Will be. Methods for discriminating mirror image isomers of purified glycerol phosphate are known in the art and include optical rotatory dispersion (ORD) measurement methods, circular dichroism (CD) measurement methods, X-ray crystal structure analysis, and nuclear magnetic resonance apparatus. And so on.
(ポリペプチドを含有する組成物)
 1つの局面において、本発明は、本発明のポリペプチドを含有する、PGを分解するための組成物を提供する。1つの実施形態において、本発明のポリペプチドを含有する組成物は、キットとして販売されてもよい。1つの実施形態において、本発明のポリペプチドを含有する組成物は、溶液、溶液の凍結物、または溶液の乾燥物(真空乾燥法、凍結乾燥法、または噴霧乾燥法などによる)であってよく、例えば、pH緩衝剤、塩、界面活性剤、還元剤、金属キレーター、凍結保護剤(グリセロール、またはエチレングリコールなど)、防腐剤(アジ化ナトリウム、またはチメロサールなど)、およびプロテアーゼ阻害剤などを含んでもよい。好ましくは、ポリペプチドを含むグリセロール溶液、またはポリペプチドを含む凍結乾燥物である。
(Composition containing polypeptide)
In one aspect, the invention provides a composition for degrading PG containing the polypeptide of the invention. In one embodiment, the composition containing the polypeptide of the invention may be sold as a kit. In one embodiment, the composition containing the polypeptide of the invention may be a solution, a frozen solution of the solution, or a dried solution (by vacuum drying, lyophilization, spray drying, etc.). Includes, for example, pH buffers, salts, surfactants, reducing agents, metal chelators, freeze protectants (such as glycerol or ethylene glycol), preservatives (such as sodium azide or thimerosal), and protease inhibitors. But it may be. A glycerol solution containing the polypeptide or a lyophilized product containing the polypeptide is preferred.
[実施例1:PG-PLC生産菌の獲得を目的としたスクリーニングとPG-PLC生産菌の属種決定のための分類学上の同定]
(実験方法)
 実験に使用した試薬は以下の通りである。Bacto-Malt extract(Becton Dickinson、型番218630)、Yeast Extract BSP-B(オリエンタル酵母工業)、L-α-Phosphatidylglycerol, Egg(PG、Avanti Polar Lipids Inc.)、Peroxidase(POD、オリエンタル酵母工業株式会社、型番46261003)、L-α-glycerophosphate oxidase(GPO、東洋紡株式会社、型番G3O-321)、4-Aminoantipyrine(4-AA、ナカライテスク、型番01907)、N,N-Bis(4-sulfobutyl)-3-methylaniline, disodium salt(TODB、同仁化学研究所、型番OC22)、その他、特に記載のない試薬は全て市販特級品を使用した。
[Example 1: Screening for acquisition of PG-PLC-producing bacteria and taxonomic identification for genus determination of PG-PLC-producing bacteria]
(experimental method)
The reagents used in the experiment are as follows. Bacto-Malt extract (Becton Dickinson, model number 218630), Yeast Extract BSP-B (Oriental Yeast Co., Ltd.), L-α-Phosphatidylgycerol, Egg (PG, Avanti Polar Yeast Co., Ltd.) Model number 46261003), L-α-glycellophothsite oxidase (GPO, Toyobo Co., Ltd., model number G3O-321), 4-Aminoantipyrine (4-AA, Nacalai Tesque, model number 01907), N, N-Bis (4-sulfobutyl) -3. -Methylaniline, disposable salt (TODB, Dojin Chemical Research Institute, model number OC22) and other reagents not specifically mentioned were all commercially available special grade products.
目的酵素の生産菌のスクリーニング
(1)培養
 1)試験管(Φ18×180mm)にISP2培地5mlとガラスビーズ(Φ4mm)3粒を入れ、オートクレーブ滅菌(121℃,15min)した。
 2)滅菌した培地にスクリーニング菌株のグリセロールストック懸濁液を1%(v/v)植菌し、28℃、160spm、往復振とう培養を行った。
Screening for bacteria producing the target enzyme (1) Culture 1) 5 ml of ISP2 medium and 3 glass beads (Φ4 mm) were placed in a test tube (Φ18 × 180 mm) and sterilized by autoclave (121 ° C, 15 min).
2) 1% (v / v) of a glycerol stock suspension of the screening strain was inoculated into a sterilized medium, and reciprocating shaking culture was performed at 28 ° C. and 160 spm.
(2)PLC測定法
 PLCがPGに作用すると、PGがラセミ体である場合、DGと、2種のグリセロールリン酸(G1PおよびG3P)が生じる。中でもG3Pは、グリセロール-3-リン酸オキシダーゼ(GPO)によって酸化され過酸化水素を生じる。生成した過酸化水素はペルオキシダーゼ(POD)の作用により4-アミノアンチピリン(4-AA)とN,N-Bis(4-sulfobutyl)-3-methylaniline,disodium salt(TODBとを定量的に酸化縮合させ赤紫色のキノイミン色素を生成する。この呈色の強度を、500~630nm、特に550nmの吸光度(A550)を測定することで、PLCの加水分解能を測定できることが知られている。この酵素による測定法を用いて、スクリーニング菌株の培養液の上清にPGを加水分解するPLCが存在しているか調べた。なお、1minに1μmolのG3Pを生成する酵素量を1Uと定義した。
Figure JPOXMLDOC01-appb-C000008
(2) PLC measurement method When PLC acts on PG, DG and two kinds of glycerol phosphates (G1P and G3P) are produced when PG is a racemate. Among them, G3P is oxidized by glycerol-3-phosphate oxidase (GPO) to generate hydrogen peroxide. The generated hydrogen peroxide quantitatively oxidatively condenses 4-aminoantipyrine (4-AA) with N, N-Bis (4-sulfovutyl) -3-methylaniline and disodium salt (TODB) by the action of peroxidase (POD). It produces a reddish-purple quinoimine dye. It is known that the water resolution of PLC can be measured by measuring the intensity of this color development at an absorbance (A 550 ) of 500 to 630 nm, particularly 550 nm. Using the measurement method, it was examined whether or not PLC that hydrolyzes PG was present in the supernatant of the culture solution of the screening strain. The amount of enzyme that produces 1 μmol of G3P per 1 min was defined as 1 U.
Figure JPOXMLDOC01-appb-C000008
(結果と考察)
PLC生産菌の取得と分類学上の同定
(1)スクリーニング計72菌株した結果、NT115株の培養上清中にPG-PLC活性を見い出した。簡易形態観察の結果、NT115株はISP2寒天培地上で円形の中央陥没上のコロニーを示し、表面の色調は白色、裏面は茶色を示した。また、微視的観察の結果、気菌糸を形成し、連鎖胞子の観察が見られた。テクノスルガ・ラボ微生物同定システムを用いた、DB-BAおよび国際塩基配列データベースに対するBLAST相同性検査を基に解析した分子系統樹において、NT115株はAmycolatopsis属が構成するクラスター内に含まれたが、既知の種とは異なる分子系統学的位置を示した。よって、今回の16SrDNA部分塩基配列解析の結果からは、NT115株はAmycolotopsis sp.と帰属した。また、この結果は、簡易形態観察の結果とも一致した。
(Results and discussion)
Acquisition and taxonomic identification of PLC-producing bacteria (1) Screening As a result of a total of 72 strains, PG-PLC activity was found in the culture supernatant of the NT115 strain. As a result of simple morphological observation, the NT115 strain showed a colony on a circular central depression on the ISP2 agar medium, and the color tone on the front surface was white and the back surface was brown. In addition, as a result of microscopic observation, aerial hyphae were formed and chained spores were observed. In the molecular phylogenetic tree analyzed based on the BLAST homology test for DB-BA and the international nucleotide sequence database using the Technosuruga Lab Microbial Identification System, the NT115 strain was included in the cluster composed of the genus Amycolatopsis. It showed a molecular phylogenetic position different from that of known species. Therefore, from the result of this 16SrDNA partial base sequence analysis, the NT115 strain is Amycoloptissis sp. Attributed. This result was also in agreement with the result of simple morphological observation.
[実施例2:NT115株が菌体外に分泌生産するPLCの精製]
(実験方法)
Amycolatopsis sp.NT115株PLCの精製
(1)培養
 試験管(Φ18×180mm)にISP2培地5mlとガラスビーズ(Φ4mm)3粒を入れ、オートクレーブ滅菌(121℃,15min)した。冷却後、クリーンベンチ内でNT115株の10%(v/v)グリセロールストック懸濁液50μlを植菌し、28℃,160spmで2日間往復振とう培養し、前培養液とした。500ml容三角フラスコにISP2培地100mlとステンレスコイルを入れたものを10本用意し、オートクレーブ滅菌した。クリーンベンチ内で培地に前培養液を1%(v/v)植菌し、28℃,160rpmで72時間旋回振とう培養した。
[Example 2: Purification of PLC secreted and produced by NT115 strain outside the cells]
(experimental method)
Amycolatopsis sp. Purification of NT115 strain PLC (1) Culture A 5 ml of ISP2 medium and 3 glass beads (Φ4 mm) were placed in a culture test tube (Φ18 × 180 mm) and sterilized by autoclave (121 ° C., 15 min). After cooling, 50 μl of a 10% (v / v) glycerol stock suspension of NT115 strain was inoculated in a clean bench and cultured with reciprocating shaking at 28 ° C. and 160 spm for 2 days to prepare a preculture solution. Ten bottles containing 100 ml of ISP2 medium and a stainless coil in a 500 ml Erlenmeyer flask were prepared and sterilized by autoclave. In a clean bench, 1% (v / v) of the preculture solution was inoculated into the medium, and the culture was shaken at 28 ° C. and 160 rpm for 72 hours.
(2)硫酸アンモニウム(AS)分画
 (1)の培養液を遠心分離(18,800×g,10min)し、培養上清を得た。培養上清に20%飽和となるように飽和AS水溶液(4℃保存)を加えた。1時間静置した後、生じた沈殿物を遠心分離(18,800×g,10min)により回収した。
(2) Ammonium sulfate (AS) fraction The culture solution of (1) was centrifuged (18,800 × g, 10 min) to obtain a culture supernatant. A saturated AS aqueous solution (stored at 4 ° C.) was added to the culture supernatant so as to be 20% saturated. After allowing to stand for 1 hour, the resulting precipitate was collected by centrifugation (18,800 × g, 10 min).
(3)PLC活性
 以下の実験では、実施例1と同様に酵素反応によりPLC活性値を算出した。
(3) PLC activity In the following experiments, the PLC activity value was calculated by an enzymatic reaction in the same manner as in Example 1.
(4)PPG-Toyopearlカラムクロマトグラフィー
 回収した沈殿物を1M AS/20 mM Tris-HCl(pH7.0)で溶解した(フィルター、遠心分離なし)。
 1)表1の条件でPPG-Toyopearlカラムクロマトグラフィーを行った。
  A sol.:1M AS/20mM Tris-HCl(pH7)
  Bsol.:20mM Tris-HCl(pH 7)
  Column volume:15ml(=Φ2.5cm, H=3.0cm)
  Elution1:linear gradient of 1 to 0M AS
 with 4CV
  Elution2:100% B sol. with 4CV
  Fraction:6ml
表1:PPG-Toyopearlカラムクロマトグラフィーの条件
Figure JPOXMLDOC01-appb-T000009

 2)各フラクションのPLC活性(基質;PG)を測定し、2.5U/ml以上の活性を示したフラクションを回収した(PPG画分)。
(4) PPG-Toyopearl Column Chromatography The recovered precipitate was dissolved in 1M AS / 20 mM Tris-HCl (pH 7.0) (no filter, no centrifugation).
1) PPG-Toyopearl column chromatography was performed under the conditions shown in Table 1.
A sol. 1M AS / 20m M Tris-HCl (pH 7)
Bsol. : 20 mM Tris-HCl (pH 7)
Volume volume: 15 ml (= Φ2.5 cm, H = 3.0 cm)
Elution1: linear gradient of 1 to 0M AS
with 4CV
Elution2: 100% B sol. with 4CV
Fraction: 6 ml
Table 1: Conditions for PPG-Toyopearl column chromatography
Figure JPOXMLDOC01-appb-T000009

2) The PLC activity (substrate; PG) of each fraction was measured, and fractions showing an activity of 2.5 U / ml or more were recovered (PPG fraction).
(5)透析
 PPG画分を透析膜(三光純薬、セルロースチューブ36/32)に移し、サンプル量の10倍量の20mM Tris-HCl(pH9.0)で2回透析(buf交換;1h,12h)した。
(5) Dialysis PPG fraction is transferred to a dialysis membrane (Sanko Pure Medicine, cellulose tube 36/32) and dialyzed twice with 20 mM Tris-HCl (pH 9.0), which is 10 times the sample volume (buf exchange; 1h, 12h).
(6)Giga Cap Q-Toyopearlカラムクロマトグラフィー
 1)透析内液を回収し、Giga Cap Q-Toyopearl(以下GCQと略す)にロードした。サンプルはフィルターろ過、遠心分離なしでカラムロードし、表2の条件でGCQカラムクロマトグラフィーを行った。
  Asol.:20mM Tris-HCl(pH9.0)
  B sol.:0.5M NaCl/20mM Tris-HCl(pH9.0)
  Column volume:15ml(=Φ2.5cm, H=3.0cm)
  Elution:linear gradient of 0 to 0.5M NaCl with 10CV
  Fraction:5ml
表2:Giga Cap Q-Toyopearlカラムクロマトグラフィーの条件
Figure JPOXMLDOC01-appb-T000010

 2)各フラクションのPG-PLC活性を測定し、活性のあったフラクションをGCQ画分とした。
(6) Giga Cap Q-Toyopearl Column Chromatography 1) The dialysis internal solution was collected and loaded into Giga Cap Q-Toyopearl (hereinafter abbreviated as GCQ). The sample was column loaded without filter filtration and centrifugation, and GCQ column chromatography was performed under the conditions shown in Table 2.
Asol. : 20 mM Tris-HCl (pH 9.0)
B sol. : 0.5M NaCl / 20 mM Tris-HCl (pH 9.0)
Volume volume: 15 ml (= Φ2.5 cm, H = 3.0 cm)
Elution: linear gradient of 0 to 0.5M NaCl with 10CV
Fraction: 5 ml
Table 2: Conditions for Giga Cap Q-Toyopeal column chromatography
Figure JPOXMLDOC01-appb-T000010

2) The PG-PLC activity of each fraction was measured, and the active fraction was used as the GCQ fraction.
(7)ゲルろ過クロマトグラフィー
 Amicon-30K(15mL)を用いてGCQ画分を500μlまで濃縮した。濃縮サンプルは、0.45μmフィルターろ過後、Superdex 200 increase 10/300 GL(Spd 200 Inc)にロードした。
 1)以下の条件と表3に示す条件でカラムクロマトグラフィーを行った。
  A sol.:0.15M NaCl/Tris-HCl(pH8.0)
  Column volume:24ml(=Φ1.0cm, H=30cm)
  Elution:0.15M NaCl with 1.5CV
  Fraction:0.5ml
表3:ゲルろ過クロマトグラフィーの条件 
Figure JPOXMLDOC01-appb-T000011

 2)各フラクションのPG-PLC活性を測定し、Amicon-30Kにより20mM Tris-HCl(pH7.0)にbuffer交換を行い、精製PG-PLCとした。
(7) Gel Filtration Chromatography The GCQ fraction was concentrated to 500 μl using Amicon-30K (15 mL). Concentrated samples were loaded onto Superdex 200 increase 10/300 GL (Spd 200 Inc) after filtration through a 0.45 μm filter.
1) Column chromatography was performed under the following conditions and the conditions shown in Table 3.
A sol. : 0.15M NaCl / Tris-HCl (pH 8.0)
Volume volume: 24 ml (= Φ1.0 cm, H = 30 cm)
Elution: 0.15M NaCl with 1.5CV
Fraction: 0.5 ml
Table 3: Gel filtration chromatography conditions
Figure JPOXMLDOC01-appb-T000011

2) The PG-PLC activity of each fraction was measured, and buffer exchange was performed with 20 mM Tris-HCl (pH 7.0) using Amicon-30K to obtain purified PG-PLC.
タンパク質濃度の定量
 BCA Protein Assay Reagentキット(ThermoFisher)を使用し、取扱説明書に従って562nmにおける吸光度(A562)を測定し、タンパク質濃度を定量した。
Quantification of Protein Concentration Using the BCA Protein Assay Reagent Kit (Thermo Fisher), the absorbance (A 562 ) at 562 nm was measured according to the instruction manual, and the protein concentration was quantified.
SDS-PAGE分析
 Laemmliの方法に従い、SDS-PAGE法を行った。タンパク質バンドの検出には銀染色キット(アプロサイエンス)を使用し、取扱説明書に従って行った。
SDS-PAGE analysis The SDS-PAGE method was performed according to the method of Laemmli. A silver staining kit (Aproscience) was used to detect protein bands, and the procedure was performed according to the instruction manual.
(結果と考察)
 ISP2培地で2日間培養した(図1)上清から、PG-PLCを2981倍まで精製することができ(表4)、比活性は6.19 U/mg-proteinとなった。SDS-PAGE分析では分子量は約54kDaの単一バンドとして検出された(図2)。
表4:NT115株由来PG-PLCの精製結果
Figure JPOXMLDOC01-appb-T000012
(Results and discussion)
From the supernatant cultured in ISP2 medium for 2 days (FIG. 1), PG-PLC could be purified up to 2981 times (Table 4), and the specific activity was 6.19 U / mg-protein. SDS-PAGE analysis detected a single band with a molecular weight of approximately 54 kDa (FIG. 2).
Table 4: Purification results of PG-PLC derived from NT115 strain
Figure JPOXMLDOC01-appb-T000012
[実施例3:PG-PLCの諸特性解析]
(実験方法)
 基質特異性試験以外は、実施例1に記載の方法により酵素活性を測定した。基質特異性試験では、基質として1-palmitoyl-2-oleoyl-sn-glycero-3-phopsphoglycerol(POPG)、1-palmitoyl-2-oleoyl-sn-glycero-3-phopsphocholine(POPC)、1-palmitoyl-2-oleoyl-sn-glycero-3-phopsphoethanolamine(POPE)、1-palmitoyl-2-oleoyl-sn-glycero-3-phopsphoinositol(POPI)、1-palmitoyl-2-oleoyl-sn-glycero-3-phopsphoserine(POPS)、1-palmitoyl-2-oleoyl-sn-glycero-3-phopsphate(POPA)cardiolipin(CL)、L-α-phosphatidyglycerol(PG)を使用した。その他にBIOMOL Green(登録商標)Reagent(Enzo Life science、以下BGと略記)、Alkaline phosphatase(オリエンタル酵母工業、仔ウシ小腸由来、以下CIAPと略記)を使用した。酵素反応液に加える酵素液(精製PG-PLCサンプル)は0.05U/ml, 1.50U/mg-protein以上のものを使用し、基質消費が10%程度となるように適宜希釈した。
[Example 3: Analysis of various characteristics of PG-PLC]
(experimental method)
Except for the substrate specificity test, the enzyme activity was measured by the method described in Example 1. In the substrate specificity test, 1-palmitoyl-2-oleoyl-sn-glycello-3-phopsphoglycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycello-3-phopsphocholine (POPC), 1-palmit as substrates. 2-oleoyl-sn-glycello-3-phopsphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-gycero-3-phopsphoinositol (POPI), 1-palmitoyl-2-oleoyl-sn- POPS), 1-palmitoyl-2-oleoyl-sn-glycello-3-phopsphate (POPA) cardiolipin (CL), L-α-phospatidyglycerol (PG) were used. In addition, BIOMOL Green (registered trademark) Reagent (hereinafter abbreviated as BG) and Alkaline phosphatase (Oriental Yeast Co., Ltd., derived from calf small intestine, hereinafter abbreviated as CIAP) were used. The enzyme solution (purified PG-PLC sample) to be added to the enzyme reaction solution was 0.05 U / ml, 1.50 U / mg-protein or more, and was appropriately diluted so that the substrate consumption was about 10%.
1)酵素反応におけるpH,温度の影響、pHおよび温度安定性試験
 酢酸-酢酸ナトリウム(pH4.0~5.5,以下Ac-Naと略す)、MES-NaO(pH5.5~7.0)、Tris-HCl(pH7.0~9.0)を使用する温度でpH調整し、酵素反応あるいは酵素に及ぼすpHおよび温度(図3-1、図3-2)の影響と安定性(図4-1、図4-2)について調べた。
1) Effect of pH and temperature on enzyme reaction, pH and temperature stability test Sodium acetate-sodium acetate (pH 4.0-5.5, hereinafter abbreviated as Ac-Na), MES-NaO (pH 5.5-7.0) , Tris-HCl (pH 7.0-9.0) at a temperature adjusted to the effect of pH and temperature (FIGS. 3-1 and 3-2) on the enzyme reaction or enzyme and stability (FIG. 4). -1, Fig. 4-2) was investigated.
2)PLC活性に対する金属イオン,界面活性剤の影響 Tris-HCl(pH7.0),37℃の条件下で金属イオン(図5-1),界面活性剤(図5-2)の影響を調べた。 2) Effect of metal ion and surfactant on PLC activity Investigate the effect of metal ion (Fig. 5-1) and surfactant (Fig. 5-2) under the conditions of Tris-HCl (pH 7.0) and 37 ° C. rice field.
3)PLCの基質特異性試験
 各基質とPLCとを反応させ、各基質に対する酵素活性を調べた。酵素反応により生じるグリセロールリン酸など対応するリン酸モノエステルを脱リン酸化酵素であるCIAPにより遊離した無機リン酸(Pi)を定量した。ただし、POPAは脱リン酸化酵素処理せず、そのままPG-PLCによって遊離される無機リン酸(Pi)を定量した。無機リン酸の定量は、BG試薬を使用して取扱説明書に従い、620nmにおける吸光度(A620)を測定して行った。
3) Substrate specificity test of PLC Each substrate was reacted with PLC and the enzyme activity for each substrate was examined. Inorganic phosphoric acid (Pi) liberated by CIAP, which is a dephosphorylating enzyme, was quantified from the corresponding phosphoric acid monoester such as glycerol phosphoric acid generated by the enzymatic reaction. However, POPA was not treated with dephosphorylating enzyme, and the inorganic phosphoric acid (Pi) released by PG-PLC was quantified as it was. The quantification of inorganic phosphoric acid was carried out by measuring the absorbance (A 620 ) at 620 nm according to the instruction manual using the BG reagent.
(結果と考察)
 以下に示す各データは、特に記載がない場合は全て3回試験した結果を平均値±標準偏差(SD)で示す。
pH、温度の酵素反応と酵素の安定性への影響
 各pHにおけるPLC活性(37℃)を調べたところ、弱酸性域pH5.0~pH6.0で高い活性を示し、MES-NaOH(pH6.0)で最も高い活性を示した(図3-1)。pH6.0で各温度における活性を調べたところ55℃で最大活性を示し、20℃では約30%、70℃では約40%の相対活性を示した(図3-2)。基質調製に使用したTriton(登録商標) X-100の曇点は63℃であることから60℃以下においてはPLC活性の特徴を示していると考えられる。
(Results and discussion)
Unless otherwise specified, the data shown below show the results of three tests as mean ± standard deviation (SD).
Effect of pH and temperature on enzyme reaction and enzyme stability When PLC activity (37 ° C) at each pH was examined, it showed high activity in the weakly acidic range pH 5.0 to pH 6.0, and MES-NaOH (pH 6. It showed the highest activity in 0) (Fig. 3-1). When the activity at each temperature was examined at pH 6.0, the maximum activity was shown at 55 ° C, and the relative activity was about 30% at 20 ° C and about 40% at 70 ° C (Fig. 3-2). Since the cloud point of Triton® X-100 used for substrate preparation is 63 ° C, it is considered that the PLC activity is characteristic at 60 ° C or lower.
 図4-1に示すようにpH4.0からpH9.0という広範囲でpHが安定であった。また温度安定性試験では、図4-2に示すように50℃まで安定であり、60℃で活性が半減した。 As shown in FIG. 4-1 the pH was stable in a wide range from pH 4.0 to pH 9.0. In the temperature stability test, as shown in FIG. 4-2, the temperature was stable up to 50 ° C., and the activity was halved at 60 ° C.
金属イオンの影響
 図5-1に示すように、EDTAの存在下でも活性を示し、Ca2+によってわずかに活性が向上し、Al3+の存在下で約1.3倍活性が向上した。また、図5-2に示すように試験した条件においてはTriton(登録商標) X-100が最も良好な結果を示した。
Effect of metal ions As shown in Fig. 5-1 it showed activity even in the presence of EDTA, the activity was slightly improved by Ca 2+ , and the activity was improved by about 1.3 times in the presence of Al 3+ . In addition, Triton® X-100 showed the best results under the conditions tested as shown in FIG. 5-2.
基質特異性
 図6に示すようにPC、PE、CLには全く活性を示さなかった他、PAにも全く活性を示さず(データ示さず)、PG以外にはほとんど作用しなかったことから本酵素はPG特異的PLCであると判断できる。
Substrate specificity As shown in Fig. 6, it showed no activity on PC, PE, and CL, showed no activity on PA (data not shown), and had almost no effect on anything other than PG. It can be determined that the enzyme is a PG-specific PLC.
[実施例4:PG-PLCの配列]
(実験方法)
ペプチドの配列決定
 SDS-PAGEによりPG-PLCを泳動後、バンドを切り出し、株式会社アンテグラルにてトリプシン処理およびLC-MS解析を行い、アミノ酸配列を解析した。LC-MS解析により得られたペプチドの配列、およびこれらのペプチド配列と合致するデータベースから得られたタンパク質配列を図7に示す。グレーハイライト部分が本酵素のペプチド配列と一致した配列である。計11本のペプチド配列が解読され、それらすべてのペプチドのアミノ酸配列がWP_037369513.1として公共データベースに登録されているAmycolatopsis orientalis由来メタロホスホエステラーゼ中の配列と一致した。
[Example 4: PG-PLC sequence]
(experimental method)
Peptide sequence determination After electrophoresis of PG-PLC by SDS-PAGE, a band was excised, and trypsin treatment and LC-MS analysis were performed at Antegral Co., Ltd. to analyze the amino acid sequence. The peptide sequences obtained by LC-MS analysis and the protein sequences obtained from the database matching these peptide sequences are shown in FIG. The gray highlight part is the sequence that matches the peptide sequence of this enzyme. A total of 11 peptide sequences were decoded, and the amino acid sequences of all of these peptides matched the sequences in the Amycolatopsis orientalis-derived metallophosphosterase registered in the public database as WP_037369513.1.
 アミノ酸配列番号6から配列番号5のフォワードプライマーを、アミノ酸配列番号8から配列番号7のリバースプライマーを設計し、PCRを行った。PCR条件は下記の通りである。
94℃、1分→(98℃、10秒→55℃、15秒→68℃、45秒)を25サイクル、68℃、5分
PCRによって得られた増幅断片をクローニングベクターpMD20(タカラバイオ)に連結し、大腸菌DH5アルファを形質転換、培養し、組換えプラスミドを回収、精製した。それをDNAシーケンサーで解析することで本酵素遺伝子の一部の塩基配列(配列番号9,10)を解読した。次に、5’、3’未解読領域を解読するため配列番号11,12のプライマーセットによりインバースPCR(iPCR)を行った。iPCR条件は下記の通りである。
94℃、1分→(98℃、10秒→57℃、15秒→68℃、2.5分)を25サイクル、68℃、5分
iPCR反応液をカラム精製し、シーケンスをした。解析結果から、5’、3’未解読領域を解読し、本酵素遺伝子の全長配列(配列番号1、2の配列に、配列番号3、4のシグナル配列が付与されたもの)を解読し、図8に示すアミノ酸配列を得た。図8に示すアミノ酸配列の内、25アミノ酸からなるシグナル配列を配列番号4、その塩基配列を配列番号3として示し、514アミノ酸からなる成熟タンパク質のアミノ酸配列を配列番号2、その塩基配列を配列番号1として示す。
Forward primers of amino acid SEQ ID NO: 6 to SEQ ID NO: 5 and reverse primers of amino acid SEQ ID NO: 8 to SEQ ID NO: 7 were designed and PCR was performed. The PCR conditions are as follows.
The amplified fragment obtained by PCR at 94 ° C. for 1 minute → (98 ° C., 10 seconds → 55 ° C., 15 seconds → 68 ° C., 45 seconds) for 25 cycles and 68 ° C. for 5 minutes was used as a cloning vector pMD20 (Takara Bio). After ligation, Escherichia coli DH5alpha was transformed and cultured, and the recombinant plasmid was recovered and purified. By analyzing it with a DNA sequencer, the base sequence of a part of this enzyme gene (SEQ ID NOs: 9 and 10) was decoded. Next, inverse PCR (iPCR) was performed using the primer sets of SEQ ID NOs: 11 and 12 to decode the 5'and 3'undeciphered regions. The iPCR conditions are as follows.
The iPCR reaction solution was column-purified at 94 ° C. for 1 minute → (98 ° C., 10 seconds → 57 ° C., 15 seconds → 68 ° C., 2.5 minutes) for 25 cycles, 68 ° C. for 5 minutes, and sequenced. From the analysis results, the 5'and 3'undeciphered regions were decoded, and the full-length sequence of this enzyme gene (the sequence of SEQ ID NOs: 1 and 2 with the signal sequences of SEQ ID NOs: 3 and 4 added) was decoded. The amino acid sequence shown in FIG. 8 was obtained. Of the amino acid sequences shown in FIG. 8, the signal sequence consisting of 25 amino acids is shown as SEQ ID NO: 4, the base sequence thereof is shown as SEQ ID NO: 3, the amino acid sequence of the mature protein consisting of 514 amino acids is shown in SEQ ID NO: 2, and the base sequence thereof is shown in SEQ ID NO: 2. Shown as 1.
[実施例5:異種組換えPG-PLCの製造および大腸菌PGの分解]
 実施例4で得られた、配列番号1に記載のPG-PLCをコードするDNAを、配列番号13、14のプライマーを用いてPCR増幅し、ゲル電気泳動し、増幅バンドを切り出し精製した。PCR条件は下記の通りである。
94℃、1分→(98℃、10秒→64℃、15秒→68℃、1分15秒)を25サイクル、68℃、5分
同様にpET-24a(+)をHindIII消化後にゲル電気泳動し、切り出し精製した。両者を混合し、Infusion Cloningキット(タカラバイオ)を用いてpET-24a(+)のHindIIIサイトに挿入し、本発明のポリペプチドをコードするポリヌクレオチドを含むPG-PLC/pET-24a(+)を作成した。そのため、PG-PLC成熟配列のN末端側にはマルチクローニングサイト(MCS)由来のT7エピトープを含むMASMTGGQQMGRGSQFQLRRQからなる21アミノ酸が付加した状態である。
[Example 5: Production of heterologous recombinant PG-PLC and decomposition of Escherichia coli PG]
The DNA encoding PG-PLC set forth in SEQ ID NO: 1 obtained in Example 4 was PCR amplified using the primers of SEQ ID NOs: 13 and 14, gel electrophoresis was performed, and the amplified band was excised and purified. The PCR conditions are as follows.
94 ° C, 1 minute → (98 ° C, 10 seconds → 64 ° C, 15 seconds → 68 ° C, 1 minute 15 seconds) for 25 cycles, 68 ° C, 5 minutes, pET-24a (+) after HindIII digestion, gel electrophoresis It was run, cut out and purified. The two are mixed and inserted into the HindIII site of pET-24a (+) using the Infusion Cloning Kit (Takara Bio), PG-PLC / pET-24a (+) containing the polynucleotide encoding the polypeptide of the invention. It was created. Therefore, 21 amino acids consisting of MASMTGGGQQMGRGSQFQLRRQ containing the T7 epitope derived from the multicloning site (MCS) are added to the N-terminal side of the PG-PLC mature sequence.
 PG-PLC/pET-24a(+)を、Zip Competent Cell BL21(DE3)(バイオダイナミクス、品番:DS255)に形質転換し、終濃度50μg/mLカナマイシンを含むLB寒天培地上で培養し、PG-PLC/pET-24a(+)/BL21(DE3)を得た。これを、同じくカナマイシンを50μg/mLの終濃度で含むOvernight express instant TB medium
 5 mL(液体培地)に植菌し、20℃あるいは30℃で1日間培養し、PG-PLCを発現させた。20℃で培養した培養液を遠心分離して培養上清を得、また、30℃で培養した培養液を遠心分離してPG-PLC/pET-24a(+)/BL21(DE3)菌体と培養上清を回収し得られた菌体を緩衝液に懸濁して超音波破砕し、これを遠心分離して上清を得、粗タンパク質液(CFE)とした。
PG-PLC / pET-24a (+) was transformed into Zip Competent Cell BL21 (DE3) (biodynamics, product number: DS255), cultured on LB agar medium containing a final concentration of 50 μg / mL kanamycin, and PG- PLC / pET-24a (+) / BL21 (DE3) was obtained. It also contains kanamycin at a final concentration of 50 μg / mL Overnight express instant TB medium.
The cells were inoculated into 5 mL (liquid medium) and cultured at 20 ° C. or 30 ° C. for 1 day to express PG-PLC. Centrifuge the culture broth cultured at 20 ° C to obtain a culture supernatant, and centrifuge the culture cultivated at 30 ° C to obtain PG-PLC / pET-24a (+) / BL21 (DE3) cells. The cells obtained by collecting the culture supernatant were suspended in a buffer solution and crushed by ultrasonic waves, and the cells were centrifuged to obtain a supernatant, which was used as a crude protein solution (CFE).
 空のpET-24a(+)ベクターで形質転換し、培養した組換えE.coli BL21(DE3)を遠心分離により回収し、超音波破砕してE.coli破砕液を得た。この破砕液に、20℃の培養上清、または30℃のCFEを混合し、実施例1に記載の加水分解能の測定方法によりPG-PLCの酵素活性を測定した。そうしたところ、いずれの反応液において時間依存的にG3Pの濃度が上昇した(図9-1、図9-2)。これにより、E.coli破砕液に含まれるPGが当該PG-PLCの作用により加水分解され、グリセロールリン酸が生成したことが確認された。この結果は、大腸菌という大量に増殖可能なバイオマスからでもグリセロールリン酸が得られることを示す。 Recombinant E. cultivated after transformation with an empty pET-24a (+) vector. The colli BL21 (DE3) was recovered by centrifugation and crushed by ultrasonic waves to obtain E.I. A colli crushed solution was obtained. The crushed solution was mixed with a culture supernatant at 20 ° C. or CFE at 30 ° C., and the enzyme activity of PG-PLC was measured by the method for measuring the water resolution described in Example 1. As a result, the concentration of G3P increased in each of the reaction solutions in a time-dependent manner (FIGS. 9-1 and 9-2). As a result, E. It was confirmed that the PG contained in the colli crushed solution was hydrolyzed by the action of the PG-PLC to produce glycerol phosphate. This result indicates that glycerol phosphate can be obtained from Escherichia coli, a biomass that can grow in large quantities.
[実施例6:触媒(活性)中心部位および基質結合部位の推定]
 PG-PLCの触媒(活性)中心部位および基質結合部位を推定するために、データベース上の構造および配列が既存のタンパク質をもとにPG-PLCの3次元的(立体)構造を予測し、これに基づいて酵素の触媒(活性)中心部位および基質結合部位となるアミノ酸を推定した。
[Example 6: Estimation of catalyst (active) central site and substrate binding site]
In order to estimate the catalytic (active) center and substrate binding sites of PG-PLC, the structures and sequences on the database predict the three-dimensional (stereo) structure of PG-PLC based on existing proteins. Based on the above, the amino acids that serve as the catalytic (active) central site and substrate binding site of the enzyme were estimated.
 まず、タンパク質のドメイン・モチーフのデータベースであるPfamおよびタンパク質の立体構造・ファミリーのデータベースであるCATHを用いて、PG-PLCが属するタンパク質ファミリーを調べた。そうしたところ、いずれのデータベースを用いても、PG-PLCは金属イオン要求性ホスホエステラーゼに属すると推定され、原核生物由来の亜鉛依存(要求)性ホスホリパーゼCシグネチャー(H-Y-x-[GT]-D-[LIVMAF]-[DNSH]-x-P-x-H-[PA]-x-N)に属する配列を5つ有していた。さらに、このファミリーに属するタンパク質の3次元的(立体)構造を比較したところ、構造が類似していた。これらの結果から、PG-PLCと金属イオン要求性ホスホエステラーゼとでは3次元的(立体)構造に類似性があり、そのため、金属イオン要求性ホスホエステラーゼをモデルにしてPG-PLCの構造が推定できると考えた。 First, the protein family to which PG-PLC belongs was investigated using Pfam, which is a database of protein domain motifs, and CATH, which is a database of protein conformations and families. Then, using any of the databases, PG-PLC was presumed to belong to the metal ion-requiring phospholipase, and the prokaryotic zinc-dependent (requiring) phospholipase C signature (HYx- [GT]. -D- [LIVMAF]-[DNSH] -x-P-x-H- [PA] -x-N) had five sequences. Furthermore, when the three-dimensional (three-dimensional) structures of the proteins belonging to this family were compared, the structures were similar. From these results, the three-dimensional (three-dimensional) structure of PG-PLC and the metal ion-requiring phosphoesterase are similar, and therefore the structure of PG-PLC can be estimated using the metal ion-requiring phosphoesterase as a model. I thought.
 PG-PLCの構造を予想するために、タンパク質立体構造のデータベースであるSwissModelを用いてアミノ酸配列の類似した3次元的(立体)構造既知のタンパク質を調べた。そうしたところ、2xmoという金属イオン要求性ホスホエステラーゼが見出され、2xmoの立体構造に基づいてPG-PLCの立体構造モデルを得た。2xmoの立体構造との比較から、PG-PLCにおいてリン酸と相互作用する活性中心残基を推定したところ、D41/H43/D103/N191/H364/H407/H409のヒスチジン(H)およびアスパラギン酸(D)が活性中心残基であると予想され、中でもリン酸との距離が近いH43およびH409が触媒残基であると推定した。 In order to predict the structure of PG-PLC, a protein having a similar three-dimensional (three-dimensional) structure in amino acid sequence was investigated using SwissModel, which is a database of protein three-dimensional structure. Then, a metal ion-requiring phosphoesterase called 2xmo was found, and a three-dimensional structure model of PG-PLC was obtained based on the three-dimensional structure of 2xmo. When the active center residue that interacts with phosphoric acid in PG-PLC was estimated from the comparison with the three-dimensional structure of 2xmo, histidine (H) and aspartic acid (H) and aspartic acid of D41 / H43 / D103 / N191 / H364 / H407 / H409 ( It was estimated that D) was the active center residue, and among them, H43 and H409, which are close to the phosphate, were the catalytic residues.
 次に、基質結合部位を予想するために、PG-PLCの立体構造モデルと、構造既知の4種類のPLCとを比較した。そうしたところ、いずれのPLCもタンパク質の中央付近に酸性アミノ酸の多いポケットを有し、このポケットに基質が結合すると考えられた。さらに、構造既知のPG非特異的PLC(例えば、PC特異的PLCなど)における基質の位置をPG-PLCにあてはめ、基質と接触するアミノ酸残基を推定したところ、図10に得られるアミノ酸残基が基質と接触し、基質結合部位に当たると推定できた(配列番号2で表されるアミノ酸配列の、40T~75T、100T~120L、184P~197V、205P~227K、266F、271L、296Y~297Y、310L~322S、363S~366T、378R~384R、406G~409H、および432S~435D)。中でも、非極性アミノ酸である56L/59FVG61/204IPGI207/209AW210/316GGFA320は、PGのアシル基に結合するアミノ酸残基であると考えられる。 Next, in order to predict the substrate binding site, the three-dimensional structure model of PG-PLC was compared with four types of PLCs with known structures. As a result, it was considered that each PLC had a pocket rich in acidic amino acids near the center of the protein, and the substrate was bound to this pocket. Furthermore, when the position of the substrate in a PG non-specific PLC (for example, PC-specific PLC) having a known structure was applied to PG-PLC and the amino acid residues in contact with the substrate were estimated, the amino acid residues obtained in FIG. 10 were obtained. Was in contact with the substrate and was estimated to hit the substrate binding site (40T to 75T, 100T to 120L, 184P to 197V, 205P to 227K, 266F, 271L, 296Y to 297Y of the amino acid sequence represented by SEQ ID NO: 2). 310L-322S, 363S-366T, 378R-384R, 406G-409H, and 432S-435D). Among them, 56L / 59FVG61 / 204IPGI207 / 209AW210 / 316GGFA320, which are non-polar amino acids, are considered to be amino acid residues that bind to the acyl group of PG.
 さらに、これらの基質結合部位、活性中心アミノ酸残基、および触媒残基が放線菌間で保存されている調べるため、配列番号2の部分配列について、種々の放線菌間でBLASTを用いて配列を比較した。そうしたところ、配列番号2の35~488位のアミノ酸(AFV・・・SYN;配列番号16)において、25種を超える放線菌間で高い配列の相同性と類似性が見られ、基質結合部位、活性中心アミノ酸残基、および触媒残基が少なくとも放線菌間で種を超えて保存されていることが示された。また、Pfamによる解析では配列番号2の36~409位のアミノ酸がMetallophosモチーフ(Pfam
 accession ID: PF00149)として帰属された。
Furthermore, in order to investigate that these substrate binding sites, active central amino acid residues, and catalytic residues are conserved among actinomycetes, the partial sequence of SEQ ID NO: 2 was sequenced among various actinomycetes using BLAST. Compared. As a result, in the amino acids at positions 35 to 488 of SEQ ID NO: 2 (AFV ... SYN; SEQ ID NO: 16), high sequence homology and similarity were observed among more than 25 types of actinomycetes, and the substrate binding site, It was shown that the active central amino acid residue, and the catalytic residue, are conserved across species at least among the actinomycetes. In addition, in the analysis by Pfam, the amino acids at positions 36 to 409 of SEQ ID NO: 2 are the Metallophos motif (Pfam).
It was assigned as an accession ID: PF00149).
配列番号1:Amycolatopsis sp.由来のPG-PLCの塩基配列
配列番号2:Amycolatopsis sp.由来のPG-PLCの成熟タンパク質配列
配列番号3:Amycolatopsis sp.におけるPG-PLCのシグナル配列の塩基配列
配列番号4:Amycolatopsis sp.におけるPG-PLCのシグナル配列配列番号5:PG-PLCの配列特定のためのフォワードプライマー
配列番号6:配列番号5のプライマーに対応するアミノ酸配列
配列番号7:PG-PLCの配列特定のためのリバースプライマー
配列番号8:配列番号7のプライマーに対応するアミノ酸配列
配列番号9:特定されたPG-PLCの部分塩基配列
配列番号10:特定されたPG-PLCの部分アミノ酸配列
配列番号11:PG-PLCの配列特定のためのiPCR用プライマー1
配列番号12:PG-PLCの配列特定のためのiPCR用プライマー2
配列番号13:サブクローニングのためのフォワードプライマー
配列番号14:サブクローニングのためのリバースプライマー
配列番号15:大腸菌発現の際にPG-PLCのN末端に付与したMCS由来のT7エピトープを含むアミノ酸配列
配列番号16:PG-PLC中の種間で保存性が高いことが確認された配列
SEQ ID NO: 1: Amycolatopsis sp. Nucleobase sequence of PG-PLC from which it was derived SEQ ID NO: 2: Amycolatopsis sp. Derived PG-PLC mature protein sequence SEQ ID NO: 3: Amycolatopsis sp. Nucleobase sequence of the signal sequence of PG-PLC in FIG. Signal sequence of PG-PLC in 5: Forward primer for sequence identification of PG-PLC SEQ ID NO: 6: Amino acid sequence corresponding to the primer of SEQ ID NO: 5 SEQ ID NO: 7: Reverse for sequence identification of PG-PLC Primer SEQ ID NO: 8: Amino acid sequence corresponding to the primer of SEQ ID NO: 7 SEQ ID NO: 9: Partial base sequence of the identified PG-PLC SEQ ID NO: 10: Partial amino acid sequence of the identified PG-PLC SEQ ID NO: 11: PG-PLC Primer for iPCR 1 for sequence identification of
SEQ ID NO: 12: Primer 2 for iPCR for sequence identification of PG-PLC
SEQ ID NO: 13: Forward primer for subcloning SEQ ID NO: 14: Reverse primer for subcloning SEQ ID NO: 15: Amino acid SEQ ID NO: 16 containing the MCS-derived T7 epitope imparted to the N-terminal of PG-PLC during E. coli expression. : Sequence confirmed to be highly conserved among species in PG-PLC

Claims (14)

  1.  ホスファチジルグリセロールに対して基質特異的な加水分解能を有する、ホスホリパーゼCポリペプチド。 Phospholipase C polypeptide having substrate-specific water resolution for phosphatidylglycerol.
  2.  (i)配列番号2で表されるアミノ酸配列の、56L,59FVG61,204IPGI207,209AW210,および316GGFA320に相当するアミノ酸、および/または
     (ii)配列番号2で表されるアミノ酸配列の、H43,およびH409に相当するアミノ酸を有する、請求項1に記載のポリペプチド。
    (I) Amino acids corresponding to 56L, 59FVG61, 204IPGI207, 209AW210, and 316GGFA320 of the amino acid sequence represented by SEQ ID NO: 2 and / or (ii) H43 and H409 of the amino acid sequence represented by SEQ ID NO: 2. The polypeptide according to claim 1, which has an amino acid corresponding to.
  3.  配列番号2で表されるアミノ酸配列の、D41、D103、N191、H364、およびH407に相当するアミノ酸をさらに有する、請求項2に記載のポリペプチド。 The polypeptide according to claim 2, further comprising an amino acid corresponding to D41, D103, N191, H364, and H407 of the amino acid sequence represented by SEQ ID NO: 2.
  4.  配列番号2で表されるアミノ酸配列の、40T~75T、100T~120L、184P~197V、205P~227K、266F、271L、296Y~297Y、310L~322S、363S~366T、378R~384R、406G~409H、および432S~435Dに相当するアミノ酸をさらに含む、請求項3に記載のポリペプチド。 The amino acid sequences represented by SEQ ID NO: 2 are 40T to 75T, 100T to 120L, 184P to 197V, 205P to 227K, 266F, 271L, 296Y to 297Y, 310L to 322S, 363S to 366T, 378R to 384R, 406G to 409H. , And the polypeptide of claim 3, further comprising an amino acid corresponding to 432S-435D.
  5.  ホスファチジルグリセロールの加水分解能を有するホスホリパーゼCであって、以下の(a)、(b)または(c)であるポリペプチド。
    (a)配列番号2で表されるアミノ酸配列を含むポリペプチド
    (b)配列番号2で表されるアミノ酸配列において1もしくは複数個のアミノ酸が欠失、置換または付与されたアミノ酸配列を含むポリペプチド
    (c)配列番号2で表されるアミノ酸配列と少なくとも約80%の同一性を有するアミノ酸配列を含むポリペプチド
    A phospholipase C having a phosphatidylglycerol hydrolysis resolution, which is the following polypeptide (a), (b) or (c).
    (A) Polypeptide containing the amino acid sequence represented by SEQ ID NO: 2 (b) Polypeptide containing an amino acid sequence in which one or more amino acids are deleted, substituted or imparted in the amino acid sequence represented by SEQ ID NO: 2. (C) A polypeptide containing an amino acid sequence having at least about 80% identity with the amino acid sequence represented by SEQ ID NO: 2.
  6.  標識をさらに含む、請求項1~5のいずれかに記載のポリペプチド。 The polypeptide according to any one of claims 1 to 5, further comprising a label.
  7.  放線菌(Actinomycetales)目に属する微生物に由来する、請求項1~6のいずれか一項に記載のポリペプチド。 The polypeptide according to any one of claims 1 to 6, which is derived from a microorganism belonging to the order Actinomycetales.
  8.  ホスファチジルグリセロールに対して基質特異的な加水分解能を有するホスホリパーゼCポリペプチドをコードする、以下の(a)~(f)のいずれかであるポリヌクレオチド。
    (a)配列番号1で表される塩基配列を含むポリヌクレオチド
    (b)配列番号1で表される塩基配列と相補的な塩基配列を含むポリヌクレオチド
    (c)(b)のポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチド
    (d)配列番号1で表される塩基配列において1もしくは複数個の塩基が欠失、置換または付与された塩基配列を含むポリヌクレオチド
    (e)配列番号1で表される塩基配列と同義なコドンを含む塩基配列を含むポリヌクレオチド
    (f)配列番号1で表される塩基配列と少なくとも約80%の同一性を有する塩基配列を含むポリヌクレオチド
    A polynucleotide according to any one of (a) to (f) below, which encodes a phospholipase C polypeptide having substrate-specific hydrolytic resolution with respect to phosphatidylglycerol.
    (A) Nucleotide containing the base sequence represented by SEQ ID NO: 1 (b) Polynucleotide containing a base sequence complementary to the base sequence represented by SEQ ID NO: 1 (c) Polynucleotides and stringents of (b) Nucleotide (d) that hybridizes under various conditions In the nucleotide sequence represented by SEQ ID NO: 1, one or more bases are deleted, substituted, or imparted with the nucleotide sequence (e). A polynucleotide containing a base sequence having a codon synonymous with the represented base sequence (f) A polynucleotide containing a base sequence having at least about 80% identity with the base sequence represented by SEQ ID NO: 1.
  9.  請求項8に記載のポリヌクレオチドを含む組換えベクター。 A recombinant vector containing the polynucleotide according to claim 8.
  10.  請求項9に記載の組換えベクターを含む形質転換体。 A transformant containing the recombinant vector according to claim 9.
  11.  ホスファチジルグリセロールに対して基質特異的な加水分解能有するポリペプチドの製造方法であって、請求項8に記載のポリヌクレオチドを含む形質転換体から該ポリペプチドを生産する工程を含む、製造方法。 A method for producing a polypeptide having a substrate-specific hydrolysis resolution with respect to phosphatidylglycerol, comprising a step of producing the polypeptide from a transformant containing the polynucleotide according to claim 8.
  12.  請求項1~7のいずれか一項に記載のポリペプチドを用いる、ホスファチジルグリセロールの分解方法。 A method for decomposing phosphatidylglycerol using the polypeptide according to any one of claims 1 to 7.
  13.  請求項1~7のいずれか一項に記載のポリペプチドを用いて、ホスファチジルグリセロールからsn-グリセロール-1-リン酸、sn-グリセロール-3-リン酸、および/またはジアシルグリセリドを製造する方法。 A method for producing sn-glycerol-1-phosphate, sn-glycerol-3-phosphate, and / or diacylglyceride from phosphatidylglycerol using the polypeptide according to any one of claims 1 to 7.
  14.  請求項1~7のいずれか一項に記載のポリペプチドを含有する、ホスファチジルグリセロールを分解するための組成物。 A composition for decomposing phosphatidylglycerol containing the polypeptide according to any one of claims 1 to 7.
PCT/JP2021/032497 2020-09-04 2021-09-03 Novel enzyme specific to phosphatidylglycerol WO2022050387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020149237A JP6857927B1 (en) 2020-09-04 2020-09-04 Phosphatidylglycerol-specific novel enzyme
JP2020-149237 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022050387A1 true WO2022050387A1 (en) 2022-03-10

Family

ID=75378029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032497 WO2022050387A1 (en) 2020-09-04 2021-09-03 Novel enzyme specific to phosphatidylglycerol

Country Status (2)

Country Link
JP (2) JP6857927B1 (en)
WO (1) WO2022050387A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955893A (en) * 1972-10-07 1974-05-30
JP2005328781A (en) * 2004-05-21 2005-12-02 Nagase Chemtex Corp New phospholipase c
JP2006223119A (en) * 2005-02-15 2006-08-31 Sankyo Lifetech Co Ltd New phospholipase c
JP2011010608A (en) * 2009-07-02 2011-01-20 Fukushima Univ Phospholipase c and method for decomposing phospholipid using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4955893A (en) * 1972-10-07 1974-05-30
JP2005328781A (en) * 2004-05-21 2005-12-02 Nagase Chemtex Corp New phospholipase c
JP2006223119A (en) * 2005-02-15 2006-08-31 Sankyo Lifetech Co Ltd New phospholipase c
JP2011010608A (en) * 2009-07-02 2011-01-20 Fukushima Univ Phospholipase c and method for decomposing phospholipid using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE PROTEIN 27 July 2019 (2019-07-27), ANONYMOUS: "TIGR03767 family metallophosphoesterase [Amycolatopsis orientalis]", XP055907608, retrieved from GENBANK Database accession no. WP_037369513 *
S̆IMOC̆KOVÁ MÁRIA, HOLIC̆ ROMAN, TAHOTNÁ DANA, PATTON-VOGT JANA, GRIAC̆ PETER: "Yeast Pgc1p (YPL206c) Controls the Amount of Phosphatidylglycerol via a Phospholipase C-type Degradation Mechanism", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 283, no. 25, 1 June 2008 (2008-06-01), US , pages 17107 - 17115, XP055907607, ISSN: 0021-9258, DOI: 10.1074/jbc.M800868200 *

Also Published As

Publication number Publication date
JP6857927B1 (en) 2021-04-14
JP2022043776A (en) 2022-03-16
JP2022043976A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US10870840B2 (en) Modified lipase and use thereof
Chow et al. The metagenome-derived enzymes LipS and LipT increase the diversity of known lipases
Fu et al. Molecular cloning and characterization of a new cold-active esterase from a deep-sea metagenomic library
Kim et al. Screening and its potential application of lipolytic activity from a marine environment: characterization of a novel esterase from Yarrowia lipolytica CL180
EP2601291A1 (en) A novel glucose oxidase
Park et al. A new esterase showing similarity to putative dienelactone hydrolase from a strict marine bacterium, Vibrio sp. GMD509
EP4282960A2 (en) Modified lipase and use thereof
US8975055B2 (en) Reduced-fat foodstuffs and cooking oils, and methods for making same
WO2022050387A1 (en) Novel enzyme specific to phosphatidylglycerol
Saito Reminiscence of phospholipase B in Penicillium notatum
Fujino et al. Purification and characterization of phospholipase B from Candida utilis
EP3325630B1 (en) Compositions and methods for oil degumming
Hameed et al. Idiomarina tyrosinivorans sp. nov., isolated from estuarine surface water
JP2021136896A (en) Phospholipase d, and method for quantifying ethanolamine type plasmalogen
Sugimori et al. Purification, characterization, molecular cloning, and extracellular production of a novel bacterial glycerophosphocholine cholinephosphodiesterase from Streptomyces sanglieri
JP5875139B2 (en) Method for producing sphingomyelinase-containing composition
US9441018B2 (en) Gene from tidal flat metagenome and a novel protein displaying both phospholipase and lipase activities
JP2017060424A (en) Lipases, polynucleotides, recombinant vectors, transformants, methods of producing lipase, methods of hydrolyzing glycerolipid and methods of producing glycerolipid hydrolysate
WO2021193749A1 (en) Protein having peptidoglycan-degrading activity and dna encoding said protein, microorganism-degrading formulation, and method for microbial decomposition
JP2022139042A (en) Phosphatidylglycerol quantification method and kit
JP6063207B2 (en) Enzyme having hydrolysis action on glycerol-3-phosphodiester such as glycerol-3-phosphocholine (GPC) and method for producing the same
WO2012105565A1 (en) Enzyme and method of production therefor
JP2023031123A (en) Method for quantifying phospholipase D and choline-type plasmalogen
Karakaş Alanine scanning on the active site of a novel esterase
JPWO2013145289A1 (en) Cleaning agent containing lysophospholipid for washing blood stain and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864439

Country of ref document: EP

Kind code of ref document: A1