WO2022050360A1 - Metal-clad laminate having protected edge, method for producing printed wiring board, and method for producing intermediate for printed wiring boards - Google Patents

Metal-clad laminate having protected edge, method for producing printed wiring board, and method for producing intermediate for printed wiring boards Download PDF

Info

Publication number
WO2022050360A1
WO2022050360A1 PCT/JP2021/032338 JP2021032338W WO2022050360A1 WO 2022050360 A1 WO2022050360 A1 WO 2022050360A1 JP 2021032338 W JP2021032338 W JP 2021032338W WO 2022050360 A1 WO2022050360 A1 WO 2022050360A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
clad laminate
pressure
sensitive adhesive
adhesive layer
Prior art date
Application number
PCT/JP2021/032338
Other languages
French (fr)
Japanese (ja)
Inventor
徳之 内田
良一 渡邊
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202180044112.5A priority Critical patent/CN115868254A/en
Priority to JP2021568399A priority patent/JPWO2022050360A1/ja
Priority to KR1020227032796A priority patent/KR20230058589A/en
Publication of WO2022050360A1 publication Critical patent/WO2022050360A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/28Metal sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern

Definitions

  • the present invention relates to a method for manufacturing an end-protected metal-clad laminate, a printed wiring board, and a method for manufacturing an intermediate for a printed wiring board.
  • the adhesive tape is also used as a process material in the manufacturing process of electronic devices.
  • the adhesive tape is used to facilitate handling and prevent damage. It is used.
  • these adhesives and adhesive tapes are required to have functions such as heat resistance, thermal conductivity, and impact resistance depending on the environment in which they are used (for example, Patent Documents 1 to 3). ).
  • JP-A-2015-052050 Japanese Patent Application Laid-Open No. 2015-021067 JP-A-2015-120876
  • a substrate such as a printed wiring board used in an electronic device is manufactured by forming a circuit in a copper foil portion of a copper-clad laminate (CCL) in which a copper foil and a resin layer are laminated.
  • CCL copper-clad laminate
  • substrates such as printed wiring boards have become thinner.
  • the thickness of a copper-clad laminate is 100 ⁇ m or less, especially around 30 to 40 ⁇ m, it is manufactured in the process of manufacturing the substrate from the copper-clad laminate.
  • the end of the copper-clad laminate is damaged during the process.
  • a strongly alkaline solution is used as the treatment liquid in the etching treatment, desmear treatment, and the like performed in the substrate manufacturing process. For this reason, there is a problem that the strong alkaline solution infiltrates the end portion of the copper-clad laminate, leading to damage to the end portion, or damage to the resin layer, causing a problem in the next process.
  • the present invention provides an edge-protected metal-clad laminate capable of suppressing damage to the edges of the metal-clad laminate and suppressing infiltration of the solution into the edges even when exposed to a strong alkaline solution.
  • the purpose is.
  • Another object of the present invention is to provide a method for manufacturing a printed wiring board and a method for manufacturing an intermediate for a printed wiring board.
  • the present invention is an end-protected metal-clad laminate in which the end of the metal-clad laminate is covered with a protective material.
  • the present invention will be described in detail below.
  • the end of the metal-clad laminate is covered with a protective material.
  • a protective material can suppress damage to the end of the metal-clad laminate, and even when exposed to a strong alkaline solution, the solution can penetrate into the end. It can be suppressed.
  • the fact that the end portion of the metal-clad laminate is covered with the protective material means that at least the end face of the metal-clad laminate is covered with the protective material, and if necessary, the end face of the metal-clad laminate.
  • the peripheral portion may also be covered with the above-mentioned protective material.
  • the end portion of the metal-clad laminate is covered with the protective material so as to extend from the front surface to the back surface of the metal-clad laminate. In such a case, since the protective material is less likely to come off, damage to the end portion of the metal-clad laminate can be further suppressed, and even when exposed to a strong alkaline solution, the end portion of the solution is exposed. Infiltration can be further suppressed.
  • the width of the portion where the protective material covers the front surface and the back surface of the metal-clad laminate (the end of the protective material and the end face of the metal-clad laminate).
  • the shortest distance) is not particularly limited, but the preferred lower limit is 1 mm, the preferred upper limit is 20 mm, the more preferred lower limit is 3 mm, and the more preferred upper limit is 10 mm.
  • the entire surface of one or more selected from the group consisting of the front surface and the back surface of the metal-clad laminate may be further covered with the protective material. ..
  • the protective material can be made more difficult to peel off.
  • the metal-clad laminate with end protection of the present invention at least a part of at least one of the four sides of the metal-clad laminate may be covered with the protective material.
  • the metal-clad laminate has two. It is preferable that the sides and above are covered with the protective material. It is more preferable that three or more sides of the metal-clad laminate are covered with the protective material, and it is further preferable that the four sides of the metal-clad laminate are covered with the protective material. Further, it is preferable that each side of the metal-clad laminate is covered with the protective material as a whole.
  • the end of the metal-clad laminate may be covered with one protective material per side, or may be covered with two or more protective materials per side. It may be broken. When it is covered with two or more protective materials per side, for example, it may be covered by laminating two protective materials per side, or it may be covered by laminating three protective materials. You may.
  • the end portion of the metal-clad laminate is covered with the protective material, and the covering form thereof is that the end-protected metal-clad laminate is visually observed or a microscope (for example, KEYENCE). It can be confirmed by observing using VHX-5000) manufactured by the same company.
  • the metal-clad laminate is not particularly limited, and a metal-clad laminate in which a metal layer and a resin layer are laminated, which is generally used for manufacturing a substrate such as a printed wiring board, can be used. More specifically, for example, a copper-clad laminate (CCL) in which a copper foil and a resin layer are laminated, an aluminum-clad laminate in which an aluminum foil and a resin layer are laminated, and the like can be used. When such a metal-clad laminate is used, it is preferable that at least the end of the resin layer is covered with the protective material among the ends of the metal-clad laminate.
  • the thickness of the metal-clad laminate is not particularly limited, but may be as thin as 100 ⁇ m or less. Even with such a thin thickness, the metal-clad laminate with end protection of the present invention can suppress damage to the end of the metal-clad laminate, and when exposed to a strong alkaline solution, it can be prevented from being damaged. Can also suppress the infiltration of the solution into the end portion.
  • the more preferable lower limit of the thickness of the metal-clad laminate is 10 ⁇ m
  • the more preferable upper limit is 60 ⁇ m
  • the particularly preferable lower limit is 30 ⁇ m
  • the particularly preferable upper limit is 40 ⁇ m.
  • the protective material is not particularly limited, but is preferably an adhesive tape having a base material and an adhesive layer laminated on one surface of the base material. Such an adhesive tape is used by being attached so that the adhesive layer is in contact with the end portion of the metal-clad laminate.
  • the base material is not particularly limited, and may be a metal base material or a resin base material.
  • the base material is the metal base material
  • the adhesive tape is attached to the end portion of the metal-clad laminate
  • the metal base material is exposed on the outermost surface.
  • metal plating is applied to such an end-protected metal-clad laminate and metal is deposited on the surfaces of the metal-clad laminate and the metal base material, the metal is well deposited. It is possible to form a metal plating layer that is difficult to peel off.
  • the base material is the metal base material
  • the metal base material is not easily damaged even when exposed to a strong alkaline solution, so that damage to the end portion of the metal-clad laminate can be further suppressed. And even when exposed to a strong alkaline solution, the infiltration of the solution into the end can be further suppressed.
  • the base material is the metal base material
  • the anchoring property between the metal base material and the pressure-sensitive adhesive layer is increased without using a resin layer as described later, so that the pressure-sensitive adhesive layer is increased. It becomes difficult for a strong alkaline solution to penetrate into the inside of the. This also makes it possible to further suppress damage to the end portion of the metal-clad laminate, and further suppress the infiltration of the solution into the end portion even when exposed to a strong alkaline solution.
  • the adhesive tape is folded back (bent) so as to extend from the front surface to the back surface of the metal-clad laminate and attached to the end portion of the metal-clad laminate.
  • the metal base material retains its shape, it is possible to suppress the restoring force due to the folded back metal base material. As a result, a gap is less likely to occur between the end portion of the metal-clad laminate and the adhesive layer, and peeling is less likely to occur.
  • the base material is the resin base material, a gap is likely to occur between the end portion of the metal-clad laminate and the pressure-sensitive adhesive layer due to the restoring force of the resin base material, and peeling is likely to occur.
  • the metal constituting the metal base material is not particularly limited, and examples thereof include copper, aluminum, nickel, and titanium. Further, examples of the metal constituting the metal base material include alloys such as stainless steel and monel. Of these, copper is preferable because it has a small restoring force after being folded back and is not easily torn, so that the adhesive tape is easier to handle.
  • the base material is the resin base material
  • the adhesive tape is attached to the metal-clad laminate
  • the resin base material is exposed on the outermost surface.
  • Ra is not particularly limited at the end of the surface roughness of the resin base material, and more specifically, the surface roughness Ra of the surface opposite to the side on which the pressure-sensitive adhesive layer of the resin base material is laminated is not particularly limited, but is preferable.
  • the lower limit is 10 nm
  • the preferred upper limit is 500 nm. If the surface roughness Ra of the resin base material is within the above range, the metal-clad laminate with end-protected metal plating is subjected to metal plating treatment, and metal is applied to the surfaces of the metal-clad laminate and the resin base material.
  • the metal When it is deposited, the metal is well deposited and a metal plating layer that is difficult to peel off can be formed.
  • the base material is the resin base material
  • the metal plating layer is usually more easily peeled off than when the base material is the metal base material.
  • the more preferable lower limit of the surface roughness Ra of the resin substrate is 15 nm
  • the more preferable upper limit is 200 nm
  • the further preferable lower limit is 20 nm
  • the further preferable upper limit is 100 nm.
  • the surface roughness Ra means the arithmetic mean roughness defined in JIS B 0601-2001.
  • the resin base material is not particularly limited, and is, for example, a polyolefin resin film such as a polyethylene film or a polypropylene film, a polyester resin film such as a polyethylene terephthalate (PET) film, an ethylene-vinyl acetate copolymer film, or a polyvinyl chloride film.
  • a polyolefin resin film such as a polyethylene film or a polypropylene film
  • PET polyethylene terephthalate
  • an ethylene-vinyl acetate copolymer film or a polyvinyl chloride film.
  • examples thereof include a resin film and a polyurethane resin film.
  • examples of the base material include a polyethylene foam sheet, a polyolefin foam sheet such as a polypropylene foam sheet, and a polyurethane foam sheet. Of these, PET film is preferable.
  • the thickness of the base material is not particularly limited, but the preferred lower limit is 2 ⁇ m and the preferred upper limit is 30 ⁇ m. When the thickness of the base material is within the above range, even when the adhesive tape is folded back (bent) and attached to the end portion of the metal-clad laminate, peeling is less likely to occur.
  • the more preferable lower limit of the thickness of the base material is 4 ⁇ m, and the more preferable upper limit is 20 ⁇ m.
  • the adhesive tape may further have a metal plating layer on the surface of the base material. More specifically, a metal plating layer may be further provided on the surface of the base material opposite to the side on which the pressure-sensitive adhesive layer is laminated.
  • a metal plating layer may be further provided on the surface of the base material opposite to the side on which the pressure-sensitive adhesive layer is laminated.
  • the pressure-sensitive adhesive layer is not particularly limited, and examples of the base polymer contained in the pressure-sensitive adhesive layer include acrylic polymers, rubber-based polymers, urethane-based polymers, and silicone-based polymers. Among them, the pressure-sensitive adhesive layer is preferably an acrylic pressure-sensitive pressure-sensitive adhesive layer or an acrylic heat-sensitive pressure-sensitive adhesive layer containing an acrylic polymer, or a rubber-based pressure-sensitive adhesive layer containing a rubber-based polymer.
  • the acrylic polymer usually contains an acrylic acid alkyl ester and / or a methacrylic acid alkyl ester having an alkyl group having a carbon number in the range of 1 to 18 as a main monomer, and a monomer having a crosslinkable functional group as required. It is a (meth) acrylic acid ester copolymer obtained by copolymerizing with and by a conventional method. Further, other copolymerizable modifying monomers may be copolymerized.
  • the acrylic pressure-sensitive pressure-sensitive adhesive layer is relatively stable against light, heat, moisture, etc., exhibits adhesiveness at room temperature, and can be adhered to various adherends (adhesive selectivity is low). ) Also has the advantage.
  • the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is not particularly limited, but it is preferable to have a structural unit derived from a monomer having a crosslinkable functional group. By having such a structural unit, it is possible to crosslink between the acrylic polymers contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer when a crosslinking agent is used in combination. By adjusting the degree of cross-linking at that time, the storage elastic modulus of the acrylic pressure-sensitive pressure-sensitive adhesive layer can be adjusted.
  • Examples of the crosslinkable functional group include a hydroxyl group, a carboxyl group, a glycidyl group, an amino group, an amide group, a nitrile group and the like. Of these, a hydroxyl group or a carboxyl group is preferable because the storage elastic modulus of the acrylic pressure-sensitive pressure-sensitive adhesive layer can be easily adjusted.
  • Examples of the monomer having a hydroxyl group include (meth) acrylic acid esters having a hydroxyl group such as 4-hydroxybutyl (meth) acrylate and 2-hydroxyethyl (meth) acrylate.
  • Examples of the monomer having a carboxyl group include (meth) acrylic acid and the like.
  • Examples of the monomer having a glycidyl group include glycidyl (meth) acrylate and the like.
  • Examples of the monomer having an amide group include hydroxyethylacrylamide, isopropylacrylamide, dimethylaminopropylacrylamide and the like.
  • Examples of the monomer having a nitrile group include acrylonitrile.
  • These crosslinkable functional groups may be used alone or in combination of two or more.
  • the content of the structural unit derived from the monomer having a crosslinkable functional group is not particularly limited, but the preferable lower limit is 0.1% by weight and the preferable upper limit is 5% by weight.
  • the more preferable upper limit is 3% by weight, and the more preferable upper limit is 0.5% by weight from the viewpoint of further suppressing the infiltration of a strong alkaline solution. ..
  • the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer preferably has a structural unit derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms.
  • a structural unit derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms By having such a structural unit, the hydrophobicity of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is increased, and the infiltration of the strong alkaline solution into the molecular chain can be further suppressed.
  • Examples of the (meth) acrylate having an alkyl group having 8 or more carbon atoms include n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate, and isononyl (. Examples thereof include meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, and isobornyl (meth) acrylate.
  • (meth) acrylates having an alkyl group having 8 or more carbon atoms may be used alone or in combination of two or more.
  • 2-ethylhexyl acrylate, lauryl acrylate, and lauryl methacrylate are preferably used because the acrylic pressure-sensitive pressure-sensitive adhesive layer does not become too hard and can maintain sufficient tackiness.
  • the content of the structural unit derived from the (meth) acrylate having an alkyl group having 8 or more carbon atoms is not particularly limited, but the preferable lower limit is 15% by weight and the preferable upper limit is 99% by weight.
  • the content of the (meth) acrylate having an alkyl group having 8 or more carbon atoms is within the above range, the hydrophobicity of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is increased, and the hydrophobicity is increased into the molecular chain. Infiltration of strong alkaline solution is further suppressed.
  • the more preferable lower limit of the content of the structural unit derived from the (meth) acrylate having an alkyl group having 8 or more carbon atoms is 20% by weight, and the more preferable upper limit is 30% by weight.
  • the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer may further have a structural unit derived from another monomer as long as the effect of the present invention is not impaired.
  • the other monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, and ethyl carbitol (meth).
  • examples thereof include acrylate, vinyl acetate, and a fluorine-containing monomer.
  • the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is prepared by an ultraviolet polymerization method
  • a structural unit derived from a polyfunctional monomer such as divinylbenzene or trimethylolpropane tri (meth) acrylate is preferable to have.
  • the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer has a preferable lower limit of 250,000 and a preferable upper limit of 2 million in weight average molecular weight.
  • the weight average molecular weight of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is within the above range, the adhesive strength of the acrylic pressure-sensitive pressure-sensitive adhesive layer is improved.
  • the more preferable lower limit of the weight average molecular weight of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is 300,000, the more preferable lower limit is 400,000, and the more preferable upper limit is 1.5 million.
  • the weight average molecular weight (Mw) can be adjusted by the polymerization conditions (for example, the type or amount of the polymerization initiator, the polymerization temperature, the monomer concentration, etc.). Further, the weight average molecular weight (Mw) can be measured by the following method.
  • the acrylic polymer solution is filtered through a filter (material: polytetrafluoroethylene, pore diameter: 0.2 ⁇ m).
  • the obtained filtrate was supplied to a gel permeation chromatograph (for example, 2690 Separations Model manufactured by Waters), and GPC measurement was performed under the conditions of a sample flow rate of 1 ml / min and a column temperature of 40 ° C. to convert an acrylic polymer into polystyrene.
  • the molecular weight is measured to obtain the weight average molecular weight (Mw).
  • Mw weight average molecular weight
  • GPC KF-806L or GPC LF-804 manufactured by Showa Denko KK
  • a differential refractometer is used as the detector.
  • the method for preparing the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is not particularly limited, and examples thereof include a method in which the monomer from which the constituent unit is derived is radically reacted in the presence of a polymerization initiator. ..
  • the polymerization method is not particularly limited, and a conventionally known method can be used. Examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like. Of these, solution polymerization is preferable from the viewpoint of easy synthesis and water resistance.
  • reaction solvent examples include ethyl acetate, toluene, methyl ethyl ketone, methyl sulfoxide, ethanol, acetone, diethyl ether and the like. These reaction solvents may be used alone or in combination of two or more.
  • the above-mentioned polymerization initiator is not particularly limited, and examples thereof include organic peroxides and azo compounds.
  • organic peroxide examples include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, t-hexylperoxypivalate, t-butylperoxypivalate, 2,5.
  • the acrylic pressure-sensitive pressure-sensitive adhesive layer may further contain a tackifier resin.
  • a tackifier resin is not particularly limited, and examples thereof include kumaron resin, terpene resin, terpene phenol resin, rosin resin, rosin derivative resin, petroleum resin, alkylphenol resin, and hydrides thereof. These tackifier resins may be used alone or in combination of two or more.
  • the terpene phenol resin means a polymer containing a terpene residue and a phenol residue.
  • the terpene phenol resin is a copolymer of terpene and a phenol compound (terpene-phenol copolymer resin) and a homopolymer or copolymer of terpene (terpene resin, typically an unmodified terpene resin). It is a concept including a phenol-modified terpene resin obtained by polymerizing the above, and further, a resin obtained by hydrogenating a terpene moiety in these resins.
  • the terpene constituting the terpene phenol resin is not particularly limited, but monoterpenes such as ⁇ -pinene, ⁇ -pinene, limonene, and camphene are preferable.
  • Limonene includes d-form, l-form and d / l-form (dipentene).
  • examples of the rosin resin include unmodified rosins (raw rosins) such as gum rosin, wood rosin, and tall oil rosin, and modified rosins obtained by modifying these unmodified rosins.
  • examples of the modification in the modified rosin include hydrogenation, disproportionation, polymerization and the like. More specifically, the modified rosin includes hydrogenated rosin, disproportionated rosin, polymerized rosin, and other chemically modified rosins.
  • a rosin ester resin obtained by esterifying the rosin resin with alcohols an unsaturated fatty acid-modified rosin resin obtained by modifying the rosin resin with an unsaturated fatty acid, and a rosin ester resin not used.
  • examples thereof include unsaturated fatty acid-modified rosin ester resins modified with saturated fatty acids.
  • the rosin derivative resin include a rosin alcohol resin obtained by reducing a carboxyl group in the unsaturated fatty acid-modified rosin resin or the unsaturated fatty acid-modified rosin ester resin.
  • examples of the rosin derivative resin include a metal salt of the rosin resin or the rosin derivative resin (particularly, a rosin ester resin), a rosin phenol resin, and the like.
  • the rosin phenol resin can be obtained by adding phenol to the rosin resin or the rosin derivative resin under an acid catalyst and thermally polymerizing the resin.
  • examples of the petroleum resin include aliphatic (C5) petroleum resin, aromatic (C9) petroleum resin, C5 / C9 copolymerized petroleum resin, and alicyclic petroleum resin. Be done.
  • the content of the tackifier resin is not particularly limited, but the preferable lower limit with respect to 100 parts by weight of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is 3 parts by weight, and the preferable upper limit is 50 parts by weight, which is a more preferable lower limit. Is 10 parts by weight, and a more preferable upper limit is 35 parts by weight.
  • the content of the pressure-sensitive adhesive resin is within the above range, the adhesive strength of the acrylic pressure-sensitive pressure-sensitive adhesive layer is improved.
  • the acrylic pressure-sensitive pressure-sensitive adhesive layer may contain a silane coupling agent. Since the acrylic pressure-sensitive pressure-sensitive adhesive layer contains a silane coupling agent, the adhesion between the end portion of the metal-clad laminate and the acrylic pressure-sensitive adhesive layer is improved. Damage to the edge of the plate can be further suppressed, and even when exposed to a strongly alkaline solution, infiltration of the solution into the edge can be further suppressed.
  • the silane coupling agent is not particularly limited, and for example, vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, and ⁇ -glycidoxypropyltrimethoxysilane.
  • the content of the silane coupling agent is not particularly limited, but the preferable lower limit is 0.1 parts by weight and the preferable upper limit is 5 parts by weight with respect to 100 parts by weight of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer.
  • the content of the silane coupling agent is within this range, the adhesion between the end portion of the metal-clad laminate and the acrylic pressure-sensitive pressure-sensitive adhesive layer can be further enhanced.
  • the more preferable lower limit of the content of the silane coupling agent is 0.5 parts by weight, and the more preferable upper limit is 3 parts by weight.
  • the acrylic pressure-sensitive pressure-sensitive adhesive layer may contain a cross-linking agent. good.
  • the above-mentioned cross-linking agent is not particularly limited, and examples thereof include an isocyanate-based cross-linking agent, an aziridine-based cross-linking agent, an epoxy-based cross-linking agent, and a metal chelate-type cross-linking agent. Of these, isocyanate-based cross-linking agents and epoxy-based cross-linking agents are preferable.
  • the content of the cross-linking agent is not particularly limited, but the preferable lower limit with respect to 100 parts by weight of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is 0.01 parts by weight, and the preferable upper limit is 10 parts by weight, which is more preferable.
  • the lower limit is 0.1 parts by weight, and the more preferable upper limit is 5 parts by weight.
  • the storage elastic modulus of the acrylic pressure-sensitive pressure-sensitive adhesive layer is not particularly limited, but the preferable upper limit of the storage elastic modulus at 23 ° C. is 2 ⁇ 105 Pa.
  • the storage elastic modulus at 23 ° C. is 2 ⁇ 105 Pa or less, the adhesion between the end portion of the metal-clad laminate and the acrylic pressure-sensitive pressure-sensitive adhesive layer is high, so that the metal-clad laminate It is possible to further suppress the damage to the end portion of the metal, and it is possible to further suppress the infiltration of the solution into the end portion even when exposed to a strong alkaline solution.
  • a more preferable upper limit of the storage elastic modulus at 23 ° C. is 1.8 ⁇ 105 Pa.
  • the lower limit of the storage elastic modulus at 23 ° C. is not particularly limited, but from the viewpoint of maintaining the cohesive force of the acrylic pressure-sensitive pressure-sensitive adhesive layer, the preferable lower limit is 1 ⁇ 10 4 Pa, and the more preferable lower limit is 3 ⁇ 10 4 Pa. be.
  • the storage elastic modulus at 23 ° C. can be adjusted by the type, molecular weight, molecular weight distribution, type and content of the tackifier resin, type and content of the cross-linking agent, and the like.
  • the storage elastic modulus at 23 ° C. is measured by using a dynamic viscoelasticity measuring device (for example, "DVA-200" manufactured by IT Measurement Control Co., "ARES” manufactured by Leometrics Co., Ltd.). It can be obtained by measuring from ⁇ 40 ° C. to 140 ° C. under the conditions of shear mode, angular frequency of 1 Hz, and speed of 5 ° C./min.
  • the acrylic heat-sensitive pressure-sensitive adhesive layer is relatively stable against light, heat, moisture, etc., and can be adhered to various adherends by heat-bonding. Since the acrylic heat-sensitive adhesive layer does not exhibit adhesiveness at room temperature and develops adhesiveness by heating, the pressure-sensitive adhesive layer is the acrylic heat-sensitive adhesive layer, so that the metal-clad laminate can be used. With the end portion in contact with the adhesive tape, the adhesive tape can be heat-bonded after adjusting the position and the like so that wrinkles and floating do not occur on the adhesive tape. By doing so, it is possible to further suppress the damage to the end portion of the metal-clad laminate, and further suppress the infiltration of the solution into the end portion even when exposed to a strong alkaline solution.
  • the acrylic heat-sensitive adhesive layer has a peak temperature of loss tangent (hereinafter, also referred to as tan ⁇ or simply loss tangent) measured at a measurement frequency of 1 Hz using a dynamic viscoelasticity measuring device, but is not particularly limited, but is 40 ° C.
  • the above is preferable.
  • the peak temperature of the loss tangent is 40 ° C. or higher, the slipperiness between the end portion of the metal-clad laminate and the adhesive tape at room temperature is improved, and the adhesive tape is less likely to wrinkle at the time of sticking. Can be done.
  • the peak temperature of the loss tangent is more preferably 42 ° C. or higher, further preferably 45 ° C. or higher. Further, the peak temperature of the loss tangent is preferably 100 ° C.
  • a viscoelastic spectrometer (DVA-200 manufactured by IT Measurement Control Co., Ltd., or an equivalent product thereof) under the condition of 5 ° C./min and 1 Hz in the low-speed temperature rise shear deformation mode, -100. It can be obtained by measuring a dynamic viscoelastic spectrum at ° C to 200 ° C.
  • the storage elastic modulus of the acrylic heat-sensitive pressure-sensitive adhesive layer is not particularly limited, but the preferable lower limit of the storage elastic modulus at 23 ° C. is 5 ⁇ 10 6 Pa, and the preferable upper limit of the storage elastic modulus at 100 ° C. is 2 ⁇ 10 5 Pa. Is.
  • the storage elastic modulus at 23 ° C. is 5 ⁇ 10 6 Pa or more, the acrylic heat-sensitive adhesive layer does not show adhesiveness at room temperature, and the end portion of the metal-clad laminate is brought into contact with the adhesive tape. In this state, the position and the like can be adjusted so that the adhesive tape does not wrinkle or float.
  • the upper limit of the storage elastic modulus at 23 ° C. is not particularly limited, but from the viewpoint that the adhesive tape can be easily rolled, the preferable upper limit is 1 ⁇ 10 10 Pa, and the more preferable upper limit is 1 ⁇ 10 9 Pa.
  • the acrylic heat-sensitive adhesive layer develops adhesiveness by heating, and the acrylic heat-sensitive adhesive layer is heat-bonded to the metal. It is possible to further suppress the breakage of the end portion of the stretched laminated plate, and further suppress the infiltration of the solution into the end portion even when exposed to a strong alkaline solution.
  • the more preferable upper limit of the storage elastic modulus at 100 ° C. is 1 ⁇ 10 5 Pa, and the more preferable upper limit is 8 ⁇ 10 4 Pa.
  • the storage elastic modulus at 23 ° C. or 100 ° C. can be adjusted by the type, molecular weight, molecular weight distribution, type and content of tackifier resin, type and content of cross-linking agent, and the like. Further, the storage elastic modulus at 23 ° C. or 100 ° C. is determined by using a dynamic viscoelasticity measuring device (for example, "DVA-200" manufactured by IT Measurement Control Co., "ARES” manufactured by Leometrics Co., Ltd.). It can be obtained by measuring from ⁇ 40 ° C. to 140 ° C. under the conditions of shear mode for elastic measurement, angular frequency of 1 Hz, and speed of 5 ° C./min.
  • a dynamic viscoelasticity measuring device for example, "DVA-200" manufactured by IT Measurement Control Co., "ARES” manufactured by Leometrics Co., Ltd.
  • the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is not particularly limited, but it is preferable to have a structural unit derived from a monomer having a crosslinkable functional group. By having such a structural unit, it is possible to crosslink between the acrylic polymers contained in the acrylic heat-sensitive pressure-sensitive adhesive layer when a crosslinking agent is used in combination. By adjusting the degree of cross-linking at that time, the storage elastic modulus of the acrylic heat-sensitive pressure-sensitive adhesive layer can be adjusted.
  • Examples of the crosslinkable functional group include a hydroxyl group, a carboxyl group, a glycidyl group, an amino group, an amide group, a nitrile group and the like. Of these, a hydroxyl group or a carboxyl group is preferable because the storage elastic modulus of the acrylic heat-sensitive pressure-sensitive adhesive layer can be easily adjusted.
  • Examples of the monomer having a hydroxyl group include (meth) acrylic acid esters having a hydroxyl group such as 4-hydroxybutyl (meth) acrylate and 2-hydroxyethyl (meth) acrylate.
  • Examples of the monomer having a carboxyl group include (meth) acrylic acid and the like.
  • Examples of the monomer having a glycidyl group include glycidyl (meth) acrylate and the like.
  • Examples of the monomer having an amide group include hydroxyethylacrylamide, isopropylacrylamide, dimethylaminopropylacrylamide and the like.
  • Examples of the monomer having a nitrile group include acrylonitrile.
  • These crosslinkable functional groups may be used alone or in combination of two or more.
  • the content of the structural unit derived from the monomer having a crosslinkable functional group is not particularly limited, but the preferable lower limit is 0.1% by weight and the preferable upper limit is 5% by weight.
  • the more preferable upper limit is 3% by weight, and the more preferable upper limit is 0.5% by weight from the viewpoint of further suppressing the infiltration of a strong alkaline solution. ..
  • the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer preferably has a structural unit derived from a (meth) acrylate having an alkyl group having 1 or more and 4 or less carbon atoms, and has 1 or more and 4 or less carbon atoms. It is more preferable to have a structural unit derived from a methacrylate having an alkyl group. Further, it is also preferable that the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer has a structural unit derived from a (meth) acrylate having an alkyl group having a cyclic structure.
  • the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer has these structural units, it becomes easy to adjust the peak temperature of the loss tangent and the storage elastic modulus to a preferable range.
  • the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is a structural unit derived from a methacrylate having an alkyl group having 1 or more and 4 carbon atoms, and a structural unit derived from a methacrylate having an alkyl group having a cyclic structure. It is more preferred to have at least one selected from the group consisting of.
  • the (meth) acrylate having an alkyl group having 1 or more and 4 or less carbon atoms is not particularly limited, and examples thereof include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. Can be mentioned.
  • the (meth) acrylate having an alkyl group having a cyclic structure is not particularly limited, and examples thereof include cyclohexyl (meth) acrylate and isobornyl (meth) acrylate. These (meth) acrylates may be used alone or in combination of two or more.
  • methyl methacrylate, butyl acrylate, butyl methacrylate, and isobornyl methacrylate are preferably used because the peak temperature of the loss tangent and the storage elastic modulus can be easily adjusted within a preferable range.
  • the total content of the structural unit derived from the (meth) acrylate having an alkyl group having 1 or more and 4 or less carbon atoms and the structural unit derived from the (meth) acrylate having an alkyl group having a cyclic structure is particularly limited.
  • the preferred lower limit is 50% by weight and the preferred upper limit is 98% by weight.
  • a more preferable lower limit of the total content of the structural units is 60% by weight, a further preferable lower limit is 70% by weight, a more preferable upper limit is 95% by weight, a further preferable upper limit is 90% by weight, and a further preferable upper limit is 80% by weight.
  • the total content is a structural unit derived from a (meth) acrylate having an alkyl group having 1 or more and 4 or less carbon atoms, and a structural unit derived from a (meth) acrylate having an alkyl group having a cyclic structure.
  • the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer may contain only one of them or both of them.
  • the total content of the structural unit derived from the methacrylate having an alkyl group having 1 or more and 4 or less carbon atoms and the structural unit derived from the methacrylate having an alkyl group having a cyclic structure is preferably 50% by weight.
  • the preferred upper limit is 90% by weight, the more preferred lower limit is 60% by weight, and the more preferred upper limit is 80% by weight.
  • the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer may further have a structural unit derived from another monomer as long as the effect of the present invention is not impaired.
  • the other monomers include n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, and decyl (meth) acrylate.
  • Examples thereof include lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, ethylcarbitol (meth) acrylate, vinyl acetate, and fluorine-containing monomer. ..
  • the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is prepared by an ultraviolet polymerization method, a structural unit derived from a polyfunctional monomer such as divinylbenzene or trimethylolpropane tri (meth) acrylate is further added. It is preferable to have.
  • the weight average molecular weight of the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is not particularly limited, and is the same as the weight average molecular weight of the acrylic polymer used in the acrylic pressure-sensitive pressure-sensitive adhesive layer. good.
  • the method for preparing the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is not particularly limited, and as in the case of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer, for example, the origin of the structural unit. Examples thereof include a method of radically reacting the above-mentioned monomer in the presence of a polymerization initiator.
  • the acrylic heat-sensitive pressure-sensitive adhesive layer may further contain a tack-imparting resin.
  • a tack-imparting resin When the acrylic heat-sensitive pressure-sensitive adhesive layer contains the tackifier resin, the adhesive strength of the acrylic heat-sensitive pressure-sensitive adhesive layer is improved.
  • the tackifier resin is not particularly limited, and the same tackifier resin as the tackifier resin used for the acrylic pressure-sensitive pressure-sensitive adhesive layer can be used.
  • the acrylic heat-sensitive pressure-sensitive adhesive layer preferably contains a hydrogenated rosin ester resin having a hydroxyl value of 40 mgKOH / g or more.
  • a hydrogenated rosin ester resin having a hydroxyl value of 40 mgKOH / g or more in the acrylic heat-sensitive adhesive layer, the interfacial adhesion between the end portion of the metal-clad laminate and the adhesive tape is further improved. Even when exposed to a strong alkaline solution, the infiltration of the solution into the end portion of the metal-clad laminate can be further suppressed.
  • the upper limit of the hydroxyl value of the hydrogenated rosin ester resin having a hydroxyl value of 40 mgKOH / g or more is not particularly limited, but is usually about 80 mgKOH / g, preferably 50 mgKOH / g or less.
  • the content of the tackifier resin is not particularly limited, but the preferable lower limit is 5 parts by weight, the preferable upper limit is 50 parts by weight, and the more preferable lower limit is 50 parts by weight with respect to 100 parts by weight of the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer. 10 parts by weight, more preferably 35 parts by weight.
  • the content of the tackifier resin is within the above range, the adhesive strength of the acrylic pressure-sensitive adhesive layer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is improved.
  • the acrylic heat-sensitive adhesive layer may contain a silane coupling agent. Since the acrylic heat-sensitive adhesive layer contains a silane coupling agent, the adhesion between the end portion of the metal-clad laminate and the acrylic heat-sensitive adhesive layer is improved. The damage to the end portion can be further suppressed, and the infiltration of the solution into the end portion can be further suppressed even when exposed to a strong alkaline solution.
  • the silane coupling agent is not particularly limited, and the same silane coupling agent as the silane coupling agent used for the acrylic pressure-sensitive pressure-sensitive adhesive layer can be used.
  • the content of the silane coupling agent is not particularly limited, and the same content as the content in the acrylic pressure-sensitive pressure-sensitive adhesive layer can be adopted.
  • the acrylic heat-sensitive pressure-sensitive adhesive layer may contain a cross-linking agent.
  • the cross-linking agent is not particularly limited, and the same cross-linking agent as the cross-linking agent used for the acrylic pressure-sensitive pressure-sensitive adhesive layer can be used.
  • the content of the cross-linking agent is not particularly limited, and the same content as the content in the acrylic pressure-sensitive pressure-sensitive adhesive layer can be adopted.
  • the rubber-based polymer has a relatively low polarity, the fact that the base polymer is the rubber-based polymer makes it difficult for the strong alkaline solution to penetrate into the inside of the rubber-based pressure-sensitive adhesive layer. As a result, damage to the end portion of the metal-clad laminate can be further suppressed, and even when exposed to a strong alkaline solution, infiltration of the solution into the end portion can be further suppressed.
  • the rubber-based polymer is a block copolymer having at least a block derived from an aromatic vinyl monomer and a block derived from a conjugated diene monomer, or a hydrogenated product thereof (hereinafter, also simply referred to as "block copolymer"). Is preferable.
  • the aromatic vinyl monomer is not particularly limited, and is, for example, styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4 -T-butylstyrene, 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl) dimethylaminoethyl ether , N, N-dimethylaminoethylstyrene, N, N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethyls
  • the tertiary amino group-containing diphenylethylene is not particularly limited, and examples thereof include 1- (4-N, N-dimethylaminophenyl) -1-phenylethylene. These aromatic vinyl monomers may be used alone or in combination of two or more.
  • the conjugated diene monomer is not particularly limited, and for example, isoprene, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, and the like. Examples thereof include 2-phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene and 2-chloro-1,3-butadiene. These conjugated diene monomers may be used alone or in combination of two or more.
  • the block copolymer is not particularly limited, and may be any block copolymer having rubber elasticity at room temperature and having a hard segment portion and a soft segment portion.
  • the block derived from the aromatic vinyl monomer is the hard segment portion
  • the block derived from the conjugated diene monomer is the soft segment portion.
  • Specific examples of the block copolymer include styrene-isoprene-styrene (SIS) block copolymer, styrene-butadiene-styrene (SBS) block copolymer, and styrene-chloroprene-styrene block copolymer. Can be mentioned.
  • examples of the block copolymer include a hydrogenated product, and more specifically, for example, a styrene-ethylene-butylene-styrene (SEBS) block copolymer and a styrene-ethylene-propylene-styrene (SEPS) block.
  • SEBS styrene-ethylene-butylene-styrene
  • SEPS styrene-ethylene-propylene-styrene
  • examples include polymers, styrene-ethylene-ethylene-propylene-styrene (SEEPS) and the like.
  • SIBS styrene-isobutylene-styrene
  • SIS block copolymers and SBS block copolymers are preferable, and SIS block copolymers are more preferable, from the viewpoint of easily exhibiting high adhesive strength.
  • These block copolymers may be used alone or in combination of two or more.
  • the block copolymer includes a triblock copolymer of a block derived from the aromatic vinyl monomer and a block derived from the conjugated diene monomer, and a block derived from the aromatic vinyl monomer and the conjugated diene monomer. It may contain a diblock copolymer with a block derived from.
  • the content of the diblock copolymer in the block copolymer (hereinafter, also referred to as “diblock ratio”) is not particularly limited, but a preferable lower limit is 50% by weight, and a more preferable lower limit is 70% by weight.
  • the diblock ratio When the diblock ratio is within the above range, the adhesion between the end portion of the metal-clad laminate and the rubber-based adhesive layer is high, so that the end portion of the metal-clad laminate is further suppressed from being damaged. And even when exposed to a strong alkaline solution, the infiltration of the solution into the end portion can be further suppressed.
  • the upper limit of the diblock ratio is not particularly limited, but is preferably 90% by weight from the viewpoint of maintaining the cohesive force of the rubber-based pressure-sensitive adhesive layer.
  • the diblock ratio can be calculated from the peak area ratio of each copolymer measured by the gel permeation chromatography (GPC) method.
  • the content of the block derived from the aromatic vinyl monomer in the block copolymer (also referred to as "styrene content" when the aromatic vinyl monomer is styrene) is not particularly limited, but a preferable upper limit is 20% by weight. A more preferred upper limit is 16% by weight.
  • the content of the block derived from the aromatic vinyl monomer is within the above range, the rubber-based pressure-sensitive adhesive layer does not become too hard, and the adhesion to the end portion of the metal-clad laminate becomes high. It is possible to further suppress damage to the end portion of the metal-clad laminate, and it is possible to further suppress the infiltration of the solution into the end portion even when exposed to a strong alkaline solution.
  • the lower limit of the content of the block derived from the aromatic vinyl monomer is not particularly limited, but the preferable lower limit is 8% by weight from the viewpoint of maintaining the cohesive force of the rubber-based pressure-sensitive adhesive layer.
  • the content of the blocks derived from the aromatic vinyl monomer can be calculated from the peak area ratio of each block measured by 1H-NMR.
  • the weight average molecular weight of the block copolymer is not particularly limited, but the preferred lower limit is 50,000 and the preferred upper limit is 600,000. When the weight average molecular weight of the block copolymer is 50,000 or more, the heat resistance of the rubber-based pressure-sensitive adhesive layer becomes higher. When the weight average molecular weight of the block copolymer is 600,000 or less, it is possible to prevent the compatibility between the block copolymer and other components from being excessively lowered. The more preferable lower limit of the weight average molecular weight is 100,000, and the more preferable upper limit is 500,000.
  • the rubber-based pressure-sensitive adhesive layer preferably further contains a terpene phenol resin (T1) having a hydroxyl value of 20 mgKOH / g or more and 140 mgKOH / g or less.
  • T1 terpene phenol resin
  • the rubber-based pressure-sensitive adhesive layer contains the tack-imparting resin, the adhesive strength of the rubber-based pressure-sensitive adhesive layer is improved.
  • the rubber-based pressure-sensitive adhesive layer contains the terpene phenol resin (T1), the strong alkaline solution is less likely to penetrate into the inside of the rubber-based pressure-sensitive adhesive layer.
  • the hydroxyl value of the terpene phenol resin (T1) has a lower limit of 20 mgKOH / g and an upper limit of 140 mgKOH / g.
  • the polarity of the terpene phenol resin (T1) is within an appropriate range, so that a strong alkaline solution is formed inside the rubber-based pressure-sensitive adhesive layer. It becomes difficult to infiltrate.
  • the preferable lower limit of the hydroxyl value of the terpene phenol resin (T1) is 40 mgKOH / g, the preferable upper limit is 100 mgKOH / g, the more preferable lower limit is 50 mgKOH / g, and the more preferable upper limit is 80 mgKOH / g.
  • the hydroxyl value of the tackifier resin is the number of mg of potassium hydroxide required to neutralize acetic acid bonded to the hydroxyl group when 1 g of the tackifier resin is acetylated, and is specified in JIS K 0070: 1992. It is defined as a value measured based on the potential difference titration method.
  • the softening point of the terpene phenol resin (T1) is not particularly limited, but the preferable lower limit is 150 ° C.
  • the softening point of the terpene phenol resin (T1) is 150 ° C. or higher, the molecular weight of the terpene phenol resin becomes large and the solubility in a strong alkaline solution becomes low, so that the inside of the rubber-based pressure-sensitive adhesive layer is formed. Strongly alkaline solutions are less likely to penetrate.
  • the softening point of the terpene phenol resin (T1) is 150 ° C. or higher, the heat resistance of the rubber-based pressure-sensitive adhesive layer becomes higher.
  • a more preferable lower limit of the softening point of the terpene phenol resin (T1) is 160 ° C.
  • the upper limit of the softening point of the terpene phenol resin (T1) is not particularly limited, but the practical upper limit is about 180 ° C.
  • the softening point of the tackifier resin is the temperature at which the solid resin softens and begins to deform, and was measured based on the softening point test method (ring ball method) specified in JIS K 5902 and JIS K 2207. Defined as a value.
  • the content of the terpene phenol resin (T1) is not particularly limited, but the preferable lower limit is 3 parts by weight and the preferable upper limit is 80 parts by weight with respect to 100 parts by weight of the rubber-based polymer.
  • the content of the terpene phenol resin (T1) is 3 parts by weight or more, the strong alkaline solution is less likely to penetrate into the rubber-based pressure-sensitive adhesive layer.
  • the content of the terpene phenol resin (T1) is 80 parts by weight or less, the rubber-based pressure-sensitive adhesive layer does not become too hard and the adhesion to the end of the metal-clad laminate becomes high.
  • the more preferable lower limit of the content of the terpene phenol resin (T1) is 10 parts by weight, and the more preferable upper limit is 60 parts by weight.
  • the rubber-based pressure-sensitive adhesive layer may contain a pressure-imparting resin other than the terpene phenol resin (T1).
  • the total content of the terpene phenol resin (T2) having a hydroxyl value of more than 140 mgKOH / g and the rosin ester resin (T3) is 100 parts by weight of the rubber-based polymer. It is preferably 5 parts by weight or less.
  • the strong alkaline solution is less likely to penetrate into the rubber-based pressure-sensitive adhesive layer. ..
  • the terpene phenol resin (T2) has a higher hydroxyl value and higher polarity than the terpene phenol resin (T1), if the content of the terpene phenol resin (T2) is too large, the inside of the rubber-based pressure-sensitive adhesive layer It becomes easy for a strong alkaline solution to infiltrate.
  • the rosin ester resin (T3) has functional groups such as an ester group, a hydroxyl group, and a carboxyl group, even if the content of the rosin ester resin (T3) is too large, the inside of the rubber-based pressure-sensitive adhesive layer It becomes easy for a strong alkaline solution to infiltrate into the rosin.
  • the total content of the terpene phenol resin (T2) and the rosin ester resin (T3) is preferably 2 parts by weight or less, and more preferably 0 part by weight.
  • the pressure-sensitive adhesive layer may contain additives such as plasticizers, emulsifiers, softeners, fillers, pigments, dyes, and other resins, if necessary. It was noted that plasticizers, emulsifiers, softeners, fillers, pigments, dyes, and other resins, if necessary. It was noted that plasticizers, emulsifiers, softeners, fillers, pigments, dyes, and other resins, if necessary.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably thicker than 1/2 the thickness of the metal-clad laminate. In such a case, even when the adhesive tape is attached to the end portion of the metal-clad laminate so as to extend from the front surface to the back surface of the metal-clad laminate, the end portion of the metal-clad laminate may be used. A gap is less likely to occur between the adhesive layer and the adhesive layer, and peeling is less likely to occur. As a result, damage to the end portion of the metal-clad laminate can be further suppressed, and even when exposed to a strong alkaline solution, infiltration of the solution into the end portion can be further suppressed.
  • the thickness of the pressure-sensitive adhesive layer is more preferably thicker than 2/3 of the thickness of the metal-clad laminate. Specifically, the thickness of the pressure-sensitive adhesive layer has a preferable lower limit of 5 ⁇ m, a preferable upper limit of 100 ⁇ m, a more preferable lower limit of 10 ⁇ m, and a more preferable upper limit of 50 ⁇ m.
  • the pressure-sensitive adhesive tape further has a pressure-sensitive pressure-sensitive pressure-sensitive adhesive layer between the base material and the acrylic heat-sensitive pressure-sensitive adhesive layer. That is, it is preferable that the pressure-sensitive adhesive tape has the base material, the pressure-sensitive pressure-sensitive adhesive layer, and the acrylic heat-sensitive pressure-sensitive adhesive layer in this order.
  • the adhesive tape increases the anchoring property between the base material and the acrylic heat-sensitive adhesive layer. Therefore, even when exposed to a strong alkaline solution, peeling between the base material and the acrylic heat-sensitive adhesive layer is less likely to occur.
  • the pressure-sensitive pressure-sensitive adhesive layer for example, the acrylic pressure-sensitive pressure-sensitive adhesive layer described above can be used, but the pressure-sensitive pressure-sensitive pressure-sensitive adhesive layer is not limited thereto.
  • the thickness of the pressure-sensitive pressure-sensitive adhesive layer is not particularly limited, but the preferable lower limit is 0.1 ⁇ m.
  • the preferred upper limit is 30 ⁇ m.
  • the thickness of the pressure-sensitive pressure-sensitive adhesive layer is within the above range, the anchoring property between the base material and the acrylic heat-sensitive pressure-sensitive adhesive layer is further improved.
  • the more preferable lower limit of the thickness of the pressure-sensitive pressure-sensitive adhesive layer is 5 ⁇ m, and the more preferable upper limit is 20 ⁇ m.
  • the pressure-sensitive adhesive tape preferably further has a resin layer between the base material and the pressure-sensitive adhesive layer, and the resin layer preferably contains a resin having a polar functional group. Since the pressure-sensitive adhesive tape has the resin layer, the anchoring property between the base material and the pressure-sensitive adhesive layer is increased, so that the strong alkaline solution is less likely to penetrate into the pressure-sensitive adhesive layer. As a result, damage to the end portion of the metal-clad laminate can be further suppressed, and even when exposed to a strong alkaline solution, infiltration of the solution into the end portion can be further suppressed.
  • the polar functional group is not particularly limited, but at least one selected from the group consisting of a nitrile group, a carbonyl group, a carboxyl group and an amino group is preferable because it is excellent in adhesion to the metal base material and the resin base material. Of these, a nitrile group and a carbonyl group are more preferable.
  • the resin having the polar functional group examples include acrylonitrile butadiene rubber (NBR), maleic anhydride-modified styrene-ethylene-butylene-styrene (maleic anhydride-modified SEBS), and amine-modified styrene-ethylene-butylene-styrene. (Amin-modified SEBS) and the like. Among them, NBR and maleic anhydride-modified SEBS are preferable because they are excellent in adhesion to the resin base material and also in adhesion to the pressure-sensitive adhesive layer.
  • the thickness of the resin layer is not particularly limited, but a preferable lower limit is 0.1 ⁇ m and a preferable upper limit is 3 ⁇ m. When the thickness of the resin layer is within the above range, the anchoring property between the base material and the pressure-sensitive adhesive layer is further improved.
  • the more preferable lower limit of the thickness of the resin layer is 0.5 ⁇ m, and the more preferable upper limit is 2 ⁇ m.
  • the resin layer may contain additives such as plasticizers, emulsifiers, softeners, fillers, pigments and dyes, and other resins, if necessary.
  • FIGS. 1 to 8 show sectional views schematically showing an example of a region covered with a protective material in the metal-clad laminate with end protection of the present invention.
  • an adhesive tape 30 having a base material 31 and an adhesive layer 32 is used as a protective material. That is, the end portion of the metal-clad laminate 2 is covered with one adhesive tape 30 per side.
  • the adhesive tape 30 is folded back (bent) so as to extend from the front surface to the back surface of the metal-clad laminate 2, and is attached to the end of the metal-clad laminate 2. Further, in FIG. 4, the entire back surface of the metal-clad laminate 2 is covered with the adhesive tape 30.
  • the adhesive tape 30 having the base material 31 and the pressure-sensitive adhesive layer 32 as the protective material, and the pressure-sensitive adhesive having the base material 31'and the pressure-sensitive adhesive layer 32' Tape 30'and is used. That is, the end portion of the metal-clad laminate 2 is covered with two adhesive tapes 30 and 30'on each side. In FIGS. 5 to 7, the adhesive tapes 30 and 30'are attached to the ends of the metal-clad laminate 2 so as to extend from the front surface to the back surface of the metal-clad laminate 2.
  • the adhesive tape 30 having the base material 31 and the pressure-sensitive adhesive layer 32 as the protective material, and the pressure-sensitive adhesive tape 30 having the base material 31'and the pressure-sensitive adhesive layer 32' 'And an adhesive tape 30'' having a base material 31'' and an adhesive layer 32'' are used. That is, the end portion of the metal-clad laminate 2 is covered with three adhesive tapes 30, 30 ′ and 30 ′′ per side. In FIG. 8, adhesive tapes 30, 30 ′ and 30 ′′ are attached to the ends of the metal-clad laminate 2 so as to extend from the front surface to the back surface of the metal-clad laminate 2.
  • 3a shows the interface between the pressure-sensitive adhesive layers, and by making the interface 3a as small as possible, damage to the end portion of the metal-clad laminate 2 can be further suppressed. Even when exposed to a strong alkaline solution, the infiltration of the solution into the end portion can be further suppressed.
  • the use of the metal-clad laminate with end protection of the present invention is not particularly limited, but it can be particularly preferably used when manufacturing a printed wiring board.
  • a method for manufacturing a wiring board is also one of the present inventions.
  • the method of covering the end portion of the metal-clad laminate with a protective material to obtain the end-protected metal-clad laminate of the present invention is not particularly limited.
  • a method of attaching the adhesive tape to the end of the metal-clad laminate using a tape laminator, or a method of attaching the adhesive tape to the metal by using a press machine examples thereof include a method of crimping to the end portion of the laminated laminated plate, a method of manually attaching the adhesive tape to the metal laminated laminated plate, and the like.
  • the adhesive tape when the adhesive tape is attached to the square of the metal-clad laminate, the adhesive tape may be attached in duplicate or may be attached so as not to overlap.
  • the metal-clad laminate whose end is protected according to the present invention is further subjected to metal plating treatment to obtain the above-mentioned metal-clad laminate and the above-mentioned protective material.
  • a metal plating step of precipitating metal on the surface may be performed.
  • the method of metal plating treatment is not particularly limited, and conventionally known methods such as electroless plating adopted when manufacturing a printed wiring board can be used.
  • the metal plating step by using the metal-clad laminate with the end protection of the present invention, it is possible to suppress damage to the end of the metal-clad laminate.
  • the metal when the adhesive tape as described above is used as the protective material and the base material is the metal base material, the metal can be well deposited and a metal plating layer that is difficult to peel off can be formed. Even when the base material is the resin base material, if the surface roughness Ra of the resin base material is within the above range, the metal can be well deposited and a metal plating layer that is difficult to peel off can be formed. can.
  • a circuit forming step of etching or desmearing the end-protected metal-clad laminate of the present invention may be further performed.
  • the method of etching treatment or desmear treatment is not particularly limited, and a conventionally known method adopted when manufacturing a printed wiring board can be used.
  • damage to the end of the metal-clad laminate can be suppressed, and when exposed to a strong alkaline solution, the metal-clad laminate can be prevented from being damaged. Can also suppress the infiltration of the solution into the end portion.
  • the metal plating step and the circuit forming step may be performed first as long as they are performed after the protection step. Further, the metal plating step and the circuit forming step may be repeated as long as they are performed after the protection step.
  • a trimming step for separating a region covered with a protective material in the metal-clad laminate with end protection of the present invention may be further performed.
  • the region covered with the protective material can be separated, and a printed wiring board after circuit formation can be obtained.
  • the method for separating the region covered with the protective material in the metal-clad laminate with the end protection of the present invention is not particularly limited, and examples thereof include a method of cutting with a slitter.
  • a method for producing an intermediate is also one of the present inventions.
  • an end-protected metal-clad laminate capable of suppressing damage to the end of the metal-clad laminate and suppressing infiltration of the solution into the end even when exposed to a strong alkaline solution can be provided.
  • the polymerization initiator solution obtained by diluting 0.3 part by weight of azobisisobutyronitrile as a polymerization initiator with ethyl acetate 10-fold was put into the reaction vessel again, and the polymerization reaction was carried out for 4 hours to carry out an acrylic polymer. 1 Containing solution was obtained.
  • the weight average molecular weight (Mw) of the obtained acrylic polymer 1 was 450,000 in terms of polystyrene by gel permeation chromatography using GPC LF-804 (manufactured by Showa Denko KK) as a column. rice field.
  • Acrylic polymer 2 (Preparation of acrylic polymer 2) Acrylic polymer 1 except that the monomers used were changed to 33 parts by weight of butyl acrylate, 32 parts by weight of butyl methacrylate, 32 parts by weight of methyl methacrylate, 2.8 parts by weight of acrylic acid and 0.2 parts by weight of 2-hydroxyethyl acrylate. Similarly, a solution containing acrylic polymer 2 was obtained. Regarding the obtained acrylic polymer 2, the weight average molecular weight (Mw) in terms of polystyrene was determined by gel permeation chromatography using GPC LF-804 (manufactured by Showa Denko KK) as a column, and it was 330,000. rice field.
  • Mw weight average molecular weight
  • SIS styrene-isoprene-styrene block copolymer
  • Adhesive E adjustment As a tackifying resin, 15 parts by weight of a polymerized rosin ester resin (manufactured by Arakawa Chemical Industry Co., Ltd., Pencel D160, hydroxyl value 42 mgKOH / g) and a terpene phenol resin (manufactured by Yasuhara Chemical Co., Ltd., YS Polystar G150, hydroxyl value 130 mgKOH / g, softening point 150 ° C.) )
  • a solution of the pressure-sensitive adhesive E was prepared in the same manner as the pressure-sensitive adhesive A except that 10 parts by weight was used.
  • the pressure-sensitive adhesive F was the same as the pressure-sensitive adhesive C except that 10 parts by weight of a terpene phenol resin (manufactured by Yasuhara Chemical Co., Ltd., YS Polystar U-115, hydroxyl value 20 mgKOH / g, softening point 115 ° C.) was used as the pressure-sensitive adhesive resin. A solution was prepared.
  • a terpene phenol resin manufactured by Yasuhara Chemical Co., Ltd., YS Polystar U-115, hydroxyl value 20 mgKOH / g, softening point 115 ° C.
  • the pressure-sensitive adhesive G was used as the pressure-sensitive adhesive resin except that 10 parts by weight of a terpene phenol resin (manufactured by Yasuhara Chemical Co., Ltd., YS Polystar G-125, hydroxyl value 130 mgKOH / g, softening point 125 ° C.) was used. A solution was prepared.
  • a terpene phenol resin manufactured by Yasuhara Chemical Co., Ltd., YS Polystar G-125, hydroxyl value 130 mgKOH / g, softening point 125 ° C.
  • thermo pressure-sensitive adhesive I A solution of the thermal pressure-sensitive adhesive I was prepared in the same manner as the heat-sensitive pressure-sensitive adhesive H except that the acrylic polymer 2-containing solution was changed to the acrylic polymer 3-containing solution.
  • Examples 1 to 13 (1) Production of Pressure Sensitive Adhesive Tape
  • the obtained adhesive solution was applied onto a PET film having a thickness of 75 ⁇ m and subjected to a mold release treatment so that the thickness of the adhesive layer 1 after drying would be the thickness shown in Table 2. Then, it was dried at 110 ° C. for 5 minutes to form the pressure-sensitive adhesive layer 1.
  • the pressure-sensitive adhesive layer 1 was transferred to the substrate shown in Table 2 and cured at 40 ° C. for 48 hours to obtain a pressure-sensitive adhesive tape.
  • a measurement sample composed of only the pressure-sensitive adhesive layer 1 having a thickness of 10 mm ⁇ 6 mm and a thickness of 1 mm was prepared by the same method.
  • the obtained measurement sample was subjected to a dynamic viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.) under the conditions of a shear mode for dynamic viscoelasticity measurement, an angular frequency of 1 Hz, and a speed of 5 ° C./min. Dynamic viscoelasticity was measured from ⁇ 40 ° C. to 140 ° C., and the storage elastic modulus at 23 ° C. was measured. The measurement results are shown in Table 1.
  • Example 2 the pressure-sensitive adhesive tape was attached so as to have the covering form shown in FIG. First, place the pressure-sensitive adhesive tape on one side of one side of the copper-clad laminate so that the end of the long side of the pressure-sensitive adhesive tape comes at a position 3.5 mm from the end of the copper-clad laminate, and 2 kg. The pressure was applied at a speed of 300 mm / min using a roller.
  • Example 8 the pressure-sensitive adhesive tape was attached so as to have the covering form shown in FIG. First, place the pressure-sensitive adhesive tape on one side of one side of the copper-clad laminate so that the end of the long side of the pressure-sensitive adhesive tape comes to the position 3.3 mm from the end of the copper-clad laminate, and 2 kg.
  • the pressure was applied at a speed of 300 mm / min using a roller. After that, while pressing the base material surface of the pressure-sensitive adhesive tape that has not been attached with a stainless steel plate, the pressure-sensitive adhesive tape is bent toward the other surface of the copper-clad laminate, and the other surface of the copper-clad laminate is bent. It was attached to a copper-clad laminate at a position 3.3 mm from the end, and crimped at a speed of 300 mm / min using a 2 kg roller. The same operation was carried out on the side of the copper-clad laminate facing the side facing the pressure-sensitive adhesive tape, and the pressure-sensitive adhesive tape was attached to obtain a copper-clad laminate with end protection.
  • Example 14 (1) Production of Thermal Adhesive Tape After the obtained adhesive solution is applied onto a PET film having a thickness of 75 ⁇ m and subjected to mold release treatment so that the thickness of the adhesive layer 1 after drying becomes the thickness shown in Table 2. , 110 ° C. for 5 minutes to form the pressure-sensitive adhesive layer 1. The pressure-sensitive adhesive layer 1 was transferred to the substrate shown in Table 2 under 100 ° C. conditions and cured at 40 ° C. for 48 hours to obtain a heat-sensitive adhesive tape. In addition, a measurement sample composed of only the pressure-sensitive adhesive layer 1 having a thickness of 10 mm ⁇ 6 mm and a thickness of 1 mm was prepared by the same method.
  • the obtained measurement sample was subjected to a dynamic viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.) under the conditions of a shear mode for dynamic viscoelasticity measurement, an angular frequency of 1 Hz, and a speed of 5 ° C./min. Dynamic viscoelasticity was measured from ⁇ 40 ° C. to 140 ° C., and the storage elastic modulus at 23 ° C. and 100 ° C. was measured. Furthermore, using a viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.), a dynamic viscoelasticity spectrum of -100 ° C to 200 ° C under the conditions of 5 ° C / min and 1 Hz in the low-speed temperature rise shear deformation mode. The peak temperature of the loss tangent was measured by measuring. The measurement results are shown in Table 1.
  • Example 15 to 19 (1) Production of Heat-Sensitive Adhesive Tape
  • the thickness of the pressure-sensitive adhesive layer 1 after drying is the thickness shown in Table 2 on a PET film obtained by mold-releasing the obtained pressure-sensitive adhesive solution for forming the pressure-sensitive adhesive layer 1 with a thickness of 75 ⁇ m. After coating so as to be, it was dried at 110 ° C. for 5 minutes to form the pressure-sensitive adhesive layer 1 (pressure-sensitive pressure-sensitive adhesive layer). The pressure-sensitive adhesive layer 1 was transferred to the substrate shown in Table 2 and the release-treated PET film was peeled off.
  • the pressure-sensitive adhesive solution for forming the pressure-sensitive adhesive layer 2 was applied onto a PET film having a thickness of 75 ⁇ m and subjected to a mold release treatment so that the thickness of the pressure-sensitive adhesive layer 2 after drying would be the thickness shown in Table 2, and then 110.
  • the adhesive layer 2 (heat-sensitive adhesive layer) was formed by drying at ° C. for 5 minutes.
  • the pressure-sensitive adhesive layer 2 is transferred to the pressure-sensitive adhesive layer 1 under 100 ° C. conditions and cured at 40 ° C. for 48 hours.
  • a heat-sensitive adhesive tape in which the mold adhesive layer) and the release-treated PET film were laminated in this order was obtained.
  • a measurement sample composed of only the pressure-sensitive adhesive layer 2 having a thickness of 10 mm ⁇ 6 mm and a thickness of 1 mm was prepared by the same method.
  • the obtained measurement sample was subjected to a dynamic viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.) under the conditions of a shear mode for dynamic viscoelasticity measurement, an angular frequency of 1 Hz, and a speed of 5 ° C./min.
  • Dynamic viscoelasticity was measured from ⁇ 40 ° C. to 140 ° C., and the storage elastic modulus at 23 ° C. and 100 ° C. was measured.
  • Electroless plating was performed on the copper-clad laminate with the end protected under the conditions shown in Table 3.
  • the appearance of the copper-clad laminate with end-protected copper-clad laminates was observed at a magnification of 50 times using a microscope (VHX-5000, manufactured by KEYENCE CORPORATION) to confirm the presence or absence of plating precipitation.
  • the case where the plating was well deposited was evaluated as ⁇ .
  • the presence or absence of plating peeling was confirmed by attaching a commercially available cellophane tape to the plated portion deposited on the surface of the base material of the adhesive tape and conducting a peeling test.
  • the case where the plating was not transferred to the cellophane tape was evaluated as ⁇ , and the case where the plating was partially transferred was evaluated as ⁇ .
  • the adhesive tape was peeled off from the copper-clad laminate, and the discoloration of the copper in the portion where the adhesive tape of the copper-clad laminate was attached was confirmed to evaluate the protective property (presence or absence of wetting). ⁇ when no discoloration of copper was observed, ⁇ when discoloration of copper was observed within 2 mm from the end of the part where the adhesive tape was attached, and ⁇ when discoloration of copper was observed more than that. It was marked as x.
  • an end-protected metal-clad laminate capable of suppressing damage to the end of the metal-clad laminate and suppressing infiltration of the solution into the end even when exposed to a strong alkaline solution can be provided.
  • Metal-clad laminate with end protection Metal-clad laminate 30, 30', 30'' Adhesive tape 31, 31', 31'' Base material 32, 32', 32'' Adhesive layer 3a Adhesive layer Interface between each other

Abstract

One purpose of the present invention is to provide a metal-clad laminate having protected edge, said metal-clad laminate being able to be suppressed in breaking of the edge and being able to be suppressed in the ingress of a strong alkaline solution into the edge in cases where the metal-clad laminate is exposed to the solution. Another purpose of the present invention is to provide: a method for producing a printed wiring board; and a method for producing an intermediate for printed wiring boards. The present invention provides a metal-clad laminate having protected edge, wherein the edge of the metal-clad laminate is covered with a protective material.

Description

端部保護された金属張積層板、プリント配線基板の製造方法、及び、プリント配線基板用中間体の製造方法A method for manufacturing an end-protected metal-clad laminate, a printed wiring board, and a method for manufacturing an intermediate for a printed wiring board.
本発明は、端部保護された金属張積層板、プリント配線基板の製造方法、及び、プリント配線基板用中間体の製造方法に関する。 The present invention relates to a method for manufacturing an end-protected metal-clad laminate, a printed wiring board, and a method for manufacturing an intermediate for a printed wiring board.
従来から、電子機器において部品を固定する際に、粘着剤や粘着テープが広く用いられている。また、粘着テープは、電子機器の製造工程における工程材としても用いられており、例えば、電子機器の製造工程において薄い部材を加工する際、取扱いを容易にし、破損を防止するために粘着テープが用いられている。これらの粘着剤や粘着テープには、高い粘着性に加え、使用される環境に応じて、耐熱性、熱伝導性、耐衝撃性等の機能が要求されている(例えば、特許文献1~3)。 Conventionally, adhesives and adhesive tapes have been widely used when fixing parts in electronic devices. The adhesive tape is also used as a process material in the manufacturing process of electronic devices. For example, when processing a thin member in the manufacturing process of an electronic device, the adhesive tape is used to facilitate handling and prevent damage. It is used. In addition to high adhesiveness, these adhesives and adhesive tapes are required to have functions such as heat resistance, thermal conductivity, and impact resistance depending on the environment in which they are used (for example, Patent Documents 1 to 3). ).
特開2015-052050号公報JP-A-2015-052050 特開2015-021067号公報Japanese Patent Application Laid-Open No. 2015-021067 特開2015-120876号公報JP-A-2015-120876
一方、電子機器に使用されるプリント配線基板等の基板は、銅箔と樹脂層とが積層された銅張積層板(CCL)の銅箔部分に回路を形成することで製造されている。近年、プリント配線基板等の基板は薄化が進んでおり、例えば銅張積層板の厚みが100μm以下、なかでも30~40μm付近の場合、銅張積層板から基板を製造する工程においては、製造工程中に銅張積層板の端部が破損する問題が生じている。特に、基板の製造工程で行われるエッチング処理、デスミア処理等においては、処理液として強アルカリ性の溶液が使用されている。このため、強アルカリ性溶液が銅張積層板の端部に浸入し、端部の破損につながったり、樹脂層が損傷して次工程で不具合を起こしたりする問題が生じている。 On the other hand, a substrate such as a printed wiring board used in an electronic device is manufactured by forming a circuit in a copper foil portion of a copper-clad laminate (CCL) in which a copper foil and a resin layer are laminated. In recent years, substrates such as printed wiring boards have become thinner. For example, when the thickness of a copper-clad laminate is 100 μm or less, especially around 30 to 40 μm, it is manufactured in the process of manufacturing the substrate from the copper-clad laminate. There is a problem that the end of the copper-clad laminate is damaged during the process. In particular, a strongly alkaline solution is used as the treatment liquid in the etching treatment, desmear treatment, and the like performed in the substrate manufacturing process. For this reason, there is a problem that the strong alkaline solution infiltrates the end portion of the copper-clad laminate, leading to damage to the end portion, or damage to the resin layer, causing a problem in the next process.
本発明は、金属張積層板の端部の破損を抑制でき、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入を抑制できる端部保護された金属張積層板を提供することを目的とする。また、本発明は、プリント配線基板の製造方法、及び、プリント配線基板用中間体の製造方法を提供することを目的とする。 The present invention provides an edge-protected metal-clad laminate capable of suppressing damage to the edges of the metal-clad laminate and suppressing infiltration of the solution into the edges even when exposed to a strong alkaline solution. The purpose is. Another object of the present invention is to provide a method for manufacturing a printed wiring board and a method for manufacturing an intermediate for a printed wiring board.
本発明は、金属張積層板の端部が保護材で覆われている端部保護された金属張積層板である。以下に本発明を詳述する。 The present invention is an end-protected metal-clad laminate in which the end of the metal-clad laminate is covered with a protective material. The present invention will be described in detail below.
本発明の端部保護された金属張積層板は、金属張積層板の端部が保護材で覆われているものである。このような端部保護された金属張積層板は、上記金属張積層板の端部の破損を抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入を抑制することができる。 In the metal-clad laminate with end protection of the present invention, the end of the metal-clad laminate is covered with a protective material. Such an end-protected metal-clad laminate can suppress damage to the end of the metal-clad laminate, and even when exposed to a strong alkaline solution, the solution can penetrate into the end. It can be suppressed.
上記金属張積層板の端部が上記保護材で覆われているとは、上記金属張積層板の少なくとも端面が上記保護材で覆われていることを意味し、必要に応じて、該端面の周辺部分も上記保護材で覆われていてもよい。
なかでも、上記金属張積層板の端部は、上記金属張積層板の表面から裏面にまでまたがるように上記保護材で覆われていることが好ましい。このような場合、上記保護材が剥がれにくくなることから、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。このような場合、上記金属張積層板の表面及び裏面において、上記保護材が上記金属張積層板の表面及び裏面を覆う部分の幅(上記保護材の端部と上記金属張積層板の端面との最短距離)は特に限定されないが、好ましい下限は1mm、好ましい上限は20mmであり、より好ましい下限は3mm、より好ましい上限は10mmである。
The fact that the end portion of the metal-clad laminate is covered with the protective material means that at least the end face of the metal-clad laminate is covered with the protective material, and if necessary, the end face of the metal-clad laminate. The peripheral portion may also be covered with the above-mentioned protective material.
Above all, it is preferable that the end portion of the metal-clad laminate is covered with the protective material so as to extend from the front surface to the back surface of the metal-clad laminate. In such a case, since the protective material is less likely to come off, damage to the end portion of the metal-clad laminate can be further suppressed, and even when exposed to a strong alkaline solution, the end portion of the solution is exposed. Infiltration can be further suppressed. In such a case, on the front surface and the back surface of the metal-clad laminate, the width of the portion where the protective material covers the front surface and the back surface of the metal-clad laminate (the end of the protective material and the end face of the metal-clad laminate). The shortest distance) is not particularly limited, but the preferred lower limit is 1 mm, the preferred upper limit is 20 mm, the more preferred lower limit is 3 mm, and the more preferred upper limit is 10 mm.
本発明の端部保護された金属張積層板においては、更に、上記金属張積層板の表面及び裏面からなる群より選択される1以上の面の全体が上記保護材で覆われていてもよい。このような場合には、上記保護材をよりいっそう剥がれにくくすることができる。 In the metal-clad laminate with end protection of the present invention, the entire surface of one or more selected from the group consisting of the front surface and the back surface of the metal-clad laminate may be further covered with the protective material. .. In such a case, the protective material can be made more difficult to peel off.
本発明の端部保護された金属張積層板は、上記金属張積層板の四辺のうちの少なくとも一辺における少なくとも一部が上記保護材で覆われていればよい。なかでも、上記金属張積層板の端部の破損をより抑制し、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制する観点から、上記金属張積層板の二辺以上が上記保護材で覆われていることが好ましい。上記金属張積層板の三辺以上が上記保護材で覆われていることがより好ましく、上記金属張積層板の四辺が上記保護材で覆われていることが更に好ましい。また、上記金属張積層板の各辺は、全体にわたって上記保護材で覆われていることが好ましい。 In the metal-clad laminate with end protection of the present invention, at least a part of at least one of the four sides of the metal-clad laminate may be covered with the protective material. Above all, from the viewpoint of further suppressing damage to the end portion of the metal-clad laminate and further suppressing the infiltration of the solution into the end even when exposed to a strong alkaline solution, the metal-clad laminate has two. It is preferable that the sides and above are covered with the protective material. It is more preferable that three or more sides of the metal-clad laminate are covered with the protective material, and it is further preferable that the four sides of the metal-clad laminate are covered with the protective material. Further, it is preferable that each side of the metal-clad laminate is covered with the protective material as a whole.
本発明の端部保護された金属張積層板においては、上記金属張積層板の端部が、一辺につき1つの保護材で覆われていてもよいし、一辺につき2つ以上の保護材で覆われていてもよい。一辺につき2つ以上の保護材で覆われている場合、例えば、一辺につき2つの保護材が貼り合わされることで覆われていてもよいし、3つの保護材が貼り合わされることで覆われていてもよい。 In the metal-clad laminate with end protection of the present invention, the end of the metal-clad laminate may be covered with one protective material per side, or may be covered with two or more protective materials per side. It may be broken. When it is covered with two or more protective materials per side, for example, it may be covered by laminating two protective materials per side, or it may be covered by laminating three protective materials. You may.
なお、上記金属張積層板の端部が上記保護材で覆われていること、及び、その被覆形態は、端部保護された金属張積層板を目視にて観察すること又は顕微鏡(例えば、キーエンス社製、VHX-5000)を用いて観察することで確認することができる。 It should be noted that the end portion of the metal-clad laminate is covered with the protective material, and the covering form thereof is that the end-protected metal-clad laminate is visually observed or a microscope (for example, KEYENCE). It can be confirmed by observing using VHX-5000) manufactured by the same company.
上記金属張積層板は特に限定されず、プリント配線基板等の基板の製造に一般的に用いられる、金属層と樹脂層とが積層された金属張積層板を用いることができる。より具体的には例えば、銅箔と樹脂層とが積層された銅張積層板(CCL)、アルミニウム箔と樹脂層とが積層されたアルミ張積層板等を用いることができる。このような金属張積層板を用いる場合、上記金属張積層板の端部のうち、少なくとも上記樹脂層の端部が上記保護材により覆われていることが好ましい。 The metal-clad laminate is not particularly limited, and a metal-clad laminate in which a metal layer and a resin layer are laminated, which is generally used for manufacturing a substrate such as a printed wiring board, can be used. More specifically, for example, a copper-clad laminate (CCL) in which a copper foil and a resin layer are laminated, an aluminum-clad laminate in which an aluminum foil and a resin layer are laminated, and the like can be used. When such a metal-clad laminate is used, it is preferable that at least the end of the resin layer is covered with the protective material among the ends of the metal-clad laminate.
上記金属張積層板の厚みは特に限定されないが、100μm以下の薄い厚みであってもよい。このような薄い厚みであっても、本発明の端部保護された金属張積層板は、上記金属張積層板の端部の破損を抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入を抑制することができる。上記金属張積層板の厚みのより好ましい下限は10μm、より好ましい上限は60μmであり、特に好ましい下限は30μm、特に好ましい上限は40μmである。 The thickness of the metal-clad laminate is not particularly limited, but may be as thin as 100 μm or less. Even with such a thin thickness, the metal-clad laminate with end protection of the present invention can suppress damage to the end of the metal-clad laminate, and when exposed to a strong alkaline solution, it can be prevented from being damaged. Can also suppress the infiltration of the solution into the end portion. The more preferable lower limit of the thickness of the metal-clad laminate is 10 μm, the more preferable upper limit is 60 μm, the particularly preferable lower limit is 30 μm, and the particularly preferable upper limit is 40 μm.
上記保護材は特に限定されないが、基材と、上記基材の一方の面に積層された粘着剤層とを有する粘着テープであることが好ましい。このような粘着テープは、上記金属張積層板の端部に対して上記粘着剤層が接するようにして貼り付けて用いられる。上記基材は特に限定されず、金属基材であってもよいし、樹脂基材であってもよい。 The protective material is not particularly limited, but is preferably an adhesive tape having a base material and an adhesive layer laminated on one surface of the base material. Such an adhesive tape is used by being attached so that the adhesive layer is in contact with the end portion of the metal-clad laminate. The base material is not particularly limited, and may be a metal base material or a resin base material.
上記基材が上記金属基材である場合、上記粘着テープを上記金属張積層板の端部に貼り付けると、上記金属基材が最表面に露出することになる。このような端部保護された金属張積層板に対して金属メッキ処理を施し、上記金属張積層板及び上記金属基材の表面に金属を析出させた場合には、金属が良好に析出するとともに、剥離しにくい金属メッキ層を形成させることができる。
また、上記基材が上記金属基材である場合、強アルカリ性溶液に晒された場合にも上記金属基材は損傷しにくいことから、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。また、上記基材が上記金属基材であることにより、後述するような樹脂層を介さなくても上記金属基材と上記粘着剤層との間のアンカー性が増すことから、上記粘着剤層の内部に強アルカリ性溶液が浸入しにくくなる。このことによっても、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。更に、上記基材が上記金属基材である場合、上記金属張積層板の表面から裏面にまでまたがるように上記粘着テープを折り返して(折り曲げて)上記金属張積層板の端部に貼り付けた場合であっても、上記金属基材が形状を保持することから、上記金属基材を折り返したことによる復元力を抑制することができる。これにより、上記金属張積層板の端部と上記粘着剤層との間に隙間が生じにくくなり、剥がれが生じにくくなる。上記基材が上記樹脂基材である場合には、上記樹脂基材の復元力により上記金属張積層板の端部と上記粘着剤層との間に隙間が生じやすく、剥がれが生じやすい。
When the base material is the metal base material, when the adhesive tape is attached to the end portion of the metal-clad laminate, the metal base material is exposed on the outermost surface. When metal plating is applied to such an end-protected metal-clad laminate and metal is deposited on the surfaces of the metal-clad laminate and the metal base material, the metal is well deposited. It is possible to form a metal plating layer that is difficult to peel off.
Further, when the base material is the metal base material, the metal base material is not easily damaged even when exposed to a strong alkaline solution, so that damage to the end portion of the metal-clad laminate can be further suppressed. And even when exposed to a strong alkaline solution, the infiltration of the solution into the end can be further suppressed. Further, since the base material is the metal base material, the anchoring property between the metal base material and the pressure-sensitive adhesive layer is increased without using a resin layer as described later, so that the pressure-sensitive adhesive layer is increased. It becomes difficult for a strong alkaline solution to penetrate into the inside of the. This also makes it possible to further suppress damage to the end portion of the metal-clad laminate, and further suppress the infiltration of the solution into the end portion even when exposed to a strong alkaline solution. Further, when the base material is the metal base material, the adhesive tape is folded back (bent) so as to extend from the front surface to the back surface of the metal-clad laminate and attached to the end portion of the metal-clad laminate. Even in this case, since the metal base material retains its shape, it is possible to suppress the restoring force due to the folded back metal base material. As a result, a gap is less likely to occur between the end portion of the metal-clad laminate and the adhesive layer, and peeling is less likely to occur. When the base material is the resin base material, a gap is likely to occur between the end portion of the metal-clad laminate and the pressure-sensitive adhesive layer due to the restoring force of the resin base material, and peeling is likely to occur.
上記金属基材を構成する金属は特に限定されず、例えば、銅、アルミニウム、ニッケル、チタン等が挙げられる。また、上記金属基材を構成する金属としては、ステンレス、モネル等の合金も挙げられる。なかでも、折り返した後の復元力が小さく、かつ、破れにくいため上記粘着テープの取り扱い性がより良好となることから、銅が好ましい。 The metal constituting the metal base material is not particularly limited, and examples thereof include copper, aluminum, nickel, and titanium. Further, examples of the metal constituting the metal base material include alloys such as stainless steel and monel. Of these, copper is preferable because it has a small restoring force after being folded back and is not easily torn, so that the adhesive tape is easier to handle.
上記基材が上記樹脂基材である場合、上記粘着テープを上記金属張積層板貼り付けると、上記樹脂基材が最表面に露出することになる。上記樹脂基材の表面粗さの端部にRa、より詳細には上記樹脂基材の上記粘着剤層が積層された側とは反対側の表面の表面粗さRaは特に限定されないが、好ましい下限は10nm、好ましい上限は500nmである。上記樹脂基材の表面粗さRaが上記範囲内であれば、端部保護された金属張積層板に対して金属メッキ処理を施し、上記金属張積層板及び上記樹脂基材の表面に金属を析出させた場合には、金属が良好に析出するとともに、剥離しにくい金属メッキ層を形成させることができる。なお、上記基材が上記樹脂基材であると、上記金属基材である場合に比べて通常は金属メッキ層が剥離しやすくなる。上記樹脂基材の表面粗さRaのより好ましい下限は15nm、より好ましい上限は200nmであり、更に好ましい下限は20nm、更に好ましい上限は100nmである。
なお、表面粗さRaとは、JIS B 0601-2001に規定される算術平均粗さを意味する。
When the base material is the resin base material, when the adhesive tape is attached to the metal-clad laminate, the resin base material is exposed on the outermost surface. Ra is not particularly limited at the end of the surface roughness of the resin base material, and more specifically, the surface roughness Ra of the surface opposite to the side on which the pressure-sensitive adhesive layer of the resin base material is laminated is not particularly limited, but is preferable. The lower limit is 10 nm, and the preferred upper limit is 500 nm. If the surface roughness Ra of the resin base material is within the above range, the metal-clad laminate with end-protected metal plating is subjected to metal plating treatment, and metal is applied to the surfaces of the metal-clad laminate and the resin base material. When it is deposited, the metal is well deposited and a metal plating layer that is difficult to peel off can be formed. When the base material is the resin base material, the metal plating layer is usually more easily peeled off than when the base material is the metal base material. The more preferable lower limit of the surface roughness Ra of the resin substrate is 15 nm, the more preferable upper limit is 200 nm, the further preferable lower limit is 20 nm, and the further preferable upper limit is 100 nm.
The surface roughness Ra means the arithmetic mean roughness defined in JIS B 0601-2001.
上記樹脂基材は特に限定されず、例えば、ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィン系樹脂フィルム、ポリエチレンテレフタレート(PET)フィルム等のポリエステル系樹脂フィルム、エチレン-酢酸ビニル共重合体フィルム、ポリ塩化ビニル系樹脂フィルム、ポリウレタン系樹脂フィルムが挙げられる。また、上記基材として、ポリエチレン発泡体シート、ポリプロピレン発泡体シート等のポリオレフィン発泡体シート、ポリウレタン発泡体シート等も挙げられる。なかでも、PETフィルムが好ましい。 The resin base material is not particularly limited, and is, for example, a polyolefin resin film such as a polyethylene film or a polypropylene film, a polyester resin film such as a polyethylene terephthalate (PET) film, an ethylene-vinyl acetate copolymer film, or a polyvinyl chloride film. Examples thereof include a resin film and a polyurethane resin film. Further, examples of the base material include a polyethylene foam sheet, a polyolefin foam sheet such as a polypropylene foam sheet, and a polyurethane foam sheet. Of these, PET film is preferable.
上記基材の厚みは特に限定されないが、好ましい下限は2μm、好ましい上限は30μmである。上記基材の厚みが上記範囲内であれば、上記粘着テープを折り返して(折り曲げて)上記金属張積層板の端部に貼り付けた場合であっても剥がれがより生じにくくなる。上記基材の厚みのより好ましい下限は4μm、より好ましい上限は20μmである。 The thickness of the base material is not particularly limited, but the preferred lower limit is 2 μm and the preferred upper limit is 30 μm. When the thickness of the base material is within the above range, even when the adhesive tape is folded back (bent) and attached to the end portion of the metal-clad laminate, peeling is less likely to occur. The more preferable lower limit of the thickness of the base material is 4 μm, and the more preferable upper limit is 20 μm.
上記粘着テープは、上記基材の表面に更に金属メッキ層を有していてもよい。より詳細には、上記基材の上記粘着剤層が積層された側とは反対側の表面に更に金属メッキ層を有していてもよい。上述したように、上記基材が上記金属基材である場合、端部保護された金属張積層板に対して金属メッキ処理を施し、上記金属張積層板及び上記金属基材の表面に金属を析出させた場合には、金属が良好に析出するとともに、剥離しにくい金属メッキ層を形成させることができる。上記基材が上記樹脂基材である場合にも、上記樹脂基材の表面粗さRaが上記範囲内であれば、金属が良好に析出するとともに、剥離しにくい金属メッキ層を形成させることができる。本発明の端部処理された金属張積層板は、このような金属メッキ処理を経ることで上記基材の表面に金属メッキ層が形成されたものであってもよい。 The adhesive tape may further have a metal plating layer on the surface of the base material. More specifically, a metal plating layer may be further provided on the surface of the base material opposite to the side on which the pressure-sensitive adhesive layer is laminated. As described above, when the base material is the metal base material, the metal-clad laminate with end protection is subjected to metal plating treatment, and the metal is applied to the surfaces of the metal-clad laminate and the metal base material. When it is deposited, the metal is well deposited and a metal plating layer that is difficult to peel off can be formed. Even when the base material is the resin base material, if the surface roughness Ra of the resin base material is within the above range, the metal can be well deposited and a metal plating layer that is difficult to peel off can be formed. can. The metal-clad laminate with the edge treatment of the present invention may have a metal plating layer formed on the surface of the base material through such a metal plating treatment.
上記粘着剤層は特に限定されず、上記粘着剤層に含まれるベースポリマーとして、例えば、アクリル系ポリマー、ゴム系ポリマー、ウレタン系ポリマー、シリコーン系ポリマー等が挙げられる。なかでも、上記粘着剤層は、アクリル系ポリマーを含有するアクリル系感圧粘着剤層若しくはアクリル系感熱粘着剤層、又は、ゴム系ポリマーを含有するゴム系粘着剤層であることが好ましい。 The pressure-sensitive adhesive layer is not particularly limited, and examples of the base polymer contained in the pressure-sensitive adhesive layer include acrylic polymers, rubber-based polymers, urethane-based polymers, and silicone-based polymers. Among them, the pressure-sensitive adhesive layer is preferably an acrylic pressure-sensitive pressure-sensitive adhesive layer or an acrylic heat-sensitive pressure-sensitive adhesive layer containing an acrylic polymer, or a rubber-based pressure-sensitive adhesive layer containing a rubber-based polymer.
上記アクリル系ポリマーは、通常、アルキル基の炭素数が1~18の範囲にあるアクリル酸アルキルエステル及び/又はメタクリル酸アルキルエステルを主モノマーとし、これと必要に応じて架橋性官能基を有するモノマーとを常法により共重合させることにより得られる(メタ)アクリル酸エステル共重合体である。更に、共重合可能な他の改質用モノマーを共重合させてもよい。 The acrylic polymer usually contains an acrylic acid alkyl ester and / or a methacrylic acid alkyl ester having an alkyl group having a carbon number in the range of 1 to 18 as a main monomer, and a monomer having a crosslinkable functional group as required. It is a (meth) acrylic acid ester copolymer obtained by copolymerizing with and by a conventional method. Further, other copolymerizable modifying monomers may be copolymerized.
上記アクリル系感圧粘着剤層は、光、熱、水分等に対し比較的安定であり、常温で接着性を示し、種々の被着体に接着が可能である(被着体選択性が低い)という利点も有する。上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーは特に限定されないが、架橋性官能基を有するモノマーに由来する構成単位を有することが好ましい。このような構成単位を有することで、架橋剤を併用したときに上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマー間を架橋させることができる。その際の架橋度を調整することで、上記アクリル系感圧粘着剤層の貯蔵弾性率を調整することができる。 The acrylic pressure-sensitive pressure-sensitive adhesive layer is relatively stable against light, heat, moisture, etc., exhibits adhesiveness at room temperature, and can be adhered to various adherends (adhesive selectivity is low). ) Also has the advantage. The acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is not particularly limited, but it is preferable to have a structural unit derived from a monomer having a crosslinkable functional group. By having such a structural unit, it is possible to crosslink between the acrylic polymers contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer when a crosslinking agent is used in combination. By adjusting the degree of cross-linking at that time, the storage elastic modulus of the acrylic pressure-sensitive pressure-sensitive adhesive layer can be adjusted.
上記架橋性官能基としては、例えば、水酸基、カルボキシル基、グリシジル基、アミノ基、アミド基、ニトリル基等が挙げられる。なかでも、上記アクリル系感圧粘着剤層の貯蔵弾性率の調整が容易であることから、水酸基又はカルボキシル基が好ましい。上記水酸基を有するモノマーとしては、例えば、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等の水酸基を有する(メタ)アクリル酸エステルが挙げられる。上記カルボキシル基を有するモノマーとしては、例えば、(メタ)アクリル酸等が挙げられる。上記グリシジル基を有するモノマーとしては、例えば、グリシジル(メタ)アクリレート等が挙げられる。上記アミド基を有するモノマーとしては、例えば、ヒドロキシエチルアクリルアミド、イソプロピルアクリルアミド、ジメチルアミノプロピルアクリルアミド等が挙げられる。上記ニトリル基を有するモノマーとしては、例えば、アクリロニトリル等が挙げられる。これらの架橋性官能基を有するモノマーは、単独で用いてもよく、2種以上を併用してもよい。上記架橋性官能基を有するモノマーに由来する構成単位の含有量は特に限定されないが、好ましい下限が0.1重量%、好ましい上限が5重量%である。上記架橋性官能基を有するモノマーとして上記カルボキシル基を有するモノマーを用いる場合、強アルカリ性溶液の浸入がより抑えられる観点から、より好ましい上限は3重量%、更に好ましい上限は0.5重量%である。 Examples of the crosslinkable functional group include a hydroxyl group, a carboxyl group, a glycidyl group, an amino group, an amide group, a nitrile group and the like. Of these, a hydroxyl group or a carboxyl group is preferable because the storage elastic modulus of the acrylic pressure-sensitive pressure-sensitive adhesive layer can be easily adjusted. Examples of the monomer having a hydroxyl group include (meth) acrylic acid esters having a hydroxyl group such as 4-hydroxybutyl (meth) acrylate and 2-hydroxyethyl (meth) acrylate. Examples of the monomer having a carboxyl group include (meth) acrylic acid and the like. Examples of the monomer having a glycidyl group include glycidyl (meth) acrylate and the like. Examples of the monomer having an amide group include hydroxyethylacrylamide, isopropylacrylamide, dimethylaminopropylacrylamide and the like. Examples of the monomer having a nitrile group include acrylonitrile. These crosslinkable functional groups may be used alone or in combination of two or more. The content of the structural unit derived from the monomer having a crosslinkable functional group is not particularly limited, but the preferable lower limit is 0.1% by weight and the preferable upper limit is 5% by weight. When the monomer having a carboxyl group is used as the monomer having a crosslinkable functional group, the more preferable upper limit is 3% by weight, and the more preferable upper limit is 0.5% by weight from the viewpoint of further suppressing the infiltration of a strong alkaline solution. ..
上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーは、炭素数が8以上のアルキル基を有する(メタ)アクリレートに由来する構成単位を有することが好ましい。このような構成単位を有することで、上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーの疎水性が上がり、分子鎖内への強アルカリ性溶液の浸入をより抑えることができる。 The acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer preferably has a structural unit derived from a (meth) acrylate having an alkyl group having 8 or more carbon atoms. By having such a structural unit, the hydrophobicity of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is increased, and the infiltration of the strong alkaline solution into the molecular chain can be further suppressed.
上記炭素数が8以上のアルキル基を有する(メタ)アクリレートとしては、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。これらの炭素数が8以上のアルキル基を有する(メタ)アクリレートは、単独で用いてもよく、2種以上を併用してもよい。なかでも、上記アクリル系感圧粘着剤層が硬くなりすぎず、充分なタック性を維持できることから、2-エチルヘキシルアクリレート、ラウリルアクリレート、ラウリルメタクリレートを用いることが好ましい。 Examples of the (meth) acrylate having an alkyl group having 8 or more carbon atoms include n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate, and isononyl (. Examples thereof include meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, and isobornyl (meth) acrylate. These (meth) acrylates having an alkyl group having 8 or more carbon atoms may be used alone or in combination of two or more. Of these, 2-ethylhexyl acrylate, lauryl acrylate, and lauryl methacrylate are preferably used because the acrylic pressure-sensitive pressure-sensitive adhesive layer does not become too hard and can maintain sufficient tackiness.
上記炭素数が8以上のアルキル基を有する(メタ)アクリレートに由来する構成単位の含有量は特に限定されないが、好ましい下限が15重量%、好ましい上限が99重量%である。上記炭素数が8以上のアルキル基を有する(メタ)アクリレートの含有量が上記範囲内であれば、上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーの疎水性が上がり、分子鎖内への強アルカリ性溶液の浸入がより抑えられる。上記炭素数が8以上のアルキル基を有する(メタ)アクリレートに由来する構成単位の含有量のより好ましい下限は20重量%、より好ましい上限は30重量%である。 The content of the structural unit derived from the (meth) acrylate having an alkyl group having 8 or more carbon atoms is not particularly limited, but the preferable lower limit is 15% by weight and the preferable upper limit is 99% by weight. When the content of the (meth) acrylate having an alkyl group having 8 or more carbon atoms is within the above range, the hydrophobicity of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is increased, and the hydrophobicity is increased into the molecular chain. Infiltration of strong alkaline solution is further suppressed. The more preferable lower limit of the content of the structural unit derived from the (meth) acrylate having an alkyl group having 8 or more carbon atoms is 20% by weight, and the more preferable upper limit is 30% by weight.
上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーは、本発明の効果を阻害しない範囲で、更に、他のモノマーに由来する構成単位を有していてもよい。上記他のモノマーとして、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、酢酸ビニル、フッ素含有モノマー等が挙げられる。また、上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーを紫外線重合法により調製する場合には、更に、ジビニルベンゼン、トリメチロールプロパントリ(メタ)アクリレート等の多官能モノマーに由来する構成単位を有することが好ましい。 The acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer may further have a structural unit derived from another monomer as long as the effect of the present invention is not impaired. Examples of the other monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, and ethyl carbitol (meth). ) Examples thereof include acrylate, vinyl acetate, and a fluorine-containing monomer. Further, when the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is prepared by an ultraviolet polymerization method, a structural unit derived from a polyfunctional monomer such as divinylbenzene or trimethylolpropane tri (meth) acrylate. It is preferable to have.
上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーは、重量平均分子量の好ましい下限が25万、好ましい上限が200万である。上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーの重量平均分子量が上記範囲内であれば、上記アクリル系感圧粘着剤層の粘着力が向上する。上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーの重量平均分子量のより好ましい下限は30万、更に好ましい下限は40万、より好ましい上限は150万である。なお、重量平均分子量(Mw)は、重合条件(例えば、重合開始剤の種類又は量、重合温度、モノマー濃度等)によって調整できる。また、重量平均分子量(Mw)は、以下の方法により測定できる。
アクリル系ポリマー溶液をフィルター(材質:ポリテトラフルオロエチレン、ポア径:0.2μm)で濾過する。得られた濾液をゲル浸透クロマトグラフ(例えば、Waters社製、2690 Separations Model)に供給して、サンプル流量1ミリリットル/min、カラム温度40℃の条件でGPC測定を行い、アクリル系ポリマーのポリスチレン換算分子量を測定して、重量平均分子量(Mw)を求める。カラムとしては、例えば、GPC KF-806LやGPC LF-804(昭和電工社製)を用い、検出器としては、示差屈折計を用いる。
The acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer has a preferable lower limit of 250,000 and a preferable upper limit of 2 million in weight average molecular weight. When the weight average molecular weight of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is within the above range, the adhesive strength of the acrylic pressure-sensitive pressure-sensitive adhesive layer is improved. The more preferable lower limit of the weight average molecular weight of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is 300,000, the more preferable lower limit is 400,000, and the more preferable upper limit is 1.5 million. The weight average molecular weight (Mw) can be adjusted by the polymerization conditions (for example, the type or amount of the polymerization initiator, the polymerization temperature, the monomer concentration, etc.). Further, the weight average molecular weight (Mw) can be measured by the following method.
The acrylic polymer solution is filtered through a filter (material: polytetrafluoroethylene, pore diameter: 0.2 μm). The obtained filtrate was supplied to a gel permeation chromatograph (for example, 2690 Separations Model manufactured by Waters), and GPC measurement was performed under the conditions of a sample flow rate of 1 ml / min and a column temperature of 40 ° C. to convert an acrylic polymer into polystyrene. The molecular weight is measured to obtain the weight average molecular weight (Mw). For example, GPC KF-806L or GPC LF-804 (manufactured by Showa Denko KK) is used as the column, and a differential refractometer is used as the detector.
上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーを調製する方法は特に限定されず、上記構成単位の由来となるモノマーを、重合開始剤の存在下にてラジカル反応させる方法等が挙げられる。重合方法は特に限定されず、従来公知の方法を用いることができる。例えば、溶液重合(沸点重合又は定温重合)、エマルジョン重合、懸濁重合、塊状重合等が挙げられる。なかでも、合成が簡便であること及び耐水性の観点から、溶液重合が好ましい。 The method for preparing the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is not particularly limited, and examples thereof include a method in which the monomer from which the constituent unit is derived is radically reacted in the presence of a polymerization initiator. .. The polymerization method is not particularly limited, and a conventionally known method can be used. Examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like. Of these, solution polymerization is preferable from the viewpoint of easy synthesis and water resistance.
重合方法として溶液重合を用いる場合、反応溶剤として、例えば、酢酸エチル、トルエン、メチルエチルケトン、メチルスルホキシド、エタノール、アセトン、ジエチルエーテル等が挙げられる。これらの反応溶剤は、単独で用いてもよく、2種以上を併用してもよい。 When solution polymerization is used as the polymerization method, examples of the reaction solvent include ethyl acetate, toluene, methyl ethyl ketone, methyl sulfoxide, ethanol, acetone, diethyl ether and the like. These reaction solvents may be used alone or in combination of two or more.
上記重合開始剤は特に限定されず、例えば、有機過酸化物、アゾ化合物等が挙げられる。上記有機過酸化物として、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート等が挙げられる。上記アゾ化合物として、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル等が挙げられる。これらの重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。 The above-mentioned polymerization initiator is not particularly limited, and examples thereof include organic peroxides and azo compounds. Examples of the organic peroxide include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, t-hexylperoxypivalate, t-butylperoxypivalate, 2,5. -Dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxy Examples thereof include isobutyrate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate and the like. Examples of the azo compound include azobisisobutyronitrile and azobiscyclohexanecarbonitrile. These polymerization initiators may be used alone or in combination of two or more.
上記アクリル系感圧粘着剤層は、更に、粘着付与樹脂を含有してもよい。上記アクリル系感圧粘着剤層が粘着付与樹脂を含有することにより、上記アクリル系感圧粘着剤層の粘着力が向上する。上記粘着付与樹脂は特に限定されず、例えば、クマロン樹脂、テルペン樹脂、テルペンフェノール樹脂、ロジン樹脂、ロジン誘導体樹脂、石油樹脂、アルキルフェノール樹脂、これらの水素化物等が挙げられる。これらの粘着付与樹脂は、単独で用いてもよく、2種以上を併用してもよい。 The acrylic pressure-sensitive pressure-sensitive adhesive layer may further contain a tackifier resin. When the acrylic pressure-sensitive pressure-sensitive adhesive layer contains a tackifier resin, the adhesive strength of the acrylic pressure-sensitive pressure-sensitive adhesive layer is improved. The tackifier resin is not particularly limited, and examples thereof include kumaron resin, terpene resin, terpene phenol resin, rosin resin, rosin derivative resin, petroleum resin, alkylphenol resin, and hydrides thereof. These tackifier resins may be used alone or in combination of two or more.
上記テルペンフェノール樹脂とは、テルペン残基及びフェノール残基を含むポリマーを意味する。また、テルペンフェノール樹脂とは、テルペンとフェノール化合物との共重合体(テルペン-フェノール共重合体樹脂)と、テルペンの単独重合体又は共重合体(テルペン樹脂、典型的には未変性テルペン樹脂)をフェノール変性したフェノール変性テルペン樹脂と、更にはこれらの樹脂におけるテルペン部位を水素添加した樹脂とを包含する概念である。 The terpene phenol resin means a polymer containing a terpene residue and a phenol residue. The terpene phenol resin is a copolymer of terpene and a phenol compound (terpene-phenol copolymer resin) and a homopolymer or copolymer of terpene (terpene resin, typically an unmodified terpene resin). It is a concept including a phenol-modified terpene resin obtained by polymerizing the above, and further, a resin obtained by hydrogenating a terpene moiety in these resins.
上記テルペンフェノール樹脂を構成するテルペンは特に限定されないが、α-ピネン、β-ピネン、リモネン、カンフェン等のモノテルペンが好ましい。なお、リモネンには、d体、l体及びd/l体(ジペンテン)が含まれる。 The terpene constituting the terpene phenol resin is not particularly limited, but monoterpenes such as α-pinene, β-pinene, limonene, and camphene are preferable. Limonene includes d-form, l-form and d / l-form (dipentene).
上記ロジン樹脂として、より具体的には例えば、ガムロジン、ウッドロジン、トール油ロジン等の未変性ロジン(生ロジン)、これら未変性ロジンを変性した変性ロジン等が挙げられる。上記変性ロジンにおける変性としては、例えば、水添化、不均化、重合等が挙げられる。上記変性ロジンとして、より具体的には例えば、水添ロジン、不均化ロジン、重合ロジン、その他の化学的に修飾されたロジン等が挙げられる。 More specifically, examples of the rosin resin include unmodified rosins (raw rosins) such as gum rosin, wood rosin, and tall oil rosin, and modified rosins obtained by modifying these unmodified rosins. Examples of the modification in the modified rosin include hydrogenation, disproportionation, polymerization and the like. More specifically, the modified rosin includes hydrogenated rosin, disproportionated rosin, polymerized rosin, and other chemically modified rosins.
上記ロジン誘導体樹脂として、より具体的には例えば、上記ロジン樹脂をアルコール類によりエステル化したロジンエステル樹脂、上記ロジン樹脂を不飽和脂肪酸で変性した不飽和脂肪酸変性ロジン樹脂、上記ロジンエステル樹脂を不飽和脂肪酸で変性した不飽和脂肪酸変性ロジンエステル樹脂等が挙げられる。また、上記ロジン誘導体樹脂としては、例えば、上記不飽和脂肪酸変性ロジン樹脂又は不飽和脂肪酸変性ロジンエステル樹脂におけるカルボキシル基を還元処理したロジンアルコール樹脂等も挙げられる。
更に、上記ロジン誘導体樹脂としては、上記ロジン樹脂又はロジン誘導体樹脂(特に、ロジンエステル樹脂)の金属塩又はロジンフェノール樹脂等も挙げられる。なお、ロジンフェノール樹脂は、上記ロジン樹脂又はロジン誘導体樹脂に酸触媒下でフェノールを付加させ熱重合することにより得られる。
As the rosin derivative resin, more specifically, for example, a rosin ester resin obtained by esterifying the rosin resin with alcohols, an unsaturated fatty acid-modified rosin resin obtained by modifying the rosin resin with an unsaturated fatty acid, and a rosin ester resin not used. Examples thereof include unsaturated fatty acid-modified rosin ester resins modified with saturated fatty acids. Examples of the rosin derivative resin include a rosin alcohol resin obtained by reducing a carboxyl group in the unsaturated fatty acid-modified rosin resin or the unsaturated fatty acid-modified rosin ester resin.
Further, examples of the rosin derivative resin include a metal salt of the rosin resin or the rosin derivative resin (particularly, a rosin ester resin), a rosin phenol resin, and the like. The rosin phenol resin can be obtained by adding phenol to the rosin resin or the rosin derivative resin under an acid catalyst and thermally polymerizing the resin.
上記石油樹脂として、より具体的には例えば、脂肪族系(C5系)石油樹脂、芳香族系(C9系)石油樹脂、C5/C9共重合系石油樹脂、脂環族系石油樹脂等が挙げられる。 More specifically, examples of the petroleum resin include aliphatic (C5) petroleum resin, aromatic (C9) petroleum resin, C5 / C9 copolymerized petroleum resin, and alicyclic petroleum resin. Be done.
上記粘着付与樹脂の含有量は特に限定されないが、上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマー100重量部に対する好ましい下限は3重量部、好ましい上限は50重量部であり、より好ましい下限は10重量部、より好ましい上限は35重量部である。上記粘着付与樹脂の含有量が上記範囲内であれば、上記アクリル系感圧粘着剤層の粘着力が向上する。 The content of the tackifier resin is not particularly limited, but the preferable lower limit with respect to 100 parts by weight of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is 3 parts by weight, and the preferable upper limit is 50 parts by weight, which is a more preferable lower limit. Is 10 parts by weight, and a more preferable upper limit is 35 parts by weight. When the content of the pressure-sensitive adhesive resin is within the above range, the adhesive strength of the acrylic pressure-sensitive pressure-sensitive adhesive layer is improved.
上記アクリル系感圧粘着剤層は、シランカップリング剤を含有してもよい。上記アクリル系感圧粘着剤層がシランカップリング剤を含有することにより、上記金属張積層板の端部と上記アクリル系感圧粘着剤層との密着性が高くなることから、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。 The acrylic pressure-sensitive pressure-sensitive adhesive layer may contain a silane coupling agent. Since the acrylic pressure-sensitive pressure-sensitive adhesive layer contains a silane coupling agent, the adhesion between the end portion of the metal-clad laminate and the acrylic pressure-sensitive adhesive layer is improved. Damage to the edge of the plate can be further suppressed, and even when exposed to a strongly alkaline solution, infiltration of the solution into the edge can be further suppressed.
上記シランカップリング剤は特に限定されず、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメチルメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)3-アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、メルカプトブチルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等が挙げられる。なかでも、γ-グリシドキシプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシランが好ましい。 The silane coupling agent is not particularly limited, and for example, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, and γ-glycidoxypropyltrimethoxysilane. , Γ-Glysidoxypropylmethyldimethoxysilane, γ-Glysidoxypropylmethyldiethoxysilane, γ-Glysidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-amino Propyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethylmethoxysilane, N- (2-aminoethyl) 3-aminopropyltriethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyl Examples thereof include dimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, mercaptobutyltrimethoxysilane, and γ-mercaptopropylmethyldimethoxysilane. Of these, γ-glycidoxypropyltriethoxysilane and γ-mercaptopropyltrimethoxysilane are preferable.
上記シランカップリング剤の含有量は特に限定されないが、上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマー100重量部に対する好ましい下限が0.1重量部、好ましい上限が5重量部である。上記シランカップリング剤の含有量がこの範囲内であることにより、上記金属張積層板の端部と上記アクリル系感圧粘着剤層との密着性をより高めることができる。上記シランカップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は3重量部である。 The content of the silane coupling agent is not particularly limited, but the preferable lower limit is 0.1 parts by weight and the preferable upper limit is 5 parts by weight with respect to 100 parts by weight of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer. When the content of the silane coupling agent is within this range, the adhesion between the end portion of the metal-clad laminate and the acrylic pressure-sensitive pressure-sensitive adhesive layer can be further enhanced. The more preferable lower limit of the content of the silane coupling agent is 0.5 parts by weight, and the more preferable upper limit is 3 parts by weight.
上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーが上記架橋性官能基を有するモノマーに由来する構成単位を含有する場合、上記アクリル系感圧粘着剤層は、架橋剤を含有してもよい。上記架橋剤は特に限定されず、例えば、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、金属キレート型架橋剤等が挙げられる。なかでも、イソシアネート系架橋剤、エポキシ系架橋剤が好ましい。
上記架橋剤の含有量は特に限定されないが、上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマー100重量部に対する好ましい下限は0.01重量部、好ましい上限は10重量部であり、より好ましい下限は0.1重量部、より好ましい上限は5重量部である。
When the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer contains a structural unit derived from the monomer having a cross-linking functional group, the acrylic pressure-sensitive pressure-sensitive adhesive layer may contain a cross-linking agent. good. The above-mentioned cross-linking agent is not particularly limited, and examples thereof include an isocyanate-based cross-linking agent, an aziridine-based cross-linking agent, an epoxy-based cross-linking agent, and a metal chelate-type cross-linking agent. Of these, isocyanate-based cross-linking agents and epoxy-based cross-linking agents are preferable.
The content of the cross-linking agent is not particularly limited, but the preferable lower limit with respect to 100 parts by weight of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer is 0.01 parts by weight, and the preferable upper limit is 10 parts by weight, which is more preferable. The lower limit is 0.1 parts by weight, and the more preferable upper limit is 5 parts by weight.
上記アクリル系感圧粘着剤層の貯蔵弾性率は特に限定されないが、23℃における貯蔵弾性率の好ましい上限が2×10Paである。上記23℃における貯蔵弾性率が2×10Pa以下であれば、上記金属張積層板の端部と上記アクリル系感圧粘着剤層との密着性が高くなることから、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。上記23℃における貯蔵弾性率のより好ましい上限は1.8×10Paである。上記23℃における貯蔵弾性率の下限は特に限定されないが、上記アクリル系感圧粘着剤層の凝集力を維持する観点から、好ましい下限1×10Pa、より好ましい下限は3×10Paである。
なお、23℃における貯蔵弾性率は、アクリル系ポリマーの種類、分子量、分子量分布、粘着付与樹脂の種類及び含有量、架橋剤の種類及び含有量等によって調整できる。また、23℃における貯蔵弾性率は、動的粘弾性測定装置(例えば、アイティー計測制御社製「DVA-200」、レオメトリックス社製「ARES」等)を用いて、動的粘弾性測定のせん断モード、角周波数1Hz、速度5℃/minの条件で-40℃から140℃まで測定を行うことで得ることができる。
The storage elastic modulus of the acrylic pressure-sensitive pressure-sensitive adhesive layer is not particularly limited, but the preferable upper limit of the storage elastic modulus at 23 ° C. is 2 × 105 Pa. When the storage elastic modulus at 23 ° C. is 2 × 105 Pa or less, the adhesion between the end portion of the metal-clad laminate and the acrylic pressure-sensitive pressure-sensitive adhesive layer is high, so that the metal-clad laminate It is possible to further suppress the damage to the end portion of the metal, and it is possible to further suppress the infiltration of the solution into the end portion even when exposed to a strong alkaline solution. A more preferable upper limit of the storage elastic modulus at 23 ° C. is 1.8 × 105 Pa. The lower limit of the storage elastic modulus at 23 ° C. is not particularly limited, but from the viewpoint of maintaining the cohesive force of the acrylic pressure-sensitive pressure-sensitive adhesive layer, the preferable lower limit is 1 × 10 4 Pa, and the more preferable lower limit is 3 × 10 4 Pa. be.
The storage elastic modulus at 23 ° C. can be adjusted by the type, molecular weight, molecular weight distribution, type and content of the tackifier resin, type and content of the cross-linking agent, and the like. The storage elastic modulus at 23 ° C. is measured by using a dynamic viscoelasticity measuring device (for example, "DVA-200" manufactured by IT Measurement Control Co., "ARES" manufactured by Leometrics Co., Ltd.). It can be obtained by measuring from −40 ° C. to 140 ° C. under the conditions of shear mode, angular frequency of 1 Hz, and speed of 5 ° C./min.
上記アクリル系感熱粘着剤層は、光、熱、水分等に対し比較的安定であり、加熱圧着により種々の被着体に接着が可能である。上記アクリル系感熱粘着剤層は、常温では粘着性を示さず、加熱により粘着性を発現することから、上記粘着剤層が上記アクリル系感熱粘着剤層であることで、上記金属張積層板の端部と上記粘着テープとを接触させた状態で、上記粘着テープにシワ及び浮きが生じないように位置等を調整してから加熱圧着することができる。このようにすることで上記金属張積層板の端部の破損をより抑制し、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。 The acrylic heat-sensitive pressure-sensitive adhesive layer is relatively stable against light, heat, moisture, etc., and can be adhered to various adherends by heat-bonding. Since the acrylic heat-sensitive adhesive layer does not exhibit adhesiveness at room temperature and develops adhesiveness by heating, the pressure-sensitive adhesive layer is the acrylic heat-sensitive adhesive layer, so that the metal-clad laminate can be used. With the end portion in contact with the adhesive tape, the adhesive tape can be heat-bonded after adjusting the position and the like so that wrinkles and floating do not occur on the adhesive tape. By doing so, it is possible to further suppress the damage to the end portion of the metal-clad laminate, and further suppress the infiltration of the solution into the end portion even when exposed to a strong alkaline solution.
上記アクリル系感熱粘着剤層は、動的粘弾性測定装置を用いて測定周波数1Hzで測定した損失正接(以下、tanδ、又は、単に損失正接ともいう)のピーク温度は特に限定されないが、40℃以上であることが好ましい。上記損失正接のピーク温度が40℃以上であることで、常温における上記金属張積層板の端部と上記粘着テープとの滑り性が良くなり、貼り付け時に上記粘着テープをシワになりにくくすることができる。上記損失正接のピーク温度は42℃以上であることがより好ましく、45℃以上であることが更に好ましい。また、上記損失正接のピーク温度は100℃以下であることが好ましく、90℃以下であることがより好ましく、80℃以下であることが更に好ましい。
なお、上記損失正接は、粘弾性スペクトロメーター(アイティー計測制御社製、DVA-200、又はその同等品)を用い、低速昇温せん断変形モードの5℃/分、1Hzの条件で、-100℃~200℃の動的粘弾性スペクトルを測定することで得ることができる。
The acrylic heat-sensitive adhesive layer has a peak temperature of loss tangent (hereinafter, also referred to as tan δ or simply loss tangent) measured at a measurement frequency of 1 Hz using a dynamic viscoelasticity measuring device, but is not particularly limited, but is 40 ° C. The above is preferable. When the peak temperature of the loss tangent is 40 ° C. or higher, the slipperiness between the end portion of the metal-clad laminate and the adhesive tape at room temperature is improved, and the adhesive tape is less likely to wrinkle at the time of sticking. Can be done. The peak temperature of the loss tangent is more preferably 42 ° C. or higher, further preferably 45 ° C. or higher. Further, the peak temperature of the loss tangent is preferably 100 ° C. or lower, more preferably 90 ° C. or lower, and further preferably 80 ° C. or lower.
For the loss tangent, use a viscoelastic spectrometer (DVA-200 manufactured by IT Measurement Control Co., Ltd., or an equivalent product thereof) under the condition of 5 ° C./min and 1 Hz in the low-speed temperature rise shear deformation mode, -100. It can be obtained by measuring a dynamic viscoelastic spectrum at ° C to 200 ° C.
上記アクリル系感熱粘着剤層の貯蔵弾性率は特に限定されないが、23℃における貯蔵弾性率の好ましい下限が5×10Paであり、100℃における貯蔵弾性率の好ましい上限が2×10Paである。
上記23℃における貯蔵弾性率が5×10Pa以上であれば、上記アクリル系感熱粘着剤層は常温では粘着性を示さず、上記金属張積層板の端部と上記粘着テープとを接触させた状態で、上記粘着テープにシワ及び浮きが生じないように位置等を調整することができる。上記23℃における貯蔵弾性率のより好ましい下限は8×10Pa、更に好ましい下限は1×10Paである。上記23℃における貯蔵弾性率の上限は特に限定されないが、上記粘着テープを容易にロール形状にできる観点から、好ましい上限は1×1010Pa、より好ましい上限は1×10Paである。
The storage elastic modulus of the acrylic heat-sensitive pressure-sensitive adhesive layer is not particularly limited, but the preferable lower limit of the storage elastic modulus at 23 ° C. is 5 × 10 6 Pa, and the preferable upper limit of the storage elastic modulus at 100 ° C. is 2 × 10 5 Pa. Is.
When the storage elastic modulus at 23 ° C. is 5 × 10 6 Pa or more, the acrylic heat-sensitive adhesive layer does not show adhesiveness at room temperature, and the end portion of the metal-clad laminate is brought into contact with the adhesive tape. In this state, the position and the like can be adjusted so that the adhesive tape does not wrinkle or float. The more preferable lower limit of the storage elastic modulus at 23 ° C. is 8 × 10 6 Pa, and the more preferable lower limit is 1 × 10 7 Pa. The upper limit of the storage elastic modulus at 23 ° C. is not particularly limited, but from the viewpoint that the adhesive tape can be easily rolled, the preferable upper limit is 1 × 10 10 Pa, and the more preferable upper limit is 1 × 10 9 Pa.
上記100℃における貯蔵弾性率が2×10Pa以下であれば、上記アクリル系感熱粘着剤層は加熱により粘着性を発現し、上記アクリル系感熱粘着剤層を加熱圧着することで、上記金属張積層板の端部の破損をより抑制し、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。上記100℃における貯蔵弾性率のより好ましい上限は1×10Pa、更に好ましい上限は8×10Paである。上記100℃における貯蔵弾性率の下限は特に限定されないが、加熱圧着時に粘着剤の変形による染み出しを抑制する観点から、好ましい下限は1×10Pa、より好ましい下限は5×10Paである。
なお、23℃又は100℃における貯蔵弾性率は、アクリル系ポリマーの種類、分子量、分子量分布、粘着付与樹脂の種類及び含有量、架橋剤の種類及び含有量等によって調整できる。また、23℃又は100℃における貯蔵弾性率は、動的粘弾性測定装置(例えば、アイティー計測制御社製「DVA-200」、レオメトリックス社製「ARES」等)を用いて、動的粘弾性測定のせん断モード、角周波数1Hz、速度5℃/minの条件で-40℃から140℃まで測定を行うことで得ることができる。
When the storage elastic modulus at 100 ° C. is 2 × 10 5 Pa or less, the acrylic heat-sensitive adhesive layer develops adhesiveness by heating, and the acrylic heat-sensitive adhesive layer is heat-bonded to the metal. It is possible to further suppress the breakage of the end portion of the stretched laminated plate, and further suppress the infiltration of the solution into the end portion even when exposed to a strong alkaline solution. The more preferable upper limit of the storage elastic modulus at 100 ° C. is 1 × 10 5 Pa, and the more preferable upper limit is 8 × 10 4 Pa. The lower limit of the storage elastic modulus at 100 ° C. is not particularly limited, but a preferable lower limit is 1 × 10 4 Pa, and a more preferable lower limit is 5 × 10 4 Pa from the viewpoint of suppressing exudation due to deformation of the pressure-sensitive adhesive during heat pressure bonding. be.
The storage elastic modulus at 23 ° C. or 100 ° C. can be adjusted by the type, molecular weight, molecular weight distribution, type and content of tackifier resin, type and content of cross-linking agent, and the like. Further, the storage elastic modulus at 23 ° C. or 100 ° C. is determined by using a dynamic viscoelasticity measuring device (for example, "DVA-200" manufactured by IT Measurement Control Co., "ARES" manufactured by Leometrics Co., Ltd.). It can be obtained by measuring from −40 ° C. to 140 ° C. under the conditions of shear mode for elastic measurement, angular frequency of 1 Hz, and speed of 5 ° C./min.
上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマーは特に限定されないが、架橋性官能基を有するモノマーに由来する構成単位を有することが好ましい。このような構成単位を有することで、架橋剤を併用したときに上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマー間を架橋させることができる。その際の架橋度を調整することで、上記アクリル系感熱粘着剤層の貯蔵弾性率を調整することができる。 The acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is not particularly limited, but it is preferable to have a structural unit derived from a monomer having a crosslinkable functional group. By having such a structural unit, it is possible to crosslink between the acrylic polymers contained in the acrylic heat-sensitive pressure-sensitive adhesive layer when a crosslinking agent is used in combination. By adjusting the degree of cross-linking at that time, the storage elastic modulus of the acrylic heat-sensitive pressure-sensitive adhesive layer can be adjusted.
上記架橋性官能基としては、例えば、水酸基、カルボキシル基、グリシジル基、アミノ基、アミド基、ニトリル基等が挙げられる。なかでも、上記アクリル系感熱粘着剤層の貯蔵弾性率の調整が容易であることから、水酸基又はカルボキシル基が好ましい。上記水酸基を有するモノマーとしては、例えば、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等の水酸基を有する(メタ)アクリル酸エステルが挙げられる。上記カルボキシル基を有するモノマーとしては、例えば、(メタ)アクリル酸等が挙げられる。上記グリシジル基を有するモノマーとしては、例えば、グリシジル(メタ)アクリレート等が挙げられる。上記アミド基を有するモノマーとしては、例えば、ヒドロキシエチルアクリルアミド、イソプロピルアクリルアミド、ジメチルアミノプロピルアクリルアミド等が挙げられる。上記ニトリル基を有するモノマーとしては、例えば、アクリロニトリル等が挙げられる。これらの架橋性官能基を有するモノマーは、単独で用いてもよく、2種以上を併用してもよい。上記架橋性官能基を有するモノマーに由来する構成単位の含有量は特に限定されないが、好ましい下限が0.1重量%、好ましい上限が5重量%である。上記架橋性官能基を有するモノマーとして上記カルボキシル基を有するモノマーを用いる場合、強アルカリ性溶液の浸入がより抑えられる観点から、より好ましい上限は3重量%、更に好ましい上限は0.5重量%である。 Examples of the crosslinkable functional group include a hydroxyl group, a carboxyl group, a glycidyl group, an amino group, an amide group, a nitrile group and the like. Of these, a hydroxyl group or a carboxyl group is preferable because the storage elastic modulus of the acrylic heat-sensitive pressure-sensitive adhesive layer can be easily adjusted. Examples of the monomer having a hydroxyl group include (meth) acrylic acid esters having a hydroxyl group such as 4-hydroxybutyl (meth) acrylate and 2-hydroxyethyl (meth) acrylate. Examples of the monomer having a carboxyl group include (meth) acrylic acid and the like. Examples of the monomer having a glycidyl group include glycidyl (meth) acrylate and the like. Examples of the monomer having an amide group include hydroxyethylacrylamide, isopropylacrylamide, dimethylaminopropylacrylamide and the like. Examples of the monomer having a nitrile group include acrylonitrile. These crosslinkable functional groups may be used alone or in combination of two or more. The content of the structural unit derived from the monomer having a crosslinkable functional group is not particularly limited, but the preferable lower limit is 0.1% by weight and the preferable upper limit is 5% by weight. When the monomer having a carboxyl group is used as the monomer having a crosslinkable functional group, the more preferable upper limit is 3% by weight, and the more preferable upper limit is 0.5% by weight from the viewpoint of further suppressing the infiltration of a strong alkaline solution. ..
上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマーは、炭素数が1以上4以下のアルキル基を有する(メタ)アクリレートに由来する構成単位を有することが好ましく、炭素数が1以上4以下のアルキル基を有するメタクリレートに由来する構成単位を有することがより好ましい。また、上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマーは、環状構造を有するアルキル基を有する(メタ)アクリレートに由来する構成単位を有することも好ましい。上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマーがこれらの構成単位を有することで、上記損失正接のピーク温度及び上記貯蔵弾性率を好ましい範囲に調整しやすくなる。上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマーは、炭素数が1以上4以下のアルキル基を有するメタクリレートに由来する構成単位、及び、環状構造を有するアルキル基を有するメタクリレートに由来する構成単位からなる群より選択される少なくとも1つを有することがより好ましい。 The acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer preferably has a structural unit derived from a (meth) acrylate having an alkyl group having 1 or more and 4 or less carbon atoms, and has 1 or more and 4 or less carbon atoms. It is more preferable to have a structural unit derived from a methacrylate having an alkyl group. Further, it is also preferable that the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer has a structural unit derived from a (meth) acrylate having an alkyl group having a cyclic structure. When the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer has these structural units, it becomes easy to adjust the peak temperature of the loss tangent and the storage elastic modulus to a preferable range. The acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is a structural unit derived from a methacrylate having an alkyl group having 1 or more and 4 carbon atoms, and a structural unit derived from a methacrylate having an alkyl group having a cyclic structure. It is more preferred to have at least one selected from the group consisting of.
上記炭素数が1以上4以下のアルキル基を有する(メタ)アクリレートは特に限定されず、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート等が挙げられる。
上記環状構造を有するアルキル基を有する(メタ)アクリレートは特に限定されず、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等が挙げられる。これらの(メタ)アクリレートは、単独で用いてもよく、2種以上を併用してもよい。なかでも、上記損失正接のピーク温度及び上記貯蔵弾性率を好ましい範囲に調整しやすいことから、メチルメタクリレート、ブチルアクリレート、ブチルメタクリレート、イソボルニルメタクリレートを用いることが好ましい。
The (meth) acrylate having an alkyl group having 1 or more and 4 or less carbon atoms is not particularly limited, and examples thereof include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. Can be mentioned.
The (meth) acrylate having an alkyl group having a cyclic structure is not particularly limited, and examples thereof include cyclohexyl (meth) acrylate and isobornyl (meth) acrylate. These (meth) acrylates may be used alone or in combination of two or more. Of these, methyl methacrylate, butyl acrylate, butyl methacrylate, and isobornyl methacrylate are preferably used because the peak temperature of the loss tangent and the storage elastic modulus can be easily adjusted within a preferable range.
上記炭素数が1以上4以下のアルキル基を有する(メタ)アクリレートに由来する構成単位、及び、上記環状構造を有するアルキル基を有する(メタ)アクリレートに由来する構成単位の合計含有量は特に限定されないが、好ましい下限が50重量%、好ましい上限が98重量%である。上記構成単位の合計含有量が上記範囲内であれば、上記損失正接のピーク温度及び上記貯蔵弾性率を好ましい範囲に調整しやすくなる。上記構成単位の合計含有量のより好ましい下限は60重量%、更に好ましい下限は70重量%であり、より好ましい上限は95重量%、更に好ましい上限は90重量%、更により好ましい上限は80重量%である。
なお、上記合計含有量は上記炭素数が1以上4以下のアルキル基を有する(メタ)アクリレートに由来する構成単位、及び、上記環状構造を有するアルキル基を有する(メタ)アクリレートに由来する構成単位の合計含有量を表すが、上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマーはどちらか一方のみを含有しても、両方を含有してもよい。
また、上記炭素数が1以上4以下のアルキル基を有するメタクリレートに由来する構成単位及び上記環状構造を有するアルキル基を有するメタクリレートに由来する構成単位の合計含有量は、好ましい下限が50重量%、好ましい上限が90重量%であり、より好ましい下限は60重量%、より好ましい上限は80重量%である。
The total content of the structural unit derived from the (meth) acrylate having an alkyl group having 1 or more and 4 or less carbon atoms and the structural unit derived from the (meth) acrylate having an alkyl group having a cyclic structure is particularly limited. However, the preferred lower limit is 50% by weight and the preferred upper limit is 98% by weight. When the total content of the structural units is within the above range, it becomes easy to adjust the peak temperature of the loss tangent and the storage elastic modulus to the preferable ranges. A more preferable lower limit of the total content of the structural units is 60% by weight, a further preferable lower limit is 70% by weight, a more preferable upper limit is 95% by weight, a further preferable upper limit is 90% by weight, and a further preferable upper limit is 80% by weight. Is.
The total content is a structural unit derived from a (meth) acrylate having an alkyl group having 1 or more and 4 or less carbon atoms, and a structural unit derived from a (meth) acrylate having an alkyl group having a cyclic structure. The acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer may contain only one of them or both of them.
The total content of the structural unit derived from the methacrylate having an alkyl group having 1 or more and 4 or less carbon atoms and the structural unit derived from the methacrylate having an alkyl group having a cyclic structure is preferably 50% by weight. The preferred upper limit is 90% by weight, the more preferred lower limit is 60% by weight, and the more preferred upper limit is 80% by weight.
上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマーは、本発明の効果を阻害しない範囲で、更に、他のモノマーに由来する構成単位を有していてもよい。上記他のモノマーとして、例えば、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、酢酸ビニル、フッ素含有モノマー等が挙げられる。また、上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマーを紫外線重合法により調製する場合には、更に、ジビニルベンゼン、トリメチロールプロパントリ(メタ)アクリレート等の多官能モノマーに由来する構成単位を有することが好ましい。 The acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer may further have a structural unit derived from another monomer as long as the effect of the present invention is not impaired. Examples of the other monomers include n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, and decyl (meth) acrylate. Examples thereof include lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, ethylcarbitol (meth) acrylate, vinyl acetate, and fluorine-containing monomer. .. Further, when the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is prepared by an ultraviolet polymerization method, a structural unit derived from a polyfunctional monomer such as divinylbenzene or trimethylolpropane tri (meth) acrylate is further added. It is preferable to have.
上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマーの重量平均分子量は特に限定されず、上記アクリル系感圧粘着剤層に用いられるアクリル系ポリマーの重量平均分子量と同様の重量平均分子量であってよい。 The weight average molecular weight of the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is not particularly limited, and is the same as the weight average molecular weight of the acrylic polymer used in the acrylic pressure-sensitive pressure-sensitive adhesive layer. good.
上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマーを調製する方法は特に限定されず、上記アクリル系感圧粘着剤層に含まれるアクリル系ポリマーの場合と同様に、例えば、上記構成単位の由来となるモノマーを、重合開始剤の存在下にてラジカル反応させる方法等が挙げられる。 The method for preparing the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is not particularly limited, and as in the case of the acrylic polymer contained in the acrylic pressure-sensitive pressure-sensitive adhesive layer, for example, the origin of the structural unit. Examples thereof include a method of radically reacting the above-mentioned monomer in the presence of a polymerization initiator.
上記アクリル系感熱粘着剤層は、更に、粘着付与樹脂を含有してもよい。上記アクリル系感熱粘着剤層が粘着付与樹脂を含有することにより、上記アクリル系感熱粘着剤層の粘着力が向上する。上記粘着付与樹脂は特に限定されず、上記アクリル系感圧粘着剤層に用いられる粘着付与樹脂と同様の粘着付与樹脂を用いることができる。 The acrylic heat-sensitive pressure-sensitive adhesive layer may further contain a tack-imparting resin. When the acrylic heat-sensitive pressure-sensitive adhesive layer contains the tackifier resin, the adhesive strength of the acrylic heat-sensitive pressure-sensitive adhesive layer is improved. The tackifier resin is not particularly limited, and the same tackifier resin as the tackifier resin used for the acrylic pressure-sensitive pressure-sensitive adhesive layer can be used.
上記アクリル系感熱粘着剤層は、上記粘着付与樹脂の中でも、水酸基価が40mgKOH/g以上の水添ロジンエステル樹脂を含有することが好ましい。上記アクリル系感熱粘着剤層が、上記水酸基価が40mgKOH/g以上の水添ロジンエステル樹脂を含有することにより、上記金属張積層板の端部と上記粘着テープとの界面密着性がより向上し、強アルカリ性溶液に晒された場合にも該溶液の金属張積層板の端部への浸入をより抑制することができる。上記水酸基価が40mgKOH/g以上の水添ロジンエステル樹脂の水酸基価の上限は特に限定されないが、通常80mgKOH/g程度であり、好ましくは50mgKOH/g以下である。 Among the tackifier resins, the acrylic heat-sensitive pressure-sensitive adhesive layer preferably contains a hydrogenated rosin ester resin having a hydroxyl value of 40 mgKOH / g or more. By containing the hydrogenated rosin ester resin having a hydroxyl value of 40 mgKOH / g or more in the acrylic heat-sensitive adhesive layer, the interfacial adhesion between the end portion of the metal-clad laminate and the adhesive tape is further improved. Even when exposed to a strong alkaline solution, the infiltration of the solution into the end portion of the metal-clad laminate can be further suppressed. The upper limit of the hydroxyl value of the hydrogenated rosin ester resin having a hydroxyl value of 40 mgKOH / g or more is not particularly limited, but is usually about 80 mgKOH / g, preferably 50 mgKOH / g or less.
上記粘着付与樹脂の含有量は特に限定されないが、上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマー100重量部に対する好ましい下限は5重量部、好ましい上限は50重量部であり、より好ましい下限は10重量部、より好ましい上限は35重量部である。上記粘着付与樹脂の含有量が上記範囲内であれば、上記アクリル系感熱粘着剤層に含まれるアクリル系粘着剤層の粘着力が向上する。 The content of the tackifier resin is not particularly limited, but the preferable lower limit is 5 parts by weight, the preferable upper limit is 50 parts by weight, and the more preferable lower limit is 50 parts by weight with respect to 100 parts by weight of the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer. 10 parts by weight, more preferably 35 parts by weight. When the content of the tackifier resin is within the above range, the adhesive strength of the acrylic pressure-sensitive adhesive layer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer is improved.
上記アクリル系感熱粘着剤層は、シランカップリング剤を含有してもよい。上記アクリル系感熱粘着剤層がシランカップリング剤を含有することにより、上記金属張積層板の端部と上記アクリル系感熱粘着剤層との密着性が高くなることから、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。
上記シランカップリング剤は特に限定されず、上記アクリル系感圧粘着剤層に用いられるシランカップリング剤と同様のシランカップリング剤を用いることができる。上記シランカップリング剤の含有量も特に限定されず、上記アクリル系感圧粘着剤層における含有量と同様の含有量を採用することができる。
The acrylic heat-sensitive adhesive layer may contain a silane coupling agent. Since the acrylic heat-sensitive adhesive layer contains a silane coupling agent, the adhesion between the end portion of the metal-clad laminate and the acrylic heat-sensitive adhesive layer is improved. The damage to the end portion can be further suppressed, and the infiltration of the solution into the end portion can be further suppressed even when exposed to a strong alkaline solution.
The silane coupling agent is not particularly limited, and the same silane coupling agent as the silane coupling agent used for the acrylic pressure-sensitive pressure-sensitive adhesive layer can be used. The content of the silane coupling agent is not particularly limited, and the same content as the content in the acrylic pressure-sensitive pressure-sensitive adhesive layer can be adopted.
上記アクリル系感熱粘着剤層に含まれるアクリル系ポリマーが上記架橋性官能基を有するモノマーに由来する構成単位を含有する場合、上記アクリル系感熱粘着剤層は、架橋剤を含有してもよい。上記架橋剤は特に限定されず、上記アクリル系感圧粘着剤層に用いられる架橋剤と同様の架橋剤を用いることができる。上記架橋剤の含有量も特に限定されず、上記アクリル系感圧粘着剤層における含有量と同様の含有量を採用することができる。 When the acrylic polymer contained in the acrylic heat-sensitive pressure-sensitive adhesive layer contains a structural unit derived from the monomer having a cross-linking functional group, the acrylic heat-sensitive pressure-sensitive adhesive layer may contain a cross-linking agent. The cross-linking agent is not particularly limited, and the same cross-linking agent as the cross-linking agent used for the acrylic pressure-sensitive pressure-sensitive adhesive layer can be used. The content of the cross-linking agent is not particularly limited, and the same content as the content in the acrylic pressure-sensitive pressure-sensitive adhesive layer can be adopted.
上記ゴム系ポリマーは比較的極性が低いことから、上記ベースポリマーが上記ゴム系ポリマーであることにより、上記ゴム系粘着剤層の内部に強アルカリ性溶液が浸入しにくくなる。これにより、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。上記ゴム系ポリマーは、少なくとも芳香族ビニルモノマーに由来するブロックと共役ジエンモノマーに由来するブロックとを有するブロック共重合又はその水素添加体(以下、単に「ブロック共重合体」ともいう)であることが好ましい。 Since the rubber-based polymer has a relatively low polarity, the fact that the base polymer is the rubber-based polymer makes it difficult for the strong alkaline solution to penetrate into the inside of the rubber-based pressure-sensitive adhesive layer. As a result, damage to the end portion of the metal-clad laminate can be further suppressed, and even when exposed to a strong alkaline solution, infiltration of the solution into the end portion can be further suppressed. The rubber-based polymer is a block copolymer having at least a block derived from an aromatic vinyl monomer and a block derived from a conjugated diene monomer, or a hydrogenated product thereof (hereinafter, also simply referred to as "block copolymer"). Is preferable.
上記芳香族ビニルモノマーは特に限定されず、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、4-t-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン等が挙げられる。上記3級アミノ基含有ジフェニルエチレンは特に限定されず、例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレン等が挙げられる。これらの芳香族ビニルモノマーは、単独で用いてもよく、2種以上を併用してもよい。 The aromatic vinyl monomer is not particularly limited, and is, for example, styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4 -T-butylstyrene, 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl) dimethylaminoethyl ether , N, N-dimethylaminoethylstyrene, N, N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-t-butylstyrene, 3-t-butylstyrene, 4- Examples thereof include t-butylstyrene, vinylxylene, vinylnaphthalene, vinylpyridine, diphenylethylene, tertiary amino group-containing diphenylethylene and the like. The tertiary amino group-containing diphenylethylene is not particularly limited, and examples thereof include 1- (4-N, N-dimethylaminophenyl) -1-phenylethylene. These aromatic vinyl monomers may be used alone or in combination of two or more.
上記共役ジエンモノマーは特に限定されず、例えば、イソプレン、1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの共役ジエンモノマーは、単独で用いてもよく、2種以上を併用してもよい。 The conjugated diene monomer is not particularly limited, and for example, isoprene, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, and the like. Examples thereof include 2-phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene and 2-chloro-1,3-butadiene. These conjugated diene monomers may be used alone or in combination of two or more.
上記ブロック共重合体は特に限定されず、室温でゴム弾性(rubber elasticity)を有し、ハードセグメント部分とソフトセグメント部分とを有するブロック共重合体であればよい。なお、上記芳香族ビニルモノマーに由来するブロックがハードセグメント部分であり、上記共役ジエンモノマーに由来するブロックがソフトセグメント部分である。
上記ブロック共重合体として、具体的には例えば、スチレン-イソプレン-スチレン(SIS)ブロック共重合体、スチレン-ブタジエン-スチレン(SBS)ブロック共重合体、スチレン-クロロプレン-スチレンブロック共重合体等が挙げられる。また、上記ブロック共重合体としては水素添加体も挙げられ、より具体的には例えば、スチレン-エチレン-ブチレン-スチレン(SEBS)ブロック共重合体、スチレン-エチレン-プロピレン-スチレン(SEPS)ブロック共重合体、スチレン-エチレン-エチレン-プロピレン-スチレン(SEEPS)等が挙げられる。また、上記ブロック共重合体として、例えば、スチレン-イソブチレン-スチレン(SIBS)ブロック共重合体等も挙げられる。なかでも、高い粘着力を発揮しやすい観点から、SISブロック共重合体及びSBSブロック共重合体が好ましく、SISブロック共重合体がより好ましい。これらのブロック共重合体は、単独で用いてもよく、2種以上を併用してもよい。
The block copolymer is not particularly limited, and may be any block copolymer having rubber elasticity at room temperature and having a hard segment portion and a soft segment portion. The block derived from the aromatic vinyl monomer is the hard segment portion, and the block derived from the conjugated diene monomer is the soft segment portion.
Specific examples of the block copolymer include styrene-isoprene-styrene (SIS) block copolymer, styrene-butadiene-styrene (SBS) block copolymer, and styrene-chloroprene-styrene block copolymer. Can be mentioned. Further, examples of the block copolymer include a hydrogenated product, and more specifically, for example, a styrene-ethylene-butylene-styrene (SEBS) block copolymer and a styrene-ethylene-propylene-styrene (SEPS) block. Examples include polymers, styrene-ethylene-ethylene-propylene-styrene (SEEPS) and the like. Further, as the block copolymer, for example, a styrene-isobutylene-styrene (SIBS) block copolymer and the like can be mentioned. Among them, SIS block copolymers and SBS block copolymers are preferable, and SIS block copolymers are more preferable, from the viewpoint of easily exhibiting high adhesive strength. These block copolymers may be used alone or in combination of two or more.
上記ブロック共重合体は、上記芳香族ビニルモノマーに由来するブロックと上記共役ジエンモノマーに由来するブロックとのトリブロック共重合体に加えて、上記芳香族ビニルモノマーに由来するブロックと上記共役ジエンモノマーに由来するブロックとのジブロック共重合体を含有していてもよい。上記ブロック共重合体における上記ジブロック共重合体の含有量(以下、「ジブロック比率」ともいう)は特に限定されないが、好ましい下限は50重量%、より好ましい下限は70重量%である。上記ジブロック比率が上記範囲内であれば、上記金属張積層板の端部と上記ゴム系粘着剤層との密着性が高くなることから、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。上記ジブロック比率の上限は特に限定されないが、上記ゴム系粘着剤層の凝集力を維持する観点から、好ましい上限は90重量%である。なお、ジブロック比率は、ゲルパーミエーションクロマトグラフィ(GPC)法により測定される各共重合体のピーク面積比から算出することができる。 The block copolymer includes a triblock copolymer of a block derived from the aromatic vinyl monomer and a block derived from the conjugated diene monomer, and a block derived from the aromatic vinyl monomer and the conjugated diene monomer. It may contain a diblock copolymer with a block derived from. The content of the diblock copolymer in the block copolymer (hereinafter, also referred to as “diblock ratio”) is not particularly limited, but a preferable lower limit is 50% by weight, and a more preferable lower limit is 70% by weight. When the diblock ratio is within the above range, the adhesion between the end portion of the metal-clad laminate and the rubber-based adhesive layer is high, so that the end portion of the metal-clad laminate is further suppressed from being damaged. And even when exposed to a strong alkaline solution, the infiltration of the solution into the end portion can be further suppressed. The upper limit of the diblock ratio is not particularly limited, but is preferably 90% by weight from the viewpoint of maintaining the cohesive force of the rubber-based pressure-sensitive adhesive layer. The diblock ratio can be calculated from the peak area ratio of each copolymer measured by the gel permeation chromatography (GPC) method.
上記ブロック共重合体における上記芳香族ビニルモノマーに由来するブロックの含有量(上記芳香族ビニルモノマーがスチレンである場合、「スチレン含有量」ともいう)は特に限定されないが、好ましい上限は20重量%、より好ましい上限は16重量%である。上記芳香族ビニルモノマーに由来するブロックの含有量が上記範囲内であれば、上記ゴム系粘着剤層が硬くなりすぎず、上記金属張積層板の端部との密着性が高くなることから、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。上記芳香族ビニルモノマーに由来するブロックの含有量の下限は特に限定されないが、上記ゴム系粘着剤層の凝集力を維持する観点から、好ましい下限は8重量%である。
なお、芳香族ビニルモノマーに由来するブロックの含有量は、1H-NMRにより測定される各ブロックのピーク面積比から算出することができる。
The content of the block derived from the aromatic vinyl monomer in the block copolymer (also referred to as "styrene content" when the aromatic vinyl monomer is styrene) is not particularly limited, but a preferable upper limit is 20% by weight. A more preferred upper limit is 16% by weight. When the content of the block derived from the aromatic vinyl monomer is within the above range, the rubber-based pressure-sensitive adhesive layer does not become too hard, and the adhesion to the end portion of the metal-clad laminate becomes high. It is possible to further suppress damage to the end portion of the metal-clad laminate, and it is possible to further suppress the infiltration of the solution into the end portion even when exposed to a strong alkaline solution. The lower limit of the content of the block derived from the aromatic vinyl monomer is not particularly limited, but the preferable lower limit is 8% by weight from the viewpoint of maintaining the cohesive force of the rubber-based pressure-sensitive adhesive layer.
The content of the blocks derived from the aromatic vinyl monomer can be calculated from the peak area ratio of each block measured by 1H-NMR.
上記ブロック共重合体の重量平均分子量は特に限定されないが、好ましい下限は5万、好ましい上限は60万である。上記ブロック共重合体の重量平均分子量が5万以上であれば、上記ゴム系粘着剤層の耐熱性がより高くなる。上記ブロック共重合体の重量平均分子量が60万以下であれば、上記ブロック共重合体と他の成分との相溶性が低下しすぎることを防ぐことができる。上記重量平均分子量のより好ましい下限は10万、より好ましい上限は50万である。 The weight average molecular weight of the block copolymer is not particularly limited, but the preferred lower limit is 50,000 and the preferred upper limit is 600,000. When the weight average molecular weight of the block copolymer is 50,000 or more, the heat resistance of the rubber-based pressure-sensitive adhesive layer becomes higher. When the weight average molecular weight of the block copolymer is 600,000 or less, it is possible to prevent the compatibility between the block copolymer and other components from being excessively lowered. The more preferable lower limit of the weight average molecular weight is 100,000, and the more preferable upper limit is 500,000.
上記ゴム系粘着剤層は、更に、水酸基価が20mgKOH/g以上、140mgKOH/g以下のテルペンフェノール樹脂(T1)を含有することが好ましい。上記ゴム系粘着剤層が粘着付与樹脂を含有することにより、上記ゴム系粘着剤層の粘着力が向上する。なかでも、上記ゴム系粘着剤層が上記テルペンフェノール樹脂(T1)を含有することにより、上記ゴム系粘着剤層の内部に強アルカリ性溶液がより浸入しにくくなる。 The rubber-based pressure-sensitive adhesive layer preferably further contains a terpene phenol resin (T1) having a hydroxyl value of 20 mgKOH / g or more and 140 mgKOH / g or less. When the rubber-based pressure-sensitive adhesive layer contains the tack-imparting resin, the adhesive strength of the rubber-based pressure-sensitive adhesive layer is improved. In particular, when the rubber-based pressure-sensitive adhesive layer contains the terpene phenol resin (T1), the strong alkaline solution is less likely to penetrate into the inside of the rubber-based pressure-sensitive adhesive layer.
上記テルペンフェノール樹脂(T1)の水酸基価は、下限が20mgKOH/g、上限が140mgKOH/gである。上記テルペンフェノール樹脂(T1)の水酸基価が上記範囲内であれば、上記テルペンフェノール樹脂(T1)の極性が適度な範囲となることで、上記ゴム系粘着剤層の内部に強アルカリ性溶液がより浸入しにくくなる。上記テルペンフェノール樹脂(T1)の水酸基価の好ましい下限は40mgKOH/g、好ましい上限は100mgKOH/gであり、より好ましい下限は50mgKOH/g、より好ましい上限は80mgKOH/gである。
なお、粘着付与樹脂の水酸基価とは、粘着付与樹脂1gをアセチル化するとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムのmg数であり、JIS K 0070:1992に規定する電位差滴定法に基づいて測定された値として定義される。
The hydroxyl value of the terpene phenol resin (T1) has a lower limit of 20 mgKOH / g and an upper limit of 140 mgKOH / g. When the hydroxyl value of the terpene phenol resin (T1) is within the above range, the polarity of the terpene phenol resin (T1) is within an appropriate range, so that a strong alkaline solution is formed inside the rubber-based pressure-sensitive adhesive layer. It becomes difficult to infiltrate. The preferable lower limit of the hydroxyl value of the terpene phenol resin (T1) is 40 mgKOH / g, the preferable upper limit is 100 mgKOH / g, the more preferable lower limit is 50 mgKOH / g, and the more preferable upper limit is 80 mgKOH / g.
The hydroxyl value of the tackifier resin is the number of mg of potassium hydroxide required to neutralize acetic acid bonded to the hydroxyl group when 1 g of the tackifier resin is acetylated, and is specified in JIS K 0070: 1992. It is defined as a value measured based on the potential difference titration method.
上記テルペンフェノール樹脂(T1)の軟化点は特に限定されないが、好ましい下限は150℃である。上記テルペンフェノール樹脂(T1)の軟化点が150℃以上であれば、上記テルペンフェノール樹脂の分子量が大きくなり、強アルカリ性溶液への溶解性が低くなることで、上記ゴム系粘着剤層の内部に強アルカリ性溶液がより浸入しにくくなる。また、上記テルペンフェノール樹脂(T1)の軟化点が150℃以上であれば、上記ゴム系粘着剤層の耐熱性がより高くなる。上記テルペンフェノール樹脂(T1)の軟化点のより好ましい下限は160℃である。上記テルペンフェノール樹脂(T1)の軟化点の上限は特に限定されないが、実質的な上限は180℃程度である。
なお、粘着付与樹脂の軟化点とは、固体状の樹脂が軟化して変形し始める温度であり、JIS K 5902及びJIS K 2207に規定する軟化点試験方法(環球法)に基づいて測定された値として定義される。
The softening point of the terpene phenol resin (T1) is not particularly limited, but the preferable lower limit is 150 ° C. When the softening point of the terpene phenol resin (T1) is 150 ° C. or higher, the molecular weight of the terpene phenol resin becomes large and the solubility in a strong alkaline solution becomes low, so that the inside of the rubber-based pressure-sensitive adhesive layer is formed. Strongly alkaline solutions are less likely to penetrate. Further, when the softening point of the terpene phenol resin (T1) is 150 ° C. or higher, the heat resistance of the rubber-based pressure-sensitive adhesive layer becomes higher. A more preferable lower limit of the softening point of the terpene phenol resin (T1) is 160 ° C. The upper limit of the softening point of the terpene phenol resin (T1) is not particularly limited, but the practical upper limit is about 180 ° C.
The softening point of the tackifier resin is the temperature at which the solid resin softens and begins to deform, and was measured based on the softening point test method (ring ball method) specified in JIS K 5902 and JIS K 2207. Defined as a value.
上記テルペンフェノール樹脂(T1)の含有量は特に限定されないが、上記ゴム系ポリマー100重量部に対する好ましい下限が3重量部、好ましい上限が80重量部である。上記テルペンフェノール樹脂(T1)の含有量が3重量部以上であれば、上記ゴム系粘着剤層の内部に強アルカリ性溶液がより浸入しにくくなる。上記テルペンフェノール樹脂(T1)の含有量が80重量部以下であれば、上記ゴム系粘着剤層が硬くなりすぎず、上記金属張積層板の端部との密着性が高くなることから、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。上記テルペンフェノール樹脂(T1)の含有量のより好ましい下限は10重量部、より好ましい上限は60重量部である。 The content of the terpene phenol resin (T1) is not particularly limited, but the preferable lower limit is 3 parts by weight and the preferable upper limit is 80 parts by weight with respect to 100 parts by weight of the rubber-based polymer. When the content of the terpene phenol resin (T1) is 3 parts by weight or more, the strong alkaline solution is less likely to penetrate into the rubber-based pressure-sensitive adhesive layer. When the content of the terpene phenol resin (T1) is 80 parts by weight or less, the rubber-based pressure-sensitive adhesive layer does not become too hard and the adhesion to the end of the metal-clad laminate becomes high. It is possible to further suppress damage to the end portion of the metal-clad laminate, and it is possible to further suppress the infiltration of the solution into the end portion even when exposed to a strong alkaline solution. The more preferable lower limit of the content of the terpene phenol resin (T1) is 10 parts by weight, and the more preferable upper limit is 60 parts by weight.
上記ゴム系粘着剤層は、上記テルペンフェノール樹脂(T1)以外の粘着付与樹脂を含有していてもよい。ただし、上記ゴム系粘着剤層において、水酸基価が140mgKOH/gを超えるテルペンフェノール樹脂(T2)と、ロジンエステル樹脂(T3)との含有量の合計は、上記ゴム系ポリマー100重量部に対して5重量部以下であることが好ましい。上記テルペンフェノール樹脂(T2)と、上記ロジンエステル樹脂(T3)との含有量の合計が5重量部以下であることにより、上記ゴム系粘着剤層の内部に強アルカリ性溶液がより浸入しにくくなる。上記テルペンフェノール樹脂(T2)は上記テルペンフェノール樹脂(T1)よりも水酸基価が高く極性が高いことから、上記テルペンフェノール樹脂(T2)の含有量が多すぎると、上記ゴム系粘着剤層の内部に強アルカリ性溶液が浸入しやすくなる。また、上記ロジンエステル樹脂(T3)はエステル基、水酸基、カルボキシル基等の官能基を有することから、上記ロジンエステル樹脂(T3)の含有量が多すぎても、上記ゴム系粘着剤層の内部に強アルカリ性溶液が浸入しやすくなる。上記テルペンフェノール樹脂(T2)と、上記ロジンエステル樹脂(T3)との含有量の合計は2重量部以下であることが好ましく、0重量部であることがより好ましい。 The rubber-based pressure-sensitive adhesive layer may contain a pressure-imparting resin other than the terpene phenol resin (T1). However, in the rubber-based pressure-sensitive adhesive layer, the total content of the terpene phenol resin (T2) having a hydroxyl value of more than 140 mgKOH / g and the rosin ester resin (T3) is 100 parts by weight of the rubber-based polymer. It is preferably 5 parts by weight or less. When the total content of the terpene phenol resin (T2) and the rosin ester resin (T3) is 5 parts by weight or less, the strong alkaline solution is less likely to penetrate into the rubber-based pressure-sensitive adhesive layer. .. Since the terpene phenol resin (T2) has a higher hydroxyl value and higher polarity than the terpene phenol resin (T1), if the content of the terpene phenol resin (T2) is too large, the inside of the rubber-based pressure-sensitive adhesive layer It becomes easy for a strong alkaline solution to infiltrate. Further, since the rosin ester resin (T3) has functional groups such as an ester group, a hydroxyl group, and a carboxyl group, even if the content of the rosin ester resin (T3) is too large, the inside of the rubber-based pressure-sensitive adhesive layer It becomes easy for a strong alkaline solution to infiltrate into the rosin. The total content of the terpene phenol resin (T2) and the rosin ester resin (T3) is preferably 2 parts by weight or less, and more preferably 0 part by weight.
上記粘着剤層は、必要に応じて、可塑剤、乳化剤、軟化剤、充填剤、顔料、染料等の添加剤、その他の樹脂等を含有していてもよい。  The pressure-sensitive adhesive layer may contain additives such as plasticizers, emulsifiers, softeners, fillers, pigments, dyes, and other resins, if necessary. It was
上記粘着剤層の厚みは特に限定されないが、上記金属張積層板の厚みの1/2よりも厚いことが好ましい。このような場合、上記金属張積層板の表面から裏面にまでまたがるように上記粘着テープを上記金属張積層板の端部に貼り付けた場合であっても、上記金属張積層板の端部と上記粘着剤層との間に隙間が生じにくくなり、剥がれが生じにくくなる。これにより、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。上記粘着剤層の厚みは、上記金属張積層板の厚みの2/3よりも厚いことがより好ましい。上記粘着剤層の厚みは、具体的には、好ましい下限が5μm、好ましい上限が100μmであり、より好ましい下限が10μm、より好ましい上限が50μmである。 The thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably thicker than 1/2 the thickness of the metal-clad laminate. In such a case, even when the adhesive tape is attached to the end portion of the metal-clad laminate so as to extend from the front surface to the back surface of the metal-clad laminate, the end portion of the metal-clad laminate may be used. A gap is less likely to occur between the adhesive layer and the adhesive layer, and peeling is less likely to occur. As a result, damage to the end portion of the metal-clad laminate can be further suppressed, and even when exposed to a strong alkaline solution, infiltration of the solution into the end portion can be further suppressed. The thickness of the pressure-sensitive adhesive layer is more preferably thicker than 2/3 of the thickness of the metal-clad laminate. Specifically, the thickness of the pressure-sensitive adhesive layer has a preferable lower limit of 5 μm, a preferable upper limit of 100 μm, a more preferable lower limit of 10 μm, and a more preferable upper limit of 50 μm.
上記粘着剤層が上記アクリル系感熱粘着剤層である場合、上記粘着テープは、上記基材と上記アクリル系感熱粘着剤層との間に更に感圧型粘着剤層を有することが好ましい。即ち、上記粘着テープは、上記基材、上記感圧型粘着剤層及び上記アクリル系感熱粘着剤層をこの順に有することが好ましい。上記粘着テープが上記基材と上記アクリル系感熱粘着剤層との間に上記感圧型粘着剤層を有することにより、上記基材と上記アクリル系感熱粘着剤層との間のアンカー性が増すことから、強アルカリ性溶液に晒された場合にも上記基材と上記アクリル系感熱粘着剤層との間の剥離がより起こりにくくなる。これにより、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。
上記感圧型粘着剤層としては、例えば、上述したアクリル系感圧粘着剤層を用いることができるが、これに限定されない。
When the pressure-sensitive adhesive layer is the acrylic heat-sensitive pressure-sensitive adhesive layer, it is preferable that the pressure-sensitive adhesive tape further has a pressure-sensitive pressure-sensitive pressure-sensitive adhesive layer between the base material and the acrylic heat-sensitive pressure-sensitive adhesive layer. That is, it is preferable that the pressure-sensitive adhesive tape has the base material, the pressure-sensitive pressure-sensitive adhesive layer, and the acrylic heat-sensitive pressure-sensitive adhesive layer in this order. By having the pressure-sensitive pressure-sensitive adhesive layer between the base material and the acrylic heat-sensitive adhesive layer, the adhesive tape increases the anchoring property between the base material and the acrylic heat-sensitive adhesive layer. Therefore, even when exposed to a strong alkaline solution, peeling between the base material and the acrylic heat-sensitive adhesive layer is less likely to occur. As a result, damage to the end portion of the metal-clad laminate can be further suppressed, and even when exposed to a strong alkaline solution, infiltration of the solution into the end portion can be further suppressed.
As the pressure-sensitive pressure-sensitive adhesive layer, for example, the acrylic pressure-sensitive pressure-sensitive adhesive layer described above can be used, but the pressure-sensitive pressure-sensitive pressure-sensitive adhesive layer is not limited thereto.
上記粘着テープが上記基材と上記アクリル系感熱粘着剤層との間に上記感圧型粘着剤層を有する場合、該感圧型粘着剤層の厚みは特に限定されないが、好ましい下限は0.1μm、好ましい上限は30μmである。上記感圧型粘着剤層の厚みが上記範囲内であれば、上記基材と上記アクリル系感熱粘着剤層との間のアンカー性がより向上する。上記感圧型粘着剤層の厚みのより好ましい下限は5μm、より好ましい上限は20μmである。 When the pressure-sensitive adhesive layer has the pressure-sensitive pressure-sensitive adhesive layer between the base material and the acrylic heat-sensitive pressure-sensitive adhesive layer, the thickness of the pressure-sensitive pressure-sensitive adhesive layer is not particularly limited, but the preferable lower limit is 0.1 μm. The preferred upper limit is 30 μm. When the thickness of the pressure-sensitive pressure-sensitive adhesive layer is within the above range, the anchoring property between the base material and the acrylic heat-sensitive pressure-sensitive adhesive layer is further improved. The more preferable lower limit of the thickness of the pressure-sensitive pressure-sensitive adhesive layer is 5 μm, and the more preferable upper limit is 20 μm.
上記粘着テープは、上記基材と上記粘着剤層との間に更に樹脂層を有することが好ましく、上記樹脂層は、極性官能基を有する樹脂を含有することが好ましい。上記粘着テープが上記樹脂層を有することにより、上記基材と上記粘着剤層との間のアンカー性が増すことから、上記粘着剤層の内部に強アルカリ性溶液が浸入しにくくなる。これにより、上記金属張積層板の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。 The pressure-sensitive adhesive tape preferably further has a resin layer between the base material and the pressure-sensitive adhesive layer, and the resin layer preferably contains a resin having a polar functional group. Since the pressure-sensitive adhesive tape has the resin layer, the anchoring property between the base material and the pressure-sensitive adhesive layer is increased, so that the strong alkaline solution is less likely to penetrate into the pressure-sensitive adhesive layer. As a result, damage to the end portion of the metal-clad laminate can be further suppressed, and even when exposed to a strong alkaline solution, infiltration of the solution into the end portion can be further suppressed.
上記極性官能基は特に限定されないが、上記金属基材及び上記樹脂基材への密着性に優れることから、ニトリル基、カルボニル基、カルボキシル基及びアミノ基からなる群より選ばれる少なくとも1つが好ましい。なかでも、ニトリル基、カルボニル基がより好ましい。 The polar functional group is not particularly limited, but at least one selected from the group consisting of a nitrile group, a carbonyl group, a carboxyl group and an amino group is preferable because it is excellent in adhesion to the metal base material and the resin base material. Of these, a nitrile group and a carbonyl group are more preferable.
上記極性官能基を有する樹脂として、具体的には例えば、アクリロニトリルブタジエンゴム(NBR)、無水マレイン酸変性スチレン-エチレン-ブチレン-スチレン(無水マレイン酸変性SEBS)、アミン変性スチレン-エチレン-ブチレン-スチレン(アミン変性SEBS)等が挙げられる。なかでも、上記樹脂基材との密着性に優れ、かつ、上記粘着剤層との密着性にも優れることから、NBR、無水マレイン酸変性SEBSが好ましい。 Specific examples of the resin having the polar functional group include acrylonitrile butadiene rubber (NBR), maleic anhydride-modified styrene-ethylene-butylene-styrene (maleic anhydride-modified SEBS), and amine-modified styrene-ethylene-butylene-styrene. (Amin-modified SEBS) and the like. Among them, NBR and maleic anhydride-modified SEBS are preferable because they are excellent in adhesion to the resin base material and also in adhesion to the pressure-sensitive adhesive layer.
上記樹脂層の厚みは特に限定されないが、好ましい下限は0.1μm、好ましい上限は3μmである。上記樹脂層の厚みが上記範囲内であれば、上記基材と上記粘着剤層との間のアンカー性がより向上する。上記樹脂層の厚みのより好ましい下限は0.5μm、より好ましい上限は2μmである。 The thickness of the resin layer is not particularly limited, but a preferable lower limit is 0.1 μm and a preferable upper limit is 3 μm. When the thickness of the resin layer is within the above range, the anchoring property between the base material and the pressure-sensitive adhesive layer is further improved. The more preferable lower limit of the thickness of the resin layer is 0.5 μm, and the more preferable upper limit is 2 μm.
上記樹脂層は、必要に応じて、可塑剤、乳化剤、軟化剤、充填剤、顔料、染料等の添加剤、その他の樹脂等を含有していてもよい。 The resin layer may contain additives such as plasticizers, emulsifiers, softeners, fillers, pigments and dyes, and other resins, if necessary.
図1~8に、本発明の端部保護された金属張積層板における保護材で覆われた領域の一例を模式的に示す断面図を示す。
図1~4に示す端部保護された金属張積層板1においては、保護材として基材31及び粘着剤層32を有する粘着テープ30が使用されている。即ち、金属張積層板2の端部は、一辺につき1つの粘着テープ30で覆われている。図1~4においては、金属張積層板2の表面から裏面にまでまたがるように粘着テープ30を折り返して(折り曲げて)金属張積層板2の端部に貼り付けている。更に、図4においては、金属張積層板2の裏面の全体が粘着テープ30で覆われている。
FIGS. 1 to 8 show sectional views schematically showing an example of a region covered with a protective material in the metal-clad laminate with end protection of the present invention.
In the metal-clad laminate 1 whose edges are protected as shown in FIGS. 1 to 4, an adhesive tape 30 having a base material 31 and an adhesive layer 32 is used as a protective material. That is, the end portion of the metal-clad laminate 2 is covered with one adhesive tape 30 per side. In FIGS. 1 to 4, the adhesive tape 30 is folded back (bent) so as to extend from the front surface to the back surface of the metal-clad laminate 2, and is attached to the end of the metal-clad laminate 2. Further, in FIG. 4, the entire back surface of the metal-clad laminate 2 is covered with the adhesive tape 30.
図5~7に示す端部保護された金属張積層板1においては、保護材として基材31及び粘着剤層32を有する粘着テープ30と、基材31’及び粘着剤層32’を有する粘着テープ30’とが使用されている。即ち、金属張積層板2の端部は、一辺につき2つの粘着テープ30及び30’で覆われている。図5~7においては、金属張積層板2の表面から裏面にまでまたがるように粘着テープ30及び30’を金属張積層板2の端部に貼り付けている。 In the metal-clad laminate 1 whose edges are protected as shown in FIGS. 5 to 7, the adhesive tape 30 having the base material 31 and the pressure-sensitive adhesive layer 32 as the protective material, and the pressure-sensitive adhesive having the base material 31'and the pressure-sensitive adhesive layer 32' Tape 30'and is used. That is, the end portion of the metal-clad laminate 2 is covered with two adhesive tapes 30 and 30'on each side. In FIGS. 5 to 7, the adhesive tapes 30 and 30'are attached to the ends of the metal-clad laminate 2 so as to extend from the front surface to the back surface of the metal-clad laminate 2.
図8に示す端部保護された金属張積層板1においては、保護材として基材31及び粘着剤層32を有する粘着テープ30と、基材31’及び粘着剤層32’を有する粘着テープ30’と、基材31’’及び粘着剤層32’’を有する粘着テープ30’’とが使用されている。即ち、金属張積層板2の端部は、一辺につき3つの粘着テープ30、30’及び 30’’で覆われている。図8においては、金属張積層板2の表面から裏面にまでまたがるように粘着テープ30、30’及び30’’を金属張積層板2の端部に貼り付けている。 In the metal-clad laminate 1 whose end is protected as shown in FIG. 8, the adhesive tape 30 having the base material 31 and the pressure-sensitive adhesive layer 32 as the protective material, and the pressure-sensitive adhesive tape 30 having the base material 31'and the pressure-sensitive adhesive layer 32' 'And an adhesive tape 30'' having a base material 31'' and an adhesive layer 32'' are used. That is, the end portion of the metal-clad laminate 2 is covered with three adhesive tapes 30, 30 ′ and 30 ″ per side. In FIG. 8, adhesive tapes 30, 30 ′ and 30 ″ are attached to the ends of the metal-clad laminate 2 so as to extend from the front surface to the back surface of the metal-clad laminate 2.
なお、図2~8において、3aは粘着剤層同士の界面を示しており、この界面3aにできるだけ隙間を生じさせないことにより、金属張積層板2の端部の破損をより抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入をより抑制することができる。 In FIGS. 2 to 8, 3a shows the interface between the pressure-sensitive adhesive layers, and by making the interface 3a as small as possible, damage to the end portion of the metal-clad laminate 2 can be further suppressed. Even when exposed to a strong alkaline solution, the infiltration of the solution into the end portion can be further suppressed.
本発明の端部保護された金属張積層板の用途は特に限定されないが、プリント配線基板を製造する際に特に好適に用いることができる。金属張積層板を用いてプリント配線基板を製造する方法であって、金属張積層板の端部を保護材で覆い、本発明の端部保護された金属張積層板を得る保護工程を有するプリント配線基板の製造方法もまた、本発明の1つである。 The use of the metal-clad laminate with end protection of the present invention is not particularly limited, but it can be particularly preferably used when manufacturing a printed wiring board. A method for manufacturing a printed wiring board using a metal-clad laminate, the printing having a protection step of covering the end of the metal-clad laminate with a protective material to obtain the end-protected metal-clad laminate of the present invention. A method for manufacturing a wiring board is also one of the present inventions.
上記保護工程において、上記金属張積層板の端部を保護材で覆い、本発明の端部保護された金属張積層板を得る方法は特に限定されない。例えば、上記保護材として上述したような粘着テープを使用する場合、テープラミネーターを用いて上記粘着テープを上記金属張積層板の端部に貼り付ける方法、プレス機を用いて上記粘着テープを上記金属張積層板の端部に圧着する方法、上記粘着テープを上記金属張積層板に手で貼り合わせる方法等が挙げられる。なお、これらの方法において、上記金属張積層板の四角に上記粘着テープを貼り付ける場合には、上記粘着テープを重複して貼り付けてもよく、重複しないように貼り付けてもよい。 In the protection step, the method of covering the end portion of the metal-clad laminate with a protective material to obtain the end-protected metal-clad laminate of the present invention is not particularly limited. For example, when the adhesive tape as described above is used as the protective material, a method of attaching the adhesive tape to the end of the metal-clad laminate using a tape laminator, or a method of attaching the adhesive tape to the metal by using a press machine. Examples thereof include a method of crimping to the end portion of the laminated laminated plate, a method of manually attaching the adhesive tape to the metal laminated laminated plate, and the like. In these methods, when the adhesive tape is attached to the square of the metal-clad laminate, the adhesive tape may be attached in duplicate or may be attached so as not to overlap.
本発明のプリント配線基板の製造方法では、上記保護工程の後、更に、本発明の端部保護された金属張積層板に対して金属メッキ処理を施し、上記金属張積層板及び上記保護材の表面に金属を析出させる金属メッキ工程を行ってもよい。上記金属メッキ工程において、金属メッキ処理の方法は特に限定されず、プリント配線基板を製造する際に採用される無電解メッキ等の従来公知の方法を用いることができる。上記金属メッキ工程においては、本発明の端部保護された金属張積層板を用いることにより、上記金属張積層板の端部の破損を抑制することができる。また、上記保護材として上述したような粘着テープを使用し、上記基材が上記金属基材である場合、金属が良好に析出するとともに、剥離しにくい金属メッキ層を形成させることができる。上記基材が上記樹脂基材である場合にも、上記樹脂基材の表面粗さRaが上記範囲内であれば、金属が良好に析出するとともに、剥離しにくい金属メッキ層を形成させることができる。 In the method for manufacturing a printed wiring substrate of the present invention, after the above-mentioned protection step, the metal-clad laminate whose end is protected according to the present invention is further subjected to metal plating treatment to obtain the above-mentioned metal-clad laminate and the above-mentioned protective material. A metal plating step of precipitating metal on the surface may be performed. In the metal plating step, the method of metal plating treatment is not particularly limited, and conventionally known methods such as electroless plating adopted when manufacturing a printed wiring board can be used. In the metal plating step, by using the metal-clad laminate with the end protection of the present invention, it is possible to suppress damage to the end of the metal-clad laminate. Further, when the adhesive tape as described above is used as the protective material and the base material is the metal base material, the metal can be well deposited and a metal plating layer that is difficult to peel off can be formed. Even when the base material is the resin base material, if the surface roughness Ra of the resin base material is within the above range, the metal can be well deposited and a metal plating layer that is difficult to peel off can be formed. can.
本発明のプリント配線基板の製造方法では、上記保護工程の後、更に、本発明の端部保護された金属張積層板に対してエッチング処理又はデスミア処理を行う回路形成工程を行ってもよい。上記回路形成工程において、エッチング処理又はデスミア処理の方法は特に限定されず、プリント配線基板を製造する際に採用される従来公知の方法を用いることができる。上記回路形成工程においては、本発明の端部保護された金属張積層板を用いることにより、上記金属張積層板の端部の破損を抑制することができ、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入を抑制することができる。 In the method for manufacturing a printed wiring substrate of the present invention, after the above-mentioned protection step, a circuit forming step of etching or desmearing the end-protected metal-clad laminate of the present invention may be further performed. In the circuit forming step, the method of etching treatment or desmear treatment is not particularly limited, and a conventionally known method adopted when manufacturing a printed wiring board can be used. In the circuit forming step, by using the metal-clad laminate with the end protection of the present invention, damage to the end of the metal-clad laminate can be suppressed, and when exposed to a strong alkaline solution, the metal-clad laminate can be prevented from being damaged. Can also suppress the infiltration of the solution into the end portion.
上記金属メッキ工程及び上記回路形成工程は、上記保護工程の後に行う限りにおいて、いずれを先に行ってもよい。また、上記金属メッキ工程及び上記回路形成工程は、上記保護工程の後に行う限りにおいて、それぞれ繰り返し行ってもよい。 The metal plating step and the circuit forming step may be performed first as long as they are performed after the protection step. Further, the metal plating step and the circuit forming step may be repeated as long as they are performed after the protection step.
本発明のプリント配線基板の製造方法では、更に、本発明の端部保護された金属張積層板における保護材で覆われた領域を分離するトリミング工程を行ってもよい。これにより、保護材で覆われた領域を分離し、回路形成後のプリント配線基板を得ることができる。上記トリミング工程において、本発明の端部保護された金属張積層板における保護材で覆われた領域を分離する方法は特に限定されず、例えば、スリッターでカットする方法等が挙げられる。 In the method for manufacturing a printed wiring board of the present invention, a trimming step for separating a region covered with a protective material in the metal-clad laminate with end protection of the present invention may be further performed. As a result, the region covered with the protective material can be separated, and a printed wiring board after circuit formation can be obtained. In the trimming step, the method for separating the region covered with the protective material in the metal-clad laminate with the end protection of the present invention is not particularly limited, and examples thereof include a method of cutting with a slitter.
プリント配線基板に用いる中間体を製造する方法であって、金属張積層板の端部を保護材で覆い、本発明の端部保護された金属張積層板を得る保護工程を有するプリント配線基板用中間体の製造方法もまた、本発明の1つである。 A method for manufacturing an intermediate used for a printed wiring board, for a printed wiring board having a protection step of covering the end portion of the metal-clad laminate with a protective material to obtain the edge-protected metal-clad laminate of the present invention. A method for producing an intermediate is also one of the present inventions.
本発明によれば、金属張積層板の端部の破損を抑制でき、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入を抑制できる端部保護された金属張積層板を提供することができる。また、本発明によれば、プリント配線基板の製造方法、及び、プリント配線基板用中間体の製造方法を提供することができる。 According to the present invention, an end-protected metal-clad laminate capable of suppressing damage to the end of the metal-clad laminate and suppressing infiltration of the solution into the end even when exposed to a strong alkaline solution can be provided. Can be provided. Further, according to the present invention, it is possible to provide a method for manufacturing a printed wiring board and a method for manufacturing an intermediate for a printed wiring board.
本発明の端部保護された金属張積層板における保護材で覆われた領域の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the area covered with the protective material in the metal-clad laminated board which protected the edge of this invention. 本発明の端部保護された金属張積層板における保護材で覆われた領域の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the area covered with the protective material in the metal-clad laminated board which protected the edge of this invention. 本発明の端部保護された金属張積層板における保護材で覆われた領域の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the area covered with the protective material in the metal-clad laminated board which protected the edge of this invention. 本発明の端部保護された金属張積層板における保護材で覆われた領域の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the area covered with the protective material in the metal-clad laminated board which protected the edge of this invention. 本発明の端部保護された金属張積層板における保護材で覆われた領域の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the area covered with the protective material in the metal-clad laminated board which protected the edge of this invention. 本発明の端部保護された金属張積層板における保護材で覆われた領域の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the area covered with the protective material in the metal-clad laminated board which protected the edge of this invention. 本発明の端部保護された金属張積層板における保護材で覆われた領域の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the area covered with the protective material in the metal-clad laminated board which protected the edge of this invention. 本発明の端部保護された金属張積層板における保護材で覆われた領域の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the area covered with the protective material in the metal-clad laminated board which protected the edge of this invention.
以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(アクリル系ポリマー1の調製)
反応容器内に、重合溶媒として酢酸エチルを加え、窒素でバブリングした後、窒素を流入しながら反応容器を加熱して還流を開始した。続いて、重合開始剤としてアゾビスイソブチロニトリル0.3重量部を酢酸エチルで10倍希釈した重合開始剤溶液を反応容器内に投入し、ブチルアクリレート47重量部、2-エチルヘキシルアクリレート50重量部、アクリル酸2.8重量部及び2-ヒドロキシエチルアクリレート0.2重量部を2時間かけて滴下添加した。滴下終了後、重合開始剤としてアゾビスイソブチロニトリル0.3重量部を酢酸エチルで10倍希釈した重合開始剤溶液を反応容器内に再度投入し、4時間重合反応を行い、アクリル系ポリマー1含有溶液を得た。
得られたアクリル系ポリマー1について、カラムとしてGPC LF-804(昭和電工社製)を用いたゲルパーミエーションクロマトグラフ法により、ポリスチレン換算での重量平均分子量(Mw)を求めたところ45万であった。
(Preparation of acrylic polymer 1)
Ethyl acetate was added as a polymerization solvent to the reaction vessel, and after bubbling with nitrogen, the reaction vessel was heated while flowing nitrogen to start reflux. Subsequently, a polymerization initiator solution obtained by diluting 0.3 parts by weight of azobisisobutyronitrile 10-fold with ethyl acetate as a polymerization initiator was put into a reaction vessel, and 47 parts by weight of butyl acrylate and 50 parts by weight of 2-ethylhexyl acrylate were added. Parts, 2.8 parts by weight of acrylic acid and 0.2 parts by weight of 2-hydroxyethyl acrylate were added dropwise over 2 hours. After completion of the dropping, the polymerization initiator solution obtained by diluting 0.3 part by weight of azobisisobutyronitrile as a polymerization initiator with ethyl acetate 10-fold was put into the reaction vessel again, and the polymerization reaction was carried out for 4 hours to carry out an acrylic polymer. 1 Containing solution was obtained.
The weight average molecular weight (Mw) of the obtained acrylic polymer 1 was 450,000 in terms of polystyrene by gel permeation chromatography using GPC LF-804 (manufactured by Showa Denko KK) as a column. rice field.
(アクリル系ポリマー2の準備) 
使用するモノマーをブチルアクリレート33重量部、ブチルメタクリレート32重量部、メチルメタクリレート32重量部、アクリル酸2.8重量部及び2-ヒドロキシエチルアクリレート0.2重量部に変更した以外はアクリル系ポリマー1と同様にして、アクリル系ポリマー2含有溶液を得た。
得られたアクリル系ポリマー2について、カラムとしてGPC LF-804(昭和電工社製)を用いたゲルパーミエーションクロマトグラフ法により、ポリスチレン換算での重量平均分子量(Mw)を求めたところ33万であった。
(Preparation of acrylic polymer 2)
Acrylic polymer 1 except that the monomers used were changed to 33 parts by weight of butyl acrylate, 32 parts by weight of butyl methacrylate, 32 parts by weight of methyl methacrylate, 2.8 parts by weight of acrylic acid and 0.2 parts by weight of 2-hydroxyethyl acrylate. Similarly, a solution containing acrylic polymer 2 was obtained.
Regarding the obtained acrylic polymer 2, the weight average molecular weight (Mw) in terms of polystyrene was determined by gel permeation chromatography using GPC LF-804 (manufactured by Showa Denko KK) as a column, and it was 330,000. rice field.
(アクリル系ポリマー3の準備) 
使用するモノマーをブチルアクリレート33重量部、ブチルメタクリレート32重量部、イソボルニルアクリレート32重量部、アクリル酸2.8重量部及び2-ヒドロキシエチルアクリレート0.2重量部に変更した以外はアクリル系ポリマー1と同様にして、アクリル系ポリマー3含有溶液を得た。
得られたアクリル系ポリマー3について、カラムとしてGPC LF-804(昭和電工社製)を用いたゲルパーミエーションクロマトグラフ法により、ポリスチレン換算での重量平均分子量(Mw)を求めたところ35万であった。
(Preparation of acrylic polymer 3)
Acrylic polymer except that the monomer used was changed to 33 parts by weight of butyl acrylate, 32 parts by weight of butyl methacrylate, 32 parts by weight of isobornyl acrylate, 2.8 parts by weight of acrylic acid and 0.2 parts by weight of 2-hydroxyethyl acrylate. In the same manner as in No. 1, a solution containing acrylic polymer 3 was obtained.
The weight average molecular weight (Mw) of the obtained acrylic polymer 3 was 350,000 in terms of polystyrene by gel permeation chromatography using GPC LF-804 (manufactured by Showa Denko KK) as a column. rice field.
(ゴム系ポリマーの準備)
ゴム系ポリマーとして、スチレン-イソプレン-スチレンブロック共重合体(SIS)(日本ゼオン社製、クインタック3520、ジブロック比率78重量%、スチレン含有量15重量%)を用いた。
(Preparation of rubber polymer)
As the rubber-based polymer, a styrene-isoprene-styrene block copolymer (SIS) (Zeon Corporation, Quintac 3520, diblock ratio 78% by weight, styrene content 15% by weight) was used.
(粘着剤Aの調製)
得られたアクリル系ポリマー1含有溶液に、アクリル系ポリマー1を100重量部に対して重合ロジンエステル樹脂(荒川化学工業社製、ペンセルD160、水酸基価42mgKOH/g)15重量部を加えた。更に、シランカップリング剤(信越化学工業社製、KBM803)を1重量部、イソシアネート系架橋剤(東ソー社製、コロネートL)を1重量部(固体成分比率)加え、粘着剤Aの溶液を調製した。
(Preparation of adhesive A)
To 100 parts by weight of the obtained acrylic polymer 1-containing solution, 15 parts by weight of a polymerized rosin ester resin (Pencel D160, hydroxyl value 42 mgKOH / g, manufactured by Arakawa Chemical Industries, Ltd.) was added to 100 parts by weight. Further, 1 part by weight of a silane coupling agent (KBM803, manufactured by Shin-Etsu Chemical Co., Ltd.) and 1 part by weight (solid component ratio) of an isocyanate-based cross-linking agent (Coronate L, manufactured by Tosoh Co., Ltd.) are added to prepare a solution of the pressure-sensitive adhesive A. did.
(粘着剤Bの調製)
粘着付与樹脂として重合ロジンエステル樹脂(荒川化学工業社製、ペンセルD160、水酸基価42mgKOH/g)25重量部及びテルペンフェノール樹脂(ヤスハラケミカル社製、YSポリスターG150、水酸基価130mgKOH/g、軟化点150℃)10重量部を用いたこと以外は粘着剤Aと同様にして、粘着剤Bの溶液を調製した。
(Preparation of adhesive B)
As a tackifying resin, 25 parts by weight of a polymerized rosin ester resin (manufactured by Arakawa Chemical Industry Co., Ltd., Pencel D160, hydroxyl value 42 mgKOH / g) and a terpene phenol resin (manufactured by Yasuhara Chemical Co., Ltd., YS Polystar G150, hydroxyl value 130 mgKOH / g, softening point 150 ° C.) ) A solution of the pressure-sensitive adhesive B was prepared in the same manner as the pressure-sensitive adhesive A except that 10 parts by weight was used.
(粘着剤Cの調製)
ゴム系ポリマーと、ゴム系ポリマー100重量部に対してテルペンフェノール樹脂(ヤスハラケミカル社製、YSポリスターT160、水酸基価60mgKOH/g、軟化点160℃)10重量部とを溶媒(トルエン)に溶液濃度が30重量%となるように加えて攪拌し、粘着剤Cの溶液を調製した。
(Preparation of adhesive C)
The solution concentration of the rubber polymer and 10 parts by weight of terpenphenol resin (YShara Chemical Co., Ltd., YS Polystar T160, hydroxyl value 60 mgKOH / g, softening point 160 ° C) with respect to 100 parts by weight of the rubber polymer is in the solvent (toluene). A solution of the pressure-sensitive adhesive C was prepared by adding and stirring so as to be 30% by weight.
(粘着剤Dの調製)
粘着付与樹脂としてポリテルペン(ヤスハラケミカル社製、YSレジンPX-1250、水酸基価0mgKOH/g、軟化点125℃)10重量部を用いたこと以外は粘着剤Cと同様にして、粘着剤Dの溶液を調製した。
(Preparation of adhesive D)
A solution of the pressure-sensitive adhesive D was prepared in the same manner as the pressure-sensitive adhesive C except that 10 parts by weight of Polyterpen (manufactured by Yasuhara Chemical Co., Ltd., YS resin PX-1250, hydroxyl value 0 mgKOH / g, softening point 125 ° C.) was used as the pressure-sensitive adhesive resin. Prepared.
(粘着剤Eの調整)
粘着付与樹脂として重合ロジンエステル樹脂(荒川化学工業社製、ペンセルD160、水酸基価42mgKOH/g)15重量部及びテルペンフェノール樹脂(ヤスハラケミカル社製、YSポリスターG150、水酸基価130mgKOH/g、軟化点150℃)10重量部を用いたこと以外は粘着剤Aと同様にして、粘着剤Eの溶液を調製した。
(Adhesive E adjustment)
As a tackifying resin, 15 parts by weight of a polymerized rosin ester resin (manufactured by Arakawa Chemical Industry Co., Ltd., Pencel D160, hydroxyl value 42 mgKOH / g) and a terpene phenol resin (manufactured by Yasuhara Chemical Co., Ltd., YS Polystar G150, hydroxyl value 130 mgKOH / g, softening point 150 ° C.) ) A solution of the pressure-sensitive adhesive E was prepared in the same manner as the pressure-sensitive adhesive A except that 10 parts by weight was used.
(粘着剤Fの調整)
粘着付与樹脂としてテルペンフェノール樹脂(ヤスハラケミカル社製、YSポリスターU-115、水酸基価20mgKOH/g、軟化点115℃)10重量部を用いたこと以外は粘着剤Cと同様にして、粘着剤Fの溶液を調製した。
(Adhesive F adjustment)
The pressure-sensitive adhesive F was the same as the pressure-sensitive adhesive C except that 10 parts by weight of a terpene phenol resin (manufactured by Yasuhara Chemical Co., Ltd., YS Polystar U-115, hydroxyl value 20 mgKOH / g, softening point 115 ° C.) was used as the pressure-sensitive adhesive resin. A solution was prepared.
(粘着剤Gの調整)
粘着付与樹脂としてテルペンフェノール樹脂(ヤスハラケミカル社製、YSポリスターG-125、水酸基価130mgKOH/g、軟化点125℃)10重量部を用いたこと以外は粘着剤Cと同様にして、粘着剤Gの溶液を調製した。
(Adhesive G adjustment)
Similar to the pressure-sensitive adhesive C, the pressure-sensitive adhesive G was used as the pressure-sensitive adhesive resin except that 10 parts by weight of a terpene phenol resin (manufactured by Yasuhara Chemical Co., Ltd., YS Polystar G-125, hydroxyl value 130 mgKOH / g, softening point 125 ° C.) was used. A solution was prepared.
(感熱粘着剤Hの調整)
得られたアクリル系ポリマー2含有溶液に、アクリル系ポリマー2を100重量部に対して粘着付与樹脂として水添ロジンエステル樹脂(荒川化学工業社製、パインクリスタルKE-359、水酸基価42mgKOH/g)25重量部を加えた。エポキシ系架橋剤(三菱ガス化学社製、テトラッドC)を0.2重量部(固体成分比率)加え、感熱粘着剤Hの溶液を調製した。
(Adjustment of thermal adhesive H)
In the obtained solution containing acrylic polymer 2, hydrogenated rosin ester resin (manufactured by Arakawa Chemical Industry Co., Ltd., pine crystal KE-359, hydroxyl value 42 mgKOH / g) was added as an adhesive resin to 100 parts by weight of the acrylic polymer 2. 25 parts by weight was added. An epoxy-based cross-linking agent (Tetrad C manufactured by Mitsubishi Gas Chemical Company, Inc.) was added in an amount of 0.2 parts by weight (solid component ratio) to prepare a solution of the heat-sensitive adhesive H.
(感熱粘着剤Iの調整)
アクリル系ポリマー2含有溶液をアクリル系ポリマー3含有溶液に変更した以外は感熱粘着剤Hと同様にして、感熱粘着剤Iの溶液を調製した。
(Adjustment of thermal adhesive I)
A solution of the thermal pressure-sensitive adhesive I was prepared in the same manner as the heat-sensitive pressure-sensitive adhesive H except that the acrylic polymer 2-containing solution was changed to the acrylic polymer 3-containing solution.
(感熱粘着剤Jの調整)
粘着付与樹脂を水添ロジンエステル樹脂(荒川化学工業社製、エステルガムH、水酸基価29mgKOH/g)に変更した以外は感熱粘着剤Hと同様にして、感熱粘着剤Jの溶液を調製した。
(Adjustment of thermal adhesive J)
A solution of the heat-sensitive pressure-sensitive adhesive J was prepared in the same manner as the heat-sensitive pressure-sensitive adhesive H except that the pressure-sensitive adhesive resin was changed to a hydrogenated rosin ester resin (Arakawa Chemical Industry Co., Ltd., ester gum H, hydroxyl value 29 mgKOH / g).
(実施例1~13)
(1)感圧粘着テープの製造
得られた粘着剤溶液を厚み75μmの離型処理したPETフィルム上に、乾燥後の粘着剤層1の厚みが表2に示す厚みとなるように塗工した後、110℃で5分間乾燥させて粘着剤層1を形成させた。この粘着剤層1を表2に示す基材に転着させ、40℃で48時間養生し、感圧粘着テープを得た。
なお、同様の方法で10mm×6mm、厚さ1mmの粘着剤層1のみからなる測定サンプルを作製した。得られた測定サンプルについて、動的粘弾性測定装置(アイティー計測制御社製、DVA-200)を用いて、動的粘弾性測定のせん断モード、角周波数1Hz、速度5℃/minの条件で-40℃から140℃まで動的粘弾性測定を行い、23℃における貯蔵弾性率を測定した。測定結果を表1に示した。
(Examples 1 to 13)
(1) Production of Pressure Sensitive Adhesive Tape The obtained adhesive solution was applied onto a PET film having a thickness of 75 μm and subjected to a mold release treatment so that the thickness of the adhesive layer 1 after drying would be the thickness shown in Table 2. Then, it was dried at 110 ° C. for 5 minutes to form the pressure-sensitive adhesive layer 1. The pressure-sensitive adhesive layer 1 was transferred to the substrate shown in Table 2 and cured at 40 ° C. for 48 hours to obtain a pressure-sensitive adhesive tape.
In addition, a measurement sample composed of only the pressure-sensitive adhesive layer 1 having a thickness of 10 mm × 6 mm and a thickness of 1 mm was prepared by the same method. The obtained measurement sample was subjected to a dynamic viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.) under the conditions of a shear mode for dynamic viscoelasticity measurement, an angular frequency of 1 Hz, and a speed of 5 ° C./min. Dynamic viscoelasticity was measured from −40 ° C. to 140 ° C., and the storage elastic modulus at 23 ° C. was measured. The measurement results are shown in Table 1.
(2)端部保護された銅張積層板の製造
得られた感圧粘着テープを7mm×80mmに切断し、表2に示す被覆形態となるように感圧粘着テープを銅張積層板(CCL)(Panasonic社製、R1515E、樹脂層厚み40μm、銅箔厚み2μm)の端部に手貼りで貼り付け、端部保護された銅張積層板を得た。
より詳細には、実施例1、3~7、9~13では、図1に示す被覆形態となるように感圧粘着テープを貼り付けた。まず、銅張積層板の一辺の一方の面に、銅張積層板の端部から3.5mmの位置に感圧粘着テープの長辺の端部がくるように感圧粘着テープを置き、2kgローラーを用いて300mm/minの速度で圧着した。その後、貼り付けされていない感圧粘着テープの基材面をステンレス板で押さえながら、銅張積層板のもう一方の面に向かって隙間が生じないように感圧粘着テープを折り曲げ、銅張積層板のもう一方の面に貼り付け、2kgローラーを用いて300mm/minの速度で圧着した。同様の作業を銅張積層板の感圧粘着テープを貼り付けた辺に向かい合っている辺にも実施し、感圧粘着テープを貼り付け、端部保護された銅張積層板を得た。
実施例2では、図6に示す被覆形態となるように感圧粘着テープを貼り付けた。まず、銅張積層板の一辺の一方の面に、銅張積層板の端部から3.5mmの位置に感圧粘着テープの長辺の端部がくるように感圧粘着テープを置き、2kgローラーを用いて300mm/minの速度で圧着した。その後、銅張積層板のもう一方の面にも同様に別の感圧粘着テープを2kgローラーを用いて300mm/minの速度で圧着した。同様の作業を銅張積層板の感圧粘着テープを貼り付けた辺に向かい合っている辺にも実施し、感圧粘着テープを貼り付け、端部保護された銅張積層板を得た。
実施例8では、図2に示す被覆形態となるように感圧粘着テープを貼り付けた。まず、銅張積層板の一辺の一方の面に、銅張積層板の端部から3.3mmの位置に感圧粘着テープの長辺の端部がくるように感圧粘着テープを置き、2kgローラーを用いて300mm/minの速度で圧着した。その後、貼り付けされていない感圧粘着テープの基材面をステンレス板で押さえながら、銅張積層板のもう一方の面に向かって感圧粘着テープを折り曲げ、銅張積層板のもう一方の面に、銅張積層板の端部から3.3mmの位置に貼り付け、2kgローラーを用いて300mm/minの速度で圧着した。同様の作業を銅張積層板の感圧粘着テープを貼り付けた辺に向かい合っている辺にも実施し、感圧粘着テープを貼り付け、端部保護された銅張積層板を得た。
(2) Manufacture of copper-clad laminate with end-protected edges The obtained pressure-sensitive adhesive tape is cut into 7 mm × 80 mm, and the pressure-sensitive adhesive tape is applied to the copper-clad laminate (CCL) so as to have the coating form shown in Table 2. ) (Manufactured by Panasonic, R1515E, resin layer thickness 40 μm, copper foil thickness 2 μm) was manually attached to the end to obtain a copper-clad laminate with the end protected.
More specifically, in Examples 1, 3 to 7, 9 to 13, the pressure-sensitive adhesive tape was attached so as to have the covering form shown in FIG. First, place the pressure-sensitive adhesive tape on one side of one side of the copper-clad laminate so that the end of the long side of the pressure-sensitive adhesive tape comes at a position 3.5 mm from the end of the copper-clad laminate, and 2 kg. The pressure was applied at a speed of 300 mm / min using a roller. After that, while pressing the base material surface of the pressure-sensitive adhesive tape that has not been attached with a stainless steel plate, the pressure-sensitive adhesive tape is bent so that no gap is formed toward the other surface of the copper-clad laminate, and the copper-clad laminate is laminated. It was affixed to the other side of the plate and crimped at a speed of 300 mm / min using a 2 kg roller. The same operation was carried out on the side of the copper-clad laminate facing the side facing the pressure-sensitive adhesive tape, and the pressure-sensitive adhesive tape was attached to obtain a copper-clad laminate with end protection.
In Example 2, the pressure-sensitive adhesive tape was attached so as to have the covering form shown in FIG. First, place the pressure-sensitive adhesive tape on one side of one side of the copper-clad laminate so that the end of the long side of the pressure-sensitive adhesive tape comes at a position 3.5 mm from the end of the copper-clad laminate, and 2 kg. The pressure was applied at a speed of 300 mm / min using a roller. Then, another pressure-sensitive adhesive tape was similarly pressure-bonded to the other surface of the copper-clad laminate at a speed of 300 mm / min using a 2 kg roller. The same operation was carried out on the side of the copper-clad laminate facing the side facing the pressure-sensitive adhesive tape, and the pressure-sensitive adhesive tape was attached to obtain a copper-clad laminate with end protection.
In Example 8, the pressure-sensitive adhesive tape was attached so as to have the covering form shown in FIG. First, place the pressure-sensitive adhesive tape on one side of one side of the copper-clad laminate so that the end of the long side of the pressure-sensitive adhesive tape comes to the position 3.3 mm from the end of the copper-clad laminate, and 2 kg. The pressure was applied at a speed of 300 mm / min using a roller. After that, while pressing the base material surface of the pressure-sensitive adhesive tape that has not been attached with a stainless steel plate, the pressure-sensitive adhesive tape is bent toward the other surface of the copper-clad laminate, and the other surface of the copper-clad laminate is bent. It was attached to a copper-clad laminate at a position 3.3 mm from the end, and crimped at a speed of 300 mm / min using a 2 kg roller. The same operation was carried out on the side of the copper-clad laminate facing the side facing the pressure-sensitive adhesive tape, and the pressure-sensitive adhesive tape was attached to obtain a copper-clad laminate with end protection.
(実施例14)
(1)感熱粘着テープの製造
得られた粘着剤溶液を厚み75μmの離型処理したPETフィルム上に、乾燥後の粘着剤層1の厚みが表2に示す厚みとなるように塗工した後、110℃で5分間乾燥させて粘着剤層1を形成させた。この粘着剤層1を表2に示す基材に100℃条件下で転着させ、40℃で48時間養生し、感熱粘着テープを得た。
なお、同様の方法で10mm×6mm、厚さ1mmの粘着剤層1のみからなる測定サンプルを作製した。得られた測定サンプルについて、動的粘弾性測定装置(アイティー計測制御社製、DVA-200)を用いて、動的粘弾性測定のせん断モード、角周波数1Hz、速度5℃/minの条件で-40℃から140℃まで動的粘弾性測定を行い、23℃及び100℃における貯蔵弾性率を測定した。更に、粘弾性測定装置(アイティー計測制御社製、DVA-200)を用い、低速昇温せん断変形モードの5℃/分、1Hzの条件で、-100℃~200℃の動的粘弾性スペクトルを測定することで損失正接のピーク温度を測定した。測定結果を表1に示した。
(Example 14)
(1) Production of Thermal Adhesive Tape After the obtained adhesive solution is applied onto a PET film having a thickness of 75 μm and subjected to mold release treatment so that the thickness of the adhesive layer 1 after drying becomes the thickness shown in Table 2. , 110 ° C. for 5 minutes to form the pressure-sensitive adhesive layer 1. The pressure-sensitive adhesive layer 1 was transferred to the substrate shown in Table 2 under 100 ° C. conditions and cured at 40 ° C. for 48 hours to obtain a heat-sensitive adhesive tape.
In addition, a measurement sample composed of only the pressure-sensitive adhesive layer 1 having a thickness of 10 mm × 6 mm and a thickness of 1 mm was prepared by the same method. The obtained measurement sample was subjected to a dynamic viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.) under the conditions of a shear mode for dynamic viscoelasticity measurement, an angular frequency of 1 Hz, and a speed of 5 ° C./min. Dynamic viscoelasticity was measured from −40 ° C. to 140 ° C., and the storage elastic modulus at 23 ° C. and 100 ° C. was measured. Furthermore, using a viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.), a dynamic viscoelasticity spectrum of -100 ° C to 200 ° C under the conditions of 5 ° C / min and 1 Hz in the low-speed temperature rise shear deformation mode. The peak temperature of the loss tangent was measured by measuring. The measurement results are shown in Table 1.
(2)端部保護された銅張積層板の製造
実施例1~13と同様にして、端部保護された銅張積層板を得た。ただし、2kgローラーでの感圧粘着テープの圧着の代わりに、100℃条件下、圧力0.3MPaで30秒間、熱圧着することにより感熱粘着テープを貼り付けた。
(2) Manufacturing of Copper-clad Laminated Plate with End-Protected Edge-Protected Copper-clad Laminated Plate was obtained in the same manner as in Examples 1 to 13. However, instead of crimping the pressure-sensitive adhesive tape with a 2 kg roller, the heat-sensitive adhesive tape was attached by thermocompression bonding at a pressure of 0.3 MPa for 30 seconds under 100 ° C. conditions.
(実施例15~19)
(1)感熱粘着テープの製造
得られた粘着剤層1形成用の粘着剤溶液を厚み75μmの離型処理したPETフィルム上に、乾燥後の粘着剤層1の厚みが表2に示す厚みとなるように塗工した後、110℃で5分間乾燥させて粘着剤層1(感圧型粘着剤層)を形成させた。この粘着剤層1を表2に示す基材に転着させ、離型処理したPETフィルムを剥離した。その後、粘着剤層2形成用の粘着剤溶液を厚み75μmの離型処理したPETフィルム上に、乾燥後の粘着剤層2の厚みが表2に示す厚みとなるように塗工した後、110℃で5分間乾燥させて粘着剤層2(感熱型粘着剤層)を形成させた。この粘着剤層2を上記粘着剤層1に100℃条件下で転着させ、40℃で48時間養生し、基材、粘着剤層1(感圧型粘着剤層)、粘着剤層2(感熱型粘着剤層)、離型処理したPETフィルムがこの順に積層された感熱粘着テープを得た。
なお、同様の方法で10mm×6mm、厚さ1mmの粘着剤層2のみからなる測定サンプルを作製した。得られた測定サンプルについて、動的粘弾性測定装置(アイティー計測制御社製、DVA-200)を用いて、動的粘弾性測定のせん断モード、角周波数1Hz、速度5℃/minの条件で-40℃から140℃まで動的粘弾性測定を行い、23℃及び100℃における貯蔵弾性率を測定した。更に粘弾性測定装置(アイティー計測制御社製、DVA-200)を用い、低速昇温せん断変形モードの5℃/分、1Hzの条件で、-100℃~200℃の動的粘弾性スペクトルを測定することで損失正接のピーク温度を測定した。測定結果を表1に示した。
(Examples 15 to 19)
(1) Production of Heat-Sensitive Adhesive Tape The thickness of the pressure-sensitive adhesive layer 1 after drying is the thickness shown in Table 2 on a PET film obtained by mold-releasing the obtained pressure-sensitive adhesive solution for forming the pressure-sensitive adhesive layer 1 with a thickness of 75 μm. After coating so as to be, it was dried at 110 ° C. for 5 minutes to form the pressure-sensitive adhesive layer 1 (pressure-sensitive pressure-sensitive adhesive layer). The pressure-sensitive adhesive layer 1 was transferred to the substrate shown in Table 2 and the release-treated PET film was peeled off. Then, the pressure-sensitive adhesive solution for forming the pressure-sensitive adhesive layer 2 was applied onto a PET film having a thickness of 75 μm and subjected to a mold release treatment so that the thickness of the pressure-sensitive adhesive layer 2 after drying would be the thickness shown in Table 2, and then 110. The adhesive layer 2 (heat-sensitive adhesive layer) was formed by drying at ° C. for 5 minutes. The pressure-sensitive adhesive layer 2 is transferred to the pressure-sensitive adhesive layer 1 under 100 ° C. conditions and cured at 40 ° C. for 48 hours. A heat-sensitive adhesive tape in which the mold adhesive layer) and the release-treated PET film were laminated in this order was obtained.
In addition, a measurement sample composed of only the pressure-sensitive adhesive layer 2 having a thickness of 10 mm × 6 mm and a thickness of 1 mm was prepared by the same method. The obtained measurement sample was subjected to a dynamic viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.) under the conditions of a shear mode for dynamic viscoelasticity measurement, an angular frequency of 1 Hz, and a speed of 5 ° C./min. Dynamic viscoelasticity was measured from −40 ° C. to 140 ° C., and the storage elastic modulus at 23 ° C. and 100 ° C. was measured. Furthermore, using a viscoelasticity measuring device (DVA-200, manufactured by IT Measurement Control Co., Ltd.), a dynamic viscoelasticity spectrum of -100 ° C to 200 ° C can be obtained under the conditions of 5 ° C / min and 1 Hz in the low-speed temperature rise shear deformation mode. By measuring, the peak temperature of the loss tangent was measured. The measurement results are shown in Table 1.
(2)端部保護された銅張積層板の製造
実施例1~13と同様にして、端部保護された銅張積層板を得た。ただし、2kgローラーでの感圧粘着テープの圧着の代わりに、100℃条件下、圧力0.3MPaで30秒間、熱圧着することにより感熱粘着テープを貼り付けた。
(2) Manufacturing of Copper-clad Laminated Plate with End-Protected Edge-Protected Copper-clad Laminated Plate was obtained in the same manner as in Examples 1 to 13. However, instead of crimping the pressure-sensitive adhesive tape with a 2 kg roller, the heat-sensitive adhesive tape was attached by thermocompression bonding at a pressure of 0.3 MPa for 30 seconds under 100 ° C. conditions.
<評価>
実施例で得られた端部保護された銅張積層板について以下の評価を行った。結果を表2に示した。
<Evaluation>
The following evaluation was performed on the copper-clad laminate with end protection obtained in the examples. The results are shown in Table 2.
(1)粘着テープのシワの数の評価
貼り付けた粘着テープを目視で確認し、シワの発生個所の数を数えた。シワがなかった場合を◎、シワが1か所であった場合を○、シワが2~3か所であった場合を△、シワが4か所以上あった場合を×とした。
(1) Evaluation of the number of wrinkles on the adhesive tape The attached adhesive tape was visually confirmed, and the number of wrinkled locations was counted. The case where there was no wrinkle was marked with ⊚, the case where there was one wrinkle was marked with ◯, the case where there were two or three wrinkles was marked with Δ, and the case where there were four or more wrinkles was marked with ×.
(2)無電解メッキ工程
端部保護された銅張積層板に対して、表3に示す条件で無電解メッキを行った。端部保護された銅張積層板の外観を顕微鏡(キーエンス社製、VHX-5000)を用いて50倍の倍率で観察し、メッキ析出の有無を確認した。良好にメッキが析出していた場合を〇とした。
また、粘着テープの基材表面に析出したメッキ部分に市販のセロハンテープを貼り付け、剥がす試験を行うことにより、メッキ剥離の有無を確認した。セロハンテープにメッキが転写しなかった場合を〇、メッキが一部転写した場合を△とした。
(2) Electroless plating process Electroless plating was performed on the copper-clad laminate with the end protected under the conditions shown in Table 3. The appearance of the copper-clad laminate with end-protected copper-clad laminates was observed at a magnification of 50 times using a microscope (VHX-5000, manufactured by KEYENCE CORPORATION) to confirm the presence or absence of plating precipitation. The case where the plating was well deposited was evaluated as 〇.
In addition, the presence or absence of plating peeling was confirmed by attaching a commercially available cellophane tape to the plated portion deposited on the surface of the base material of the adhesive tape and conducting a peeling test. The case where the plating was not transferred to the cellophane tape was evaluated as ◯, and the case where the plating was partially transferred was evaluated as Δ.
(3)デスミア工程
端部保護された銅張積層板に対して、表4に示す条件でデスミア処理を行った後、端部保護された銅張積層板からデスミア処理液を除去して、30分間室温で放置した。30分間室温で放置した後、粘着テープの外観を顕微鏡(キーエンス社製、VHX-5000)を用いて20倍の倍率で観察し、粘着テープの剥離有無を確認した。剥離がみられなかった場合を〇とした。
その後、銅張積層板から粘着テープを剥離し、銅張積層板の粘着テープを貼り付けていた部分の銅の変色を確認して保護性(湿潤の有無)を評価した。銅の変色がみられなかった場合を◎、銅の変色が粘着テープを貼り付けていた部分の端部から2mm以下にみられた場合を〇、それ以上に銅の変色がみられた場合を×とした。
(3) Desmear process The copper-clad laminate with end-protected copper-clad laminates is subjected to desmear treatment under the conditions shown in Table 4, and then the desmear-treated liquid is removed from the end-protected copper-clad laminate to remove 30. It was left at room temperature for a minute. After leaving it at room temperature for 30 minutes, the appearance of the adhesive tape was observed with a microscope (manufactured by KEYENCE, VHX-5000) at a magnification of 20 times to confirm the presence or absence of peeling of the adhesive tape. The case where no peeling was observed was evaluated as 〇.
Then, the adhesive tape was peeled off from the copper-clad laminate, and the discoloration of the copper in the portion where the adhesive tape of the copper-clad laminate was attached was confirmed to evaluate the protective property (presence or absence of wetting). ◎ when no discoloration of copper was observed, 〇 when discoloration of copper was observed within 2 mm from the end of the part where the adhesive tape was attached, and 〇 when discoloration of copper was observed more than that. It was marked as x.
(4)銅張積層板の端部保護性
端部保護された銅張積層板に対して、上記デスミア工程と上記無電解メッキ工程とをこの順に行った後、銅張積層板から粘着テープを剥離した。銅張積層板の端部を顕微鏡(キーエンス社製、VHX-5000)を用いて50倍の倍率で観察し、欠損がなかった場合を〇、欠損が発生していた場合を×とした。なお、保護材で覆われていない銅張積層板を比較対象(比較例1)とした。
(4) Edge protection of the copper-clad laminate The desmear step and the electroless plating step are performed in this order on the copper-clad laminate whose end is protected, and then the adhesive tape is applied from the copper-clad laminate. It peeled off. The end of the copper-clad laminate was observed with a microscope (manufactured by KEYENCE, VHX-5000) at a magnification of 50 times, and the case where there was no defect was evaluated as ◯, and the case where the defect occurred was evaluated as ×. A copper-clad laminate not covered with a protective material was used as a comparison target (Comparative Example 1).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
本発明によれば、金属張積層板の端部の破損を抑制でき、強アルカリ性溶液に晒された場合にも該溶液の端部への浸入を抑制できる端部保護された金属張積層板を提供することができる。また、本発明によれば、プリント配線基板の製造方法、及び、プリント配線基板用中間体の製造方法を提供することができる。 According to the present invention, an end-protected metal-clad laminate capable of suppressing damage to the end of the metal-clad laminate and suppressing infiltration of the solution into the end even when exposed to a strong alkaline solution can be provided. Can be provided. Further, according to the present invention, it is possible to provide a method for manufacturing a printed wiring board and a method for manufacturing an intermediate for a printed wiring board.
1  端部保護された金属張積層板
2  金属張積層板
30,30’,30’’  粘着テープ
31,31’,31’’  基材
32,32’,32’’  粘着剤層
3a  粘着剤層同士の界面

 
1 Metal-clad laminate with end protection 2 Metal-clad laminate 30, 30', 30'' Adhesive tape 31, 31', 31'' Base material 32, 32', 32'' Adhesive layer 3a Adhesive layer Interface between each other

Claims (23)

  1. 金属張積層板の端部が保護材で覆われていることを特徴とする端部保護された金属張積層板。 An edge-protected metal-clad laminate, characterized in that the edges of the metal-clad laminate are covered with a protective material.
  2. 前記保護材は、基材と、前記基材の一方の面に積層された粘着剤層とを有する粘着テープであり、前記基材は、金属基材であることを特徴とする請求項1記載の端部保護された金属張積層板。 The first aspect of the present invention, wherein the protective material is an adhesive tape having a base material and an adhesive layer laminated on one surface of the base material, and the base material is a metal base material. Metal-clad laminate with protected edges.
  3. 前記金属基材が最表面に露出していることを特徴とする請求項2記載の端部保護された金属張積層板。 The metal-clad laminate with end protection according to claim 2, wherein the metal base material is exposed on the outermost surface.
  4. 前記保護材は、基材と、前記基材の一方の面に積層された粘着剤層とを有する粘着テープであり、前記基材は、樹脂基材であることを特徴とする請求項1記載の端部保護された金属張積層板。 The first aspect of the present invention, wherein the protective material is an adhesive tape having a base material and an adhesive layer laminated on one surface of the base material, and the base material is a resin base material. Edge-protected metal-clad laminate.
  5. 前記樹脂基材は、表面粗さRaが10nm以上、500nm以下であることを特徴とする請求項4記載の端部保護された金属張積層板。 The metal-clad laminate with end protection according to claim 4, wherein the resin base material has a surface roughness Ra of 10 nm or more and 500 nm or less.
  6. 前記金属張積層板の端部が、一辺につき2つ以上の前記保護材で覆われていることを特徴とする請求項1、2、3、4又は5記載の端部保護された金属張積層板。 The end-protected metal-clad laminate according to claim 1, 2, 3, 4 or 5, wherein the end portion of the metal-clad laminate is covered with two or more of the protective materials per side. Board.
  7. 前記金属張積層板の端部が、一辺につき1つの前記保護材で覆われていることを特徴とする請求項1、2、3、4又は5記載の端部保護された金属張積層板。 The metal-clad laminate according to claim 1, 2, 3, 4 or 5, wherein the end portion of the metal-clad laminate is covered with one protective material per side.
  8. 前記金属張積層板の端部が、前記金属張積層板の表面から裏面にまでまたがるように前記保護材で覆われていることを特徴とする請求項1、2、3、4、5、6又は7記載の端部保護された金属張積層板。 Claims 1, 2, 3, 4, 5, 6 are characterized in that the end portion of the metal-clad laminate is covered with the protective material so as to extend from the front surface to the back surface of the metal-clad laminate. Or the metal-clad laminate with end protection according to 7.
  9. 更に、前記金属張積層板の表面及び裏面からなる群より選択される1以上の面の全体が前記保護材で覆われていることを特徴とする請求項1、2、3、4、5、6、7又は8記載の端部保護された金属張積層板。 Further, claims 1, 2, 3, 4, 5, characterized in that the entire surface of one or more selected from the group consisting of the front surface and the back surface of the metal-clad laminate is covered with the protective material. 6, 7 or 8 end-protected metal-clad laminate.
  10. 前記金属張積層板は、厚みが100μm以下であることを特徴とする請求項1、2、3、4、5、6、7、8又は9記載の端部保護された金属張積層板。 The metal-clad laminate according to claim 1, 2, 3, 4, 5, 6, 7, 8 or 9, wherein the metal-clad laminate has a thickness of 100 μm or less.
  11. 前記粘着テープの粘着剤層の厚みが、前記金属張積層板の厚みの1/2よりも厚いことを特徴とする請求項2、3、4又は5記載の端部保護された金属張積層板。 The end-protected metal-clad laminate according to claim 2, 3, 4 or 5, wherein the thickness of the adhesive layer of the adhesive tape is thicker than ½ of the thickness of the metal-clad laminate. ..
  12. 前記粘着テープの粘着剤層は、アクリル系感圧粘着剤層であり、前記アクリル系感圧粘着剤層は、23℃における貯蔵弾性率が2×10Pa以下であることを特徴とする請求項2、3、4、5又は11記載の端部保護された金属張積層板。 The pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape is an acrylic pressure-sensitive pressure-sensitive adhesive layer, and the acrylic pressure-sensitive pressure-sensitive adhesive layer has a storage elastic modulus of 2 × 105 Pa or less at 23 ° C. Item 2. The end-protected metal-clad laminate according to Item 2, 3, 4, 5 or 11.
  13. 前記粘着テープの粘着剤層は、ゴム系粘着剤層であり、ゴム系ポリマー及び水酸基価が20mgKOH/g以上、140mgKOH/g以下のテルペンフェノール樹脂を含むことを特徴とする請求項2、3、4、5又は11記載の端部保護された金属張積層板。 2. 4, 5 or 11 The end-protected metal-clad laminate.
  14. 前記粘着テープの粘着剤層は、アクリル系感熱粘着剤層であることを特徴とする請求項2、3、4、5又は11記載の端部保護された金属張積層板。 The metal-clad laminate with end protection according to claim 2, 3, 4, 5 or 11, wherein the pressure-sensitive adhesive layer of the pressure-sensitive adhesive tape is an acrylic heat-sensitive pressure-sensitive adhesive layer.
  15. 前記アクリル系感熱粘着剤層は、動的粘弾性測定装置を用いて測定周波数1Hzで測定した損失正接のピーク温度が40℃以上であることを特徴とする請求項14記載の端部保護された金属張積層板。 The end of the acrylic heat-sensitive adhesive layer is protected at the end according to claim 14, wherein the peak temperature of the loss tangent measured at a measurement frequency of 1 Hz using a dynamic viscoelasticity measuring device is 40 ° C. or higher. Metal-clad laminate.
  16. 前記アクリル系感熱粘着剤層は、23℃における貯蔵弾性率が5×10Pa以上であり、100℃における貯蔵弾性率が2×10Pa以下であることを特徴とする請求項14又は15記載の端部保護された金属張積層板。 The acrylic heat-sensitive pressure-sensitive adhesive layer has a storage elastic modulus of 5 × 10 6 Pa or more at 23 ° C. and a storage elastic modulus of 2 × 10 5 Pa or less at 100 ° C. The described end-protected metal-clad laminate.
  17. 前記粘着テープは、前記基材と前記アクリル系感熱粘着剤層との間に更に感圧型粘着剤層を有することを特徴とする請求項14、15又は16記載の端部保護された金属張積層板。 The end-protected metal-clad laminate according to claim 14, 15 or 16, wherein the adhesive tape further has a pressure-sensitive adhesive layer between the base material and the acrylic heat-sensitive adhesive layer. Board.
  18. 前記粘着テープは、基材の表面に更に金属メッキ層を有することを特徴とする請求項2、3、4、5、11、12、13、14、15、16又は17記載の端部保護された金属張積層板。 The end protection according to claim 2, 3, 4, 5, 11, 12, 13, 14, 15, 16 or 17, wherein the adhesive tape further has a metal plating layer on the surface of the base material. Metal-clad laminate.
  19. 金属張積層板を用いてプリント配線基板を製造する方法であって、
    金属張積層板の端部を保護材で覆い、請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17又は18記載の端部保護された金属張積層板を得る保護工程を有することを特徴とするプリント配線基板の製造方法。
    It is a method of manufacturing a printed wiring board using a metal-clad laminate.
    The end of the metal-clad laminate is covered with a protective material, and claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 A method for manufacturing a printed wiring board, which comprises a protection step for obtaining the described end-protected metal-clad laminate.
  20. 更に、前記端部保護された金属張積層板に対して金属メッキ処理を施し、前記金属張積層板及び前記保護材の表面に金属を析出させる金属メッキ工程を有することを特徴とする請求項19記載のプリント配線基板の製造方法。 Further, claim 19. The method for manufacturing a printed wiring board according to the description.
  21. 更に、前記端部保護された金属張積層板に対してエッチング処理又はデスミア処理を行う回路形成工程を有することを特徴とする請求項19又は20記載のプリント配線基板の製造方法。 The method for manufacturing a printed wiring board according to claim 19 or 20, further comprising a circuit forming step of performing an etching treatment or a desmear treatment on the metal-clad laminate whose end is protected.
  22. 更に、前記端部保護された金属張積層板における前記保護材で覆われた領域を分離するトリミング工程を有することを特徴とする請求項19、20又は21記載のプリント配線基板の製造方法。 The method for manufacturing a printed wiring board according to claim 19, 20, or 21, further comprising a trimming step for separating a region covered with the protective material in the end-protected metal-clad laminate.
  23. プリント配線基板に用いる中間体を製造する方法であって、
    金属張積層板の端部を保護材で覆い、請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17又は18記載の端部保護された金属張積層板を得る保護工程を有することを特徴とするプリント配線基板用中間体の製造方法。

     
    A method for manufacturing intermediates used for printed wiring boards.
    The end of the metal-clad laminate is covered with a protective material, and claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 A method for manufacturing an intermediate for a printed wiring board, which comprises a protection step for obtaining the described end-protected metal-clad laminate.

PCT/JP2021/032338 2020-09-03 2021-09-02 Metal-clad laminate having protected edge, method for producing printed wiring board, and method for producing intermediate for printed wiring boards WO2022050360A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180044112.5A CN115868254A (en) 2020-09-03 2021-09-02 Metal-clad laminate protected at end portion, method for manufacturing printed wiring board, and method for manufacturing intermediate for printed wiring board
JP2021568399A JPWO2022050360A1 (en) 2020-09-03 2021-09-02
KR1020227032796A KR20230058589A (en) 2020-09-03 2021-09-02 End-protected metal-clad laminate, method for manufacturing printed wiring boards, and method for manufacturing intermediates for printed wiring boards

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-148505 2020-09-03
JP2020148505 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022050360A1 true WO2022050360A1 (en) 2022-03-10

Family

ID=80492226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032338 WO2022050360A1 (en) 2020-09-03 2021-09-02 Metal-clad laminate having protected edge, method for producing printed wiring board, and method for producing intermediate for printed wiring boards

Country Status (5)

Country Link
JP (1) JPWO2022050360A1 (en)
KR (1) KR20230058589A (en)
CN (1) CN115868254A (en)
TW (1) TW202214799A (en)
WO (1) WO2022050360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136171A1 (en) * 2022-01-13 2023-07-20 積水化学工業株式会社 Single-sided adhesive tape

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283832A (en) * 1992-03-30 1993-10-29 Hitachi Chem Co Ltd Edge-protected metal-base circuit board and manufacture thereof
JPH11154788A (en) * 1997-11-20 1999-06-08 Nec Toyama Ltd Manufacture of multi-layered printed-wiring board
JP2000234081A (en) * 1998-12-14 2000-08-29 Toyo Ink Mfg Co Ltd Adhesive sheet and manufacturing method therefor and use of adhesive sheet
JP2005197443A (en) * 2004-01-07 2005-07-21 Hitachi Chem Co Ltd Method of manufacturing printed wiring board
WO2006038547A1 (en) * 2004-10-01 2006-04-13 Toyo Ink Manufacturing Co., Ltd. Pressure-sensitive adhesive having its adherence lost by actinic energy radiation, adhesive sheet having its adherence lost by actinic energy radiation obtained by application of the pressure-sensitive adhesive, and process for producing etched metallic material
JP2009239215A (en) * 2008-03-28 2009-10-15 Kyocer Slc Technologies Corp Copper-clad laminate, method of manufacturing wiring board using the same, end face processing method of copper-clad laminate, and end face processing device using the same
JP2009295620A (en) * 2008-06-02 2009-12-17 Hitachi Cable Ltd Metal-coated substrate for printed wiring board, printed wiring board, and method of manufacturing the same
JP2013216853A (en) * 2012-03-16 2013-10-24 Nitto Denko Corp Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
JP2018113283A (en) * 2017-01-06 2018-07-19 大日本印刷株式会社 Interposer and method of manufacturing the same, and semiconductor device comprising interposer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021067A (en) 2013-07-19 2015-02-02 Dic株式会社 Thermally conductive adhesive tape, article and image display device
JP6100654B2 (en) 2013-09-06 2017-03-22 帝人株式会社 Heat-resistant adhesive tape substrate and heat-resistant adhesive tape comprising the same
JP6367598B2 (en) 2013-11-22 2018-08-01 日東電工株式会社 Double-sided adhesive sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283832A (en) * 1992-03-30 1993-10-29 Hitachi Chem Co Ltd Edge-protected metal-base circuit board and manufacture thereof
JPH11154788A (en) * 1997-11-20 1999-06-08 Nec Toyama Ltd Manufacture of multi-layered printed-wiring board
JP2000234081A (en) * 1998-12-14 2000-08-29 Toyo Ink Mfg Co Ltd Adhesive sheet and manufacturing method therefor and use of adhesive sheet
JP2005197443A (en) * 2004-01-07 2005-07-21 Hitachi Chem Co Ltd Method of manufacturing printed wiring board
WO2006038547A1 (en) * 2004-10-01 2006-04-13 Toyo Ink Manufacturing Co., Ltd. Pressure-sensitive adhesive having its adherence lost by actinic energy radiation, adhesive sheet having its adherence lost by actinic energy radiation obtained by application of the pressure-sensitive adhesive, and process for producing etched metallic material
JP2009239215A (en) * 2008-03-28 2009-10-15 Kyocer Slc Technologies Corp Copper-clad laminate, method of manufacturing wiring board using the same, end face processing method of copper-clad laminate, and end face processing device using the same
JP2009295620A (en) * 2008-06-02 2009-12-17 Hitachi Cable Ltd Metal-coated substrate for printed wiring board, printed wiring board, and method of manufacturing the same
JP2013216853A (en) * 2012-03-16 2013-10-24 Nitto Denko Corp Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
JP2018113283A (en) * 2017-01-06 2018-07-19 大日本印刷株式会社 Interposer and method of manufacturing the same, and semiconductor device comprising interposer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136171A1 (en) * 2022-01-13 2023-07-20 積水化学工業株式会社 Single-sided adhesive tape

Also Published As

Publication number Publication date
CN115868254A (en) 2023-03-28
KR20230058589A (en) 2023-05-03
JPWO2022050360A1 (en) 2022-03-10
TW202214799A (en) 2022-04-16

Similar Documents

Publication Publication Date Title
JP5407204B2 (en) Adhesive, double-sided adhesive sheet, optical filter, and display
JP6049464B2 (en) Double-sided adhesive tape
JP2012528919A (en) Stretchable and pressure-sensitive adhesive
JP5382755B1 (en) Surface protection film
JP2007049036A (en) Wiring circuit board
TW201331331A (en) Double-sided pressure-sensitive adhesive sheet
JP6417863B2 (en) Adhesive sheet
JP2009270110A (en) Pressure-sensitive adhesive tape for bonding printing plate and method of producing the same
WO2022050360A1 (en) Metal-clad laminate having protected edge, method for producing printed wiring board, and method for producing intermediate for printed wiring boards
JP2011042777A (en) Adhesive tape
JP5814037B2 (en) Adhesive tape
JP3967842B2 (en) Surface protection film
JP2011213752A (en) Adhesive tape
JP2005239830A (en) Thermosetting pressure-sensitive adhesive composition and thermosetting pressure-sensitive adhesive tape or sheet
JP2011042776A (en) Adhesive tape
JP5537134B2 (en) Label adhesive sheet laminate and method for producing label adhesive sheet laminate
JP5674391B2 (en) Surface protection film
JP3967837B2 (en) Surface protection film
JP2017120427A (en) Surface protective film for prism sheet and prism sheet with surface protective film for prism sheet
WO2013121847A1 (en) Surface protection sheet
JP2021188050A (en) Pressure-sensitive adhesive tape
WO2023136171A1 (en) Single-sided adhesive tape
JP2009040971A (en) Wound body
JP6416666B2 (en) Surface protective film and prism sheet with surface protective film
JP2021188051A (en) Pressure-sensitive adhesive tape

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568399

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864413

Country of ref document: EP

Kind code of ref document: A1