WO2022050170A1 - Compound material, molded body, and cured product of compound material - Google Patents

Compound material, molded body, and cured product of compound material Download PDF

Info

Publication number
WO2022050170A1
WO2022050170A1 PCT/JP2021/031378 JP2021031378W WO2022050170A1 WO 2022050170 A1 WO2022050170 A1 WO 2022050170A1 JP 2021031378 W JP2021031378 W JP 2021031378W WO 2022050170 A1 WO2022050170 A1 WO 2022050170A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
mass
epoxy resin
resin
Prior art date
Application number
PCT/JP2021/031378
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 山口
貴一 稲葉
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to CN202180054244.6A priority Critical patent/CN116134084A/en
Priority to KR1020237009821A priority patent/KR20230061411A/en
Priority to JP2022546280A priority patent/JPWO2022050170A1/ja
Publication of WO2022050170A1 publication Critical patent/WO2022050170A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a compound, a molded product, and a cured product of the compound.
  • the compound containing the metal powder and the resin composition is used as a raw material for various industrial products according to the physical characteristics of the metal powder.
  • the compound is used as a raw material for an inductor, a sealing material, an electromagnetic wave shield (EMI shield), a bond magnet, or the like (see Patent Document 1 below).
  • the compound When an industrial product is manufactured from a compound, the compound is supplied and filled into the mold through a flow path, and parts such as coils are embedded in the compound in the mold.
  • the fluidity of the compound is required in these steps.
  • the fluidity of the compound improves as the content of the metal powder in the compound decreases, but in order to improve the magnetic properties of the compound used for inductors and the like, the content of the metal powder in the compound (filling rate) ) Is desirable.
  • the melt viscosity of the compound increases and the fluidity of the compound decreases.
  • the compound is required to have excellent fluidity during molding and to improve the mechanical properties (for example, high temperature bending properties) of the molded product at high temperature.
  • the present invention has been made in view of the above circumstances, and is a compound capable of forming a molded product having excellent fluidity during molding and excellent mechanical properties at high temperatures, a molded product using the same, and a compound. It is intended to provide a cured product of.
  • the compound according to one aspect of the present invention comprises a metal powder and a resin composition containing an epoxy resin, a curing agent, and a silane coupling agent, wherein the silane coupling agent is an epoxy group, an amino group, or a ureido group.
  • a first silane compound having a functional group selected from an isocyanate group and a second silane compound having a chain hydrocarbon group having 6 or more carbon atoms, and the content of the metal powder is 90% by mass. It is less than 100% by mass.
  • the molded product according to one aspect of the present invention contains the above compound.
  • the cured product according to one aspect of the present invention is a cured product of the above compound.
  • a compound capable of forming a molded product having excellent fluidity during molding and excellent mechanical properties at high temperatures, a molded product using the same, and a cured product of the compound.
  • the compound according to the present embodiment includes a metal powder and a resin composition.
  • the metal powder may contain, for example, at least one selected from the group consisting of elemental metals, alloys, amorphous powders, and metal compounds.
  • the resin composition contains at least an epoxy resin, a curing agent and a coupling agent.
  • the coupling agent includes a first silane compound having a functional group selected from an epoxy group, an amino group, a ureido group, and an isocyanate group, and a second silane compound having a chain hydrocarbon group having 6 or more carbon atoms. including.
  • the metal powder, the epoxy resin, the curing agent, and the coupling agent are mixed.
  • the resin composition may further contain a curing accelerator, a mold release agent, an additive and the like as other components.
  • the resin composition is a component that can include an epoxy resin, a curing agent, a coupling agent, a curing accelerator, a mold release agent, and an additive, and is a component other than an organic solvent and a metal powder, and is a remaining component (nonvolatile component). ) May be.
  • the additive is a component of the rest of the resin composition excluding the resin, the mold release agent, the curing agent, the curing accelerator, and the coupling agent. Additives are, for example, flame retardants, lubricants and the like.
  • the compound may be a powder (compound powder).
  • the compound may include a metal powder and a resin composition attached to the surface of each metal particle constituting the metal powder.
  • the resin composition may cover the entire surface of the particles, or may cover only a part of the surface of the particles.
  • the compound may comprise an uncured resin composition and a metal powder.
  • the compound may include a semi-cured product of the resin composition (for example, a B-stage resin composition) and a metal powder.
  • the compound may comprise both an uncured resin composition and a semi-cured resin composition.
  • the compound may consist of a metal powder and a resin composition.
  • the content of the metal powder in the compound is 90% by mass or more and less than 100% by mass with respect to the total mass of the compound.
  • the content of the metal powder is preferably 92% by mass or more, more preferably 94% by mass or more, further preferably 95% by mass or more, and particularly preferably 96% by mass or more.
  • the upper limit of the content of the metal powder may be 99% by mass or less, 98% by mass or less, or 97.5% by mass or less.
  • the resin composition has a function as a binder of metal particles constituting the metal powder, and imparts mechanical strength to the molded product formed from the compound.
  • the resin composition contained in the compound is filled between the metal particles when the compound is molded at high pressure using a mold, and the particles are bound to each other.
  • the cured product of the resin composition binds the metal particles more firmly to each other, and the mechanical strength of the molded product is improved.
  • the resin composition according to this embodiment contains an epoxy resin as a thermosetting resin, so that the fluidity of the compound can be improved.
  • the epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule.
  • the type of epoxy resin is not particularly limited and can be selected according to the desired properties of the composition and the like.
  • epoxy resin examples include biphenyl type epoxy resin, stillben type epoxy resin, diphenylmethane type epoxy resin, sulfur atom-containing epoxy resin, novolak type epoxy resin, dicyclopentadiene type epoxy resin, salicylaldehyde type epoxy resin, naphthols and phenol.
  • Copolymerization type epoxy resin aralkyl type phenol resin epoxidized product, bisphenol type epoxy resin, epoxy resin containing bisphenol skeleton, alcoholic glycidyl ether type epoxy resin, paraxylylene and / or metaxylylene modified phenol resin glycidyl ether Type epoxy resin, glycidyl ether type epoxy resin of terpene-modified phenol resin, cyclopentadiene type epoxy resin, glycidyl ether type epoxy resin of polycyclic aromatic ring-modified phenol resin, glycidyl ether type epoxy resin of naphthalene ring-containing phenol resin, glycidyl ester type Epoxy resin, glycidyl type or methyl glycidyl type epoxy resin, alicyclic epoxy resin, halogenated phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, hydroquinone type epoxy resin, trimethylolpane type epoxy resin, and ole
  • the epoxy resins include biphenyl type epoxy resin, orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, epoxy resin having a bisphenol skeleton, salicylaldehyde novolak type epoxy resin, and naphthol novolac. It may contain at least one selected from the group consisting of type epoxy resins.
  • the epoxy resin may contain at least one selected from the group consisting of biphenylene aralkyl type epoxy resin and orthocresol novolak type epoxy resin.
  • the epoxy resin may be a crystalline epoxy resin. Although the molecular weight of the crystalline epoxy resin is relatively low, the crystalline epoxy resin has a relatively high melting point and is excellent in fluidity.
  • the crystalline epoxy resin (highly crystalline epoxy resin) may contain, for example, at least one selected from the group consisting of a hydroquinone type epoxy resin, a bisphenol type epoxy resin, a thioether type epoxy resin, and a biphenyl type epoxy resin. ..
  • crystalline epoxy resins include, for example, Epicron 860, Epicron 1050, Epicron 1055, Epicron 2050, Epicron 3050, Epicron 4050, Epicron 7050, Epicron HM-091, Epicron HM-101, Epicron N-730A, Epicron.
  • N-740 Epicron N-770, Epicron N-775, Epicron N-865, Epicron HP-4032D, Epicron HP-7200L, Epicron HP-7200, Epicron HP-7200H, Epicron HP-7200HH, Epicron HP-7200HH, Epicron HP-4700, Epicron HP-4710, Epicron HP-4770, Epicron HP-5000, Epicron HP-6000, N500P-2, and N500P-10 (above, trade name manufactured by DIC Co., Ltd.); NC-3000, NC- 3000-L, NC-3000-H, NC-3100, CER-3000-L, NC-2000-L, XD-1000, NC-7000-L, NC-7300-L, EPPN-501H, EPPN-501HY, EPPN-502H, EOCN-1020, EOCN-102S, EOCN-103S, EOCN-104S, CER-1020, EPPN-201, BREN-S, and BREN-10S (above, trade name manufactured by Nippon Kayaku Co., Ltd.);
  • the resin composition may contain one of the above epoxy resins.
  • the resin composition may contain a plurality of types of epoxy resins among the above.
  • the resin composition may contain an epoxy resin containing a biphenyl skeleton, an orthocresol novolac type epoxy resin, or a polyfunctional epoxy resin containing two or more epoxy groups.
  • the curing agent is classified into a curing agent that cures the epoxy resin in the range of low temperature to room temperature and a heat curing type curing agent that cures the epoxy resin with heating.
  • the curing agent that cures the epoxy resin in the range of low temperature to room temperature is, for example, aliphatic polyamines, polyaminoamides, and polymercaptans.
  • the heat-curing type curing agent is, for example, aromatic polyamine, acid anhydride, phenol novolac resin, dicyandiamide (DICY) and the like.
  • the type of the curing agent is not particularly limited and can be selected according to the desired properties of the composition and the like.
  • the curing agent may be preferably a heat-curing type curing agent, more preferably a phenol resin, and further preferably a phenol novolac resin.
  • a phenol novolac resin as a curing agent, it is easy to obtain a cured product of an epoxy resin having a high glass transition point. As a result, the heat resistance and mechanical strength of the molded product are likely to be improved.
  • the phenol resin is, for example, an aralkyl type phenol resin, a dicyclopentadiene type phenol resin, a salicylaldehyde type phenol resin, a novolak type phenol resin, a copolymerized phenol resin of a benzaldehyde type phenol and an aralkyl type phenol, a paraxylylene and / or a metaxylylene modification.
  • phenol resin From the group consisting of phenol resin, melamine-modified phenol resin, terpen-modified phenol resin, dicyclopentadiene-type naphthol resin, cyclopentadiene-modified phenol resin, polycyclic aromatic ring-modified phenol resin, biphenyl-type phenol resin, and triphenylmethane-type phenol resin. It may contain at least one selected.
  • the phenol resin may be a copolymer composed of two or more of the above.
  • Tamanol 758 manufactured by Arakawa Chemical Industry Co., Ltd., HP-850N manufactured by Hitachi Chemical Co., Ltd., or the like may be used.
  • the phenol novolak resin may be, for example, a resin obtained by condensing or co-condensing phenols and / or naphthols and aldehydes under an acidic catalyst.
  • the phenols constituting the phenol novolak resin may include, for example, at least one selected from the group consisting of phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, and aminophenol.
  • the naphthols constituting the phenol novolak resin may contain, for example, at least one selected from the group consisting of ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene.
  • the aldehydes constituting the phenol novolac resin may contain, for example, at least one selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde.
  • the curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule.
  • the compound having two phenolic hydroxyl groups in one molecule may contain, for example, at least one selected from the group consisting of resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
  • the resin composition may contain one of the above phenolic resins.
  • the resin composition may include a plurality of types of phenol resins among the above.
  • the resin composition may contain one of the above-mentioned curing agents.
  • the resin composition may contain a plurality of types of curing agents among the above.
  • the ratio of the active group (phenolic OH group) in the curing agent that reacts with the epoxy group in the epoxy resin is preferably 0.5 to 1.5 equivalents, more preferably 0.5 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin. May be 0.6 to 1.4 equivalents, more preferably 0.7 to 1.2 equivalents.
  • the ratio of active groups in the curing agent is less than 0.5 equivalent, it is difficult to obtain a sufficient elastic modulus of the obtained cured product.
  • the ratio of the active group in the curing agent exceeds 1.5 equivalents, the mechanical strength of the molded product formed from the compound after curing tends to decrease.
  • the ratio of the active group in the curing agent is out of the above range, the effect according to the present invention can be obtained.
  • the coupling agent can improve the adhesion between the resin composition and the metal element-containing particles constituting the metal powder, and can improve the flexibility and mechanical strength of the molded product formed from the compound.
  • the resin composition according to the present embodiment can improve the fluidity and curing characteristics of the compound.
  • the coupling agent includes a first silane compound having a functional group selected from an epoxy group, an amino group, a ureido group, and an isocyanate group, and a second silane compound having a chain hydrocarbon group having 6 or more carbon atoms. including.
  • a chain hydrocarbon group having 6 or more carbon atoms may be referred to as a long-chain hydrocarbon group.
  • the functional group of the first silane compound can react with the epoxy resin or the curing agent.
  • the first silane compound is a silane compound having no long-chain hydrocarbon group.
  • Examples of the first silane compound having an epoxy group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and 3-glycidoxypropylmethyl. Examples thereof include dimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropyltriethoxysilane.
  • Examples of the first silane compound having an amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2-.
  • Examples of the first silane compound having a ureido group include 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-ureidopropylmethyldimethoxysilane, and 3-ureidopropylmethyldiethoxysilane.
  • Examples of the first silane compound having an isocyanate group include 3-isocyanatepropyltrimethoxysilane, 3-isocyanatepropyltriethoxysilane, 3-isocyanatepropylmethyldimethoxysilane, and 3-isocyanatepropylmethyldiethoxysilane. ..
  • the content of the first silane compound is 0.5 parts by mass or more and 10 parts by mass or less and 1.0 part by mass or more and 8.0 parts by mass with respect to 100 parts by mass of the epoxy resin from the viewpoint of further improving the high temperature bending characteristics. It may be 2 parts or less, or 2.0 parts by mass or more and 7.0 parts by mass or less.
  • the chain hydrocarbon group of the second silane compound has 6 or more carbon atoms, may be 7 or more or 8 or more, and may be 20 or less, 16 or less, or 14 or less.
  • the second silane compound may have a styryl group, a (meth) acryloyl group, or a vinyl group.
  • Examples of the second silane compound include hexyltrimethoxysilane, hexyltriethoxysilane, heptiltrimethoxysilane, heptiltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, and dodecyltriethoxysilane.
  • the content of the second silane compound is 0.1 parts by mass or more and 5.0 parts by mass or less and 0.5 parts by mass or more and 4.0 with respect to 100 parts by mass of the epoxy resin from the viewpoint of further improving the fluidity. It may be 1 part by mass or less, or 1.0 part by mass or more and 3.0 parts by mass or less.
  • the coupling agent may further contain a third silane compound having a mercapto group.
  • the third silane compound is a silane compound having no long-chain hydrocarbon group. Examples of the third silane compound include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropylmethylditoxysilane.
  • the content of the coupling agent is 1.0 part by mass or more and 20 parts by mass or less and 2.0 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the epoxy resin from the viewpoint of achieving both fluidity and mechanical properties. , Or 3.0 parts by mass or more and 10 parts by mass or less.
  • the curing accelerator is not limited as long as it is a composition that reacts with the epoxy resin to accelerate the curing of the epoxy resin, for example.
  • the curing accelerator may be, for example, a phosphorus-based curing accelerator, an imidazole-based curing accelerator, or a urea-based curing accelerator.
  • the curing accelerator By containing the curing accelerator in the resin composition, the moldability and mold releasability of the compound can be improved.
  • the resin composition contains a curing accelerator, the mechanical strength of the molded product (for example, an electronic component) manufactured by using the compound is improved, and the compound is stored in a high temperature and high humidity environment. Stability is improved.
  • Examples of the phosphorus-based curing accelerator include phosphine compounds and phosphonium salt compounds.
  • imidazole-based curing accelerators include, for example, 2MZ-H, C11Z, C17Z, 1,2DMZ, 2E4MZ, 2PZ-PW, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, C11Z-CN, 2E4MZ-CN, 2PZ.
  • -At least one selected from the group consisting of CN, C11Z-CNS, 2P4MHZ, TPZ, and SFZ above, trade name manufactured by Shikoku Chemicals Corporation may be used.
  • the urea-based curing accelerator is not particularly limited as long as it is a curing accelerator having a urea group, but from the viewpoint of improving storage stability, an alkyl urea-based curing accelerator having an alkyl urea group is preferable.
  • the alkylurea-based curing accelerator having an alkylurea group include aromatic alkylurea and aliphatic alkylurea.
  • Examples of commercially available alkylurea-based curing accelerators include U-CAT3512T (trade name, manufactured by San-Apro Co., Ltd., aromatic dimethyl urea) and U-CAT3513N (trade name, manufactured by San-Apro Co., Ltd., aliphatic dimethyl urea). Can be mentioned.
  • aromatic alkylurea is preferable because the cleavage temperature is moderately low and the compound can be easily cured efficiently.
  • the amount of the curing accelerator to be blended is not particularly limited as long as it can obtain the curing promoting effect.
  • the amount of the curing accelerator is preferably 0.1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the epoxy resin. It may be preferably 0.5 parts by mass or more and 15 parts by mass or less, and more preferably 1.0 part by mass or more and 10 parts by mass or less.
  • the blending amount of the curing accelerator is 0.1 part by mass or more, a sufficient curing promoting effect can be easily obtained.
  • the blending amount of the curing accelerator is 30 parts by mass or less, the storage stability of the compound is unlikely to decrease.
  • the content of the curing accelerator is preferably 0.001 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the total mass of the epoxy resin and the phenol resin.
  • the blending amount and content of the curing accelerator are out of the above range, the effect according to the present invention can be obtained.
  • the resin composition may contain a compound having a siloxane bond (siloxane compound) as an additive because the molding shrinkage of the compound is easily reduced and the heat resistance and withstand voltage of the molded product are easily improved.
  • the siloxane bond is a bond containing two silicon atoms (Si) and one oxygen atom (O), and may be represented by —Si—O—Si—.
  • the compound having a siloxane bond may be a polysiloxane compound.
  • the content of the siloxane compound may be 1 part by mass or more and 50 parts by mass or less, 5 parts by mass or more and 45 parts by mass or less, or 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
  • the compound may contain a flame retardant.
  • the flame retardant is selected from the group consisting of, for example, a bromine-based flame retardant, a phosphorus-based flame retardant, a hydrated metal compound-based flame retardant, a silicone-based flame retardant, a nitrogen-containing compound, a hindered amine compound, an organic metal compound, and an aromatic empra. It may be at least one kind.
  • the resin composition may contain one of the above flame retardants, and may contain a plurality of of the above flame retardants.
  • the resin composition may contain wax.
  • the wax enhances the fluidity of the compound in the molding of the compound (for example, transfer molding) and functions as a mold release agent.
  • the wax may be at least one of a fatty acid such as a higher fatty acid and a fatty acid ester.
  • the wax is, for example, fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, lauric acid or esters thereof; zinc stearate, calcium stearate, barium steaenoate, aluminum stearate, magnesium stearate, calcium laurate, laurin.
  • fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, lauric acid or esters thereof; zinc stearate, calcium stearate, barium steaenoate, aluminum stearate, magnesium stearate, calcium laurate, laurin.
  • Fatal acid salts such as zinc acid, zinc linoleate, calcium lysinoate, zinc 2-ethylhexoate; stearic acid amide, oleic acid amide, erucic acid amide, behenic acid amide, palmitate amide, lauric acid amide, hydroxystearic acid amide, Methylene bisstearic acid amide, ethylene bisstearic acid amide, ethylene bislauric acid amide, distealyl adipic acid amide, ethylene bisoleic acid amide, diorail adipic acid amide, N-stearyl stearic acid amide, N-oleyl stearic acid amide, Fatty acid amides such as N-stearyl erucate amide, methylol stearic acid amide, methylol behenic acid amide; fatty acid esters such as butyl stearate; alcohols such as ethylene glycol and stearyl alcohol; polyethylene glyco
  • the wax content is 1 part by mass or more and 20 parts by mass or less, or 2 parts by mass or more and 15 parts by mass or less, or 3 parts by mass with respect to 100 parts by mass of the epoxy resin from the viewpoint of achieving both fluidity and releasability. It may be 10 parts by mass or less.
  • the metal powder may contain, for example, at least one selected from the group consisting of elemental metals, alloys and metal compounds.
  • the metal element-containing powder may consist of, for example, at least one selected from the group consisting of elemental metals, alloys and metal compounds.
  • the alloy may contain at least one selected from the group consisting of solid solutions, eutectic and intermetallic compounds.
  • the alloy may be, for example, stainless steel (Fe—Cr based alloy, Fe—Ni—Cr based alloy, etc.).
  • the metal compound may be, for example, an oxide such as ferrite.
  • the metal powder may contain one kind of metal element or a plurality of kinds of metal elements.
  • the metal element contained in the metal powder may be, for example, a base metal element, a noble metal element, a transition metal element, or a rare earth element.
  • the compound may contain one kind of metal element-containing powder, and may contain a plurality of kinds of metal element-containing powders having different compositions.
  • the metal elements contained in the metal powder are, for example, iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al). , Tin (Sn), Chromium (Cr), Niob (Nb), Barium (Ba), Strontium (Sr), Lead (Pb), Silver (Ag), Placeodim (Pr), Neodim (Nd), Samarium (Sm) , And dysprosium (Dy), which may be at least one selected from the group. From the viewpoint of improving the magnetic properties, the metal powder preferably contains at least one metal element selected from the group consisting of iron, cobalt, and nickel. The metal powder may further contain an element other than the metal element.
  • the metal powder may contain, for example, carbon (C), oxygen ( ⁇ ), beryllium (Be), phosphorus (P), sulfur (S), boron (B), or silicon (Si).
  • the metal powder may be a magnetic powder.
  • the metal powder may be a soft magnetic alloy or a ferromagnetic alloy.
  • the metal powder is, for example, Fe-Si alloy, Fe—Si—Al alloy (Sendust), Fe—Ni alloy (Permalloy), Fe—Cu—Ni alloy (Permalloy), Fe—Co alloy (Permalloy). Menzur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet), Al-Ni-Co alloy (Arnico) It may be a magnetic powder consisting of at least one selected from the group consisting of (magnet) and ferrite.
  • the ferrite may be, for example, spinel ferrite, hexagonal ferrite, or garnet ferrite.
  • the metal powder may be a copper alloy such as a Cu—Sn based alloy, a Cu—Sn—P based alloy, a Cu—Ni based alloy, or a Cu—Be based alloy.
  • the metal powder may contain one of the above elements and compositions, and may contain a plurality of of the above elements and compositions.
  • the metal powder may be Fe alone.
  • the metal powder may be an alloy containing iron (Fe-based alloy).
  • the Fe-based alloy may be, for example, a Fe—Si—Cr based alloy or an Nd—Fe—B based alloy.
  • the metal element-containing powder may be at least one of amorphous iron powder and carbonyl iron powder. When the metal powder contains at least one of Fe simple substance and Fe-based alloy, it is easy to produce a molded product having a high space factor and excellent magnetic properties from the compound.
  • the metal powder may be an Fe amorphous alloy.
  • Fe amorphous alloy powders include, for example, AW2-08, KUAMET-6B2 (above, trade name manufactured by Epson Atmix Co., Ltd.), DAP MS3, DAP MS7, DAP MSA10, DAP PB, DAP PC, DAP MKV49. , DAP 410L, DAP 430L, DAP HYB series (above, product name manufactured by Daido Special Steel Co., Ltd.), MH45D, MH28D, MH25D, and MH20D (above, product name manufactured by Kobe Steel Co., Ltd.). At least one may be used.
  • the metal powder and the resin composition are mixed while being heated.
  • the metal powder and the resin composition may be kneaded with a kneader, a roll, a stirrer, or the like while heating.
  • the resin composition adheres to a part or the whole of the surface of the metal element-containing particles constituting the metal powder to cover the metal element-containing particles, and the epoxy in the resin composition.
  • Part or all of the resin becomes a semi-cured product.
  • a compound may be obtained by further adding wax to the powder obtained by heating and mixing the metal powder and the resin composition.
  • the resin composition and the wax may be mixed in advance.
  • metal powder, epoxy resin, curing agent, curing accelerator, and coupling agent may be kneaded in the tank.
  • the epoxy resin, the curing agent, and the curing accelerator may be charged into the tank to knead the raw materials in the tank.
  • the curing accelerator may be put in the tank, and the raw materials in the tank may be further kneaded.
  • a mixed powder of an epoxy resin, a curing agent, and a curing accelerator (resin mixed powder) is prepared in advance, and then the metal powder and the coupling agent are kneaded to prepare a metal mixed powder, and then the metal.
  • the mixed powder and the above-mentioned resin mixed powder may be kneaded.
  • the kneading time depends on the type of the kneading machine, the volume of the kneading machine, and the production amount of the compound, but for example, it is preferably 1 minute or more, more preferably 2 minutes or more, and 3 minutes or more. Is more preferable.
  • the kneading time is preferably 20 minutes or less, more preferably 15 minutes or less, and even more preferably 10 minutes or less. If the kneading time is less than 1 minute, the kneading is insufficient, the moldability of the compound is impaired, and the degree of curing of the compound varies. When the kneading time exceeds 20 minutes, for example, the resin composition (for example, epoxy resin and phenol resin) is cured in the tank, and the fluidity and moldability of the compound are easily impaired.
  • the resin composition for example, epoxy resin and phenol resin
  • the heating temperature is, for example, a semi-cured epoxy resin (B-stage epoxy resin) and a cured epoxy resin (C-stage epoxy resin). It suffices as long as it is a temperature at which the formation of the epoxy is suppressed.
  • the heating temperature may be lower than the activation temperature of the curing accelerator.
  • the heating temperature is, for example, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 70 ° C. or higher.
  • the heating temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and even more preferably 110 ° C. or lower.
  • the resin composition in the tank softens and easily covers the surface of the metal element-containing particles constituting the metal powder, and a semi-cured epoxy resin is easily produced, and is being kneaded. Complete curing of the epoxy resin is likely to be suppressed.
  • the molded product according to the present embodiment may be provided with the above-mentioned compound.
  • the molded product according to the present embodiment may be provided with a cured product of the above compound.
  • the molded product is at least one selected from the group consisting of an uncured resin composition, a semi-cured resin composition (B-stage resin composition), and a cured resin composition (C-stage resin composition). May include.
  • the molded product according to this embodiment may be used as a sealing material for electronic components or electronic circuit boards. According to this embodiment, it is possible to suppress cracks in the molded body due to the difference in the coefficient of thermal expansion between the metal member included in the electronic component or the electronic circuit board and the molded body (sealing material).
  • the cured product of the compound is a cured product of the metal powder and the resin composition, and the content of the metal powder is 90% by mass or more and less than 100% by mass.
  • the bending strength of the cured product at 250 ° C. is preferably 7.0 MPa or more, more preferably 8.0 MPa or more, and even more preferably 8.5 MPa or more, from the viewpoint of increasing the strength of the cured product.
  • the upper limit of the bending strength is about 10 MPa.
  • the flexural modulus of the cured product at 250 ° C. may be 1.3 GPa or less, 1.2 GPa or less, or 1.1 GPa or less from the viewpoint of imparting flexibility to the cured product.
  • the lower limit of the flexural modulus is about 0.1 GPa.
  • the value obtained by dividing the bending strength (MPa) at 250 ° C. by the flexural modulus (GPa) at 250 ° C. can be used as an index of the reliability of the cured product.
  • the index is preferably 9.0 ⁇ 10 -3 or more, more preferably 9.2 ⁇ 10 -3 or more, and further preferably 10.4 ⁇ 10 -3 or more.
  • the upper limit of the index is not particularly limited, and may be, for example, 5 ⁇ 10-2 or less.
  • the method for producing a molded product according to the present embodiment may include a step of pressurizing the compound in a mold.
  • the method for producing a molded product may include a step of pressurizing a compound covering a part or the whole of the surface of a metal member in a mold.
  • the method for producing a molded product may include only a step of pressurizing the compound in a mold, and may include other steps in addition to the step.
  • the method for producing the molded product may include a first step, a second step, and a third step. Hereinafter, the details of each step will be described.
  • the compound is prepared by the above method.
  • a molded product (B stage molded product) is obtained by pressurizing the compound in a mold.
  • a molded product (B stage molded product) may be obtained by pressurizing a compound covering a part or the entire surface of the metal member in a mold.
  • the resin composition is filled between the individual metal element-containing particles constituting the metal element-containing powder. The resin composition then functions as a binder and binds the metal element-containing particles to each other.
  • transfer molding of the compound may be carried out.
  • the compound may be pressurized at 5 MPa or more and 50 MPa or less.
  • the higher the molding pressure the easier it is to obtain a molded product having excellent mechanical strength.
  • the molding pressure is preferably 8 MPa or more and 20 MPa or less.
  • the density of the molded product formed by transfer molding may be preferably 75% or more and 86% or less, and more preferably 80% or more and 86% or less with respect to the true density of the compound. When the density of the molded product is 75% or more and 86% or less, it is easy to obtain a molded product having excellent mechanical strength.
  • the second step and the third step may be carried out collectively.
  • the molded product is cured by heat treatment to obtain a C-stage molded product.
  • the temperature of the heat treatment may be any temperature as long as the resin composition in the molded product is sufficiently cured.
  • the temperature of the heat treatment may be preferably 100 ° C. or higher and 300 ° C. or lower, and more preferably 110 ° C. or higher and 250 ° C. or lower.
  • the heat treatment temperature exceeds 300 ° C., the metal powder is oxidized or the cured resin product is deteriorated by a small amount of oxygen inevitably contained in the heat treatment atmosphere.
  • the heat treatment temperature holding time is preferably several minutes or more and 10 hours or less, more preferably 3 minutes or more 8 It may be less than an hour.
  • Triphenylmethane type phenol resin (trade name: HE910-09 manufactured by Air Water Inc., hydroxyl group equivalent: 101 g / eq)
  • Biphenylene aralkyl type phenol resin (trade name: MEHC-7841-4S manufactured by Meiwa Kasei Co., Ltd., hydroxyl group equivalent: 166 g / eq)
  • Imidazole-based curing accelerator (trade name: 2P4MHZ-PW manufactured by Shikoku Chemicals Corporation) (Release agent) Zinc laurate (trade name: Powder Base L manufactured by NOF CORPORATION) Partially saponified montanic acid ester wax (trade name: Licowax-OP manufactured by Clariant Chemicals Co., Ltd.) (Additive) Caprolactone-modified dimethyl silicone (trade name: DBL-C32 manufactured by Gelest Co., Ltd.)
  • Amorphous iron powder (trade name: 9A4-II manufactured by Epson Atmix Co., Ltd., average particle size 24 ⁇ m)
  • Amorphous iron powder (trade name: AW2-08, average particle size 5.3 ⁇ m manufactured by Epson Atmix Co., Ltd.)
  • the two types of amorphous iron powder shown in Table 1 were uniformly mixed for 5 minutes with a pressurized twin-screw kneader (manufactured by Nihon Spindle Manufacturing Co., Ltd., capacity 5 L) to prepare a metal powder.
  • the coupling agents and additives shown in Table 1 were added to the metal powder in the twin-screw kneader. Subsequently, the contents of the twin-screw kneader were heated to 90 ° C., and the contents of the twin-screw kneader were mixed for 10 minutes while maintaining the temperature.
  • the above resin mixture was added to the contents of the twin-screw kneader, and the contents were melted and kneaded for 15 minutes while maintaining the temperature of the contents at 120 ° C.
  • the kneaded product was crushed with a hammer until the kneaded product had a predetermined particle size.
  • the above-mentioned "melting” means melting at least a part of the resin composition in the contents of the twin-screw kneader.
  • the metal powder in the compound does not melt during the compound preparation process.
  • the compounds of Examples 1 to 5 were prepared by the above method.
  • Comparative Examples 1 to 3 The compounds of Comparative Examples 1 to 3 were prepared by operating in the same manner as in Examples except that the types and blending amounts of each component were changed as shown in Table 2.
  • the liquidity was evaluated using a flow tester CFT-100 manufactured by Shimadzu Corporation.
  • a tablet was prepared by molding 7 g of the compound.
  • the fluidity was evaluated under the conditions of 130 ° C., residual heat of 20 seconds, and load of 100 kg.
  • the pushing distance (unit: mm) of the plunger until the flow of the compound stopped was used as the flow tester stroke, and the time until the flow of the compound stopped was measured as the flow time, which was used as an index of the liquidity.
  • the gel time of the compound was measured by the following method.
  • the gel time was measured using a curast meter (manufactured by JSR Trading Co., Ltd.) under the conditions of a sample volume of 1.5 mL and 140 ° C.
  • the time at which the torque of the obtained chart started to rise was defined as the gel time. The shorter the gel time, the higher the curability.
  • the compound was transfer-molded under the conditions of a molding die temperature of 140 ° C., a molding pressure of 13.5 MPa, and a curing time of 360 seconds, and then post-cured at 180 ° C. for 2 hours to obtain a test piece.
  • the dimensions of the test piece were 80 mm in length ⁇ 10 mm in width ⁇ 3.0 mm in thickness.
  • the bending strength ⁇ (unit: MPa) was calculated based on the following mathematical formula (A).
  • the flexural modulus E (unit: GPa) was calculated based on the following mathematical formula (B).
  • P is the load (unit: N) when the test piece is broken.
  • Lv is the distance (unit: mm) between the two fulcrums.
  • W is the width (unit: mm) of the test piece.
  • T is the thickness (unit: mm) of the test piece.
  • F / Y is the gradient (unit: N / mm) of the straight line portion of the load-deflection curve.
  • (3 ⁇ P ⁇ Lv) / (2 ⁇ W ⁇ t 2 ) (A)
  • E [Lv 3 / (4 ⁇ W ⁇ t 3 )] ⁇ (F / Y) (B)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A compound material according to one aspect of the present invention comprises a metal powder and a resin composition that contains an epoxy resin, a curing agent and a coupling agent; the coupling agent contains a first silane compound which has a functional group that is selected from among an epoxy group, an amino group, a ureido group and an isocyanate group, and a second silane compound which has a chain hydrocarbon group having 6 or more carbon atoms; and the content of the metal powder is not less than 90% by mass but less than 100% by mass.

Description

コンパウンド、成形体、及びコンパウンドの硬化物Compounds, moldings, and cured products of compounds
 本発明は、コンパウンド、成形体、及びコンパウンドの硬化物に関する。 The present invention relates to a compound, a molded product, and a cured product of the compound.
 金属粉末及び樹脂組成物を含むコンパウンドは、金属粉末の諸物性に応じて、多様な工業製品の原材料として利用される。例えば、コンパウンドは、インダクタ、封止材、電磁波シールド(EMIシールド)、又はボンド磁石等の原材料として利用される(下記特許文献1参照。)。 The compound containing the metal powder and the resin composition is used as a raw material for various industrial products according to the physical characteristics of the metal powder. For example, the compound is used as a raw material for an inductor, a sealing material, an electromagnetic wave shield (EMI shield), a bond magnet, or the like (see Patent Document 1 below).
特開2014-13803号公報Japanese Unexamined Patent Publication No. 2014-13803
 コンパウンドから工業製品が製造される場合、コンパウンドが流路を通じて型内へ供給及び充填されたり、コイル等の部品が型内のコンパウンド中に埋め込まれたりする。これらの工程ではコンパウンドの流動性が要求される。コンパウンドの流動性は、コンパウンド中の金属粉の含有量の減少に伴って向上するが、インダクタ等に用いられるコンパウンドの磁気特性を向上するためには、コンパウンド中の金属粉の含有量(充填率)が高いことが望ましい。しかしながら、コンパウンド中の金属粉の含有量の増加に伴って、コンパウンドの溶融粘度が増加し、コンパウンドの流動性が低下する。また、コンパウンドから作製される成形体を加熱する工程では、クラックが成形体に形成されることがある。そのため、コンパウンドには、成形時の流動性に優れると共に、成形体の高温における機械特性(例えば、高温曲げ特性等)を向上することが求められる。 When an industrial product is manufactured from a compound, the compound is supplied and filled into the mold through a flow path, and parts such as coils are embedded in the compound in the mold. The fluidity of the compound is required in these steps. The fluidity of the compound improves as the content of the metal powder in the compound decreases, but in order to improve the magnetic properties of the compound used for inductors and the like, the content of the metal powder in the compound (filling rate) ) Is desirable. However, as the content of the metal powder in the compound increases, the melt viscosity of the compound increases and the fluidity of the compound decreases. Further, in the step of heating the molded product made from the compound, cracks may be formed in the molded product. Therefore, the compound is required to have excellent fluidity during molding and to improve the mechanical properties (for example, high temperature bending properties) of the molded product at high temperature.
 本発明は、上記事情に鑑みてなされたものであり、成形時の流動性に優れると共に、高温での機械特性に優れる成形体を形成することができるコンパウンド、それを用いた成形体、及びコンパウンドの硬化物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a compound capable of forming a molded product having excellent fluidity during molding and excellent mechanical properties at high temperatures, a molded product using the same, and a compound. It is intended to provide a cured product of.
 本発明の一側面に係るコンパウンドは、金属粉と、エポキシ樹脂、硬化剤、及びシランカップリング剤を含有する樹脂組成物とを備え、上記シランカップリング剤が、エポキシ基、アミノ基、ウレイド基、及びイソシアネート基から選ばれる官能基を有する第1のシラン化合物と、炭素数が6以上の鎖状炭化水素基を有する第2のシラン化合物とを含み、金属粉の含有量が、90質量%以上100質量%未満である。 The compound according to one aspect of the present invention comprises a metal powder and a resin composition containing an epoxy resin, a curing agent, and a silane coupling agent, wherein the silane coupling agent is an epoxy group, an amino group, or a ureido group. , And a first silane compound having a functional group selected from an isocyanate group and a second silane compound having a chain hydrocarbon group having 6 or more carbon atoms, and the content of the metal powder is 90% by mass. It is less than 100% by mass.
 本発明の一側面に係る成形体は、上記のコンパウンドを含む。本発明の一側面に係る硬化物は、上記コンパウンドの硬化物である。 The molded product according to one aspect of the present invention contains the above compound. The cured product according to one aspect of the present invention is a cured product of the above compound.
 本発明によれば、成形時の流動性に優れると共に、高温での機械特性に優れる成形体を形成することができるコンパウンド、それを用いた成形体、及びコンパウンドの硬化物が提供される。 According to the present invention, there is provided a compound capable of forming a molded product having excellent fluidity during molding and excellent mechanical properties at high temperatures, a molded product using the same, and a cured product of the compound.
 以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments.
[コンパウンド]
 本実施形態に係るコンパウンドは、金属粉と、樹脂組成物と、を備える。金属粉は、例えば、金属単体、合金、アモルファス粉、及び金属化合物からなる群より選ばれる少なくとも一種を含有してよい。樹脂組成物は、少なくともエポキシ樹脂、硬化剤及びカップリング剤を含有する。カップリング剤は、エポキシ基、アミノ基、ウレイド基、及びイソシアネート基から選ばれる官能基を有する第1のシラン化合物と、炭素数が6以上の鎖状炭化水素基を有する第2のシラン化合物とを含む。コンパウンドにおいて、金属粉、エポキシ樹脂、硬化剤、及びカップリング剤は混合されている。樹脂組成物は、他の成分として硬化促進剤、離型剤、添加剤等を更に含有してよい。樹脂組成物は、エポキシ樹脂、硬化剤、カップリング剤、硬化促進剤、離型剤、及び添加剤を包含し得る成分であって、有機溶媒と金属粉とを除く残りの成分(不揮発性成分)であってよい。添加剤とは、樹脂組成物のうち、樹脂、離型剤、硬化剤、硬化促進剤、及びカップリング剤を除く残部の成分である。添加剤は、例えば、難燃剤、潤滑剤等である。コンパウンドは、粉末(コンパウンド粉)であってよい。
[compound]
The compound according to the present embodiment includes a metal powder and a resin composition. The metal powder may contain, for example, at least one selected from the group consisting of elemental metals, alloys, amorphous powders, and metal compounds. The resin composition contains at least an epoxy resin, a curing agent and a coupling agent. The coupling agent includes a first silane compound having a functional group selected from an epoxy group, an amino group, a ureido group, and an isocyanate group, and a second silane compound having a chain hydrocarbon group having 6 or more carbon atoms. including. In the compound, the metal powder, the epoxy resin, the curing agent, and the coupling agent are mixed. The resin composition may further contain a curing accelerator, a mold release agent, an additive and the like as other components. The resin composition is a component that can include an epoxy resin, a curing agent, a coupling agent, a curing accelerator, a mold release agent, and an additive, and is a component other than an organic solvent and a metal powder, and is a remaining component (nonvolatile component). ) May be. The additive is a component of the rest of the resin composition excluding the resin, the mold release agent, the curing agent, the curing accelerator, and the coupling agent. Additives are, for example, flame retardants, lubricants and the like. The compound may be a powder (compound powder).
 コンパウンドは、金属粉と、当該金属粉を構成する個々の金属粒子の表面に付着した樹脂組成物と、を備えてよい。樹脂組成物は、当該粒子の表面の全体を覆っていてもよく、当該粒子の表面の一部のみを覆っていてもよい。コンパウンドは、未硬化の樹脂組成物と、金属粉とを備えてよい。コンパウンドは、樹脂組成物の半硬化物(例えばBステージの樹脂組成物)と、金属粉とを備えてもよい。コンパウンドは、未硬化の樹脂組成物、及び樹脂組成物の半硬化物の両方を備えてもよい。コンパウンドは、金属粉と樹脂組成物とからなっていてもよい。 The compound may include a metal powder and a resin composition attached to the surface of each metal particle constituting the metal powder. The resin composition may cover the entire surface of the particles, or may cover only a part of the surface of the particles. The compound may comprise an uncured resin composition and a metal powder. The compound may include a semi-cured product of the resin composition (for example, a B-stage resin composition) and a metal powder. The compound may comprise both an uncured resin composition and a semi-cured resin composition. The compound may consist of a metal powder and a resin composition.
 コンパウンドにおける金属粉の含有量は、コンパウンド全体の質量に対して、90質量%以上100質量%未満である。金属粉の含有量が多くなると、成形体の離型性が担保し難く、作業性に劣る傾向がある。成形体の磁気特性の観点から、金属粉の含有量は、92質量%以上が好ましく、94質量%以上がより好ましく、95質量%以上が更に好ましく、96質量%以上が特に好ましい。金属粉の含有量の上限値は、99質量%以下、98質量%以下、又は97.5質量%以下であってよい。 The content of the metal powder in the compound is 90% by mass or more and less than 100% by mass with respect to the total mass of the compound. When the content of the metal powder is large, it is difficult to ensure the releasability of the molded product, and the workability tends to be inferior. From the viewpoint of the magnetic properties of the molded product, the content of the metal powder is preferably 92% by mass or more, more preferably 94% by mass or more, further preferably 95% by mass or more, and particularly preferably 96% by mass or more. The upper limit of the content of the metal powder may be 99% by mass or less, 98% by mass or less, or 97.5% by mass or less.
(樹脂組成物)
 樹脂組成物は、金属粉を構成する金属粒子の結合材(バインダ)としての機能を有し、コンパウンドから形成される成形体に機械的強度を付与する。例えば、コンパウンドに含まれる樹脂組成物は、金型を用いてコンパウンドが高圧で成形される際に、金属粒子の間に充填され、当該粒子を互いに結着する。成形体中の樹脂組成物を硬化させることにより、樹脂組成物の硬化物が金属粒子同士をより強固に結着して、成形体の機械的強度が向上する。
(Resin composition)
The resin composition has a function as a binder of metal particles constituting the metal powder, and imparts mechanical strength to the molded product formed from the compound. For example, the resin composition contained in the compound is filled between the metal particles when the compound is molded at high pressure using a mold, and the particles are bound to each other. By curing the resin composition in the molded product, the cured product of the resin composition binds the metal particles more firmly to each other, and the mechanical strength of the molded product is improved.
 本実施形態に係る樹脂組成物は、熱硬化性樹脂としてエポキシ樹脂を含有することにより、コンパウンドの流動性を向上することができる。エポキシ樹脂は、例えば、1分子中に2個以上のエポキシ基を有する樹脂であってよい。エポキシ樹脂の種類は特に制限されず、組成物の所望の特性等に応じて選択できる。 The resin composition according to this embodiment contains an epoxy resin as a thermosetting resin, so that the fluidity of the compound can be improved. The epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule. The type of epoxy resin is not particularly limited and can be selected according to the desired properties of the composition and the like.
 エポキシ樹脂として、例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を含有するエポキシ樹脂、アルコール類のグリシジルエーテル型エポキシ樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、テルペン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂、多環芳香環変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、ナフタレン環含有フェノール樹脂のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジル型又はメチルグリシジル型のエポキシ樹脂、脂環型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、並びにオレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂が挙げられる。 Examples of the epoxy resin include biphenyl type epoxy resin, stillben type epoxy resin, diphenylmethane type epoxy resin, sulfur atom-containing epoxy resin, novolak type epoxy resin, dicyclopentadiene type epoxy resin, salicylaldehyde type epoxy resin, naphthols and phenol. Copolymerization type epoxy resin, aralkyl type phenol resin epoxidized product, bisphenol type epoxy resin, epoxy resin containing bisphenol skeleton, alcoholic glycidyl ether type epoxy resin, paraxylylene and / or metaxylylene modified phenol resin glycidyl ether Type epoxy resin, glycidyl ether type epoxy resin of terpene-modified phenol resin, cyclopentadiene type epoxy resin, glycidyl ether type epoxy resin of polycyclic aromatic ring-modified phenol resin, glycidyl ether type epoxy resin of naphthalene ring-containing phenol resin, glycidyl ester type Epoxy resin, glycidyl type or methyl glycidyl type epoxy resin, alicyclic epoxy resin, halogenated phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, hydroquinone type epoxy resin, trimethylolpane type epoxy resin, and olefin bond Examples thereof include a linear aliphatic epoxy resin obtained by oxidizing with a peracid such as peracetic acid.
 流動性の観点において、エポキシ樹脂は、ビフェニル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を有するエポキシ樹脂、サリチルアルデヒドノボラック型エポキシ樹脂、及びナフトールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。 From the viewpoint of fluidity, the epoxy resins include biphenyl type epoxy resin, orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, epoxy resin having a bisphenol skeleton, salicylaldehyde novolak type epoxy resin, and naphthol novolac. It may contain at least one selected from the group consisting of type epoxy resins.
 機械強度の観点において、エポキシ樹脂は、ビフェニレンアラルキル型エポキシ樹脂及びオルソクレゾールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。 From the viewpoint of mechanical strength, the epoxy resin may contain at least one selected from the group consisting of biphenylene aralkyl type epoxy resin and orthocresol novolak type epoxy resin.
 エポキシ樹脂は、結晶性のエポキシ樹脂であってもよい。結晶性のエポキシ樹脂の分子量は比較的低いにもかかわらず、結晶性のエポキシ樹脂は比較的高い融点を有し、且つ流動性に優れる。結晶性のエポキシ樹脂(結晶性の高いエポキシ樹脂)は、例えば、ハイドロキノン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、チオエーテル型エポキシ樹脂、及びビフェニル型エポキシ樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。 The epoxy resin may be a crystalline epoxy resin. Although the molecular weight of the crystalline epoxy resin is relatively low, the crystalline epoxy resin has a relatively high melting point and is excellent in fluidity. The crystalline epoxy resin (highly crystalline epoxy resin) may contain, for example, at least one selected from the group consisting of a hydroquinone type epoxy resin, a bisphenol type epoxy resin, a thioether type epoxy resin, and a biphenyl type epoxy resin. ..
 結晶性のエポキシ樹脂の市販品としては、例えば、エピクロン860、エピクロン1050、エピクロン1055、エピクロン2050、エピクロン3050、エピクロン4050、エピクロン7050、エピクロンHM-091、エピクロンHM-101、エピクロンN-730A、エピクロンN-740、エピクロンN-770、エピクロンN-775、エピクロンN-865、エピクロンHP-4032D、エピクロンHP-7200L、エピクロンHP-7200、エピクロンHP-7200H、エピクロンHP-7200HH、エピクロンHP-7200HHH、エピクロンHP-4700、エピクロンHP-4710、エピクロンHP-4770、エピクロンHP-5000、エピクロンHP-6000、N500P-2、及びN500P-10(以上、DIC株式会社製の商品名);NC-3000、NC-3000-L、NC-3000-H、NC-3100、CER-3000-L、NC-2000-L、XD-1000、NC-7000-L、NC-7300-L、EPPN-501H、EPPN-501HY、EPPN-502H、EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、CER-1020、EPPN-201、BREN-S、及びBREN-10S(以上、日本化薬株式会社製の商品名);YX-4000、YX-4000H、YL4121H、及びYX-8800(以上、三菱ケミカル株式会社製の商品名)が挙げられる。 Commercially available crystalline epoxy resins include, for example, Epicron 860, Epicron 1050, Epicron 1055, Epicron 2050, Epicron 3050, Epicron 4050, Epicron 7050, Epicron HM-091, Epicron HM-101, Epicron N-730A, Epicron. N-740, Epicron N-770, Epicron N-775, Epicron N-865, Epicron HP-4032D, Epicron HP-7200L, Epicron HP-7200, Epicron HP-7200H, Epicron HP-7200HH, Epicron HP-7200HH, Epicron HP-4700, Epicron HP-4710, Epicron HP-4770, Epicron HP-5000, Epicron HP-6000, N500P-2, and N500P-10 (above, trade name manufactured by DIC Co., Ltd.); NC-3000, NC- 3000-L, NC-3000-H, NC-3100, CER-3000-L, NC-2000-L, XD-1000, NC-7000-L, NC-7300-L, EPPN-501H, EPPN-501HY, EPPN-502H, EOCN-1020, EOCN-102S, EOCN-103S, EOCN-104S, CER-1020, EPPN-201, BREN-S, and BREN-10S (above, trade name manufactured by Nippon Kayaku Co., Ltd.); Examples thereof include YX-4000, YX-4000H, YL4121H, and YX-8800 (hereinafter, trade names manufactured by Mitsubishi Chemical Corporation).
 樹脂組成物は、上記のうち一種のエポキシ樹脂を含有してよい。樹脂組成物は、上記のうち複数種のエポキシ樹脂を含有してもよい。樹脂組成物は、上記のエポキシ樹脂の中でも、ビフェニル骨格を含むエポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、又は2個以上のエポキシ基を含む多官能型エポキシ樹脂を含有してよい。 The resin composition may contain one of the above epoxy resins. The resin composition may contain a plurality of types of epoxy resins among the above. Among the above epoxy resins, the resin composition may contain an epoxy resin containing a biphenyl skeleton, an orthocresol novolac type epoxy resin, or a polyfunctional epoxy resin containing two or more epoxy groups.
 硬化剤は、低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤と、加熱に伴ってエポキシ樹脂を硬化させる加熱硬化型の硬化剤と、に分類される。低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤は、例えば、脂肪族ポリアミン、ポリアミノアミド、及びポリメルカプタン等である。加熱硬化型の硬化剤は、例えば、芳香族ポリアミン、酸無水物、フェノールノボラック樹脂、及びジシアンジアミド(DICY)等である。硬化剤の種類は特に制限されず、組成物の所望の特性等に応じて選択できる。 The curing agent is classified into a curing agent that cures the epoxy resin in the range of low temperature to room temperature and a heat curing type curing agent that cures the epoxy resin with heating. The curing agent that cures the epoxy resin in the range of low temperature to room temperature is, for example, aliphatic polyamines, polyaminoamides, and polymercaptans. The heat-curing type curing agent is, for example, aromatic polyamine, acid anhydride, phenol novolac resin, dicyandiamide (DICY) and the like. The type of the curing agent is not particularly limited and can be selected according to the desired properties of the composition and the like.
 低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤を用いた場合、エポキシ樹脂の硬化物のガラス転移点は低く、エポキシ樹脂の硬化物は軟らかい傾向がある。その結果、コンパウンドから形成された成形体も軟らかくなり易い。一方、成形体の耐熱性を向上させる観点から、硬化剤は、好ましくは加熱硬化型の硬化剤、より好ましくはフェノール樹脂、更に好ましくはフェノールノボラック樹脂であってよい。特に硬化剤としてフェノールノボラック樹脂を用いることで、ガラス転移点が高いエポキシ樹脂の硬化物が得られ易い。その結果、成形体の耐熱性及び機械的強度が向上し易い。 When a curing agent that cures the epoxy resin in the range from low temperature to room temperature is used, the glass transition point of the cured product of the epoxy resin is low, and the cured product of the epoxy resin tends to be soft. As a result, the molded product formed from the compound also tends to be soft. On the other hand, from the viewpoint of improving the heat resistance of the molded product, the curing agent may be preferably a heat-curing type curing agent, more preferably a phenol resin, and further preferably a phenol novolac resin. In particular, by using a phenol novolac resin as a curing agent, it is easy to obtain a cured product of an epoxy resin having a high glass transition point. As a result, the heat resistance and mechanical strength of the molded product are likely to be improved.
 フェノール樹脂は、例えば、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ノボラック型フェノール樹脂、ベンズアルデヒド型フェノールとアラルキル型フェノールとの共重合型フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ビフェニル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。フェノール樹脂は、上記のうちの二種以上から構成される共重合体であってもよい。フェノール樹脂の市販品としては、例えば、荒川化学工業株式会社製のタマノル758、又は日立化成株式会社製のHP-850N等を用いてもよい。 The phenol resin is, for example, an aralkyl type phenol resin, a dicyclopentadiene type phenol resin, a salicylaldehyde type phenol resin, a novolak type phenol resin, a copolymerized phenol resin of a benzaldehyde type phenol and an aralkyl type phenol, a paraxylylene and / or a metaxylylene modification. From the group consisting of phenol resin, melamine-modified phenol resin, terpen-modified phenol resin, dicyclopentadiene-type naphthol resin, cyclopentadiene-modified phenol resin, polycyclic aromatic ring-modified phenol resin, biphenyl-type phenol resin, and triphenylmethane-type phenol resin. It may contain at least one selected. The phenol resin may be a copolymer composed of two or more of the above. As a commercially available phenol resin, for example, Tamanol 758 manufactured by Arakawa Chemical Industry Co., Ltd., HP-850N manufactured by Hitachi Chemical Co., Ltd., or the like may be used.
 フェノールノボラック樹脂は、例えば、フェノール類及び/又はナフトール類と、アルデヒド類と、を酸性触媒下で縮合又は共縮合させて得られる樹脂であってよい。フェノールノボラック樹脂を構成するフェノール類は、例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、及びアミノフェノールからなる群より選ばれる少なくとも一種を含んでいてよい。フェノールノボラック樹脂を構成するナフトール類は、例えば、α-ナフトール、β-ナフトール、及びジヒドロキシナフタレンからなる群より選ばれる少なくとも一種を含んでいてよい。フェノールノボラック樹脂を構成するアルデヒド類は、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、及びサリチルアルデヒドからなる群より選ばれる少なくとも一種を含んでいてよい。 The phenol novolak resin may be, for example, a resin obtained by condensing or co-condensing phenols and / or naphthols and aldehydes under an acidic catalyst. The phenols constituting the phenol novolak resin may include, for example, at least one selected from the group consisting of phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, and aminophenol. The naphthols constituting the phenol novolak resin may contain, for example, at least one selected from the group consisting of α-naphthol, β-naphthol, and dihydroxynaphthalene. The aldehydes constituting the phenol novolac resin may contain, for example, at least one selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde, and salicylaldehyde.
 硬化剤は、例えば、1分子中に2個のフェノール性水酸基を有する化合物であってもよい。1分子中に2個のフェノール性水酸基を有する化合物は、例えば、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、及び置換又は非置換のビフェノールからなる群より選ばれる少なくとも一種を含んでいてよい。 The curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule. The compound having two phenolic hydroxyl groups in one molecule may contain, for example, at least one selected from the group consisting of resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
 樹脂組成物は、上記のうち一種のフェノール樹脂を含有してよい。樹脂組成物は、上記のうち複数種のフェノール樹脂を備えてもよい。樹脂組成物は、上記のうち一種の硬化剤を含有してよい。樹脂組成物は、上記のうち複数種の硬化剤を含有してもよい。 The resin composition may contain one of the above phenolic resins. The resin composition may include a plurality of types of phenol resins among the above. The resin composition may contain one of the above-mentioned curing agents. The resin composition may contain a plurality of types of curing agents among the above.
 エポキシ樹脂中のエポキシ基と反応する硬化剤中の活性基(フェノール性OH基)の比率は、エポキシ樹脂中のエポキシ基1当量に対して、好ましくは0.5~1.5当量、より好ましくは0.6~1.4当量、更に好ましくは0.7~1.2当量であってよい。硬化剤中の活性基の比率が0.5当量未満である場合、得られる硬化物の充分な弾性率が得られ難い。一方、硬化剤中の活性基の比率が1.5当量を超える場合、コンパウンドから形成された成形体の硬化後の機械的強度が低下する傾向がある。ただし、硬化剤中の活性基の比率が上記範囲外である場合であっても、本発明に係る効果は得られる。 The ratio of the active group (phenolic OH group) in the curing agent that reacts with the epoxy group in the epoxy resin is preferably 0.5 to 1.5 equivalents, more preferably 0.5 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin. May be 0.6 to 1.4 equivalents, more preferably 0.7 to 1.2 equivalents. When the ratio of active groups in the curing agent is less than 0.5 equivalent, it is difficult to obtain a sufficient elastic modulus of the obtained cured product. On the other hand, when the ratio of the active group in the curing agent exceeds 1.5 equivalents, the mechanical strength of the molded product formed from the compound after curing tends to decrease. However, even when the ratio of the active group in the curing agent is out of the above range, the effect according to the present invention can be obtained.
 カップリング剤は、樹脂組成物と、金属粉を構成する金属元素含有粒子との密着性を向上させ、コンパウンドから形成される成形体の可撓性及び機械的強度を向上させることができる。本実施形態に係る樹脂組成物は、カップリング剤として特定のシラン化合物を含有することにより、コンパウンドの流動性及び硬化特性を向上することができる。カップリング剤は、エポキシ基、アミノ基、ウレイド基、及びイソシアネート基から選ばれる官能基を有する第1のシラン化合物と、炭素数が6以上の鎖状炭化水素基を有する第2のシラン化合物とを含む。本明細書において、炭素数が6以上の鎖状炭化水素基を長鎖炭化水素基という場合がある。 The coupling agent can improve the adhesion between the resin composition and the metal element-containing particles constituting the metal powder, and can improve the flexibility and mechanical strength of the molded product formed from the compound. By containing a specific silane compound as a coupling agent, the resin composition according to the present embodiment can improve the fluidity and curing characteristics of the compound. The coupling agent includes a first silane compound having a functional group selected from an epoxy group, an amino group, a ureido group, and an isocyanate group, and a second silane compound having a chain hydrocarbon group having 6 or more carbon atoms. including. In the present specification, a chain hydrocarbon group having 6 or more carbon atoms may be referred to as a long-chain hydrocarbon group.
 樹脂組成物が第1のシラン化合物を含むことで、高温曲げ特性に優れる成形体を形成することができる。第1のシラン化合物が有する官能基は、エポキシ樹脂又は硬化剤と反応することができる。第1のシラン化合物は、長鎖炭化水素基を有しないシラン化合物である。 By containing the first silane compound in the resin composition, it is possible to form a molded product having excellent high temperature bending characteristics. The functional group of the first silane compound can react with the epoxy resin or the curing agent. The first silane compound is a silane compound having no long-chain hydrocarbon group.
 エポキシ基を有する第1のシラン化合物として、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、及び3-グリシドキシプロピルトリエトキシシランが挙げられる。 Examples of the first silane compound having an epoxy group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and 3-glycidoxypropylmethyl. Examples thereof include dimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropyltriethoxysilane.
 アミノ基を有する第1のシラン化合物として、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-フェニル-3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルメチルジエトキシシラン、及びN-フェニル-3-アミノプロピルトリメトキシシランが挙げられる。 Examples of the first silane compound having an amino group include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2-. (Aminoethyl) -3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldiethoxysilane, N- Examples thereof include phenyl-3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropylmethyldiethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane.
 ウレイド基を有する第1のシラン化合物として、例えば、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-ウレイドプロピルメチルジメトキシシラン、及び3-ウレイドプロピルメチルジエトキシシランが挙げられる。 Examples of the first silane compound having a ureido group include 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-ureidopropylmethyldimethoxysilane, and 3-ureidopropylmethyldiethoxysilane.
 イソシアネート基を有する第1のシラン化合物としては、例えば、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジメトキシシラン、及び3-イソシアネートプロピルメチルジエトキシシランが挙げられる。 Examples of the first silane compound having an isocyanate group include 3-isocyanatepropyltrimethoxysilane, 3-isocyanatepropyltriethoxysilane, 3-isocyanatepropylmethyldimethoxysilane, and 3-isocyanatepropylmethyldiethoxysilane. ..
 第1のシラン化合物の含有量は、高温曲げ特性をより向上する観点から、エポキシ樹脂の100質量部に対して0.5質量部以上10質量部以下、1.0質量部以上8.0質量部以下、又は2.0質量部以上7.0質量部以下であってもよい。 The content of the first silane compound is 0.5 parts by mass or more and 10 parts by mass or less and 1.0 part by mass or more and 8.0 parts by mass with respect to 100 parts by mass of the epoxy resin from the viewpoint of further improving the high temperature bending characteristics. It may be 2 parts or less, or 2.0 parts by mass or more and 7.0 parts by mass or less.
 樹脂組成物が第2のシラン化合物を含むことで、コンパウンドの成形時の流動性を向上することができる。第2のシラン化合物が有する鎖状炭化水素基の炭素数は、6以上であり、7以上又は8以上であってもよく、20以下、16以下、又は14以下であってもよい。第2のシラン化合物は、スチリル基、(メタ)アクリロイル基、又はビニル基を有してもよい。 By containing the second silane compound in the resin composition, the fluidity during molding of the compound can be improved. The chain hydrocarbon group of the second silane compound has 6 or more carbon atoms, may be 7 or more or 8 or more, and may be 20 or less, 16 or less, or 14 or less. The second silane compound may have a styryl group, a (meth) acryloyl group, or a vinyl group.
 第2のシラン化合物として、例えば、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、へプチルトリメトキシシラン、へプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、アクリロキシヘキシルトリメトキシシラン、アクリロキシヘキシルトリエトキシシラン、メタクリロキシヘキシルトリメトキシシラン、メタクリロキシヘキシルトリエトキシシラン、アクリロキシへプチルトリメトキシシラン、アクリロキシへプチルトリエトキシシラン、メタクリロキシへプチルトリメトキシシラン、メタクリロキシへプチルトリエトキシシラン、アクリロキシオクチルトリメトキシシラン、アクリロキシオクチルトリエトキシシラン、メタクリロキシオクチルトリメトキシシラン、及びメタクリロキシオクチルトリエトキシシランが挙げられる。 Examples of the second silane compound include hexyltrimethoxysilane, hexyltriethoxysilane, heptiltrimethoxysilane, heptiltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, and dodecyltriethoxysilane. , Acryloxyhexyltrimethoxysilane, acryloxyhexyltriethoxysilane, methacryoxyhexyltrimethoxysilane, methacryoxyhexyltriethoxysilane, acryloxy heptilt remethoxysilane, acryloxy heptilt reethoxysilane, methacryloxyl trimethoxysilane, Examples thereof include methacryloxyheptilt diethoxysilane, acryloxyoctyl trimethoxysilane, acryloxyoctyl triethoxysilane, methacryoxyoctyl trimethoxysilane, and methacryoxyoctyl diethoxysilane.
 第2のシラン化合物の含有量は、流動性をより向上する観点から、エポキシ樹脂の100質量部に対して0.1質量部以上5.0質量部以下、0.5質量部以上4.0質量部以下、又は1.0質量部以上3.0質量部以下であってもよい。 The content of the second silane compound is 0.1 parts by mass or more and 5.0 parts by mass or less and 0.5 parts by mass or more and 4.0 with respect to 100 parts by mass of the epoxy resin from the viewpoint of further improving the fluidity. It may be 1 part by mass or less, or 1.0 part by mass or more and 3.0 parts by mass or less.
 カップリング剤は、メルカプト基を有する第3のシラン化合物を更に含んでもよい。第3のシラン化合物は、長鎖炭化水素基を有しないシラン化合物である。第3のシラン化合物として、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、及び3-メルカプトプロピルメチルジトキシシランが挙げられる。 The coupling agent may further contain a third silane compound having a mercapto group. The third silane compound is a silane compound having no long-chain hydrocarbon group. Examples of the third silane compound include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, and 3-mercaptopropylmethylditoxysilane.
 カップリング剤の含有量は、流動性と機械特性とを両立する観点から、エポキシ樹脂の100質量部に対して1.0質量部以上20質量部以下、2.0質量部以上15質量部以下、又は3.0質量部以上10質量部以下であってもよい。 The content of the coupling agent is 1.0 part by mass or more and 20 parts by mass or less and 2.0 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the epoxy resin from the viewpoint of achieving both fluidity and mechanical properties. , Or 3.0 parts by mass or more and 10 parts by mass or less.
 硬化促進剤は、例えば、エポキシ樹脂と反応してエポキシ樹脂の硬化を促進させる組成物であれば限定されない。硬化促進剤は、例えば、リン系硬化促進剤、イミダゾール系硬化促進剤、又はウレア系硬化促進剤であってよい。樹脂組成物は硬化促進剤を含有することで、コンパウンドの成形性及び離型性を向上することができる。また、樹脂組成物が硬化促進剤を含有することにより、コンパウンドを用いて製造された成形体(例えば、電子部品)の機械的強度が向上したり、高温・高湿な環境下におけるコンパウンドの保存安定性が向上したりする。 The curing accelerator is not limited as long as it is a composition that reacts with the epoxy resin to accelerate the curing of the epoxy resin, for example. The curing accelerator may be, for example, a phosphorus-based curing accelerator, an imidazole-based curing accelerator, or a urea-based curing accelerator. By containing the curing accelerator in the resin composition, the moldability and mold releasability of the compound can be improved. Further, when the resin composition contains a curing accelerator, the mechanical strength of the molded product (for example, an electronic component) manufactured by using the compound is improved, and the compound is stored in a high temperature and high humidity environment. Stability is improved.
 リン系硬化促進剤としては、例えば、ホスフィン化合物及びホスホニウム塩化合物が挙げられる。 Examples of the phosphorus-based curing accelerator include phosphine compounds and phosphonium salt compounds.
 イミダゾール系硬化促進剤の市販品としては、例えば、2MZ-H、C11Z、C17Z、1,2DMZ、2E4MZ、2PZ-PW、2P4MZ、1B2MZ、1B2PZ、2MZ‐CN、C11Z-CN、2E4MZ-CN、2PZ-CN、C11Z-CNS、2P4MHZ、TPZ、及びSFZ(以上、四国化成工業株式会社製の商品名)からなる群より選ばれる少なくとも一種を用いてよい。 Commercially available imidazole-based curing accelerators include, for example, 2MZ-H, C11Z, C17Z, 1,2DMZ, 2E4MZ, 2PZ-PW, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, C11Z-CN, 2E4MZ-CN, 2PZ. -At least one selected from the group consisting of CN, C11Z-CNS, 2P4MHZ, TPZ, and SFZ (above, trade name manufactured by Shikoku Chemicals Corporation) may be used.
 ウレア系硬化促進剤としては、ウレア基を有する硬化促進剤であれば特に限定されないが、保存安定性の向上の観点から、アルキルウレア基を有するアルキルウレア系硬化促進剤であることが好ましい。アルキルウレア基を有するアルキルウレア系硬化促進剤としては、例えば、芳香族アルキルウレア及び脂肪族アルキルウレアが挙げられる。アルキルウレア系硬化促進剤の市販品としては、例えば、U-CAT3512T(商品名、サンアプロ株式会社製、芳香族ジメチルウレア)及びU-CAT3513N(商品名、サンアプロ株式会社製、脂肪族ジメチルウレア)が挙げられる。これらの中でも、開裂温度が適度に低く、コンパウンドを効率的に硬化させ易いことから、芳香族アルキルウレアが好ましい。 The urea-based curing accelerator is not particularly limited as long as it is a curing accelerator having a urea group, but from the viewpoint of improving storage stability, an alkyl urea-based curing accelerator having an alkyl urea group is preferable. Examples of the alkylurea-based curing accelerator having an alkylurea group include aromatic alkylurea and aliphatic alkylurea. Examples of commercially available alkylurea-based curing accelerators include U-CAT3512T (trade name, manufactured by San-Apro Co., Ltd., aromatic dimethyl urea) and U-CAT3513N (trade name, manufactured by San-Apro Co., Ltd., aliphatic dimethyl urea). Can be mentioned. Among these, aromatic alkylurea is preferable because the cleavage temperature is moderately low and the compound can be easily cured efficiently.
 硬化促進剤の配合量は、硬化促進効果が得られる量であればよく、特に限定されない。樹脂組成物の吸湿時の硬化性及び流動性を改善する観点から、硬化促進剤の配合量は、エポキシ樹脂の100質量部に対して、好ましくは0.1質量部以上30質量部以下、より好ましくは0.5質量部以上15質量部以下、更に好ましくは1.0質量部以上10質量部以下であってよい。硬化促進剤の配合量が0.1質量部以上である場合、十分な硬化促進効果が得られ易い。硬化促進剤の配合量が30質量部以下であると、コンパウンドの保存安定性が低下し難い。硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の質量の合計100質量部に対して0.001質量部以上5質量部以下であることが好ましい。ただし、硬化促進剤の配合量及び含有量が上記範囲外である場合であっても、本発明に係る効果は得られる。 The amount of the curing accelerator to be blended is not particularly limited as long as it can obtain the curing promoting effect. From the viewpoint of improving the curability and fluidity of the resin composition during moisture absorption, the amount of the curing accelerator is preferably 0.1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the epoxy resin. It may be preferably 0.5 parts by mass or more and 15 parts by mass or less, and more preferably 1.0 part by mass or more and 10 parts by mass or less. When the blending amount of the curing accelerator is 0.1 part by mass or more, a sufficient curing promoting effect can be easily obtained. When the blending amount of the curing accelerator is 30 parts by mass or less, the storage stability of the compound is unlikely to decrease. The content of the curing accelerator is preferably 0.001 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the total mass of the epoxy resin and the phenol resin. However, even when the blending amount and content of the curing accelerator are out of the above range, the effect according to the present invention can be obtained.
 コンパウンドの成形収縮率が低減され易く、成形体の耐熱性及び耐電圧性が向上し易いことから、樹脂組成物は、添加剤としてシロキサン結合を有する化合物(シロキサン化合物)を含有してもよい。シロキサン結合は、2つのケイ素原子(Si)と1つの酸素原子(O)とを含む結合であり、-Si-O-Si-で表されてよい。シロキサン結合を有する化合物はポリシロキサン化合物であってよい。 The resin composition may contain a compound having a siloxane bond (siloxane compound) as an additive because the molding shrinkage of the compound is easily reduced and the heat resistance and withstand voltage of the molded product are easily improved. The siloxane bond is a bond containing two silicon atoms (Si) and one oxygen atom (O), and may be represented by —Si—O—Si—. The compound having a siloxane bond may be a polysiloxane compound.
 シロキサン化合物の含有量は、エポキシ樹脂の100質量部に対して1質量部以上50質量部以下、5質量部以上45質量部以下、又は10質量部以上40質量部以下であってもよい。 The content of the siloxane compound may be 1 part by mass or more and 50 parts by mass or less, 5 parts by mass or more and 45 parts by mass or less, or 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
 コンパウンドの環境安全性、リサイクル性、成形加工性及び低コストのために、コンパウンドは難燃剤を含んでよい。難燃剤は、例えば、臭素系難燃剤、リン系難燃剤、水和金属化合物系難燃剤、シリコーン系難燃剤、窒素含有化合物、ヒンダードアミン化合物、有機金属化合物、及び芳香族エンプラからなる群より選ばれる少なくとも一種であってよい。樹脂組成物は、上記のうち一種の難燃剤を含有してよく、上記のうち複数種の難燃剤を含有してもよい。 Due to the environmental safety, recyclability, molding processability and low cost of the compound, the compound may contain a flame retardant. The flame retardant is selected from the group consisting of, for example, a bromine-based flame retardant, a phosphorus-based flame retardant, a hydrated metal compound-based flame retardant, a silicone-based flame retardant, a nitrogen-containing compound, a hindered amine compound, an organic metal compound, and an aromatic empra. It may be at least one kind. The resin composition may contain one of the above flame retardants, and may contain a plurality of of the above flame retardants.
 金型を用いてコンパウンドから成形体を形成する場合、樹脂組成物は、ワックスを含有してよい。ワックスは、コンパウンドの成形(例えばトランスファー成形)におけるコンパウンドの流動性を高めると共に、離型剤として機能する。ワックスは、高級脂肪酸等の脂肪酸、及び脂肪酸エステルのうち少なくともいずれか一つであってよい。 When forming a molded product from a compound using a mold, the resin composition may contain wax. The wax enhances the fluidity of the compound in the molding of the compound (for example, transfer molding) and functions as a mold release agent. The wax may be at least one of a fatty acid such as a higher fatty acid and a fatty acid ester.
 ワックスは、例えば、モンタン酸、ステアリン酸、12-オキシステアリン酸、ラウリン酸等の脂肪酸又はこれらのエステル;ステアリン酸亜鉛、ステアリン酸カルシウム、ステアエン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ラウリン酸カルシウム、ラウリン酸亜鉛、リノール酸亜鉛、リシノール酸カルシウム、2-エチルヘキソイン酸亜鉛等の脂肪酸塩;ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミド、ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、ジオレイルアジピン酸アミド、N-ステアリルステアリン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミド等の脂肪酸アミド;ステアリン酸ブチル等の脂肪酸エステル;エチレングリコール、ステアリルアルコール等のアルコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール及びこれらの変性物からなるポリエーテル類;シリコーンオイル、シリコングリース等のポリシロキサン類;フッ素系オイル、フッ素系グリース、含フッ素樹脂粉末等のフッ素化合物;並びに、パラフィンワックス、ポリエチレンワックス、アマイドワックス、ポリプロピレンワックス、エステルワックス、カルナウバ、マイクロワックス等のワックス類;からなる群より選ばれる少なくとも一種であってよい。 The wax is, for example, fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, lauric acid or esters thereof; zinc stearate, calcium stearate, barium steaenoate, aluminum stearate, magnesium stearate, calcium laurate, laurin. Fatal acid salts such as zinc acid, zinc linoleate, calcium lysinoate, zinc 2-ethylhexoate; stearic acid amide, oleic acid amide, erucic acid amide, behenic acid amide, palmitate amide, lauric acid amide, hydroxystearic acid amide, Methylene bisstearic acid amide, ethylene bisstearic acid amide, ethylene bislauric acid amide, distealyl adipic acid amide, ethylene bisoleic acid amide, diorail adipic acid amide, N-stearyl stearic acid amide, N-oleyl stearic acid amide, Fatty acid amides such as N-stearyl erucate amide, methylol stearic acid amide, methylol behenic acid amide; fatty acid esters such as butyl stearate; alcohols such as ethylene glycol and stearyl alcohol; polyethylene glycol, polypropylene glycol, polytetramethylene glycol and Polyethers composed of these modified products; polysiloxanes such as silicone oil and silicon grease; fluorine compounds such as fluorine-based oil, fluorine-based grease and fluorine-containing resin powder; and paraffin wax, polyethylene wax, amido wax and polypropylene. It may be at least one selected from the group consisting of waxes such as wax, ester wax, carnauba, and microwax.
 ワックスの含有量は、流動性と離型性とを両立する観点から、エポキシ樹脂の100質量部に対して1質量部以上20質量部以下、2質量部以上15質量部以下、又は3質量部以上10質量部以下であってもよい。 The wax content is 1 part by mass or more and 20 parts by mass or less, or 2 parts by mass or more and 15 parts by mass or less, or 3 parts by mass with respect to 100 parts by mass of the epoxy resin from the viewpoint of achieving both fluidity and releasability. It may be 10 parts by mass or less.
(金属粉)
 金属粉(金属元素含有粒子)は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種を含有してよい。金属元素含有粉は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種からなっていてよい。合金は、固溶体、共晶及び金属間化合物からなる群より選ばれる少なくとも一種を含んでよい。合金とは、例えば、ステンレス鋼(Fe‐Cr系合金、Fe‐Ni‐Cr系合金等)であってよい。金属化合物とは、例えば、フェライト等の酸化物であってよい。金属粉は、一種の金属元素又は複数種の金属元素を含んでよい。金属粉に含まれる金属元素は、例えば、卑金属元素、貴金属元素、遷移金属元素、又は希土類元素であってよい。コンパウンドは、一種の金属元素含有粉を含んでよく、組成が異なる複数種の金属元素含有粉を含んでもよい。
(Metal powder)
The metal powder (particle containing a metal element) may contain, for example, at least one selected from the group consisting of elemental metals, alloys and metal compounds. The metal element-containing powder may consist of, for example, at least one selected from the group consisting of elemental metals, alloys and metal compounds. The alloy may contain at least one selected from the group consisting of solid solutions, eutectic and intermetallic compounds. The alloy may be, for example, stainless steel (Fe—Cr based alloy, Fe—Ni—Cr based alloy, etc.). The metal compound may be, for example, an oxide such as ferrite. The metal powder may contain one kind of metal element or a plurality of kinds of metal elements. The metal element contained in the metal powder may be, for example, a base metal element, a noble metal element, a transition metal element, or a rare earth element. The compound may contain one kind of metal element-containing powder, and may contain a plurality of kinds of metal element-containing powders having different compositions.
 金属粉に含まれる金属元素は、例えば、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、ニオブ(Nb)、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)、銀(Ag)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、及びジスプロシウム(Dy)からなる群より選ばれる少なくとも一種であってよい。磁気特性を向上する観点から、金属粉は、鉄、コバルト、及びニッケルからなる群より選ばれる少なくとも一種の金属元素を含むことが好ましい。金属粉は、金属元素以外の元素を更に含んでもよい。金属粉は、例えば、炭素(C)、酸素(О)、ベリリウム(Be)、リン(P)、硫黄(S)、ホウ素(B)、又はケイ素(Si)を含んでもよい。 The metal elements contained in the metal powder are, for example, iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al). , Tin (Sn), Chromium (Cr), Niob (Nb), Barium (Ba), Strontium (Sr), Lead (Pb), Silver (Ag), Placeodim (Pr), Neodim (Nd), Samarium (Sm) , And dysprosium (Dy), which may be at least one selected from the group. From the viewpoint of improving the magnetic properties, the metal powder preferably contains at least one metal element selected from the group consisting of iron, cobalt, and nickel. The metal powder may further contain an element other than the metal element. The metal powder may contain, for example, carbon (C), oxygen (О), beryllium (Be), phosphorus (P), sulfur (S), boron (B), or silicon (Si).
 金属粉は、磁性粉であってよい。金属粉は、軟磁性合金又は強磁性合金であってよい。金属粉は、例えば、Fe‐Si系合金、Fe‐Si‐Al系合金(センダスト)、Fe‐Ni系合金(パーマロイ)、Fe‐Cu‐Ni系合金(パーマロイ)、Fe‐Co系合金(パーメンジュール)、Fe‐Cr‐Si系合金(電磁ステンレス鋼)、Nd‐Fe‐B系合金(希土類磁石)、Sm‐Fe‐N系合金(希土類磁石)、Al‐Ni‐Co系合金(アルニコ磁石)、及びフェライトからなる群より選ばれる少なくとも一種からなる磁性粉であってよい。フェライトは、例えば、スピネルフェライト、六方晶フェライト、又はガーネットフェライトであってよい。金属粉は、Cu‐Sn系合金、Cu‐Sn‐P系合金、Cu‐Ni系合金、又はCu‐Be系合金等の銅合金であってもよい。金属粉は、上記の元素及び組成物のうち一種を含んでよく、上記の元素及び組成物のうち複数種を含んでもよい。 The metal powder may be a magnetic powder. The metal powder may be a soft magnetic alloy or a ferromagnetic alloy. The metal powder is, for example, Fe-Si alloy, Fe—Si—Al alloy (Sendust), Fe—Ni alloy (Permalloy), Fe—Cu—Ni alloy (Permalloy), Fe—Co alloy (Permalloy). Menzur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Fe-N alloy (rare earth magnet), Al-Ni-Co alloy (Arnico) It may be a magnetic powder consisting of at least one selected from the group consisting of (magnet) and ferrite. The ferrite may be, for example, spinel ferrite, hexagonal ferrite, or garnet ferrite. The metal powder may be a copper alloy such as a Cu—Sn based alloy, a Cu—Sn—P based alloy, a Cu—Ni based alloy, or a Cu—Be based alloy. The metal powder may contain one of the above elements and compositions, and may contain a plurality of of the above elements and compositions.
 金属粉は、Fe単体であってもよい。金属粉は、鉄を含む合金(Fe系合金)であってもよい。Fe系合金は、例えば、Fe‐Si‐Cr系合金、又はNd‐Fe‐B系合金であってよい。金属元素含有粉は、アモルファス系鉄粉及びカルボニル鉄粉のうちの少なくともいずれかであってもよい。金属粉がFe単体及びFe系合金のうちの少なくともいずれかを含む場合、高い占積率を有し、且つ磁気特性に優れる成形体をコンパウンドから作製し易い。金属粉は、Feアモルファス合金であってもよい。 The metal powder may be Fe alone. The metal powder may be an alloy containing iron (Fe-based alloy). The Fe-based alloy may be, for example, a Fe—Si—Cr based alloy or an Nd—Fe—B based alloy. The metal element-containing powder may be at least one of amorphous iron powder and carbonyl iron powder. When the metal powder contains at least one of Fe simple substance and Fe-based alloy, it is easy to produce a molded product having a high space factor and excellent magnetic properties from the compound. The metal powder may be an Fe amorphous alloy.
 Feアモルファス合金粉の市販品としては、例えば、AW2‐08、KUAMET‐6B2(以上、エプソンアトミックス株式会社製の商品名)、DAP MS3、DAP MS7、DAP MSA10、DAP PB、DAP PC、DAP MKV49、DAP 410L、DAP 430L、DAP HYBシリーズ(以上、大同特殊鋼株式会社製の商品名)、MH45D、MH28D、MH25D、及びMH20D(以上、神戸製鋼株式会社製の商品名)からなる群より選ばれる少なくとも一種が用いられてよい。 Commercially available Fe amorphous alloy powders include, for example, AW2-08, KUAMET-6B2 (above, trade name manufactured by Epson Atmix Co., Ltd.), DAP MS3, DAP MS7, DAP MSA10, DAP PB, DAP PC, DAP MKV49. , DAP 410L, DAP 430L, DAP HYB series (above, product name manufactured by Daido Special Steel Co., Ltd.), MH45D, MH28D, MH25D, and MH20D (above, product name manufactured by Kobe Steel Co., Ltd.). At least one may be used.
<コンパウンドの製造方法>
 コンパウンドの製造では、金属粉と樹脂組成物(樹脂組成物を構成する各成分)とを加熱しながら混合する。例えば、金属粉と樹脂組成物とを加熱しながらニーダー、ロール、攪拌機などで混練してよい。金属粉及び樹脂組成物の加熱及び混合により、樹脂組成物が金属粉を構成する金属元素含有粒子の表面の一部又は全体に付着して金属元素含有粒子を被覆し、樹脂組成物中のエポキシ樹脂の一部又は全部が半硬化物になる。その結果、コンパウンドが得られる。金属粉及び樹脂組成物の加熱及び混合によって得られた粉末に、更にワックスを加えることによって、コンパウンドを得てもよい。予め樹脂組成物とワックスとが混合されていてもよい。
<Manufacturing method of compound>
In the production of the compound, the metal powder and the resin composition (each component constituting the resin composition) are mixed while being heated. For example, the metal powder and the resin composition may be kneaded with a kneader, a roll, a stirrer, or the like while heating. By heating and mixing the metal powder and the resin composition, the resin composition adheres to a part or the whole of the surface of the metal element-containing particles constituting the metal powder to cover the metal element-containing particles, and the epoxy in the resin composition. Part or all of the resin becomes a semi-cured product. The result is a compound. A compound may be obtained by further adding wax to the powder obtained by heating and mixing the metal powder and the resin composition. The resin composition and the wax may be mixed in advance.
 混練では、金属粉、エポキシ樹脂、硬化剤、硬化促進剤、及びカップリング剤を槽内で混練してよい。金属粉及びカップリング剤を槽内に投入して混合した後、エポキシ樹脂、硬化剤、及び硬化促進剤を槽内へ投入して、槽内の原料を混練してもよい。シロキサン化合物、エポキシ樹脂、硬化剤、及びカップリング剤を槽内で混練した後、硬化促進剤を槽内に入れて、更に槽内の原料を混練してもよい。予めエポキシ樹脂、硬化剤、及び硬化促進剤の混合粉(樹脂混合粉)を作製して、続いて、金属粉とカップリング剤とを混練して金属混合粉を作製して、続いて、金属混合粉と上記の樹脂混合粉とを混練してもよい。 In kneading, metal powder, epoxy resin, curing agent, curing accelerator, and coupling agent may be kneaded in the tank. After the metal powder and the coupling agent are charged into the tank and mixed, the epoxy resin, the curing agent, and the curing accelerator may be charged into the tank to knead the raw materials in the tank. After kneading the siloxane compound, the epoxy resin, the curing agent, and the coupling agent in the tank, the curing accelerator may be put in the tank, and the raw materials in the tank may be further kneaded. A mixed powder of an epoxy resin, a curing agent, and a curing accelerator (resin mixed powder) is prepared in advance, and then the metal powder and the coupling agent are kneaded to prepare a metal mixed powder, and then the metal. The mixed powder and the above-mentioned resin mixed powder may be kneaded.
 混練時間は、混練機械の種類、混練機械の容積、コンパウンドの製造量にもよるが、例えば、1分以上であることが好ましく、2分以上であることがより好ましく、3分以上であることが更に好ましい。また、混練時間は、20分以下であることが好ましく、15分以下であることがより好ましく、10分以下であることが更に好ましい。混練時間が1分未満である場合、混練が不十分であり、コンパウンドの成形性が損なわれ、コンパウンドの硬化度にばらつきが生じる。混練時間が20分を超える場合、例えば、槽内で樹脂組成物(例えば、エポキシ樹脂及びフェノール樹脂)の硬化が進み、コンパウンドの流動性及び成形性が損なわれ易い。 The kneading time depends on the type of the kneading machine, the volume of the kneading machine, and the production amount of the compound, but for example, it is preferably 1 minute or more, more preferably 2 minutes or more, and 3 minutes or more. Is more preferable. The kneading time is preferably 20 minutes or less, more preferably 15 minutes or less, and even more preferably 10 minutes or less. If the kneading time is less than 1 minute, the kneading is insufficient, the moldability of the compound is impaired, and the degree of curing of the compound varies. When the kneading time exceeds 20 minutes, for example, the resin composition (for example, epoxy resin and phenol resin) is cured in the tank, and the fluidity and moldability of the compound are easily impaired.
 槽内の原料を加熱しながらニーダーで混練する場合、加熱温度は、例えば、エポキシ樹脂の半硬化物(Bステージのエポキシ樹脂)が生成し、且つエポキシ樹脂の硬化物(Cステージのエポキシ樹脂)の生成が抑制される温度であればよい。加熱温度は、硬化促進剤の活性化温度よりも低い温度であってよい。加熱温度は、例えば、50℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることが更に好ましい。加熱温度は、150℃以下であることが好ましく、120℃以下であることがより好ましく、110℃以下であることが更に好ましい。加熱温度が上記の範囲内である場合、槽内の樹脂組成物が軟化して金属粉を構成する金属元素含有粒子の表面を被覆し易く、エポキシ樹脂の半硬化物が生成し易く、混練中のエポキシ樹脂の完全な硬化が抑制され易い。 When the raw materials in the tank are kneaded with a kneader while heating, the heating temperature is, for example, a semi-cured epoxy resin (B-stage epoxy resin) and a cured epoxy resin (C-stage epoxy resin). It suffices as long as it is a temperature at which the formation of the epoxy is suppressed. The heating temperature may be lower than the activation temperature of the curing accelerator. The heating temperature is, for example, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 70 ° C. or higher. The heating temperature is preferably 150 ° C. or lower, more preferably 120 ° C. or lower, and even more preferably 110 ° C. or lower. When the heating temperature is within the above range, the resin composition in the tank softens and easily covers the surface of the metal element-containing particles constituting the metal powder, and a semi-cured epoxy resin is easily produced, and is being kneaded. Complete curing of the epoxy resin is likely to be suppressed.
[成形体]
 本実施形態に係る成形体は、上記のコンパウンドを備えてよい。本実施形態に係る成形体は、上記のコンパウンドの硬化物を備えてよい。成形体は、未硬化の樹脂組成物、樹脂組成物の半硬化物(Bステージの樹脂組成物)、及び樹脂組成物の硬化物(Cステージの樹脂組成物)からなる群より選ばれる少なくとも一種を含んでいてよい。本実施形態に係る成形体は、電子部品又は電子回路基板用の封止材として用いられてよい。本実施形態によれば、電子部品又は電子回路基板が備える金属部材と、成形体(封止材)との熱膨張率差に起因する成形体のクラックを抑制することができる。
[Molded product]
The molded product according to the present embodiment may be provided with the above-mentioned compound. The molded product according to the present embodiment may be provided with a cured product of the above compound. The molded product is at least one selected from the group consisting of an uncured resin composition, a semi-cured resin composition (B-stage resin composition), and a cured resin composition (C-stage resin composition). May include. The molded product according to this embodiment may be used as a sealing material for electronic components or electronic circuit boards. According to this embodiment, it is possible to suppress cracks in the molded body due to the difference in the coefficient of thermal expansion between the metal member included in the electronic component or the electronic circuit board and the molded body (sealing material).
 コンパウンドの硬化物は、金属粉と樹脂組成物との硬化物であり、金属粉の含有量が90質量%以上100質量%未満である。硬化物の250℃における曲げ強度は、硬化物の強度を高める観点から7.0MPa以上であることが好ましく、8.0MPa以上であることがより好ましく、8.5MPa以上であることが更に好ましい。曲げ強度の上限値は、10MPa程度である。硬化物の250℃における曲げ弾性率は、硬化物に柔軟性を付与する観点から1.3GPa以下、1.2GPa以下、又は1.1GPa以下であってよい。曲げ弾性率の下限値は、0.1GPa程度である。250℃における曲げ強度(MPa)を250℃における曲げ弾性率(GPa)で除した値を硬化物の信頼性の指標とすることができる。当該指標は、9.0×10-3以上であることが好ましく、9.2×10-3以上であることがより好ましく、10.4×10-3以上であることが更に好ましい。当該指標の上限値は特に限定されず、例えば、5×10-2以下であってもよい。 The cured product of the compound is a cured product of the metal powder and the resin composition, and the content of the metal powder is 90% by mass or more and less than 100% by mass. The bending strength of the cured product at 250 ° C. is preferably 7.0 MPa or more, more preferably 8.0 MPa or more, and even more preferably 8.5 MPa or more, from the viewpoint of increasing the strength of the cured product. The upper limit of the bending strength is about 10 MPa. The flexural modulus of the cured product at 250 ° C. may be 1.3 GPa or less, 1.2 GPa or less, or 1.1 GPa or less from the viewpoint of imparting flexibility to the cured product. The lower limit of the flexural modulus is about 0.1 GPa. The value obtained by dividing the bending strength (MPa) at 250 ° C. by the flexural modulus (GPa) at 250 ° C. can be used as an index of the reliability of the cured product. The index is preferably 9.0 × 10 -3 or more, more preferably 9.2 × 10 -3 or more, and further preferably 10.4 × 10 -3 or more. The upper limit of the index is not particularly limited, and may be, for example, 5 × 10-2 or less.
<成形体の製造方法>
 本実施形態に係る成形体の製造方法は、コンパウンドを金型中で加圧する工程を備えてよい。成形体の製造方法は、金属部材の表面の一部又は全体を覆うコンパウンドを金型中で加圧する工程を備えてよい。成形体の製造方法は、コンパウンドを金型中で加圧する工程のみを備えてよく、当該工程に加えてその他の工程を備えてもよい。成形体の製造方法は、第一工程、第二工程及び第三工程を備えてもよい。以下では、各工程の詳細を説明する。
<Manufacturing method of molded product>
The method for producing a molded product according to the present embodiment may include a step of pressurizing the compound in a mold. The method for producing a molded product may include a step of pressurizing a compound covering a part or the whole of the surface of a metal member in a mold. The method for producing a molded product may include only a step of pressurizing the compound in a mold, and may include other steps in addition to the step. The method for producing the molded product may include a first step, a second step, and a third step. Hereinafter, the details of each step will be described.
 第一工程では、上記の方法でコンパウンドを作製する。 In the first step, the compound is prepared by the above method.
 第二工程では、コンパウンドを金型中で加圧することにより、成形体(Bステージの成形体)を得る。第二工程では、金属部材の表面の一部又は全体を覆うコンパウンドを金型中で加圧することにより、成形体(Bステージの成形体)を得てよい。第二工程において、樹脂組成物が、金属元素含有粉を構成する個々の金属元素含有粒子間に充填される。そして樹脂組成物は、結合材(バインダ)として機能し、金属元素含有粒子同士を互いに結着する。 In the second step, a molded product (B stage molded product) is obtained by pressurizing the compound in a mold. In the second step, a molded product (B stage molded product) may be obtained by pressurizing a compound covering a part or the entire surface of the metal member in a mold. In the second step, the resin composition is filled between the individual metal element-containing particles constituting the metal element-containing powder. The resin composition then functions as a binder and binds the metal element-containing particles to each other.
 第二工程として、コンパウンドのトランスファー成形を実施してもよい。トランスファー成形では、コンパウンドを5MPa以上50MPa以下で加圧してよい。成形圧力が高いほど、機械的強度に優れた成形体が得られ易い傾向がある。成形体の量産性及び金型の寿命を考慮した場合、成形圧力は8MPa以上20MPa以下であることが好ましい。トランスファー成形によって形成される成形体の密度は、コンパウンドの真密度に対して、好ましくは75%以上86%以下、より好ましくは80%以上86%以下であってよい。成形体の密度が75%以上86%以下である場合、機械的強度に優れた成形体が得られ易い。トランスファー成形において、第二工程と第三工程とを一括して実施してもよい。 As the second step, transfer molding of the compound may be carried out. In transfer molding, the compound may be pressurized at 5 MPa or more and 50 MPa or less. The higher the molding pressure, the easier it is to obtain a molded product having excellent mechanical strength. Considering the mass productivity of the molded product and the life of the mold, the molding pressure is preferably 8 MPa or more and 20 MPa or less. The density of the molded product formed by transfer molding may be preferably 75% or more and 86% or less, and more preferably 80% or more and 86% or less with respect to the true density of the compound. When the density of the molded product is 75% or more and 86% or less, it is easy to obtain a molded product having excellent mechanical strength. In the transfer molding, the second step and the third step may be carried out collectively.
 第三工程では、成形体を熱処理によって硬化させ、Cステージの成形体を得る。熱処理の温度は、成形体中の樹脂組成物が十分に硬化する温度であればよい。熱処理の温度は、好ましくは100℃以上300℃以下、より好ましくは110℃以上250℃以下であってよい。成形体中の金属粉の酸化を抑制するために、熱処理を不活性雰囲気下で行うことが好ましい。熱処理温度が300℃を超える場合、熱処理の雰囲気に不可避的に含まれる微量の酸素によって金属粉が酸化されたり、樹脂硬化物が劣化したりする。金属粉の酸化、及び樹脂硬化物の劣化を抑制しながら樹脂組成物を十分に硬化させるためには、熱処理温度の保持時間は、好ましくは数分以上10時間以下、より好ましくは3分以上8時間以下であってよい。 In the third step, the molded product is cured by heat treatment to obtain a C-stage molded product. The temperature of the heat treatment may be any temperature as long as the resin composition in the molded product is sufficiently cured. The temperature of the heat treatment may be preferably 100 ° C. or higher and 300 ° C. or lower, and more preferably 110 ° C. or higher and 250 ° C. or lower. In order to suppress the oxidation of the metal powder in the molded product, it is preferable to perform the heat treatment in an inert atmosphere. When the heat treatment temperature exceeds 300 ° C., the metal powder is oxidized or the cured resin product is deteriorated by a small amount of oxygen inevitably contained in the heat treatment atmosphere. In order to sufficiently cure the resin composition while suppressing the oxidation of the metal powder and the deterioration of the cured resin product, the heat treatment temperature holding time is preferably several minutes or more and 10 hours or less, more preferably 3 minutes or more 8 It may be less than an hour.
 以下では実施例及び比較例により本発明を更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.
 実施例及び比較例のコンパウンドの調製に使用した各成分の詳細を以下に示す。 Details of each component used in the preparation of the compounds of Examples and Comparative Examples are shown below.
(エポキシ樹脂)
ビフェニレンアラルキル型エポキシ樹脂(日本化薬株式会社製の商品名:NC-3000、エポキシ当量:275g/eq)
多官能型エポキシ樹脂(株式会社プリンテック製の商品名:TECHMORE VG3101L、エポキシ当量:215g/eq)
(Epoxy resin)
Biphenylene aralkyl type epoxy resin (trade name: NC-3000 manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 275 g / eq)
Polyfunctional epoxy resin (trade name: TECHMORE VG3101L manufactured by Printec Co., Ltd., epoxy equivalent: 215 g / eq)
(硬化剤)
トリフェニルメタン型フェノール樹脂(エア・ウォーター株式会社製の商品名:HE910-09、水酸基当量:101g/eq)
ビフェニレンアラルキル型フェノール樹脂(明和化成株式会社製の商品名:MEHC-7841-4S、水酸基当量:166g/eq)
(Hardener)
Triphenylmethane type phenol resin (trade name: HE910-09 manufactured by Air Water Inc., hydroxyl group equivalent: 101 g / eq)
Biphenylene aralkyl type phenol resin (trade name: MEHC-7841-4S manufactured by Meiwa Kasei Co., Ltd., hydroxyl group equivalent: 166 g / eq)
(カップリング剤)
3-グリシドキシプロピルトリメトキシシラン(信越化学工業株式会社製の商品名:KBM-403)
3-メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製の商品名:KBM-803)
メタクリロキシオクチルトリメトキシシラン(信越化学工業株式会社製の商品名:KBM-5803)
(Coupling agent)
3-glycidoxypropyltrimethoxysilane (trade name: KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.)
3-Mercaptopropyltrimethoxysilane (trade name: KBM-803 manufactured by Shin-Etsu Chemical Co., Ltd.)
Methacryloxyoctyltrimethoxysilane (trade name: KBM-5803 manufactured by Shin-Etsu Chemical Co., Ltd.)
(硬化促進剤)
イミダゾール系硬化促進剤(四国化成工業株式会社製の商品名:2P4MHZ-PW)
(離型剤)
ラウリン酸亜鉛(日油株式会社製の商品名:パウダーベースL)
部分ケン化モンタン酸エステルワックス(クラリアントケミカルズ株式会社製の商品名:Licowax‐OP)
(添加剤)
カプロラクトン変性ジメチルシリコーン(Gelest株式会社製の商品名:DBL‐C32)
(Curing accelerator)
Imidazole-based curing accelerator (trade name: 2P4MHZ-PW manufactured by Shikoku Chemicals Corporation)
(Release agent)
Zinc laurate (trade name: Powder Base L manufactured by NOF CORPORATION)
Partially saponified montanic acid ester wax (trade name: Licowax-OP manufactured by Clariant Chemicals Co., Ltd.)
(Additive)
Caprolactone-modified dimethyl silicone (trade name: DBL-C32 manufactured by Gelest Co., Ltd.)
(金属粉)
アモルファス系鉄粉(エプソンアトミックス株式会社製の商品名:9A4‐II、平均粒径24μm)
アモルファス系鉄粉(エプソンアトミックス株式会社製の商品名:AW2‐08、平均粒径5.3μm)
(Metal powder)
Amorphous iron powder (trade name: 9A4-II manufactured by Epson Atmix Co., Ltd., average particle size 24 μm)
Amorphous iron powder (trade name: AW2-08, average particle size 5.3 μm manufactured by Epson Atmix Co., Ltd.)
[コンパウンドの調製]
(実施例1~5)
 表1に示すエポキシ樹脂、硬化剤、硬化促進剤、及び離型剤を、同表に示す配合量(単位:g)でポリ容器に投入した。これらの材料をポリ容器内で10分間混合することにより、樹脂混合物を調製した。樹脂混合物とは、樹脂組成物のうちカップリング剤及び添加剤を除く他の全成分に相当する。
[Preparation of compound]
(Examples 1 to 5)
The epoxy resin, curing agent, curing accelerator, and mold release agent shown in Table 1 were put into a plastic container in the blending amounts (unit: g) shown in the same table. A resin mixture was prepared by mixing these materials in a plastic container for 10 minutes. The resin mixture corresponds to all the other components of the resin composition except the coupling agent and the additive.
 表1に示す2種類のアモルファス系鉄粉を、加圧式2軸ニーダー(日本スピンドル製造株式会社製、容量5L)で5分間均一に混合して、金属粉を調製した。表1に示すカップリング剤及び添加剤を2軸ニーダー内の金属粉へ添加した。続いて、2軸ニーダーの内容物を90℃になるまで加熱し、その温度を保持しながら、2軸ニーダーの内容物を10分間混合した。続いて、上記の樹脂混合物を2軸ニーダーの内容物へ添加して、内容物の温度を120℃に保持しながら、内容物を15分間溶融・混練した。以上の溶融・混練によって得られた混練物を室温まで冷却した後、混練物が所定の粒度を有するようになるまで混練物をハンマーで粉砕した。なお、上記の「溶融」とは、2軸ニーダーの内容物のうち樹脂組成物の少なくとも一部の溶融を意味する。コンパウンド中の金属粉は、コンパウンドの調製過程において溶融しない。以上の方法により、実施例1~5のコンパウンドを調製した。 The two types of amorphous iron powder shown in Table 1 were uniformly mixed for 5 minutes with a pressurized twin-screw kneader (manufactured by Nihon Spindle Manufacturing Co., Ltd., capacity 5 L) to prepare a metal powder. The coupling agents and additives shown in Table 1 were added to the metal powder in the twin-screw kneader. Subsequently, the contents of the twin-screw kneader were heated to 90 ° C., and the contents of the twin-screw kneader were mixed for 10 minutes while maintaining the temperature. Subsequently, the above resin mixture was added to the contents of the twin-screw kneader, and the contents were melted and kneaded for 15 minutes while maintaining the temperature of the contents at 120 ° C. After cooling the kneaded product obtained by the above melting and kneading to room temperature, the kneaded product was crushed with a hammer until the kneaded product had a predetermined particle size. The above-mentioned "melting" means melting at least a part of the resin composition in the contents of the twin-screw kneader. The metal powder in the compound does not melt during the compound preparation process. The compounds of Examples 1 to 5 were prepared by the above method.
(比較例1~3)
 各成分の種類及び配合量を表2に示すように変更したこと以外は実施例と同様に操作して、比較例1~3のコンパウンドを調製した。
(Comparative Examples 1 to 3)
The compounds of Comparative Examples 1 to 3 were prepared by operating in the same manner as in Examples except that the types and blending amounts of each component were changed as shown in Table 2.
[コンパウンドの評価]
 実施例及び比較例で得られたコンパウンドについて、以下の評価を行った。結果を表1及び2に示す。
[Compound evaluation]
The compounds obtained in Examples and Comparative Examples were evaluated as follows. The results are shown in Tables 1 and 2.
(流動性)
 流動性の評価は、株式会社島津製作所製のフローテスタCFT-100を用いて行った。コンパウンド7gを成形して、タブレットを作製した。タブレットを用いて、130℃、余熱20秒、荷重100kgの条件にて、流動性の評価を実施した。コンパウンドの流動が停止するまでのプランジャーの押し込み距離(単位:mm)をフローテスターストロークとし、コンパウンドの流動が停止するまでの時間をフロータイムとして測定し、流動性の指標とした。
(Liquidity)
The liquidity was evaluated using a flow tester CFT-100 manufactured by Shimadzu Corporation. A tablet was prepared by molding 7 g of the compound. Using a tablet, the fluidity was evaluated under the conditions of 130 ° C., residual heat of 20 seconds, and load of 100 kg. The pushing distance (unit: mm) of the plunger until the flow of the compound stopped was used as the flow tester stroke, and the time until the flow of the compound stopped was measured as the flow time, which was used as an index of the liquidity.
(ゲルタイム)
 コンパウンドのゲルタイムを、以下の方法で測定した。キュラストメータ(JSRトレーディング株式会社製)を用い、試料量1.5mL、140℃の条件でゲルタイムを測定した。得られたチャートのトルクの立ち上がり開始の時間をゲルタイムとした。ゲルタイムが短いほど硬化性が高いことを意味する。
(Gel time)
The gel time of the compound was measured by the following method. The gel time was measured using a curast meter (manufactured by JSR Trading Co., Ltd.) under the conditions of a sample volume of 1.5 mL and 140 ° C. The time at which the torque of the obtained chart started to rise was defined as the gel time. The shorter the gel time, the higher the curability.
(曲げ試験)
 コンパウンドを、成形金型温度140℃、成形圧力13.5MPa、硬化時間360秒の条件でトランスファー成形した後、180℃で2時間ポストキュアすることによって、試験片を得た。試験片の寸法は、縦幅80mm×横幅10mm×厚さ3.0mmであった。
(Bending test)
The compound was transfer-molded under the conditions of a molding die temperature of 140 ° C., a molding pressure of 13.5 MPa, and a curing time of 360 seconds, and then post-cured at 180 ° C. for 2 hours to obtain a test piece. The dimensions of the test piece were 80 mm in length × 10 mm in width × 3.0 mm in thickness.
 恒温槽付きオートグラフを用いて、試験片に対して3点支持型の曲げ試験を250℃で実施した。オートグラフとしては、株式会社島津製作所製のAGS-500Aを用いた。曲げ試験では、2つの支点により試験片の一方の面を支持した。試験片の他方の面における2つの支点間の中央の位置に荷重を加えた。試験片が破壊されたときの荷重を測定した。曲げ試験の測定条件は、以下のとおりであった。
2つの支点間の距離Lv:64.0±0.5mm
ヘッドスピード:2.0±0.2mm/分
チャートスピード:100mm/分
チャートフルスケール:490N(50kgf)
Using an autograph with a constant temperature bath, a 3-point support type bending test was performed on the test piece at 250 ° C. As the autograph, AGS-500A manufactured by Shimadzu Corporation was used. In the bending test, one surface of the test piece was supported by two fulcrums. A load was applied to the central position between the two fulcrums on the other surface of the test piece. The load when the test piece was broken was measured. The measurement conditions for the bending test were as follows.
Distance between two fulcrums Lv: 64.0 ± 0.5 mm
Head speed: 2.0 ± 0.2 mm / min Chart speed: 100 mm / min Chart full scale: 490N (50 kgf)
 下記数式(A)に基づいて、曲げ強度σ(単位:MPa)を算出した。下記数式(B)に基づいて、曲げ弾性率E(単位:GPa)を算出した。下記数式において、「P」は、試験片が破壊されたときの荷重(単位:N)である。「Lv」は、2つの支点間の距離(単位:mm)である。「W」は、試験片の横幅(単位:mm)である。「t」は、試験片の厚さ(単位:mm)である。「F/Y」は、荷重-たわみ曲線の直線部分の勾配(単位:N/mm)である。
 σ=(3×P×Lv)/(2×W×t)   (A)
 E=[Lv/(4×W×t)]×(F/Y) (B)
The bending strength σ (unit: MPa) was calculated based on the following mathematical formula (A). The flexural modulus E (unit: GPa) was calculated based on the following mathematical formula (B). In the following formula, "P" is the load (unit: N) when the test piece is broken. "Lv" is the distance (unit: mm) between the two fulcrums. “W” is the width (unit: mm) of the test piece. “T” is the thickness (unit: mm) of the test piece. "F / Y" is the gradient (unit: N / mm) of the straight line portion of the load-deflection curve.
σ = (3 × P × Lv) / (2 × W × t 2 ) (A)
E = [Lv 3 / (4 × W × t 3 )] × (F / Y) (B)
(信頼性)
 250℃における曲げ強度(MGa)を250℃における曲げ弾性率(GPa)で除した値を信頼性の評価の指標とした。この値が大きいほど、強度と弾性率とのバランスに優れることを意味する。
(reliability)
The value obtained by dividing the bending strength (MGa) at 250 ° C. by the flexural modulus (GPa) at 250 ° C. was used as an index for evaluating reliability. The larger this value is, the better the balance between strength and elastic modulus is.
(リフロー処理)
 トランスファー成形により、銅製の金属部材をコンパウンドで封止して、コンパウンドを硬化することにより成形体を得た。成形体にリフロー処理を施した。リフロー処理における最高加熱温度は、260℃であった。加熱時間は、300秒であった。リフロー処理後、成形体を観察して、成形体におけるクラックの有無を調べた。表中の「A」は、クラックが成形体に形成されていなかったことを意味し、「B」は、クラックが成形体に形成されたことを意味する。
(Reflow processing)
By transfer molding, a copper metal member was sealed with a compound, and the compound was cured to obtain a molded product. The molded body was reflowed. The maximum heating temperature in the reflow treatment was 260 ° C. The heating time was 300 seconds. After the reflow treatment, the molded product was observed to check for cracks in the molded product. "A" in the table means that the crack was not formed in the molded body, and "B" means that the crack was formed in the molded body.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (9)

  1.  金属粉と、エポキシ樹脂、硬化剤、及びカップリング剤を含有する樹脂組成物と、を備え、
     前記カップリング剤が、エポキシ基、アミノ基、ウレイド基、及びイソシアネート基から選ばれる官能基を有する第1のシラン化合物と、炭素数が6以上の鎖状炭化水素基を有する第2のシラン化合物とを含み、
     前記金属粉の含有量が、90質量%以上100質量%未満である、コンパウンド。
    A resin composition containing a metal powder, an epoxy resin, a curing agent, and a coupling agent is provided.
    The coupling agent is a first silane compound having a functional group selected from an epoxy group, an amino group, a ureido group, and an isocyanate group, and a second silane compound having a chain hydrocarbon group having 6 or more carbon atoms. Including and
    A compound having a metal powder content of 90% by mass or more and less than 100% by mass.
  2.  前記カップリング剤が、メルカプト基を有する第3のシラン化合物を更に含む、請求項1に記載のコンパウンド。 The compound according to claim 1, wherein the coupling agent further contains a third silane compound having a mercapto group.
  3.  前記第1のシラン化合物が、エポキシ基を有する、請求項1又は2に記載のコンパウンド。 The compound according to claim 1 or 2, wherein the first silane compound has an epoxy group.
  4.  前記第2のシラン化合物が、スチリル基、(メタ)アクリロイル基、又はビニル基を有する、請求項1~3のいずれか一項に記載のコンパウンド。 The compound according to any one of claims 1 to 3, wherein the second silane compound has a styryl group, a (meth) acryloyl group, or a vinyl group.
  5.  前記カップリング剤の含有量が、前記エポキシ樹脂の100質量部に対して1.0質量部以上20質量部以下である、請求項1~4のいずれか一項に記載のコンパウンド。 The compound according to any one of claims 1 to 4, wherein the content of the coupling agent is 1.0 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
  6.  前記金属粉が、鉄、コバルト、及びニッケルからなる群より選ばれる少なくとも一種の金属元素を含む、請求項1~5のいずれか一項に記載のコンパウンド。 The compound according to any one of claims 1 to 5, wherein the metal powder contains at least one metal element selected from the group consisting of iron, cobalt, and nickel.
  7.  前記金属粉が、磁性粉である、請求項1~6のいずれか一項に記載のコンパウンド。 The compound according to any one of claims 1 to 6, wherein the metal powder is a magnetic powder.
  8.  請求項1~7のいずれか一項に記載のコンパウンドを含む、成形体。 A molded product containing the compound according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか一項に記載のコンパウンドの硬化物。 The cured product of the compound according to any one of claims 1 to 7.
PCT/JP2021/031378 2020-09-03 2021-08-26 Compound material, molded body, and cured product of compound material WO2022050170A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180054244.6A CN116134084A (en) 2020-09-03 2021-08-26 Composite, molded article, and cured product of composite
KR1020237009821A KR20230061411A (en) 2020-09-03 2021-08-26 Compounds, moldings, and cured products of compounds
JP2022546280A JPWO2022050170A1 (en) 2020-09-03 2021-08-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-148137 2020-09-03
JP2020148137 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022050170A1 true WO2022050170A1 (en) 2022-03-10

Family

ID=80491720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031378 WO2022050170A1 (en) 2020-09-03 2021-08-26 Compound material, molded body, and cured product of compound material

Country Status (5)

Country Link
JP (1) JPWO2022050170A1 (en)
KR (1) KR20230061411A (en)
CN (1) CN116134084A (en)
TW (1) TW202219168A (en)
WO (1) WO2022050170A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022075186A1 (en) * 2020-10-05 2022-04-14

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043804A (en) * 2015-08-26 2017-03-02 日亜化学工業株式会社 Surface treated rare earth-based magnetic powder and method of producing the same, and bond magnet and method of producing the same
JP2017508016A (en) * 2013-12-11 2017-03-23 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツングEckart GmbH Coated metal pigment, method for making and using it, coating agent, and article
WO2019054217A1 (en) * 2017-09-15 2019-03-21 日立化成株式会社 Epoxy resin composition and electronic component device
WO2019106812A1 (en) * 2017-11-30 2019-06-06 日立化成株式会社 Compound powder
JP2019104954A (en) * 2017-12-11 2019-06-27 日立化成株式会社 Metal element-containing powder, and molded body
WO2019167182A1 (en) * 2018-02-28 2019-09-06 日立化成株式会社 Compound powder
WO2019176859A1 (en) * 2018-03-16 2019-09-19 日立化成株式会社 Epoxy resin composition and electronic component device
WO2019198237A1 (en) * 2018-04-13 2019-10-17 日立化成株式会社 Compound and molded body
WO2019229960A1 (en) * 2018-05-31 2019-12-05 日立化成株式会社 Composition and molded object

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159512B2 (en) 2012-07-04 2017-07-05 太陽誘電株式会社 Inductor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017508016A (en) * 2013-12-11 2017-03-23 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツングEckart GmbH Coated metal pigment, method for making and using it, coating agent, and article
JP2017043804A (en) * 2015-08-26 2017-03-02 日亜化学工業株式会社 Surface treated rare earth-based magnetic powder and method of producing the same, and bond magnet and method of producing the same
WO2019054217A1 (en) * 2017-09-15 2019-03-21 日立化成株式会社 Epoxy resin composition and electronic component device
WO2019106812A1 (en) * 2017-11-30 2019-06-06 日立化成株式会社 Compound powder
JP2019104954A (en) * 2017-12-11 2019-06-27 日立化成株式会社 Metal element-containing powder, and molded body
WO2019167182A1 (en) * 2018-02-28 2019-09-06 日立化成株式会社 Compound powder
WO2019176859A1 (en) * 2018-03-16 2019-09-19 日立化成株式会社 Epoxy resin composition and electronic component device
WO2019198237A1 (en) * 2018-04-13 2019-10-17 日立化成株式会社 Compound and molded body
WO2019229960A1 (en) * 2018-05-31 2019-12-05 日立化成株式会社 Composition and molded object

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022075186A1 (en) * 2020-10-05 2022-04-14
JP7168131B2 (en) 2020-10-05 2022-11-09 住友ベークライト株式会社 Resin molding material, molded article, and method for producing the molded article

Also Published As

Publication number Publication date
TW202219168A (en) 2022-05-16
JPWO2022050170A1 (en) 2022-03-10
KR20230061411A (en) 2023-05-08
CN116134084A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
JP7416124B2 (en) Compounds and tablets
JP7103413B2 (en) Compounds and moldings
JP7081611B2 (en) Compound powder
JPWO2019198237A1 (en) Compounds and moldings
WO2022050170A1 (en) Compound material, molded body, and cured product of compound material
JP7120304B2 (en) Compounds, compacts, and electronic parts
JP7484371B2 (en) Compound, molded body, and cured product of compound
WO2021112135A1 (en) Compound and molded object
JP2023047606A (en) Compound, molding, and cured product of compound
JP2022149538A (en) Compound, molding, and cured product of compound
JP2022042696A (en) Compound, molded body, and cured product of compound
JP7500978B2 (en) Compound, molded body, and cured product of compound
JP2022042742A (en) Compound, molded body, and cured product of compound
WO2021153688A1 (en) Compound, molded article, and cured product of compound
WO2021153691A1 (en) Compound material, molded body, and cured product of compound material
JP7512658B2 (en) Compound manufacturing method, compound masterbatch, compound, molded body, and cured product of compound
WO2021241513A1 (en) Compound, molded object, and cured object
JP2021165334A (en) Compound, molding, and cured product of compound
JP2022167046A (en) Compound and molding
WO2022264919A1 (en) Compound, molded object, and cured compound
JP2023049648A (en) Molded body manufacturing method and semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546280

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237009821

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864228

Country of ref document: EP

Kind code of ref document: A1