WO2022049979A1 - Inspection device and inspection method - Google Patents

Inspection device and inspection method Download PDF

Info

Publication number
WO2022049979A1
WO2022049979A1 PCT/JP2021/028987 JP2021028987W WO2022049979A1 WO 2022049979 A1 WO2022049979 A1 WO 2022049979A1 JP 2021028987 W JP2021028987 W JP 2021028987W WO 2022049979 A1 WO2022049979 A1 WO 2022049979A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
inspection
odpl
mapping data
omnidirectional
Prior art date
Application number
PCT/JP2021/028987
Other languages
French (fr)
Japanese (ja)
Inventor
賢一郎 池村
一信 小島
重英 秩父
和也 井口
Original Assignee
浜松ホトニクス株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社, 国立大学法人東北大学 filed Critical 浜松ホトニクス株式会社
Priority to JP2022546180A priority Critical patent/JPWO2022049979A1/ja
Publication of WO2022049979A1 publication Critical patent/WO2022049979A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • This disclosure relates to inspection equipment and inspection methods.
  • Luminescence measurement is a method of irradiating an object to be inspected with a beam and measuring the light generated when the excited electrons return to the ground state.
  • PL measurement light is used as a beam
  • cathode luminescence measurement an electron beam is used as a beam.
  • ODPL measurement omnidirectional photoluminescence measurement
  • the ODPL measurement is a method of measuring the number of photons of excitation light absorbed by an object to be inspected and the number of emitted photons in all directions using an integrating sphere.
  • the emission quantum efficiency of band-end emission affected by non-radiation recombination including structural defects can be calculated, so that defects can be quantified.
  • Devices for measuring luminescence are widely used in general.
  • the inspection function of the device is to be expanded for the purpose of quantifying defects and improving reproducibility, it is necessary to newly introduce another device such as a device for performing ODPL measurement.
  • the measurement accuracy due to the system may vary, such as the position shift of the beam with respect to the inspection object and the difference in the beam characteristics between the devices. Therefore, a technique capable of easily expanding the inspection function without causing such a problem has been desired.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an inspection device and a measurement method capable of easily expanding the inspection function.
  • the inspection apparatus detects a stage on which an inspection object is placed, a beam source that generates a beam to irradiate the inspection object, and light generated by the inspection object by the beam irradiation.
  • the optical system that guides the beam to the inspection object on the stage and guides the light generated by the inspection object to the photodetector, and the omnidirectional data on the omnidirectional light generated from the inspection object. It also includes a processing unit that converts one-sided data regarding one-sided light among the lights detected by the photodetector.
  • This inspection device detects the light generated in the inspection object, and the one-sided data regarding the one-sided light among the detected lights is based on the omnidirectional data regarding the omnidirectional light generated from the inspection object. Convert. In this way, by converting the one-sided data using the omnidirectional data, it is possible to acquire data different from the one-sided data without newly introducing a device different from the device for measuring the one-sided data. .. Therefore, it is possible to easily expand the inspection function while avoiding the problem of system-derived measurement accuracy variation such as increased cost burden, beam misalignment with respect to the inspection object between devices, and difference in beam characteristics. It will be possible.
  • the processing unit may generate the first mapping data regarding the one-sided data. As a result, the distribution of the one-sided data in the inspection target can be obtained, and the inspection of the inspection target can be suitably performed.
  • the processing unit may generate a second mapping data regarding the omnidirectional data from the first mapping data based on the omnidirectional data.
  • the distribution of omnidirectional data in the inspection target can be acquired, and the inspection of the inspection target can be suitably performed.
  • by combining the first mapping data and the omnidirectional data it is possible to increase the resolution of the omnidirectional data.
  • Omnidirectional data about the inspection target may be stored in advance in the processing unit. In this case, the time required for the inspection can be shortened.
  • the optical system has a first optical system for acquiring one-sided data, a second optical system for acquiring omnidirectional data, and a switching unit for switching between the first optical system and the second optical system. You may be doing it. In this case, both the one-sided data and the omnidirectional data can be acquired without newly introducing a device different from the device for measuring the one-sided data.
  • the beam source may generate an excitation beam that excites the object to be inspected.
  • the inspection function can be sufficiently expanded based on the measurement of the excitation beam absorbed by the inspection object and the measurement of the light generated in the inspection object by the irradiation of the excitation beam.
  • the inspection method is one of an irradiation step of irradiating an inspection object with a beam, a light detection step of detecting light generated in the inspection object, and light detected in the light detection step. It includes an acquisition step of acquiring one-sided data regarding directional light, and a processing step of converting one-sided data based on omnidirectional data related to omnidirectional light generated from an inspection object.
  • the light generated in the inspection object is detected, and the one-sided data regarding the one-sided light among the detected lights is based on the omnidirectional data regarding the omnidirectional light generated from the inspection object. Convert. In this way, by converting the one-sided data using the omnidirectional data, it is possible to acquire data different from the one-sided data without newly introducing a device different from the device for measuring the one-sided data. .. Therefore, it is possible to easily expand the inspection function while avoiding the problem of system-derived measurement accuracy variation such as increased cost burden, beam misalignment with respect to the inspection object between devices, and difference in beam characteristics. It will be possible.
  • the first mapping data regarding the one-sided data may be generated.
  • the distribution of the one-sided data in the inspection target can be acquired, and the inspection of the inspection target can be suitably performed.
  • the second mapping data related to the omnidirectional data may be generated from the first mapping data based on the omnidirectional data.
  • the distribution of omnidirectional data in the inspection target can be acquired, and the inspection of the inspection target can be suitably performed.
  • the first mapping data and the omnidirectional data it is possible to increase the resolution of the omnidirectional data.
  • omnidirectional data about the inspection target acquired in advance may be used. In this case, the time required for the inspection can be shortened.
  • the first optical system for acquiring unidirectional data and the second optical system for acquiring omnidirectional data may be switched, and in the acquisition step, unidirectional data and omnidirectional data may be acquired. ..
  • both the one-sided data and the omnidirectional data can be acquired without newly introducing a device different from the device for measuring the one-sided data.
  • an excitation beam that excites the object to be inspected may be irradiated.
  • the inspection function can be sufficiently expanded based on the measurement of the excitation beam absorbed by the inspection object and the measurement of the light generated in the inspection object by the irradiation of the excitation beam.
  • the inspection function can be easily expanded.
  • FIG. 1 It is a schematic diagram which shows the state after the optical system switching in the inspection apparatus shown in FIG. It is a block diagram which shows the structure of the processing part of the inspection apparatus shown in FIG. It is a flowchart which shows an example of PL mapping data generation processing in the inspection apparatus shown in FIG. It is a flowchart which shows an example of the ODPL mapping data generation processing in the inspection apparatus shown in FIG. It is a schematic diagram which shows the modification of the 2nd optical system.
  • FIG. 1 is a schematic diagram showing the configuration of the inspection device according to the first embodiment of the present disclosure.
  • the inspection device 1A shown in the figure is a device for performing non-destructive inspection of the inspection object S.
  • a compound semiconductor wafer is exemplified as the inspection object S.
  • the inspection object S is a gallium nitride (GaN) semiconductor wafer.
  • GaN semiconductors are expected to be applied to high-frequency devices and power devices as well as visible / ultraviolet light emitting devices. It is known that the characteristics of devices using GaN semiconductors are greatly affected by structural defects such as through dislocations, point defects, and contamination with trace impurities.
  • the inspection device 1A is configured as a device for inspecting both the distribution of structural defects and the quantification of defects of a GaN semiconductor wafer in order to improve the yield of the device and promote mass production.
  • the one-sided data regarding the one-sided light generated from the inspection object S and all the one-sided data generated from the inspection object S are inspected.
  • the one-sided data is data based on luminescence measurement such as photoluminescence measurement (hereinafter referred to as PL measurement).
  • the omnidirectional data is data based on omnidirectional photoluminescence measurement (hereinafter referred to as ODPL measurement).
  • Luminescence measurement is a method of irradiating an object to be inspected with a beam and measuring the light generated when the electrons excited by the beam return to the ground state.
  • PL measurement light is used as a beam
  • cathode luminescence measurement an electron beam is used as a beam. While it is possible to detect the distribution of structural defects in the inspection object in the light emission measurement, from the viewpoint of quality assurance of the semiconductor wafer, it is required to quantify the defects and improve the reproducibility.
  • ODPL measurement is a method of measuring the number of photons of excitation light absorbed by an object to be inspected and the number of emitted photons in all directions using an integrating sphere.
  • the emission quantum efficiency (internal quantum efficiency (IQE) or external quantum efficiency (EQE)) of band-end emission affected by non-radiative recombination including structural defects can be calculated, so defects can be quantified.
  • Internal quantum efficiency (IQE) is the ratio of the number of emitted photons generated in the inspection object to the number of photons in the excitation light absorbed by the inspection object.
  • External quantum efficiency (EQE) is the ratio of the number of emitted photons emitted to the outside of the inspection object to the number of photons of the excitation light absorbed by the inspection object.
  • the spatial resolution of PL measurement when using an objective lens is about several ⁇ m to several sub ⁇ m.
  • the spatial resolution of the ODPL measurement is about several hundred ⁇ m to several tens of ⁇ m, which is about one to two orders of magnitude lower than the spatial resolution of the PL measurement.
  • the inspection device 1A can acquire high-resolution ODPL data by converting the one-sided data (PL data) based on the omnidirectional data (ODPL data).
  • the inspection function of the inspection device 1A can be easily expanded, and both the distribution of structural defects and the quantification of defects of the GaN semiconductor wafer can be inspected with high accuracy in one device. Can be done.
  • the inspection device 1A includes a stage 2, a beam source 3, a photodetector 4, and an optical system 5. Further, as shown in FIG. 2, the inspection device 1A includes a processing unit 21 and a display unit 26.
  • the stage 2 has a sample stage 6 on which an object to be inspected is placed, an X stage 7 capable of scanning the sample stage 6 in the X direction, and a Y stage 8 capable of scanning the sample stage 6 in the Y direction.
  • the X direction is one direction in the in-plane direction of the inspection object S
  • the Y direction is a direction orthogonal to the Y direction in the in-plane direction of the inspection object S.
  • the Z direction is a direction orthogonal to the X direction and the Y direction, and corresponds to the thickness direction of the inspection object S.
  • the sample stage 6, the X stage 7, and the Y stage 8 are all installed on the base plate 9.
  • the beam source 3 is a portion that generates a beam L to irradiate the inspection object S.
  • the emission surface of the beam L in the beam source 3 is arranged so as to face the X direction, for example, and is optically connected to the optical system 5.
  • an excitation light source 11 that outputs excitation light L1 for exciting the inspection object S can be used.
  • the excitation light source 11 may be, for example, either a coherent light source or an incoherent light source.
  • the coherent light source examples include an excima laser (wavelength 193 nm), a YAG laser second harmonic (wavelength 532 nm), a YAG laser fourth harmonic (wavelength 266 nm), a semiconductor laser (for example, an InGaN semiconductor laser (wavelength 375 nm to 530 nm), red). (Semiconductor laser, infrared semiconductor laser) and the like can be used.
  • a mercury lamp wavelength 365 nm
  • an LED light source or the like can be used.
  • the excitation light L1 output from the excitation light source 11 may be either pulse light or CW light.
  • the photodetector 4 is a portion that detects the light L2 generated in the inspection object S by the irradiation of the beam L.
  • the detection surface of the photodetector 4 is arranged so as to face the stage 2 side in the Z direction, for example, and is optically connected to the optical system 5.
  • the photodetector 4 detects the light L2 generated when the electrons excited by the inspection object S by the irradiation of the excitation light L1 return to the ground state.
  • the photodetector 4 outputs a signal indicating the detection result to the processing unit 21 (see FIG. 2).
  • the photodetector 4 for example, CMOS, CCD, EM-CDCD, photomultiplier tube, SiPM (MPPC), APD (SPAD), photodiode (including array-shaped one) and the like can be used.
  • the optical system 5 is a portion that guides the beam L from the beam source 3 to the inspection object S on the stage 2 and guides the light L2 generated by the inspection object S to the photodetector 4. More specifically, the optical system 5 includes an objective lens 12 and a filter holder 13. The objective lens 12 is provided on the Z stage 14 that can scan in the Z direction.
  • the filter holder 13 includes a first filter 15 and a second filter 16. The filter holder 13 is slidably provided in the X direction, and one of the first filter 15 and the second filter 16 is arranged in the optical path of the optical system 5.
  • the first filter 15 is a filter used for PL measurement.
  • the first filter 15 transmits at least a part of the light L2 generated in the inspection object S by the irradiation of the excitation light L1 and guides the light to the photodetector 4.
  • the second filter 16 is a filter used for reflection measurement.
  • the reflection measurement is a measurement for extracting an abnormal point by examining the reflected state of the excited light L1 on the surface of the inspection object S.
  • the second filter 16 is arranged in the optical path of the optical system 5, at least a part of the excitation light L1 from the excitation light source 11 is reflected and guided to the inspection object S through the objective lens 12.
  • the second filter 16 transmits at least a part of the excitation light L1 reflected by the inspection object S and guides the light to the photodetector 4.
  • the numerical aperture NA of the objective lens 12 is, for example, about 0.5.
  • a dichroic mirror, a bandpass filter, or the like is used as the second filter 16 for example.
  • the processing unit 21 is a unit that performs data processing based on the detection signal output from the photodetector 4.
  • the processing unit 21 is physically a computer including a memory such as RAM and ROM, a processor (arithmetic circuit) such as a CPU, a communication interface, and a storage unit such as a hard disk. Examples of such a computer include a personal computer, a cloud server, a smart device (smartphone, tablet terminal, etc.) and the like.
  • the processing unit 21 serves as the PL mapping data generation unit 22, the reflection mapping data generation unit 23, and the high-resolution ODPL mapping data generation unit 24, as shown in FIG. Function.
  • the processing unit 21 has an ODPL mapping data storage unit 25.
  • the processing unit 21 is connected to a display unit 26 such as a monitor so that information can be communicated.
  • the PL mapping data generation unit 22 is a part that generates PL mapping data (first mapping data) related to PL data (one-sided data).
  • the PL mapping data generation unit 22 generates PL mapping data for the inspection object S based on the detection signal of the photodetector 4 at the time of PL measurement and the measurement coordinates thereof.
  • the PL mapping data generation unit 22 outputs the generated PL mapping data to the high-resolution ODPL mapping data generation unit 24.
  • the reflection mapping data generation unit 23 is a part that generates mapping data related to the reflection data.
  • the reflection mapping data generation unit 23 generates reflection mapping data for the inspection object S based on the detection signal of the photodetector 4 at the time of reflection measurement and the measurement coordinates thereof.
  • the reflection mapping data generation unit 23 outputs the generated reflection mapping data to the high-resolution ODPL mapping data generation unit 24.
  • the high-resolution ODPL mapping data generation unit 24 is a portion that generates high-resolution ODPL mapping data (second mapping data) from PL mapping data (first mapping data) based on ODPL data (omnidirectional data). ..
  • the ODPL mapping data for the inspection object S is stored in advance in the ODPL mapping data storage unit 25.
  • the high-resolution ODPL mapping data generation unit 24 When the high-resolution ODPL mapping data generation unit 24 receives the PL mapping data from the PL mapping data generation unit 22, the high-resolution ODPL mapping data generation unit 24 refers to the ODPL mapping data stored in the ODPL mapping data storage unit 25, and uses the ODPL mapping data to PL. Convert the mapping data to high resolution ODPL mapping data.
  • the high-resolution ODPL mapping data generation unit 24 outputs an inspection result image based on the generated high-resolution ODPL mapping data to the display unit 26.
  • the high-resolution ODPL mapping data generation unit 24 may output an image in which the generated high-resolution ODPL mapping data and the PL mapping data are superimposed to the display unit 26 as an inspection result image.
  • the ODPL mapping data stored in advance in the ODPL mapping data storage unit 25 is, for example, data obtained by prior ODPL measurement. This data is acquired when the inspection target S is a GaN semiconductor wafer, for example, by performing ODPL measurement in advance on a cutting sample of a GaN semiconductor wafer that is assumed to have the same doping concentration and defects in the same lot. can do.
  • the following equations (1) to (3) can be used for the conversion of the PL mapping data.
  • the ⁇ ODPL (x 0 , y 0 ) is the emission quantum efficiency (internal quantum efficiency (internal quantum efficiency (internal quantum efficiency (internal quantum efficiency)) obtained by the ODPL measurement at the coordinates (x 0 , y 0 ) of the inspection object S.
  • IQE internal quantum efficiency
  • EQE external quantum efficiency
  • PN emPL (x, y) is the number of luminescent photons obtained by PL measurement at the coordinates (x, y) of the inspection object S.
  • StartWL is the minimum wavelength in the target emission region of the inspection target S.
  • EndWL is the maximum wavelength in the target emission region of the inspection target S.
  • I ( ⁇ , x, y) is the emission intensity obtained by PL measurement at the coordinates (x, y) of the inspection object S.
  • WL ( ⁇ ) is the wavelength in the light emitting region, and ⁇ is the conversion coefficient.
  • the above equations (1) to (3) obtain a division value obtained by dividing the emission quantum efficiency at each coordinate of the inspection object S at the time of ODPL measurement by the number of emission photons at each coordinate of the inspection object S at the time of PL measurement. It is a thing.
  • IQE internal quantum efficiency
  • EQE external quantum efficiency
  • the irradiation condition of the excitation light L1 to the inspection object S it is necessary that the wavelength or the spot size of the excitation light L1 can be confirmed and the irradiance of the excitation light L1 is constant. Further, it is necessary that the angle of incidence of the excitation light L1 on the inspection object S is constant.
  • the conversion from the PL mapping data to the high-resolution ODPL mapping data is preferably applied to a region where the absorption amount of the excitation light L1 in the inspection object S is constant.
  • the determination of the absorption amount of the excitation light L1 is performed by confirming that the polished state of the surface of the inspection object S is constant, or confirming that the reflection amount of the excitation light L1 at the time of PL measurement is constant.
  • the absorption amount of the excitation light L1 is determined by measuring the reflection amount of the excitation light L1 at the time of the latter PL measurement. That is, when the high-resolution ODPL mapping data generation unit 24 receives the reflection mapping data from the reflection mapping data generation unit 23, the high-resolution ODPL mapping data generation unit 24 compares the reflection amount at each coordinate of the inspection object S with a predetermined threshold value based on the reflection mapping data. .. The high-resolution ODPL mapping data generation unit 24 can extract coordinates whose reflection amount exceeds the threshold value or coordinates below the threshold value as abnormal points, and can exclude data about those coordinates from the inspection result image.
  • FIG. 3 is a diagram showing an example of ODPL mapping data.
  • a GaN semiconductor wafer having a diameter of 2 inches was used as an inspection target.
  • the spot diameter of the excitation light was ⁇ 100 ⁇ m, and the measurement interval was 2 mm pitch.
  • the EQE values at each coordinate of the GaN semiconductor wafer are mapped by color coding by scale.
  • FIG. 4 is PL mapping data for the same sample, and the inside of the broken line frame A in FIG. 3 is enlarged and shown.
  • the black spot portion in FIG. 4 is considered to be a portion where the emission intensity is reduced due to the through dislocation of the GaN semiconductor wafer.
  • the EQE in the dashed line frame A is estimated to be 0.3%. Therefore, by converting the PL mapping data using the above equations (1) to (3), high-resolution ODPL mapping data can be acquired as shown in FIG. According to the high-resolution ODPL mapping data shown in FIG. 5, defects can be quantified by ODPL measurement (EQE), and the distribution of structural defects can be confirmed by PL measurement.
  • the inspection device 1A the PL mapping data generation process and the high-resolution ODPL mapping data generation process are executed in this order when inspecting the inspection object S.
  • FIG. 6 is a flowchart showing an example of PL mapping data generation processing.
  • the number n of measurement coordinates (x, y) is set according to the size of the inspection object S (step S01).
  • the stage 2 is driven, and the irradiation position of the excitation light L1 moves to the measurement point i in the inspection object S (step S02).
  • the first filter 15 is arranged on the optical path of the optical system 5.
  • the excitation light L1 is irradiated to the inspection object S, and the PL measurement at the measurement point i is executed (step S03).
  • the filter is switched (step S04). That is, the filter holder 13 slides in the X direction, and the second filter 16 is arranged on the optical path of the optical system 5. Then, the excitation light L1 is irradiated to the inspection object S, and the reflection measurement at the measurement point i is executed (step S05). After finishing the PL measurement and the reflection measurement, it is determined whether or not the measurement point i has reached n (step S06). When it is determined that the measurement point i has reached n, PL mapping data based on the PL measurement result at each coordinate and reflection mapping data based on the reflection measurement result at each coordinate are generated, and the PL mapping data generation process is performed. finish.
  • step S02 If it is determined that the measurement point i has not reached n, the process returns to step S02, the irradiation position of the excitation light L1 is moved to the measurement point (i + 1), and then the processes of steps S03 to S06 are repeatedly executed. ..
  • FIG. 7 is a flowchart showing an example of high resolution ODPL mapping data generation processing.
  • the PL mapping data generated in the PL mapping data generation process is referred to (step S11).
  • the PL mapping data generated in the PL mapping data generation process is referenced (step S12). Either step S11 or step S12 may be executed first.
  • the reflection amount of the excitation light L1 is compared with the threshold value, and the coordinates where the reflection amount is out of the threshold value are extracted as abnormal points (step S13).
  • step S14 After extracting the abnormal points, the ODPL mapping data stored in the ODPL mapping data storage unit 25 is referred to (step S14). Based on this ODPL mapping data, conversion of PL mapping data using the above equations (1) to (3) is performed (step S15). As a result, high-resolution ODPL mapping data is generated (step S16), and the high-resolution ODPL mapping data generation process is completed.
  • the inspection device 1A detects the light L2 generated in the inspection target object S, and collects PL data (one-sided data) related to the one-order light of the detected light L2 in the inspection target object S. Converts based on ODPL data (omnidirectional data) related to omnidirectional light generated from. In this way, by converting the PL data using the ODPL data, data different from the PL data can be acquired and the inspection object S can be obtained without newly introducing an ODPL measuring device different from the PL measuring device. Can be inspected. Therefore, the inspection function can be easily expanded while avoiding the problems of system-derived measurement accuracy variation such as an increase in cost burden, a positional deviation of the beam L with respect to the inspection object S between the devices, and a difference in beam characteristics. be able to.
  • the processing unit 21 In the inspection device 1A, the processing unit 21 generates PL mapping data (first mapping data) related to PL data. As a result, the distribution of PL data in the inspection target S can be acquired, and the inspection of the inspection target S can be suitably performed.
  • the processing unit 21 In the inspection device 1A, the processing unit 21 generates high-resolution ODPL mapping data (second mapping data) related to omnidirectional data from the PL mapping data based on the ODPL data. As a result, the distribution of ODPL data in the inspection target S can be acquired, and the inspection of the inspection target S can be suitably performed. Further, by combining the PL mapping data and the ODPL data, it is possible to increase the resolution of the ODPL data.
  • the ODPL data for the inspection target S is stored in advance in the processing unit 21. As a result, it is possible to save the trouble of acquiring ODPL data for each inspection target object S, and it is possible to shorten the time required for inspection.
  • the beam source 3 generates the excitation light L1 that excites the inspection object S. This makes it possible to sufficiently expand the inspection function based on the measurement of the excitation light L2 absorbed by the inspection object S and the measurement of the light generated in the inspection object S by the irradiation of the excitation light L2. .. [Second Embodiment]
  • FIG. 8 is a schematic diagram showing the configuration of the inspection device according to the second embodiment of the present disclosure.
  • the optical system 5 has the first optical system 5A (see FIG. 8) for acquiring PL data (one-sided data) and the ODPL data (all).
  • the first embodiment is performed in that it has a second optical system 5B (see FIG. 9) for acquiring (orientation data) and a switching unit 31 for switching between the first optical system 5A and the second optical system 5B. It is different from the morphology.
  • the first optical system 5A has the same configuration as the optical system 5 of the inspection device 1A of the first embodiment.
  • the second optical system 5B differs from the first optical system 5A in that the integrating sphere 33 is arranged on the optical path instead of the objective lens 12.
  • the switching unit 31 is configured by an XZ stage 32 that can scan in the X direction.
  • the objective lens 12 and the integrating sphere 33 are provided on the lower surface side of the XZ stage 32 so as to be separated from each other in the X direction.
  • the XZ stage 32 scans in the X direction, one of the objective lens 12 and the integrating sphere 33 is arranged in the optical path of the optical system 5. As shown in FIG.
  • the integrating sphere 33 is optically connected to the spectroscope 34.
  • the processing unit 21 has the PL mapping data generation unit 22 described above and the ODPL mapping data generation unit 35.
  • the light L2 generated in the inspection object S by the irradiation of the excitation light L1 is spatially integrated by repeating diffuse reflection in the integrating sphere 33, and then guided to the spectroscope 34 via the optical fiber F.
  • the spectroscope 34 outputs a result signal based on the detection result to the ODPL mapping data generation unit 35.
  • the ODPL mapping data generation unit 35 is a part that generates ODPL mapping data related to ODPL data (omnidirectional data).
  • the ODPL mapping data generation unit 35 generates ODPL mapping data for the inspection object S based on the detection signal of the spectroscope 34 at the time of ODPL measurement and the measurement coordinates thereof.
  • the ODPL mapping data generation unit 35 outputs the generated ODPL mapping data to the display unit 26.
  • the inspection device 1B the PL mapping data generation process and the ODPL mapping data generation process are selectively executed in the inspection of the inspection object S.
  • FIG. 11 is a flowchart showing an example of PL mapping data generation processing.
  • the number n of measurement coordinates (x, y) is set according to the size of the inspection object S (step S21).
  • the XZ stage 32 is driven, and the objective lens 12 is arranged in the optical path of the optical system 5.
  • the first optical system 5A for acquiring PL data is set (step S22).
  • the stage 2 is driven and the irradiation position of the excitation light L1 moves to the measurement point i in the inspection object S (step S23).
  • the first filter 15 is arranged on the optical path of the first optical system 5A.
  • the excitation light L1 is irradiated to the inspection object S, and the PL measurement at the measurement point i is executed (step S24).
  • step S25 After completing the PL measurement at the measurement point i, it is determined whether or not the measurement point i has reached n (step S25). When it is determined that the measurement point i has reached n, PL mapping data based on the PL measurement result at each coordinate is generated, and the PL mapping data generation process ends. If it is determined that the measurement point i has not reached n, the process returns to step S23, the irradiation position of the excitation light L1 is moved to the measurement point (i + 1), and then the processes of steps S23 to S25 are repeatedly executed. ..
  • FIG. 12 is a flowchart showing an example of the ODPL mapping data generation process.
  • the number n of measurement coordinates (x, y) is set according to the size of the inspection object S (step S31).
  • the XZ stage 32 is driven, and the integrating sphere 33 is arranged in the optical path of the optical system 5.
  • the second optical system 5B for acquiring ODPL data is set (step S32).
  • the stage 2 is driven and the irradiation position of the excitation light L1 moves to the measurement point i in the inspection object S (step S33).
  • the first filter 15 is arranged on the optical path of the second optical system 5B.
  • the excitation light L1 is irradiated to the inspection object S, and the ODPL measurement at the measurement point i is executed (step S34).
  • step S35 After finishing the ODPL measurement at the measurement point i, it is determined whether or not the measurement point i has reached n (step S35). When it is determined that the measurement point i has reached n, ODPL mapping data based on the ODPL measurement result at each coordinate is generated, and the ODPL mapping data generation process ends. If it is determined that the measurement point i has not reached n, the process returns to step S33, the irradiation position of the excitation light L1 is moved to the measurement point (i + 1), and then the processes of steps S33 to S35 are repeatedly executed. ..
  • the optical system 5 has a first optical system 5A for acquiring PL data (one-sided data), a second optical system 5B for acquiring ODPL data (omnidirectional data), and the like. It has a switching unit 31 for switching between the first optical system 5A and the second optical system 5B.
  • both PL data and ODPL data can be acquired without newly introducing a device different from the device for measuring PL data.
  • Having both PL data and ODPL data acquisition functions in the same device can solve cost problems, and is derived from the system such as the position shift of the beam L with respect to the inspection object S and the difference in beam characteristics between the devices. It is also possible to avoid variations in the measurement accuracy of.
  • the distance between the integrating sphere 33 and the inspection object S is 0.
  • the distance between the integrating sphere 33 and the inspection object S is too large, the radiation angle of the light L2 from the inspection object S (that is, the efficiency of taking the light L2 into the integrating sphere 33) becomes the inspection object S.
  • the inspection object S is a GaN semiconductor, for example, the alignment mark is not attached to the GaN semiconductor wafer before the semiconductor process, and it is difficult to guarantee the reproducibility of the position.
  • the focus map can be acquired together with the acquisition of PL data. By doing so, it is possible to use the focus map when acquiring the ODPL data and keep the distance between the integrating sphere 33 and the inspection object S constant at each coordinate.
  • the integrating sphere 33 is arranged in the X direction on the lower surface side of the XZ stage 32 in the switching unit 31. This makes it possible to arrange the integrating sphere 33 directly above the inspection object S when acquiring the ODPL data.
  • the ODPL data can be acquired without being restricted by the size of the inspection object S, unlike the 2 ⁇ arrangement in which the inspection object S is arranged inside the integrating sphere 33.
  • the processing unit 21 may have a high-resolution ODPL mapping data generation unit 24, as in the first embodiment.
  • the high-resolution ODPL mapping data generation unit 24 refers to the PL mapping data received from the PL mapping data generation unit 22 and the ODPL mapping data received from the ODPL mapping data generation unit 35, and the above equations (1) to High-resolution ODPL mapping data is generated by converting the PL mapping data using (3).
  • the inspection device 1B may include a beam source 36 for acquiring ODPL data in addition to the beam source 3 for acquiring PL data.
  • the emission surface of the beam L in the beam source 36 is arranged so as to face the X direction, for example, and is optically connected to the optical system 5.
  • the excitation light L3 emitted from the excitation light source 37 is guided to the integrating sphere 33 via an optical element 38 such as a mirror.
  • the excitation light source 37 may be, for example, either a coherent light source or an incoherent light source, similarly to the excitation light source 11.
  • the coherent light source examples include an excima laser (wavelength 193 nm), a YAG laser second harmonic (wavelength 532 nm), a YAG laser fourth harmonic (wavelength 266 nm), a semiconductor laser (for example, an InGaN semiconductor laser (wavelength 375 nm to 530 nm), red). (Semiconductor laser, infrared semiconductor laser) and the like can be used.
  • a mercury lamp wavelength 365 nm
  • an LED light source or the like can be used.
  • the excitation light L3 output from the excitation light source 37 may be either pulsed light or CW light.
  • a GaN semiconductor wafer is exemplified as the inspection object S, and the distribution of structural defects and the quantitative inspection of defects of the GaN semiconductor wafer by PL measurement and ODPL measurement are exemplified.
  • the conversion of can also be applied to multiphoton excitation PL measurements, time-resolved photoluminescence (TRPL) measurements.
  • the beam sources 3 and 36 are not limited to the excitation light sources 11 and 37, and may emit X-rays or electron beams. In this case, it can be applied to reflection measurement, transmission measurement, phase difference measurement, differential interference measurement, emission measurement (cathode luminescence measurement, etc.) by irradiating a beam including X-rays and electron beams, and ODPL with the same configuration. Correlation with mapping can be obtained.

Abstract

An inspection device 1A comprises: a stage 2 on which an inspection subject S is placed; a beam source 3 that generates a beam L applied to the inspection subject S; a photodetector 4 that detects light L2 generated at the inspection subject S by application of the beam L; an optical system 5 that guides the beam L to the inspection subject S on the stage 2 and also guides the light L2 generated at the inspection subject S to the photodetector 5; and a processing unit 21 that transforms unidirectional data regarding unidirectional light of the light L2 detected by the photodetector 4, on the basis of omnidirectional data regarding omnidirectional light generated from the inspection subject S.

Description

検査装置及び検査方法Inspection equipment and inspection method
 本開示は、検査装置及び検査方法に関する。 This disclosure relates to inspection equipment and inspection methods.
 例えば半導体ウェハなどの検査対象物に対する検査方法として、検査対象物から発生する一方位の光を測定する技術がある。当該技術としては、例えばフォトルミネッセンス測定(以下、PL測定)等の発光測定が知られている。発光測定は、検査対象物にビームを照射し、励起された電子が基底状態に戻る際に発生する光を測定する手法である。PL測定では、ビームとして光が用いられ、カソードルミネッセンス測定では、ビームとして電子線が用いられる。発光測定では、構造欠陥の分布を検出可能である一方、半導体ウェハの品質担保の観点からは、欠陥の定量化や再現性の向上が求められている。 For example, as an inspection method for an inspection object such as a semiconductor wafer, there is a technique for measuring one-sided light generated from the inspection object. As the technique, for example, luminescence measurement such as photoluminescence measurement (hereinafter referred to as PL measurement) is known. Luminescence measurement is a method of irradiating an object to be inspected with a beam and measuring the light generated when the excited electrons return to the ground state. In PL measurement, light is used as a beam, and in cathode luminescence measurement, an electron beam is used as a beam. While the distribution of structural defects can be detected by emission measurement, from the viewpoint of quality assurance of semiconductor wafers, it is required to quantify defects and improve reproducibility.
 検査対象物に対する別の検査方法として、検査対象物から発生する全方位の光を測定する技術がある。当該技術としては、全方位フォトルミネッセンス測定(以下、ODPL測定)が知られている(例えば非特許文献1参照)。ODPL測定は、積分球を用いて検査対象物に吸収された励起光のフォトン数及び全方位への発光フォトン数を測定する手法である。ODPL測定では、構造欠陥等を含む非輻射再結合に影響されるバンド端発光の発光量子効率を算出できるため、欠陥の定量化が可能となっている。 As another inspection method for the inspection target, there is a technique for measuring the omnidirectional light generated from the inspection target. As the technique, omnidirectional photoluminescence measurement (hereinafter referred to as ODPL measurement) is known (see, for example, Non-Patent Document 1). The ODPL measurement is a method of measuring the number of photons of excitation light absorbed by an object to be inspected and the number of emitted photons in all directions using an integrating sphere. In the ODPL measurement, the emission quantum efficiency of band-end emission affected by non-radiation recombination including structural defects can be calculated, so that defects can be quantified.
 発光測定を行う装置は、一般に広く普及している。しかしながら、欠陥の定量化や再現性の向上を目的として装置の検査機能を拡張しようとする場合、ODPL測定を行う装置のような別の装置を新規に導入する必要がある。この場合、コスト面の問題が生じるほか、装置間での検査対象物に対するビームの位置ずれやビーム特性の相違といったシステム由来の測定精度のばらつきが生じることが考えられる。そのため、このような問題を生じさせることなく、検査機能を簡便に拡張することが可能な技術が望まれていた。 Devices for measuring luminescence are widely used in general. However, if the inspection function of the device is to be expanded for the purpose of quantifying defects and improving reproducibility, it is necessary to newly introduce another device such as a device for performing ODPL measurement. In this case, in addition to the problem of cost, it is conceivable that the measurement accuracy due to the system may vary, such as the position shift of the beam with respect to the inspection object and the difference in the beam characteristics between the devices. Therefore, a technique capable of easily expanding the inspection function without causing such a problem has been desired.
 本開示は、上記課題の解決のためになされたものであり、検査機能を簡便に拡張することが可能な検査装置及び測定方法を提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an inspection device and a measurement method capable of easily expanding the inspection function.
 本開示の一側面に係る検査装置は、検査対象物が載置されるステージと、検査対象物に照射するビームを生成するビーム源と、ビームの照射により検査対象物で発生する光を検出する光検出器と、ステージ上の検査対象物にビームを導くと共に、検査対象物で発生した光を光検出器に導く光学系と、検査対象物から発生する全方位の光に関する全方位データに基づいて、光検出器で検出された光のうちの一方位の光に関する一方位データの変換を行う処理部と、を備える。 The inspection apparatus according to one aspect of the present disclosure detects a stage on which an inspection object is placed, a beam source that generates a beam to irradiate the inspection object, and light generated by the inspection object by the beam irradiation. Based on the photodetector, the optical system that guides the beam to the inspection object on the stage and guides the light generated by the inspection object to the photodetector, and the omnidirectional data on the omnidirectional light generated from the inspection object. It also includes a processing unit that converts one-sided data regarding one-sided light among the lights detected by the photodetector.
 この検査装置では、検査対象物で発生した光を検出し、検出された光のうちの一方位の光に関する一方位データを、検査対象物から発生する全方位の光に関する全方位データに基づいて変換する。このように、全方位データを用いて一方位データを変換することで、一方位データを測定する装置とは別の装置を新規に導入することなく、一方位データとは別のデータを取得できる。したがって、コスト面の負担増や、装置間での検査対象物に対するビームの位置ずれやビーム特性の相違といったシステム由来の測定精度のばらつきの問題を回避しつつ、検査機能を簡便に拡張することが可能となる。 This inspection device detects the light generated in the inspection object, and the one-sided data regarding the one-sided light among the detected lights is based on the omnidirectional data regarding the omnidirectional light generated from the inspection object. Convert. In this way, by converting the one-sided data using the omnidirectional data, it is possible to acquire data different from the one-sided data without newly introducing a device different from the device for measuring the one-sided data. .. Therefore, it is possible to easily expand the inspection function while avoiding the problem of system-derived measurement accuracy variation such as increased cost burden, beam misalignment with respect to the inspection object between devices, and difference in beam characteristics. It will be possible.
 処理部は、一方位データに関する第1のマッピングデータを生成してもよい。これにより、検査対象物における一方位データの分布を取得でき、検査対象物の検査を好適に実施できる。 The processing unit may generate the first mapping data regarding the one-sided data. As a result, the distribution of the one-sided data in the inspection target can be obtained, and the inspection of the inspection target can be suitably performed.
 処理部は、全方位データに基づいて、第1のマッピングデータから全方位データに関する第2のマッピングデータを生成してもよい。これにより、検査対象物における全方位データの分布を取得でき、検査対象物の検査を好適に実施できる。また、第1のマッピングデータと全方位データとを組み合わせることで、全方位データの高分解能化が可能となる。 The processing unit may generate a second mapping data regarding the omnidirectional data from the first mapping data based on the omnidirectional data. As a result, the distribution of omnidirectional data in the inspection target can be acquired, and the inspection of the inspection target can be suitably performed. Further, by combining the first mapping data and the omnidirectional data, it is possible to increase the resolution of the omnidirectional data.
 処理部には、検査対象物についての全方位データが予め格納されていてもよい。この場合、検査に要する時間の短縮化が図られる。 Omnidirectional data about the inspection target may be stored in advance in the processing unit. In this case, the time required for the inspection can be shortened.
 光学系は、一方位データを取得する第1の光学系と、全方位データを取得する第2の光学系と、第1の光学系と第2の光学系とを切り替える切替部と、を有していてもよい。この場合、一方位データを測定する装置とは別の装置を新規に導入することなく、一方位データ及び全方位データの双方を取得できる。 The optical system has a first optical system for acquiring one-sided data, a second optical system for acquiring omnidirectional data, and a switching unit for switching between the first optical system and the second optical system. You may be doing it. In this case, both the one-sided data and the omnidirectional data can be acquired without newly introducing a device different from the device for measuring the one-sided data.
 ビーム源は、検査対象物を励起する励起ビームを生成してもよい。この場合、検査対象物に吸収された励起ビームの測定や、励起ビームの照射によって検査対象物で発生した光の測定に基づいて、検査機能を十分に拡張することが可能となる。 The beam source may generate an excitation beam that excites the object to be inspected. In this case, the inspection function can be sufficiently expanded based on the measurement of the excitation beam absorbed by the inspection object and the measurement of the light generated in the inspection object by the irradiation of the excitation beam.
 本開示の一側面に係る検査方法は、検査対象物にビームを照射する照射ステップと、検査対象物で発生する光を検出する光検出ステップと、光検出ステップで検出された光のうちの一方位の光に関する一方位データを取得する取得ステップと、検査対象物から発生する全方位の光に関する全方位データに基づいて、一方位データの変換を行う処理ステップと、を備える。 The inspection method according to one aspect of the present disclosure is one of an irradiation step of irradiating an inspection object with a beam, a light detection step of detecting light generated in the inspection object, and light detected in the light detection step. It includes an acquisition step of acquiring one-sided data regarding directional light, and a processing step of converting one-sided data based on omnidirectional data related to omnidirectional light generated from an inspection object.
 この検査方法では、検査対象物で発生した光を検出し、検出された光のうちの一方位の光に関する一方位データを、検査対象物から発生する全方位の光に関する全方位データに基づいて変換する。このように、全方位データを用いて一方位データを変換することで、一方位データを測定する装置とは別の装置を新規に導入することなく、一方位データとは別のデータを取得できる。したがって、コスト面の負担増や、装置間での検査対象物に対するビームの位置ずれやビーム特性の相違といったシステム由来の測定精度のばらつきの問題を回避しつつ、検査機能を簡便に拡張することが可能となる。 In this inspection method, the light generated in the inspection object is detected, and the one-sided data regarding the one-sided light among the detected lights is based on the omnidirectional data regarding the omnidirectional light generated from the inspection object. Convert. In this way, by converting the one-sided data using the omnidirectional data, it is possible to acquire data different from the one-sided data without newly introducing a device different from the device for measuring the one-sided data. .. Therefore, it is possible to easily expand the inspection function while avoiding the problem of system-derived measurement accuracy variation such as increased cost burden, beam misalignment with respect to the inspection object between devices, and difference in beam characteristics. It will be possible.
 処理ステップでは、一方位データに関する第1のマッピングデータを生成してもよい。これにより、検査対象物における一方位データの分布を取得でき、検査対象物の検査を好適に実施できる。 In the processing step, the first mapping data regarding the one-sided data may be generated. As a result, the distribution of the one-sided data in the inspection target can be acquired, and the inspection of the inspection target can be suitably performed.
 処理ステップでは、全方位データに基づいて、第1のマッピングデータから全方位データに関する第2のマッピングデータを生成してもよい。これにより、検査対象物における全方位データの分布を取得でき、検査対象物の検査を好適に実施できる。また、第1のマッピングデータと全方位データとを組み合わせることで、全方位データの高分解能化が可能となる。 In the processing step, the second mapping data related to the omnidirectional data may be generated from the first mapping data based on the omnidirectional data. As a result, the distribution of omnidirectional data in the inspection target can be acquired, and the inspection of the inspection target can be suitably performed. Further, by combining the first mapping data and the omnidirectional data, it is possible to increase the resolution of the omnidirectional data.
 処理ステップでは、予め取得した検査対象物についての全方位データを用いてもよい。この場合、検査に要する時間の短縮化が図られる。 In the processing step, omnidirectional data about the inspection target acquired in advance may be used. In this case, the time required for the inspection can be shortened.
 光検出ステップでは、一方位データを取得する第1の光学系と、全方位データを取得する第2の光学系とを切り替え、取得ステップでは、一方位データ及び全方位データを取得してもよい。この場合、一方位データを測定する装置とは別の装置を新規に導入することなく、一方位データ及び全方位データの双方を取得できる。 In the light detection step, the first optical system for acquiring unidirectional data and the second optical system for acquiring omnidirectional data may be switched, and in the acquisition step, unidirectional data and omnidirectional data may be acquired. .. In this case, both the one-sided data and the omnidirectional data can be acquired without newly introducing a device different from the device for measuring the one-sided data.
 照射ステップでは、検査対象物を励起する励起ビームを照射してもよい。この場合、検査対象物に吸収された励起ビームの測定や、励起ビームの照射によって検査対象物で発生した光の測定に基づいて、検査機能を十分に拡張することが可能となる。 In the irradiation step, an excitation beam that excites the object to be inspected may be irradiated. In this case, the inspection function can be sufficiently expanded based on the measurement of the excitation beam absorbed by the inspection object and the measurement of the light generated in the inspection object by the irradiation of the excitation beam.
 本開示によれば、検査機能を簡便に拡張することが可能となる。 According to the present disclosure, the inspection function can be easily expanded.
本開示の第1実施形態に係る検査装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the inspection apparatus which concerns on 1st Embodiment of this disclosure. 図1に示した検査装置の処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the processing part of the inspection apparatus shown in FIG. ODPLマッピングデータの一例を示す図である。It is a figure which shows an example of ODPL mapping data. PLマッピングデータの一例を示す図である。It is a figure which shows an example of PL mapping data. 高分解能ODPLマッピングデータの一例を示す図である。It is a figure which shows an example of high-resolution ODPL mapping data. 図1に示した検査装置におけるPLマッピングデータ生成処理の一例を示すフローチャートである。It is a flowchart which shows an example of PL mapping data generation processing in the inspection apparatus shown in FIG. 図1に示した検査装置における高分解能ODPLマッピングデータ生成処理の一例を示すフローチャートである。It is a flowchart which shows an example of the high-resolution ODPL mapping data generation processing in the inspection apparatus shown in FIG. 本開示の第2実施形態に係る検査装置の構成を示す概略図である。It is a schematic diagram which shows the structure of the inspection apparatus which concerns on 2nd Embodiment of this disclosure. 図8に示した検査装置における光学系切り替え後の状態を示す概略図である。It is a schematic diagram which shows the state after the optical system switching in the inspection apparatus shown in FIG. 図8に示した検査装置の処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the processing part of the inspection apparatus shown in FIG. 図8に示した検査装置におけるPLマッピングデータ生成処理の一例を示すフローチャートである。It is a flowchart which shows an example of PL mapping data generation processing in the inspection apparatus shown in FIG. 図8に示した検査装置におけるODPLマッピングデータ生成処理の一例を示すフローチャートである。It is a flowchart which shows an example of the ODPL mapping data generation processing in the inspection apparatus shown in FIG. 第2の光学系の変形例を示す概略図である。It is a schematic diagram which shows the modification of the 2nd optical system.
 以下、図面を参照しながら、本開示の一側面に係る検査装置及び検査方法の好適な実施形態について詳細に説明する。
[第1実施形態]
Hereinafter, preferred embodiments of the inspection apparatus and inspection method according to one aspect of the present disclosure will be described in detail with reference to the drawings.
[First Embodiment]
 図1は、本開示の第1実施形態に係る検査装置の構成を示す概略図である。同図に示す検査装置1Aは、検査対象物Sの非破壊検査を行う装置である。本実施形態では、検査対象物Sとして、化合物半導体ウェハを例示する。より具体的には、検査対象物Sは、窒化ガリウム(GaN)半導体ウェハである。GaN半導体は、可視/紫外の発光デバイスのほか、高周波デバイス、パワーデバイスへの応用が期待される材料である。GaN半導体を用いたデバイスの特性は、貫通転位のような構造欠陥、点欠陥、微量不純物の混入によって大きく影響を受けることが知られている。検査装置1Aは、デバイスの歩留まりを改善し、量産化を推進すべく、GaN半導体ウェハの構造欠陥の分布及び欠陥の定量性の双方を検査する装置として構成されている。 FIG. 1 is a schematic diagram showing the configuration of the inspection device according to the first embodiment of the present disclosure. The inspection device 1A shown in the figure is a device for performing non-destructive inspection of the inspection object S. In this embodiment, a compound semiconductor wafer is exemplified as the inspection object S. More specifically, the inspection object S is a gallium nitride (GaN) semiconductor wafer. GaN semiconductors are expected to be applied to high-frequency devices and power devices as well as visible / ultraviolet light emitting devices. It is known that the characteristics of devices using GaN semiconductors are greatly affected by structural defects such as through dislocations, point defects, and contamination with trace impurities. The inspection device 1A is configured as a device for inspecting both the distribution of structural defects and the quantification of defects of a GaN semiconductor wafer in order to improve the yield of the device and promote mass production.
 検査装置1Aでは、GaN半導体ウェハの構造欠陥の分布及び欠陥の定量性の双方を検査するにあたり、検査対象物Sから発生する一方位の光に関する一方位データ、及び検査対象物Sから発生する全方位の光に関する全方位データを取得する。一方位データは、例えばフォトルミネッセンス測定(以下、PL測定)等の発光測定に基づくデータである。全方位データは、全方位フォトルミネッセンス測定(以下、ODPL測定)に基づくデータである。 In the inspection device 1A, when inspecting both the distribution of structural defects and the quantification of defects of the GaN semiconductor wafer, the one-sided data regarding the one-sided light generated from the inspection object S and all the one-sided data generated from the inspection object S are inspected. Get omnidirectional data about directional light. The one-sided data is data based on luminescence measurement such as photoluminescence measurement (hereinafter referred to as PL measurement). The omnidirectional data is data based on omnidirectional photoluminescence measurement (hereinafter referred to as ODPL measurement).
 発光測定は、検査対象物にビームを照射し、ビームによって励起された電子が基底状態に戻る際に発生する光を測定する手法である。PL測定では、ビームとして光が用いられ、カソードルミネッセンス測定では、ビームとして電子線が用いられる。発光測定では、検査対象物の構造欠陥の分布を検出可能である一方、半導体ウェハの品質担保の観点からは、欠陥の定量化や再現性の向上が求められている。 Luminescence measurement is a method of irradiating an object to be inspected with a beam and measuring the light generated when the electrons excited by the beam return to the ground state. In PL measurement, light is used as a beam, and in cathode luminescence measurement, an electron beam is used as a beam. While it is possible to detect the distribution of structural defects in the inspection object in the light emission measurement, from the viewpoint of quality assurance of the semiconductor wafer, it is required to quantify the defects and improve the reproducibility.
 ODPL測定は、積分球を用いて検査対象物に吸収された励起光のフォトン数及び全方位への発光フォトン数を測定する手法である。ODPL測定では、構造欠陥等を含む非輻射再結合に影響されるバンド端発光の発光量子効率(内部量子効率(IQE)又は外部量子効率(EQE))を算出できるため、欠陥の定量化が可能となる。内部量子効率(IQE)は、検査対象物で発生した発光フォトン数と、検査対象物で吸収された励起光のフォトン数との割合である。外部量子効率(EQE)は、検査対象物の外部に放出された発光フォトン数と、検査対象物で吸収された励起光のフォトン数との割合である。 ODPL measurement is a method of measuring the number of photons of excitation light absorbed by an object to be inspected and the number of emitted photons in all directions using an integrating sphere. In ODPL measurement, the emission quantum efficiency (internal quantum efficiency (IQE) or external quantum efficiency (EQE)) of band-end emission affected by non-radiative recombination including structural defects can be calculated, so defects can be quantified. Will be. Internal quantum efficiency (IQE) is the ratio of the number of emitted photons generated in the inspection object to the number of photons in the excitation light absorbed by the inspection object. External quantum efficiency (EQE) is the ratio of the number of emitted photons emitted to the outside of the inspection object to the number of photons of the excitation light absorbed by the inspection object.
 対物レンズを用いた場合のPL測定の空間分解能は、数μm~数サブμm程度である。これに対し、ODPL測定の空間分解能は、数百μm~数十μm程度であり、PL測定の空間分解能に対して1桁~2桁程度低いものとなっている。これは、ODPL測定では、検査対象物に向かうビームを積分球に通す必要があり、焦点距離の長いレンズを要する結果、ビームサイズの小径化に光学的な制約が生じることに起因している。そこで、検査装置1Aでは、全方位データ(ODPLデータ)に基づいて一方位データ(PLデータ)の変換を行うことにより、高分解能ODPLデータを取得できるようになっている。これにより、検査装置1Aでは、検査機能を簡便に拡張することが可能となっており、GaN半導体ウェハの構造欠陥の分布及び欠陥の定量性の双方を一つの装置内で高精度に検査することができる。 The spatial resolution of PL measurement when using an objective lens is about several μm to several sub μm. On the other hand, the spatial resolution of the ODPL measurement is about several hundred μm to several tens of μm, which is about one to two orders of magnitude lower than the spatial resolution of the PL measurement. This is because in the ODPL measurement, it is necessary to pass the beam toward the inspection object through the integrating sphere, which requires a lens having a long focal length, and as a result, there is an optical limitation in reducing the diameter of the beam size. Therefore, the inspection device 1A can acquire high-resolution ODPL data by converting the one-sided data (PL data) based on the omnidirectional data (ODPL data). As a result, the inspection function of the inspection device 1A can be easily expanded, and both the distribution of structural defects and the quantification of defects of the GaN semiconductor wafer can be inspected with high accuracy in one device. Can be done.
 検査装置1Aは、図1に示すように、ステージ2と、ビーム源3と、光検出器4と、光学系5とを備えている。また、検査装置1Aは、図2に示すように、処理部21と、表示部26とを備えている。 As shown in FIG. 1, the inspection device 1A includes a stage 2, a beam source 3, a photodetector 4, and an optical system 5. Further, as shown in FIG. 2, the inspection device 1A includes a processing unit 21 and a display unit 26.
 ステージ2は、検査対象物が載置されるサンプルステージ6と、サンプルステージ6をX方向に走査可能なXステージ7と、サンプルステージ6をY方向に走査可能なYステージ8とを有している。ここでは、X方向は、検査対象物Sの面内方向の一方向であり、Y方向は、検査対象物Sの面内方向においてY方向に直交する方向である。Z方向は、X方向及びY方向に直交する方向であり、検査対象物Sの厚さ方向に対応する。サンプルステージ6、Xステージ7、及びYステージ8は、いずれもベースプレート9上に設置されている。 The stage 2 has a sample stage 6 on which an object to be inspected is placed, an X stage 7 capable of scanning the sample stage 6 in the X direction, and a Y stage 8 capable of scanning the sample stage 6 in the Y direction. There is. Here, the X direction is one direction in the in-plane direction of the inspection object S, and the Y direction is a direction orthogonal to the Y direction in the in-plane direction of the inspection object S. The Z direction is a direction orthogonal to the X direction and the Y direction, and corresponds to the thickness direction of the inspection object S. The sample stage 6, the X stage 7, and the Y stage 8 are all installed on the base plate 9.
 ビーム源3は、検査対象物Sに照射するビームLを生成する部分である。ビーム源3におけるビームLの出射面は、例えばX方向を向くように配置され、光学系5に対して光学的に接続されている。ビーム源3としては、例えば検査対象物Sを励起するための励起光L1を出力する励起光源11を用いることができる。励起光源11は、例えばコヒーレント光源及びインコヒーレント光源のいずれであってもよい。コヒーレント光源としては、例えばエキシマレーザ(波長193nm)、YAGレーザ第2高調波(波長532nm)、YAGレーザ第4高調波(波長266nm)、半導体レーザ(例えばInGaN半導体レーザ(波長375nm~530nm)、赤色半導体レーザ、赤外半導体レーザ)などを用いることができる。インコヒーレント光源としては、例えば水銀ランプ(波長365nm)、LED光源などを用いることができる。励起光源11から出力される励起光L1は、パルス光及びCW光のいずれであってもよい。 The beam source 3 is a portion that generates a beam L to irradiate the inspection object S. The emission surface of the beam L in the beam source 3 is arranged so as to face the X direction, for example, and is optically connected to the optical system 5. As the beam source 3, for example, an excitation light source 11 that outputs excitation light L1 for exciting the inspection object S can be used. The excitation light source 11 may be, for example, either a coherent light source or an incoherent light source. Examples of the coherent light source include an excima laser (wavelength 193 nm), a YAG laser second harmonic (wavelength 532 nm), a YAG laser fourth harmonic (wavelength 266 nm), a semiconductor laser (for example, an InGaN semiconductor laser (wavelength 375 nm to 530 nm), red). (Semiconductor laser, infrared semiconductor laser) and the like can be used. As the incoherent light source, for example, a mercury lamp (wavelength 365 nm), an LED light source, or the like can be used. The excitation light L1 output from the excitation light source 11 may be either pulse light or CW light.
 光検出器4は、ビームLの照射により検査対象物Sで発生する光L2を検出する部分である。光検出器4の検出面は、例えばZ方向においてステージ2側を向くように配置され、光学系5に対して光学的に接続されている。ここでは、光検出器4は、励起光L1の照射によって検査対象物Sで励起された電子が基底状態に戻る際に発生する光L2を検出する。光検出器4は、検出結果を示す信号を処理部21(図2参照)に出力する。光検出器4としては、例えばCMOS、CCD、EM-CCD、光電子増倍管、SiPM(MPPC)、APD(SPAD)、フォトダイオード(アレイ状のものも含む)などを用いることができる。 The photodetector 4 is a portion that detects the light L2 generated in the inspection object S by the irradiation of the beam L. The detection surface of the photodetector 4 is arranged so as to face the stage 2 side in the Z direction, for example, and is optically connected to the optical system 5. Here, the photodetector 4 detects the light L2 generated when the electrons excited by the inspection object S by the irradiation of the excitation light L1 return to the ground state. The photodetector 4 outputs a signal indicating the detection result to the processing unit 21 (see FIG. 2). As the photodetector 4, for example, CMOS, CCD, EM-CDCD, photomultiplier tube, SiPM (MPPC), APD (SPAD), photodiode (including array-shaped one) and the like can be used.
 光学系5は、ステージ2上の検査対象物Sにビーム源3からのビームLを導くと共に、検査対象物Sで発生した光L2を光検出器4に導く部分である。より具体的には、光学系5は、対物レンズ12と、フィルタホルダ13とを含んで構成されている。対物レンズ12は、Z方向に走査可能なZステージ14に設けられている。フィルタホルダ13は、第1のフィルタ15と第2のフィルタ16とを備えている。フィルタホルダ13は、X方向にスライド自在に設けられており、第1のフィルタ15及び第2のフィルタ16の一方が光学系5の光路に配置される。 The optical system 5 is a portion that guides the beam L from the beam source 3 to the inspection object S on the stage 2 and guides the light L2 generated by the inspection object S to the photodetector 4. More specifically, the optical system 5 includes an objective lens 12 and a filter holder 13. The objective lens 12 is provided on the Z stage 14 that can scan in the Z direction. The filter holder 13 includes a first filter 15 and a second filter 16. The filter holder 13 is slidably provided in the X direction, and one of the first filter 15 and the second filter 16 is arranged in the optical path of the optical system 5.
 第1のフィルタ15は、PL測定の際に用いられるフィルタである。第1のフィルタ15が光学系5の光路に配置される場合、励起光源11からの励起光L1の少なくとも一部を反射し、対物レンズ12を通して検査対象物Sに導光する。第1のフィルタ15は、励起光L1の照射によって検査対象物Sで発生する光L2の少なくとも一部を透過させ、光検出器4に導光する。 The first filter 15 is a filter used for PL measurement. When the first filter 15 is arranged in the optical path of the optical system 5, at least a part of the excitation light L1 from the excitation light source 11 is reflected and guided to the inspection object S through the objective lens 12. The first filter 15 transmits at least a part of the light L2 generated in the inspection object S by the irradiation of the excitation light L1 and guides the light to the photodetector 4.
 第2のフィルタ16は、反射測定の際に用いられるフィルタである。反射測定は、検査対象物Sの表面における励起光L1の反射状態を調べることにより、異常点の抽出する測定である。第2のフィルタ16が光学系5の光路に配置される場合、励起光源11からの励起光L1の少なくとも一部を反射し、対物レンズ12を通して検査対象物Sに導光する。第2のフィルタ16は、検査対象物Sで反射した励起光L1の少なくとも一部を透過させ、光検出器4に導光する。対物レンズ12の開口数NAは、例えば0.5程度となっている。第2のフィルタ16としては、例えばダイクロイックミラー、バンドパスフィルタ等が用いられる。 The second filter 16 is a filter used for reflection measurement. The reflection measurement is a measurement for extracting an abnormal point by examining the reflected state of the excited light L1 on the surface of the inspection object S. When the second filter 16 is arranged in the optical path of the optical system 5, at least a part of the excitation light L1 from the excitation light source 11 is reflected and guided to the inspection object S through the objective lens 12. The second filter 16 transmits at least a part of the excitation light L1 reflected by the inspection object S and guides the light to the photodetector 4. The numerical aperture NA of the objective lens 12 is, for example, about 0.5. As the second filter 16, for example, a dichroic mirror, a bandpass filter, or the like is used.
 処理部21は、光検出器4から出力される検出信号に基づき、データ処理を行う部分である。処理部21は、物理的には、RAM、ROM等のメモリ、及びCPU等のプロセッサ(演算回路)、通信インターフェイス、ハードディスク等の格納部を備えたコンピュータである。かかるコンピュータとしては、例えばパーソナルコンピュータ、クラウドサーバ、スマートデバイス(スマートフォン、タブレット端末など)などが挙げられる。処理部21は、メモリに格納されるプログラムをCPUで実行することにより、図2に示すように、PLマッピングデータ生成部22、反射マッピングデータ生成部23、及び高分解能ODPLマッピングデータ生成部24として機能する。処理部21は、ODPLマッピングデータ格納部25を有している。処理部21は、モニタ等の表示部26と情報通信可能に接続されている。 The processing unit 21 is a unit that performs data processing based on the detection signal output from the photodetector 4. The processing unit 21 is physically a computer including a memory such as RAM and ROM, a processor (arithmetic circuit) such as a CPU, a communication interface, and a storage unit such as a hard disk. Examples of such a computer include a personal computer, a cloud server, a smart device (smartphone, tablet terminal, etc.) and the like. By executing the program stored in the memory on the CPU, the processing unit 21 serves as the PL mapping data generation unit 22, the reflection mapping data generation unit 23, and the high-resolution ODPL mapping data generation unit 24, as shown in FIG. Function. The processing unit 21 has an ODPL mapping data storage unit 25. The processing unit 21 is connected to a display unit 26 such as a monitor so that information can be communicated.
 PLマッピングデータ生成部22は、PLデータ(一方位データ)に関するPLマッピングデータ(第1のマッピングデータ)を生成する部分である。PLマッピングデータ生成部22は、PL測定時における光検出器4の検出信号と、その測定座標とに基づいて、検査対象物SについてのPLマッピングデータを生成する。PLマッピングデータ生成部22は、生成したPLマッピングデータを高分解能ODPLマッピングデータ生成部24に出力する。 The PL mapping data generation unit 22 is a part that generates PL mapping data (first mapping data) related to PL data (one-sided data). The PL mapping data generation unit 22 generates PL mapping data for the inspection object S based on the detection signal of the photodetector 4 at the time of PL measurement and the measurement coordinates thereof. The PL mapping data generation unit 22 outputs the generated PL mapping data to the high-resolution ODPL mapping data generation unit 24.
 反射マッピングデータ生成部23は、反射データに関するマッピングデータを生成する部分である。反射マッピングデータ生成部23は、反射測定時における光検出器4の検出信号と、その測定座標とに基づいて、検査対象物Sについての反射マッピングデータを生成する。反射マッピングデータ生成部23は、生成した反射マッピングデータを高分解能ODPLマッピングデータ生成部24に出力する。 The reflection mapping data generation unit 23 is a part that generates mapping data related to the reflection data. The reflection mapping data generation unit 23 generates reflection mapping data for the inspection object S based on the detection signal of the photodetector 4 at the time of reflection measurement and the measurement coordinates thereof. The reflection mapping data generation unit 23 outputs the generated reflection mapping data to the high-resolution ODPL mapping data generation unit 24.
 高分解能ODPLマッピングデータ生成部24は、ODPLデータ(全方位データ)に基づいて、PLマッピングデータ(第1のマッピングデータ)から高分解能ODPLマッピングデータ(第2のマッピングデータ)を生成する部分である。本実施形態では、検査対象物SについてのODPLマッピングデータがODPLマッピングデータ格納部25に予め格納されている。 The high-resolution ODPL mapping data generation unit 24 is a portion that generates high-resolution ODPL mapping data (second mapping data) from PL mapping data (first mapping data) based on ODPL data (omnidirectional data). .. In the present embodiment, the ODPL mapping data for the inspection object S is stored in advance in the ODPL mapping data storage unit 25.
 高分解能ODPLマッピングデータ生成部24は、PLマッピングデータ生成部22からPLマッピングデータを受け取ると、ODPLマッピングデータ格納部25に格納されているODPLマッピングデータを参照し、当該ODPLマッピングデータを用いてPLマッピングデータを高分解能ODPLマッピングデータに変換する。高分解能ODPLマッピングデータ生成部24は、生成した高分解能ODPLマッピングデータに基づく検査結果画像を表示部26に出力する。高分解能ODPLマッピングデータ生成部24は、生成した高分解能ODPLマッピングデータとPLマッピングデータとを重畳した画像を検査結果画像として表示部26に出力してもよい。 When the high-resolution ODPL mapping data generation unit 24 receives the PL mapping data from the PL mapping data generation unit 22, the high-resolution ODPL mapping data generation unit 24 refers to the ODPL mapping data stored in the ODPL mapping data storage unit 25, and uses the ODPL mapping data to PL. Convert the mapping data to high resolution ODPL mapping data. The high-resolution ODPL mapping data generation unit 24 outputs an inspection result image based on the generated high-resolution ODPL mapping data to the display unit 26. The high-resolution ODPL mapping data generation unit 24 may output an image in which the generated high-resolution ODPL mapping data and the PL mapping data are superimposed to the display unit 26 as an inspection result image.
 ODPLマッピングデータ格納部25に予め格納されているODPLマッピングデータは、例えば事前のODPL測定で得られたデータである。このデータは、検査対象物SがGaN半導体ウェハである場合、例えば同一ロット内でドープ濃度や欠陥が同一であると想定されるGaN半導体ウェハのカッティングサンプルに対して予めODPL測定を行うことによって取得することができる。 The ODPL mapping data stored in advance in the ODPL mapping data storage unit 25 is, for example, data obtained by prior ODPL measurement. This data is acquired when the inspection target S is a GaN semiconductor wafer, for example, by performing ODPL measurement in advance on a cutting sample of a GaN semiconductor wafer that is assumed to have the same doping concentration and defects in the same lot. can do.
 PLマッピングデータの変換には、下記式(1)~(3)を用いることができる。下記式(1)~(3)において、ηODPL(x,y)は、検査対象物Sの座標(x,y)においてODPL測定で得られた発光量子効率(内部量子効率(IQE)又は外部量子効率(EQE))である。PNemPL(x,y)は、検査対象物Sの座標(x,y)においてPL測定で得られた発光フォトン数である。StartWLは、検査対象物Sの対象発光領域における最小波長である。EndWLは、検査対象物Sの対象発光領域における最大波長である。I(λ,x,y)は、検査対象物Sの座標(x,y)においてPL測定で得られた発光強度である。WL(λ)は、発光領域における波長であり、αは変換係数である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
The following equations (1) to (3) can be used for the conversion of the PL mapping data. In the following equations (1) to (3), the η ODPL (x 0 , y 0 ) is the emission quantum efficiency (internal quantum efficiency (internal quantum efficiency (internal quantum efficiency (internal quantum efficiency)) obtained by the ODPL measurement at the coordinates (x 0 , y 0 ) of the inspection object S. IQE) or external quantum efficiency (EQE)). PN emPL (x, y) is the number of luminescent photons obtained by PL measurement at the coordinates (x, y) of the inspection object S. StartWL is the minimum wavelength in the target emission region of the inspection target S. EndWL is the maximum wavelength in the target emission region of the inspection target S. I (λ, x, y) is the emission intensity obtained by PL measurement at the coordinates (x, y) of the inspection object S. WL (λ) is the wavelength in the light emitting region, and α is the conversion coefficient.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 上記式(1)~(3)は、ODPL測定時の検査対象物Sの各座標における発光量子効率をPL測定時の検査対象物Sの各座標での発光フォトン数で除算した除算値を求めるものである。上記式(1)~(3)を用いることにより、検査対象物Sの各座標における内部量子効率(IQE)又は外部量子効率(EQE)の相対的な評価が可能となる。上記式(1)~(3)で求めた除算値では、PL測定時の分解能が維持されるため、ODPLマッピングデータに対して高分解能化された高分解能ODPLマッピングデータを生成することが可能となる。 The above equations (1) to (3) obtain a division value obtained by dividing the emission quantum efficiency at each coordinate of the inspection object S at the time of ODPL measurement by the number of emission photons at each coordinate of the inspection object S at the time of PL measurement. It is a thing. By using the above equations (1) to (3), it is possible to relatively evaluate the internal quantum efficiency (IQE) or the external quantum efficiency (EQE) at each coordinate of the inspection object S. Since the resolution at the time of PL measurement is maintained by the division values obtained by the above equations (1) to (3), it is possible to generate high-resolution ODPL mapping data with higher resolution than the ODPL mapping data. Become.
 検査対象物Sへの励起光L1の照射条件として、励起光L1の波長又はスポットサイズを確認でき、且つ励起光L1の放射照度が一定であることが必要となる。また、検査対象物Sへの励起光L1の入射角が一定であることが必要となる。PLマッピングデータから高分解能ODPLマッピングデータへの変換は、検査対象物Sでの励起光L1の吸収量が一定である領域に適用することが好ましい。励起光L1の吸収量の判断は、検査対象物Sの表面の研磨状態が一定であることの確認、若しくはPL測定時の励起光L1の反射量が一定であることの確認よって行われる。 As the irradiation condition of the excitation light L1 to the inspection object S, it is necessary that the wavelength or the spot size of the excitation light L1 can be confirmed and the irradiance of the excitation light L1 is constant. Further, it is necessary that the angle of incidence of the excitation light L1 on the inspection object S is constant. The conversion from the PL mapping data to the high-resolution ODPL mapping data is preferably applied to a region where the absorption amount of the excitation light L1 in the inspection object S is constant. The determination of the absorption amount of the excitation light L1 is performed by confirming that the polished state of the surface of the inspection object S is constant, or confirming that the reflection amount of the excitation light L1 at the time of PL measurement is constant.
 本実施形態では、励起光L1の吸収量の判断は、後者のPL測定時の励起光L1の反射量の測定によって行われる。すなわち、高分解能ODPLマッピングデータ生成部24は、反射マッピングデータ生成部23から反射マッピングデータを受け取ると、当該反射マッピングデータに基づいて検査対象物Sの各座標における反射量を所定の閾値と比較する。高分解能ODPLマッピングデータ生成部24は、反射量が閾値を超えている座標若しくは閾値に満たない座標を異常点として抽出し、その座標についてのデータを検査結果画像から除外することができる。 In the present embodiment, the absorption amount of the excitation light L1 is determined by measuring the reflection amount of the excitation light L1 at the time of the latter PL measurement. That is, when the high-resolution ODPL mapping data generation unit 24 receives the reflection mapping data from the reflection mapping data generation unit 23, the high-resolution ODPL mapping data generation unit 24 compares the reflection amount at each coordinate of the inspection object S with a predetermined threshold value based on the reflection mapping data. .. The high-resolution ODPL mapping data generation unit 24 can extract coordinates whose reflection amount exceeds the threshold value or coordinates below the threshold value as abnormal points, and can exclude data about those coordinates from the inspection result image.
 以下、各マッピングデータについて例示する。図3は、ODPLマッピングデータの一例を示す図である。ここでは、直径2インチのGaN半導体ウェハを検査対象物とした。励起光のスポット径はφ100μm、測定間隔は2mmピッチとした。図3の例では、GaN半導体ウェハの各座標におけるEQEの値がスケールによる色分けにてマッピングされている。図4は、同一サンプルに対するPLマッピングデータであり、図3における破線枠A内を拡大して示している。 The following is an example of each mapping data. FIG. 3 is a diagram showing an example of ODPL mapping data. Here, a GaN semiconductor wafer having a diameter of 2 inches was used as an inspection target. The spot diameter of the excitation light was φ100 μm, and the measurement interval was 2 mm pitch. In the example of FIG. 3, the EQE values at each coordinate of the GaN semiconductor wafer are mapped by color coding by scale. FIG. 4 is PL mapping data for the same sample, and the inside of the broken line frame A in FIG. 3 is enlarged and shown.
 図4中の黒点部分は、GaN半導体ウェハの貫通転位に起因する発光強度の減少箇所であると考えられる。図3に示したODPLマッピングデータを参照すると、破線枠A内のEQEは、0.3%と見積もられる。したがって、上記式(1)~(3)を用いてPLマッピングデータの変換を行うことにより、図5に示すように、高分解能ODPLマッピングデータを取得することができる。図5に示す高分解能ODPLマッピングデータによれば、ODPL測定(EQE)による欠陥の定量化が可能となると共に、PL測定による構造欠陥の分布を確認することができる。 The black spot portion in FIG. 4 is considered to be a portion where the emission intensity is reduced due to the through dislocation of the GaN semiconductor wafer. With reference to the ODPL mapping data shown in FIG. 3, the EQE in the dashed line frame A is estimated to be 0.3%. Therefore, by converting the PL mapping data using the above equations (1) to (3), high-resolution ODPL mapping data can be acquired as shown in FIG. According to the high-resolution ODPL mapping data shown in FIG. 5, defects can be quantified by ODPL measurement (EQE), and the distribution of structural defects can be confirmed by PL measurement.
 次に、検査装置1Aの動作について説明する。この検査装置1Aでは、検査対象物Sの検査にあたり、PLマッピングデータ生成処理及び高分解能ODPLマッピングデータ生成処理がこの順に実行される。 Next, the operation of the inspection device 1A will be described. In the inspection device 1A, the PL mapping data generation process and the high-resolution ODPL mapping data generation process are executed in this order when inspecting the inspection object S.
 図6は、PLマッピングデータ生成処理の一例を示すフローチャートである。同図に示すように、PLマッピングデータ生成処理では、まず、検査対象物Sのサイズに合わせて測定座標(x,y)数nの設定がなされる(ステップS01)。次に、ステージ2が駆動し、励起光L1の照射位置が検査対象物Sにおける測定点iに移動する(ステップS02)。この際、光学系5の光路上には、第1のフィルタ15が配置される。そして、検査対象物Sに励起光L1が照射され、測定点iにおけるPL測定が実行される(ステップS03)。 FIG. 6 is a flowchart showing an example of PL mapping data generation processing. As shown in the figure, in the PL mapping data generation process, first, the number n of measurement coordinates (x, y) is set according to the size of the inspection object S (step S01). Next, the stage 2 is driven, and the irradiation position of the excitation light L1 moves to the measurement point i in the inspection object S (step S02). At this time, the first filter 15 is arranged on the optical path of the optical system 5. Then, the excitation light L1 is irradiated to the inspection object S, and the PL measurement at the measurement point i is executed (step S03).
 測定点iでのPL測定の実行後、フィルタの切り替えが行われる(ステップS04)。すなわち、フィルタホルダ13がX方向にスライドし、光学系5の光路上に第2のフィルタ16が配置される。そして、検査対象物Sに励起光L1が照射され、測定点iにおける反射測定が実行される(ステップS05)。PL測定及び反射測定を終えた後、測定点iがnに達したか否かが判断される(ステップS06)。測定点iがnに達したと判断された場合、各座標でのPL測定結果に基づくPLマッピングデータ、及び各座標での反射測定結果に基づく反射マッピングデータが生成され、PLマッピングデータ生成処理が終了する。測定点iがnに達していないと判断された場合、ステップS02に戻り、励起光L1の照射位置を測定点(i+1)に移動させた後、ステップS03~ステップS06の処理が繰り返し実行される。 After executing the PL measurement at the measurement point i, the filter is switched (step S04). That is, the filter holder 13 slides in the X direction, and the second filter 16 is arranged on the optical path of the optical system 5. Then, the excitation light L1 is irradiated to the inspection object S, and the reflection measurement at the measurement point i is executed (step S05). After finishing the PL measurement and the reflection measurement, it is determined whether or not the measurement point i has reached n (step S06). When it is determined that the measurement point i has reached n, PL mapping data based on the PL measurement result at each coordinate and reflection mapping data based on the reflection measurement result at each coordinate are generated, and the PL mapping data generation process is performed. finish. If it is determined that the measurement point i has not reached n, the process returns to step S02, the irradiation position of the excitation light L1 is moved to the measurement point (i + 1), and then the processes of steps S03 to S06 are repeatedly executed. ..
 図7は、高分解能ODPLマッピングデータ生成処理の一例を示すフローチャートである。同図に示すように、高分解能ODPLマッピングデータ生成処理では、まず、PLマッピングデータ生成処理で生成されたPLマッピングデータの参照が行われる(ステップS11)。また、PLマッピングデータ生成処理で生成されたPLマッピングデータの参照が行われる(ステップS12)。ステップS11及びステップS12は、いずれを先に実行してもよい。次に、反射マッピングデータに基づいて、励起光L1の反射量と閾値との比較がなされ、反射量が閾値を外れた座標が異常点として抽出される(ステップS13)。 FIG. 7 is a flowchart showing an example of high resolution ODPL mapping data generation processing. As shown in the figure, in the high-resolution ODPL mapping data generation process, first, the PL mapping data generated in the PL mapping data generation process is referred to (step S11). In addition, the PL mapping data generated in the PL mapping data generation process is referenced (step S12). Either step S11 or step S12 may be executed first. Next, based on the reflection mapping data, the reflection amount of the excitation light L1 is compared with the threshold value, and the coordinates where the reflection amount is out of the threshold value are extracted as abnormal points (step S13).
 異常点の抽出の後、ODPLマッピングデータ格納部25に格納されているODPLマッピングデータの参照が行われる(ステップS14)。このODPLマッピングデータに基づいて、上記式(1)~(3)を用いたPLマッピングデータの変換が行われる(ステップS15)。これにより、高分解能ODPLマッピングデータが生成され(ステップS16)、高分解能ODPLマッピングデータ生成処理が終了する。 After extracting the abnormal points, the ODPL mapping data stored in the ODPL mapping data storage unit 25 is referred to (step S14). Based on this ODPL mapping data, conversion of PL mapping data using the above equations (1) to (3) is performed (step S15). As a result, high-resolution ODPL mapping data is generated (step S16), and the high-resolution ODPL mapping data generation process is completed.
 以上説明したように、検査装置1Aでは、検査対象物Sで発生した光L2を検出し、検出された光L2のうちの一方位の光に関するPLデータ(一方位データ)を、検査対象物Sから発生する全方位の光に関するODPLデータ(全方位データ)に基づいて変換する。このように、ODPLデータを用いてPLデータを変換することで、PL測定装置とは別のODPL測定装置を新規に導入することなく、PLデータとは別のデータを取得して検査対象物Sの検査を実施できる。したがって、コスト面の負担増や、装置間での検査対象物Sに対するビームLの位置ずれやビーム特性の相違といったシステム由来の測定精度のばらつきの問題を回避しつつ、検査機能を簡便に拡張することができる。 As described above, the inspection device 1A detects the light L2 generated in the inspection target object S, and collects PL data (one-sided data) related to the one-order light of the detected light L2 in the inspection target object S. Converts based on ODPL data (omnidirectional data) related to omnidirectional light generated from. In this way, by converting the PL data using the ODPL data, data different from the PL data can be acquired and the inspection object S can be obtained without newly introducing an ODPL measuring device different from the PL measuring device. Can be inspected. Therefore, the inspection function can be easily expanded while avoiding the problems of system-derived measurement accuracy variation such as an increase in cost burden, a positional deviation of the beam L with respect to the inspection object S between the devices, and a difference in beam characteristics. be able to.
 検査装置1Aでは、処理部21は、PLデータに関するPLマッピングデータ(第1のマッピングデータ)を生成する。これにより、検査対象物SにおけるPLデータの分布を取得でき、検査対象物Sの検査を好適に実施できる。 In the inspection device 1A, the processing unit 21 generates PL mapping data (first mapping data) related to PL data. As a result, the distribution of PL data in the inspection target S can be acquired, and the inspection of the inspection target S can be suitably performed.
 検査装置1Aでは、処理部21は、ODPLデータに基づいて、PLマッピングデータから全方位データに関する高分解能ODPLマッピングデータ(第2のマッピングデータ)を生成する。これにより、検査対象物SにおけるODPLデータの分布を取得でき、検査対象物Sの検査を好適に実施できる。また、PLマッピングデータとODPLデータとを組み合わせることで、ODPLデータの高分解能化が可能となる。 In the inspection device 1A, the processing unit 21 generates high-resolution ODPL mapping data (second mapping data) related to omnidirectional data from the PL mapping data based on the ODPL data. As a result, the distribution of ODPL data in the inspection target S can be acquired, and the inspection of the inspection target S can be suitably performed. Further, by combining the PL mapping data and the ODPL data, it is possible to increase the resolution of the ODPL data.
 検査装置1Aでは、処理部21において、検査対象物SについてのODPLデータが予め格納されている。これにより、検査対象物S毎にODPLデータを取得する手間を省くことができ、検査に要する時間の短縮化が図られる。 In the inspection device 1A, the ODPL data for the inspection target S is stored in advance in the processing unit 21. As a result, it is possible to save the trouble of acquiring ODPL data for each inspection target object S, and it is possible to shorten the time required for inspection.
 検査装置1Aでは、ビーム源3が検査対象物Sを励起する励起光L1を生成する。これにより、検査対象物Sに吸収された励起光L2の測定や、励起光L2の照射によって検査対象物Sで発生した光の測定に基づいて、検査機能を十分に拡張することが可能となる。
[第2実施形態]
In the inspection device 1A, the beam source 3 generates the excitation light L1 that excites the inspection object S. This makes it possible to sufficiently expand the inspection function based on the measurement of the excitation light L2 absorbed by the inspection object S and the measurement of the light generated in the inspection object S by the irradiation of the excitation light L2. ..
[Second Embodiment]
 図8は、本開示の第2実施形態に係る検査装置の構成を示す概略図である。同図に示すように、第2実施形態に係る検査装置1Bは、光学系5が、PLデータ(一方位データ)を取得する第1の光学系5A(図8参照)と、ODPLデータ(全方位データ)を取得する第2の光学系5B(図9参照)と、第1の光学系5Aと第2の光学系5Bとを切り替える切替部31とを有している点で、第1実施形態と異なっている。 FIG. 8 is a schematic diagram showing the configuration of the inspection device according to the second embodiment of the present disclosure. As shown in the figure, in the inspection device 1B according to the second embodiment, the optical system 5 has the first optical system 5A (see FIG. 8) for acquiring PL data (one-sided data) and the ODPL data (all). The first embodiment is performed in that it has a second optical system 5B (see FIG. 9) for acquiring (orientation data) and a switching unit 31 for switching between the first optical system 5A and the second optical system 5B. It is different from the morphology.
 第1の光学系5Aは、第1実施形態の検査装置1Aの光学系5と同等の構成を有している。第2の光学系5Bは、対物レンズ12に代えて積分球33が光路上に配置される点で第1の光学系5Aと相違している。本実施形態では、切替部31は、X方向に走査可能なXZステージ32によって構成されている。対物レンズ12及び積分球33は、XZステージ32の下面側にX方向に離間して設けられている。XZステージ32がX方向に走査することにより、対物レンズ12及び積分球33の一方が光学系5の光路に配置される。図8に示すように、対物レンズ12が光学系5の光路に配置される場合、PLデータを取得する第1の光学系5Aが構成される。一方、図9に示すように、積分球33が光学系5の光路に配置される場合、ODPLデータを取得する第2の光学系5Bが構成される。 The first optical system 5A has the same configuration as the optical system 5 of the inspection device 1A of the first embodiment. The second optical system 5B differs from the first optical system 5A in that the integrating sphere 33 is arranged on the optical path instead of the objective lens 12. In the present embodiment, the switching unit 31 is configured by an XZ stage 32 that can scan in the X direction. The objective lens 12 and the integrating sphere 33 are provided on the lower surface side of the XZ stage 32 so as to be separated from each other in the X direction. As the XZ stage 32 scans in the X direction, one of the objective lens 12 and the integrating sphere 33 is arranged in the optical path of the optical system 5. As shown in FIG. 8, when the objective lens 12 is arranged in the optical path of the optical system 5, the first optical system 5A for acquiring PL data is configured. On the other hand, as shown in FIG. 9, when the integrating sphere 33 is arranged in the optical path of the optical system 5, a second optical system 5B for acquiring ODPL data is configured.
 図10に示すように、積分球33は、分光器34に光学的に接続されている。また、処理部21は、上述したPLマッピングデータ生成部22と、ODPLマッピングデータ生成部35とを有している。励起光L1の照射によって検査対象物Sで生じた光L2は、積分球33内で拡散反射を繰り返して空間的に積分された後、光ファイバFを介して分光器34に導光される。分光器34は、検出結果に基づく結果信号をODPLマッピングデータ生成部35に出力する。 As shown in FIG. 10, the integrating sphere 33 is optically connected to the spectroscope 34. Further, the processing unit 21 has the PL mapping data generation unit 22 described above and the ODPL mapping data generation unit 35. The light L2 generated in the inspection object S by the irradiation of the excitation light L1 is spatially integrated by repeating diffuse reflection in the integrating sphere 33, and then guided to the spectroscope 34 via the optical fiber F. The spectroscope 34 outputs a result signal based on the detection result to the ODPL mapping data generation unit 35.
 ODPLマッピングデータ生成部35は、ODPLデータ(全方位データ)に関するODPLマッピングデータを生成する部分である。ODPLマッピングデータ生成部35は、ODPL測定時における分光器34の検出信号と、その測定座標とに基づいて、検査対象物SについてのODPLマッピングデータを生成する。ODPLマッピングデータ生成部35は、生成したODPLマッピングデータを表示部26に出力する。 The ODPL mapping data generation unit 35 is a part that generates ODPL mapping data related to ODPL data (omnidirectional data). The ODPL mapping data generation unit 35 generates ODPL mapping data for the inspection object S based on the detection signal of the spectroscope 34 at the time of ODPL measurement and the measurement coordinates thereof. The ODPL mapping data generation unit 35 outputs the generated ODPL mapping data to the display unit 26.
 次に、検査装置1Bの動作について説明する。検査装置1Bでは、検査対象物Sの検査にあたり、PLマッピングデータ生成処理及びODPLマッピングデータ生成処理が選択的に実行される。 Next, the operation of the inspection device 1B will be described. In the inspection device 1B, the PL mapping data generation process and the ODPL mapping data generation process are selectively executed in the inspection of the inspection object S.
 図11は、PLマッピングデータ生成処理の一例を示すフローチャートである。同図に示すように、PLマッピングデータ生成処理では、まず、検査対象物Sのサイズに合わせて測定座標(x,y)数nの設定がなされる(ステップS21)。次に、XZステージ32が駆動し、対物レンズ12が光学系5の光路に配置される。これにより、PLデータを取得するための第1の光学系5Aがセットされる(ステップS22)。第1の光学系5Aのセットの後、ステージ2が駆動し、励起光L1の照射位置が検査対象物Sにおける測定点iに移動する(ステップS23)。この際、第1の光学系5Aの光路上には、第1のフィルタ15が配置される。そして、検査対象物Sに励起光L1が照射され、測定点iにおけるPL測定が実行される(ステップS24)。 FIG. 11 is a flowchart showing an example of PL mapping data generation processing. As shown in the figure, in the PL mapping data generation process, first, the number n of measurement coordinates (x, y) is set according to the size of the inspection object S (step S21). Next, the XZ stage 32 is driven, and the objective lens 12 is arranged in the optical path of the optical system 5. As a result, the first optical system 5A for acquiring PL data is set (step S22). After setting the first optical system 5A, the stage 2 is driven and the irradiation position of the excitation light L1 moves to the measurement point i in the inspection object S (step S23). At this time, the first filter 15 is arranged on the optical path of the first optical system 5A. Then, the excitation light L1 is irradiated to the inspection object S, and the PL measurement at the measurement point i is executed (step S24).
 測定点iでのPL測定を終えた後、測定点iがnに達したか否かが判断される(ステップS25)。測定点iがnに達したと判断された場合、各座標でのPL測定結果に基づくPLマッピングデータが生成され、PLマッピングデータ生成処理が終了する。測定点iがnに達していないと判断された場合、ステップS23に戻り、励起光L1の照射位置を測定点(i+1)に移動させた後、ステップS23~ステップS25の処理が繰り返し実行される。 After completing the PL measurement at the measurement point i, it is determined whether or not the measurement point i has reached n (step S25). When it is determined that the measurement point i has reached n, PL mapping data based on the PL measurement result at each coordinate is generated, and the PL mapping data generation process ends. If it is determined that the measurement point i has not reached n, the process returns to step S23, the irradiation position of the excitation light L1 is moved to the measurement point (i + 1), and then the processes of steps S23 to S25 are repeatedly executed. ..
 図12は、ODPLマッピングデータ生成処理の一例を示すフローチャートである。同図に示すように、ODPLマッピングデータ生成処理では、まず、検査対象物Sのサイズに合わせて測定座標(x,y)数nの設定がなされる(ステップS31)。次に、XZステージ32が駆動し、積分球33が光学系5の光路に配置される。これにより、ODPLデータを取得するための第2の光学系5Bがセットされる(ステップS32)。第2の光学系5Bのセットの後、ステージ2が駆動し、励起光L1の照射位置が検査対象物Sにおける測定点iに移動する(ステップS33)。この際、第2の光学系5Bの光路上には、第1のフィルタ15が配置される。そして、検査対象物Sに励起光L1が照射され、測定点iにおけるODPL測定が実行される(ステップS34)。 FIG. 12 is a flowchart showing an example of the ODPL mapping data generation process. As shown in the figure, in the ODPL mapping data generation process, first, the number n of measurement coordinates (x, y) is set according to the size of the inspection object S (step S31). Next, the XZ stage 32 is driven, and the integrating sphere 33 is arranged in the optical path of the optical system 5. As a result, the second optical system 5B for acquiring ODPL data is set (step S32). After setting the second optical system 5B, the stage 2 is driven and the irradiation position of the excitation light L1 moves to the measurement point i in the inspection object S (step S33). At this time, the first filter 15 is arranged on the optical path of the second optical system 5B. Then, the excitation light L1 is irradiated to the inspection object S, and the ODPL measurement at the measurement point i is executed (step S34).
 測定点iでのODPL測定を終えた後、測定点iがnに達したか否かが判断される(ステップS35)。測定点iがnに達したと判断された場合、各座標でのODPL測定結果に基づくODPLマッピングデータが生成され、ODPLマッピングデータ生成処理が終了する。測定点iがnに達していないと判断された場合、ステップS33に戻り、励起光L1の照射位置を測定点(i+1)に移動させた後、ステップS33~ステップS35の処理が繰り返し実行される。 After finishing the ODPL measurement at the measurement point i, it is determined whether or not the measurement point i has reached n (step S35). When it is determined that the measurement point i has reached n, ODPL mapping data based on the ODPL measurement result at each coordinate is generated, and the ODPL mapping data generation process ends. If it is determined that the measurement point i has not reached n, the process returns to step S33, the irradiation position of the excitation light L1 is moved to the measurement point (i + 1), and then the processes of steps S33 to S35 are repeatedly executed. ..
 以上のような検査装置1Bでは、光学系5が、PLデータ(一方位データ)を取得する第1の光学系5Aと、ODPLデータ(全方位データ)を取得する第2の光学系5Bと、第1の光学系5Aと第2の光学系5Bとを切り替える切替部31とを有している。これにより、PLデータを測定する装置とは別の装置を新規に導入することなく、PLデータ及びODPLデータの双方を取得できる。同一装置内でPLデータ及びODPLデータの双方の取得機能を有することで、コスト面の問題を解消できるほか、装置間での検査対象物Sに対するビームLの位置ずれやビーム特性の相違といったシステム由来の測定精度のばらつきが生じることも回避できる。 In the inspection device 1B as described above, the optical system 5 has a first optical system 5A for acquiring PL data (one-sided data), a second optical system 5B for acquiring ODPL data (omnidirectional data), and the like. It has a switching unit 31 for switching between the first optical system 5A and the second optical system 5B. As a result, both PL data and ODPL data can be acquired without newly introducing a device different from the device for measuring PL data. Having both PL data and ODPL data acquisition functions in the same device can solve cost problems, and is derived from the system such as the position shift of the beam L with respect to the inspection object S and the difference in beam characteristics between the devices. It is also possible to avoid variations in the measurement accuracy of.
 ODPL測定では、積分球33と検査対象物Sとの間の距離が0になることが理想である。しかしながら、当該距離を0にすると、第2の光学系5Bをセットする際に検査対象物Sに積分球33が接触し、検査対象物Sを傷付けてしまうことが考えられる。一方、積分球33と検査対象物Sとの距離が離れすぎてしまうと、検査対象物Sからの光L2の放射角度(すなわち、積分球33への光L2の取り込み効率)が検査対象物Sの位置によって不均一になってしまうおそれがある。検査対象物SがGaN半導体である場合、例えば半導体プロセス前のGaN半導体ウェハにはアライメントマークが付されておらず、位置の再現性の担保が難しいという事情もある。 In ODPL measurement, it is ideal that the distance between the integrating sphere 33 and the inspection object S is 0. However, when the distance is set to 0, it is conceivable that the integrating sphere 33 comes into contact with the inspection object S when the second optical system 5B is set, and the inspection object S is damaged. On the other hand, if the distance between the integrating sphere 33 and the inspection object S is too large, the radiation angle of the light L2 from the inspection object S (that is, the efficiency of taking the light L2 into the integrating sphere 33) becomes the inspection object S. There is a risk of unevenness depending on the position of. When the inspection object S is a GaN semiconductor, for example, the alignment mark is not attached to the GaN semiconductor wafer before the semiconductor process, and it is difficult to guarantee the reproducibility of the position.
 これに対し、同一装置内でPLデータ及びODPLデータの双方の取得機能を有する場合、PLデータの取得時にフォーカスマップを合わせて取得しておくことができる。こうすると、ODPLデータの取得時にフォーカスマップを利用し、積分球33と検査対象物Sとの間の距離を各座標において一定に保つことが可能となる。 On the other hand, if both PL data and ODPL data acquisition functions are provided in the same device, the focus map can be acquired together with the acquisition of PL data. By doing so, it is possible to use the focus map when acquiring the ODPL data and keep the distance between the integrating sphere 33 and the inspection object S constant at each coordinate.
 また、検査装置1Bでは、切替部31において、XZステージ32の下面側にX方向に積分球33が配置されている。これにより、ODPLデータ取得の際、積分球33を検査対象物Sの直上に配置するφ配置が可能となっている。φ配置の採用により、積分球33の内部に検査対象物Sを配置する2π配置とは異なり、検査対象物Sのサイズの制限を受けることなくODPLデータの取得を実施できる。 Further, in the inspection device 1B, the integrating sphere 33 is arranged in the X direction on the lower surface side of the XZ stage 32 in the switching unit 31. This makes it possible to arrange the integrating sphere 33 directly above the inspection object S when acquiring the ODPL data. By adopting the φ arrangement, the ODPL data can be acquired without being restricted by the size of the inspection object S, unlike the 2π arrangement in which the inspection object S is arranged inside the integrating sphere 33.
 検査装置1Bは、第1実施形態と同様に、処理部21が高分解能ODPLマッピングデータ生成部24を有していてもよい。この場合、高分解能ODPLマッピングデータ生成部24は、PLマッピングデータ生成部22から受け取ったPLマッピングデータと、ODPLマッピングデータ生成部35から受け取ったODPLマッピングデータとを参照し、上記式(1)~(3)を用いてPLマッピングデータを変換することにより高分解能ODPLマッピングデータを生成する。 In the inspection device 1B, the processing unit 21 may have a high-resolution ODPL mapping data generation unit 24, as in the first embodiment. In this case, the high-resolution ODPL mapping data generation unit 24 refers to the PL mapping data received from the PL mapping data generation unit 22 and the ODPL mapping data received from the ODPL mapping data generation unit 35, and the above equations (1) to High-resolution ODPL mapping data is generated by converting the PL mapping data using (3).
 検査装置1Bは、図13に示すように、PLデータの取得のためのビーム源3とは別に、ODPLデータの取得のためのビーム源36を備えていてもよい。ビーム源36におけるビームLの出射面は、例えばX方向を向くように配置され、光学系5に対して光学的に接続されている。励起光源37から出射した励起光L3は、ミラー等の光学素子38を介して積分球33に導光される。励起光源37は、励起光源11と同様に、例えばコヒーレント光源及びインコヒーレント光源のいずれであってもよい。コヒーレント光源としては、例えばエキシマレーザ(波長193nm)、YAGレーザ第2高調波(波長532nm)、YAGレーザ第4高調波(波長266nm)、半導体レーザ(例えばInGaN半導体レーザ(波長375nm~530nm)、赤色半導体レーザ、赤外半導体レーザ)などを用いることができる。インコヒーレント光源としては、例えば水銀ランプ(波長365nm)、LED光源などを用いることができる。励起光源37から出力される励起光L3は、パルス光及びCW光のいずれであってもよい。 As shown in FIG. 13, the inspection device 1B may include a beam source 36 for acquiring ODPL data in addition to the beam source 3 for acquiring PL data. The emission surface of the beam L in the beam source 36 is arranged so as to face the X direction, for example, and is optically connected to the optical system 5. The excitation light L3 emitted from the excitation light source 37 is guided to the integrating sphere 33 via an optical element 38 such as a mirror. The excitation light source 37 may be, for example, either a coherent light source or an incoherent light source, similarly to the excitation light source 11. Examples of the coherent light source include an excima laser (wavelength 193 nm), a YAG laser second harmonic (wavelength 532 nm), a YAG laser fourth harmonic (wavelength 266 nm), a semiconductor laser (for example, an InGaN semiconductor laser (wavelength 375 nm to 530 nm), red). (Semiconductor laser, infrared semiconductor laser) and the like can be used. As the incoherent light source, for example, a mercury lamp (wavelength 365 nm), an LED light source, or the like can be used. The excitation light L3 output from the excitation light source 37 may be either pulsed light or CW light.
 このようなビーム源36を採用する場合、ODPLデータの取得時の励起光L3のスポットサイズの調整や励起光源37の選択が容易なものとなる。また、測定座標をオフセットすることで、切替部31による第1の光学系5A及び第2の光学系5Bの切り替えを行うことなく、PLデータの取得及びODPLデータの取得を行うことができる。
[変形例]
When such a beam source 36 is adopted, it becomes easy to adjust the spot size of the excitation light L3 and select the excitation light source 37 at the time of acquiring the ODPL data. Further, by offsetting the measurement coordinates, it is possible to acquire PL data and ODPL data without switching between the first optical system 5A and the second optical system 5B by the switching unit 31.
[Modification example]
 本開示は、上記実施形態に限られるものではない。例えば上記実施形態では、検査対象物SとしてGaN半導体ウェハを例示し、PL測定及びODPL測定によるGaN半導体ウェハの構造欠陥の分布及び欠陥の定量性の検査を例示したが、本開示における一方位データの変換は、多光子励起PL測定、時間分解フォトルミネセンス(TRPL)測定に適用することもできる。 The present disclosure is not limited to the above embodiment. For example, in the above embodiment, a GaN semiconductor wafer is exemplified as the inspection object S, and the distribution of structural defects and the quantitative inspection of defects of the GaN semiconductor wafer by PL measurement and ODPL measurement are exemplified. The conversion of can also be applied to multiphoton excitation PL measurements, time-resolved photoluminescence (TRPL) measurements.
 ビーム源3,36は、励起光源11,37に限られず、X線や電子線を出射するものであってもよい。この場合、X線や電子線も含めたビームの照射による反射測定、透過測定、位相差測定、微分干渉測定、発光測定(カソードルミネッセンス測定等)への適用も可能となり、同様の構成にてODPLマッピングとの相関を得ることができる。 The beam sources 3 and 36 are not limited to the excitation light sources 11 and 37, and may emit X-rays or electron beams. In this case, it can be applied to reflection measurement, transmission measurement, phase difference measurement, differential interference measurement, emission measurement (cathode luminescence measurement, etc.) by irradiating a beam including X-rays and electron beams, and ODPL with the same configuration. Correlation with mapping can be obtained.
 1A,1B…検査装置、2…ステージ、3…ビーム源、4…光検出器、5…光学系、5A…第1の光学系、5B…第2の光学系、21…処理部、31…切替部、L…ビーム、L2…光、S…検査対象物。 1A, 1B ... Inspection device, 2 ... Stage, 3 ... Beam source, 4 ... Photodetector, 5 ... Optical system, 5A ... First optical system, 5B ... Second optical system, 21 ... Processing unit, 31 ... Switching unit, L ... beam, L2 ... light, S ... inspection target.

Claims (12)

  1.  検査対象物が載置されるステージと、
     前記検査対象物に照射するビームを生成するビーム源と、
     前記ビームの照射により前記検査対象物で発生する光を検出する光検出器と、
     前記ステージ上の前記検査対象物に前記ビームを導くと共に、前記検査対象物で発生した前記光を前記光検出器に導く光学系と、
     前記検査対象物から発生する全方位の光に関する全方位データに基づいて、前記光検出器で検出された前記光のうちの一方位の光に関する一方位データの変換を行う処理部と、を備える検査装置。
    The stage on which the object to be inspected is placed and
    A beam source that generates a beam to irradiate the object to be inspected,
    A photodetector that detects the light generated by the inspection object by irradiating the beam, and
    An optical system that guides the beam to the inspection object on the stage and guides the light generated by the inspection object to the photodetector.
    A processing unit that converts one-sided data regarding one-sided light among the said light detected by the photodetector based on omnidirectional data related to omnidirectional light generated from the inspection object. Inspection device.
  2.  前記処理部は、前記一方位データに関する第1のマッピングデータを生成する請求項1記載の検査装置。 The inspection device according to claim 1, wherein the processing unit generates a first mapping data relating to the one-sided data.
  3.  前記処理部は、前記全方位データに基づいて、前記第1のマッピングデータから前記全方位データに関する第2のマッピングデータを生成する請求項2記載の検査装置。 The inspection device according to claim 2, wherein the processing unit generates a second mapping data related to the omnidirectional data from the first mapping data based on the omnidirectional data.
  4.  前記処理部には、前記検査対象物についての前記全方位データが予め格納されている請求項1~3のいずれか一項記載の検査装置。 The inspection device according to any one of claims 1 to 3, wherein the processing unit stores the omnidirectional data for the inspection object in advance.
  5.  前記光学系は、前記一方位データを取得する第1の光学系と、前記全方位データを取得する第2の光学系と、前記第1の光学系と前記第2の光学系とを切り替える切替部と、を有している請求項1~3のいずれか一項記載の検査装置。 The optical system switches between a first optical system for acquiring the one-sided data, a second optical system for acquiring the omnidirectional data, and the first optical system and the second optical system. The inspection device according to any one of claims 1 to 3, which has a unit and a unit.
  6.  前記ビーム源は、前記検査対象物を励起する励起ビームを生成する請求項1~5のいずれか一項記載の検査装置。 The inspection device according to any one of claims 1 to 5, wherein the beam source generates an excitation beam that excites the inspection object.
  7.  検査対象物にビームを照射する照射ステップと、
     前記検査対象物で発生する光を検出する光検出ステップと、
     前記光検出ステップで検出された前記光のうちの一方位の光に関する一方位データを取得する取得ステップと、
     前記検査対象物から発生する全方位の光に関する全方位データに基づいて、前記一方位データの変換を行う処理ステップと、を備える検査方法。
    The irradiation step of irradiating the inspection object with a beam and
    A photodetection step that detects the light generated by the inspection object,
    The acquisition step of acquiring the one-sided data regarding the one-sided light of the said light detected in the light detection step, and the acquisition step.
    An inspection method comprising a processing step of converting the one-sided data based on omnidirectional data relating to omnidirectional light generated from the inspection object.
  8.  前記処理ステップでは、前記一方位データに関する第1のマッピングデータを生成する請求項7記載の検査方法。 The inspection method according to claim 7, wherein in the processing step, the first mapping data relating to the one-sided data is generated.
  9.  前記処理ステップでは、前記全方位データに基づいて、前記第1のマッピングデータから前記全方位データに関する第2のマッピングデータを生成する請求項8記載の検査方法。 The inspection method according to claim 8, wherein in the processing step, a second mapping data relating to the omnidirectional data is generated from the first mapping data based on the omnidirectional data.
  10.  前記処理ステップでは、予め取得した前記検査対象物についての前記全方位データを用いる請求項7~9のいずれか一項記載の検査方法。 The inspection method according to any one of claims 7 to 9, which uses the omnidirectional data for the inspection target acquired in advance in the processing step.
  11.  前記光検出ステップでは、前記一方位データを取得する第1の光学系と、前記全方位データを取得する第2の光学系とを切り替え、
     前記取得ステップでは、前記一方位データ及び前記全方位データを取得する請求項7~9のいずれか一項記載の検査方法。
    In the light detection step, the first optical system for acquiring the one-sided data and the second optical system for acquiring the omnidirectional data are switched.
    The inspection method according to any one of claims 7 to 9, wherein in the acquisition step, the one-sided data and the omnidirectional data are acquired.
  12.  前記照射ステップでは、検査対象物を励起する励起ビームを照射する請求項7~11のいずれか一項記載の検査方法。 The inspection method according to any one of claims 7 to 11, wherein in the irradiation step, an excitation beam that excites an inspection object is irradiated.
PCT/JP2021/028987 2020-09-03 2021-08-04 Inspection device and inspection method WO2022049979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546180A JPWO2022049979A1 (en) 2020-09-03 2021-08-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020148206 2020-09-03
JP2020-148206 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022049979A1 true WO2022049979A1 (en) 2022-03-10

Family

ID=80492042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028987 WO2022049979A1 (en) 2020-09-03 2021-08-04 Inspection device and inspection method

Country Status (2)

Country Link
JP (1) JPWO2022049979A1 (en)
WO (1) WO2022049979A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199549A1 (en) * 2022-04-13 2023-10-19 日本製鉄株式会社 Surface inspection device and surface inspection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121628A1 (en) * 2015-01-28 2016-08-04 東レエンジニアリング株式会社 Defect inspection method and defect inspection device for wide-gap semiconductor substrates
JP2018014377A (en) * 2016-07-20 2018-01-25 東レエンジニアリング株式会社 Defect inspection device of wide gap semiconductor substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121628A1 (en) * 2015-01-28 2016-08-04 東レエンジニアリング株式会社 Defect inspection method and defect inspection device for wide-gap semiconductor substrates
JP2018014377A (en) * 2016-07-20 2018-01-25 東レエンジニアリング株式会社 Defect inspection device of wide gap semiconductor substrate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IKEMURA, KENICHIRO; KOJIMA, K.; HORIKIRI, F.; CHICHIBU, S. F. : "10p-Z02-10 Evaluation for quantum efficiency mapping of GaN wafer by omni-directional photoluminescence (ODPL) spectroscopy", PROCEEDINGS OF THE 81ST JSAP AUTUMN MEETING; [ONLINE VIRTUAL MEETING]; SEPTEMBER 9-11, 2020, vol. 81, 26 August 2020 (2020-08-26) - 11 September 2020 (2020-09-11), pages 13, XP009534803 *
KOJIMA KAZUNOBU, IKEMURA KENICHIRO, CHICHIBU SHIGEFUSA F.: "Quantification of the quantum efficiency of radiation of a freestanding GaN crystal placed outside an integrating sphere", APPLIED PHYSICS EXPRESS, JAPAN SOCIETY OF APPLIED PHYSICS; JP, JP, vol. 12, no. 6, 1 June 2019 (2019-06-01), JP , pages 062010, XP055907070, ISSN: 1882-0778, DOI: 10.7567/1882-0786/ab2165 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199549A1 (en) * 2022-04-13 2023-10-19 日本製鉄株式会社 Surface inspection device and surface inspection method

Also Published As

Publication number Publication date
JPWO2022049979A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
US9638741B2 (en) Method and apparatus for inspection of light emitting semiconductor devices using photoluminescence imaging
US11009461B2 (en) Defect investigation device simultaneously detecting photoluminescence and scattered light
US8604447B2 (en) Solar metrology methods and apparatus
KR101785405B1 (en) Defect inspection and photoluminescence measurement system
JP2975815B2 (en) Apparatus and method for evaluating semiconductor light emitting device
JP2016500926A (en) Sample inspection system detector
US10890539B1 (en) Semiconductor defect inspection apparatus
JP6516583B2 (en) Device and method for detecting crystal defects of semiconductor sample
WO2022049979A1 (en) Inspection device and inspection method
KR20210144683A (en) Inspection device and inspection method
JP6117071B2 (en) Radiation detector and radiation detection method
JP2525894B2 (en) Fluorescence characteristic inspection device for semiconductor samples
JP4916663B2 (en) High transmission optical inspection tool
JP2005091701A (en) Fluorescence microscope and exciting light source control method thereof
JP5117966B2 (en) Sample analyzer
JP2008224476A (en) Photoluminescence measuring device
WO2022264495A1 (en) Measurement device
WO2022264521A1 (en) Measuring device
TWI758088B (en) Array luminous efficiency testing method
WO2022264520A1 (en) Measuring device
US20230351553A1 (en) Shot noise reduction using frame averaging
Wan et al. Polarization and sectioning characteristic of THz confocal microscopy
KR20230095253A (en) Euv photo mask inspection apparatus
Liu et al. The study on the spectral response of transmission-type GaAs photocathode in the seal process
Xie et al. Development of a Micro Photoluminescence Measurement System for the Spectrum Inspection of Gallium Arsenide/Gallium Arsenide Phosphide (GaAs/GaAs1-X Px)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864037

Country of ref document: EP

Kind code of ref document: A1