WO2022049850A1 - Flow path switching device and boiler - Google Patents

Flow path switching device and boiler Download PDF

Info

Publication number
WO2022049850A1
WO2022049850A1 PCT/JP2021/021769 JP2021021769W WO2022049850A1 WO 2022049850 A1 WO2022049850 A1 WO 2022049850A1 JP 2021021769 W JP2021021769 W JP 2021021769W WO 2022049850 A1 WO2022049850 A1 WO 2022049850A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
damper
louver
switching device
boiler
Prior art date
Application number
PCT/JP2021/021769
Other languages
French (fr)
Japanese (ja)
Inventor
慎二 正木
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to JP2022546895A priority Critical patent/JP7392865B2/en
Publication of WO2022049850A1 publication Critical patent/WO2022049850A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/15Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre with parallel simultaneously tiltable lamellae

Definitions

  • the boiler is equipped with a furnace, an exhaust gas flow path through which the exhaust gas passes, and a heat exchanger and an air preheater provided in the exhaust gas flow path.
  • the heat exchanger includes a reheater, an economizer, and a superheater that exchange heat between the flue gas and water.
  • the air preheater exchanges heat between the air supplied to the furnace and the combustion exhaust gas.
  • the flow rate of exhaust gas flowing in the flow path is adjusted by partitioning the exhaust gas flow path into a plurality of sections by a partition plate and providing a distribution damper blade with a damper shaft rotatably arranged in the partitioned flow path.
  • the present disclosure aims to provide a flow path switching device and a boiler capable of suppressing the accumulation of dust on a damper.
  • the flow path switching device is provided so as to be openable and closable above two adjacent flow paths and at least one of the two flow paths. It is provided with a damper having a louver that inclines downward as it approaches the other flow path in a closed state in which one flow path is closed.
  • the damper has a plurality of louvers, and in the closed state, the plurality of louvers may be substantially flush with each other.
  • the inclination angle of the louver in the closed state may be 35 degrees or more.
  • the other flow path switching device can be opened and closed above two adjacent flow paths and at least one of the two flow paths. It is provided with a damper having a louver having a surface arranged downward as it approaches the other flow path in a closed state in which one flow path is closed.
  • the damper includes a first damper provided openably and closably above one flow path and a second damper openably and closably provided above the other flow path, and heat is provided in one flow path.
  • a exchanger may be provided.
  • the flow path switching device includes three or more flow paths, and one flow path and the other flow path may be arranged alternately.
  • the boiler according to one aspect of the present disclosure includes the above flow path switching device.
  • FIG. 1 is a diagram illustrating a boiler according to an embodiment.
  • FIG. 2 is a diagram illustrating a flow path switching device according to an embodiment.
  • FIG. 3 is a diagram illustrating a first damper.
  • FIG. 4 is a first diagram illustrating switching control by the switching control unit.
  • FIG. 5 is a second diagram illustrating switching control by the switching control unit.
  • FIG. 1 is a diagram illustrating a boiler 100 according to the present embodiment.
  • the solid arrow indicates the flow of the combustion exhaust gas.
  • the boiler 100 includes a furnace 110, a flue 120, a partition plate 130, a superheater 140, a reheater 150, a denitration device 160, an economizer 170, and an air preheater. 180 and a flow path switching device 200 are included.
  • a burner 112 is provided on the side wall of the furnace 110. Fuel and air are supplied to the burner 112.
  • the fuel is coal, biomass or the like.
  • the air is air preheated by the air preheater 180 described later.
  • the burner 112 burns fuel.
  • Combustion exhaust gas is generated by burning fuel by the burner 112.
  • the combustion exhaust gas is exhausted to the outside through the flue 120 connected to the furnace 110.
  • the partition plate 130 divides the flue 120 into a plurality of flow paths 132 and 134.
  • the flow path 132 is referred to as a main flow path 132 (one flow path)
  • the flow path 134 is referred to as a bypass flow path 134 (the other flow path).
  • a plurality of partition plates 130 are provided in the present embodiment.
  • the superheater 140 is provided in the furnace 110.
  • the superheater 140 is a heat exchanger that exchanges heat between combustion exhaust gas and water (steam).
  • the reheater 150 is provided in the rear stage (downstream side) of the superheater 140 in the furnace 110.
  • the reheater 150 is a heat exchanger that exchanges heat between combustion exhaust gas and water.
  • the denitration device 160 is provided in the front stage (upstream side) of the partition plate 130 in the flue 120.
  • the denitration device 160 includes a denitration catalyst.
  • the denitration device 160 reduces nitrogen oxides contained in the combustion exhaust gas.
  • the economizer 170 is provided in the main flow path 132 among the main flow path 132 and the bypass flow path 134 partitioned by the partition plate 130.
  • the economizer 170 is a heat exchanger that exchanges heat between combustion exhaust gas and water.
  • the air preheater 180 is provided after the partition plate 130 in the flue 120.
  • the air preheater 180 is a heat exchanger that exchanges heat between combustion exhaust gas and air.
  • the air heated by the air preheater 180 is supplied to the burner 112.
  • the combustion exhaust gas generated in the burner 112 first passes through the superheater 140 and then through the reheater 150. Then, the combustion exhaust gas passes through the denitration device 160 and the economizer 170 in this order, and finally passes through the air preheater 180 and is exhausted to the outside.
  • the water passes through the economizer 170 and then the side wall of the furnace 110. Then, the water that has passed through the side wall of the furnace 110 and turned into steam passes through the superheater 140 and is supplied to a turbine (not shown). Further, the steam that has passed through the turbine passes through the reheater 150 and is returned to the economizer 170 via a condenser (not shown).
  • the boiler 100 of the present embodiment is provided with the flow path switching device 200 to switch the flow of the combustion exhaust gas.
  • the flow path switching device 200 will be described.
  • FIG. 2 is a diagram illustrating a flow path switching device 200 according to the present embodiment.
  • the X-axis horizontal direction
  • the Y-axis horizontal direction
  • the Z-axis vertical direction
  • two main flow paths 132 (indicated by 132A and 132B in FIG. 2) and three bypass flow paths 134 (indicated by 134A to 134C in FIG. 2) are formed.
  • four partition plates 130 are provided. That is, the flue 120 is divided into five flow paths (main flow paths 132A, 132B, bypass flow paths 134A to 134C) by four partition plates 130. Further, the partition plate 130 extends in the vertical direction (Z-axis direction in FIG. 2), and the main flow paths 132A and 132B and the bypass flow paths 134A to 134C also extend in the vertical direction.
  • the economizer 170 is provided so that the main flow path 132 and the bypass flow path 134 are adjacent to each other. Further, in the present embodiment, the main flow path 132 and the bypass flow path 134 are alternately arranged.
  • the bypass flow path 134A, the main flow path 132A, the bypass flow path 134B, the main flow path 132B, and the bypass flow path 134C are arranged in this order.
  • the flow path switching device 200 includes two first dampers 210, two second dampers 220, one second damper 230, and a switching control unit 240.
  • the first damper 210 (damper) is provided so as to be openable and closable above the main flow paths 132A and 132B.
  • the first damper 210 opens and closes the main flow paths 132A and 132B.
  • the second damper 220 (damper) is provided so as to be openable and closable above the bypass flow paths 134A and 134C.
  • the second damper 220 opens and closes the bypass flow paths 134A and 134C.
  • the second damper 230 is provided so as to be openable and closable above the bypass flow path 134B.
  • the second damper 230 opens and closes the bypass flow path 134B.
  • the first damper 210 includes a top 212 and a plurality of rotary blades 214.
  • the second damper 220 includes a plurality of rotary blades 214.
  • the second damper 230 includes a top 212 and a plurality of rotary vanes 214.
  • the top 212 and the rotary blade 214 of the first damper 210 will be described. Further, since the top 212 of the second damper 230 and the rotary blades 214 of the second damper 220 and 230 have substantially the same configuration as the top 212 and the rotary blade 214 of the first damper 210, the description thereof will be omitted.
  • FIG. 3 is a diagram illustrating the first damper 210.
  • the first damper 210 includes a top 212 and a plurality of rotary blades 214.
  • the rotary blade 214 on the left side of the top 212 is shown in the open state
  • the rotary blade 214 on the right side of the top 212 is shown in the closed state.
  • the top portion 212 is provided on the center line (indicated by the alternate long and short dash line in FIG. 3) of the main flow path 132 in the flue 120.
  • the vertical cross section of the top 212 (YZ cross section in FIG. 3) is substantially triangular or trapezoidal.
  • the upper surface of the top 212 extends horizontally.
  • a plurality of rotary blades 214 are provided between the top portion 212 and the partition plate 130.
  • six rotary blades 214 are provided between the top portion 212 and the partition plate 130 on the left side in FIG.
  • six rotary blades 214 are provided between the top 212 and the partition plate 130 on the right side in FIG.
  • the rotary blade 214 includes a louver 214a and a rotary shaft 214b.
  • the louver 214a has a flat plate shape.
  • the rotation shaft 214b rotatably supports the center of the louver 214a.
  • the rotation shaft 214b extends in the horizontal direction (X-axis direction in FIG. 2).
  • a motor (not shown) is connected to the rotary shaft 214b, and the rotary shaft 214b rotates the louver 214a in the direction of the arrow in FIG. 3 by the motor.
  • the louver 214a is in a closed state in which the main flow path 132 is closed (rotating blade 214 on the right side of the top 212 in FIG. 3), and the louver 214a is lowered as it approaches the bypass flow path 134 adjacent to the main flow path 132 (in FIG. 3, in the Z-axis direction). Arranged so as to incline. Further, as shown in FIG. 3, the plurality of louvers 214a are arranged so as to be substantially flush with each other in the closed state.
  • the inclination angle of the louver 214a in the closed state (the angle ⁇ formed by the louver 214a and the horizontal plane) is 35 degrees or more.
  • the inclination angle of the louver 214a constituting the first damper 210 is, for example, 40 degrees.
  • the tilt angle of the louver 214a constituting the second damper 220 is substantially equal to the tilt angle of the louver 214a constituting the first damper 210.
  • the inclination angle of the louver 214a constituting the second damper 230 is larger than the inclination angle of the louver 214a constituting the first damper 210.
  • the inclination angle of the louver 214a constituting the second damper 230 is, for example, 47 degrees.
  • louver 214a when the louver 214a is in the open state in which the main flow path 132 is opened (214 on the left side of the top 212 in FIG. 3), the louver 214a is arranged along the vertical direction (Z-axis direction in FIG. 3).
  • the top 212 of the first damper 210 is arranged above the top 212 of the second damper 230. Further, among the rotary blades 214 constituting the second damper 230, the rotary blade 214 located at the uppermost position is arranged below the rotary blade 214 located at the uppermost position among the rotary blades 214 constituting the first damper 210. Will be done.
  • the rotary blade 214 located at the uppermost position among the rotary blades 214 constituting the second damper 220 is arranged below the rotary blade 214 located at the uppermost position among the rotary blades 214 constituting the first damper 210.
  • the switching control unit 240 is composed of a semiconductor integrated circuit including a CPU (central processing unit).
  • the switching control unit 240 reads out a program, parameters, etc. for operating the CPU itself from the ROM.
  • the switching control unit 240 manages and controls the entire flow path switching device 200 in cooperation with the RAM as a work area and other electronic circuits.
  • the switching control unit 240 controls the motor connected to the first damper 210 and the rotating shaft 214b of the second damper 220 and 230, and the louver 214a and the second damper 220 of the first damper 210, By controlling the opening degree of the louver 214a of 230, the flow path through which the combustion exhaust gas flows is switched to the main flow path 132 or the bypass flow path 134.
  • FIGS. 4 and 5 are diagrams illustrating switching control by the switching control unit 240.
  • the white arrows indicate the flow of the combustion exhaust gas.
  • the switching control unit 240 displaces all the louvers 214a of the first damper 210 from the closed state to the open state, and causes the second dampers 220 and 230 to move. Displace all louvers 214a from the open state to the closed state. Then, as shown in FIG. 4, the switching control unit 240 switches the flow path of the combustion exhaust gas from the bypass flow path 134 to the main flow path 132. As a result, all the combustion exhaust gas reaches the air preheater 180 after passing through the economizer 170.
  • the switching control unit 240 displaces all the louvers 214a of the first damper 210 from the open state to the closed state, and causes the second dampers 220 and 230. Displace all louvers 214a from the closed state to the open state. Then, as shown in FIG. 5, the switching control unit 240 switches the flow path of the combustion exhaust gas from the main flow path 132 to the bypass flow path 134. As a result, all the combustion exhaust gas reaches the air preheater 180 without passing through the economizer 170.
  • the flow path switching device 200 has a first louver 214a that inclines downward as it approaches the bypass flow path 134 adjacent to the main flow path 132 in the closed state in which the main flow path 132 is closed.
  • a damper 210 is provided.
  • the flow path switching device 200 includes second dampers 220 and 230 having a louver 214a that inclines downward toward the main flow path 132 adjacent to the bypass flow path 134 in a closed state in which the bypass flow path 134 is closed.
  • the ash deposited on the louvers 214a of the second dampers 220 and 230 can be dropped into the main flow path 132.
  • the flow path switching device 200 can suppress the accumulation of ash on the first damper 210, the second damper 220, and 230. As a result, the flow path switching device 200 can suppress wear and breakage of the first damper 210, the second damper 220, and 230 due to ash. Further, the flow path switching device 200 can avoid a situation in which the first damper 210, the second damper 220, and 230 become immobile due to the accumulation of ash.
  • the plurality of louvers 214a constituting the first damper 210 are substantially flush with each other in the closed state. This makes it possible to easily drop the ash deposited on the plurality of louvers 214a of the first damper 210 into the bypass flow path 134.
  • the plurality of louvers 214a constituting the second damper 220 and the second damper 230 become substantially flush with each other when the main flow path 132 is closed. This makes it possible to easily drop the ash deposited on the plurality of louvers 214a of the second dampers 220 and 230 into the main flow path 132.
  • the inclination angle of the louver 214a in the closed state is 35 degrees or more. As a result, the louver 214a can easily drop the ash into the adjacent flow paths.
  • the main flow path 132 and the bypass flow path 134 are alternately arranged.
  • the combustion exhaust gas reaches the air preheater 180 substantially evenly regardless of whether it flows through the main flow path 132 or the bypass flow path 134.
  • the flow path switching device 200 can suppress variations in the flow rate and temperature of the combustion exhaust gas reaching the air preheater 180.
  • the louver 214a inclines downward as it approaches the other flow path is given as an example.
  • the louver 214a may have a surface that is arranged downward as it approaches the other flow path.
  • the plurality of louvers 214a may extend horizontally, and each louver 214a may be arranged downward as it approaches the other flow path.
  • the louver 214a of 1 is provided, and the louver 214a has a plurality of surfaces extending in the horizontal direction, and the plurality of surfaces may be arranged downward toward the other flow path.
  • the case where the boiler 100 is provided with four partition plates 130 that is, the case where the flow path of the combustion exhaust gas is five (three or more) is taken as an example.
  • the first damper 210 or the second damper 230 may be provided in each of the two adjacent flow paths.
  • a second damper 220 may be provided in each of the two adjacent flow paths.
  • the first damper 210, the second damper 220, or the second damper 230 may be provided in at least one of the two adjacent flow paths.
  • first damper 210, the second damper 220, and 230 are provided with a plurality of louvers 214a
  • the first damper 210, the second damper 220, and 230 may include one louver 214a (rotating blade 214).
  • the switching control unit 240 may adjust the opening degrees of the first damper 210, the second damper 220, and 230 according to the operating load of the boiler 100. That is, the first damper 210, the second damper 220, and 230 may all be open. Further, a part of the rotary blades 214 of the first damper 210, a part of the rotary blades 214 of the second damper 220, or a part of the rotary blades 214 of the second damper 230 may be opened.
  • the lowermost rotary blade 214 may be opened.
  • the lowermost rotary blade 214 may be opened.
  • the lowermost rotary blade 214 may be opened.
  • the lowermost rotary blade 214 may be opened.
  • the switching control unit 240 controls the opening and closing of the two first dampers 210 at the same time.
  • the switching control unit 240 may independently open and close the two first dampers 210.
  • the switching control unit 240 may exclusively open and close the two first dampers 210.
  • the switching control unit 240 controls the opening and closing of the three second dampers 220 and 230 at the same time.
  • the switching control unit 240 may independently open / close the three second dampers 220 and 230.
  • the switching control unit 240 may exclusively open and close the three second dampers 220 and 230.
  • the case where the main flow path 132 and the bypass flow path 134 are alternately arranged is given as an example.
  • the main flow paths 132 may be adjacent to each other.
  • the bypass flow paths 134 may be adjacent to each other.
  • the rotating shaft 214b pivotally supports the center of the louver 214a
  • the rotating shaft 214b may pivotally support the lower end or the upper end of the louver 214a.
  • the louver 214a is arranged so that the upper end thereof is upward when the louver 214a is in the open state.
  • the louver 214a is arranged so that the lower end thereof is downward when the louver 214a is in the open state.
  • the flow path switching device 200 can be applied to a flow path of the boiler 100 other than the flue 120 or a flow path other than the boiler 100 as long as it is a flow path through which a gas containing dust (solid matter) such as ash flows. Is.
  • the circulation boiler is taken as an example as the boiler 100.
  • the type of boiler 100 is not limited.
  • the boiler 100 may be a circulating fluidized bed boiler.
  • Boiler 132 Main flow path (flow path, one flow path)
  • 132A Main flow path (flow path, one flow path)
  • 132B Main flow path (flow path, one flow path)
  • 134 Bypass flow path (flow path)
  • 134A Bypass flow path (flow path, other flow path)
  • 134B Bypass flow path (flow path, other flow path)
  • 134C Bypass flow path (flow path, other flow path)
  • 170 Economizer (heat exchanger)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chimneys And Flues (AREA)

Abstract

This flow path switching device 200 comprises: two adjacent flow paths (main flow path 132, bypass flow path 134); and dampers (first damper 210, second dampers 220, 230) provided above at least one of the two flow paths so as to be capable of opening/closing, the dampers having a louver that, in a closed state in which one of the flow paths is closed, inclines downwards with increasing proximity to the other flow path.

Description

流路切換装置およびボイラChannel switching device and boiler
 本開示は、流路切換装置およびボイラに関する。本出願は2020年9月4日に提出された日本特許出願第2020-148863号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 This disclosure relates to a flow path switching device and a boiler. This application claims the benefit of priority under Japanese Patent Application No. 2020-148863 filed on September 4, 2020, the contents of which are incorporated herein by reference.
 ボイラは、火炉、排ガスが通過する排ガス流路、ならびに、排ガス流路内に設けられる熱交換器および空気予熱器を備える。熱交換器は、燃焼排ガスと水とを熱交換する、再熱器、節炭器、過熱器を含む。空気予熱器は、火炉に供給される空気と燃焼排ガスとを熱交換する。 The boiler is equipped with a furnace, an exhaust gas flow path through which the exhaust gas passes, and a heat exchanger and an air preheater provided in the exhaust gas flow path. The heat exchanger includes a reheater, an economizer, and a superheater that exchange heat between the flue gas and water. The air preheater exchanges heat between the air supplied to the furnace and the combustion exhaust gas.
 また、排ガス流路を仕切板によって複数に区画し、区画された流路内に回動可能に配置されたダンパ軸付きの分配ダンパ羽根を設けることで、流路内を流れる排ガスの流量を調整する技術が開発されている(例えば、特許文献1)。 In addition, the flow rate of exhaust gas flowing in the flow path is adjusted by partitioning the exhaust gas flow path into a plurality of sections by a partition plate and providing a distribution damper blade with a damper shaft rotatably arranged in the partitioned flow path. (For example, Patent Document 1).
特開2008-151447号公報Japanese Unexamined Patent Publication No. 2008-151447
 しかし、上記特許文献1の技術では、分配ダンパ羽根によって流路が閉じられている際、燃焼排ガスに含まれる灰等の塵がダンパに堆積するという問題が生じる。 However, in the technique of Patent Document 1, when the flow path is closed by the distribution damper blade, there arises a problem that dust such as ash contained in the combustion exhaust gas is deposited on the damper.
 本開示は、このような課題に鑑み、ダンパへの塵の堆積を抑制することが可能な流路切換装置およびボイラを提供することを目的としている。 In view of such problems, the present disclosure aims to provide a flow path switching device and a boiler capable of suppressing the accumulation of dust on a damper.
 上記課題を解決するために、本開示の一態様に係る流路切換装置は、隣り合う2つの流路と、2つの流路のうちの少なくともいずれか一方の流路の上方に開閉可能に設けられ、一方の流路を閉じる閉状態において、他方の流路に近づくほど下方に傾斜するルーバを有するダンパと、を備える。 In order to solve the above problems, the flow path switching device according to one aspect of the present disclosure is provided so as to be openable and closable above two adjacent flow paths and at least one of the two flow paths. It is provided with a damper having a louver that inclines downward as it approaches the other flow path in a closed state in which one flow path is closed.
 また、ダンパは、ルーバを複数有し、閉状態において、複数のルーバは、略面一となってもよい。 Further, the damper has a plurality of louvers, and in the closed state, the plurality of louvers may be substantially flush with each other.
 また、閉状態におけるルーバの傾斜角は、35度以上であってもよい。 Further, the inclination angle of the louver in the closed state may be 35 degrees or more.
 上記課題を解決するために、本開示の一態様に係る他の流路切換装置は、隣り合う2つの流路と、2つの流路のうちの少なくともいずれか一方の流路の上方に開閉可能に設けられ、一方の流路を閉じる閉状態において、他方の流路に近づくほど下方に配置される面を有するルーバを有するダンパと、を備える。 In order to solve the above problems, the other flow path switching device according to one aspect of the present disclosure can be opened and closed above two adjacent flow paths and at least one of the two flow paths. It is provided with a damper having a louver having a surface arranged downward as it approaches the other flow path in a closed state in which one flow path is closed.
 また、ダンパは、一方の流路の上方に開閉可能に設けられた第1ダンパと、他方の流路の上方に開閉可能に設けられた第2ダンパとを含み、一方の流路には熱交換器が設けられてもよい。 Further, the damper includes a first damper provided openably and closably above one flow path and a second damper openably and closably provided above the other flow path, and heat is provided in one flow path. A exchanger may be provided.
 上記流路切換装置は、流路を3つ以上備え、一方の流路と、他方の流路とは交互に配されてもよい。 The flow path switching device includes three or more flow paths, and one flow path and the other flow path may be arranged alternately.
 上記課題を解決するために、本開示の一態様に係るボイラは、上記流路切換装置を備える。 In order to solve the above problems, the boiler according to one aspect of the present disclosure includes the above flow path switching device.
 本開示によれば、ダンパへの塵の堆積を抑制することが可能となる。 According to the present disclosure, it is possible to suppress the accumulation of dust on the damper.
図1は、実施形態に係るボイラを説明する図である。FIG. 1 is a diagram illustrating a boiler according to an embodiment. 図2は、実施形態に係る流路切換装置を説明する図。FIG. 2 is a diagram illustrating a flow path switching device according to an embodiment. 図3は、第1ダンパを説明する図である。FIG. 3 is a diagram illustrating a first damper. 図4は、切換制御部による切り換え制御を説明する第1の図である。FIG. 4 is a first diagram illustrating switching control by the switching control unit. 図5は、切換制御部による切り換え制御を説明する第2の図である。FIG. 5 is a second diagram illustrating switching control by the switching control unit.
 以下に添付図面を参照しながら、本開示の実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。 The embodiments of the present disclosure will be described in detail with reference to the accompanying drawings below. The dimensions, materials, other specific numerical values, etc. shown in the embodiment are merely examples for facilitating understanding, and do not limit the present disclosure unless otherwise specified. In the present specification and the drawings, elements having substantially the same function and configuration are designated by the same reference numerals to omit duplicate explanations, and elements not directly related to the present disclosure are omitted from the illustration. do.
[ボイラ100]
 図1は、本実施形態に係るボイラ100を説明する図である。なお、図1中、実線の矢印は、燃焼排ガスの流れを示す。
[Boiler 100]
FIG. 1 is a diagram illustrating a boiler 100 according to the present embodiment. In FIG. 1, the solid arrow indicates the flow of the combustion exhaust gas.
 図1に示すように、ボイラ100は、火炉110と、煙道120と、仕切板130と、過熱器140と、再熱器150と、脱硝装置160と、節炭器170と、空気予熱器180と、流路切換装置200とを含む。 As shown in FIG. 1, the boiler 100 includes a furnace 110, a flue 120, a partition plate 130, a superheater 140, a reheater 150, a denitration device 160, an economizer 170, and an air preheater. 180 and a flow path switching device 200 are included.
 火炉110の側壁には、バーナ112が設けられる。バーナ112には、燃料および空気が供給される。燃料は、石炭、バイオマス等である。空気は、後述する空気予熱器180によって予熱された空気である。バーナ112は、燃料を燃焼させる。 A burner 112 is provided on the side wall of the furnace 110. Fuel and air are supplied to the burner 112. The fuel is coal, biomass or the like. The air is air preheated by the air preheater 180 described later. The burner 112 burns fuel.
 バーナ112によって燃料が燃焼されることで燃焼排ガスが生じる。燃焼排ガスは、火炉110に接続された煙道120を通じて外部に排気される。 Combustion exhaust gas is generated by burning fuel by the burner 112. The combustion exhaust gas is exhausted to the outside through the flue 120 connected to the furnace 110.
 仕切板130は、煙道120を複数の流路132、134に区画する。以下、流路132を本流路132(一方の流路)と称し、流路134をバイパス流路134(他方の流路)と称する。また、図1では図示を省略するが、本実施形態において、仕切板130は複数設けられる。 The partition plate 130 divides the flue 120 into a plurality of flow paths 132 and 134. Hereinafter, the flow path 132 is referred to as a main flow path 132 (one flow path), and the flow path 134 is referred to as a bypass flow path 134 (the other flow path). Further, although not shown in FIG. 1, a plurality of partition plates 130 are provided in the present embodiment.
 過熱器140は、火炉110内に設けられる。過熱器140は、燃焼排ガスと水(蒸気)とを熱交換する熱交換器である。 The superheater 140 is provided in the furnace 110. The superheater 140 is a heat exchanger that exchanges heat between combustion exhaust gas and water (steam).
 再熱器150は、火炉110内における過熱器140の後段(下流側)に設けられる。再熱器150は、燃焼排ガスと水とを熱交換する熱交換器である。 The reheater 150 is provided in the rear stage (downstream side) of the superheater 140 in the furnace 110. The reheater 150 is a heat exchanger that exchanges heat between combustion exhaust gas and water.
 脱硝装置160は、煙道120内における仕切板130の前段(上流側)に設けられる。脱硝装置160は、脱硝触媒を含む。脱硝装置160は、燃焼排ガスに含まれる窒素酸化物を還元する。 The denitration device 160 is provided in the front stage (upstream side) of the partition plate 130 in the flue 120. The denitration device 160 includes a denitration catalyst. The denitration device 160 reduces nitrogen oxides contained in the combustion exhaust gas.
 節炭器170は、仕切板130によって区画された本流路132およびバイパス流路134のうち、本流路132に設けられる。節炭器170は、燃焼排ガスと水とを熱交換する熱交換器である。 The economizer 170 is provided in the main flow path 132 among the main flow path 132 and the bypass flow path 134 partitioned by the partition plate 130. The economizer 170 is a heat exchanger that exchanges heat between combustion exhaust gas and water.
 空気予熱器180は、煙道120内における仕切板130の後段に設けられる。空気予熱器180は、燃焼排ガスと空気とを熱交換する熱交換器である。空気予熱器180によって加熱された空気は、バーナ112に供給される。 The air preheater 180 is provided after the partition plate 130 in the flue 120. The air preheater 180 is a heat exchanger that exchanges heat between combustion exhaust gas and air. The air heated by the air preheater 180 is supplied to the burner 112.
 ここで、燃焼排ガスの流れおよび水の流れについて説明する。図1中、実線の矢印で示すように、バーナ112において生じた燃焼排ガスは、まず、過熱器140を通過し、次に再熱器150を通過する。そして、燃焼排ガスは、脱硝装置160、節炭器170をこの順に通過した後、最後に空気予熱器180を通過して外部に排気される。 Here, the flow of combustion exhaust gas and the flow of water will be described. As shown by the solid arrow in FIG. 1, the combustion exhaust gas generated in the burner 112 first passes through the superheater 140 and then through the reheater 150. Then, the combustion exhaust gas passes through the denitration device 160 and the economizer 170 in this order, and finally passes through the air preheater 180 and is exhausted to the outside.
 一方、水は、節炭器170を通過し、次に火炉110の側壁を通過する。そして、火炉110の側壁を通過して蒸気になった水は、過熱器140を通過して、不図示のタービンに供給される。また、タービンを通過した蒸気は、再熱器150を通過して、不図示の復水器を介して節炭器170に戻される。 On the other hand, the water passes through the economizer 170 and then the side wall of the furnace 110. Then, the water that has passed through the side wall of the furnace 110 and turned into steam passes through the superheater 140 and is supplied to a turbine (not shown). Further, the steam that has passed through the turbine passes through the reheater 150 and is returned to the economizer 170 via a condenser (not shown).
 ところで、ボイラ効率を上げるために節炭器170を増加させることが考えられる。この場合、ボイラ100の運転負荷を、通常運転時よりも低い負荷である部分負荷とすると、火炉110から送出される蒸気の温度が高くなりすぎるという問題がある。そこで、本実施形態のボイラ100は、流路切換装置200を備え、燃焼排ガスの流れを切り換える。以下、流路切換装置200について説明する。 By the way, it is conceivable to increase the economizer 170 in order to increase the boiler efficiency. In this case, if the operating load of the boiler 100 is a partial load that is lower than that during normal operation, there is a problem that the temperature of the steam sent from the furnace 110 becomes too high. Therefore, the boiler 100 of the present embodiment is provided with the flow path switching device 200 to switch the flow of the combustion exhaust gas. Hereinafter, the flow path switching device 200 will be described.
[流路切換装置200]
 図2は、本実施形態に係る流路切換装置200を説明する図である。本実施形態の図2をはじめとする以下の図では、垂直に交わるX軸(水平方向)、Y軸(水平方向)、Z軸(鉛直方向)を図示の通り定義している。
[Flow path switching device 200]
FIG. 2 is a diagram illustrating a flow path switching device 200 according to the present embodiment. In the following figures including FIG. 2 of the present embodiment, the X-axis (horizontal direction), the Y-axis (horizontal direction), and the Z-axis (vertical direction) that intersect vertically are defined as shown in the figure.
 図2に示すように、本実施形態では、本流路132が2つ(図2中、132A、132Bで示す)、バイパス流路134が3つ(図2中、134A~134Cで示す)形成されるように、仕切板130が4つ設けられる。つまり、煙道120は、4つの仕切板130によって、5つの流路(本流路132A、132B、バイパス流路134A~134C)に仕切られる。また、仕切板130は、鉛直方向(図2中Z軸方向)に延在し、本流路132A、132B、バイパス流路134A~134Cも鉛直方向に延在する。 As shown in FIG. 2, in the present embodiment, two main flow paths 132 (indicated by 132A and 132B in FIG. 2) and three bypass flow paths 134 (indicated by 134A to 134C in FIG. 2) are formed. As such, four partition plates 130 are provided. That is, the flue 120 is divided into five flow paths (main flow paths 132A, 132B, bypass flow paths 134A to 134C) by four partition plates 130. Further, the partition plate 130 extends in the vertical direction (Z-axis direction in FIG. 2), and the main flow paths 132A and 132B and the bypass flow paths 134A to 134C also extend in the vertical direction.
 本実施形態では、本流路132とバイパス流路134とが隣り合うように節炭器170が設けられる。また、本実施形態では、本流路132とバイパス流路134とが交互に配される。ここでは、バイパス流路134A、本流路132A、バイパス流路134B、本流路132B、バイパス流路134Cの順で配される。 In the present embodiment, the economizer 170 is provided so that the main flow path 132 and the bypass flow path 134 are adjacent to each other. Further, in the present embodiment, the main flow path 132 and the bypass flow path 134 are alternately arranged. Here, the bypass flow path 134A, the main flow path 132A, the bypass flow path 134B, the main flow path 132B, and the bypass flow path 134C are arranged in this order.
 流路切換装置200は、2つの第1ダンパ210と、2つの第2ダンパ220と、1つの第2ダンパ230と、切換制御部240とを含む。 The flow path switching device 200 includes two first dampers 210, two second dampers 220, one second damper 230, and a switching control unit 240.
 第1ダンパ210(ダンパ)は、本流路132A、132Bの上方に開閉可能に設けられる。第1ダンパ210は、本流路132A、132Bを開閉する。 The first damper 210 (damper) is provided so as to be openable and closable above the main flow paths 132A and 132B. The first damper 210 opens and closes the main flow paths 132A and 132B.
 第2ダンパ220(ダンパ)は、バイパス流路134A、134Cの上方に開閉可能に設けられる。第2ダンパ220は、バイパス流路134A、134Cを開閉する。 The second damper 220 (damper) is provided so as to be openable and closable above the bypass flow paths 134A and 134C. The second damper 220 opens and closes the bypass flow paths 134A and 134C.
 第2ダンパ230は、バイパス流路134Bの上方に開閉可能に設けられる。第2ダンパ230は、バイパス流路134Bを開閉する。 The second damper 230 is provided so as to be openable and closable above the bypass flow path 134B. The second damper 230 opens and closes the bypass flow path 134B.
 第1ダンパ210は、頂部212と、複数の回転羽根214とを含む。第2ダンパ220は、複数の回転羽根214を含む。第2ダンパ230は、頂部212と、複数の回転羽根214とを含む。以下では、第1ダンパ210の頂部212および回転羽根214について説明する。また、第2ダンパ230の頂部212、第2ダンパ220、230の回転羽根214は、第1ダンパ210の頂部212、回転羽根214と実質的に構成が等しいため説明を省略する。 The first damper 210 includes a top 212 and a plurality of rotary blades 214. The second damper 220 includes a plurality of rotary blades 214. The second damper 230 includes a top 212 and a plurality of rotary vanes 214. Hereinafter, the top 212 and the rotary blade 214 of the first damper 210 will be described. Further, since the top 212 of the second damper 230 and the rotary blades 214 of the second damper 220 and 230 have substantially the same configuration as the top 212 and the rotary blade 214 of the first damper 210, the description thereof will be omitted.
 図3は、第1ダンパ210を説明する図である。図3に示すように、第1ダンパ210は、頂部212と、複数の回転羽根214とを含む。なお、理解を容易にするために、図3中、頂部212の左側の回転羽根214を開状態で示し、頂部212の右側の回転羽根214を閉状態で示す。 FIG. 3 is a diagram illustrating the first damper 210. As shown in FIG. 3, the first damper 210 includes a top 212 and a plurality of rotary blades 214. For ease of understanding, in FIG. 3, the rotary blade 214 on the left side of the top 212 is shown in the open state, and the rotary blade 214 on the right side of the top 212 is shown in the closed state.
 頂部212は、煙道120における本流路132の中心線(図3中、一点鎖線で示す)上に設けられる。頂部212の鉛直断面(図3中、YZ断面)は、略三角形、または、台形である。頂部212の上面は、水平方向に延在する。 The top portion 212 is provided on the center line (indicated by the alternate long and short dash line in FIG. 3) of the main flow path 132 in the flue 120. The vertical cross section of the top 212 (YZ cross section in FIG. 3) is substantially triangular or trapezoidal. The upper surface of the top 212 extends horizontally.
 複数の回転羽根214は、頂部212と仕切板130との間に亘って設けられる。本実施形態において、頂部212と、図3中左側の仕切板130との間には、6つの回転羽根214が設けられる。同様に、頂部212と図3中右側の仕切板130との間には、6つの回転羽根214が設けられる。 A plurality of rotary blades 214 are provided between the top portion 212 and the partition plate 130. In the present embodiment, six rotary blades 214 are provided between the top portion 212 and the partition plate 130 on the left side in FIG. Similarly, six rotary blades 214 are provided between the top 212 and the partition plate 130 on the right side in FIG.
 回転羽根214は、ルーバ214aと、回転軸214bとを含む。ルーバ214aは、平板形状である。回転軸214bは、ルーバ214aの中央を回転可能に軸支する。回転軸214bは、水平方向(図2中X軸方向)に延在する。回転軸214bには、不図示のモータが接続されており、モータによって回転軸214bは、図3中、矢印の方向にルーバ214aを回転させる。 The rotary blade 214 includes a louver 214a and a rotary shaft 214b. The louver 214a has a flat plate shape. The rotation shaft 214b rotatably supports the center of the louver 214a. The rotation shaft 214b extends in the horizontal direction (X-axis direction in FIG. 2). A motor (not shown) is connected to the rotary shaft 214b, and the rotary shaft 214b rotates the louver 214a in the direction of the arrow in FIG. 3 by the motor.
 ルーバ214aは、本流路132を閉じる閉状態において(図3中、頂部212の右側の回転羽根214)、本流路132と隣り合うバイパス流路134に近づくほど下方(図3中、Z軸方向)に傾斜するように配される。また、図3に示すように、複数のルーバ214aは、閉状態において、略面一となるように配される。 The louver 214a is in a closed state in which the main flow path 132 is closed (rotating blade 214 on the right side of the top 212 in FIG. 3), and the louver 214a is lowered as it approaches the bypass flow path 134 adjacent to the main flow path 132 (in FIG. 3, in the Z-axis direction). Arranged so as to incline. Further, as shown in FIG. 3, the plurality of louvers 214a are arranged so as to be substantially flush with each other in the closed state.
 また、閉状態におけるルーバ214aの傾斜角(ルーバ214aと水平面との為す角α)は、35度以上である。第1ダンパ210を構成するルーバ214aの傾斜角は、例えば、40度である。なお、第2ダンパ220を構成するルーバ214aの傾斜角は、第1ダンパ210を構成するルーバ214aの傾斜角と実質的に等しい。また、第2ダンパ230を構成するルーバ214aの傾斜角は、第1ダンパ210を構成するルーバ214aの傾斜角よりも大きい。第2ダンパ230を構成するルーバ214aの傾斜角は、例えば、47度である。 Further, the inclination angle of the louver 214a in the closed state (the angle α formed by the louver 214a and the horizontal plane) is 35 degrees or more. The inclination angle of the louver 214a constituting the first damper 210 is, for example, 40 degrees. The tilt angle of the louver 214a constituting the second damper 220 is substantially equal to the tilt angle of the louver 214a constituting the first damper 210. Further, the inclination angle of the louver 214a constituting the second damper 230 is larger than the inclination angle of the louver 214a constituting the first damper 210. The inclination angle of the louver 214a constituting the second damper 230 is, for example, 47 degrees.
 また、ルーバ214aは、本流路132を開く開状態である場合(図3中、頂部212の左側の214)、面方向が鉛直方向(図3中、Z軸方向)に沿って配される。 Further, when the louver 214a is in the open state in which the main flow path 132 is opened (214 on the left side of the top 212 in FIG. 3), the louver 214a is arranged along the vertical direction (Z-axis direction in FIG. 3).
 図2に戻って説明すると、第1ダンパ210の頂部212は、第2ダンパ230の頂部212よりも上方に配される。また、第2ダンパ230を構成する回転羽根214のうち、最も上方に位置する回転羽根214は、第1ダンパ210を構成する回転羽根214のうち最も上方に位置する回転羽根214よりも下方に配される。 Returning to FIG. 2, the top 212 of the first damper 210 is arranged above the top 212 of the second damper 230. Further, among the rotary blades 214 constituting the second damper 230, the rotary blade 214 located at the uppermost position is arranged below the rotary blade 214 located at the uppermost position among the rotary blades 214 constituting the first damper 210. Will be done.
 また、第2ダンパ220を構成する回転羽根214のうち最も上方に位置する回転羽根214は、第1ダンパ210を構成する回転羽根214のうち最も上方に位置する回転羽根214よりも下方に配される。 Further, the rotary blade 214 located at the uppermost position among the rotary blades 214 constituting the second damper 220 is arranged below the rotary blade 214 located at the uppermost position among the rotary blades 214 constituting the first damper 210. To.
 切換制御部240は、CPU(中央処理装置)を含む半導体集積回路で構成される。切換制御部240は、ROMからCPU自体を動作させるためのプログラムやパラメータ等を読み出す。切換制御部240は、ワークエリアとしてのRAMや他の電子回路と協働して流路切換装置200全体を管理および制御する。 The switching control unit 240 is composed of a semiconductor integrated circuit including a CPU (central processing unit). The switching control unit 240 reads out a program, parameters, etc. for operating the CPU itself from the ROM. The switching control unit 240 manages and controls the entire flow path switching device 200 in cooperation with the RAM as a work area and other electronic circuits.
 本実施形態において、切換制御部240は、第1ダンパ210、および、第2ダンパ220、230の回転軸214bに接続されたモータを制御し、第1ダンパ210のルーバ214aおよび第2ダンパ220、230のルーバ214aの開度を制御して、燃焼排ガスが流れる流路を、本流路132またはバイパス流路134に切り換える。 In the present embodiment, the switching control unit 240 controls the motor connected to the first damper 210 and the rotating shaft 214b of the second damper 220 and 230, and the louver 214a and the second damper 220 of the first damper 210, By controlling the opening degree of the louver 214a of 230, the flow path through which the combustion exhaust gas flows is switched to the main flow path 132 or the bypass flow path 134.
 図4および図5は、切換制御部240による切り換え制御を説明する図である。図4、図5中、白抜き矢印は、燃焼排ガスの流れを示す。 4 and 5 are diagrams illustrating switching control by the switching control unit 240. In FIGS. 4 and 5, the white arrows indicate the flow of the combustion exhaust gas.
 例えば、ボイラ100の運転負荷を部分負荷から通常運転負荷に切り換える場合、切換制御部240は、第1ダンパ210のすべてのルーバ214aを閉状態から開状態へ変位させ、第2ダンパ220、230のすべてのルーバ214aを開状態から閉状態へ変位させる。そうすると、図4に示すように、切換制御部240によって、燃焼排ガスの流路がバイパス流路134から本流路132に切り換わる。これにより、すべての燃焼排ガスは、節炭器170を通過した後、空気予熱器180に到達することになる。 For example, when the operating load of the boiler 100 is switched from the partial load to the normal operating load, the switching control unit 240 displaces all the louvers 214a of the first damper 210 from the closed state to the open state, and causes the second dampers 220 and 230 to move. Displace all louvers 214a from the open state to the closed state. Then, as shown in FIG. 4, the switching control unit 240 switches the flow path of the combustion exhaust gas from the bypass flow path 134 to the main flow path 132. As a result, all the combustion exhaust gas reaches the air preheater 180 after passing through the economizer 170.
 また、ボイラ100の運転負荷を通常運転負荷から部分負荷に切り換える場合、切換制御部240は、第1ダンパ210のすべてのルーバ214aを開状態から閉状態へ変位させ、第2ダンパ220、230のすべてのルーバ214aを閉状態から開状態へ変位させる。そうすると、図5に示すように、切換制御部240によって、燃焼排ガスの流路が本流路132からバイパス流路134に切り換わる。これにより、すべての燃焼排ガスは、節炭器170を通過せずに、空気予熱器180に到達することになる。 Further, when the operating load of the boiler 100 is switched from the normal operating load to the partial load, the switching control unit 240 displaces all the louvers 214a of the first damper 210 from the open state to the closed state, and causes the second dampers 220 and 230. Displace all louvers 214a from the closed state to the open state. Then, as shown in FIG. 5, the switching control unit 240 switches the flow path of the combustion exhaust gas from the main flow path 132 to the bypass flow path 134. As a result, all the combustion exhaust gas reaches the air preheater 180 without passing through the economizer 170.
 以上説明したように、本実施形態に係る流路切換装置200は、本流路132を閉じる閉状態において、本流路132と隣り合うバイパス流路134に近づくほど下方に傾斜するルーバ214aを有する第1ダンパ210を備える。これにより、燃焼排ガスがバイパス流路134を流れる場合に、第1ダンパ210のルーバ214a上に堆積する灰をバイパス流路134に落下させることができる。 As described above, the flow path switching device 200 according to the present embodiment has a first louver 214a that inclines downward as it approaches the bypass flow path 134 adjacent to the main flow path 132 in the closed state in which the main flow path 132 is closed. A damper 210 is provided. As a result, when the combustion exhaust gas flows through the bypass flow path 134, the ash deposited on the louver 214a of the first damper 210 can be dropped into the bypass flow path 134.
 同様に、流路切換装置200は、バイパス流路134を閉じる閉状態において、バイパス流路134と隣り合う本流路132に近づくほど下方に傾斜するルーバ214aを有する第2ダンパ220、230を備える。これにより、燃焼排ガスが本流路132を流れる場合に、第2ダンパ220、230のルーバ214a上に堆積する灰を本流路132に落下させることができる。 Similarly, the flow path switching device 200 includes second dampers 220 and 230 having a louver 214a that inclines downward toward the main flow path 132 adjacent to the bypass flow path 134 in a closed state in which the bypass flow path 134 is closed. As a result, when the combustion exhaust gas flows through the main flow path 132, the ash deposited on the louvers 214a of the second dampers 220 and 230 can be dropped into the main flow path 132.
 したがって、流路切換装置200は、第1ダンパ210、第2ダンパ220、230への灰の堆積を抑制することができる。これにより、流路切換装置200は、第1ダンパ210、第2ダンパ220、230の灰による摩耗、および、破損を抑制することが可能となる。また、流路切換装置200は、灰の堆積によって、第1ダンパ210、第2ダンパ220、230が動かなくなってしまう事態を回避することができる。 Therefore, the flow path switching device 200 can suppress the accumulation of ash on the first damper 210, the second damper 220, and 230. As a result, the flow path switching device 200 can suppress wear and breakage of the first damper 210, the second damper 220, and 230 due to ash. Further, the flow path switching device 200 can avoid a situation in which the first damper 210, the second damper 220, and 230 become immobile due to the accumulation of ash.
 また、上記したように、第1ダンパ210を構成する複数のルーバ214aは、閉状態において、略面一となる。これにより、第1ダンパ210の複数のルーバ214a上に堆積する灰を容易にバイパス流路134に落下させることが可能となる。同様に、第2ダンパ220、第2ダンパ230を構成する複数のルーバ214aは、本流路132を閉じた際に、略面一となる。これにより、第2ダンパ220、230の複数のルーバ214a上に堆積する灰を容易に本流路132に落下させることが可能となる。 Further, as described above, the plurality of louvers 214a constituting the first damper 210 are substantially flush with each other in the closed state. This makes it possible to easily drop the ash deposited on the plurality of louvers 214a of the first damper 210 into the bypass flow path 134. Similarly, the plurality of louvers 214a constituting the second damper 220 and the second damper 230 become substantially flush with each other when the main flow path 132 is closed. This makes it possible to easily drop the ash deposited on the plurality of louvers 214a of the second dampers 220 and 230 into the main flow path 132.
 また、上記したように、閉状態におけるルーバ214aの傾斜角は、35度以上である。これにより、ルーバ214aは、隣り合う流路に灰を容易に落下させることが可能となる。 Further, as described above, the inclination angle of the louver 214a in the closed state is 35 degrees or more. As a result, the louver 214a can easily drop the ash into the adjacent flow paths.
 また、上記したように、本流路132とバイパス流路134とが交互に配される。これにより、燃焼排ガスは、本流路132を流れる場合であっても、バイパス流路134を流れる場合であっても、実質的に均等に空気予熱器180に到達する。これにより、流路切換装置200は、空気予熱器180に到達する燃焼排ガスの流量および温度のバラツキを抑制することが可能となる。 Further, as described above, the main flow path 132 and the bypass flow path 134 are alternately arranged. As a result, the combustion exhaust gas reaches the air preheater 180 substantially evenly regardless of whether it flows through the main flow path 132 or the bypass flow path 134. As a result, the flow path switching device 200 can suppress variations in the flow rate and temperature of the combustion exhaust gas reaching the air preheater 180.
 以上、添付図面を参照しながら実施形態について説明したが、本開示は上記実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although the embodiments have been described above with reference to the attached drawings, it goes without saying that the present disclosure is not limited to the above embodiments. It is clear that a person skilled in the art can come up with various modifications or amendments within the scope of the claims, and it is understood that these also naturally belong to the technical scope of the present disclosure. Will be done.
 例えば、上述した実施形態において、ルーバ214aは、他方の流路に近づくほど下方に傾斜する場合を例に挙げた。しかし、ルーバ214aは、他方の流路に近づくほど下方に配置される面を有していてもよい。例えば、複数のルーバ214aは、水平方向に延在しており、各ルーバ214aは、他方の流路に近づくほど下方に配置されてもよい。また、1のルーバ214aを備え、ルーバ214aは、水平方向に延在する複数の面を有し、複数の面は、他方の流路に近づくほど下方に配置されてもよい。 For example, in the above-described embodiment, the case where the louver 214a inclines downward as it approaches the other flow path is given as an example. However, the louver 214a may have a surface that is arranged downward as it approaches the other flow path. For example, the plurality of louvers 214a may extend horizontally, and each louver 214a may be arranged downward as it approaches the other flow path. Further, the louver 214a of 1 is provided, and the louver 214a has a plurality of surfaces extending in the horizontal direction, and the plurality of surfaces may be arranged downward toward the other flow path.
 また、上記実施形態において、ボイラ100は、仕切板130を4つ備える場合、つまり、燃焼排ガスの流路が5つ(3つ以上)である場合を例に挙げた。しかし、流路は、少なくとも2つあればよい。この場合、隣り合う2つの流路それぞれに第1ダンパ210または第2ダンパ230が設けられてもよい。また、隣り合う2つの流路それぞれに第2ダンパ220が設けられていてもよい。また、隣り合う2つの流路のうちの少なくともいずれか一方に、第1ダンパ210、第2ダンパ220、または、第2ダンパ230が設けられていてもよい。 Further, in the above embodiment, the case where the boiler 100 is provided with four partition plates 130, that is, the case where the flow path of the combustion exhaust gas is five (three or more) is taken as an example. However, there may be at least two channels. In this case, the first damper 210 or the second damper 230 may be provided in each of the two adjacent flow paths. Further, a second damper 220 may be provided in each of the two adjacent flow paths. Further, the first damper 210, the second damper 220, or the second damper 230 may be provided in at least one of the two adjacent flow paths.
 また、上記実施形態において、第1ダンパ210、第2ダンパ220、230は、複数のルーバ214aを備える構成を例に挙げた。しかし、第1ダンパ210、第2ダンパ220、230は、1のルーバ214a(回転羽根214)を備えてもよい。 Further, in the above embodiment, the configuration in which the first damper 210, the second damper 220, and 230 are provided with a plurality of louvers 214a is given as an example. However, the first damper 210, the second damper 220, and 230 may include one louver 214a (rotating blade 214).
 また、上記実施形態において、切換制御部240は、第1ダンパ210と、第2ダンパ220、230とを排他的に開閉する構成を例に挙げた。しかし、切換制御部240は、ボイラ100の運転負荷に応じて、第1ダンパ210、第2ダンパ220、230の開度を調整してもよい。つまり、第1ダンパ210、第2ダンパ220、230がすべて開かれていてもよい。また、第1ダンパ210の一部の回転羽根214、第2ダンパ220の一部の回転羽根214、または、第2ダンパ230の一部の回転羽根214が開かれていてもよい。なお、この場合、第1ダンパ210を構成する回転羽根214のうち、最も下端の回転羽根214が開かれるとよい。同様に、第2ダンパ220を構成する回転羽根214のうち、最も下端の回転羽根214が開かれるとよい。また、第2ダンパ230を構成する回転羽根214のうち、最も下端の回転羽根214が開かれるとよい。これにより、隣のダンパから落下した灰を流路に落下させることができる。 Further, in the above embodiment, the configuration in which the switching control unit 240 exclusively opens and closes the first damper 210 and the second dampers 220 and 230 is given as an example. However, the switching control unit 240 may adjust the opening degrees of the first damper 210, the second damper 220, and 230 according to the operating load of the boiler 100. That is, the first damper 210, the second damper 220, and 230 may all be open. Further, a part of the rotary blades 214 of the first damper 210, a part of the rotary blades 214 of the second damper 220, or a part of the rotary blades 214 of the second damper 230 may be opened. In this case, among the rotary blades 214 constituting the first damper 210, the lowermost rotary blade 214 may be opened. Similarly, among the rotary blades 214 constituting the second damper 220, the lowermost rotary blade 214 may be opened. Further, among the rotary blades 214 constituting the second damper 230, the lowermost rotary blade 214 may be opened. As a result, the ash that has fallen from the adjacent damper can be dropped into the flow path.
 また、上記実施形態において、切換制御部240は、2つの第1ダンパ210を同時に開閉制御する場合を例に挙げた。しかし、切換制御部240は、2つの第1ダンパ210を独立して開閉制御してもよい。例えば、切換制御部240は、2つの第1ダンパ210を排他的に開閉してもよい。同様に、切換制御部240は、3つの第2ダンパ220、230を同時に開閉制御する場合を例に挙げた。しかし、切換制御部240は、3つの第2ダンパ220、230を独立して開閉制御してもよい。例えば、切換制御部240は、3つの第2ダンパ220、230を排他的に開閉してもよい。 Further, in the above embodiment, the case where the switching control unit 240 controls the opening and closing of the two first dampers 210 at the same time is given as an example. However, the switching control unit 240 may independently open and close the two first dampers 210. For example, the switching control unit 240 may exclusively open and close the two first dampers 210. Similarly, the case where the switching control unit 240 controls the opening and closing of the three second dampers 220 and 230 at the same time is given as an example. However, the switching control unit 240 may independently open / close the three second dampers 220 and 230. For example, the switching control unit 240 may exclusively open and close the three second dampers 220 and 230.
 また、上記実施形態において、本流路132とバイパス流路134とが交互に配される場合を例に挙げた。しかし、本流路132同士が隣り合っていてもよい。また、バイパス流路134同士が隣り合っていてもよい。 Further, in the above embodiment, the case where the main flow path 132 and the bypass flow path 134 are alternately arranged is given as an example. However, the main flow paths 132 may be adjacent to each other. Further, the bypass flow paths 134 may be adjacent to each other.
 また、上記実施形態において、回転軸214bがルーバ214aの中央を軸支する場合を例に挙げた。しかし、回転軸214bは、ルーバ214aの下端、または、上端を軸支してもよい。回転軸214bがルーバ214aの下端を軸支する場合、ルーバ214aは、開状態である際、上端が上方となるように配される。また、回転軸214bがルーバ214aの上端を軸支する場合、ルーバ214aは、開状態である際、下端が下方となるように配される。 Further, in the above embodiment, the case where the rotating shaft 214b pivotally supports the center of the louver 214a has been given as an example. However, the rotating shaft 214b may pivotally support the lower end or the upper end of the louver 214a. When the rotating shaft 214b pivotally supports the lower end of the louver 214a, the louver 214a is arranged so that the upper end thereof is upward when the louver 214a is in the open state. Further, when the rotating shaft 214b pivotally supports the upper end of the louver 214a, the louver 214a is arranged so that the lower end thereof is downward when the louver 214a is in the open state.
 また、上記実施形態において、流路切換装置200がボイラ100の煙道120に設けられる場合を例に挙げた。しかし、流路切換装置200は、灰等の塵(固形物)を含むガスが流れる流路であれば、煙道120以外のボイラ100の流路、または、ボイラ100以外の流路に適用可能である。 Further, in the above embodiment, the case where the flow path switching device 200 is provided in the flue 120 of the boiler 100 has been given as an example. However, the flow path switching device 200 can be applied to a flow path of the boiler 100 other than the flue 120 or a flow path other than the boiler 100 as long as it is a flow path through which a gas containing dust (solid matter) such as ash flows. Is.
 また、上記実施形態において、ボイラ100として、循環ボイラを例に挙げた。しかし、ボイラ100の種類に限定はない。例えば、ボイラ100は、循環流動層ボイラであってもよい。 Further, in the above embodiment, the circulation boiler is taken as an example as the boiler 100. However, the type of boiler 100 is not limited. For example, the boiler 100 may be a circulating fluidized bed boiler.
100:ボイラ 132:本流路(流路、一方の流路) 132A:本流路(流路、一方の流路) 132B:本流路(流路、一方の流路) 134:バイパス流路(流路、他方の流路) 134A:バイパス流路(流路、他方の流路) 134B:バイパス流路(流路、他方の流路) 134C:バイパス流路(流路、他方の流路) 170:節炭器(熱交換器) 200:流路切換装置 210:第1ダンパ(ダンパ) 214a:ルーバ
 220:第2ダンパ(ダンパ) 230:第2ダンパ(ダンパ)
100: Boiler 132: Main flow path (flow path, one flow path) 132A: Main flow path (flow path, one flow path) 132B: Main flow path (flow path, one flow path) 134: Bypass flow path (flow path) 134A: Bypass flow path (flow path, other flow path) 134B: Bypass flow path (flow path, other flow path) 134C: Bypass flow path (flow path, other flow path) 170: Economizer (heat exchanger) 200: Flow path switching device 210: 1st damper (damper) 214a: Louver 220: 2nd damper (damper) 230: 2nd damper (damper)

Claims (7)

  1.  隣り合う2つの流路と、
     前記2つの流路のうちの少なくともいずれか一方の前記流路の上方に開閉可能に設けられ、前記一方の流路を閉じる閉状態において、他方の前記流路に近づくほど下方に傾斜するルーバを有するダンパと、
    を備える流路切換装置。
    Two adjacent channels and
    A louver that is openable and closable above at least one of the two flow paths and that inclines downward as it approaches the other flow path in a closed state in which one of the flow paths is closed. With the damper to have
    A flow path switching device.
  2.  前記ダンパは、前記ルーバを複数有し、
     前記閉状態において、複数の前記ルーバは、略面一となる請求項1に記載の流路切換装置。
    The damper has a plurality of the louvers, and the damper has a plurality of the louvers.
    The flow path switching device according to claim 1, wherein the plurality of louvers are substantially flush with each other in the closed state.
  3.  前記閉状態における前記ルーバの傾斜角は、35度以上である請求項1または2に記載の流路切換装置。 The flow path switching device according to claim 1 or 2, wherein the inclination angle of the louver in the closed state is 35 degrees or more.
  4.  隣り合う2つの流路と、
     前記2つの流路のうちの少なくともいずれか一方の前記流路の上方に開閉可能に設けられ、前記一方の流路を閉じる閉状態において、他方の前記流路に近づくほど下方に配置される面を有するルーバを有するダンパと、
    を備える流路切換装置。
    Two adjacent channels and
    A surface that is openable and closable above at least one of the two flow paths and is arranged downward as it approaches the other flow path in a closed state in which one of the flow paths is closed. With a damper with a louver,
    A flow path switching device.
  5.  前記ダンパは、前記一方の流路の上方に開閉可能に設けられた第1ダンパと、前記他方の流路の上方に開閉可能に設けられた第2ダンパとを含み、
     前記一方の流路には熱交換器が設けられる請求項1から4のいずれか1項に記載の流路切換装置。
    The damper includes a first damper that is openable and closable above one of the flow paths and a second damper that is openable and closable above the other flow path.
    The flow path switching device according to any one of claims 1 to 4, wherein a heat exchanger is provided in one of the flow paths.
  6.  前記流路を3つ以上備え、
     前記一方の流路と、前記他方の流路とは交互に配される請求項5に記載の流路切換装置。
    It is provided with three or more of the above-mentioned flow paths.
    The flow path switching device according to claim 5, wherein the one flow path and the other flow path are alternately arranged.
  7.  前記請求項1から6のいずれか1項に記載の流路切換装置を備えるボイラ。 A boiler provided with the flow path switching device according to any one of claims 1 to 6.
PCT/JP2021/021769 2020-09-04 2021-06-08 Flow path switching device and boiler WO2022049850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546895A JP7392865B2 (en) 2020-09-04 2021-06-08 Flow switching device and boiler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-148863 2020-09-04
JP2020148863 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022049850A1 true WO2022049850A1 (en) 2022-03-10

Family

ID=80491047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021769 WO2022049850A1 (en) 2020-09-04 2021-06-08 Flow path switching device and boiler

Country Status (2)

Country Link
JP (1) JP7392865B2 (en)
WO (1) WO2022049850A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159501A (en) * 1984-01-30 1985-08-21 株式会社日立製作所 Waste-heat recovery boiler device
US20030199245A1 (en) * 2002-04-23 2003-10-23 Salman Akhtar Air handling unit with supply and exhaust fans
US20090271039A1 (en) * 2008-04-17 2009-10-29 Mark Richman Method and apparatus for flue gas recirculation
JP2013234838A (en) * 2012-05-05 2013-11-21 Alstom Technology Ltd Enhanced flue gas damper mixing device
JP2018106831A (en) * 2016-12-22 2018-07-05 スズキ株式会社 Air-cooled fuel cell unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159501A (en) * 1984-01-30 1985-08-21 株式会社日立製作所 Waste-heat recovery boiler device
US20030199245A1 (en) * 2002-04-23 2003-10-23 Salman Akhtar Air handling unit with supply and exhaust fans
US20090271039A1 (en) * 2008-04-17 2009-10-29 Mark Richman Method and apparatus for flue gas recirculation
JP2013234838A (en) * 2012-05-05 2013-11-21 Alstom Technology Ltd Enhanced flue gas damper mixing device
JP2018106831A (en) * 2016-12-22 2018-07-05 スズキ株式会社 Air-cooled fuel cell unit

Also Published As

Publication number Publication date
JPWO2022049850A1 (en) 2022-03-10
JP7392865B2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
KR930010857B1 (en) Method and device for controlling opeation of circulation type fluidized bed reactor
CN100538247C (en) Heat exchange surface
WO2022049850A1 (en) Flow path switching device and boiler
KR101898077B1 (en) Circulating fluidized bed boiler
CN104848230A (en) Cyclone incinerator
JP5613228B2 (en) Thermal power boiler
JPS625242B2 (en)
CN100443800C (en) Adjustable air distributor for circulating fluidized bed boiler
WO2013020254A1 (en) Environmentally friendly energy-saving boiler of circulating fluidized bed type with organic thermal carrier
CN107355807B (en) Optimization method for air distribution mode of W-shaped flame boiler
JP2001041414A (en) Inner temperature controller for circulating fluidized- bed combustor and operating method thereof
JP6925817B2 (en) Pulverized coal burner, pulverized coal burner control method and boiler
SU1781509A1 (en) Boiler
CN220017344U (en) Boiler with tuyere baffle
CN107355808B (en) W-shaped boiler jet flow optimization system
JP7258635B2 (en) Boiler, boiler system and method of starting boiler
CN214948983U (en) Circulating fluidized bed boiler capable of preventing air cap abrasion and air duct dust deposition
PL234502B1 (en) Method for introducing primary fluidizing gas together with the fluidized bed to the boiler furnace
JP7103781B2 (en) Fluidized bed furnace
JP2775586B2 (en) Method and apparatus for promoting mixing of fluid substances
JPH08254301A (en) Furnace wall structure for fluidized bed boiler
CN113294774B (en) Method, system, storage medium and terminal for adjusting wall temperature overtemperature of low-temperature reheater
JP4077974B2 (en) Fluidized bed heat exchanger
JP5084581B2 (en) Secondary air blowing method in the secondary combustion chamber
CN109084320B (en) Flue gas recirculation system based on bypass heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863909

Country of ref document: EP

Kind code of ref document: A1