WO2022049849A1 - Flaw detection test method - Google Patents

Flaw detection test method Download PDF

Info

Publication number
WO2022049849A1
WO2022049849A1 PCT/JP2021/021631 JP2021021631W WO2022049849A1 WO 2022049849 A1 WO2022049849 A1 WO 2022049849A1 JP 2021021631 W JP2021021631 W JP 2021021631W WO 2022049849 A1 WO2022049849 A1 WO 2022049849A1
Authority
WO
WIPO (PCT)
Prior art keywords
flaw detection
detection image
scanning
test method
tube
Prior art date
Application number
PCT/JP2021/021631
Other languages
French (fr)
Japanese (ja)
Inventor
優一 小林
薫 篠田
猛 片山
正光 安部
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2022049849A1 publication Critical patent/WO2022049849A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material

Definitions

  • the present invention relates to a flaw detection test method using a flaw detection image of an object from an ultrasonic flaw detection device.
  • the flaw detection test In the flaw detection test, ultrasonic waves are transmitted from the ultrasonic flaw detector to the object, a flaw detection image is created from the reflection status of the ultrasonic waves in the object, and the presence or absence of scratches on the object is determined from the flaw detection image. Therefore, the flaw detection test is a so-called non-destructive inspection that does not destroy the object.
  • Patent Document 1 In the conventional flaw detection test method, for example, as described in International Publication No. 2018/138833 (hereinafter, Patent Document 1), a method using a wearable camera has been proposed.
  • a user photographs an object and the probe with a wearable camera while inspecting the object with a probe. Then, the captured image information is recorded. Further, as described in paragraph [0086] of Patent Document 1, the method obtains information on an object by a scope as an industrial endoscope.
  • the user or the like performs image information in real time or at the end of inspection, and the situation at the time of inspection. Can be easily grasped.
  • an object of the present invention is to provide a flaw detection test method capable of shortening the time required to electronically store an appropriate flaw detection image.
  • the flaw detection test method is a flaw detection test method using a flaw detection image of an object from an ultrasonic flaw detection device.
  • the terminal mounting process in which the worker wears the wearable terminal that displays the flaw detection image, and The device placement process for arranging the ultrasonic flaw detection device on an object, and A scanning step of scanning the ultrasonic flaw detector against an object, A scanning state confirmation process in which an operator confirms a flaw detection image from a scanning ultrasonic flaw detector with a wearable terminal, and When the flaw detection image confirmed in the scanning state confirmation step is inappropriate, the scanning state adjusting step in which the operator adjusts the scanning state of the ultrasonic flaw detection device so that the flaw detection image is appropriate, and When the flaw detection image confirmed in the scanning state confirmation step is appropriate, or when the scanning state is adjusted in the scanning state adjusting step, the method includes a storage step of electronically storing the flaw detection image. ..
  • a worker uses a wearable terminal to capture a flaw detection image from an ultrasonic flaw detection device arranged on an object before a scanning step.
  • the placement status confirmation process to be confirmed by If the flaw detection image confirmed in the placement status confirmation step is inappropriate before the scanning step, the placement state in which the operator adjusts the placement status of the ultrasonic flaw detection device so that the flaw detection image is appropriate. Further equipped with an adjustment process, When the scanning step is appropriate for the flaw detection image confirmed in the placement state confirmation step, or when the placement state is adjusted in the placement state adjustment step, the ultrasonic flaw detection device scans the object. It is a process to make it.
  • the flaw detection image confirmed by the operator in the arrangement state confirmation step and the scanning state confirmation step in the flaw detection test method according to the second invention is stored in the preservation step. It is a method processed to make it easy to see.
  • the object in the flaw detection test method according to the second or third invention is a tube.
  • the ultrasonic flaw detector fixes the phased array probe that scans the inner surface of the tube by rotating around the axis of the tube and the phased array probe that is inserted inside the tube.
  • the placement state of the ultrasonic flaw detector adjusted in the placement state adjustment step is the position of the phased array probe with respect to the tube in the tube axis direction.
  • the scanning state of the ultrasonic flaw detector adjusted in the scanning state adjusting step is the position of the phased array probe in the tube axial direction with respect to the tube, and the intermediate material arranged between the tube and the phased array probe. It is a method that is in the state of.
  • the flaw detection test method according to the fifth invention has a plurality of objects in the flaw detection test method according to any one of the first to fourth inventions. This is a method in which each storage step of the plurality of objects is performed by one worker different from each worker who wears the wearable terminal in each terminal mounting step.
  • the time required to electronically store an appropriate flaw detection image can be shortened.
  • the flaw detection test method is a method using a flaw detection image of an object from an ultrasonic flaw detection device.
  • the ultrasonic flaw detection device transmits ultrasonic waves to an object of the flaw detection test method and receives the reflection of the ultrasonic waves on the object, thereby obtaining a flaw detection image from the reflected state of the received ultrasonic waves. ..
  • the ultrasonic flaw detector will be simply referred to as a flaw detector.
  • a terminal mounting step 2 in which an operator attaches a wearable terminal for displaying the flaw detection image
  • a device placement step 3 in which the flaw detection device is arranged on an object
  • the above-mentioned It is provided with a scanning step 6 for scanning an object with a flaw detection device.
  • the scanning state confirmation step 7 in which the operator confirms the flaw detection image from the scanning flaw detection device with the wearable terminal and the flaw detection image confirmed in the scanning state confirmation step 7 are inappropriate.
  • the scanning state adjusting step 8 is further provided in which the operator adjusts the scanning state of the flaw detection device so that the flaw detection image is appropriate.
  • the flaw detection image confirmed in the scanning state confirmation step 7 is appropriate, or when the scanning state is adjusted in the scanning state adjusting step 8, the flaw detection image is electronically stored.
  • the storage step 9 is further provided.
  • the terminal mounting step 2 is a step in which an operator wears the wearable terminal.
  • the wearable terminal may be any wearable terminal that displays the flaw detection image, and is, for example, an image display device such as a smart glass, a smart watch, and a smartphone or tablet that the worker can attach and detach.
  • an image display device such as a smart glass, a smart watch, and a smartphone or tablet that the worker can attach and detach.
  • the wears the wearing auxiliary tool is, for example, a spectacle band connecting both cells of the smart glass when the wearable terminal is a smart glass.
  • the wearable terminal enlarges and displays the flaw detection image.
  • the device placement step 3 is a step of arranging the flaw detection device on an object. In the arrangement in the device arrangement step 3, it is not always necessary to fix the flaw detection device to the object, and it is sufficient to place or attach the flaw detection device to the object as a step immediately before the scanning.
  • the scanning step 6 is a step of scanning the flaw detection device with respect to an object.
  • the scanning in the scanning step 6 is to transmit ultrasonic waves to the object from the probe (probe) of the flaw detector and to make the probe travel to the object.
  • the run may be manual or automatic.
  • the scanning state confirmation step 7 is a step in which the operator confirms the flaw detection image from the scanning flaw detection device with a wearable terminal.
  • the scanning state is a state in which the flaw detector is scanning, for example, the scanning direction, the state of the intermediate material arranged between the object and the probe (adhesion degree and deformation amount). In addition, the angle of the ultrasonic wave transmitted during scanning and the like.
  • the operator adjusts the scanning state of the flaw detection device so that the flaw detection image is appropriate. Is. If the flaw detection image is inappropriate, the scanning state for obtaining the flaw detection image is inappropriate. Therefore, by adjusting the scanning state to be appropriate, the flaw detection image obtained again becomes appropriate. .. Criteria for determining the flaw detection image as appropriate or inappropriate are predetermined according to the flaw detection device.
  • the flaw detection image when the flaw detection image confirmed in the scanning state confirmation step 7 is appropriate, or when the scanning state is adjusted in the scanning state adjusting step 8, the flaw detection image is electronically stored. It is a process.
  • This storage step 9 may be performed by a person different from the worker, or may be performed by the worker himself / herself.
  • the electronic storage by the storage step 9 is performed on a medium such as a hard disk and a memory that can be electronically stored.
  • the worker W wears a smart glass 50 (an example of a wearable terminal 50) that displays the scratch detection image.
  • the flaw detection device 20 is arranged on the object 10 as the device placement step 3, and the flaw detection device 20 is scanned against the object 10 as the scanning step 6.
  • a flaw detection image is created by the control unit 30 based on the ultrasonic waves received by the scanning flaw detection device 20, and the flaw detection image is wirelessly transmitted to the smart glasses 50 by the wireless transmission unit 40.
  • this radio is the time from the transmission of the flaw detection image by the wireless transmission unit 40 to the reception by the smart glasses 50.
  • Wi-Fi Direct registered trademark
  • the radio is adopted for the radio, and the same operating system is adopted for the control unit 30 and the smart glasses 50, if necessary.
  • the worker W confirms the flaw detection image from the scanning flaw detection device 20 with the smart glasses 50.
  • the worker W adjusts the scanning state of the flaw detection device 20 so that the flaw detection image is appropriate. ..
  • the flaw detection image confirmed by the smart glasses 50 is appropriate as the preservation step 9, or when the scanning state is adjusted in the scanning state adjusting step 8, the flaw detection image is electronically stored. ..
  • the operator W adjusts the scanning state to be appropriate even if the scanning state is inappropriate, so that the time required to electronically store an appropriate flaw detection image. Can be shortened.
  • the flaw detection test method 1 according to the first embodiment which more specifically shows the first embodiment, will be described with reference to FIGS. 3 to 5.
  • the description will be focused on a configuration different from that of the first embodiment, and the same configuration as that of the first embodiment will be designated by the same reference numerals and the description thereof will be omitted.
  • the flaw detection test method 1 adopts the TOFD (Time Of Flight Diffraction) method.
  • the TOFD method is a transmission probe 21 that transmits ultrasonic waves that spread widely as a flaw detector 20, and a reception probe that faces the transmission probe 21. It is a method of using a pair of probes 21 and 22 with a child 22.
  • a transmission probe 21 and a reception probe 22 are provided on both sides of a welded portion 12 (an example of an object 10) in a metal plate 11 (an example of an object 10), respectively.
  • the pair of probes 21 and 22 are scanned in parallel along the weld 12. As shown in FIG.
  • the flaw detection image from the ultrasonic wave received by the reception probe 22 by this scanning includes the lateral wave c propagating on the surface layer portion of the metal plate 11 and the metal in the ultrasonic wave.
  • the back surface reflected wave r reflected on the back surface of the plate 11 and the diffracted waves d1 and d2 from the upper end and the lower end of the scratch f if the welded portion 12 has a scratch f are reflected. Therefore, if the welded portion 12 has no scratch f, the scratch detection image does not reflect the diffracted waves d1 and d2. That is, in the TOFD method, the presence or absence of scratches f on the welded portion 12 is determined based on whether or not the diffracted waves d1 and d2 are reflected in the scratch detection image.
  • the criterion for determining whether the flaw detection image is appropriate or inappropriate is whether the lateral wave c is reflected in the flaw detection image.
  • the lateral wave c should be received by the receiving probe 22 regardless of the presence or absence of scratches f on the welded portion 12. However, if the scanning state of the pair of probes 21 and 22 is inappropriate, the lateral wave c is not received by the reception probe 22, so that the lateral wave c is not reflected in the flaw detection image.
  • the scanning state adjusting step 8 if the flaw detection image confirmed by the wearable terminal 50 does not reflect the lateral wave c, the worker W determines the scanning state so that the flaw detection image reflects the lateral wave c. To adjust.
  • This scanning state is specifically adjusted by adjusting the direction in which the pair of probes 21 and 22 are pressed against the metal plate 11 and / or the amount of force that presses the pair of probes 21 and 22 against the metal plate 11. be.
  • the flaw detection test method 1 As the flaw detection test method 1 according to the first embodiment, a method combining the TOFD method and the creeping wave method may be adopted.
  • the criteria for determining whether the flaw detection image is appropriate or inappropriate is whether the lateral wave c is reflected in the flaw detection image and the flaw detection image. Is the noise echo reflected in the image?
  • the worker W attaches the wearable terminal 50 on which the flaw detection image is displayed (S2). After that, the transmission probe 21 and the reception probe 22 are arranged so as to sandwich the welded portion 12 (S3), and the pair of probes 21 and 22 are scanned against the welded portion 12 (S4). ..
  • the worker W confirms the flaw detection image on the wearable terminal 50, and when the flaw detection image is inappropriate (S5), the worker W makes a pair of probes 21 so that the flaw detection image is appropriate. , 22 adjust the scanning state (S6).
  • the flaw detection image confirmed by the wearable terminal 50 is appropriate (S5) or when the scanning state is adjusted (S6), the flaw detection image is electronically stored (that is, the data of the flaw detection image is stored). Save) (S7) and exit (S8).
  • a step of determining whether the scanned welded portion 12 is the total length of the welded portion 12 may be provided before the data of the flaw detection image is saved (S7).
  • the steps S3 to S6 are repeated until the scanned welded portion 12 has the full length.
  • the flaw detection image data is saved (S7).
  • the flaw detection test method 1 it is determined that the flaw detection image is inappropriate based on the lateral wave c reflected in the flaw detection image, so that the determination is easy. This makes it possible to further reduce the time required to electronically store an appropriate flaw detection image.
  • the storage step is performed by another worker (hereinafter referred to as an administrator) different from the worker W. 9 may be performed.
  • an administrator it is preferable that there are two objects 10 (s), and each storage step 9 for each object 10 is preferably performed by one manager M. ..
  • the administrator M uses a personal computer 34 that displays the flaw detection image and wirelessly transmits the flaw detection image to the wearable terminal 50 of all the workers W so that the administrator M can also confirm the flaw detection image.
  • the flaw detection test method 1 according to the second embodiment including the steps added from the first embodiment will be described with reference to FIG. 7.
  • the steps added from the first embodiment will be focused on, and the same configurations as those in the first embodiment will be designated by the same reference numerals and the description thereof will be omitted.
  • the flaw detection test method 1 includes an arrangement state confirmation step 4 and an arrangement state adjustment step 5 after the equipment arrangement step 3 and before the scanning step 6.
  • the arrangement state confirmation step 4 is a step in which the worker W confirms the flaw detection image from the flaw detection device 20 arranged on the object 10 with the wearable terminal 50.
  • the arrangement state is a state in which the flaw detection device 20 is arranged on the object 10, and is, for example, a positional relationship between the probe of the flaw detection device 20 and the object 10.
  • the worker W adjusts the arrangement state of the flaw detection device 20 so that the flaw detection image is appropriate. It is a process to do. If the flaw detection image is inappropriate, the arrangement state immediately before scanning the flaw detection device 20 is inappropriate. Therefore, the flaw detection device 20 is arranged on the object 10 by adjusting the arrangement state so as to be appropriate. The flaw detection image obtained from the flaw detection device 20 is appropriate. Criteria for determining the flaw detection image as appropriate or inappropriate are predetermined according to the flaw detection device 20.
  • the flaw detection device 20 is applied to the object 10. It is a process of scanning.
  • the effect of the flaw detection test method 1 according to the first embodiment is obtained, and even if the arrangement state is inappropriate, it is appropriate. Since it is adjusted by the worker W, the time required to electronically store an appropriate flaw detection image can be further shortened.
  • the flaw detection test method 1 according to the second embodiment which more specifically shows the second embodiment, will be described with reference to FIGS. 8 to 13.
  • the description will be focused on a configuration different from that of the second embodiment, and the same configuration as that of the second embodiment will be designated by the same reference numerals and the description thereof will be omitted.
  • the object 10 is a pipe 13 welded to a pipe plate 14. Therefore, the welded portion 12 exists in the portion where the pipe plate 14 and the pipe 13 are welded.
  • the flaw detection device 20 is a phased array flaw detection device 20. Therefore, the phased array flaw detector 20 has a phased array probe 24 that transmits ultrasonic waves to the tube 13 by the phased array method. Further, the phased array flaw detector 20 directs the phased array probe 24 toward the inner surface of the tube 13 and rotates the phased array probe 24 about an axis to scan the phased array probe 24 with respect to the inner surface of the tube 13. It has a shaft portion 23. Further, the phased array flaw detector 20 has a fixing mechanism 25 for fixing the phased array probe 24 in a state of being inserted into the tube 13 via the shaft portion 23.
  • the control unit 30 displays the control box 31 for controlling the phased array flaw detector 20, the phased array flaw detector 32 for creating and displaying the flaw detection image, and wirelessly transmits the flaw detection image to the smart glasses 50. It has a personal computer 34 (also serves as a wireless transmission unit 40). Further, the control unit 30 may have a ring mouse 35 that is fitted to the finger of the worker W and operates the personal computer 34 by the movement of the finger.
  • the arrangement state of the phased array flaw detector 20 adjusted in the arrangement state adjustment step 5 is the position of the phased array probe 24 with respect to the tube 13 in the tube axis direction.
  • the scanning state of the phased array flaw detector 20 adjusted in the scanning state adjusting step 8 is the position of the phased array probe 24 with respect to the tube 13 in the tube axis direction, and / or the inner surface of the tube 13 and the phased array probe. It is the state (adhesion degree and deformation amount) of the intermediate material arranged between the tentacle 24 and the tentacle 24.
  • the phased array flaw detector 20 has a first sector scan in which ultrasonic waves transmitted from the phased array probe 24 are shaken at 0 to 45 ° with respect to the tube plate 14, and FIG. 10 shows.
  • a linear scan at 0 ° with respect to the tube plate 14 and a second sector scan at 0 to ⁇ 45 ° with respect to the tube plate 14 are performed as shown in FIG.
  • Reference numeral B shown in FIGS. 9 to 11 is a portion where the ultrasonic wave is reflected on the phased array probe 24 as a bottom echo.
  • the reflection of ultrasonic waves from the reference numeral B (on the right side of FIG. 10) and the reference numeral B shown in FIG. 11 is hereinafter referred to as a tube back bottom bottom echo.
  • the pipe end side bottom surface echo and the pipe are shown in the scratch detection image. If both the back bottom echoes are reflected, it can be said that the arrangement state is appropriate.
  • FIG. 12 shows an example of the flaw detection image.
  • the flaw detection image is composed of an image of 3 rows and 3 columns.
  • the three images in the left column correspond to the first sector scan
  • the three images in the center column correspond to the linear scan
  • the three images in the right column correspond to the second sector scan.
  • the criteria for determining whether the flaw detection image is appropriate or inappropriate is that the tube end side bottom surface echo E1 is reflected in the image in the middle row of the left column, and the tube end side bottom surface echo is reflected in the image in the middle row of the center row.
  • This is a case where E1 and the bottom surface echo E2 on the back side of the tube are reflected, and the bottom surface echo E2 on the back side of the tube is reflected in the image in the middle of the right column.
  • the reference is at least that the bottom surface echo E1 on the end side of the tube and the bottom surface echo E2 on the back side of the tube are reflected in the image in the middle of the center row.
  • the flaw detection image is inappropriate.
  • the position in the axial direction is adjusted so that the flaw detection image reflects both the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2.
  • the criterion for determining whether the flaw detection image is appropriate or inappropriate is the tube end side reflected in the image in the middle of the center row when the phased array probe 24 is being scanned. Whether the bottom surface echo E1 and the bottom surface echo E2 on the inner side of the tube do not fluctuate up and down.
  • the reason why the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 fluctuate up and down is that the state of the intermediate material of the tube 13 (that is, the degree of adhesion and the amount of deformation) changes, and the propagation distance of the ultrasonic wave changes. By doing.
  • the distance between the reflecting surface of the ultrasonic wave in the tube 13 and the phased array probe 24 becomes long, so that the propagation distance of the ultrasonic wave becomes long.
  • the vertical axis is the propagation distance (the lower part indicates the increasing direction).
  • the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 are below the flaw detection image. fluctuate.
  • the distance between the reflecting surface of the ultrasonic wave in the tube 13 and the phased array probe 24 becomes short, so that the propagation distance of the ultrasonic wave becomes long. It becomes shorter, and the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 fluctuate on the flaw detection image. If the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 of the flaw detection image fluctuate up and down, the flaw detection image is inappropriate.
  • the worker W attaches the wearable terminal 50 on which the flaw detection image is displayed (S02). After that, the phased array flaw detector 20 is inserted into the tube 13 (S03).
  • the flaw detection image is inappropriate.
  • the position of the phased array probe 24 in the tube axis direction is adjusted by the fixing mechanism 25 so as to be appropriate (S05).
  • the phased array flaw detector 20 Is fixed to the pipe 13 by the fixing mechanism 25 (S06).
  • phased array probe 24 is scanned with respect to the welded portion 12 (S07).
  • the flaw detection image confirmed by the wearable terminal 50 is appropriate (S08), or when the scanning state of the phased array flaw detection device 20 is adjusted (S09), the flaw detection image is electronically stored (that is, that is). The data of the flaw detection image is saved) (S10), and the process ends (S11).
  • the flaw detection image is inappropriate based on the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 reflected in the flaw detection image. Since the determination is made, the time required to electronically store an appropriate flaw detection image can be further shortened by facilitating the determination.
  • the transmission of the flaw detection image to the wearable terminal 50 has been described as wireless, but it may be via an internet line.
  • the smart glass 50 which is an example of the wearable terminal 50, has not been described in detail, but the smart glass 50 having a flip-type shade is preferable.
  • the shade is lowered to make the display of the flaw detection image clearer, and the worker W adjusts the arrangement state and the scanning state of the flaw detection device 20.
  • the shade is raised to make it easier for the worker W to see the flaw detection device 20.
  • the processing of the flaw detection image has not been described, but the flaw detection image confirmed by the operator W in the arrangement state confirmation step 4 and the scanning state confirmation step 7. May be processed so that the flaw detection image stored in the storage step 9 can be easily visually recognized.
  • the processing of the flaw detection image to be stored is extraction and / or image processing of a part thereof.
  • the extraction of a part of the flaw detection image is to extract and enlarge an important part in the arrangement state confirmation step 4 and the scanning state confirmation step 7, such as the middle row in the center row of FIG.
  • the image processing includes, for example, addition of a necessary threshold value, addition of a frame indicating a range, and / or smooth processing and / or noise processing to the flaw detection image before processing.
  • first and second embodiments and the first and second embodiments are exemplary in all respects and are not restrictive.
  • the scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
  • the configurations other than those described as the first invention in "Means for Solving Problems" are arbitrary configurations and can be appropriately deleted or changed. Is.

Abstract

This flaw detection test method (1) uses a flaw detection image of an object from an ultrasonic flaw detector (hereinafter referred to as a flaw detector). The flaw detection test method (1) comprises: a terminal attachment step (2) for allowing a worker to wear a wearable terminal that displays a flaw detection image; a device disposition step (3) for disposing a flaw detector on an object; and a scanning step (6) for causing the flaw detector to scan the object. The flaw detection test method (1) further comprises: a scanning state checking step for allowing the worker to check, using the wearable terminal, a flaw detection image from the flaw detector performing the scanning; and a scanning state adjustment step for, when the checked flaw detection image is inappropriate, allowing the worker to adjust the scanning state of the flaw detector such that the flaw detection image becomes appropriate. The flaw detection test method (1) further comprises a storage step for electronically storing the flaw detection image when the checked flaw detection image is appropriate or when the scanning state has been adjusted.

Description

探傷試験方法Flaw detection test method
 本発明は、超音波探傷機器からの対象物の探傷画像を使用する探傷試験方法に関するものである。 The present invention relates to a flaw detection test method using a flaw detection image of an object from an ultrasonic flaw detection device.
 探傷試験では、超音波探傷機器から超音波を対象物に送信し、当該対象物における超音波の反射状況から探傷画像を作成し、当該探傷画像から対象物の傷の有無を判断する。このため、前記探傷試験は、対象物を破壊せずに済む、所謂非破壊検査である。 In the flaw detection test, ultrasonic waves are transmitted from the ultrasonic flaw detector to the object, a flaw detection image is created from the reflection status of the ultrasonic waves in the object, and the presence or absence of scratches on the object is determined from the flaw detection image. Therefore, the flaw detection test is a so-called non-destructive inspection that does not destroy the object.
 従来の探傷試験方法では、例えば、国際公開第2018/138833号(以下、特許文献1)に記載されているように、ウェアラブルカメラを使用する方法が提案されている。この方法では、特許文献1の段落[0083]に記載されているように、ユーザ(作業者)が、対象物をプローブで検査しながら、当該対象物およびプローブをウェアラブルカメラで撮影する。そして、撮影された画像情報が記録される。また、前記特許文献1の段落[0086]に記載されているように、前記方法は、工業用内視鏡として、スコープにより対象物の情報を取得する。これにより、前記特許文献1に記載の方法では、当該特許文献1の段落[0083]における最終文に記載されているように、ユーザなどが画像情報をリアルタイムまたは検査の終了時に、検査時の状況を容易に把握することができる。 In the conventional flaw detection test method, for example, as described in International Publication No. 2018/138833 (hereinafter, Patent Document 1), a method using a wearable camera has been proposed. In this method, as described in paragraph [0083] of Patent Document 1, a user (worker) photographs an object and the probe with a wearable camera while inspecting the object with a probe. Then, the captured image information is recorded. Further, as described in paragraph [0086] of Patent Document 1, the method obtains information on an object by a scope as an industrial endoscope. As a result, in the method described in Patent Document 1, as described in the final sentence in paragraph [0083] of Patent Document 1, the user or the like performs image information in real time or at the end of inspection, and the situation at the time of inspection. Can be easily grasped.
 しかしながら、前記特許文献1に記載の方法では、記録された画像情報からユーザが検査の不備を発見するために、不備のある検査の画像情報も記録(保存)しなければならない。このため、前記方法では、不備のない適切な画像情報(探傷画像)を記録(保存)するまでに、時間を要するという問題がある。 However, in the method described in Patent Document 1, in order for the user to find a defect in the inspection from the recorded image information, the image information of the inspection with the defect must also be recorded (saved). Therefore, the above method has a problem that it takes time to record (save) appropriate image information (fault detection image) without any deficiency.
 そこで、本発明は、適切な探傷画像を電子的に保存するまでの時間を短縮し得る探傷試験方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a flaw detection test method capable of shortening the time required to electronically store an appropriate flaw detection image.
 前記課題を解決するため、第1の発明に係る探傷試験方法は、超音波探傷機器からの対象物の探傷画像を使用する探傷試験方法であって、
 前記探傷画像を表示するウェアラブル端末を作業者が装着する端末装着工程と、
 前記超音波探傷機器を対象物に配置する機器配置工程と、
 前記超音波探傷機器を対象物に対して走査させる走査工程と、
 走査している超音波探傷機器からの探傷画像をウェアラブル端末で作業者が確認する走査状態確認工程と、
 前記走査状態確認工程で確認された探傷画像が不適切である場合、当該探傷画像が適切となるように、前記作業者が超音波探傷機器の走査状態を調整する走査状態調整工程と、
 前記走査状態確認工程で確認された探傷画像が適切である場合、または、前記走査状態調整工程で走査状態が調整された場合、前記探傷画像を電子的に保存する保存工程とを備える方法である。
In order to solve the above-mentioned problems, the flaw detection test method according to the first invention is a flaw detection test method using a flaw detection image of an object from an ultrasonic flaw detection device.
The terminal mounting process in which the worker wears the wearable terminal that displays the flaw detection image, and
The device placement process for arranging the ultrasonic flaw detection device on an object, and
A scanning step of scanning the ultrasonic flaw detector against an object,
A scanning state confirmation process in which an operator confirms a flaw detection image from a scanning ultrasonic flaw detector with a wearable terminal, and
When the flaw detection image confirmed in the scanning state confirmation step is inappropriate, the scanning state adjusting step in which the operator adjusts the scanning state of the ultrasonic flaw detection device so that the flaw detection image is appropriate, and
When the flaw detection image confirmed in the scanning state confirmation step is appropriate, or when the scanning state is adjusted in the scanning state adjusting step, the method includes a storage step of electronically storing the flaw detection image. ..
 また、第2の発明に係る探傷試験方法は、第1の発明に係る探傷試験方法において、走査工程の前に、対象物に配置された超音波探傷機器からの探傷画像をウェアラブル端末で作業者が確認する配置状態確認工程と、
 走査工程の前に、前記配置状態確認工程で確認された探傷画像が不適切である場合、当該探傷画像が適切となるように、前記作業者が超音波探傷機器の配置状態を調整する配置状態調整工程とをさらに備え、
 前記走査工程が、前記配置状態確認工程で確認された探傷画像が適切である場合、または、前記配置状態調整工程で配置状態が調整された場合、前記超音波探傷機器を対象物に対して走査させる工程である。
Further, in the flaw detection test method according to the second invention, in the flaw detection test method according to the first invention, a worker uses a wearable terminal to capture a flaw detection image from an ultrasonic flaw detection device arranged on an object before a scanning step. The placement status confirmation process to be confirmed by
If the flaw detection image confirmed in the placement status confirmation step is inappropriate before the scanning step, the placement state in which the operator adjusts the placement status of the ultrasonic flaw detection device so that the flaw detection image is appropriate. Further equipped with an adjustment process,
When the scanning step is appropriate for the flaw detection image confirmed in the placement state confirmation step, or when the placement state is adjusted in the placement state adjustment step, the ultrasonic flaw detection device scans the object. It is a process to make it.
 さらに、第3の発明に係る探傷試験方法は、第2の発明に係る探傷試験方法における配置状態確認工程および走査状態確認工程で作業者が確認する探傷画像が、保存工程で保存される探傷画像を視認容易とするために加工された方法である。 Further, in the flaw detection test method according to the third invention, the flaw detection image confirmed by the operator in the arrangement state confirmation step and the scanning state confirmation step in the flaw detection test method according to the second invention is stored in the preservation step. It is a method processed to make it easy to see.
 加えて、第4の発明に係る探傷試験方法は、第2または第3の発明に係る探傷試験方法における対象物が管であり、
 超音波探傷機器が、前記管の軸回りに回転することで当該管の内面に対して走査するフェーズドアレイ探触子と、当該フェーズドアレイ探触子を管の内部に挿入された状態で固定する固定機構とを有し、
 配置状態調整工程で調整される超音波探傷機器の配置状態が、前記管に対するフェーズドアレイ探触子の管軸方向における位置であり、
 走査状態調整工程で調整される超音波探傷機器の走査状態が、前記管に対するフェーズドアレイ探触子の管軸方向における位置、および、管とフェーズドアレイ探触子との間に配置された中間材料の状態である方法である。
In addition, in the flaw detection test method according to the fourth invention, the object in the flaw detection test method according to the second or third invention is a tube.
The ultrasonic flaw detector fixes the phased array probe that scans the inner surface of the tube by rotating around the axis of the tube and the phased array probe that is inserted inside the tube. Has a fixing mechanism and
The placement state of the ultrasonic flaw detector adjusted in the placement state adjustment step is the position of the phased array probe with respect to the tube in the tube axis direction.
The scanning state of the ultrasonic flaw detector adjusted in the scanning state adjusting step is the position of the phased array probe in the tube axial direction with respect to the tube, and the intermediate material arranged between the tube and the phased array probe. It is a method that is in the state of.
 また、第5の発明に係る探傷試験方法は、第1乃至第4のいずれかの発明に係る探傷試験方法における対象物が複数であり、
 前記複数の対象物の各保存工程が、各端末装着工程でウェアラブル端末をそれぞれ装着する各作業者とは異なる1人の作業者により行われる方法である。
Further, the flaw detection test method according to the fifth invention has a plurality of objects in the flaw detection test method according to any one of the first to fourth inventions.
This is a method in which each storage step of the plurality of objects is performed by one worker different from each worker who wears the wearable terminal in each terminal mounting step.
 前記探傷試験方法によると、適切な探傷画像を電子的に保存するまでの時間を短縮することができる。 According to the flaw detection test method, the time required to electronically store an appropriate flaw detection image can be shortened.
本発明の実施の形態1に係る探傷試験方法のブロック図である。It is a block diagram of the flaw detection test method which concerns on Embodiment 1 of this invention. 同探傷試験方法の構成図である。It is a block diagram of the flaw detection test method. 本発明の実施例1に係る探傷試験方法に使用される対象物および探傷機器の斜視図である。FIG. 3 is a perspective view of an object and a flaw detection device used in the flaw detection test method according to the first embodiment of the present invention. 図3の横断面図である。It is a cross-sectional view of FIG. 同探傷試験方法のフローチャートである。It is a flowchart of the flaw detection test method. 同実施の形態1および実施例1の変形例を示す構成図である。It is a block diagram which shows the modification of Embodiment 1 and Example 1. 本発明の実施の形態2に係る探傷試験方法のブロック図である。It is a block diagram of the flaw detection test method which concerns on Embodiment 2 of this invention. 本発明の実施例2に係る探傷試験方法の構成図である。It is a block diagram of the flaw detection test method which concerns on Example 2 of this invention. 同探傷試験方法での第1セクタスキャンを示す縦断面図である。It is a vertical sectional view which shows the 1st sector scan by the same flaw detection test method. 同探傷試験方法でのリニアスキャンを示す縦断面図である。It is a vertical cross-sectional view which shows the linear scan by the same flaw detection test method. 同探傷試験方法での第2セクタスキャンを示す縦断面図である。It is a vertical sectional view which shows the 2nd sector scan by the same flaw detection test method. 同探傷試験方法での探傷画像の一例を示す図である。It is a figure which shows an example of the flaw detection image by the same flaw detection test method. 同探傷試験方法のフローチャートである。It is a flowchart of the flaw detection test method.
[実施の形態1]
 以下、本発明の実施の形態1に係る探傷試験方法について、図面に基づき説明する。前記探傷試験方法は、超音波探傷機器からの対象物の探傷画像を使用する方法である。前記超音波探傷機器は、前記探傷試験方法の対象物に超音波を送信し、その対象物における超音波の反射を受信することで、受信した超音波の反射状況から探傷画像を得るものである。以下では、説明を簡単にするために、前記超音波探傷機器を単に探傷機器と称する。
[Embodiment 1]
Hereinafter, the flaw detection test method according to the first embodiment of the present invention will be described with reference to the drawings. The flaw detection test method is a method using a flaw detection image of an object from an ultrasonic flaw detection device. The ultrasonic flaw detection device transmits ultrasonic waves to an object of the flaw detection test method and receives the reflection of the ultrasonic waves on the object, thereby obtaining a flaw detection image from the reflected state of the received ultrasonic waves. .. In the following, for the sake of simplicity, the ultrasonic flaw detector will be simply referred to as a flaw detector.
 図1に示すように、前記探傷試験方法1は、前記探傷画像を表示するウェアラブル端末を作業者が装着する端末装着工程2と、前記探傷機器を対象物に配置する機器配置工程3と、前記探傷機器を対象物に対して走査させる走査工程6とを備える。前記探傷試験方法1は、走査している探傷機器からの探傷画像をウェアラブル端末で作業者が確認する走査状態確認工程7と、この走査状態確認工程7で確認された探傷画像が不適切である場合、当該探傷画像が適切となるように、前記作業者が探傷機器の走査状態を調整する走査状態調整工程8とをさらに備える。前記探傷試験方法1は、前記走査状態確認工程7で確認された探傷画像が適切である場合、または、前記走査状態調整工程8で走査状態が調整された場合、前記探傷画像を電子的に保存する保存工程9をさらに備える。 As shown in FIG. 1, in the flaw detection test method 1, a terminal mounting step 2 in which an operator attaches a wearable terminal for displaying the flaw detection image, a device placement step 3 in which the flaw detection device is arranged on an object, and the above-mentioned It is provided with a scanning step 6 for scanning an object with a flaw detection device. In the flaw detection test method 1, the scanning state confirmation step 7 in which the operator confirms the flaw detection image from the scanning flaw detection device with the wearable terminal and the flaw detection image confirmed in the scanning state confirmation step 7 are inappropriate. In this case, the scanning state adjusting step 8 is further provided in which the operator adjusts the scanning state of the flaw detection device so that the flaw detection image is appropriate. In the flaw detection test method 1, when the flaw detection image confirmed in the scanning state confirmation step 7 is appropriate, or when the scanning state is adjusted in the scanning state adjusting step 8, the flaw detection image is electronically stored. The storage step 9 is further provided.
 前記端末装着工程2は、前記ウェアラブル端末を作業者が装着する工程である。このウェアラブル端末は、前記探傷画像を表示するウェアラブルな端末であればよく、例えば、スマートグラス、スマートウォッチ、および、前記作業者が着脱可能なスマートフォンまたはタブレットなどの画像表示機器である。前記ウェアラブル端末を装着し続ける作業者の負担を低減するために、当該作業者は、前記装着の補助具を着用することが好ましい。この補助具は、例えば、ウェアラブル端末がスマートグラスの場合、当該スマートグラスの両セルを接続する眼鏡バンドである。前記探傷画像を確認する作業者の負担を低減するために、前記ウェアラブル端末は、前記探傷画像を拡大して表示するものが好ましい。 The terminal mounting step 2 is a step in which an operator wears the wearable terminal. The wearable terminal may be any wearable terminal that displays the flaw detection image, and is, for example, an image display device such as a smart glass, a smart watch, and a smartphone or tablet that the worker can attach and detach. In order to reduce the burden on the worker who continues to wear the wearable terminal, it is preferable that the worker wears the wearing auxiliary tool. This auxiliary tool is, for example, a spectacle band connecting both cells of the smart glass when the wearable terminal is a smart glass. In order to reduce the burden on the operator who confirms the flaw detection image, it is preferable that the wearable terminal enlarges and displays the flaw detection image.
 前記機器配置工程3は、前記探傷機器を対象物に配置する工程である。この前記機器配置工程3での配置は、前記探傷機器を対象物に必ずしも固定する必要は無く、前記走査の直前段階として探傷機器を対象物に置くまたは添える程度で足りる。 The device placement step 3 is a step of arranging the flaw detection device on an object. In the arrangement in the device arrangement step 3, it is not always necessary to fix the flaw detection device to the object, and it is sufficient to place or attach the flaw detection device to the object as a step immediately before the scanning.
 前記走査工程6は、前記探傷機器を対象物に対して走査させる工程である。この走査工程6での走査は、前記探傷機器が有する探触子(プローブ)から対象物に超音波を送信させるとともに、当該探触子を対象物に対して走行させることである。前記走行は、手動および自動のいずれでもよい。 The scanning step 6 is a step of scanning the flaw detection device with respect to an object. The scanning in the scanning step 6 is to transmit ultrasonic waves to the object from the probe (probe) of the flaw detector and to make the probe travel to the object. The run may be manual or automatic.
 前記走査状態確認工程7は、走査している探傷機器からの探傷画像をウェアラブル端末で作業者が確認する工程である。前記走査状態とは、前記探傷機器が走査している状態であり、例えば、走査する方向、前記対象物と探触子との間に配置された中間材料の状態(密着具合および変形量)、並びに、走査の際に送信している超音波の角度などである。 The scanning state confirmation step 7 is a step in which the operator confirms the flaw detection image from the scanning flaw detection device with a wearable terminal. The scanning state is a state in which the flaw detector is scanning, for example, the scanning direction, the state of the intermediate material arranged between the object and the probe (adhesion degree and deformation amount). In addition, the angle of the ultrasonic wave transmitted during scanning and the like.
 前記走査状態調整工程8は、前記走査状態確認工程7で確認された探傷画像が不適切である場合、当該探傷画像が適切となるように、前記作業者が探傷機器の走査状態を調整する工程である。前記探傷画像が不適切であれば、当該探傷画像を得るための走査状態が不適切であるから、当該走査状態が適切になるように調整されることで、改めて得られる探傷画像が適切になる。前記探傷画像を適切または不適切と判断するための基準は、前記探傷機器に応じて予め定められる。 In the scanning state adjusting step 8, when the flaw detection image confirmed in the scanning state confirmation step 7 is inappropriate, the operator adjusts the scanning state of the flaw detection device so that the flaw detection image is appropriate. Is. If the flaw detection image is inappropriate, the scanning state for obtaining the flaw detection image is inappropriate. Therefore, by adjusting the scanning state to be appropriate, the flaw detection image obtained again becomes appropriate. .. Criteria for determining the flaw detection image as appropriate or inappropriate are predetermined according to the flaw detection device.
 前記保存工程9は、前記走査状態確認工程7で確認された探傷画像が適切である場合、または、前記走査状態調整工程8で走査状態が調整された場合、前記探傷画像を電子的に保存する工程である。この保存工程9は、前記作業者とは異なる者が行ってもよく、前記作業者自身が行ってもよい。前記保存工程9による電子的な保存は、ハードディスクおよびメモリなどの電子的な保存が可能な媒体に行われる。 In the storage step 9, when the flaw detection image confirmed in the scanning state confirmation step 7 is appropriate, or when the scanning state is adjusted in the scanning state adjusting step 8, the flaw detection image is electronically stored. It is a process. This storage step 9 may be performed by a person different from the worker, or may be performed by the worker himself / herself. The electronic storage by the storage step 9 is performed on a medium such as a hard disk and a memory that can be electronically stored.
 以下、前記探傷試験方法1の使用について、図2に基づき説明する。 Hereinafter, the use of the flaw detection test method 1 will be described with reference to FIG.
 まず、前記端末装着工程2として、前記探傷画像を表示するスマートグラス50(ウェアラブル端末50の一例)を作業者Wが装着する。その後、前記機器配置工程3として探傷機器20を対象物10に配置し、前記走査工程6として探傷機器20を対象物10に対して走査させる。走査している探傷機器20が受信した超音波に基づき、制御部30で探傷画像が作成されて、当該探傷画像が無線送信部40により無線でスマートグラス50に送信される。この無線は、前記スマートグラス50が探傷画像をリアルタイムに表示していると作業者Wに感じさせるために、前記無線送信部40が探傷画像を送信してからスマートグラス50で受信するまでの時間を、0.5秒以下にすることが好ましく、0.05秒以下にすることが一層好ましい。このために、例えば、前記無線にWi-Fi Direct(登録商標)が採用され、必要に応じて、前記制御部30およびスマートグラス50に同一のオペレーティングシステムが採用される。 First, as the terminal mounting step 2, the worker W wears a smart glass 50 (an example of a wearable terminal 50) that displays the scratch detection image. After that, the flaw detection device 20 is arranged on the object 10 as the device placement step 3, and the flaw detection device 20 is scanned against the object 10 as the scanning step 6. A flaw detection image is created by the control unit 30 based on the ultrasonic waves received by the scanning flaw detection device 20, and the flaw detection image is wirelessly transmitted to the smart glasses 50 by the wireless transmission unit 40. In order to make the worker W feel that the smart glasses 50 are displaying the flaw detection image in real time, this radio is the time from the transmission of the flaw detection image by the wireless transmission unit 40 to the reception by the smart glasses 50. Is preferably 0.5 seconds or less, and more preferably 0.05 seconds or less. For this purpose, for example, Wi-Fi Direct (registered trademark) is adopted for the radio, and the same operating system is adopted for the control unit 30 and the smart glasses 50, if necessary.
 次いで、前記走査状態確認工程7として、走査している探傷機器20からの探傷画像を、作業者Wがスマートグラス50で確認する。 Next, as the scanning state confirmation step 7, the worker W confirms the flaw detection image from the scanning flaw detection device 20 with the smart glasses 50.
 そして、前記走査状態調整工程8として、スマートグラス50で確認された探傷画像が不適切である場合、当該探傷画像が適切となるように、前記作業者Wが探傷機器20の走査状態を調整する。 Then, in the scanning state adjusting step 8, when the flaw detection image confirmed by the smart glasses 50 is inappropriate, the worker W adjusts the scanning state of the flaw detection device 20 so that the flaw detection image is appropriate. ..
 一方で、前記保存工程9として、スマートグラス50で確認された探傷画像が適切である場合、または、前記走査状態調整工程8で走査状態が調整された場合、前記探傷画像を電子的に保存する。 On the other hand, when the flaw detection image confirmed by the smart glasses 50 is appropriate as the preservation step 9, or when the scanning state is adjusted in the scanning state adjusting step 8, the flaw detection image is electronically stored. ..
 このように、前記探傷試験方法1によると、前記走査状態が不適切であっても適切になるように作業者Wにより調整されるので、適切な探傷画像を電子的に保存するまでに要する時間を短縮することができる。 As described above, according to the flaw detection test method 1, the operator W adjusts the scanning state to be appropriate even if the scanning state is inappropriate, so that the time required to electronically store an appropriate flaw detection image. Can be shortened.
 以下、前記実施の形態1をより具体的に示した実施例1に係る探傷試験方法1について、図3~図5に基づき説明する。本実施例1では、前記実施の形態1とは異なる構成に着目して説明するとともに、前記実施の形態1と同一の構成については、同一の符号を付してその説明を省略する。 Hereinafter, the flaw detection test method 1 according to the first embodiment, which more specifically shows the first embodiment, will be described with reference to FIGS. 3 to 5. In the first embodiment, the description will be focused on a configuration different from that of the first embodiment, and the same configuration as that of the first embodiment will be designated by the same reference numerals and the description thereof will be omitted.
 本実施例1に係る探傷試験方法1は、TOFD(Time Of Flight Diffraction)法を採用する。ここで、TOFD法とは、図3および図4に示すように、探傷機器20として、大きく広がる超音波を送信する送信探触子21と、この送信探触子21に向い合せた受信探触子22との一対の探触子21,22を使用する方法である。この方法では、図3に示すように、金属板11(対象物10の一例)における溶接部12(対象物10の一例)の両側に、それぞれ送信探触子21と受信探触子22とを配置してから、当該一対の探触子21,22を溶接部12に沿って平行に走査させる。この走査により、図4に示すように、前記受信探触子22が受信した超音波からの探傷画像は、当該超音波のうち、前記金属板11の表層部を伝うラテラル波cと、前記金属板11の裏面で反射した裏面反射波rと、前記溶接部12に傷fが有れば当該傷fの上端および下端からの回折波d1,d2とを反映する。このため、前記溶接部12に傷fが無ければ、前記探傷画像は回折波d1,d2を反映しない。すなわち、TOFD法では、前記探傷画像に回折波d1,d2が反映されているか否かで、前記溶接部12の傷fの有無が判断される。 The flaw detection test method 1 according to the first embodiment adopts the TOFD (Time Of Flight Diffraction) method. Here, as shown in FIGS. 3 and 4, the TOFD method is a transmission probe 21 that transmits ultrasonic waves that spread widely as a flaw detector 20, and a reception probe that faces the transmission probe 21. It is a method of using a pair of probes 21 and 22 with a child 22. In this method, as shown in FIG. 3, a transmission probe 21 and a reception probe 22 are provided on both sides of a welded portion 12 (an example of an object 10) in a metal plate 11 (an example of an object 10), respectively. After the arrangement, the pair of probes 21 and 22 are scanned in parallel along the weld 12. As shown in FIG. 4, the flaw detection image from the ultrasonic wave received by the reception probe 22 by this scanning includes the lateral wave c propagating on the surface layer portion of the metal plate 11 and the metal in the ultrasonic wave. The back surface reflected wave r reflected on the back surface of the plate 11 and the diffracted waves d1 and d2 from the upper end and the lower end of the scratch f if the welded portion 12 has a scratch f are reflected. Therefore, if the welded portion 12 has no scratch f, the scratch detection image does not reflect the diffracted waves d1 and d2. That is, in the TOFD method, the presence or absence of scratches f on the welded portion 12 is determined based on whether or not the diffracted waves d1 and d2 are reflected in the scratch detection image.
 本実施例1に係る探傷試験方法1の走査状態調整工程8では、前記探傷画像を適切または不適切と判断するための基準は、前記探傷画像でラテラル波cが反映されているかである。ラテラル波cは、溶接部12の傷fの有無に関わらず、受信探触子22で受信されるはずである。しかしながら、一対の探触子21,22の走査状態が不適切であれば、ラテラル波cが受信探触子22で受信されないので、前記探傷画像にラテラル波cが反映されない。従って、前記走査状態調整工程8では、ウェアラブル端末50で確認された探傷画像がラテラル波cを反映していなければ、作業者Wは、探傷画像がラテラル波cを反映するように、前記走査状態を調整する。この走査状態の調整は、具体的に、一対の探触子21,22を金属板11に押し付ける向き、および/または、一対の探触子21,22を金属板11に押し付ける力加減の調整である。 In the scanning state adjusting step 8 of the flaw detection test method 1 according to the first embodiment, the criterion for determining whether the flaw detection image is appropriate or inappropriate is whether the lateral wave c is reflected in the flaw detection image. The lateral wave c should be received by the receiving probe 22 regardless of the presence or absence of scratches f on the welded portion 12. However, if the scanning state of the pair of probes 21 and 22 is inappropriate, the lateral wave c is not received by the reception probe 22, so that the lateral wave c is not reflected in the flaw detection image. Therefore, in the scanning state adjusting step 8, if the flaw detection image confirmed by the wearable terminal 50 does not reflect the lateral wave c, the worker W determines the scanning state so that the flaw detection image reflects the lateral wave c. To adjust. This scanning state is specifically adjusted by adjusting the direction in which the pair of probes 21 and 22 are pressed against the metal plate 11 and / or the amount of force that presses the pair of probes 21 and 22 against the metal plate 11. be.
 本実施例1に係る探傷試験方法1は、TOFD法およびクリーピング波法を組み合わせた方法を採用してもよい。この方法を採用した探傷試験方法1の走査状態調整工程8では、前記探傷画像を適切または不適切と判断するための基準は、前記探傷画像でラテラル波cが反映されているか、且つ、前記探傷画像でノイズエコーが反映されていないかである。 As the flaw detection test method 1 according to the first embodiment, a method combining the TOFD method and the creeping wave method may be adopted. In the scanning state adjusting step 8 of the flaw detection test method 1 that employs this method, the criteria for determining whether the flaw detection image is appropriate or inappropriate is whether the lateral wave c is reflected in the flaw detection image and the flaw detection image. Is the noise echo reflected in the image?
 以下、本実施例1に係る探傷試験方法1の使用について、図5に基づき説明する。 Hereinafter, the use of the flaw detection test method 1 according to the first embodiment will be described with reference to FIG.
 図5に示すように、前記探傷試験方法1を開始すると(S1)、前記探傷画像が表示されるウェアラブル端末50を作業者Wは装着する(S2)。その後、前記送信探触子21および受信探触子22を、溶接部12を挟むように配置し(S3)、当該一対の探触子21,22を溶接部12に対して走査させる(S4)。 As shown in FIG. 5, when the flaw detection test method 1 is started (S1), the worker W attaches the wearable terminal 50 on which the flaw detection image is displayed (S2). After that, the transmission probe 21 and the reception probe 22 are arranged so as to sandwich the welded portion 12 (S3), and the pair of probes 21 and 22 are scanned against the welded portion 12 (S4). ..
 次いで、作業者Wがウェアラブル端末50で探傷画像を確認し、この探傷画像が不適切である場合(S5)、当該探傷画像が適切となるように、前記作業者Wが一対の探触子21,22の走査状態を調整する(S6)。 Next, the worker W confirms the flaw detection image on the wearable terminal 50, and when the flaw detection image is inappropriate (S5), the worker W makes a pair of probes 21 so that the flaw detection image is appropriate. , 22 adjust the scanning state (S6).
 一方で、ウェアラブル端末50で確認された探傷画像が適切である場合(S5)、または、前記走査状態が調整された場合(S6)、前記探傷画像を電子的に保存(つまり探傷画像のデータを保存)し(S7)、終了する(S8)。 On the other hand, when the flaw detection image confirmed by the wearable terminal 50 is appropriate (S5) or when the scanning state is adjusted (S6), the flaw detection image is electronically stored (that is, the data of the flaw detection image is stored). Save) (S7) and exit (S8).
 なお、図示しないが、探傷画像のデータが保存される(S7)前に、走査された溶接部12が当該溶接部12の全長かを判定する工程を備えてもよい。この工程では、走査された溶接部12が当該溶接部12の全長でなければ、走査された溶接部12が全長になるまで、前記S3~S6が繰り返される。一方で、前記工程では、走査された溶接部12が当該溶接部12の全長であれば、探傷画像のデータが保存される(S7)。 Although not shown, a step of determining whether the scanned welded portion 12 is the total length of the welded portion 12 may be provided before the data of the flaw detection image is saved (S7). In this step, if the scanned welded portion 12 is not the full length of the welded portion 12, the steps S3 to S6 are repeated until the scanned welded portion 12 has the full length. On the other hand, in the step, if the scanned welded portion 12 has the entire length of the welded portion 12, the flaw detection image data is saved (S7).
 このように、本実施例1に係る探傷試験方法1によると、前記探傷画像で反映されるラテラル波cに基づいて、当該探傷画像が不適切である場合を判断するので、当該判断が容易になることにより、適切な探傷画像を電子的に保存するまでに要する時間を一層短縮することができる。 As described above, according to the flaw detection test method 1 according to the first embodiment, it is determined that the flaw detection image is inappropriate based on the lateral wave c reflected in the flaw detection image, so that the determination is easy. This makes it possible to further reduce the time required to electronically store an appropriate flaw detection image.
 ところで、前記実施の形態1および実施例1では、ウェアラブル端末50を装着する作業者Wのみを図示したが、この作業者Wとは異なる他の作業者(以下、管理者)により、前記保存工程9を行わせてもよい。この場合、図6に示すように、対象物10が2つであり(複数であればよい)、前記対象物10ごとの各保存工程9は、1人の管理者Mにより行われることが好ましい。また、前記管理者Mも探傷画像を確認できるように、当該管理者Mは、前記探傷画像を表示して全作業者Wのウェアラブル端末50に無線で送信するパーソナルコンピュータ34を使用する。
[実施の形態2]
By the way, in the first embodiment and the first embodiment, only the worker W who wears the wearable terminal 50 is shown, but the storage step is performed by another worker (hereinafter referred to as an administrator) different from the worker W. 9 may be performed. In this case, as shown in FIG. 6, it is preferable that there are two objects 10 (s), and each storage step 9 for each object 10 is preferably performed by one manager M. .. Further, the administrator M uses a personal computer 34 that displays the flaw detection image and wirelessly transmits the flaw detection image to the wearable terminal 50 of all the workers W so that the administrator M can also confirm the flaw detection image.
[Embodiment 2]
 以下、前記実施の形態1から付加された工程を備える実施の形態2に係る探傷試験方法1について、図7に基づき説明する。本実施の形態2では、前記実施の形態1から付加された工程に着目して説明するとともに、前記実施の形態1と同一の構成については、同一の符号を付してその説明を省略する。 Hereinafter, the flaw detection test method 1 according to the second embodiment including the steps added from the first embodiment will be described with reference to FIG. 7. In the second embodiment, the steps added from the first embodiment will be focused on, and the same configurations as those in the first embodiment will be designated by the same reference numerals and the description thereof will be omitted.
 本実施の形態2に係る探傷試験方法1は、前記機器配置工程3の後で走査工程6の前に、配置状態確認工程4および配置状態調整工程5を備える。 The flaw detection test method 1 according to the second embodiment includes an arrangement state confirmation step 4 and an arrangement state adjustment step 5 after the equipment arrangement step 3 and before the scanning step 6.
 前記配置状態確認工程4は、前記対象物10に配置された探傷機器20からの探傷画像をウェアラブル端末50で作業者Wが確認する工程である。前記配置状態とは、対象物10に探傷機器20を配置している状態であり、例えば、前記探傷機器20の探触子と対象物10との位置関係である。 The arrangement state confirmation step 4 is a step in which the worker W confirms the flaw detection image from the flaw detection device 20 arranged on the object 10 with the wearable terminal 50. The arrangement state is a state in which the flaw detection device 20 is arranged on the object 10, and is, for example, a positional relationship between the probe of the flaw detection device 20 and the object 10.
 前記配置状態調整工程5は、前記配置状態確認工程4で確認された探傷画像が不適切である場合、当該探傷画像が適切となるように、前記作業者Wが探傷機器20の配置状態を調整する工程である。前記探傷画像が不適切であれば、当該探傷機器20の走査させる直前の配置状態が不適切であるから、当該配置状態が適切になるように調整されることで、前記対象物10に配置されている探傷機器20から得られる探傷画像が適切になる。前記探傷画像を適切または不適切と判断するための基準は、前記探傷機器20に応じて予め定められる。 In the arrangement state adjusting step 5, when the flaw detection image confirmed in the arrangement state confirmation step 4 is inappropriate, the worker W adjusts the arrangement state of the flaw detection device 20 so that the flaw detection image is appropriate. It is a process to do. If the flaw detection image is inappropriate, the arrangement state immediately before scanning the flaw detection device 20 is inappropriate. Therefore, the flaw detection device 20 is arranged on the object 10 by adjusting the arrangement state so as to be appropriate. The flaw detection image obtained from the flaw detection device 20 is appropriate. Criteria for determining the flaw detection image as appropriate or inappropriate are predetermined according to the flaw detection device 20.
 前記走査工程は、前記配置状態確認工程4で確認された探傷画像が適切である場合、または、前記配置状態調整工程5で配置状態が調整された場合、前記探傷機器20を対象物10に対して走査させる工程である。 In the scanning step, when the flaw detection image confirmed in the arrangement state confirmation step 4 is appropriate, or when the arrangement state is adjusted in the arrangement state adjustment step 5, the flaw detection device 20 is applied to the object 10. It is a process of scanning.
 このように、本実施の形態2に係る探傷試験方法1によると、前記実施の形態1に係る探傷試験方法1の効果を奏する上に、前記配置状態が不適切であっても適切になるように作業者Wにより調整されるので、適切な探傷画像を電子的に保存するまでに要する時間を一層短縮することができる。 As described above, according to the flaw detection test method 1 according to the second embodiment, the effect of the flaw detection test method 1 according to the first embodiment is obtained, and even if the arrangement state is inappropriate, it is appropriate. Since it is adjusted by the worker W, the time required to electronically store an appropriate flaw detection image can be further shortened.
 以下、前記実施の形態2をより具体的に示した実施例2に係る探傷試験方法1について、図8~図13に基づき説明する。本実施例2では、前記実施の形態2とは異なる構成に着目して説明するとともに、前記実施の形態2と同一の構成については、同一の符号を付してその説明を省略する。 Hereinafter, the flaw detection test method 1 according to the second embodiment, which more specifically shows the second embodiment, will be described with reference to FIGS. 8 to 13. In the second embodiment, the description will be focused on a configuration different from that of the second embodiment, and the same configuration as that of the second embodiment will be designated by the same reference numerals and the description thereof will be omitted.
 本実施例2に係る探傷試験方法1では、図8に示すように、前記対象物10は、管板14に溶接された管13である。このため、前記管板14と管13とが溶接されている部分に、溶接部12が存在する。前記探傷機器20は、フェーズドアレイ探傷機器20である。このため、当該フェーズドアレイ探傷機器20は、フェーズドアレイ法により超音波を管13に送信するフェーズドアレイ探触子24を有する。また、前記フェーズドアレイ探傷機器20は、前記フェーズドアレイ探触子24を管13の内面に向けるとともに、軸回りに回転することでフェーズドアレイ探触子24を管13の内面に対して走査させる、軸部23を有する。さらに、前記フェーズドアレイ探傷機器20は、前記軸部23を介してフェーズドアレイ探触子24を管13の内部に挿入された状態で固定する固定機構25を有する。 In the flaw detection test method 1 according to the second embodiment, as shown in FIG. 8, the object 10 is a pipe 13 welded to a pipe plate 14. Therefore, the welded portion 12 exists in the portion where the pipe plate 14 and the pipe 13 are welded. The flaw detection device 20 is a phased array flaw detection device 20. Therefore, the phased array flaw detector 20 has a phased array probe 24 that transmits ultrasonic waves to the tube 13 by the phased array method. Further, the phased array flaw detector 20 directs the phased array probe 24 toward the inner surface of the tube 13 and rotates the phased array probe 24 about an axis to scan the phased array probe 24 with respect to the inner surface of the tube 13. It has a shaft portion 23. Further, the phased array flaw detector 20 has a fixing mechanism 25 for fixing the phased array probe 24 in a state of being inserted into the tube 13 via the shaft portion 23.
 前記制御部30は、前記フェーズドアレイ探傷機器20を制御する制御ボックス31と、前記探傷画像を作成および表示するフェーズドアレイ探傷器32と、前記探傷画像を表示してスマートグラス50に無線で送信するパーソナルコンピュータ34(無線送信部40も兼ねる)とを有する。また、前記制御部30は、前記作業者Wの指に嵌められて、当該パーソナルコンピュータ34を当該指の動きで操作する、リングマウス35を有してもよい。 The control unit 30 displays the control box 31 for controlling the phased array flaw detector 20, the phased array flaw detector 32 for creating and displaying the flaw detection image, and wirelessly transmits the flaw detection image to the smart glasses 50. It has a personal computer 34 (also serves as a wireless transmission unit 40). Further, the control unit 30 may have a ring mouse 35 that is fitted to the finger of the worker W and operates the personal computer 34 by the movement of the finger.
 前記配置状態調整工程5で調整されるフェーズドアレイ探傷機器20の配置状態は、前記管13に対するフェーズドアレイ探触子24の管軸方向における位置である。前記走査状態調整工程8で調整されるフェーズドアレイ探傷機器20の走査状態は、前記管13に対するフェーズドアレイ探触子24の管軸方向における位置、および/または、前記管13の内面とフェーズドアレイ探触子24との間に配置される中間材料の状態(密着具合並びに変形量)である。 The arrangement state of the phased array flaw detector 20 adjusted in the arrangement state adjustment step 5 is the position of the phased array probe 24 with respect to the tube 13 in the tube axis direction. The scanning state of the phased array flaw detector 20 adjusted in the scanning state adjusting step 8 is the position of the phased array probe 24 with respect to the tube 13 in the tube axis direction, and / or the inner surface of the tube 13 and the phased array probe. It is the state (adhesion degree and deformation amount) of the intermediate material arranged between the tentacle 24 and the tentacle 24.
 次に、探傷画像を適切または不適切と判断するための基準について説明する。 Next, the criteria for judging the flaw detection image as appropriate or inappropriate will be explained.
 前記フェーズドアレイ探傷機器20は、そのフェーズドアレイ探触子24から送信する超音波を、図9に示すように、管板14に対して0~45°に振る第1セクタスキャンと、図10に示すように、管板14に対して0°のままのリニアスキャンと、図11に示すように、管板14に対して0~-45°に振る第2セクタスキャンとを行う。図9~図11に示す符号Bが、底面エコーとして超音波をフェーズドアレイ探触子24に反射する部分である。図9に示す符号B、および、図10に示す管端側(図10の左側)の符号Bからの超音波の反射を、以下では管端側底面エコーと称し、図10に示す管奥側(図10の右側)の符号B、および、図11に示す符号Bからの超音波の反射を、以下では管奥側底面エコーと称する。図10に示すように、傷fの有無が判断される溶接部12は、管端側の符号Bと管奥側の符号Bとの間にあるので、探傷画像に管端側底面エコーおよび管奥側底面エコーの両方が反映されていれば、配置状態が適切であると言える。 As shown in FIG. 9, the phased array flaw detector 20 has a first sector scan in which ultrasonic waves transmitted from the phased array probe 24 are shaken at 0 to 45 ° with respect to the tube plate 14, and FIG. 10 shows. As shown, a linear scan at 0 ° with respect to the tube plate 14 and a second sector scan at 0 to −45 ° with respect to the tube plate 14 are performed as shown in FIG. Reference numeral B shown in FIGS. 9 to 11 is a portion where the ultrasonic wave is reflected on the phased array probe 24 as a bottom echo. The reflection of ultrasonic waves from the reference numeral B shown in FIG. 9 and the reference numeral B on the tube end side (left side of FIG. 10) shown in FIG. The reflection of ultrasonic waves from the reference numeral B (on the right side of FIG. 10) and the reference numeral B shown in FIG. 11 is hereinafter referred to as a tube back bottom bottom echo. As shown in FIG. 10, since the welded portion 12 for determining the presence or absence of the scratch f is located between the symbol B on the pipe end side and the symbol B on the pipe back side, the pipe end side bottom surface echo and the pipe are shown in the scratch detection image. If both the back bottom echoes are reflected, it can be said that the arrangement state is appropriate.
 前記探傷画像の一例を図12に示す。図12に示すように、前記探傷画像は、3行3列の画像から構成される。この探傷画像のうち、左列の3つの画像は第1セクタスキャンに対応し、中央列の3つの画像はリニアスキャンに対応し、右列の3つの画像は第2セクタスキャンに対応する。 FIG. 12 shows an example of the flaw detection image. As shown in FIG. 12, the flaw detection image is composed of an image of 3 rows and 3 columns. Of these flaw detection images, the three images in the left column correspond to the first sector scan, the three images in the center column correspond to the linear scan, and the three images in the right column correspond to the second sector scan.
 前記配置状態調整工程5において、探傷画像を適切または不適切と判断するための基準は、左列中段の画像に管端側底面エコーE1が反映され、中央列中段の画像に管端側底面エコーE1および管奥側底面エコーE2が反映され、且つ、右列中段の画像に管奥側底面エコーE2が反映されている場合である。前記基準は、少なくとも、中央列中段の画像に管端側底面エコーE1および管奥側底面エコーE2が反映されていれば足りる。探傷画像に管端側底面エコーE1および管奥側底面エコーE2の両方が反映されていなければ、当該探傷画像が不適切なので、作業者Wは、固定機構25によりフェーズドアレイ探触子24の管軸方向における位置を調整して、探傷画像に管端側底面エコーE1および管奥側底面エコーE2の両方が反映されるようにする。 In the arrangement state adjusting step 5, the criteria for determining whether the flaw detection image is appropriate or inappropriate is that the tube end side bottom surface echo E1 is reflected in the image in the middle row of the left column, and the tube end side bottom surface echo is reflected in the image in the middle row of the center row. This is a case where E1 and the bottom surface echo E2 on the back side of the tube are reflected, and the bottom surface echo E2 on the back side of the tube is reflected in the image in the middle of the right column. It is sufficient that the reference is at least that the bottom surface echo E1 on the end side of the tube and the bottom surface echo E2 on the back side of the tube are reflected in the image in the middle of the center row. If both the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 are not reflected in the flaw detection image, the flaw detection image is inappropriate. The position in the axial direction is adjusted so that the flaw detection image reflects both the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2.
 前記走査状態調整工程8において、探傷画像を適切または不適切と判断するための基準は、フェーズドアレイ探触子24を走査させている際に、中央列中段の画像に反映されている管端側底面エコーE1および管奥側底面エコーE2が、上下に変動しないかである。管端側底面エコーE1および管奥側底面エコーE2が上下に変動する原因は、管13の中間材料の状態(つまり密着具合および変形量)が変化することで、超音波の伝搬する距離が変化することによる。具体的には、前記中間材料の密着具合が低く且つ変形量が小さい場合、管13における超音波の反射面とフェーズドアレイ探触子24との距離が長くなるので、超音波の伝搬距離が長くなる。図12に示す探傷画像(中段)では、縦軸が伝搬距離(下方は増加方向を表す)であるから、この場合、管端側底面エコーE1および管奥側底面エコーE2は探傷画像の下に変動する。これとは逆に、前記中間材料の密着具合が高く且つ変形量が大きい場合、管13における超音波の反射面とフェーズドアレイ探触子24との距離が短くなるので、超音波の伝搬距離が短くなり、管端側底面エコーE1および管奥側底面エコーE2は探傷画像の上に変動する。探傷画像の管端側底面エコーE1および管奥側底面エコーE2が上下に変動していれば、当該探傷画像が不適切なので、作業者Wは、前記管13に対するフェーズドアレイ探触子24の管軸方向における位置、および/または、前記管13の内面とフェーズドアレイ探触子24との間に配置される中間材料の状態(密着具合並びに変形量)を調整して、探傷画像の管端側底面エコーE1および管奥側底面エコーE2が上下に変動しないようにする。 In the scanning state adjusting step 8, the criterion for determining whether the flaw detection image is appropriate or inappropriate is the tube end side reflected in the image in the middle of the center row when the phased array probe 24 is being scanned. Whether the bottom surface echo E1 and the bottom surface echo E2 on the inner side of the tube do not fluctuate up and down. The reason why the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 fluctuate up and down is that the state of the intermediate material of the tube 13 (that is, the degree of adhesion and the amount of deformation) changes, and the propagation distance of the ultrasonic wave changes. By doing. Specifically, when the degree of adhesion of the intermediate material is low and the amount of deformation is small, the distance between the reflecting surface of the ultrasonic wave in the tube 13 and the phased array probe 24 becomes long, so that the propagation distance of the ultrasonic wave becomes long. Become. In the flaw detection image (middle) shown in FIG. 12, the vertical axis is the propagation distance (the lower part indicates the increasing direction). In this case, the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 are below the flaw detection image. fluctuate. On the contrary, when the adhesion of the intermediate material is high and the amount of deformation is large, the distance between the reflecting surface of the ultrasonic wave in the tube 13 and the phased array probe 24 becomes short, so that the propagation distance of the ultrasonic wave becomes long. It becomes shorter, and the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 fluctuate on the flaw detection image. If the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 of the flaw detection image fluctuate up and down, the flaw detection image is inappropriate. Adjust the position in the axial direction and / or the state (adhesion and deformation amount) of the intermediate material arranged between the inner surface of the tube 13 and the phased array probe 24 to the tube end side of the flaw detection image. Prevent the bottom surface echo E1 and the bottom surface echo E2 on the back side of the tube from fluctuating up and down.
 以下、本実施例2に係る探傷試験方法1の使用について、図13に基づき説明する。 Hereinafter, the use of the flaw detection test method 1 according to the second embodiment will be described with reference to FIG.
 図13に示すように、前記探傷試験方法1を開始すると(S01)、前記探傷画像が表示されるウェアラブル端末50を作業者Wは装着する(S02)。その後、フェーズドアレイ探傷機器20を管13に挿入する(S03)。 As shown in FIG. 13, when the flaw detection test method 1 is started (S01), the worker W attaches the wearable terminal 50 on which the flaw detection image is displayed (S02). After that, the phased array flaw detector 20 is inserted into the tube 13 (S03).
 次いで、作業者Wがウェアラブル端末50で探傷画像を確認し、この探傷画像が管端側底面エコーE1および管奥側底面エコーE2を反映せず不適切である場合(S04)、当該探傷画像が適切となるように、フェーズドアレイ探触子24の管軸方向における位置を固定機構25により調整する(S05)。 Next, when the worker W confirms the flaw detection image on the wearable terminal 50 and the flaw detection image does not reflect the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 (S04), the flaw detection image is inappropriate. The position of the phased array probe 24 in the tube axis direction is adjusted by the fixing mechanism 25 so as to be appropriate (S05).
 一方で、ウェアラブル端末50で確認された探傷画像が適切である場合(S04)、または、フェーズドアレイ探触子24の管軸方向における位置が調整された場合(S05)、当該フェーズドアレイ探傷機器20を固定機構25により管13に固定する(S06)。 On the other hand, when the flaw detection image confirmed by the wearable terminal 50 is appropriate (S04), or when the position of the phased array probe 24 in the tube axis direction is adjusted (S05), the phased array flaw detector 20 Is fixed to the pipe 13 by the fixing mechanism 25 (S06).
 その後、フェーズドアレイ探傷機器20の軸部23を管13に対して回転させることで、フェーズドアレイ探触子24を溶接部12に対して走査させる(S07)。 After that, by rotating the shaft portion 23 of the phased array flaw detector 20 with respect to the pipe 13, the phased array probe 24 is scanned with respect to the welded portion 12 (S07).
 次いで、作業者Wがウェアラブル端末50で探傷画像を確認し、この探傷画像の管端側底面エコーE1および管奥側底面エコーE2が上下に変動して不適切である場合(S08)、当該探傷画像が適切となるように、フェーズドアレイ探傷機器20の走査状態を調整する(S09)。 Next, when the worker W confirms the flaw detection image on the wearable terminal 50 and the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 of the flaw detection image fluctuate up and down and are inappropriate (S08), the flaw detection The scanning state of the phased array flaw detector 20 is adjusted so that the image is appropriate (S09).
 一方で、ウェアラブル端末50で確認された探傷画像が適切である場合(S08)、または、フェーズドアレイ探傷機器20の走査状態が調整された場合(S09)、前記探傷画像を電子的に保存(つまり探傷画像のデータを保存)し(S10)、終了する(S11)。 On the other hand, when the flaw detection image confirmed by the wearable terminal 50 is appropriate (S08), or when the scanning state of the phased array flaw detection device 20 is adjusted (S09), the flaw detection image is electronically stored (that is, that is). The data of the flaw detection image is saved) (S10), and the process ends (S11).
 このように、本実施例2に係る探傷試験方法1によると、前記探傷画像で反映される管端側底面エコーE1および管奥側底面エコーE2に基づいて、当該探傷画像が不適切である場合を判断するので、当該判断が容易になることにより、適切な探傷画像を電子的に保存するまでに要する時間を一層短縮することができる。 As described above, according to the flaw detection test method 1 according to the second embodiment, the flaw detection image is inappropriate based on the tube end side bottom surface echo E1 and the tube back side bottom surface echo E2 reflected in the flaw detection image. Since the determination is made, the time required to electronically store an appropriate flaw detection image can be further shortened by facilitating the determination.
 ところで、前記実施の形態1および2並びに実施例1および2では、ウェアラブル端末50への探傷画像の送信を無線によるとして説明したが、インターネット回線によるものでもよい。 By the way, in the first and second embodiments and the first and second embodiments, the transmission of the flaw detection image to the wearable terminal 50 has been described as wireless, but it may be via an internet line.
 また、前記実施の形態1および2並びに実施例1および2では、ウェアラブル端末50の一例であるスマートグラス50について詳細に説明しなかったが、フリップ式のシェードを有するスマートグラス50が好ましい。これにより、作業者Wがスマートグラス50に表示された探傷画像を確認する際には、シェードを下げて探傷画像の表示を鮮明にし、作業者Wが探傷機器20の配置状態および走査状態を調整する際には、シェードを上げて作業者Wが探傷機器20を見やすくする。 Further, in the first and second embodiments and the first and second embodiments, the smart glass 50, which is an example of the wearable terminal 50, has not been described in detail, but the smart glass 50 having a flip-type shade is preferable. As a result, when the worker W confirms the flaw detection image displayed on the smart glasses 50, the shade is lowered to make the display of the flaw detection image clearer, and the worker W adjusts the arrangement state and the scanning state of the flaw detection device 20. When doing so, the shade is raised to make it easier for the worker W to see the flaw detection device 20.
 さらに、前記実施の形態1および2並びに実施例1および2では、前記探傷画像の加工について説明しなかったが、前記配置状態確認工程4および走査状態確認工程7で作業者Wが確認する探傷画像は、前記保存工程9で保存された探傷画像を視認容易にするために加工されたものでもよい。具体的に説明すると、保存する探傷画像の加工は、その一部を抽出、および/または、画像処理である。前記探傷画像の一部の抽出は、例えば、図12の中央列中段など配置状態確認工程4および走査状態確認工程7で重要な部分を抽出して拡大することである。前記画像処理は、例えば、加工される前の探傷画像に対する、必要な閾値の追加、範囲を示す枠の追加、並びに/または、スムーズ処理および/若しくはノイズ処理などである。 Further, in the first and second embodiments and the first and second embodiments, the processing of the flaw detection image has not been described, but the flaw detection image confirmed by the operator W in the arrangement state confirmation step 4 and the scanning state confirmation step 7. May be processed so that the flaw detection image stored in the storage step 9 can be easily visually recognized. Specifically, the processing of the flaw detection image to be stored is extraction and / or image processing of a part thereof. The extraction of a part of the flaw detection image is to extract and enlarge an important part in the arrangement state confirmation step 4 and the scanning state confirmation step 7, such as the middle row in the center row of FIG. The image processing includes, for example, addition of a necessary threshold value, addition of a frame indicating a range, and / or smooth processing and / or noise processing to the flaw detection image before processing.
 加えて、前記実施の形態1および2並びに実施例1および2は、全ての点で例示であって制限的なものではない。本発明の範囲は、前述した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。前記実施の形態および実施例で説明した構成のうち「課題を解決するための手段」での第1の発明として記載した構成以外については、任意の構成であり、適宜削除および変更することが可能である。 In addition, the first and second embodiments and the first and second embodiments are exemplary in all respects and are not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. Of the configurations described in the above-described embodiments and examples, the configurations other than those described as the first invention in "Means for Solving Problems" are arbitrary configurations and can be appropriately deleted or changed. Is.

Claims (5)

  1.  超音波探傷機器からの対象物の探傷画像を使用する探傷試験方法であって、
     前記探傷画像を表示するウェアラブル端末を作業者が装着する端末装着工程と、
     前記超音波探傷機器を対象物に配置する機器配置工程と、
     前記超音波探傷機器を対象物に対して走査させる走査工程と、
     走査している超音波探傷機器からの探傷画像をウェアラブル端末で作業者が確認する走査状態確認工程と、
     前記走査状態確認工程で確認された探傷画像が不適切である場合、当該探傷画像が適切となるように、前記作業者が超音波探傷機器の走査状態を調整する走査状態調整工程と、
     前記走査状態確認工程で確認された探傷画像が適切である場合、または、前記走査状態調整工程で走査状態が調整された場合、前記探傷画像を電子的に保存する保存工程とを備えることを特徴とする探傷試験方法。
    It is a flaw detection test method that uses a flaw detection image of an object from an ultrasonic flaw detection device.
    The terminal mounting process in which the worker wears the wearable terminal that displays the flaw detection image, and
    The device placement process for arranging the ultrasonic flaw detection device on an object, and
    A scanning step of scanning the ultrasonic flaw detector against an object,
    A scanning state confirmation process in which an operator confirms a flaw detection image from a scanning ultrasonic flaw detector with a wearable terminal, and
    When the flaw detection image confirmed in the scanning state confirmation step is inappropriate, the scanning state adjusting step in which the operator adjusts the scanning state of the ultrasonic flaw detection device so that the flaw detection image is appropriate, and
    When the flaw detection image confirmed in the scanning state confirmation step is appropriate, or when the scanning state is adjusted in the scanning state adjusting step, the flaw detection image is electronically stored. The flaw detection test method.
  2.  走査工程の前に、対象物に配置された超音波探傷機器からの探傷画像をウェアラブル端末で作業者が確認する配置状態確認工程と、
     走査工程の前に、前記配置状態確認工程で確認された探傷画像が不適切である場合、当該探傷画像が適切となるように、前記作業者が超音波探傷機器の配置状態を調整する配置状態調整工程とをさらに備え、
     前記走査工程が、前記配置状態確認工程で確認された探傷画像が適切である場合、または、前記配置状態調整工程で配置状態が調整された場合、前記超音波探傷機器を対象物に対して走査させる工程であることを特徴とする請求項1に記載の探傷試験方法。
    Before the scanning process, the placement status confirmation process in which the operator confirms the flaw detection image from the ultrasonic flaw detection device placed on the object with a wearable terminal,
    If the flaw detection image confirmed in the placement status confirmation step is inappropriate before the scanning step, the placement state in which the operator adjusts the placement status of the ultrasonic flaw detection device so that the flaw detection image is appropriate. Further equipped with an adjustment process,
    When the scanning step is appropriate for the flaw detection image confirmed in the placement state confirmation step, or when the placement state is adjusted in the placement state adjustment step, the ultrasonic flaw detection device scans the object. The flaw detection test method according to claim 1, wherein the process is to cause the inspection.
  3.  配置状態確認工程および走査状態確認工程で作業者が確認する探傷画像が、保存工程で保存される探傷画像を視認容易とするために加工されたものであることを特徴とする請求項2に記載の探傷試験方法。 The second aspect of the present invention is characterized in that the flaw detection image confirmed by the operator in the arrangement state confirmation step and the scanning state confirmation step is processed so that the flaw detection image saved in the storage step is easy to see. Flaw detection test method.
  4.  対象物が管であり、
     超音波探傷機器が、前記管の軸回りに回転することで当該管の内面に対して走査するフェーズドアレイ探触子と、当該フェーズドアレイ探触子を管の内部に挿入された状態で固定する固定機構とを有し、
     配置状態調整工程で調整される超音波探傷機器の配置状態が、前記管に対するフェーズドアレイ探触子の管軸方向における位置であり、
     走査状態調整工程で調整される超音波探傷機器の走査状態が、前記管に対するフェーズドアレイ探触子の管軸方向における位置、および、管とフェーズドアレイ探触子との間に配置された中間材料の状態であることを特徴とする請求項2または3に記載の探傷試験方法。
    The object is a tube,
    The ultrasonic flaw detector fixes the phased array probe that scans the inner surface of the tube by rotating around the axis of the tube and the phased array probe that is inserted inside the tube. Has a fixing mechanism and
    The placement state of the ultrasonic flaw detector adjusted in the placement state adjustment step is the position of the phased array probe with respect to the tube in the tube axis direction.
    The scanning state of the ultrasonic flaw detector adjusted in the scanning state adjusting step is the position of the phased array probe in the tube axial direction with respect to the tube, and the intermediate material arranged between the tube and the phased array probe. The flaw detection test method according to claim 2 or 3, wherein the state is the same.
  5.  対象物が複数であり、
     前記複数の対象物の各保存工程が、各端末装着工程でウェアラブル端末をそれぞれ装着する各作業者とは異なる1人の作業者により行われることを特徴とする請求項1乃至4のいずれか一項に記載の探傷試験方法。
    There are multiple objects,
    One of claims 1 to 4, wherein each storage step of the plurality of objects is performed by one worker different from each worker who wears the wearable terminal in each terminal mounting step. The flaw detection test method described in the section.
PCT/JP2021/021631 2020-09-02 2021-06-07 Flaw detection test method WO2022049849A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020147184A JP2022042029A (en) 2020-09-02 2020-09-02 Flaw detection testing method
JP2020-147184 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022049849A1 true WO2022049849A1 (en) 2022-03-10

Family

ID=80491049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021631 WO2022049849A1 (en) 2020-09-02 2021-06-07 Flaw detection test method

Country Status (2)

Country Link
JP (1) JP2022042029A (en)
WO (1) WO2022049849A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118740A (en) * 1982-01-08 1983-07-14 アロカ株式会社 Scanner of ultrasonic scanner
JP2016008845A (en) * 2014-06-23 2016-01-18 日立Geニュークリア・エナジー株式会社 Ultrasonic flaw detection device and ultrasonic flaw detection method
US20170095228A1 (en) * 2015-10-01 2017-04-06 Sonoscanner SARL Interchangeable probes for portable medical ultrasound scanning systems
JP2019193093A (en) * 2018-04-24 2019-10-31 株式会社日立製作所 Ultrasonic sending/receiving element, and ultrasonic inspection device, smart phone and tablet including the same
JP2020039645A (en) * 2018-09-11 2020-03-19 株式会社日立製作所 Ultrasonic diagnostic apparatus and display method
WO2020079780A1 (en) * 2018-10-17 2020-04-23 株式会社島津製作所 Aircraft inspection support device and aircraft inspection support method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118740A (en) * 1982-01-08 1983-07-14 アロカ株式会社 Scanner of ultrasonic scanner
JP2016008845A (en) * 2014-06-23 2016-01-18 日立Geニュークリア・エナジー株式会社 Ultrasonic flaw detection device and ultrasonic flaw detection method
US20170095228A1 (en) * 2015-10-01 2017-04-06 Sonoscanner SARL Interchangeable probes for portable medical ultrasound scanning systems
JP2019193093A (en) * 2018-04-24 2019-10-31 株式会社日立製作所 Ultrasonic sending/receiving element, and ultrasonic inspection device, smart phone and tablet including the same
JP2020039645A (en) * 2018-09-11 2020-03-19 株式会社日立製作所 Ultrasonic diagnostic apparatus and display method
WO2020079780A1 (en) * 2018-10-17 2020-04-23 株式会社島津製作所 Aircraft inspection support device and aircraft inspection support method

Also Published As

Publication number Publication date
JP2022042029A (en) 2022-03-14

Similar Documents

Publication Publication Date Title
US7370534B2 (en) Multiangle ultrasound imager
JP4630992B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus used therefor
US9423380B2 (en) Ultrasonic inspection method, ultrasonic test method and ultrasonic inspection apparatus
US8104347B2 (en) Ultrasonic inspection method and device for plastics walls
JP5871274B2 (en) Ultrasonic flaw detection apparatus and method
US11474076B2 (en) Acoustic model acoustic region of influence generation
WO2022049849A1 (en) Flaw detection test method
JP4792440B2 (en) Pipe weld inspection system
JP2023026610A (en) Ultrasound diagnostic apparatus and control method of ultrasound diagnostic apparatus
JP5890437B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JPWO2020075449A1 (en) Control method of ultrasonic diagnostic equipment and ultrasonic diagnostic equipment
TWI779268B (en) Ultrasonic flaw detection device
EP2825876B1 (en) Ultrasonic transducer array probe and method for fabricating such probe, method for controlling such probe and corresponding computer program
WO2019163225A1 (en) Ultrasonic diagnostic device and method of controlling ultrasonic diagnostic device
EP2901146B1 (en) Systems and methods for viewing data generated by rotational scanning
JP6749270B2 (en) How to operate the ultrasonic imaging probe
JP6460136B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
EP2478843A1 (en) Ultrasonograph and method of diagnosis using same
JP6076211B2 (en) Defect detection apparatus and defect detection method
US10898078B2 (en) Photoacoustic image generation method and apparatus
US20220378397A1 (en) Ultrasound diagnostic apparatus, method for controlling ultrasound diagnostic apparatus, and processor for ultrasound diagnostic apparatus
JP4576988B2 (en) Inspection processing method and inspection processing apparatus
JP2023141907A (en) Ultrasonic diagnostic system and control method of ultrasonic diagnostic system
JP7453400B2 (en) Ultrasonic systems and methods of controlling them
JP5645524B2 (en) Ultrasonic diagnostic apparatus and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863908

Country of ref document: EP

Kind code of ref document: A1