WO2022049843A1 - Remote operation system - Google Patents

Remote operation system Download PDF

Info

Publication number
WO2022049843A1
WO2022049843A1 PCT/JP2021/020263 JP2021020263W WO2022049843A1 WO 2022049843 A1 WO2022049843 A1 WO 2022049843A1 JP 2021020263 W JP2021020263 W JP 2021020263W WO 2022049843 A1 WO2022049843 A1 WO 2022049843A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
worker
remote
work
information
Prior art date
Application number
PCT/JP2021/020263
Other languages
French (fr)
Japanese (ja)
Inventor
章 和田
英樹 角
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022546894A priority Critical patent/JPWO2022049843A1/ja
Publication of WO2022049843A1 publication Critical patent/WO2022049843A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/25Manufacturing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/20Analytics; Diagnosis
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • This disclosure relates to a remote operation system that can eliminate an error that has occurred in a work device by remote operation from a remote monitoring device.
  • the present disclosure provides a remote operation system capable of accurately allocating or selecting a worker who performs a remote operation for solving an error generated in a work device without relying on the experience or intuition of an administrator.
  • the purpose is to provide.
  • the remote operation system of the present disclosure transmits information on an error that has occurred in any of a plurality of working devices to one of a plurality of remote monitoring devices, and resolves the error from the remote monitoring device that has received the error information transmitted.
  • a remote operation system configured to remotely resolve an error that has occurred in one of multiple work devices by sending information about the operation to the work device in which the error occurred, within a certain period of time. For all errors that have occurred in multiple work devices, a management device that calculates the total waiting time between the occurrence of each error and the first operation to resolve each error. Prepared.
  • FIG. 1 is a schematic configuration diagram of a remote operation system according to an embodiment of the present disclosure.
  • FIG. 2 is a side view of a main part of a working device constituting the remote operation system according to the embodiment of the present disclosure.
  • FIG. 3 is a perspective view showing a parts feeder of a working device constituting the remote operation system according to the embodiment of the present disclosure together with a mounting head and a substrate recognition camera.
  • FIG. 4 is a block diagram showing a control system of a remote operation system according to an embodiment of the present disclosure.
  • FIG. 5 is a diagram showing an example of master data created by a management device included in the remote operation system according to the embodiment of the present disclosure.
  • FIG. 6A is a diagram showing an example of recovery information data displayed by the display device of the remote operation system according to the embodiment of the present disclosure.
  • FIG. 6B is a diagram showing an example of worker-specific recovery information data displayed by the display device of the remote operation system according to the embodiment of the present disclosure.
  • FIG. 6C is a diagram showing an example of recovery information data for each error type of a worker displayed by the display device of the remote operation system according to the embodiment of the present disclosure.
  • FIG. 1 is a schematic configuration diagram of a remote operation system 1 according to an embodiment of the present disclosure.
  • the remote operation system 1 is configured to include a plurality of work devices 2, a management device 3, a plurality of remote monitoring devices 4, and a display device 5.
  • each work device 2 is a component mounting device for mounting components on the board KB.
  • a plurality of working devices 2 are arranged in series to form a working line 2L.
  • FIG. 2 is a side view of a main part of a working device constituting a remote operation system according to an embodiment of the present disclosure.
  • each working device 2 includes a base 11, a conveyor 12, a parts feeder 13, a head moving mechanism 14, a mounting head 15, a board recognition camera 16, and a parts recognition camera 17.
  • the conveyor 12 extends on the base 11 in the left-right direction (X-axis direction), receives the substrate KB sent from the upstream side, and positions it at a predetermined working position.
  • the parts feeder 13 is a tape feeder.
  • the parts feeder 13 pulls out the carrier tape CT wound around the reel RL by the built-in sprocket 13S (see also FIG. 3) and conveys it in the front-rear direction (Y-axis direction).
  • the parts feeder 13 supplies the parts BH to the parts supply position 13K provided at the end on the conveyor 12 side.
  • the head moving mechanism 14 is composed of, for example, an XY gantry mechanism, and moves the mounting head 15 in a horizontal plane.
  • FIG. 3 is a perspective view showing a parts feeder of a working device constituting the remote operation system according to the embodiment of the present disclosure together with a mounting head and a board recognition camera.
  • the mounting head 15 includes a plurality of nozzles 15N extending downward.
  • the mounting head 15 can raise and lower each nozzle 15N, and can rotate each nozzle 15N in the vertical direction (Z-axis direction). Further, the mounting head 15 can generate a vacuum suction force at the lower end of each nozzle 15N.
  • the nozzle 15N When the mounting head 15 sucks the component BH from the part feeder 13, the nozzle 15N is lowered above the component supply position 13K, and a vacuum suction force is generated at the lower end of the nozzle 15N.
  • the substrate recognition camera 16 is attached to the mounting head 15 in a posture in which the image pickup optical axis is directed downward.
  • the substrate recognition camera 16 moves inward in the horizontal plane integrally with the mounting head 15, and images the substrate KB positioned at the working position by the conveyor 12 from above.
  • the component recognition camera 17 is attached to the base 11 with the image pickup optical axis facing upward.
  • the component recognition camera 17 captures the component BH from below when the mounting head 15 that picks up the component BH passes above the component recognition camera 17 and moves toward the substrate KB.
  • the work device 2 includes a work device control unit 18 (FIGS. 2 and 4).
  • the work device control unit 18 controls the operation of each unit of the work device 2. Specifically, the work device control unit 18 operates the transfer conveyor 12 to transfer the substrate KB and position it at the work position, and operates each part feeder 13 to supply the component BH to the component supply position 13K. Let me. Further, the working device control unit 18 operates the head moving mechanism 14 to move the mounting head 15 in the horizontal plane direction. Further, the working device control unit 18 raises and lowers and rotates each nozzle 15N included in the mounting head 15, generates an attraction force at the lower end of each nozzle 15N, and attracts the component BH supplied by the component feeder 13.
  • the working device control unit 18 also performs image recognition based on the image data obtained by the image pickup operation of the substrate recognition camera 16, and causes the component recognition camera 17 to image the component BH picked up by the mounting head 15 attracted to the nozzle 15N. Then, the component BH is recognized.
  • the transport conveyor 12 When each work device 2 constituting the work line 2L performs the component mounting work of mounting the component BH on the board KB, the transport conveyor 12 first receives and transports the board KB sent from the upstream side to perform the work. Position the board KB in position. When the board KB is positioned at the working position, the head moving mechanism 14 moves the mounting head 15 above the board KB. As a result, the board recognition camera 16 takes an image of the board KB, and the working device control unit 18 recognizes the board KB.
  • the head moving mechanism 14 moves the mounting head 15 above the parts feeder 13.
  • the parts BH supplied by the parts feeder 13 are attracted to each of the plurality of nozzles 15N and picked up.
  • the head moving mechanism 14 moves the mounting head 15 so that the component BH picked up by the mounting head 15 passes above the component recognition camera 17.
  • the component recognition camera 17 captures the component BH as the component BH passes above.
  • the working device control unit 18 recognizes the component BH based on the image obtained by the image captured by the component recognition camera 17.
  • the head moving mechanism 14 moves the mounting head 15 above the board KB.
  • the mounting head 15 mounts the picked up component BH at the target mounting coordinates set on the board KB.
  • the position correction based on the recognition result of the component BH performed through the component recognition camera 17 and the recognition result of the board KB performed through the board recognition camera 16 is performed. Will be done.
  • the component BH to be mounted on the board KB is mounted on the board KB.
  • the transfer conveyor 12 carries out the substrate KB to the downstream side of the working device 2. This completes the component mounting work for each board KB.
  • the work device 2 has a self-detection function that self-detects the occurrence of an error when an error occurs in the component mounting work as described above. Then, when the occurrence of an error is detected by the self-detection function, the information on the error (error information) that has occurred is transmitted to the management device 3. Then, the management device 3 transmits (transfers) the information of the error generated in any of the plurality of working devices 2 to any of the plurality of remote monitoring devices 4.
  • the error information transmitted from the working device 2 includes, for example, an image obtained by capturing an error occurrence portion with the board recognition camera 16.
  • the remote monitoring device 4 functions as a so-called remote terminal.
  • the remote monitoring device 4 is composed of, for example, a personal computer.
  • the remote monitoring device 4 may be connected to the management device 3 by wire or wirelessly.
  • FIG. 4 is a block diagram showing a control system of a remote operation system according to an embodiment of the present disclosure.
  • the remote monitoring device 4 includes a remote operation control unit 21, an input unit 22 connected to the remote operation control unit 21, and an output unit 23.
  • the keyboard unit corresponds to the input unit 22 and the monitor unit corresponds to the output unit 23 (FIG. 1).
  • the remote operation control unit 21 of the remote monitoring device 4 communicates (exchanges information) with the management device 3. Then, the remote operation control unit 21 displays the error information (error content) transmitted from the management device 3 on the output unit 23.
  • the worker who works on the remote monitoring device 4 can confirm the content of the error generated in the work device 2, and the operation for resolving the generated error (error resolution operation) can be performed from the input unit 22. You can enter it.
  • Information on the error resolution operation input by the operator from the input unit 22 is transmitted from the remote operation control unit 21 to the management device 3.
  • the management device 3 receives the error information transmission from the remote monitoring device 4, the management device 3 transmits (transfers) the error resolution operation information to the work device 2 in which the error has occurred.
  • the work device 2 that has received the error resolution operation information from the management device 3 operates based on the received error resolution operation. As a result, the working device 2 attempts to eliminate the error that has occurred. As a result, when the error is resolved, the working device 2 transmits information to the effect that the error has been resolved (error resolution information) to the management device 3.
  • the management device 3 transmits (transfers) the error resolution information to the remote monitoring device 4.
  • the output unit 23 displays a notification that the error has been resolved. As a result, the worker can confirm that the error has been resolved by the operation performed, and the error resolution work is completed.
  • the information indicating that the error is not resolved (error). Unresolved information) is transmitted to the management device 3.
  • the management device 3 transmits (transfers) the error unresolved information to the remote monitoring device 4.
  • the output unit 23 displays a notification that the error has not been resolved.
  • the operator can confirm that the error has not been resolved by the operation performed, and can transmit the information of the new error resolution operation to the management device 3.
  • the worker may send a notification to that effect to the management device 3 and end the error resolution operation. can. In this case, measures such as contacting the operator at the work site and manually giving an instruction to eliminate the error will be taken.
  • FIG. 5 is a diagram showing an example of master data created by the management device included in the remote operation system according to the embodiment of the present disclosure.
  • the management device 3 includes a master data creation unit 31, a calculation unit 32, and a display control unit 33.
  • the master data creation unit 31 creates master data as shown in FIG. 5 based on the error information received from the work device 2 and the error resolution operation information received from the remote monitoring device 4.
  • the master data items are error number, charge, error type, registration time, start time, end time, and success / failure of recovery.
  • Master data can be created as data within a certain period set by specifying a date and a time zone.
  • FIG. 5 shows an example of master data summarizing error information that occurred from 11:00 to 16:00 on a certain day.
  • the "number" of the master data item shown in FIG. 5 is an error number.
  • the error numbers are represented by serial numbers that occur in any of the plurality of working devices 2 and are assigned in the order in which they are sent to the management device 3.
  • the "in charge” of the master data item shown in FIG. 5 is the worker in charge of the error resolution operation, and is represented by the identification number assigned to each worker.
  • FIG. 5 it is an example in which the three workers who work with the three remote monitoring devices 4 are set to "1", "2", and "3".
  • each remote monitoring device 4 and a worker who works from each remote monitoring device 4 have a one-to-one relationship.
  • the worker inputs an identifier of the worker himself / herself from the input unit 22 before starting work on the remote monitoring device 4. It is preferable to let the management device 3 grasp the correspondence relationship between the remote monitoring device 4 and the operator.
  • the "type” of the master data item shown in FIG. 5 is the type of error.
  • the type of error is either a suction error (A), a substrate recognition error (B), or a nozzle tip abnormality (C).
  • the "suction error” is an error including the fact that the component BH to be adsorbed by the nozzle 15N could not be adsorbed from the parts feeder 13, or the component BH that was adsorbed by the nozzle 15N was dropped.
  • the "board recognition error” is an error in which after the board KB is positioned at the working position by the conveyor 12, an attempt is made to recognize the board KB by the board recognition camera 16, but the board KB cannot be recognized normally. Is.
  • the "nozzle tip abnormality” is an error in which the tip portion of the nozzle 15N is bent.
  • the “registration time” of the master data item shown in FIG. 5 is the time when the management device 3 receives the error information from the work device and registers the error information.
  • the “start time” is the time when the management device 3 receives the first error resolution operation for the error information from the remote monitoring device 4 to which the error information is transmitted.
  • the “end time” is when the management device 3 sends the error resolution information to the remote monitoring device 4 to which the error information is sent, or when the remote monitoring device 4 receives the information that the error resolution operation by the remote operation is abandoned. It is the time.
  • the "+” mark in the "recovery” section is an identifier indicating the case where the error can be resolved (recovered) by remote operation.
  • the "+” mark in the "non-recovery” section is an identifier indicating the case where the error cannot be resolved (cannot be recovered) by remote operation.
  • the calculation unit 32 performs a calculation based on the data created in the master data by the master data creation unit 31, and writes in the "operation time” and the "waiting time” in the master data.
  • the "operation time” is the time during which the worker is performing the error resolution operation from the remote monitoring device 4, and corresponds to the time between the start time and the end time.
  • the “waiting time” is the time required from the registration of the error information to the start of the error resolution operation, and corresponds to the time between the registration time and the start time.
  • FIG. 6A is a diagram showing an example of recovery information data displayed by the display device of the remote operation system according to the embodiment of the present disclosure.
  • the calculation unit 32 creates the "recovery information data" shown in FIG. 6A based on the master data and based on all the errors that occurred within the set period.
  • the recovery information data shown in FIG. 6A has items of "total number of errors", “number of recovery errors”, “number of non-recovery errors", “total operation time”, and “total waiting time”.
  • the “total number of errors” is the total number of errors that occurred within the period, and corresponds to the maximum number of "numbers" in the master data of FIG.
  • the “recovery error number” is the total number of errors that can be resolved by remote operation, and corresponds to the total number of errors marked with "+” in the “recovery” item in the master data of FIG.
  • the “number of non-recovery errors” is the total number of errors that could not be resolved by remote operation, and corresponds to the total number of errors marked with "+” in the "non-recovery” item in the master data of FIG.
  • the “total operation time” in the recovery information data shown in FIG. 6A is the total time of the "operation time” in the master data of FIG. Therefore, “9:45:00 (9 hours 45 minutes 0 seconds)", which is the total operation time in the master data of FIG. 5, corresponds to the “total operation time”.
  • the “total waiting time” in the recovery information data shown in FIG. 6A is the total time of the "waiting time” in the master data of FIG. Therefore, “1: 15:00 (1 hour 15 minutes 0 seconds)", which is the total “waiting time” in the master data of FIG. 5, corresponds to the "total waiting time”.
  • the display device 5 is provided with a display operation unit 5S.
  • a person (administrator) who manages the personnel allocation system for the remote monitoring device 4 performs a predetermined operation from the display operation unit 5S, the display device 5 is displayed with the “master data” shown in FIG. 5 and the “master data” shown in FIG. 6A. "Recovery information data" can be displayed.
  • the error information generated in any of the plurality of working devices 2 is transmitted to any of the plurality of remote monitoring devices 4, and the error information is transmitted. It is configured so that the error generated in the work device 2 can be remotely resolved by transmitting the information of the operation for resolving the error (error resolution operation) from the remote monitoring device 4 to the work device 2 in which the error occurred. There is. Then, for all the errors that have occurred in the plurality of working devices 2 within a certain period, the management device 3 is between the occurrence of each of the errors and the first error resolution operation for each of the errors. Calculate the total waiting time. The display device 5 displays the total waiting time calculated by the management device 3.
  • the "total waiting time" in the recovery information data (FIG. 6A) displayed on the display device 5 is the three workers (identification numbers "1", “2", "3") who performed the error resolution work.
  • the worker can be regarded as a parameter for measuring whether or not the expected result (elimination of the error) is achieved with respect to the error generated in the plurality of work devices 2 constituting the work line 2L. Specifically, if the total value of the waiting time within a certain period is smaller than the predetermined reference time, the number of workers and the ability of the workers who performed the error resolution work within that period are sufficient. It can be judged that it was sufficient.
  • total waiting time it can be determined that the number of workers or the ability of the workers involved in the error resolution work is insufficient.
  • the reference time is set to 1 hour and 30 minutes. At this time, since the total actual waiting time was 1 hour, 15 minutes, and 0 seconds, which was shorter than that, the three workers were sufficient in terms of number and ability, and the current state of the remote monitoring device 4 was sufficient. It can be judged that the staffing system may be maintained.
  • the manager who assigns or selects a worker who performs a remote operation for resolving an error generated in the work device 2 works without relying on his / her own experience or intuition (that is, objectively). It is possible to accurately assign and select persons.
  • FIG. 6B is a diagram showing an example of worker-specific recovery information data displayed by the display device of the remote operation system according to the embodiment of the present disclosure.
  • the calculation unit 32 creates the "recovery information data for each worker" shown in FIG. 6B based on all the errors that occurred within the set period.
  • the recovery information data for each worker shown in FIG. 6B includes "total number of errors”, “number of recovery errors”, “number of non-recovery errors”, and “number of non-recovery errors” for each worker "1", "2", and "3” in charge. Display the contents of each item of "Total operation time” and "Operation time / number of cases".
  • the "total number of errors" in the author-specific recovery information data of FIG. 6B is a calculation of the total number of error resolution processes performed by each worker for each worker based on the master data of FIG. ..
  • the "recovery error number” is calculated by calculating the total number of recovery errors for each worker based on the master data of FIG.
  • the “number of non-recovery errors” is calculated by calculating the total number of errors that could not be recovered for each worker based on the master data of FIG.
  • the “total operation time” is calculated by calculating the total time of the "wearing time” for each worker based on the master data of FIG.
  • “Operation time / number of cases” is calculated based on the master data of FIG. 5, the operation time per error, that is, the average operation time required to eliminate one error for each worker. Is.
  • the management device 3 causes one error for each worker who has performed an error resolution operation by any of the plurality of remote monitoring devices 4 within the set period. Calculate the average operation time required to resolve. Then, the display device 5 displays the average operation time for each worker calculated by the management device 3.
  • the administrator can display the "recovery information data for each worker" shown in FIG. 6B on the display device 5 by performing a predetermined operation from the display operation unit 5S. Therefore, by referring to the "recovery information data for each worker" shown in FIG. 6B, the administrator can know the work ability of each worker who performed the error resolution operation during the period, and each worker can know the work ability of each worker. You can evaluate the work.
  • FIG. 6C is a diagram showing an example of recovery information data for each error type of the worker displayed by the display device of the remote operation system according to the embodiment of the present disclosure.
  • the calculation unit 32 creates "recovery information data for each error type of the worker" shown in FIG. 6C based on all the errors generated within the set period.
  • the recovery information data for each error type of the worker shown in FIG. 6C is calculated by further subdividing the average operation time for each worker in the “recovery information data for each worker” of FIG. 6B according to the error type. It was done.
  • the management device 3 causes one error for each worker who has performed an error resolution operation by any of the plurality of remote monitoring devices 4 within the set period.
  • the average operation time required to resolve the error is calculated for each error type (subdivided according to the error type).
  • the display device 5 displays the average operation time for each worker calculated by the management device 3 subdivided according to the type of error.
  • the administrator can display the "recovery information data for each error type of the worker" shown in FIG. 6C on the display device 5 by performing a predetermined operation from the display operation unit 5S. Therefore, by referring to the "recovery information data for each error type of the worker" shown in FIG. 6C, the administrator knows the work ability of each worker who performed the error resolution operation during the relevant period for each error type. It is possible to evaluate the work including the strengths and weaknesses of each worker for each error type.
  • the error information generated in any of the plurality of working devices 2 is transmitted to any of the plurality of remote monitoring devices 4, and the error information is transmitted.
  • the management device 3 has, for all the errors generated in the plurality of working devices 2 within a certain period, from the occurrence of each of the errors until the first operation for eliminating each of the errors is performed. Calculate the total waiting time between.
  • the display device 5 displays the total waiting time calculated by the management device 3.
  • the manager who assigns or selects the worker who performs the remote operation for resolving the error generated in the work device 2 works without relying on his / her own experience or intuition (that is, objectively). It is possible to accurately assign and select persons, and eventually to improve the productivity of the work line.
  • the present disclosure is not limited to the above-mentioned ones, and various modifications and the like are possible.
  • the plurality of work devices 2 constitute the work line 2L, but the work device 2 to which the present disclosure is applied does not necessarily have to form the work line 2L.
  • the working device 2 is a component mounting device for mounting the component BH on the substrate KB on which the work target is to be worked, but the working device 2 to which the present disclosure is applied is not limited to the component mounting device. ..
  • a remote operation system that can accurately perform the placement or selection of workers who perform remote operations for solving errors that occur in the work equipment without relying on the experience or intuition of the administrator.

Abstract

Provided is a remote operation system configured to enable remotely resolving an error generated in a work device by: transmitting information of an error generated in any one of a plurality of work devices to any one of a plurality of remote monitoring devices; and transmitting, from the remote monitoring device having received the information of the error transmitted, information of an operation for resolving the error to the work device where the error was generated. Regarding all errors generated in the plurality of work devices in a predetermined period of time, a management device calculates a total of waiting time between generation of each error and a first operation for resolving the error, and a display device displays the total of waiting time calculated by the management device.

Description

リモート操作システムRemote operation system
 本開示は、作業装置に発生したエラーをリモート監視装置からリモート操作で解消することができるリモート操作システムに関する。 This disclosure relates to a remote operation system that can eliminate an error that has occurred in a work device by remote operation from a remote monitoring device.
 従来、作業ラインを構成する作業装置にエラーが発生した場合に、操作リモート監視装置からのリモート操作でエラーを解消することができるリモート操作システムが知られている(例えば、下記の特許文献1参照)。このようなリモート操作システムでは、リモート監視装置を複数設置し、複数の作業者によって同時期に発生した複数のエラーを同時期に解消できるようにすることも可能である。 Conventionally, there is known a remote operation system that can eliminate an error by remote operation from an operation remote monitoring device when an error occurs in a work device constituting a work line (see, for example, Patent Document 1 below). ). In such a remote operation system, it is possible to install a plurality of remote monitoring devices so that a plurality of errors generated at the same time by a plurality of workers can be resolved at the same time.
特開2018-200654号公報Japanese Unexamined Patent Publication No. 2018-200654
 しかしながら、上記のように、複数の作業者によって同時期に発生した複数のエラーを同時期に解消できるようなっていても、作業を行う作業者の技量によっては、適切な作業効率を維持できない場合がある。このような場合には、作業者を入れ替えたり増員したりすることが考えられる。しかし、そのような判断は従来、管理者(リモート監視装置に対する人員配置体制を管理する者)の勘と経験による主観的なものであり、必ずしも適切な判断がなされるとは限らないという問題点があった。 However, as described above, even if a plurality of errors generated at the same time by a plurality of workers can be resolved at the same time, an appropriate work efficiency cannot be maintained depending on the skill of the worker who performs the work. There is. In such a case, it is conceivable to replace or increase the number of workers. However, such a judgment has conventionally been subjective based on the intuition and experience of the administrator (the person who manages the staffing system for the remote monitoring device), and there is a problem that an appropriate judgment is not always made. was there.
 そこで本開示は、作業装置で発生したエラーの解消のためのリモート操作を行う作業者の配置又は人選等を、管理者の経験又は勘等に頼らずに的確に行うことができるリモート操作システムを提供することを目的とする。 Therefore, the present disclosure provides a remote operation system capable of accurately allocating or selecting a worker who performs a remote operation for solving an error generated in a work device without relying on the experience or intuition of an administrator. The purpose is to provide.
 本開示のリモート操作システムは、複数の作業装置のいずれかに発生したエラーの情報を複数のリモート監視装置のいずれかに送信し、エラーの情報の送信を受けたリモート監視装置からエラーを解消するための操作の情報をエラーが発生した作業装置に送信することによって複数の作業装置のいずれかに発生したエラーをリモートで解消できるように構成されたリモート操作システムであって、或る期間内に複数の作業装置に発生した全てのエラーについて、全てのエラーのそれぞれの発生から全てのエラーのそれぞれを解消するための最初の操作が行われるまでの間の待ち時間の合計を算出する管理装置を備えた。 The remote operation system of the present disclosure transmits information on an error that has occurred in any of a plurality of working devices to one of a plurality of remote monitoring devices, and resolves the error from the remote monitoring device that has received the error information transmitted. A remote operation system configured to remotely resolve an error that has occurred in one of multiple work devices by sending information about the operation to the work device in which the error occurred, within a certain period of time. For all errors that have occurred in multiple work devices, a management device that calculates the total waiting time between the occurrence of each error and the first operation to resolve each error. Prepared.
 本開示によれば、作業装置で発生したエラーの解消のためのリモート操作を行う作業者の配置又は人選等を、管理者の経験又は勘等に頼らずに的確に行うことができる。 According to the present disclosure, it is possible to accurately assign or select a worker who performs a remote operation for solving an error generated in a work device without relying on the experience or intuition of the administrator.
図1は、本開示の一実施の形態におけるリモート操作システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a remote operation system according to an embodiment of the present disclosure. 図2は、本開示の一実施の形態におけるリモート操作システムを構成する作業装置の要部側面図である。FIG. 2 is a side view of a main part of a working device constituting the remote operation system according to the embodiment of the present disclosure. 図3は、本開示の一実施の形態におけるリモート操作システムを構成する作業装置のパーツフィーダを装着ヘッドおよび基板認識カメラとともに示す斜視図である。FIG. 3 is a perspective view showing a parts feeder of a working device constituting the remote operation system according to the embodiment of the present disclosure together with a mounting head and a substrate recognition camera. 図4は、本開示の一実施の形態におけるリモート操作システムの制御系統を示すブロック図である。FIG. 4 is a block diagram showing a control system of a remote operation system according to an embodiment of the present disclosure. 図5は、本開示の一実施の形態におけるリモート操作システムが備える管理装置で作成されるマスターデータの一例を示す図である。FIG. 5 is a diagram showing an example of master data created by a management device included in the remote operation system according to the embodiment of the present disclosure. 図6Aは、本開示の一実施の形態におけるリモート操作システムの表示装置が表示する復旧情報データの一例を示す図である。FIG. 6A is a diagram showing an example of recovery information data displayed by the display device of the remote operation system according to the embodiment of the present disclosure. 図6Bは、本開示の一実施の形態におけるリモート操作システムの表示装置が表示する作業者別復旧情報データの一例を示す図である。FIG. 6B is a diagram showing an example of worker-specific recovery information data displayed by the display device of the remote operation system according to the embodiment of the present disclosure. 図6Cは、本開示の一実施の形態におけるリモート操作システムの表示装置が表示する作業者のエラー種別ごと復旧情報データの一例を示す図である。FIG. 6C is a diagram showing an example of recovery information data for each error type of a worker displayed by the display device of the remote operation system according to the embodiment of the present disclosure.
 以下、図面を参照して本開示の実施の形態について説明する。図1は、本開示の一実施の形態におけるリモート操作システム1の概略構成図である。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a remote operation system 1 according to an embodiment of the present disclosure.
 リモート操作システム1は、複数の作業装置2、管理装置3、複数のリモート監視装置4および表示装置5を備えて構成されている。本実施の形態では、各作業装置2は、基板KBに部品を装着する部品実装装置である。複数の作業装置2は直列に並べられて作業ライン2Lを構成している。 The remote operation system 1 is configured to include a plurality of work devices 2, a management device 3, a plurality of remote monitoring devices 4, and a display device 5. In the present embodiment, each work device 2 is a component mounting device for mounting components on the board KB. A plurality of working devices 2 are arranged in series to form a working line 2L.
 図2は、本開示の一実施の形態におけるリモート操作システムを構成する作業装置の要部側面図である。図2において、各作業装置2は、基台11、搬送コンベア12、パーツフィーダ13、ヘッド移動機構14、装着ヘッド15、基板認識カメラ16および部品認識カメラ17を備えている。搬送コンベア12は、基台11上を左右方向(X軸方向)に延びており、上流側から送られてきた基板KBを受け取って、所定の作業位置に位置決めする。 FIG. 2 is a side view of a main part of a working device constituting a remote operation system according to an embodiment of the present disclosure. In FIG. 2, each working device 2 includes a base 11, a conveyor 12, a parts feeder 13, a head moving mechanism 14, a mounting head 15, a board recognition camera 16, and a parts recognition camera 17. The conveyor 12 extends on the base 11 in the left-right direction (X-axis direction), receives the substrate KB sent from the upstream side, and positions it at a predetermined working position.
 図2において、パーツフィーダ13は、テープフィーダである。パーツフィーダ13は、内蔵したスプロケット13S(図3も参照)によって、リールRLに巻き付けられたキャリアテープCTを引き出して前後方向(Y軸方向)に搬送する。これにより、パーツフィーダ13は、搬送コンベア12側の端部に設けられた部品供給位置13Kに部品BHを供給する。ヘッド移動機構14は、例えばXYガントリー機構から成り、装着ヘッド15を水平面内で移動させる。 In FIG. 2, the parts feeder 13 is a tape feeder. The parts feeder 13 pulls out the carrier tape CT wound around the reel RL by the built-in sprocket 13S (see also FIG. 3) and conveys it in the front-rear direction (Y-axis direction). As a result, the parts feeder 13 supplies the parts BH to the parts supply position 13K provided at the end on the conveyor 12 side. The head moving mechanism 14 is composed of, for example, an XY gantry mechanism, and moves the mounting head 15 in a horizontal plane.
 図3は、本開示の一実施の形態におけるリモート操作システムを構成する作業装置のパーツフィーダを装着ヘッドおよび基板認識カメラとともに示す斜視図である。図2および図3において、装着ヘッド15は、下方に延びた複数のノズル15Nを備えている。装着ヘッド15は、各ノズル15Nを昇降させることができるとともに、各ノズル15Nを上下方向(Z軸方向)まわりに回転させることができる。また、装着ヘッド15は、各ノズル15Nの下端に真空吸着力を発生させることができる。装着ヘッド15がパーツフィーダ13から部品BHを吸着するときは、部品供給位置13Kの上方でノズル15Nを下降させ、ノズル15Nの下端に真空吸着力を発生させる。 FIG. 3 is a perspective view showing a parts feeder of a working device constituting the remote operation system according to the embodiment of the present disclosure together with a mounting head and a board recognition camera. In FIGS. 2 and 3, the mounting head 15 includes a plurality of nozzles 15N extending downward. The mounting head 15 can raise and lower each nozzle 15N, and can rotate each nozzle 15N in the vertical direction (Z-axis direction). Further, the mounting head 15 can generate a vacuum suction force at the lower end of each nozzle 15N. When the mounting head 15 sucks the component BH from the part feeder 13, the nozzle 15N is lowered above the component supply position 13K, and a vacuum suction force is generated at the lower end of the nozzle 15N.
 図2および図3において、基板認識カメラ16は、撮像光軸を下方に向けた姿勢で装着ヘッド15に取り付けられている。基板認識カメラ16は、装着ヘッド15と一体に水平面内方向に移動し、搬送コンベア12によって作業位置に位置決めされた基板KBを上方から撮像する。 In FIGS. 2 and 3, the substrate recognition camera 16 is attached to the mounting head 15 in a posture in which the image pickup optical axis is directed downward. The substrate recognition camera 16 moves inward in the horizontal plane integrally with the mounting head 15, and images the substrate KB positioned at the working position by the conveyor 12 from above.
 図2において、部品認識カメラ17は、撮像光軸を上方に向けた姿勢で基台11に取り付けられている。部品認識カメラ17は、部品BHをピックアップした装着ヘッド15が部品認識カメラ17の上方を通って基板KB側に移動する際、部品BHを下方から撮像する。 In FIG. 2, the component recognition camera 17 is attached to the base 11 with the image pickup optical axis facing upward. The component recognition camera 17 captures the component BH from below when the mounting head 15 that picks up the component BH passes above the component recognition camera 17 and moves toward the substrate KB.
 作業装置2は、作業装置制御部18を備えている(図2および図4)。作業装置制御部18は、作業装置2の各部の動作を制御する。具体的には、作業装置制御部18は、搬送コンベア12を作動させて基板KBの搬送と作業位置への位置決めとを行い、各パーツフィーダ13を作動させて部品供給位置13Kに部品BHを供給させる。また、作業装置制御部18は、ヘッド移動機構14を作動させて装着ヘッド15を水平面内方向で移動させる。また、作業装置制御部18は、装着ヘッド15が備える各ノズル15Nを昇降および回転させ、各ノズル15Nの下端に吸着力を発生させて、パーツフィーダ13が供給する部品BHを吸着させる。作業装置制御部18はまた、基板認識カメラ16の撮像動作によって得られる画像データに基づいて画像認識を行い、装着ヘッド15がノズル15Nに吸着させてピックアップした部品BHを部品認識カメラ17に撮像させて、部品BHの認識を行う。 The work device 2 includes a work device control unit 18 (FIGS. 2 and 4). The work device control unit 18 controls the operation of each unit of the work device 2. Specifically, the work device control unit 18 operates the transfer conveyor 12 to transfer the substrate KB and position it at the work position, and operates each part feeder 13 to supply the component BH to the component supply position 13K. Let me. Further, the working device control unit 18 operates the head moving mechanism 14 to move the mounting head 15 in the horizontal plane direction. Further, the working device control unit 18 raises and lowers and rotates each nozzle 15N included in the mounting head 15, generates an attraction force at the lower end of each nozzle 15N, and attracts the component BH supplied by the component feeder 13. The working device control unit 18 also performs image recognition based on the image data obtained by the image pickup operation of the substrate recognition camera 16, and causes the component recognition camera 17 to image the component BH picked up by the mounting head 15 attracted to the nozzle 15N. Then, the component BH is recognized.
 作業ライン2Lを構成する各作業装置2は、基板KBに部品BHを装着する部品装着作業を行う場合、先ず、搬送コンベア12は、上流側から送られてきた基板KBを受け取って搬送し、作業位置に基板KBを位置決めする。基板KBが作業位置に位置決めされたら、ヘッド移動機構14は、装着ヘッド15を基板KBの上方に移動させる。これにより、基板認識カメラ16は基板KBを撮像し、作業装置制御部18は基板KBを認識する。 When each work device 2 constituting the work line 2L performs the component mounting work of mounting the component BH on the board KB, the transport conveyor 12 first receives and transports the board KB sent from the upstream side to perform the work. Position the board KB in position. When the board KB is positioned at the working position, the head moving mechanism 14 moves the mounting head 15 above the board KB. As a result, the board recognition camera 16 takes an image of the board KB, and the working device control unit 18 recognizes the board KB.
 作業装置制御部18が基板KBを認識したら、ヘッド移動機構14は、装着ヘッド15をパーツフィーダ13の上方に移動させる。装着ヘッド15は、パーツフィーダ13の上方に移動したら、パーツフィーダ13が供給する部品BHを複数のノズル15Nそれぞれに吸着させてピックアップする。 When the working device control unit 18 recognizes the board KB, the head moving mechanism 14 moves the mounting head 15 above the parts feeder 13. When the mounting head 15 moves above the parts feeder 13, the parts BH supplied by the parts feeder 13 are attracted to each of the plurality of nozzles 15N and picked up.
 装着ヘッド15が部品BHをピックアップしたら、ヘッド移動機構14は、装着ヘッド15にピックアップされた部品BHが部品認識カメラ17の上方を通過するように装着ヘッド15を移動させる。部品認識カメラ17は、部品BHが上方を通過するとき、部品BHを撮像する。作業装置制御部18は、部品認識カメラ17の撮像によって得られた画像に基づいて、部品BHの認識を行う。 After the mounting head 15 picks up the component BH, the head moving mechanism 14 moves the mounting head 15 so that the component BH picked up by the mounting head 15 passes above the component recognition camera 17. The component recognition camera 17 captures the component BH as the component BH passes above. The working device control unit 18 recognizes the component BH based on the image obtained by the image captured by the component recognition camera 17.
 作業装置制御部18が部品BHを認識したら、ヘッド移動機構14は、装着ヘッド15を基板KBの上方に移動させる。装着ヘッド15は、ピックアップした部品BHを、基板KBに設定されている目標装着座標に装着する。装着ヘッド15が部品BHを目標装着座標に装着する際には、部品認識カメラ17を通じて行った部品BHの認識結果と、基板認識カメラ16を通じて行った基板KBの認識結果とに基づいた位置補正がなされる。 When the working device control unit 18 recognizes the component BH, the head moving mechanism 14 moves the mounting head 15 above the board KB. The mounting head 15 mounts the picked up component BH at the target mounting coordinates set on the board KB. When the mounting head 15 mounts the component BH at the target mounting coordinates, the position correction based on the recognition result of the component BH performed through the component recognition camera 17 and the recognition result of the board KB performed through the board recognition camera 16 is performed. Will be done.
 このような装着ヘッド15の一連の動作が繰り返されることによって、基板KBに装着すべき部品BHが基板KBに装着される。その後、搬送コンベア12は、基板KBを作業装置2の下流側に搬出する。これにより、基板KBの1枚当たりの部品装着作業が終了する。 By repeating such a series of operations of the mounting head 15, the component BH to be mounted on the board KB is mounted on the board KB. After that, the transfer conveyor 12 carries out the substrate KB to the downstream side of the working device 2. This completes the component mounting work for each board KB.
 作業装置2は、上記のような部品装着作業において、何らかのエラーが発生した場合には、そのエラーの発生を自己検出する自己検出機能を有している。そして、自己検出機能によってエラーの発生を検出した場合には、発生したエラーの情報(エラー情報)を管理装置3に送信する。そして、管理装置3は、複数の作業装置2のいずれかに発生したエラーの情報を、複数のリモート監視装置4のいずれかに送信(転送)する。なお、作業装置2から送信されるエラー情報は、例えば、基板認識カメラ16でエラー発生箇所を撮像した画像等から成る。 The work device 2 has a self-detection function that self-detects the occurrence of an error when an error occurs in the component mounting work as described above. Then, when the occurrence of an error is detected by the self-detection function, the information on the error (error information) that has occurred is transmitted to the management device 3. Then, the management device 3 transmits (transfers) the information of the error generated in any of the plurality of working devices 2 to any of the plurality of remote monitoring devices 4. The error information transmitted from the working device 2 includes, for example, an image obtained by capturing an error occurrence portion with the board recognition camera 16.
 リモート監視装置4は、いわゆるリモート端末として機能する。リモート監視装置4は、例えば、パーソナルコンピュータから構成されている。リモート監視装置4は、管理装置3と有線で接続されていてもよいし、無線で接続されていてもよい。 The remote monitoring device 4 functions as a so-called remote terminal. The remote monitoring device 4 is composed of, for example, a personal computer. The remote monitoring device 4 may be connected to the management device 3 by wire or wirelessly.
 図4は、本開示の一実施の形態におけるリモート操作システムの制御系統を示すブロック図である。図4において、リモート監視装置4は、リモート操作制御部21、リモート操作制御部21に繋がる入力部22および出力部23を備えている。リモート監視装置4がパーソナルコンピュータから構成されている場合、キーボード部が入力部22に相当し、モニタ部が出力部23に相当する(図1)。 FIG. 4 is a block diagram showing a control system of a remote operation system according to an embodiment of the present disclosure. In FIG. 4, the remote monitoring device 4 includes a remote operation control unit 21, an input unit 22 connected to the remote operation control unit 21, and an output unit 23. When the remote monitoring device 4 is composed of a personal computer, the keyboard unit corresponds to the input unit 22 and the monitor unit corresponds to the output unit 23 (FIG. 1).
 図4において、リモート監視装置4のリモート操作制御部21は、管理装置3との間で通信(情報のやり取り)を行う。そして、リモート操作制御部21は、管理装置3から送信されてきたエラー情報(エラーの内容)を出力部23に表示する。これにより、リモート監視装置4で作業を行う作業者は、作業装置2で発生したエラーの内容を確認することができ、発生したエラーを解消するための操作(エラー解消操作)を入力部22から入力することができる。 In FIG. 4, the remote operation control unit 21 of the remote monitoring device 4 communicates (exchanges information) with the management device 3. Then, the remote operation control unit 21 displays the error information (error content) transmitted from the management device 3 on the output unit 23. As a result, the worker who works on the remote monitoring device 4 can confirm the content of the error generated in the work device 2, and the operation for resolving the generated error (error resolution operation) can be performed from the input unit 22. You can enter it.
 作業者が入力部22から入力したエラー解消操作の情報は、リモート操作制御部21から管理装置3に送信される。管理装置3は、リモート監視装置4からエラーの情報の送信を受けた場合には、エラー解消操作の情報を、エラーが発生した作業装置2に送信(転送)する。 Information on the error resolution operation input by the operator from the input unit 22 is transmitted from the remote operation control unit 21 to the management device 3. When the management device 3 receives the error information transmission from the remote monitoring device 4, the management device 3 transmits (transfers) the error resolution operation information to the work device 2 in which the error has occurred.
 管理装置3からエラー解消操作の情報を受け取った作業装置2は、受け取ったエラー解消操作に基づいて作動する。これにより、作業装置2は、発生したエラーの解消を試みる。その結果、エラーが解消した場合には、作業装置2は、エラーが解消した旨の情報(エラー解消情報)を管理装置3に送信する。管理装置3は、エラー解消情報をリモート監視装置4に送信(転送)する。リモート監視装置4のリモート操作制御部21は、管理装置3よりエラー解消情報を受け取った場合には、エラーが解消した旨の報知を出力部23に表示する。これにより、作業者は、行った操作によってエラーが解消したことを確認することができ、エラーの解消作業が終了する。 The work device 2 that has received the error resolution operation information from the management device 3 operates based on the received error resolution operation. As a result, the working device 2 attempts to eliminate the error that has occurred. As a result, when the error is resolved, the working device 2 transmits information to the effect that the error has been resolved (error resolution information) to the management device 3. The management device 3 transmits (transfers) the error resolution information to the remote monitoring device 4. When the remote operation control unit 21 of the remote monitoring device 4 receives the error resolution information from the management device 3, the output unit 23 displays a notification that the error has been resolved. As a result, the worker can confirm that the error has been resolved by the operation performed, and the error resolution work is completed.
 一方、作業装置2は、管理装置3から受け取ったエラー解消操作の情報に基づいてエラーの解消を試みた結果、エラーが解消されなかった場合には、エラーが解消しなかった旨の情報(エラー未解消情報)を管理装置3に送信する。管理装置3は、エラー未解消情報をリモート監視装置4に送信(転送)する。リモート監視装置4のリモート操作制御部21は、管理装置3よりエラー未解消情報を受け取った場合には、エラーが未解消である旨の報知を出力部23に表示する。これにより、作業者は、行った操作によってはエラーが解消しなかったことを確認でき、新たなエラー解消操作の情報を管理装置3に送信することができる。また、作業者は、リモート操作ではエラーを解消できないと判断し、リモート操作によるエラー解消を断念した場合には、その旨の通知を管理装置3に送信して、エラー解消操作を終了することもできる。なお、この場合には、作業現場でのオペレータに連絡して手作業でエラーを解消する指示を与える等の処置を施すことになる。 On the other hand, if the error is not resolved as a result of the working device 2 trying to resolve the error based on the information of the error resolution operation received from the management device 3, the information indicating that the error is not resolved (error). Unresolved information) is transmitted to the management device 3. The management device 3 transmits (transfers) the error unresolved information to the remote monitoring device 4. When the remote operation control unit 21 of the remote monitoring device 4 receives the error unresolved information from the management device 3, the output unit 23 displays a notification that the error has not been resolved. As a result, the operator can confirm that the error has not been resolved by the operation performed, and can transmit the information of the new error resolution operation to the management device 3. Further, if the worker determines that the error cannot be resolved by the remote operation and gives up the error resolution by the remote operation, the worker may send a notification to that effect to the management device 3 and end the error resolution operation. can. In this case, measures such as contacting the operator at the work site and manually giving an instruction to eliminate the error will be taken.
 図5は、本開示の一実施の形態におけるリモート操作システムが備える管理装置で作成されるマスターデータの一例を示す図である。管理装置3は、図4に示すように、マスターデータ作成部31、演算部32および表示制御部33を備えている。マスターデータ作成部31は、作業装置2から受け取ったエラー情報と、リモート監視装置4から受け取ったエラー解消操作情報とをベースにして、図5に示すようなマスターデータを作成する。マスターデータの項目は、ここでは、図5に示すように、エラーの番号、担当、エラーの種別、登録時刻、開始時刻、終了時刻および復旧の成否となっている。マスターデータは、日にちと時間帯とを指定して設定した一定の期間内のデータとして作成することができる。図5は、或る日における11時から16時までに発生したエラー情報をまとめたマスターデータの例を示している。 FIG. 5 is a diagram showing an example of master data created by the management device included in the remote operation system according to the embodiment of the present disclosure. As shown in FIG. 4, the management device 3 includes a master data creation unit 31, a calculation unit 32, and a display control unit 33. The master data creation unit 31 creates master data as shown in FIG. 5 based on the error information received from the work device 2 and the error resolution operation information received from the remote monitoring device 4. Here, as shown in FIG. 5, the master data items are error number, charge, error type, registration time, start time, end time, and success / failure of recovery. Master data can be created as data within a certain period set by specifying a date and a time zone. FIG. 5 shows an example of master data summarizing error information that occurred from 11:00 to 16:00 on a certain day.
 図5に示すマスターデータの項目の「番号」は、エラーの番号である。エラーの番号は、複数の作業装置2のいずれかで発生し、管理装置3に送られてきた順序で付した連続番号で表している。 The "number" of the master data item shown in FIG. 5 is an error number. The error numbers are represented by serial numbers that occur in any of the plurality of working devices 2 and are assigned in the order in which they are sent to the management device 3.
 図5に示すマスターデータの項目の「担当」は、エラー解消操作を担当した作業者であり、作業者ごとに割り振られた識別番号で表記されている。図5に示す例では、3台のリモート監視装置4で作業を行う3人の作業者を「1」、「2」、「3」とした場合の例である。なお、ここでは、各リモート監視装置4と、各リモート監視装置4から作業を行う作業者とが一対一の関係にあることを前提としている。なお、1台のリモート監視装置4を複数の作業者が兼用する場合には、作業者は、リモート監視装置4で作業を始める前に、作業者自身の識別子を入力部22から入力して、管理装置3にリモート監視装置4と作業者との対応関係を把握させておくことが好ましい。 The "in charge" of the master data item shown in FIG. 5 is the worker in charge of the error resolution operation, and is represented by the identification number assigned to each worker. In the example shown in FIG. 5, it is an example in which the three workers who work with the three remote monitoring devices 4 are set to "1", "2", and "3". Here, it is premised that each remote monitoring device 4 and a worker who works from each remote monitoring device 4 have a one-to-one relationship. When a plurality of workers also use one remote monitoring device 4, the worker inputs an identifier of the worker himself / herself from the input unit 22 before starting work on the remote monitoring device 4. It is preferable to let the management device 3 grasp the correspondence relationship between the remote monitoring device 4 and the operator.
 図5に示すマスターデータの項目の「種別」は、エラーの種別である。エラーの種別は、ここでは吸着エラー(A)、基板認識エラー(B)又はノズル先端異常(C)のいずれかとしている。「吸着エラー」とは、ノズル15Nが吸着すべき部品BHをパーツフィーダ13から吸着できなかった、あるいはノズル15Nで吸着したものの部品BHを落下させてしまったことを内容とするエラーである。「基板認識エラー」は、搬送コンベア12によって基板KBが作業位置に位置決めされた後、基板認識カメラ16によって基板KBを認識しようとしたものの基板KBを正常に認識できなかったことを内容とするエラーである。「ノズル先端異常」は、ノズル15Nの先端部が折れ曲がっていることを内容とするエラーである。 The "type" of the master data item shown in FIG. 5 is the type of error. Here, the type of error is either a suction error (A), a substrate recognition error (B), or a nozzle tip abnormality (C). The "suction error" is an error including the fact that the component BH to be adsorbed by the nozzle 15N could not be adsorbed from the parts feeder 13, or the component BH that was adsorbed by the nozzle 15N was dropped. The "board recognition error" is an error in which after the board KB is positioned at the working position by the conveyor 12, an attempt is made to recognize the board KB by the board recognition camera 16, but the board KB cannot be recognized normally. Is. The "nozzle tip abnormality" is an error in which the tip portion of the nozzle 15N is bent.
 図5に示すマスターデータの項目の「登録時刻」は、管理装置3が作業装置からエラー情報を受け取ってエラー情報を登録した時刻である。「開始時刻」は、管理装置3がエラー情報を送信した先のリモート監視装置4から、エラー情報に対する最初のエラー解消操作を受け取った時刻である。「終了時刻」は、管理装置3がエラー情報を送信した先のリモート監視装置4にエラー解消情報を送信したとき、あるいはリモート監視装置4からリモート操作によるエラー解消操作を断念した旨の情報を受け取った時刻である。「復旧」の項の「+」印は、エラーをリモート操作で解消できた(復旧できた)場合を示す識別子である。「非復旧」の項の「+」印は、エラーをリモート操作では解消できなかった(復旧できなかった)場合を示す識別子である。 The "registration time" of the master data item shown in FIG. 5 is the time when the management device 3 receives the error information from the work device and registers the error information. The "start time" is the time when the management device 3 receives the first error resolution operation for the error information from the remote monitoring device 4 to which the error information is transmitted. The "end time" is when the management device 3 sends the error resolution information to the remote monitoring device 4 to which the error information is sent, or when the remote monitoring device 4 receives the information that the error resolution operation by the remote operation is abandoned. It is the time. The "+" mark in the "recovery" section is an identifier indicating the case where the error can be resolved (recovered) by remote operation. The "+" mark in the "non-recovery" section is an identifier indicating the case where the error cannot be resolved (cannot be recovered) by remote operation.
 演算部32は、マスターデータ作成部31によってマスターデータに作成されたデータに基づいて演算を行い、マスターデータにおける「操作時間」と「待ち時間」とに書き込みを行う。ここで、「操作時間」は、作業者がリモート監視装置4からエラー解消操作を行っていた時間であり、開始時刻から終了時刻まで間の時間に相当する。「待ち時間」は、エラー情報の登録があってからエラー解消操作が開始されるまでに要した時間であり、登録時刻から開始時刻までの間の時間に相当する。 The calculation unit 32 performs a calculation based on the data created in the master data by the master data creation unit 31, and writes in the "operation time" and the "waiting time" in the master data. Here, the "operation time" is the time during which the worker is performing the error resolution operation from the remote monitoring device 4, and corresponds to the time between the start time and the end time. The "waiting time" is the time required from the registration of the error information to the start of the error resolution operation, and corresponds to the time between the registration time and the start time.
 図6Aは、本開示の一実施の形態におけるリモート操作システムの表示装置が表示する復旧情報データの一例を示す図である。演算部32は、マスターデータに基づいて、設定した期間内に発生した全てのエラーをもとに、図6Aに示す「復旧情報データ」を作成する。図6Aに示す復旧情報データでは、「総エラー数」、「復旧エラー数」、「非復旧エラー数」、「操作総時間」および「待ち総時間」の各項目を有している。ここで、「総エラー数」は、期間内に発生したエラーの合計数であり、図5のマスターデータにおける「番号」の最大数に相当する。「復旧エラー数」は、リモート操作で解消できたエラーの合計数であり、図5のマスターデータにおける「復旧」の項目の「+」印がついたエラーの合計数に相当する。「非復旧エラー数」は、リモート操作では解消できなかったエラーの合計数であり、図5のマスターデータにおける「非復旧」の項目の「+」印がついたエラーの合計数に相当する。 FIG. 6A is a diagram showing an example of recovery information data displayed by the display device of the remote operation system according to the embodiment of the present disclosure. The calculation unit 32 creates the "recovery information data" shown in FIG. 6A based on the master data and based on all the errors that occurred within the set period. The recovery information data shown in FIG. 6A has items of "total number of errors", "number of recovery errors", "number of non-recovery errors", "total operation time", and "total waiting time". Here, the "total number of errors" is the total number of errors that occurred within the period, and corresponds to the maximum number of "numbers" in the master data of FIG. The "recovery error number" is the total number of errors that can be resolved by remote operation, and corresponds to the total number of errors marked with "+" in the "recovery" item in the master data of FIG. The "number of non-recovery errors" is the total number of errors that could not be resolved by remote operation, and corresponds to the total number of errors marked with "+" in the "non-recovery" item in the master data of FIG.
 図6Aに示す復旧情報データにおける「操作総時間」は、図5のマスターデータにおける「操作時間」の合計の時間である。従って、図5のマスターデータにおける操作時間の合計である「9:45:00(9時間45分0秒)」が、「操作総時間」に対応する。図6Aに示す復旧情報データにおける「待ち総時間」は、図5のマスターデータにおける「待ち時間」の合計の時間である。従って、図5のマスターデータにおける「待ち時間」の合計である「1:15:00(1時間15分0秒)」が、「待ち総時間」に対応する。 The "total operation time" in the recovery information data shown in FIG. 6A is the total time of the "operation time" in the master data of FIG. Therefore, "9:45:00 (9 hours 45 minutes 0 seconds)", which is the total operation time in the master data of FIG. 5, corresponds to the "total operation time". The "total waiting time" in the recovery information data shown in FIG. 6A is the total time of the "waiting time" in the master data of FIG. Therefore, "1: 15:00 (1 hour 15 minutes 0 seconds)", which is the total "waiting time" in the master data of FIG. 5, corresponds to the "total waiting time".
 図4において、表示装置5には、表示操作部5Sが設けられている。リモート監視装置4に対する人員配置体制を管理する者(管理者)が表示操作部5Sから所定の操作を行うと、表示装置5に、図5に示す「マスターデータ」のほか、図6Aに示す「復旧情報データ」を表示させることができる。 In FIG. 4, the display device 5 is provided with a display operation unit 5S. When a person (administrator) who manages the personnel allocation system for the remote monitoring device 4 performs a predetermined operation from the display operation unit 5S, the display device 5 is displayed with the “master data” shown in FIG. 5 and the “master data” shown in FIG. 6A. "Recovery information data" can be displayed.
 このように、本実施の形態におけるリモート操作システム1では、複数の作業装置2のいずれかに発生したエラーの情報を複数のリモート監視装置4のいずれかに送信し、エラーの情報の送信を受けたリモート監視装置4からエラーを解消するための操作(エラー解消操作)の情報をエラーが発生した作業装置2に送信することによって作業装置2に発生したエラーをリモートで解消できるように構成されている。そして、管理装置3は、或る期間内に複数の作業装置2に発生した全てのエラーについて、全てのエラーのそれぞれの発生からエラーのそれぞれについての最初のエラー解消操作が行われるまでの間の待ち時間の合計を算出する。表示装置5は、管理装置3が算出した待ち時間の合計を表示する。 As described above, in the remote operation system 1 in the present embodiment, the error information generated in any of the plurality of working devices 2 is transmitted to any of the plurality of remote monitoring devices 4, and the error information is transmitted. It is configured so that the error generated in the work device 2 can be remotely resolved by transmitting the information of the operation for resolving the error (error resolution operation) from the remote monitoring device 4 to the work device 2 in which the error occurred. There is. Then, for all the errors that have occurred in the plurality of working devices 2 within a certain period, the management device 3 is between the occurrence of each of the errors and the first error resolution operation for each of the errors. Calculate the total waiting time. The display device 5 displays the total waiting time calculated by the management device 3.
 表示装置5に表示される復旧情報データ(図6A)の中の「待ち総時間」は、エラーの解消作業を行った作業者(識別番号「1」、「2」、「3」の3人の作業者)が、作業ライン2Lを構成する複数の作業装置2に発生したエラーに対して、期待された成果(エラーの解消)を発揮したかどうかを測るパラメータとして捉えることができる。具体的には、ある期間内についての待ち時間の合計の値が予め定められた基準時間よりも小さかった場合には、その期間内のエラー解消作業にあたった作業者は、人数的および能力的に十分であったと判断することができる。 The "total waiting time" in the recovery information data (FIG. 6A) displayed on the display device 5 is the three workers (identification numbers "1", "2", "3") who performed the error resolution work. The worker) can be regarded as a parameter for measuring whether or not the expected result (elimination of the error) is achieved with respect to the error generated in the plurality of work devices 2 constituting the work line 2L. Specifically, if the total value of the waiting time within a certain period is smaller than the predetermined reference time, the number of workers and the ability of the workers who performed the error resolution work within that period are sufficient. It can be judged that it was sufficient.
 一方、「待ち総時間」の値が基準時間よりも大きかった場合には、エラー解消作業にあたった作業者は、人数的もしくは能力的に不十分であったと判断することができる。例えば図5の例において、基準時間が1時間30分に設定されていたとする。このとき、実際の待ち時間の合計はそれよりも短い1時間15分0秒であったことから、3人の作業者は、人数的および能力的に十分であり、リモート監視装置4における現状の人員配置体制を維持してよいと判断することができる。 On the other hand, if the value of "total waiting time" is larger than the reference time, it can be determined that the number of workers or the ability of the workers involved in the error resolution work is insufficient. For example, in the example of FIG. 5, it is assumed that the reference time is set to 1 hour and 30 minutes. At this time, since the total actual waiting time was 1 hour, 15 minutes, and 0 seconds, which was shorter than that, the three workers were sufficient in terms of number and ability, and the current state of the remote monitoring device 4 was sufficient. It can be judged that the staffing system may be maintained.
 一方、基準時間が1時間に設定されていたとすると、実際の待ち時間の合計はそれよりも長かったことになる。このため、3人の作業者は、人数的もしくは能力的に不十分であり、現状のリモート監視装置4に対する人員配置体制を変える必要があると判断することができる。このため、作業装置2で発生したエラーの解消のためのリモート操作を行う作業者の配置又は人選等を行う管理者は、自身の経験又は勘等に頼ることなく(すなわち客観的に)、作業者の配置又は人選等を的確に行うことが可能である。 On the other hand, if the reference time was set to 1 hour, the total actual waiting time would be longer than that. Therefore, it can be determined that the three workers are insufficient in number or capacity, and it is necessary to change the staffing system for the current remote monitoring device 4. Therefore, the manager who assigns or selects a worker who performs a remote operation for resolving an error generated in the work device 2 works without relying on his / her own experience or intuition (that is, objectively). It is possible to accurately assign and select persons.
 図6Bは、本開示の一実施の形態におけるリモート操作システムの表示装置が表示する作業者別復旧情報データの一例を示す図である。演算部32は、図5のマスターデータに基づいて、設定した期間内に発生した全てのエラーをもとに、図6Bに示す「作業者別復旧情報データ」を作成する。図6Bに示す作業者別復旧情報データは、担当の作業者「1」,「2」,「3」ごとに、「総エラー数」、「復旧エラー数」、「非復旧エラー数」、「操作総時間」および「操作時間/件数」の各項目の内容を表示する。 FIG. 6B is a diagram showing an example of worker-specific recovery information data displayed by the display device of the remote operation system according to the embodiment of the present disclosure. Based on the master data of FIG. 5, the calculation unit 32 creates the "recovery information data for each worker" shown in FIG. 6B based on all the errors that occurred within the set period. The recovery information data for each worker shown in FIG. 6B includes "total number of errors", "number of recovery errors", "number of non-recovery errors", and "number of non-recovery errors" for each worker "1", "2", and "3" in charge. Display the contents of each item of "Total operation time" and "Operation time / number of cases".
 ここで、図6Bの作者別復旧情報データにおける「総エラー数」は、図5のマスターデータに基づいて、各作業者が行ったエラー解消処理の合計数を作業者ごとに算出したものである。「復旧エラー数」は、図5のマスターデータに基づいて、復旧できたエラーの合計数を作業者ごとに算出したものである。「非復旧エラー数」は、図5のマスターデータに基づいて、復旧できなかったエラーの合計数を作業者ごとに算出したものである。「操作総時間」は、図5のマスターデータに基づいて、「装着時間」の総時間を作業者ごとに算出したものである。「操作時間/件数」は、図5のマスターデータに基づいて、エラーの1件当たりの操作時間、すなわち、ひとつのエラーを解消するのに要した平均の操作時間を作業者ごとに算出したものである。 Here, the "total number of errors" in the author-specific recovery information data of FIG. 6B is a calculation of the total number of error resolution processes performed by each worker for each worker based on the master data of FIG. .. The "recovery error number" is calculated by calculating the total number of recovery errors for each worker based on the master data of FIG. The “number of non-recovery errors” is calculated by calculating the total number of errors that could not be recovered for each worker based on the master data of FIG. The "total operation time" is calculated by calculating the total time of the "wearing time" for each worker based on the master data of FIG. "Operation time / number of cases" is calculated based on the master data of FIG. 5, the operation time per error, that is, the average operation time required to eliminate one error for each worker. Is.
 このように、本実施の形態におけるリモート操作システム1では、管理装置3は、設定した期間内に複数のリモート監視装置4のいずれかでエラー解消操作を行った各作業者について、ひとつのエラーを解消するのに要した平均の操作時間を算出する。そして、表示装置5は、管理装置3が算出した各作業者についての平均の操作時間を表示する。 As described above, in the remote operation system 1 of the present embodiment, the management device 3 causes one error for each worker who has performed an error resolution operation by any of the plurality of remote monitoring devices 4 within the set period. Calculate the average operation time required to resolve. Then, the display device 5 displays the average operation time for each worker calculated by the management device 3.
 管理者は、表示操作部5Sから所定の操作を行うことによって、表示装置5に図6Bに示す「作業者別復旧情報データ」を表示させることができる。このため、管理者は、図6Bに示す「作業者別復旧情報データ」を参照することにより、当該期間においてエラー解消操作にあたった作業者それぞれの作業能力を知ることができ、各作業者の作業に対する評価を下すことができる。 The administrator can display the "recovery information data for each worker" shown in FIG. 6B on the display device 5 by performing a predetermined operation from the display operation unit 5S. Therefore, by referring to the "recovery information data for each worker" shown in FIG. 6B, the administrator can know the work ability of each worker who performed the error resolution operation during the period, and each worker can know the work ability of each worker. You can evaluate the work.
 図6Cは、本開示の一実施の形態におけるリモート操作システムの表示装置が表示する作業者のエラー種別ごと復旧情報データの一例を示す図である。演算部32は、図5のマスターデータに基づいて、設定した期間内に発生した全てのエラーをもとに、図6Cに示す「作業者のエラー種別ごと復旧情報データ」を作成する。図6Cに示す作業者のエラー種別ごと復旧情報データは、図6Bの「作業者別復旧情報データ」における各作業者についての平均の操作時間を、更に、エラーの種別に応じて細分化して算出したものである。 FIG. 6C is a diagram showing an example of recovery information data for each error type of the worker displayed by the display device of the remote operation system according to the embodiment of the present disclosure. Based on the master data of FIG. 5, the calculation unit 32 creates "recovery information data for each error type of the worker" shown in FIG. 6C based on all the errors generated within the set period. The recovery information data for each error type of the worker shown in FIG. 6C is calculated by further subdividing the average operation time for each worker in the “recovery information data for each worker” of FIG. 6B according to the error type. It was done.
 このように、本実施の形態におけるリモート操作システム1では、管理装置3は、設定した期間内に複数のリモート監視装置4のいずれかでエラー解消操作を行った各作業者について、ひとつのエラーを解消するのに要した平均の操作時間を、エラー種別ごとに(エラーの種別に応じて細分化して)算出する。そして、表示装置5は、管理装置3がエラーの種別応じて細分化して算出した各作業者についての平均の操作時間を表示する。 As described above, in the remote operation system 1 of the present embodiment, the management device 3 causes one error for each worker who has performed an error resolution operation by any of the plurality of remote monitoring devices 4 within the set period. The average operation time required to resolve the error is calculated for each error type (subdivided according to the error type). Then, the display device 5 displays the average operation time for each worker calculated by the management device 3 subdivided according to the type of error.
 管理者は、表示操作部5Sから所定の操作を行うことによって、表示装置5に図6Cに示す「作業者のエラー種別ごと復旧情報データ」を表示させることができる。このため、管理者は、図6Cに示す「作業者のエラー種別ごと復旧情報データ」を参照することにより、当該期間においてエラー解消操作にあたった作業者それぞれの、エラー種別ごとの作業能力を知ることができ、各作業者のエラー種別ごとの得手不得手等を含めた作業に対する評価を下すことができる。 The administrator can display the "recovery information data for each error type of the worker" shown in FIG. 6C on the display device 5 by performing a predetermined operation from the display operation unit 5S. Therefore, by referring to the "recovery information data for each error type of the worker" shown in FIG. 6C, the administrator knows the work ability of each worker who performed the error resolution operation during the relevant period for each error type. It is possible to evaluate the work including the strengths and weaknesses of each worker for each error type.
 以上説明したように、本実施の形態におけるリモート操作システム1では、複数の作業装置2のいずれかに発生したエラーの情報を複数のリモート監視装置4のいずれかに送信し、エラーの情報の送信を受けたリモート監視装置4からエラーを解消するための操作(エラー解消操作)の情報をエラーが発生した作業装置2に送信することによって複数の作業装置2のいずれかに発生したエラーをリモートで解消できるように構成されている。そして、管理装置3は、或る期間内に複数の作業装置2に発生した全てのエラーについて、全てのエラーのそれぞれの発生から全てのエラーのそれぞれを解消するための最初の操作が行われるまでの間の待ち時間の合計を算出する。表示装置5は、管理装置3が算出した待ち時間の合計を表示する。このため、作業装置2に発生したエラーの解消のためのリモート操作を行う作業者の配置又は人選等を行う管理者は、自身の経験又は勘等に頼ることなく(すなわち客観的に)、作業者の配置又は人選等を的確に行うことができ、ひいては作業ラインの生産性を向上させることが可能である。 As described above, in the remote operation system 1 according to the present embodiment, the error information generated in any of the plurality of working devices 2 is transmitted to any of the plurality of remote monitoring devices 4, and the error information is transmitted. By transmitting the information of the operation for resolving the error (error resolving operation) from the remote monitoring device 4 to the working device 2 in which the error occurred, the error generated in any of the plurality of working devices 2 can be remotely transmitted. It is configured to be resolved. Then, the management device 3 has, for all the errors generated in the plurality of working devices 2 within a certain period, from the occurrence of each of the errors until the first operation for eliminating each of the errors is performed. Calculate the total waiting time between. The display device 5 displays the total waiting time calculated by the management device 3. Therefore, the manager who assigns or selects the worker who performs the remote operation for resolving the error generated in the work device 2 works without relying on his / her own experience or intuition (that is, objectively). It is possible to accurately assign and select persons, and eventually to improve the productivity of the work line.
 これまで本開示の実施の形態について説明してきたが、本開示は前述したものに限定されず、種々の変形等が可能である。例えば、前述の実施の形態では、複数の作業装置2は作業ライン2Lを構成していたが、本開示が適用される対象となる作業装置2は、必ずしも作業ライン2Lを構成する必要はない。また、前述の実施の形態では、作業装置2が作業対象である基板KBに部品BHを装着する部品実装装置であったが、本開示が適用される作業装置2は部品実装装置に限られない。 Although the embodiments of the present disclosure have been described so far, the present disclosure is not limited to the above-mentioned ones, and various modifications and the like are possible. For example, in the above-described embodiment, the plurality of work devices 2 constitute the work line 2L, but the work device 2 to which the present disclosure is applied does not necessarily have to form the work line 2L. Further, in the above-described embodiment, the working device 2 is a component mounting device for mounting the component BH on the substrate KB on which the work target is to be worked, but the working device 2 to which the present disclosure is applied is not limited to the component mounting device. ..
 作業装置で発生したエラーの解消のためのリモート操作を行う作業者の配置又は人選等を、管理者の経験又は勘等に頼らずに的確に行うことができるリモート操作システムを提供する。 Provided is a remote operation system that can accurately perform the placement or selection of workers who perform remote operations for solving errors that occur in the work equipment without relying on the experience or intuition of the administrator.
 1 リモート操作システム
 2 作業装置
 3 管理装置
 4 リモート監視装置
 5 表示装置
1 Remote operation system 2 Work equipment 3 Management equipment 4 Remote monitoring equipment 5 Display equipment

Claims (4)

  1.  複数の作業装置のいずれかに発生したエラーの情報を複数のリモート監視装置のいずれかに送信し、前記エラーの情報の送信を受けたリモート監視装置から前記エラーを解消するための操作の情報を前記エラーが発生した作業装置に送信することによって前記複数の作業装置のいずれかに発生した前記エラーをリモートで解消できるように構成されたリモート操作システムであって、
     或る期間内に前記複数の作業装置に発生した全てのエラーについて、前記全てのエラーのそれぞれの発生から前記全てのエラーのそれぞれを解消するための最初の操作が行われるまでの間の待ち時間の合計を算出する管理装置を備えた、リモート操作システム。
    Information on an error that has occurred in one of a plurality of working devices is transmitted to one of a plurality of remote monitoring devices, and information on an operation for resolving the error is transmitted from the remote monitoring device that has received the transmission of the error information. It is a remote operation system configured so that the error generated in any of the plurality of working devices can be remotely resolved by transmitting the error to the working device in which the error has occurred.
    For all the errors that occurred in the plurality of working devices within a certain period, the waiting time from the occurrence of each of the all errors to the first operation for eliminating each of the all errors is performed. A remote control system with a management device that calculates the total of.
  2.  前記管理装置が算出した前記待ち時間の合計を表示する表示装置をさらに備えた、請求項1に記載のリモート操作システム。 The remote operation system according to claim 1, further comprising a display device for displaying the total waiting time calculated by the management device.
  3.  前記管理装置は、前記期間内に前記複数のリモート監視装置のいずれかで前記エラーを解消するための操作を行った各作業者について、ひとつの前記エラーを解消するのに要した平均の操作時間を算出し、
     前記表示装置は、前記管理装置が算出した各作業者についての前記平均の操作時間を表示する、請求項2に記載のリモート操作システム。
    The management device has an average operation time required to eliminate one error for each worker who has performed an operation for eliminating the error in any of the plurality of remote monitoring devices within the period. Is calculated,
    The remote operation system according to claim 2, wherein the display device displays the average operation time for each worker calculated by the management device.
  4.  前記管理装置は、各作業者についての前記平均の操作時間を前記エラーの種別に応じて細分化して算出し、
     前記表示装置は、前記管理装置が前記エラーの種別に応じて細分化して算出した各作業者についての前記平均の操作時間を表示する、請求項3に記載のリモート操作システム。
    The management device subdivides and calculates the average operation time for each worker according to the type of error.
    The remote operation system according to claim 3, wherein the display device displays the average operation time for each worker calculated by the management device subdivided according to the type of the error.
PCT/JP2021/020263 2020-09-03 2021-05-27 Remote operation system WO2022049843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546894A JPWO2022049843A1 (en) 2020-09-03 2021-05-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-147998 2020-09-03
JP2020147998 2020-09-03

Publications (1)

Publication Number Publication Date
WO2022049843A1 true WO2022049843A1 (en) 2022-03-10

Family

ID=80491012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020263 WO2022049843A1 (en) 2020-09-03 2021-05-27 Remote operation system

Country Status (2)

Country Link
JP (1) JPWO2022049843A1 (en)
WO (1) WO2022049843A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199741A (en) * 2016-04-26 2017-11-02 パナソニックIpマネジメント株式会社 Management apparatus and management method
JP2018200654A (en) * 2017-05-30 2018-12-20 パナソニックIpマネジメント株式会社 Manufacturing apparatus monitoring system and manufacturing apparatus
JP2019008608A (en) * 2017-06-26 2019-01-17 富士通株式会社 Production plan generation program, production plan generation method, and production plan generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199741A (en) * 2016-04-26 2017-11-02 パナソニックIpマネジメント株式会社 Management apparatus and management method
JP2018200654A (en) * 2017-05-30 2018-12-20 パナソニックIpマネジメント株式会社 Manufacturing apparatus monitoring system and manufacturing apparatus
JP2019008608A (en) * 2017-06-26 2019-01-17 富士通株式会社 Production plan generation program, production plan generation method, and production plan generation system

Also Published As

Publication number Publication date
JPWO2022049843A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
US11774952B2 (en) Management apparatus and management method
US10684615B2 (en) Production activity support system
US10162323B2 (en) Component mounting system and component mounting method
JP5960644B2 (en) Monitoring system
JP6812660B2 (en) Production line management equipment
US7818086B2 (en) Component mounter, warning notification apparatus, and warning notification method
JP6259994B2 (en) Component mounting system and component mounting method
JP2015142084A (en) Quality control device, quality control method
JP2020160638A (en) Production management device and production plan creation method
US20190364705A1 (en) Management device, mounting-related device, and mounting system
JPWO2016207948A1 (en) Guide device and guide system
JPWO2004086841A1 (en) Maintenance work support system for component mounting system and component mounting system including the same
WO2022049843A1 (en) Remote operation system
JP2019003460A (en) Facility element maintenance management system and facility element maintenance management method
JP2019070938A (en) Manufacturing system and manufacturing method
US20220174851A1 (en) Production data creation device and production data creation method
JP7289037B2 (en) remote control system
CN107072142B (en) Component mounting system and component mounting method
CN107072135B (en) Component mounting system and component mounting method
CN117581171A (en) Remote operation system
JP7462154B2 (en) Remote Operation System
JP7394293B2 (en) Nozzle maintenance analysis system and nozzle maintenance analysis method
KR20170069047A (en) Production management system and method for SMT apparatus
JP7122508B2 (en) Equipment element maintenance analysis system and equipment element maintenance analysis method
JP4212328B2 (en) Anti-Board Work Machine, Anti-Board Work Machine Monitoring System, and Anti-Board Work Machine Monitoring Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863902

Country of ref document: EP

Kind code of ref document: A1