WO2022049809A1 - Method for producing regenerated thermoplastic resin composition, and regenerated thermoplastic resin composition - Google Patents

Method for producing regenerated thermoplastic resin composition, and regenerated thermoplastic resin composition Download PDF

Info

Publication number
WO2022049809A1
WO2022049809A1 PCT/JP2021/009563 JP2021009563W WO2022049809A1 WO 2022049809 A1 WO2022049809 A1 WO 2022049809A1 JP 2021009563 W JP2021009563 W JP 2021009563W WO 2022049809 A1 WO2022049809 A1 WO 2022049809A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
weight
thermoplastic resin
parts
added
Prior art date
Application number
PCT/JP2021/009563
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 亀井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022546880A priority Critical patent/JP7352218B2/en
Publication of WO2022049809A1 publication Critical patent/WO2022049809A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5455Silicon-containing compounds containing nitrogen containing at least one group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present disclosure relates to a method for producing a regenerated thermoplastic resin composition and a regenerated thermoplastic resin composition.
  • thermoplastic resins such as styrene resin or olefin resin are generally used as lightweight, high-strength, mass-produceable materials for housings and parts. Has been done. When these products are disposed of after use, most of them have been disposed of by landfill or incinerator without being remanufactured, except for the parts that can be disassembled and recovered by hand.
  • the thermoplastic resin of the recovered product is melt-kneaded and reused as a resin molded product. Material recycling is being carried out.
  • the recycled thermoplastic resin is used, for example, in televisions, air conditioners, refrigerators, vacuum cleaners, and the like.
  • thermoplastic resin recovered from home appliances, etc. is a mixture of two or more types of thermoplastic resin. Therefore, each resin type is separated through various sorting processes, and is reused after melt-kneading.
  • the thermoplastic resin crushed into mixed flakes is, for example, an olefin resin having a specific gravity of 1.0 or less and a specific gravity larger than 1.0 by utilizing the difference in specific gravity, 1.1. It is separated into smaller polystyrene and ABS resin (Acrylonirile Butadiene Copolymer Synthetic Resin), and a weight specific gravity resin having a specific gravity of 1.1 or more. Then, the mixed flakes of polystyrene and ABS resin are separated by an electrostatic sorting device that utilizes the charge when the mixed flakes are rubbed together.
  • thermoplastic resin when processing a thermoplastic resin, it is necessary to plasticize the thermoplastic resin by heating from the outside, and the heating temperature is generally as high as 200 ° C. or higher.
  • a lubricant is added to the thermoplastic resin in order to increase the fluidity of the thermoplastic resin.
  • the thermoplastic resin is a styrene resin or an olefin resin, for example, a fatty acid and a fatty acid metal salt are added as the lubricant.
  • the lubricant enhances the productivity of the thermoplastic resin, but in the thermoplastic resin to which a large amount of the lubricant is added, the lubricant bleeds out, which causes the appearance of the resin molded product to be spoiled.
  • thermoplastic resin composition which is a thermoplastic resin recovered from the product after being used for home appliances at least once and separated for each resin type, are oil-absorbent inorganic.
  • a regenerated thermoplastic resin composition that suppresses gas generation during resin molding and suppresses the adhesion of tar to a mold by adsorbing it on a compound is disclosed (see, for example, Patent Document 1).
  • the regenerated thermoplastic resin composition refers to a thermoplastic resin composition produced from a used thermoplastic resin composition.
  • thermoplastic resin by suppressing the content of the lubricant added in the manufacturing process of the resin molded product, it is possible to suppress the bleed-out of the fatty acid as the lubricant, but the used heat. In the thermoplastic resin composition, it was difficult to control the content of the lubricant already contained.
  • the present disclosure has been made to solve the above-mentioned problems, and provides a method for producing a regenerated thermoplastic resin composition and a regenerated thermoplastic resin composition capable of suppressing bleed-out of fatty acids and improving the appearance design.
  • the purpose is.
  • 0.4 parts by weight or more and 1.8 parts by weight or less of a silane coupling agent having an epoxy group is added to 100 parts by weight of the used thermoplastic resin composition.
  • 0.4 parts by weight or more and 1.8 parts by weight or less of the silane coupling agent having an amino group is added to 100 parts by weight of the used thermoplastic resin composition.
  • 0.4 parts by weight or more and 1.8 parts by weight or less of the silane coupling agent having an amino group 1.0 part by weight or more and 1.8 parts by weight or less of the silane coupling agent having an isocyanate group, and 0 parts of the epoxy resin. It has a mixing step of mixing at least one of 2 parts by weight or more and 5.0 parts by weight or less.
  • thermoplastic resin composition according to the present disclosure has the following chemical formulas 1, 2 and 3
  • thermoplastic resin composition comprising at least one of the above.
  • the regenerated thermoplastic resin composition according to the present disclosure has the following chemical formulas 5, 6 and 7.
  • thermoplastic resin composition comprising at least one of the above.
  • FIG. 1 The figure which shows the addition amount of each compound which concerns on Embodiment 1.
  • Embodiment 1 The inventors have diligently studied to obtain a regenerated thermoplastic resin composition capable of improving the appearance design by reacting the used thermoplastic resin composition with a compound having an epoxy group, an amino group, or an isocyanate group. I found that I could do it. That is, the fatty acid contained in the used thermoplastic resin composition is reacted with the epoxy group, amino group, or isocyanate group contained in the added compound to make it a substance different from the fatty acid, thereby suppressing the bleed-out of the fatty acid. I found that I could do it.
  • thermoplastic resin composition having a fatty acid content of 0.23% by weight
  • a mixture of bisphenol A type epoxy resin trimer (2 to 14 weights) which is a kind of epoxy resin.
  • reaction product of the epoxy resin and the fatty acid was extracted from the regenerated thermoplastic resin composition (described later), and qualitative analysis was performed by MALDI-MS.
  • reaction products epoxy resin trimer + palmitic acid, epoxy resin trimer + stearic acid, epoxy resin trimer + palmitic acid + palmitic acid, epoxy resin trimer + palmitic acid + stearic acid, And it was found that an epoxy resin trimer + stearic acid + stearic acid was contained. Assuming that all the fatty acids in the used thermoplastic resin composition ideally react with the epoxy resin, the reaction product corresponding to the fatty acid content of 0.23% by weight contained in the used thermoplastic resin composition is produced. It will occur.
  • the "recycled thermoplastic resin composition” refers to a thermoplastic resin composition produced from a used thermoplastic resin composition. Further, a thermoplastic resin composition that has not yet been used in home appliances and the like is referred to as an “unused thermoplastic resin composition”.
  • thermoplastic resin composition When the thermoplastic resin composition is exposed to a hot water environment containing metal ions, the fatty acids contained in the thermoplastic resin composition are released from the thermoplastic resin composition into hot water. Then, since the metal ions in the hot water and the released fatty acid form a fatty acid metal salt, the solubility of the fatty acid in the hot water decreases, and the fatty acid precipitates on the surface of the resin molded product. Since the fatty acid metal salt deposited on the surface of the resin molded product can be visually recognized as a white powder, the appearance design of the resin molded product is impaired.
  • the fatty acids dissolve in the hot water, so that the appearance design of the resin molded product is not impaired. .. Therefore, by passing tap water through a filter or the like that reduces the ion concentration to reduce the metal ions in the water, it is possible to solve the problem of impairing the appearance and design of the resin molded product.
  • the metal ion concentration in water increases due to the life of the filter or the like, the appearance design of the resin molded product is impaired, which is insufficient as a countermeasure against fatty acid bleed-out.
  • the inventors added stearic acid to the unused thermoplastic resin composition to change the fatty acid content in the unused thermoplastic resin composition, and when exposed to hot water containing metal ions at 75 ° C. or higher. , It was verified whether or not the fatty acid bleeds out. As a result, it was found that when the content of fatty acid contained in the unused thermoplastic resin composition was 0.2% by weight or more, white powder was deposited on the surface of the unused thermoplastic resin composition. That is, it was found that the fatty acid bleeds out when the content of the fatty acid contained in the thermoplastic resin composition is 0.2% by weight or more.
  • the fatty acid content in the thermoplastic resin composition is the total value of the contents of palmitic acid and stearic acid, and is obtained by quantitative analysis by GC-MS after extraction from the thermoplastic resin composition.
  • the regenerated thermoplastic resin composition was exposed to hot water (tap water) at 100 ° C. for 8 hours, but instead of being exposed to hot water at 100 ° C. for 8 hours, 75 It has been confirmed that the same result can be obtained when the regenerated thermoplastic resin composition is exposed to hot water (tap water) at ° C or higher for 20 minutes or longer. It has also been confirmed that the same result can be obtained when the regenerated thermoplastic resin composition is exposed not only to the hot water in the closed container but also to the hot water in running water.
  • the thermoplastic resin composition is, for example, a polyolefin-based (polypropylene, polyethylene).
  • examples of the polyolefin-based resin constituting the polyolefin-based resin composition include polyethylene, homopolypropylene, a propylene-ethylene block copolymer, a propylene-butene block copolymer, a propylene- ⁇ -olefin block copolymer, and a propylene-ethylene random compound.
  • Examples thereof include a polymer, a propylene-butene random copolymer, a propylene- ⁇ -olefin random copolymer, a propylene- ⁇ -olefin graft copolymer and the like.
  • thermoplastic resin composition includes, for example, polystyrene-based HIPS (High Impact Polystylene) and GPPS (General Purpose Polystyrene), acrylonitrile-based ABS and AS (Acrylonitrile Style style copolymer), polycarbonate-based polycarbonate, and polycarbonate-based polycarbonate. , Or an acrylic acid-based resin composition or the like.
  • the fatty acid and its derivative are fatty acids such as, for example, lauryl acid, myristic acid, palmitic acid, stearic acid, oleic acid, or palmitoleic acid. Further, the fatty acid and its derivative include higher alcohols such as cetyl alcohol, stearyl alcohol, and oleyl alcohol, fatty acid amides such as stearate amides, oleic acid amides, erucic acid amides, or hexadecane amides, squalanes, and bisphenol A. Point to. In the present disclosure, fatty acids and their derivatives in the used thermoplastic resin composition were qualitatively analyzed by pyrolysis GC-MS.
  • the coloring pigment is added to the used thermoplastic resin composition at the time of manufacturing the regenerated thermoplastic resin composition in order to improve the appearance of the resin molded product by toning.
  • the used thermoplastic resin composition when the used thermoplastic resin composition is mixed (kneaded) with a compound having an epoxy group, an amino group, or an isocyanate group.
  • non-melting foreign matter may cause a poor appearance of the regenerated thermoplastic resin composition. Therefore, by adding a coloring pigment to the used thermoplastic resin composition, foreign substances in the produced regenerated thermoplastic resin composition can be concealed.
  • an inorganic pigment may be used.
  • the inorganic pigment is, for example, titanium oxide, titanium yellow, carbon black, ultramarine, or the like.
  • a coloring pigment containing a dispersant may be used.
  • the colored pigment can improve the dispersibility and can further bring out the performance and properties of the colored pigment.
  • the dispersant is, for example, magnesium stearate, ethylene bisstearate amide, polyethylene wax, or the like.
  • the inventors produce a regenerated thermoplastic resin composition using a polypropylene resin as a used thermoplastic resin composition, and an inorganic pigment containing 17% by weight of magnesium stearate as a dispersant in the inorganic pigment.
  • the fatty acid content of the inorganic pigment was calculated when 17% by weight of ethylene bisstearic acid amide was used as the dispersant in the inorganic pigment.
  • the fatty acid content of the inorganic pigment was 8.2% by weight, whereas 17% by weight of ethylene bis was used as a dispersant.
  • the fatty acid content of the inorganic pigment was 0.53% by weight.
  • the fatty acid content of the inorganic pigment is lower when ethylene bisstearate amide is used as the dispersant for the coloring pigment, but magnesium stearate as the dispersant.
  • the dispersion of the inorganic pigment and the inorganic filler in the used thermoplastic resin composition is improved by using the above method as compared with the case of using ethylene bisstearic acid amide.
  • the fatty acid content of the produced regenerated thermoplastic resin composition is the total value of the contents of palmitic acid and stearic acid, and after extracting palmitic acid and stearic acid from the regenerated thermoplastic resin composition, GC- It was obtained by quantitative analysis by MS.
  • the poor appearance is not due to the bleed-out of magnesium stearate, but the used thermoplasticity. It is considered that this is because the fatty acids in the resin and the coloring pigment bleed out in a hot water environment.
  • a compound having an epoxy group, an amino group, or an isocyanate group to be added to the used thermoplastic resin composition will be exemplified.
  • the compound having an epoxy group, an amino group, or an isocyanate group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycyridoxypropylmethyldimethoxysilane, and 3-glyciridoxypropyltrimethoxysilane.
  • a silane coupling agent such as trimethoxysilane or 3-isoxapropyltriethoxysilane is preferred.
  • it may be an epoxy resin such as a bisphenol A type epoxy resin or a novolak type epoxy resin.
  • it may be a diisocyanate such as naphthalene-1,5-diisocyanate, 4,4'-diisocyanato-3,3'-dimethylbiphenyl, or 1,4-phenylenediisocyanate, or a polyamine such as spermine, spermidine, or putrescine. ..
  • these compounds may be added alone to the used thermoplastic resin composition, or may be mixed in a plurality and added to the used thermoplastic resin composition.
  • thermoplastic resin composition a compound having an epoxy group, an amino group, or an isocyanate group
  • examples of the mixing method include a method using a physical blend such as a melt-kneading method, a solvent cast blend, a latex blend, or a polymer complex, and a melt-kneading method is particularly preferable.
  • thermoplastic resin composition with a compound having an epoxy group, an amino group, or an isocyanate group
  • a tumbler, a henschel mixer, a rotary mixer, a super mixer, a ribbon tumbler, a V blender, or the like can be used as an apparatus for mixing the used thermoplastic resin composition with a compound having an epoxy group, an amino group, or an isocyanate group.
  • a kneading device Using such a kneading device, each material is uniformly dispersed, melt-kneaded, and then the mixed used thermoplastic resin composition and a compound having an epoxy group, an amino group, or an isocyanate group are pelletized. Is preferable.
  • a single-screw, multi-screw or tandem extruder is generally used for pelletization, but in addition to these extruders, a Banbury mixer, a roller, a co-kneader, a blast mill, a lavender brout graph, etc. may be used. It can also be used. Then, the mixed used thermoplastic resin composition and the compound having an epoxy group, an amino group, or an isocyanate group may be pelletized by operating these devices in batches or continuously.
  • each material may be mixed or, without melt-kneading, a resin pellet, a compound having an epoxy group, an amino group, or an isocyanate group, an antioxidant, a metal inactivating agent, and coloring.
  • a so-called mold blend may be used in which the pigment and other additives are mixed, and the mixed materials are used as the molding resin and melt-kneaded in the heating cylinder of the molding machine.
  • the method for molding the resin molded product of the regenerated thermoplastic resin composition according to the present disclosure is not particularly limited and can be molded by a known molding method, but for example, injection molding may be used.
  • thermoplastic resin composition was derived from large household appliances recovered from the market, such as TVs, air conditioners, refrigerators, washing machines, etc., and the fatty acid content in the used thermoplastic resin composition is large household appliances. It may fluctuate slightly depending on the collection location, season, base material variation, etc. at the time of product collection.
  • a part of the ISO dumbbell test piece 35 mm ⁇ 10 mm ⁇ thickness 4 mm
  • a resin molded product of a regenerated thermoplastic resin composition (hereinafter, simply referred to as a regenerated thermoplastic resin composition).
  • a regenerated thermoplastic resin composition (March be noted) was exposed for 8 hours in 50 mL of hot water (tap water) at 100 ° C. in a pressure resistant container (capacity 80 mL) coated with Teflon® and evaluated.
  • Na + is 19 mg / L
  • Ca 2+ is 11 mg / L
  • K + is 2.7 mg / L
  • Mg 2+ is 2.3 mg / L as metal ions. It was.
  • the FT-IR / ATR method was performed on the regenerated thermoplastic resin composition exposed to hot water at 100 ° C. for 8 hours.
  • the peaks of C O stretching vibration of the fatty acid metal salt with respect to the absorbance of 2918 cm -1 , which is one of the peaks of CH stretching vibration of polypropylene.
  • the intensity ratio of the absorbance of one peak of 1541 cm -1 was 0.1 or less, it was regarded as acceptable, and it was determined that the fatty acid was not bleeding out. That is, it was determined that the obtained regenerated thermoplastic resin composition had excellent appearance design.
  • the FT-IR evaluation and the appearance evaluation evaluation of whether or not the bleed-out was visually observed) were in good agreement. In the table below, pass is indicated by A and failure (fatty acid is bleeding out) is indicated by B.
  • an ISO dumbbell test piece A type is produced by an injection molding machine, and the tensile elongation at break by a tensile test is measured to measure the used thermoplastic resin composition. And the tensile elongation at break with the regenerated thermoplastic resin composition not mixed with additives other than the inorganic filler.
  • the tensile test was performed by a method according to JIS K7161. The tensile test was carried out at a test speed of 50 mm / min using a universal testing machine, and the tensile elongation at break was determined. With respect to the obtained tensile elongation at break, the tensile elongation at break retention rate (%) with respect to the tensile elongation at break of the recycled thermoplastic resin composition not mixed with the used thermoplastic resin composition and additives other than the inorganic filler was determined.
  • a criterion for determining the physical properties of the regenerated thermoplastic resin composition a case where the tensile elongation at break retention rate is reduced to less than 75% is regarded as a failure (B in the table), and a case of 75% or more is passed (A in the table). And said.
  • Examples 1 to 8 a silane coupling agent (3-glycyridoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.), N-2-) was used with respect to the used thermoplastic resin composition. (Aminoethyl) -3-aminopropyltrimethoxysilane (KBM-603, manufactured by Shin-Etsu Chemical Co., Ltd.) or 3-Ixoxide propyltriethoxysilane (KBE-9007N, manufactured by Shin-Etsu Chemical Co., Ltd.)) is added. The mixture was kneaded in a kneader at 210 ° C.
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances.
  • the silane coupling agent is usually a compound that improves physical properties by covalently binding an inorganic filler and a thermoplastic resin.
  • Examples 1 and 1.0 added 0.4 parts by weight of 3-glycyridoxypropyltrimethoxysilane, which is a silane coupling agent having an epoxy group, to 100 parts by weight of the used thermoplastic resin composition.
  • Example 2 was added in parts by weight, and Example 3 was added in 1.8 parts by weight.
  • Example 4 was added to Example 5, and 1.8 parts by weight were added to Example 6.
  • Examples 7 and 1.8 added 1.0 part by weight of 3-isocyanatepropyltriethoxysilane, which is a silane coupling agent having an isocyanate group, to 100 parts by weight of the used thermoplastic resin composition.
  • Example 8 was prepared by adding parts by weight.
  • Table 1 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 1 to 8 were good.
  • Example 9 to 16 a silane coupling agent (3-glycyridoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.), N-2-) was used with respect to the used thermoplastic resin composition. (Aminoethyl) -3-aminopropyltrimethoxysilane (KBM-603, manufactured by Shin-Etsu Chemical Co., Ltd.) or 3-Ixoxide propyltriethoxysilane (KBE-9007N, manufactured by Shin-Etsu Chemical Co., Ltd.)) is added. The mixture was kneaded in a kneader at 210 ° C.
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • the difference from Examples 1 to 8 is that the used thermoplastic resin composition contains an inorganic filler.
  • 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
  • the product to which a weight was added was designated as Example 10, and the product to which a weight of 1.8 parts was added was designated as Example 11.
  • 0.4 parts by weight of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, which is a silane coupling agent having an amino group was added to 100 parts by weight of the used thermoplastic resin composition.
  • Those added by 1.0 part by weight were designated as Example 13, and those added by 1.8 parts by weight were designated as Example 14.
  • Example 16 1.0 part by weight of 3-isocyanatepropyltriethoxysilane, which is a silane coupling agent having an isocyanate group, is added to 100 parts by weight of the used thermoplastic resin composition in Examples 15 and 1.8 by weight.
  • the partially added product was designated as Example 16.
  • Table 2 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin composition obtained under the conditions of Examples 9 to 16 were good.
  • thermoplastic resin composition contains an inorganic filler
  • the regenerated thermoplastic resin composition obtained in Examples 9 to 16 has a good appearance and an excellent appearance design. It turned out to be a composition.
  • Example 17 to 24 an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation) or bisphenol A novolak type epoxy is used with respect to the used thermoplastic resin composition.
  • a resin (157S70, manufactured by Mitsubishi Chemical Corporation) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C.
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • Example 17 to 24 the difference from Examples 1 to 8 is that an epoxy resin is added to the used thermoplastic resin composition instead of the silane coupling agent.
  • 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances.
  • Example 17 1.8 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 18 and 3.0 parts by weight were added to Example 19, and 5.0 parts by weight were added to Example 20. In addition, Example 21 was added with 0.2 parts by weight of bisphenol A novolak type epoxy resin to 100 parts by weight of the used thermoplastic resin composition, and Examples 22 and 3 were added with 1.8 parts by weight. The product to which 0.0 parts by weight was added was designated as Example 23, and the product to which 5.0 parts by weight was added was designated as Example 24.
  • Example 23 The product to which 0.0 parts by weight was added was designated as Example 23 and the product to which 5.0 parts by weight was added was designated as Example 24.
  • Table 3 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin composition obtained under the conditions of Examples 17 to 24 were good.
  • Example 25 to 32 an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) (1004, manufactured by Mitsubishi Chemical Co., Ltd.) or bisphenol A type epoxy resin) is used with respect to the used thermoplastic resin composition. (Epoxy equivalent: 1750 to 2200) (1007, manufactured by Mitsubishi Chemical Corporation)) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • a resin temperature molding temperature
  • Example 25 to 32 the difference from Examples 17 to 20 is the value of the epoxy equivalent of the bisphenol A type epoxy resin.
  • 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances.
  • Example 25 1.8 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 26 and 3.0 parts by weight were added to Example 27, and 5.0 parts by weight were added to Example 28. Further, 1.6 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 1750 to 2200) was added to 100 parts by weight of the used thermoplastic resin composition, and 1.8 parts by weight of Example 29 was added. Examples 30 and 3.0 parts by weight were added to Example 31, and 5.0 parts by weight were added to Example 32.
  • bisphenol A type epoxy resin epoxy equivalent: 875 to 975
  • Table 4 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 25 to 32 were good.
  • the epoxy equivalents of the epoxy resins used in Examples 17 to 20 are 450 to 500, the molecular weight is 900, and the softening point is 64 ° C. Since the temperature at the time of kneading is 210 ° C., when the epoxy resin used in Examples 17 to 20 is used, the epoxy resin may be softened and increased in viscosity at the charging port, which may clog the charging port. On the other hand, the epoxy equivalents of the epoxy resins used in Examples 25 to 28 are 875 to 975, the molecular weight is 1650, and the softening point is 97 ° C.
  • the epoxy equivalents of the epoxy resins used in Examples 29 to 32 are 1750 to 2200, the molecular weight is 2900, and the softening point is 128 ° C. Therefore, if the epoxy resin used in Examples 25 to 32 is used in the production of the regenerated thermoplastic resin composition, the epoxy resin is softened at the inlet as compared with the epoxy resin used in Examples 17 to 20. It is possible to suppress the increase in viscosity.
  • the softening point increases as the molecular weight increases, but the epoxy equivalent increases.
  • the bisphenol A type epoxy resin has only the end of the epoxy group to react, and the larger the epoxy equivalent, the smaller the ratio of the reacting epoxy group. Therefore, the bisphenol A type epoxy resin having a high molecular weight requires a necessary addition rate. Will be higher.
  • Example 33 to 35 the used thermoplastic resin composition is subjected to an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Co., Ltd.)) and stearer as a dispersant. 5 parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Examples 33 to 35, the difference from Examples 17 to 20 is that an inorganic pigment is added. In each example, the used thermoplastic resin composition contains 100 parts by weight of the polypropylene resin composition sorted and recovered from the used home electric appliances.
  • an epoxy resin bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (10
  • Example 33 3.0 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added.
  • Example 34 5.0 parts by weight was added as Example 35.
  • Table 5 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 33 to 35 were good.
  • the fatty acid content of the inorganic pigment is 8.2% by weight.
  • the fatty acid content with respect to 100 parts by weight of the used thermoplastic resin composition is 0.41% by weight.
  • the fatty acid content in 100 parts by weight of the used thermoplastic resin composition is 0.23% by weight. Therefore, when the fatty acid contained in 5 parts by weight of the inorganic pigment and the fatty acid contained in 100 parts by weight of the used thermoplastic resin composition are combined, the fatty acid content of the regenerated thermoplastic resin composition is 0.64% by weight. Become.
  • the fatty acid content is increased by the amount of the added inorganic pigment, so that more epoxy resin is added. It is necessary to do.
  • Examples 36 to 43 an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation) or bisphenol A novolak type epoxy is used with respect to the used thermoplastic resin composition.
  • a resin (157S70, manufactured by Mitsubishi Chemical Corporation) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C.
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • the difference from Examples 17 to 24 is that the used thermoplastic resin composition contains an inorganic filler.
  • 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
  • Example 36 1.8 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 37 and 3.0 parts by weight were added to Example 38, and 5.0 parts by weight were added to Example 39. In addition, 0.2 parts by weight of bisphenol A novolak type epoxy resin was added to 100 parts by weight of the used thermoplastic resin composition in Examples 40, and 1.8 parts by weight was added in Examples 41 and 3. The product to which 0.0 parts by weight was added was designated as Example 42, and the product to which 5.0 parts by weight was added was designated as Example 43.
  • bisphenol A type epoxy resin epoxy equivalent: 450 to 500
  • Table 6 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 36 to 43 were good.
  • thermoplastic resin composition contains an inorganic filler
  • the regenerated thermoplastic resin compositions obtained in Examples 36 to 43 have a good appearance and excellent appearance design. It turned out to be a resin composition.
  • the epoxy equivalent of the bisphenol A novolak type epoxy resin 157S70 is 200 to 220, which is about half of the epoxy equivalent of the bisphenol A type epoxy resin 1001 of 450 to 500. That is, when compared by the weight of the resin containing 1 g equivalent of the epoxy group, the bisphenol A novolak type epoxy resin 157S70 is about half that of the bisphenol A type epoxy resin 1001, so that the effective minimum addition rate is as shown in Table 6.
  • the amount of bisphenol A novolak type epoxy resin 157S70 was 0.2 parts by weight, which was half of 0.4 parts by weight of bisphenol A type epoxy resin 1001.
  • thermoplastic resin composition obtained when the bisphenol A type epoxy resin is added to the used thermoplastic resin composition containing the polypropylene resin composition is shown below (chemical formula).
  • one type of regenerated thermoplastic resin composition may be obtained from the following chemical formulas 1, 2 and 3, or a plurality of types of regenerated thermoplastic resin compositions may be obtained. In some cases.
  • thermoplastic resin composition obtained when the bisphenol A novolak type epoxy resin is added to the used thermoplastic resin composition containing the polypropylene resin composition is shown below (chemical formula).
  • the regenerated thermoplastic resin composition one type of regenerated thermoplastic resin composition may be obtained from the following chemical formulas 5, 6 and 7, or a plurality of types of regenerated thermoplastic resin compositions may be obtained. In some cases.
  • Example 44 to 51 an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) (1004, manufactured by Mitsubishi Chemical Co., Ltd.) or bisphenol A type epoxy resin) is used with respect to the used thermoplastic resin composition. (Epoxy equivalent: 1750 to 2200) (1007, manufactured by Mitsubishi Chemical Corporation)) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • a resin temperature molding temperature
  • the difference from Examples 25 to 32 is that the used thermoplastic resin composition contains an inorganic filler.
  • 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
  • Example 44 1.8 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 45 and 3.0 parts by weight were added to Example 46, and 5.0 parts by weight were added to Example 47. Further, 1.6 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 1750 to 2200) was added to 100 parts by weight of the used thermoplastic resin composition, and 1.8 parts by weight of Example 48 was added. Examples 49 and 3.0 parts by weight were added to Example 50, and 5.0 parts by weight were added to Example 51.
  • bisphenol A type epoxy resin epoxy equivalent: 875 to 975
  • Table 7 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 44 to 51 were good.
  • thermoplastic resin composition contains an inorganic filler
  • the regenerated thermoplastic resin compositions obtained in Examples 44 to 51 have a good appearance and excellent appearance design. It turned out to be a resin composition.
  • Example 52 to 54 the used thermoplastic resin composition is subjected to an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) and stearer as a dispersant. 5 parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • an epoxy resin bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)
  • stearer as a dispersant. 5 parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader while being heated
  • the difference from Examples 33 to 35 is that the used thermoplastic resin composition contains an inorganic filler.
  • 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
  • Example 52 3.0 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 53 and 5.0 parts by weight were added as Example 54.
  • Table 8 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 52 to 54 were good.
  • thermoplastic resin composition contains an inorganic filler
  • the regenerated thermoplastic resin compositions obtained in Examples 52 to 54 have a good appearance and excellent appearance design. It turned out to be a resin composition.
  • Example 55 to 57 the used thermoplastic resin composition is subjected to an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) and stearer as a dispersant. Two parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • an epoxy resin bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)
  • stearer as a dispersant.
  • Two parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader
  • Example 55 to 57 the difference from Examples 52 to 54 is the addition rate of the inorganic pigment.
  • 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
  • Examples 55 and 3.0 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition were added.
  • Examples 56 and 5.0 parts by weight were added as Example 57.
  • Table 9 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 55 to 57 were good.
  • Example 55 containing 2 parts by weight of the inorganic pigment, the amount of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) to be added could be reduced by 0.4 parts by weight as compared with Example 52 containing 5 parts by weight of the inorganic pigment.
  • the fatty acid contained is also reduced, and by adding a smaller amount of epoxy resin, the appearance and physical properties of the regenerated thermoplastic resin composition can be improved. I understood.
  • the addition rate of the inorganic pigment is reduced, it may not be possible to adjust the color to the desired color tone. However, for example, when recovering the used thermoplastic resin composition, only dark-colored flakes are removed in advance. If this is done, the addition rate of the inorganic pigment when toning the light-colored regenerated thermoplastic resin composition can be reduced. Further, for example, if the foreign matter that causes the appearance deterioration is removed in advance, the amount of the inorganic pigment for concealing the foreign matter can be reduced.
  • Example 58 1.2 parts by weight of an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) was oxidized with respect to the used thermoplastic resin composition. 0.5 part by weight of an inhibitor (A-611, ADEKA Corporation) and 0.1 part by weight of a metal inactivating agent (CDA-6, ADEKA Corporation) were added and mixed, and the mixture was mixed at 240 ° C. , Kneaded in a kneader while heating and melting. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C.
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C.
  • Example 58 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
  • an inorganic filler general-purpose talc MS-K, Japan Talc Co., Ltd.
  • Table 10 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of the regenerated thermoplastic resin composition were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin composition obtained under the conditions of Example 58 were good.
  • thermoplastic resin composition Furthermore, it was found that the appearance and physical properties of the obtained regenerated thermoplastic resin composition were good even when an antioxidant and a metal inactivating agent were added to the used thermoplastic resin composition.
  • Example 59 to 61 an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) was used as a dispersant for the used thermoplastic resin composition. 5 parts by weight of an inorganic pigment containing magnesium acid, 0.5 part by weight of an antioxidant (A-611, ADEKA Corporation) and 0.1 part by weight of a metal inactivating agent (CDA-6, ADEKA Corporation). The added and mixed product was kneaded in a kneader while being heated and melted at 220 ° C.
  • bisphenol A type epoxy resin epoxy equivalent: 450 to 500
  • CDA-6 metal inactivating agent
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 30 ° C.
  • Examples 59 to 61 differ from Examples 52 to 54 in that they contain 0.5 parts by weight of the antioxidant and 0.1 parts by weight of the metal inactivating agent.
  • 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
  • Example 59 3.0 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 60 and 5.0 parts by weight were added as Example 61.
  • Table 11 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 59 to 61 were good.
  • thermoplastic resin composition contains an antioxidant and a metal inactivating agent
  • the regenerated thermoplastic resin compositions obtained in Examples 59 to 61 have a good appearance and an appearance design. It was found to be a regenerated thermoplastic resin composition having excellent properties.
  • Example 62 to 64 an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) was used as a dispersant for the used thermoplastic resin composition. 2 parts by weight of an inorganic pigment containing magnesium acid, 0.5 part by weight of an antioxidant (A-611, ADEKA Corporation) and 0.1 part by weight of a metal inactivating agent (CDA-6, ADEKA Corporation). The added and mixed product was kneaded in a kneader while being heated and melted at 220 ° C.
  • bisphenol A type epoxy resin epoxy equivalent: 450 to 500
  • CDA-6 metal inactivating agent
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 30 ° C.
  • Examples 62 to 64 differ from Examples 55 to 57 in that they contain 0.5 parts by weight of the antioxidant and 0.1 parts by weight of the metal inactivating agent.
  • 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
  • Example 62 3.0 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 63 and 5.0 parts by weight were added as Example 64.
  • Table 12 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin composition obtained under the conditions of Examples 62 to 64 were good.
  • thermoplastic resin composition contains an antioxidant and a metal inactivating agent
  • the regenerated thermoplastic resin compositions obtained in Examples 62 to 64 have a good appearance and an appearance design. It was found to be a regenerated thermoplastic resin composition having excellent properties.
  • Comparative Examples 1 to 12 a silane coupling agent (3-glycyridoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.), N-2-) was used with respect to the used thermoplastic resin composition.
  • a silane coupling agent 3-glycyridoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.), N-2-
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • the ISO dumbbell test piece was molded under the same conditions as above even when nothing was added to the polypropylene resin composition sorted and recovered from used home appliances.
  • 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances.
  • Comparative Example 1 in which nothing was added to 100 parts by weight of the used thermoplastic resin composition, 0.2 weight of 3-glycyridoxypropyltrimethoxysilane, which is a silane coupling agent having an epoxy group. Comparative Example 2 was added in parts, Comparative Example 3 was added in an amount of 3.0 parts by weight, and Comparative Example 4 was added in an amount of 5.0 parts by weight. Further, 0.2 part by weight of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, which is a silane coupling agent having an amino group, was added to 100 parts by weight of the used thermoplastic resin composition.
  • Comparative Example 5 the one to which 3.0 parts by weight was added was designated as Comparative Example 6, and the one to which 5.0 parts by weight was added was designated as Comparative Example 7. Further, Comparative Examples 8 and 3.0 were prepared by adding 0.8 parts by weight of 3-isocyanatepropyltriethoxysilane, which is a silane coupling agent having an isocyanate group, to 100 parts by weight of the used thermoplastic resin composition. The one to which a part by weight was added was designated as Comparative Example 9, and the one to which 5.0 parts by weight was added was designated as Comparative Example 10.
  • Comparative Example 11 was prepared by adding 1.0 part by weight of 3-methacryloxypropyltrimethoxysilane, which is a silane coupling agent having a functional group (methacryl group) that does not react with the carboxyl group in the fatty acid, as Comparative Example 12. And said.
  • Table 13 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the tensile elongation at break retention rate was 75% or more, and the physical property determination was acceptable (A), but the FT-IR evaluation was unacceptable (B). Because of this, the overall judgment was rejected (B).
  • Comparative Examples 3, 4, 6, 7, 9 and 10 the FT-IR evaluation was acceptable (A), but the tensile elongation at break retention rate was less than 75% and failed (B). The judgment was rejected (B).
  • Comparative Example 1 From the results of Comparative Example 1, it was found that when the silane coupling agent was not added, fatty acid bleed-out occurred, so that the appearance of the regenerated thermoplastic resin composition could not be improved. Further, from the results of Comparative Examples 2, 5 and 8, the silane coupling agent having an epoxy group or an amino group has more than 0.2 parts by weight with respect to the used thermoplastic resin composition, and the silane cup having an isocyanate group. It was found that the appearance of the regenerated thermoplastic resin composition could not be improved unless the ring agent was added in an amount of more than 0.8 parts by weight.
  • Comparative Examples 13 to 22 a silane coupling agent (3-glycyridoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.), N-2-) was used with respect to the used thermoplastic resin composition. (Aminoethyl) -3-aminopropyltrimethoxysilane (KBM-603, manufactured by Shin-Etsu Chemical Co., Ltd.) or 3-Ixoxide propyltriethoxysilane (KBE-9007N, manufactured by Shin-Etsu Chemical Co., Ltd.)) is added. The mixture was kneaded in a kneader at 210 ° C.
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • the ISO dumbbell test piece was molded under the same conditions as above even when nothing other than 20 parts by weight of the inorganic filler was added to the polypropylene resin composition sorted and recovered from the used home appliances.
  • the difference from Comparative Examples 1 to 10 is that the used thermoplastic resin composition contains an inorganic filler.
  • thermoplastic resin composition 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Nippon Talc Co., Ltd.) (Made) is included in 20 parts by weight.
  • inorganic filler generally-purpose talc MS-K, Nippon Talc Co., Ltd.
  • Comparative Example 13 was obtained by adding nothing to 100 parts by weight of the used thermoplastic resin composition, and 0.2 weight of 3-glycyridoxypropyltrimethoxysilane, which is a silane coupling agent having an epoxy group. Comparative Example 14 was added in parts, Comparative Example 15 was added in an amount of 3.0 parts by weight, and Comparative Example 16 was added in an amount of 5.0 parts by weight. Further, 0.2 part by weight of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, which is a silane coupling agent having an amino group, was added to 100 parts by weight of the used thermoplastic resin composition.
  • Comparative Example 18 Those added in Comparative Example 17 and 3.0 parts by weight were designated as Comparative Example 18, and those to which 5.0 parts by weight were added were designated as Comparative Example 19. Further, Comparative Examples 20 and 3.0 were prepared by adding 0.8 parts by weight of 3-isocyanatepropyltriethoxysilane, which is a silane coupling agent having an isocyanate group, to 100 parts by weight of the used thermoplastic resin composition. The one added by weight was designated as Comparative Example 21, and the one added by 5.0 parts by weight was designated as Comparative Example 22.
  • Table 14 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the tensile elongation at break retention rate was 75% or more, and the physical property determination was acceptable (A), but the FT-IR evaluation was unacceptable (B). The judgment was rejected (B).
  • the inorganic filler contained in the used thermoplastic resin composition affects the results of the FT-IR evaluation and the physical property evaluation. It turned out not.
  • Comparative Examples 23 to 26 the epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Co., Ltd.) and bisphenol A novolak type epoxy) were used with respect to the used thermoplastic resin composition.
  • a resin (157S70, manufactured by Mitsubishi Chemical Corporation) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C.
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • Comparative Examples 23 to 26 the difference from Comparative Examples 1 to 12 is that an epoxy resin is added to the used thermoplastic resin composition instead of the silane coupling agent.
  • 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances.
  • Comparative Example 23 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 24. Further, Comparative Example 25 was prepared by adding 0.1 part by weight of bisphenol A novolak type epoxy resin to 100 parts by weight of the used thermoplastic resin composition, and Comparative Example 26 was added by 10 parts by weight.
  • bisphenol A type epoxy resin epoxy equivalent: 450 to 500
  • Table 15 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected. It was designated as (B).
  • the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B). did.
  • Comparative Examples 27 to 30 An epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) (1004, manufactured by Mitsubishi Chemical Corporation) or bisphenol A type epoxy resin) was used with respect to the used thermoplastic resin composition. (Epoxy equivalent: 1750 to 2200) (1007, manufactured by Mitsubishi Chemical Corporation)) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • a resin temperature molding temperature
  • Comparative Examples 27 to 30 the difference from Comparative Examples 23 and 24 is the value of the epoxy equivalent of the epoxy resin.
  • 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances.
  • Comparative Example 27 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 28. Further, in Comparative Example 29, 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 1750 to 2200) added to 100 parts by weight of the used thermoplastic resin composition was added. It was designated as Comparative Example 30.
  • Table 16 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected. It was designated as (B).
  • the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B). did.
  • the bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) was more than 0.6 parts by weight with respect to 100 parts by weight of the used thermoplastic resin composition, and the bisphenol A type epoxy resin. It was found that the regenerated thermoplastic resin composition could not have a good appearance unless (epoxy equivalent: 1750 to 2200) was added in an amount of more than 1.4 parts by weight. Further, from the results of Comparative Examples 28 and 30, when 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 875 to 975 or 1750 to 2200) was added to 100 parts by weight of the used thermoplastic resin composition, it was regenerated. It was found that the physical properties of the thermoplastic resin composition deteriorated.
  • thermoplastic resin composition was used as an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Co., Ltd.)) and as a dispersant. 5 parts by weight of an inorganic pigment containing magnesium stearate was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Comparative Examples 31 and 32, the difference from Comparative Examples 23 and 24 is that an inorganic pigment is added. In each comparative example, the used thermoplastic resin composition contains 100 parts by weight of the polypropylene resin composition sorted and recovered from the used home electric appliances.
  • Table 17 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected (B).
  • the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B).
  • the regenerated thermoplastic resin composition must be added in an amount of more than 2.0 parts by weight of the bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) with respect to 100 parts by weight of the used thermoplastic resin composition. It turned out that things could't look good. Further, from the results of Comparative Example 32, when 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) was added to 100 parts by weight of the used thermoplastic resin composition, the regenerated thermoplastic resin composition was prepared. It was found that the physical properties deteriorated.
  • Comparative Examples 33 to 36 the epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation) and bisphenol A novolak type epoxy were used with respect to the used thermoplastic resin composition.
  • a resin (157S70, manufactured by Mitsubishi Chemical Corporation) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C.
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • Comparative Examples 33 to 36 differ from Comparative Examples 23 to 26 in that the used thermoplastic resin composition contains an inorganic filler.
  • 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Nippon Talc Co., Ltd.) (Made) is included in 20 parts by weight.
  • Comparative Example 33 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 34. Further, Comparative Example 35 was added with 0.1 part by weight of bisphenol A novolak type epoxy resin to 100 parts by weight of the used thermoplastic resin composition, and Comparative Example 36 was added with 10 parts by weight.
  • bisphenol A type epoxy resin epoxy equivalent: 450 to 500
  • Table 18 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected. It was designated as (B).
  • Comparative Examples 34 and 36 the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B). did.
  • the inorganic filler contained in the used thermoplastic resin composition affects the results of the FT-IR evaluation and the physical property evaluation. It turned out not.
  • an epoxy resin bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) (1004, manufactured by Mitsubishi Chemical Co., Ltd.) or bisphenol A type epoxy resin) was used with respect to the used thermoplastic resin composition.
  • Epoxy equivalent: 1750 to 2200 (1007, manufactured by Mitsubishi Chemical Corporation)
  • an ISO dumbbell test piece that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • Comparative Examples 37 to 40 the difference from Comparative Examples 27 to 30 is that the used thermoplastic resin composition contains an inorganic filler.
  • 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Nippon Talc Co., Ltd.) (Made) is included in 20 parts by weight.
  • Comparative Example 37 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 38. Further, in Comparative Example 39, 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 1750 to 2200) was added to 100 parts by weight of the used thermoplastic resin composition. It was designated as Comparative Example 40.
  • Table 19 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected. It was designated as (B).
  • the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B). did.
  • the bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) was more than 0.6 parts by weight with respect to 100 parts by weight of the used thermoplastic resin composition, and the bisphenol A type epoxy resin. It was found that the regenerated thermoplastic resin composition could not have a good appearance unless (epoxy equivalent: 1750 to 2200) was added in an amount of more than 1.4 parts by weight. Further, from the results of Comparative Examples 38 and 40, when 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 875 to 975 or 1750 to 2200) was added to 100 parts by weight of the used thermoplastic resin composition, it was regenerated. It was found that the physical properties of the thermoplastic resin composition deteriorated.
  • Comparative Examples 41 and 42 An epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Co., Ltd.)) was used as a dispersant for the used thermoplastic resin composition. 5 parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • a resin temperature molding temperature
  • Comparative Examples 41 and 42 and Comparative Examples 31 and 32 The difference between Comparative Examples 41 and 42 and Comparative Examples 31 and 32 is that the used thermoplastic resin composition contains an inorganic filler.
  • the used thermoplastic resin composition is 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and 20 parts by weight of the inorganic filler (general-purpose talc MS-K, manufactured by Nippon Talc Co., Ltd.). Part is included.
  • Comparative Example 41 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 42.
  • Table 20 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected (B).
  • the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B).
  • the regenerated thermoplastic resin composition must be added in an amount of more than 1.6 parts by weight of the bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) with respect to 100 parts by weight of the used thermoplastic resin composition. It turned out that things could't look good. Further, from the results of Comparative Example 42, when 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) was added to 100 parts by weight of the used thermoplastic resin composition, the regenerated thermoplastic resin composition was prepared. It was found that the physical properties deteriorated.
  • Comparative Examples 43 and 44 An epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) was used as a dispersant for the used thermoplastic resin composition. Two parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C.
  • a resin temperature molding temperature
  • Comparative Examples 43 and 44 the difference from Comparative Examples 41 and 42 is the addition rate of the inorganic pigment.
  • the used thermoplastic resin composition is 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and 20 parts by weight of the inorganic filler (general-purpose talc MS-K, manufactured by Nippon Talc Co., Ltd.). Part is included.
  • Comparative Example 43 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 44.
  • Table 21 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces.
  • the tensile elongation at break retention rate was 75% or more, and the physical property determination was acceptable (A), but the FT-IR evaluation was unacceptable (B), so the comprehensive determination was unacceptable (B). ).
  • the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B).
  • the regenerated thermoplastic resin composition must be added in an amount of more than 1.2 parts by weight of the bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) with respect to 100 parts by weight of the used thermoplastic resin composition. It turned out that things could't look good. Further, from the results of Comparative Example 44, when 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) was added to 100 parts by weight of the used thermoplastic resin composition, the regenerated thermoplastic resin composition was prepared. It was found that the physical properties deteriorated.
  • FIG. 1 is a diagram showing the addition amount of each compound according to the first embodiment.
  • the horizontal axis of FIG. 1 is the amount of each compound added to 100 parts by weight of the used thermoplastic resin composition.
  • a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having an isocyanate group, and an epoxy resin were mixed with 100 parts by weight of each used thermoplastic resin composition.
  • the relationship between the amount of each compound added and the effective range and the ineffective range is shown.
  • "effective" refers to the case of A in the above-mentioned comprehensive judgment.
  • the range shown in white is the effective range in each compound, and the range shown in black is the ineffective range in each compound.
  • the silane coupling agent having an epoxy group is 0.4 parts by weight or more and 1.8 parts by weight or less, and the silane cup having an amino group with respect to 100 parts by weight of the used thermoplastic resin composition.
  • the ring agent is 0.4 parts by weight or more and 1.8 parts by weight or less
  • the silane coupling agent having an isocyanate group is 1.0 part by weight or more and 1.8 parts by weight or less
  • the epoxy resin is 0.2 parts by weight or more.
  • 5.0 parts by weight or less is an effective range, that is, a range that is A in the comprehensive judgment.
  • thermoplastic resin composition As described above, with respect to 100 parts by weight of the used thermoplastic resin composition, 0.4 parts by weight or more and 1.8 parts by weight or less of the silane coupling agent having an epoxy group and the silane coupling agent having an amino group are used. 0.4 parts by weight or more and 1.8 parts by weight or less, 1.0 part by weight or more and 1.8 parts by weight or less of the silane coupling agent having an isocyanate group, or 0.2 parts by weight or more and 5.0 parts by weight of the epoxy resin. By mixing the following, a regenerated epoxy resin composition is obtained.
  • thermoplastic resin composition In the method for producing a regenerated thermoplastic resin composition, a used thermoplastic resin composition and a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having an isocyanate group, or an epoxy resin are used.
  • the process of mixing the epoxides is called a mixing process.
  • thermoplastic resin composition capable of suppressing the bleed-out of fatty acids and improving the appearance design can be obtained.
  • the inorganic filler, the antioxidant, the metal deactivating agent and the coloring pigment are added to the used thermoplastic resin composition in the mixing step.
  • the heat resistance of the regenerated thermoplastic resin composition can be improved.
  • thermoplastic resin composition an example in which a polypropylene resin composition is used as the thermoplastic resin composition is shown, but a polyethylene resin composition, a polystyrene resin composition, an ABS resin composition or a polycarbonate resin composition may be used.
  • a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having an isocyanate group, or an epoxy resin is used for a used thermoplastic resin composition.
  • An example of mixing each of them alone is shown, but at least one of a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having an isocyanate group, and an epoxy resin is used thermoplasticity. It may be mixed with the resin composition.
  • the first embodiment can be appropriately modified and omitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

A method for producing a regenerated thermoplastic resin composition according to the present disclosure comprises a mixing step for mixing, with respect to 100 parts by weight of a used thermoplastic resin composition, at least one among: 0.4-1.8 parts by weight of a silane coupling agent having an epoxy group; 0.4-1.8 parts by weight of a silane coupling agent having an amino group; 1.0-1.8 parts by weight of a silane coupling agent having an isocyanate group; and 0.2-5.0 parts by weight of an epoxy resin.

Description

再生熱可塑性樹脂組成物の製造方法及び再生熱可塑性樹脂組成物Manufacturing method of regenerated thermoplastic resin composition and regenerated thermoplastic resin composition
 本開示は、再生熱可塑性樹脂組成物の製造方法及び再生熱可塑性樹脂組成物に関する。 The present disclosure relates to a method for producing a regenerated thermoplastic resin composition and a regenerated thermoplastic resin composition.
 家電製品及びOA(Office Automation)機器等には、筐体及び部品に対して、軽量且つ高強度で大量生産可能な材料として、一般的にスチレン系樹脂又はオレフィン系樹脂等の熱可塑性樹脂が用いられている。これらの製品が使用後に廃棄される際には、手で解体して回収できる部分を除き、大部分が埋め立て又は焼却により、再製品化されることなく処分されてきた。しかしながら、近年は家電リサイクル法の施行、資源有効活用、循環型社会の形成、及び二酸化炭素排出量削減といった観点から、回収した製品の熱可塑性樹脂を溶融混練し、再び樹脂成形品として再利用するマテリアルリサイクルが実施されている。再利用された熱可塑性樹脂は、例えばテレビ、エアコン、冷蔵庫又は掃除機等に用いられる。 For home appliances and OA (Office Automation) equipment, thermoplastic resins such as styrene resin or olefin resin are generally used as lightweight, high-strength, mass-produceable materials for housings and parts. Has been done. When these products are disposed of after use, most of them have been disposed of by landfill or incinerator without being remanufactured, except for the parts that can be disassembled and recovered by hand. However, in recent years, from the viewpoints of enforcement of the Home Appliance Recycling Law, effective use of resources, formation of a sound material-cycle society, and reduction of carbon dioxide emissions, the thermoplastic resin of the recovered product is melt-kneaded and reused as a resin molded product. Material recycling is being carried out. The recycled thermoplastic resin is used, for example, in televisions, air conditioners, refrigerators, vacuum cleaners, and the like.
 家電製品等から回収された熱可塑性樹脂は、2種類以上の熱可塑性樹脂が混ざった状態である。そのため、種々の選別処理工程を経て樹脂種ごとに分離され、溶融混練後に再利用されている。選別処理工程において、粉砕して混合フレークとされた熱可塑性樹脂は、例えば比重の差を利用して、比重が1.0以下のオレフィン系樹脂、比重が1.0よりも大きく、1.1よりも小さいポリスチレン及びABS樹脂(Acrylonitrile Butadiene Styrene共重合合成樹脂)、並びに比重が1.1以上の重比重樹脂に分離される。そして、ポリスチレン及びABS樹脂の混合フレークは、混合フレークを擦り合わせた際の帯電を利用する静電選別装置により、分離される。 The thermoplastic resin recovered from home appliances, etc. is a mixture of two or more types of thermoplastic resin. Therefore, each resin type is separated through various sorting processes, and is reused after melt-kneading. In the sorting process, the thermoplastic resin crushed into mixed flakes is, for example, an olefin resin having a specific gravity of 1.0 or less and a specific gravity larger than 1.0 by utilizing the difference in specific gravity, 1.1. It is separated into smaller polystyrene and ABS resin (Acrylonirile Butadiene Copolymer Synthetic Resin), and a weight specific gravity resin having a specific gravity of 1.1 or more. Then, the mixed flakes of polystyrene and ABS resin are separated by an electrostatic sorting device that utilizes the charge when the mixed flakes are rubbed together.
 通常、熱可塑性樹脂を加工する際には、外部からの加熱により熱可塑性樹脂を可塑化する必要があり、加熱温度は一般的に200℃以上の高温である。このとき、熱可塑性樹脂の流動性を高めるために、熱可塑性樹脂に滑剤が添加される。滑剤には、様々な種類が存在するが、熱可塑性樹脂がスチレン系樹脂及びオレフィン系樹脂である場合には、滑剤として例えば脂肪酸及び脂肪酸金属塩が添加される。滑剤により、熱可塑性樹脂の生産性が高められるが、滑剤が多量に添加されている熱可塑性樹脂では、滑剤がブリードアウトし、樹脂成形品の外観を損なう原因となる。 Normally, when processing a thermoplastic resin, it is necessary to plasticize the thermoplastic resin by heating from the outside, and the heating temperature is generally as high as 200 ° C. or higher. At this time, a lubricant is added to the thermoplastic resin in order to increase the fluidity of the thermoplastic resin. There are various types of lubricants, but when the thermoplastic resin is a styrene resin or an olefin resin, for example, a fatty acid and a fatty acid metal salt are added as the lubricant. The lubricant enhances the productivity of the thermoplastic resin, but in the thermoplastic resin to which a large amount of the lubricant is added, the lubricant bleeds out, which causes the appearance of the resin molded product to be spoiled.
 また、滑剤として使用される脂肪酸は、樹脂成形時にガスとしてヤニ成分を発生させる原因にもなる。そこで、少なくとも一回、家電製品等に使用された後、当該製品から回収され、樹脂種ごとに分離された熱可塑性樹脂である使用済み熱可塑性樹脂組成物に含まれた脂肪酸を、吸油性無機化合物に吸着させることによって、樹脂成形時におけるガス発生を抑制し、金型へのヤニの付着を抑制する再生熱可塑性樹脂組成物が開示されている(例えば、特許文献1参照)。ここで、再生熱可塑性樹脂組成物とは、使用済み熱可塑性樹脂組成物から生成された熱可塑性樹脂組成物を示す。 In addition, fatty acids used as lubricants also cause the generation of tar components as gas during resin molding. Therefore, the fatty acids contained in the used thermoplastic resin composition, which is a thermoplastic resin recovered from the product after being used for home appliances at least once and separated for each resin type, are oil-absorbent inorganic. A regenerated thermoplastic resin composition that suppresses gas generation during resin molding and suppresses the adhesion of tar to a mold by adsorbing it on a compound is disclosed (see, for example, Patent Document 1). Here, the regenerated thermoplastic resin composition refers to a thermoplastic resin composition produced from a used thermoplastic resin composition.
特開2015―160900号公報Japanese Unexamined Patent Publication No. 2015-160900
 しかしながら、特許文献1に記載の技術では、脂肪酸は、吸油性無機化合物に吸着させたまま再生熱可塑性樹脂組成物内に残留している。そのため、樹脂成形品が金属イオンを含む熱水環境下に暴露され続けることにより、脂肪酸がブリードアウトし、外観意匠性を損なうおそれがあった。 However, in the technique described in Patent Document 1, the fatty acid remains in the regenerated thermoplastic resin composition while being adsorbed by the oil-absorbing inorganic compound. Therefore, if the resin molded product is continuously exposed to a hot water environment containing metal ions, fatty acids may bleed out and the appearance and design may be impaired.
 また、新材の熱可塑性樹脂においては、樹脂成形品の製造過程において添加する滑剤の含有率を抑制することにより、滑剤としての脂肪酸がブリードアウトすることを抑制することができるが、使用済み熱可塑性樹脂組成物においては、既に含有されている滑剤の含有量を制御することは困難であった。 Further, in the new thermoplastic resin, by suppressing the content of the lubricant added in the manufacturing process of the resin molded product, it is possible to suppress the bleed-out of the fatty acid as the lubricant, but the used heat. In the thermoplastic resin composition, it was difficult to control the content of the lubricant already contained.
 本開示は、上述の課題を解決するためになされたもので、脂肪酸のブリードアウトを抑制し、外観意匠性を向上できる再生熱可塑性樹脂組成物の製造方法及び再生熱可塑性樹脂組成物を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and provides a method for producing a regenerated thermoplastic resin composition and a regenerated thermoplastic resin composition capable of suppressing bleed-out of fatty acids and improving the appearance design. The purpose is.
 本開示にかかる再生熱可塑性樹脂組成物の製造方法は、使用済み熱可塑性樹脂組成物100重量部に対して、エポキシ基を有するシランカップリング剤を0.4重量部以上1.8重量部以下、アミノ基を有するシランカップリング剤を0.4重量部以上1.8重量部以下、イソシアネート基を有するシランカップリング剤を1.0重量部以上1.8重量部以下、及びエポキシ樹脂を0.2重量部以上5.0重量部以下の少なくともいずれかを混合する混合工程を有するものである。 In the method for producing a regenerated thermoplastic resin composition according to the present disclosure, 0.4 parts by weight or more and 1.8 parts by weight or less of a silane coupling agent having an epoxy group is added to 100 parts by weight of the used thermoplastic resin composition. , 0.4 parts by weight or more and 1.8 parts by weight or less of the silane coupling agent having an amino group, 1.0 part by weight or more and 1.8 parts by weight or less of the silane coupling agent having an isocyanate group, and 0 parts of the epoxy resin. It has a mixing step of mixing at least one of 2 parts by weight or more and 5.0 parts by weight or less.
 本開示にかかる再生熱可塑性樹脂組成物は、下記化学式1、2及び3 The regenerated thermoplastic resin composition according to the present disclosure has the following chemical formulas 1, 2 and 3
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
の少なくともいずれかを含む再生熱可塑性樹脂組成物。
(化学式1、2及び3中、
l=1~13、
-R-:化学式4で表される置換基、
-R:-(CHCH (n=10,12,14,16のいずれか)又は-(CHCH=CH(CHCH (m=5,7のいずれか))
Figure JPOXMLDOC01-appb-C000010
A regenerated thermoplastic resin composition comprising at least one of the above.
(In chemical formulas 1, 2 and 3,
l = 1-13,
-R 1- : Substituent represented by Chemical Formula 4,
-R 2 :-(CH 2 ) n CH 3 (any of n = 10, 12, 14, 16) or-(CH 2 ) 7 CH = CH (CH 2 ) m CH 3 (m = 5, 7) either))
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本開示にかかる再生熱可塑性樹脂組成物は、下記化学式5、6及び7 The regenerated thermoplastic resin composition according to the present disclosure has the following chemical formulas 5, 6 and 7.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
の少なくともいずれかを含む再生熱可塑性樹脂組成物。
(化学式5、6及び7中、
k=1~13
-R:-(CHCH(n=10,12,14,16のいずれか)又は-(CHCH=CH(CHCH(m=5,7のいずれか))
Figure JPOXMLDOC01-appb-C000014
A regenerated thermoplastic resin composition comprising at least one of the above.
(In chemical formulas 5, 6 and 7,
k = 1 to 13
-R 2 :-(CH 2 ) n CH 3 (any of n = 10, 12, 14, 16) or-(CH 2 ) 7 CH = CH (CH 2 ) m CH 3 (m = 5, 7) either))
 本開示によれば、脂肪酸のブリードアウトを抑制し、外観意匠性を向上できる。 According to the present disclosure, it is possible to suppress the bleed-out of fatty acids and improve the appearance design.
実施の形態1にかかる各化合物の添加量を示す図。The figure which shows the addition amount of each compound which concerns on Embodiment 1. FIG.
実施の形態1.
 発明者らは、鋭意検討により、使用済み熱可塑性樹脂組成物を、エポキシ基、アミノ基、又はイソシアネート基を有する化合物と反応させることにより、外観意匠性を向上できる再生熱可塑性樹脂組成物を得ることができることを見出した。すなわち、使用済み熱可塑性樹脂組成物に含まれる脂肪酸を、添加した化合物に含まれるエポキシ基、アミノ基、又はイソシアネート基と反応させ、脂肪酸とは異なる物質とすることによって、脂肪酸のブリードアウトを抑制できることがわかった。
Embodiment 1.
The inventors have diligently studied to obtain a regenerated thermoplastic resin composition capable of improving the appearance design by reacting the used thermoplastic resin composition with a compound having an epoxy group, an amino group, or an isocyanate group. I found that I could do it. That is, the fatty acid contained in the used thermoplastic resin composition is reacted with the epoxy group, amino group, or isocyanate group contained in the added compound to make it a substance different from the fatty acid, thereby suppressing the bleed-out of the fatty acid. I found that I could do it.
 詳細は後述するが、脂肪酸含有率0.23重量パーセントの使用済み熱可塑性樹脂組成物100重量部に対し、エポキシ樹脂の一種であるビスフェノールA型エポキシ樹脂3量体(2~14量体の混合物で3量体を最も多く含有)を1.2重量部添加した樹脂成形品(後述の実施例58)の脂肪酸含有率を、エポキシ樹脂を添加していない樹脂成形品の脂肪酸含有率よりも、比率換算で、80%程度低減できることを見出した。すなわち、樹脂成形品(後述の実施例58)の脂肪酸含有率は、約0.046重量パーセントであった。また、再生熱可塑性樹脂組成物(後述する)から、エポキシ樹脂と脂肪酸との反応生成物を抽出し、MALDI-MSにより定性分析した。その結果、反応生成物として、エポキシ樹脂3量体+パルミチン酸、エポキシ樹脂3量体+ステアリン酸、エポキシ樹脂3量体+パルミチン酸+パルミチン酸、エポキシ樹脂3量体+パルミチン酸+ステアリン酸、及びエポキシ樹脂3量体+ステアリン酸+ステアリン酸が含まれることがわかった。使用済み熱可塑性樹脂組成物中の脂肪酸が、理想的に全てエポキシ樹脂と反応したとすると、使用済み熱可塑性樹脂組成物中に含まれる脂肪酸含有率0.23重量パーセントに相当する反応生成物が生じることとなる。 Details will be described later, but for 100 parts by weight of the used thermoplastic resin composition having a fatty acid content of 0.23% by weight, a mixture of bisphenol A type epoxy resin trimer (2 to 14 weights), which is a kind of epoxy resin, is used. The fatty acid content of the resin molded product (Example 58 described later) to which 1.2 parts by weight of the resin molded product (which contains the largest amount of the trimmer) is higher than the fatty acid content of the resin molded product to which the epoxy resin is not added. It was found that the ratio can be reduced by about 80%. That is, the fatty acid content of the resin molded product (Example 58 described later) was about 0.046% by weight. Moreover, the reaction product of the epoxy resin and the fatty acid was extracted from the regenerated thermoplastic resin composition (described later), and qualitative analysis was performed by MALDI-MS. As a result, as reaction products, epoxy resin trimer + palmitic acid, epoxy resin trimer + stearic acid, epoxy resin trimer + palmitic acid + palmitic acid, epoxy resin trimer + palmitic acid + stearic acid, And it was found that an epoxy resin trimer + stearic acid + stearic acid was contained. Assuming that all the fatty acids in the used thermoplastic resin composition ideally react with the epoxy resin, the reaction product corresponding to the fatty acid content of 0.23% by weight contained in the used thermoplastic resin composition is produced. It will occur.
 なお、以下の記載において、「再生熱可塑性樹脂組成物」とは、使用済み熱可塑性樹脂組成物から生成された熱可塑性樹脂組成物を示す。また、未だ家電製品等に使用されていない熱可塑性樹脂組成物は、「未使用熱可塑性樹脂組成物」と記す。 In the following description, the "recycled thermoplastic resin composition" refers to a thermoplastic resin composition produced from a used thermoplastic resin composition. Further, a thermoplastic resin composition that has not yet been used in home appliances and the like is referred to as an “unused thermoplastic resin composition”.
 まず、脂肪酸が熱水環境下でブリードアウトするメカニズムについて説明する。熱可塑性樹脂組成物が、金属イオンを含む熱水環境下に暴露された場合、熱可塑性樹脂組成物中に含まれる脂肪酸が熱可塑性樹脂組成物から熱水中に放出される。そして、熱水中の金属イオンと放出された脂肪酸とが脂肪酸金属塩を形成するため、脂肪酸の熱水への溶解度が下がり、樹脂成形品の表面に析出する。樹脂成形品の表面に析出した脂肪酸金属塩は白色粉末として目視できるため、樹脂成形品の外観意匠性は損なわれてしまう。 First, the mechanism by which fatty acids bleed out in a hot water environment will be explained. When the thermoplastic resin composition is exposed to a hot water environment containing metal ions, the fatty acids contained in the thermoplastic resin composition are released from the thermoplastic resin composition into hot water. Then, since the metal ions in the hot water and the released fatty acid form a fatty acid metal salt, the solubility of the fatty acid in the hot water decreases, and the fatty acid precipitates on the surface of the resin molded product. Since the fatty acid metal salt deposited on the surface of the resin molded product can be visually recognized as a white powder, the appearance design of the resin molded product is impaired.
 一方、熱可塑性樹脂組成物に対して、金属イオンを含まない純水又はイオン交換水を用いた場合は、脂肪酸が熱水中に溶け出すため、樹脂成形品の外観意匠性を損なうことはない。そのため、イオン濃度を低下させるフィルター等に水道水を通して、水中の金属イオンを低下させることでも、樹脂成形品の外観意匠性を損なう問題を解決できる。しかしながら、フィルターの寿命等が原因で水中の金属イオン濃度が上昇すると、樹脂成形品の外観意匠性を損なうため、脂肪酸のブリードアウトに対する対策としては不十分である。 On the other hand, when pure water or ion-exchanged water containing no metal ions is used for the thermoplastic resin composition, the fatty acids dissolve in the hot water, so that the appearance design of the resin molded product is not impaired. .. Therefore, by passing tap water through a filter or the like that reduces the ion concentration to reduce the metal ions in the water, it is possible to solve the problem of impairing the appearance and design of the resin molded product. However, if the metal ion concentration in water increases due to the life of the filter or the like, the appearance design of the resin molded product is impaired, which is insufficient as a countermeasure against fatty acid bleed-out.
 発明者らは、未使用熱可塑性樹脂組成物にステアリン酸を添加し、未使用熱可塑性樹脂組成物中の脂肪酸含有率を変化させ、金属イオンを含む75℃以上の熱水に暴露した際に、脂肪酸がブリードアウトするか否かを検証した。その結果、未使用熱可塑性樹脂組成物中に含まれる脂肪酸の含有率が0.2重量パーセント以上であると、未使用熱可塑性樹脂組成物の表面に白色粉末が析出することがわかった。すなわち、熱可塑性樹脂組成物中に含まれる脂肪酸の含有率が0.2重量パーセント以上であると、脂肪酸がブリードアウトすることを見出した。熱可塑性樹脂組成物中の脂肪酸含有率は、パルミチン酸及びステアリン酸の含有率の合計値であり、熱可塑性樹脂組成物から抽出後にGC-MSにより定量分析して求められたものである。なお、以下の実施例及び比較例において、100℃の熱水(水道水)で再生熱可塑性樹脂組成物を8時間暴露しているが、100℃の熱水で8時間暴露する代わりに、75℃以上の熱水(水道水)で、再生熱可塑性樹脂組成物を20分以上暴露した場合も同様の結果が得られることは確認済みである。また、密閉容器中の熱水だけではなく、流水中の熱水に再生熱可塑性樹脂組成物を暴露した場合でも、同様の結果が得られることも確認している。 The inventors added stearic acid to the unused thermoplastic resin composition to change the fatty acid content in the unused thermoplastic resin composition, and when exposed to hot water containing metal ions at 75 ° C. or higher. , It was verified whether or not the fatty acid bleeds out. As a result, it was found that when the content of fatty acid contained in the unused thermoplastic resin composition was 0.2% by weight or more, white powder was deposited on the surface of the unused thermoplastic resin composition. That is, it was found that the fatty acid bleeds out when the content of the fatty acid contained in the thermoplastic resin composition is 0.2% by weight or more. The fatty acid content in the thermoplastic resin composition is the total value of the contents of palmitic acid and stearic acid, and is obtained by quantitative analysis by GC-MS after extraction from the thermoplastic resin composition. In the following Examples and Comparative Examples, the regenerated thermoplastic resin composition was exposed to hot water (tap water) at 100 ° C. for 8 hours, but instead of being exposed to hot water at 100 ° C. for 8 hours, 75 It has been confirmed that the same result can be obtained when the regenerated thermoplastic resin composition is exposed to hot water (tap water) at ° C or higher for 20 minutes or longer. It has also been confirmed that the same result can be obtained when the regenerated thermoplastic resin composition is exposed not only to the hot water in the closed container but also to the hot water in running water.
 次に、熱可塑性樹脂組成物について例示する。熱可塑性樹脂組成物は、例えばポリオレフィン系(ポリプロピレン、ポリエチレン)である。ポリオレフィン系樹脂組成物を構成するポリオレフィン系樹脂としては、ポリエチレン、ホモポリプロピレン、プロピレン-エチレンブロック共重合体、プロピレン-ブテンブロック共重合体、プロピレン-α-オレフィンブロック共重合体、プロピレン-エチレンランダム共重合体、プロピレン-ブテンランダム共重合体、プロピレン-α-オレフィンランダム共重合体、又はプロピレン-α-オレフィングラフト共重合体等が挙げられる。 Next, the thermoplastic resin composition will be illustrated. The thermoplastic resin composition is, for example, a polyolefin-based (polypropylene, polyethylene). Examples of the polyolefin-based resin constituting the polyolefin-based resin composition include polyethylene, homopolypropylene, a propylene-ethylene block copolymer, a propylene-butene block copolymer, a propylene-α-olefin block copolymer, and a propylene-ethylene random compound. Examples thereof include a polymer, a propylene-butene random copolymer, a propylene-α-olefin random copolymer, a propylene-α-olefin graft copolymer and the like.
 さらに、熱可塑性樹脂組成物は、例えばポリスチレン系であるHIPS(High Impact Polystyrene)及びGPPS(General Purpose Polystyrene)、アクリロニトリル系であるABS及びAS(Acrylonitrile Styrene共重合化合物)、ポリカーボネート系、ポリカーボネート/アクリロニトリル系、又はアクリル酸系樹脂組成物等である。 Further, the thermoplastic resin composition includes, for example, polystyrene-based HIPS (High Impact Polystylene) and GPPS (General Purpose Polystyrene), acrylonitrile-based ABS and AS (Acrylonitrile Style style copolymer), polycarbonate-based polycarbonate, and polycarbonate-based polycarbonate. , Or an acrylic acid-based resin composition or the like.
 次に、脂肪酸及びその誘導体について例示する。脂肪酸及びその誘導体は、例えばラウリル酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、又はパルミトレイン酸等の脂肪酸である。さらに、脂肪酸及びその誘導体は、例えばセチルアルコール、ステアリルアルコール、若しくはオレイルアルコール等の高級アルコール、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、若しくはヘキサデカンアミド等の脂肪酸アミド、スクワレン、又はビスフェノールA等を指す。本開示において、使用済み熱可塑性樹脂組成物における脂肪酸及びその誘導体は、熱分解GC-MSにより定性分析した。 Next, examples of fatty acids and their derivatives will be given. The fatty acid and its derivative are fatty acids such as, for example, lauryl acid, myristic acid, palmitic acid, stearic acid, oleic acid, or palmitoleic acid. Further, the fatty acid and its derivative include higher alcohols such as cetyl alcohol, stearyl alcohol, and oleyl alcohol, fatty acid amides such as stearate amides, oleic acid amides, erucic acid amides, or hexadecane amides, squalanes, and bisphenol A. Point to. In the present disclosure, fatty acids and their derivatives in the used thermoplastic resin composition were qualitatively analyzed by pyrolysis GC-MS.
 次に、着色顔料について説明する。着色顔料は、調色により樹脂成形品の外観を良好にするために、再生熱可塑性樹脂組成物の製造時に、使用済み熱可塑性樹脂組成物に添加される。使用済み熱可塑性樹脂組成物を用いて再生熱可塑性樹脂組成物を製造する場合、使用済み熱可塑性樹脂組成物と、エポキシ基、アミノ基、又はイソシアネート基を有する化合物とを混合(混練)する際に、溶融しない異物が再生熱可塑性樹脂組成物の外観不良の原因になることがある。そのため、使用済み熱可塑性樹脂組成物に着色顔料を添加することにより、製造された再生熱可塑性樹脂組成物の異物を隠蔽できる。着色顔料としては、例えば、無機顔料を用いればよい。無機顔料とは、例えば、酸化チタン、チタン黄色、カーボンブラック、又は群青等である。 Next, the coloring pigment will be described. The coloring pigment is added to the used thermoplastic resin composition at the time of manufacturing the regenerated thermoplastic resin composition in order to improve the appearance of the resin molded product by toning. When the recycled thermoplastic resin composition is produced using the used thermoplastic resin composition, when the used thermoplastic resin composition is mixed (kneaded) with a compound having an epoxy group, an amino group, or an isocyanate group. In addition, non-melting foreign matter may cause a poor appearance of the regenerated thermoplastic resin composition. Therefore, by adding a coloring pigment to the used thermoplastic resin composition, foreign substances in the produced regenerated thermoplastic resin composition can be concealed. As the coloring pigment, for example, an inorganic pigment may be used. The inorganic pigment is, for example, titanium oxide, titanium yellow, carbon black, ultramarine, or the like.
 また、再生熱可塑性樹脂組成物を製造する場合に、分散剤を含む着色顔料を用いてもよい。分散剤を含むことにより、着色顔料は、分散性を向上でき、着色顔料の性能及び性質をより引き出すことができる。分散剤とは、例えば、ステアリン酸マグネシウム、エチレンビスステアリン酸アマイド、又はポリエチレンワックス等である。 Further, when producing a regenerated thermoplastic resin composition, a coloring pigment containing a dispersant may be used. By including the dispersant, the colored pigment can improve the dispersibility and can further bring out the performance and properties of the colored pigment. The dispersant is, for example, magnesium stearate, ethylene bisstearate amide, polyethylene wax, or the like.
 ここで、発明者らは、使用済み熱可塑性樹脂組成物としてポリプロピレン樹脂を用いて、再生熱可塑性樹脂組成物を製造し、無機顔料中の分散剤として17重量パーセントのステアリン酸マグネシウムを含む無機顔料を用いた場合と、無機顔料中の分散剤として17重量パーセントのエチレンビスステアリン酸アマイドを用いた場合とにおける、無機顔料の脂肪酸含有率を算出した。その結果、分散剤として17重量パーセントのステアリン酸マグネシウムを含む無機顔料を用いた場合、無機顔料の脂肪酸含有率は、8.2重量パーセントであるのに対し、分散剤として17重量パーセントのエチレンビスステアリン酸アマイドを用いた場合、無機顔料の脂肪酸含有率は0.53重量パーセントであった。 Here, the inventors produce a regenerated thermoplastic resin composition using a polypropylene resin as a used thermoplastic resin composition, and an inorganic pigment containing 17% by weight of magnesium stearate as a dispersant in the inorganic pigment. Was used, and the fatty acid content of the inorganic pigment was calculated when 17% by weight of ethylene bisstearic acid amide was used as the dispersant in the inorganic pigment. As a result, when an inorganic pigment containing 17% by weight of magnesium stearate was used as a dispersant, the fatty acid content of the inorganic pigment was 8.2% by weight, whereas 17% by weight of ethylene bis was used as a dispersant. When stearic acid amide was used, the fatty acid content of the inorganic pigment was 0.53% by weight.
 以上より、使用済み熱可塑性樹脂組成物としてポリプロピレン樹脂を用いる場合は、着色顔料の分散剤としてエチレンビスステアリン酸アマイドを用いる方が無機顔料の脂肪酸含有率は低くなるが、分散剤としてステアリン酸マグネシウムを用いた方が、エチレンビスステアリン酸アマイドを用いた場合よりも、使用済み熱可塑性樹脂組成物中の無機顔料及び無機フィラーの分散が向上する。なお、製造された再生熱可塑性樹脂組成物の脂肪酸含有率は、パルミチン酸及びステアリン酸の含有率の合計値であり、再生熱可塑性樹脂組成物からパルミチン酸及びステアリン酸を抽出した後に、GC-MSにより定量分析して求められたものである。 From the above, when polypropylene resin is used as the used thermoplastic resin composition, the fatty acid content of the inorganic pigment is lower when ethylene bisstearate amide is used as the dispersant for the coloring pigment, but magnesium stearate as the dispersant. The dispersion of the inorganic pigment and the inorganic filler in the used thermoplastic resin composition is improved by using the above method as compared with the case of using ethylene bisstearic acid amide. The fatty acid content of the produced regenerated thermoplastic resin composition is the total value of the contents of palmitic acid and stearic acid, and after extracting palmitic acid and stearic acid from the regenerated thermoplastic resin composition, GC- It was obtained by quantitative analysis by MS.
 また、分散剤としてステアリン酸マグネシウムを含む着色顔料を添加した場合に、再生熱可塑性樹脂組成物の外観不良が発生した場合、外観不良は、ステアリン酸マグネシウムがブリードアウトしたためではなく、使用済み熱可塑性樹脂中及び着色顔料中の脂肪酸が熱水環境下でブリードアウトするためであると考えられる。 In addition, when a coloring pigment containing magnesium stearate is added as a dispersant and a poor appearance occurs in the regenerated thermoplastic resin composition, the poor appearance is not due to the bleed-out of magnesium stearate, but the used thermoplasticity. It is considered that this is because the fatty acids in the resin and the coloring pigment bleed out in a hot water environment.
 次に、使用済み熱可塑性樹脂組成物に添加するエポキシ基、アミノ基、又はイソシアネート基を有する化合物について例示する。エポキシ基、アミノ基、又はイソシアネート基を有する化合物としては、例えば2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシリドキシプロピルメチルジメトキシシラン、3-グリシリドキシプロピルトリメトキシシラン、3-グリシリドキシプロピルメチルジエトキシシラン、3-グリシリドキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン又は3-イソシアネートプロピルトリエトキシシラン等のシランカップリング剤が好ましい。また、ビスフェノールA型エポキシ樹脂又はノボラック型エポキシ樹脂等のエポキシ樹脂としてもよい。さらに、ナフタレン-1,5-ジイソシアネート、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、若しくは1,4-フェニレンジイソシアナート等のジイソシアネート、スペルミン、スペルミジン、若しくはプトレシン等のポリアミンとしてもよい。これらの化合物は、使用済み熱可塑性樹脂組成物に単独で添加しても良いが、複数混合して、使用済み熱可塑性樹脂組成物に添加しても良い。 Next, a compound having an epoxy group, an amino group, or an isocyanate group to be added to the used thermoplastic resin composition will be exemplified. Examples of the compound having an epoxy group, an amino group, or an isocyanate group include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycyridoxypropylmethyldimethoxysilane, and 3-glyciridoxypropyltrimethoxysilane. , 3-Glycyridoxypropylmethyldiethoxysilane, 3-Glycyridoxypropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3- Aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyl A silane coupling agent such as trimethoxysilane or 3-isoxapropyltriethoxysilane is preferred. Further, it may be an epoxy resin such as a bisphenol A type epoxy resin or a novolak type epoxy resin. Further, it may be a diisocyanate such as naphthalene-1,5-diisocyanate, 4,4'-diisocyanato-3,3'-dimethylbiphenyl, or 1,4-phenylenediisocyanate, or a polyamine such as spermine, spermidine, or putrescine. .. These compounds may be added alone to the used thermoplastic resin composition, or may be mixed in a plurality and added to the used thermoplastic resin composition.
 次に、使用済み熱可塑性樹脂組成物と、エポキシ基、アミノ基、又はイソシアネート基を有する化合物とを混合(混練)する際の方法について説明する。混合の方法としては、溶融混練法、溶媒キャストブレンド、ラテックスブレンド又はポリマーコンプレックス等の物理的ブレンドを用いる方法が挙げられるが、特に溶融混練法が好ましい。 Next, a method for mixing (kneading) the used thermoplastic resin composition with a compound having an epoxy group, an amino group, or an isocyanate group will be described. Examples of the mixing method include a method using a physical blend such as a melt-kneading method, a solvent cast blend, a latex blend, or a polymer complex, and a melt-kneading method is particularly preferable.
 また、使用済み熱可塑性樹脂組成物と、エポキシ基、アミノ基、又はイソシアネート基を有する化合物とを混合するための装置としては、タンブラ、ヘンシェルミキサ、ロータリーミキサ、スーパーミキサ、リボンタンブラ又はVブレンダ等が挙げられる。このような混練装置によって、各材料を均一に分散させ、溶融混練した上で、混合された使用済み熱可塑性樹脂組成物とエポキシ基、アミノ基、又はイソシアネート基を有する化合物とをペレット化することが好ましい。 In addition, as an apparatus for mixing the used thermoplastic resin composition with a compound having an epoxy group, an amino group, or an isocyanate group, a tumbler, a henschel mixer, a rotary mixer, a super mixer, a ribbon tumbler, a V blender, or the like can be used. Can be mentioned. Using such a kneading device, each material is uniformly dispersed, melt-kneaded, and then the mixed used thermoplastic resin composition and a compound having an epoxy group, an amino group, or an isocyanate group are pelletized. Is preferable.
 ペレット化には、単軸、多軸又はタンデム式押出機を用いるのが一般的であるが、これらの押出機以外に、バンバリーミキサ、ローラ、コ・ニーダ、ブラストミル又はプラベンダーブラウトグラフ等を用いることもできる。そして、混合された使用済み熱可塑性樹脂組成物とエポキシ基、アミノ基、又はイソシアネート基を有する化合物とを、これらの装置を回分的又は連続的に運転することによって、ペレット化すればよい。 A single-screw, multi-screw or tandem extruder is generally used for pelletization, but in addition to these extruders, a Banbury mixer, a roller, a co-kneader, a blast mill, a lavender brout graph, etc. may be used. It can also be used. Then, the mixed used thermoplastic resin composition and the compound having an epoxy group, an amino group, or an isocyanate group may be pelletized by operating these devices in batches or continuously.
 さらに、上述のように、各材料を混合してもよいし、溶融混練せずに、樹脂ペレット、エポキシ基、アミノ基、又はイソシアネート基を有する化合物、酸化防止剤、金属不活性化剤、着色顔料及びその他の添加剤それぞれを混ぜ合わせ、混ぜ合わせた各材料を成形用樹脂として使用して、成形機加熱筒内で溶融混練する、いわゆるモールドブレンドを用いてもよい。 Further, as described above, each material may be mixed or, without melt-kneading, a resin pellet, a compound having an epoxy group, an amino group, or an isocyanate group, an antioxidant, a metal inactivating agent, and coloring. A so-called mold blend may be used in which the pigment and other additives are mixed, and the mixed materials are used as the molding resin and melt-kneaded in the heating cylinder of the molding machine.
 なお、本開示にかかる再生熱可塑性樹脂組成物の樹脂成形品の成形方法は、特に制限はなく、公知の成形方法により成形することができるが、例えば、射出成形で行えばよい。 The method for molding the resin molded product of the regenerated thermoplastic resin composition according to the present disclosure is not particularly limited and can be molded by a known molding method, but for example, injection molding may be used.
 以下、実施例及び比較例を示して本開示をより詳細に説明するが、本開示はこれらに限定されるものではない。実施例及び比較例では、得られた再生熱可塑性樹脂組成物が、外観意匠性に優れたものであることを確認するために、FT-IR評価及び物性評価(それぞれ後述する)を行い、総合的に判断した。使用済み熱可塑性樹脂組成物の脂肪酸含有率は、0.23重量パーセントであった。なお、使用済み熱可塑性樹脂組成物は、市場から回収された大型家電製品、例えばテレビ、エアコン、冷蔵庫、洗濯機等由来であり、使用済み熱可塑性樹脂組成物中の脂肪酸含有率は、大型家電製品回収時の回収場所、季節又は母材のばらつき等により多少上下する。 Hereinafter, the present disclosure will be described in more detail with reference to Examples and Comparative Examples, but the present disclosure is not limited thereto. In Examples and Comparative Examples, FT-IR evaluation and physical property evaluation (each described later) were performed in order to confirm that the obtained regenerated thermoplastic resin composition was excellent in appearance design, and comprehensively. Judgment. The fatty acid content of the used thermoplastic resin composition was 0.23% by weight. The used thermoplastic resin composition is derived from large household appliances recovered from the market, such as TVs, air conditioners, refrigerators, washing machines, etc., and the fatty acid content in the used thermoplastic resin composition is large household appliances. It may fluctuate slightly depending on the collection location, season, base material variation, etc. at the time of product collection.
 ここで、今回採用した評価方法について説明する。FT-IR評価では、射出成形機により作製したISOダンベル試験片の一部分(35mm×10mm×厚さ4mm)、すなわち再生熱可塑性樹脂組成物の樹脂成形品(以下、単に再生熱可塑性樹脂組成物と記す場合がある)を、テフロン(登録商標)によってコーティングされた耐圧容器(容量80mL)において50mLの100℃の熱水(水道水)で8時間暴露し、評価を行った。ここで、水道水をイオンクロマトグラフで定量分析すると、金属イオンとしてはNaが19mg/L、Ca2+が11mg/L、Kが2.7mg/L、Mg2+が2.3mg/L含まれていた。 Here, the evaluation method adopted this time will be described. In the FT-IR evaluation, a part of the ISO dumbbell test piece (35 mm × 10 mm × thickness 4 mm) produced by an injection molding machine, that is, a resin molded product of a regenerated thermoplastic resin composition (hereinafter, simply referred to as a regenerated thermoplastic resin composition). (May be noted) was exposed for 8 hours in 50 mL of hot water (tap water) at 100 ° C. in a pressure resistant container (capacity 80 mL) coated with Teflon® and evaluated. Here, when tap water is quantitatively analyzed by an ion chromatograph, Na + is 19 mg / L, Ca 2+ is 11 mg / L, K + is 2.7 mg / L, and Mg 2+ is 2.3 mg / L as metal ions. It was.
 100℃の熱水で8時間暴露した再生熱可塑性樹脂組成物に対し、FT-IR/ATR法を行った。FT-IR/ATR法により得られたスペクトルで、ポリプロピレンのC-H伸縮振動のピークのうちの一つである2918cm-1の吸光度に対する、脂肪酸金属塩のC=O伸縮振動のピークのうちの一つである1541cm-1のピークの吸光度の強度比が、0.1以下であるものを合格とし、脂肪酸がブリードアウトしていないと判定した。すなわち、得られた再生熱可塑性樹脂組成物の外観意匠性が優れていると判定した。なお、FT-IR評価及び外観評価(目視によるブリードアウトしているかどうかの評価)はよく一致した。以下の表において、合格をA、不合格(脂肪酸がブリードアウトしている)をBで示した。 The FT-IR / ATR method was performed on the regenerated thermoplastic resin composition exposed to hot water at 100 ° C. for 8 hours. In the spectrum obtained by the FT-IR / ATR method, among the peaks of C = O stretching vibration of the fatty acid metal salt with respect to the absorbance of 2918 cm -1 , which is one of the peaks of CH stretching vibration of polypropylene. When the intensity ratio of the absorbance of one peak of 1541 cm -1 was 0.1 or less, it was regarded as acceptable, and it was determined that the fatty acid was not bleeding out. That is, it was determined that the obtained regenerated thermoplastic resin composition had excellent appearance design. The FT-IR evaluation and the appearance evaluation (evaluation of whether or not the bleed-out was visually observed) were in good agreement. In the table below, pass is indicated by A and failure (fatty acid is bleeding out) is indicated by B.
 物性評価では、再生熱可塑性樹脂組成物の物性を評価するために、射出成形機によりISOダンベル試験片A形を作製し、引張試験による引張破断伸びを測定して、使用済み熱可塑性樹脂組成物及び無機フィラー以外の添加剤を混ぜない再生熱可塑性樹脂組成物との引張破断伸び値と比較した。 In the physical property evaluation, in order to evaluate the physical properties of the regenerated thermoplastic resin composition, an ISO dumbbell test piece A type is produced by an injection molding machine, and the tensile elongation at break by a tensile test is measured to measure the used thermoplastic resin composition. And the tensile elongation at break with the regenerated thermoplastic resin composition not mixed with additives other than the inorganic filler.
 引張試験は、JIS K7161に準ずる方法で行った。引張試験は、万能試験機を用いて、試験速度50mm/minで行い、引張破断伸びを求めた。求めた引張破断伸びについて、使用済み熱可塑性樹脂組成物及び無機フィラー以外の添加剤を混ぜない再生熱可塑性樹脂組成物の引張破断伸びに対する引張破断伸び保持率(%)を求めた。ここで、再生熱可塑性樹脂組成物の物性判定基準として、引張破断伸び保持率が75%未満に低下した場合を不合格(表ではB)とし、75%以上の場合を合格(表ではA)とした。 The tensile test was performed by a method according to JIS K7161. The tensile test was carried out at a test speed of 50 mm / min using a universal testing machine, and the tensile elongation at break was determined. With respect to the obtained tensile elongation at break, the tensile elongation at break retention rate (%) with respect to the tensile elongation at break of the recycled thermoplastic resin composition not mixed with the used thermoplastic resin composition and additives other than the inorganic filler was determined. Here, as a criterion for determining the physical properties of the regenerated thermoplastic resin composition, a case where the tensile elongation at break retention rate is reduced to less than 75% is regarded as a failure (B in the table), and a case of 75% or more is passed (A in the table). And said.
 以上のFT-IR評価及び物性評価の結果により、総合的に判断を行い、両者とも合格(A)の場合、総合判断を合格(A)とし、外観意匠性に優れた再生熱可塑性樹脂組成物であるとした。また、FT-IR評価及び物性評価の結果のいずれかが不合格(B)の場合は、総合判断を不合格(B)とした。以下に実施例1~64及び比較例1~44を示す。 Based on the results of the above FT-IR evaluation and physical property evaluation, a comprehensive judgment is made. If both pass (A), the comprehensive judgment is passed (A), and the regenerated thermoplastic resin composition having excellent appearance design is obtained. It was said that. If either the FT-IR evaluation or the physical property evaluation result was unsuccessful (B), the comprehensive judgment was unsuccessful (B). Examples 1 to 64 and Comparative Examples 1 to 44 are shown below.
<実施例1~8>
 実施例1~8では、使用済み熱可塑性樹脂組成物に対して、シランカップリング剤(3-グリシリドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株)製)、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(KBM-603、信越化学工業(株)製)又は3―イソシアネートプロピルトリエトキシシラン(KBE-9007N、信越化学工業(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。各実施例において、使用済み熱可塑性樹脂組成物の100重量部は、使用済み家電製品より選別回収したポリプロピレン樹脂組成物で構成される。シランカップリング剤とは、通常、無機フィラーと熱可塑性樹脂とを共有結合で結ぶことにより、物性を改善させる化合物である。
<Examples 1 to 8>
In Examples 1 to 8, a silane coupling agent (3-glycyridoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.), N-2-) was used with respect to the used thermoplastic resin composition. (Aminoethyl) -3-aminopropyltrimethoxysilane (KBM-603, manufactured by Shin-Etsu Chemical Co., Ltd.) or 3-Ixoxide propyltriethoxysilane (KBE-9007N, manufactured by Shin-Etsu Chemical Co., Ltd.)) is added. The mixture was kneaded in a kneader at 210 ° C. while being heated and melted. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In each example, 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances. The silane coupling agent is usually a compound that improves physical properties by covalently binding an inorganic filler and a thermoplastic resin.
 使用済み熱可塑性樹脂組成物100重量部に対して、エポキシ基を有するシランカップリング剤である3-グリシリドキシプロピルトリメトキシシランを0.4重量部添加したものを実施例1、1.0重量部添加したものを実施例2、1.8重量部添加したものを実施例3とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、アミノ基を有するシランカップリング剤であるN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを0.4重量部添加したものを実施例4、1.0重量部添加したものを実施例5、1.8重量部添加したものを実施例6とした。さらに、使用済み熱可塑性樹脂組成物100重量部に対して、イソシアネート基を有するシランカップリング剤である3―イソシアネートプロピルトリエトキシシランを1.0重量部添加したものを実施例7、1.8重量部添加したものを実施例8とした。 Examples 1 and 1.0 added 0.4 parts by weight of 3-glycyridoxypropyltrimethoxysilane, which is a silane coupling agent having an epoxy group, to 100 parts by weight of the used thermoplastic resin composition. Example 2 was added in parts by weight, and Example 3 was added in 1.8 parts by weight. Further, 0.4 parts by weight of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, which is a silane coupling agent having an amino group, was added to 100 parts by weight of the used thermoplastic resin composition. Examples 4 and 1.0 parts by weight were added to Example 5, and 1.8 parts by weight were added to Example 6. Further, Examples 7 and 1.8 added 1.0 part by weight of 3-isocyanatepropyltriethoxysilane, which is a silane coupling agent having an isocyanate group, to 100 parts by weight of the used thermoplastic resin composition. Example 8 was prepared by adding parts by weight.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表1に示す。実施例1~8において、いずれの再生熱可塑性樹脂組成物も、FT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例1~8の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 1 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Examples 1 to 8, the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 1 to 8 were good.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<実施例9~16>
 実施例9~16では、使用済み熱可塑性樹脂組成物に対して、シランカップリング剤(3-グリシリドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株)製)、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(KBM-603、信越化学工業(株)製)又は3―イソシアネートプロピルトリエトキシシラン(KBE-9007N、信越化学工業(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。実施例9~16において、実施例1~8と異なる点は、使用済み熱可塑性樹脂組成物が、無機フィラーを含んでいる点である。各実施例において、使用済み熱可塑性樹脂組成物は、100重量部に、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Examples 9 to 16>
In Examples 9 to 16, a silane coupling agent (3-glycyridoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.), N-2-) was used with respect to the used thermoplastic resin composition. (Aminoethyl) -3-aminopropyltrimethoxysilane (KBM-603, manufactured by Shin-Etsu Chemical Co., Ltd.) or 3-Ixoxide propyltriethoxysilane (KBE-9007N, manufactured by Shin-Etsu Chemical Co., Ltd.)) is added. The mixture was kneaded in a kneader at 210 ° C. while being heated and melted. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Examples 9 to 16, the difference from Examples 1 to 8 is that the used thermoplastic resin composition contains an inorganic filler. In each example, 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
 使用済み熱可塑性樹脂組成物100重量部に対して、エポキシ基を有するシランカップリング剤である3-グリシリドキシプロピルトリメトキシシランを0.4重量部添加したものを実施例9、1.0重量部添加したものを実施例10、1.8重量部添加したものを実施例11とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、アミノ基を有するシランカップリング剤であるN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを0.4重量部添加したものを実施例12、1.0重量部添加したものを実施例13、1.8重量部添加したものを実施例14とした。さらに、使用済み熱可塑性樹脂組成物100重量部対して、イソシアネート基を有するシランカップリング剤である3―イソシアネートプロピルトリエトキシシランを1.0重量部添加したものを実施例15、1.8重量部添加したものを実施例16とした。 Examples 9, 1.0, added 0.4 parts by weight of 3-glycyridoxypropyltrimethoxysilane, which is a silane coupling agent having an epoxy group, to 100 parts by weight of the used thermoplastic resin composition. The product to which a weight was added was designated as Example 10, and the product to which a weight of 1.8 parts was added was designated as Example 11. Further, 0.4 parts by weight of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, which is a silane coupling agent having an amino group, was added to 100 parts by weight of the used thermoplastic resin composition. Those added by 1.0 part by weight were designated as Example 13, and those added by 1.8 parts by weight were designated as Example 14. Further, 1.0 part by weight of 3-isocyanatepropyltriethoxysilane, which is a silane coupling agent having an isocyanate group, is added to 100 parts by weight of the used thermoplastic resin composition in Examples 15 and 1.8 by weight. The partially added product was designated as Example 16.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表2に示す。実施例9~16において、いずれの再生熱可塑性樹脂組成物も、FT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例9~16の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 2 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Examples 9 to 16, the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin composition obtained under the conditions of Examples 9 to 16 were good.
 さらに、使用済み熱可塑性樹脂組成物が無機フィラーを含んでいる場合でも、実施例9~16において得られた再生熱可塑性樹脂組成物の外観が良好で、外観意匠性に優れた再生熱可塑性樹脂組成物であることがわかった。 Further, even when the used thermoplastic resin composition contains an inorganic filler, the regenerated thermoplastic resin composition obtained in Examples 9 to 16 has a good appearance and an excellent appearance design. It turned out to be a composition.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
<実施例17~24>
 実施例17~24では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製)又はビスフェノールAノボラック型エポキシ樹脂(157S70、三菱ケミカル(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。実施例17~24において、実施例1~8と異なる点は、使用済み熱可塑性樹脂組成物に対して、シランカップリング剤の代わりにエポキシ樹脂を添加する点である。各実施例において、使用済み熱可塑性樹脂組成物の100重量部は、使用済み家電製品より選別回収したポリプロピレン樹脂組成物で構成される。
<Examples 17 to 24>
In Examples 17 to 24, an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation) or bisphenol A novolak type epoxy is used with respect to the used thermoplastic resin composition. A resin (157S70, manufactured by Mitsubishi Chemical Corporation) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Examples 17 to 24, the difference from Examples 1 to 8 is that an epoxy resin is added to the used thermoplastic resin composition instead of the silane coupling agent. In each example, 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を0.4重量部添加したものを実施例17、1.8重量部添加したものを実施例18、3.0重量部添加したものを実施例19、5.0重量部添加したものを実施例20とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールAノボラック型エポキシ樹脂を0.2重量部添加したものを実施例21、1.8重量部添加したものを実施例22、3.0重量部添加したものを実施例23、5.0重量部添加したものを実施例24とした。 Example 17, 1.8 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 18 and 3.0 parts by weight were added to Example 19, and 5.0 parts by weight were added to Example 20. In addition, Example 21 was added with 0.2 parts by weight of bisphenol A novolak type epoxy resin to 100 parts by weight of the used thermoplastic resin composition, and Examples 22 and 3 were added with 1.8 parts by weight. The product to which 0.0 parts by weight was added was designated as Example 23, and the product to which 5.0 parts by weight was added was designated as Example 24.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表3に示す。実施例17~24において、いずれの再生熱可塑性樹脂組成物も、FT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例17~24の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 3 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Examples 17 to 24, the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin composition obtained under the conditions of Examples 17 to 24 were good.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
<実施例25~32>
 実施例25~32では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975)(1004、三菱ケミカル(株)製)又はビスフェノールA型エポキシ樹脂(エポキシ当量:1750~2200)(1007、三菱ケミカル(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。実施例25~32において、実施例17~20と異なる点は、ビスフェノールA型エポキシ樹脂のエポキシ当量の値である。各実施例において、使用済み熱可塑性樹脂組成物の100重量部は、使用済み家電製品より選別回収したポリプロピレン樹脂組成物で構成される。
<Examples 25 to 32>
In Examples 25 to 32, an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) (1004, manufactured by Mitsubishi Chemical Co., Ltd.) or bisphenol A type epoxy resin) is used with respect to the used thermoplastic resin composition. (Epoxy equivalent: 1750 to 2200) (1007, manufactured by Mitsubishi Chemical Corporation)) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Examples 25 to 32, the difference from Examples 17 to 20 is the value of the epoxy equivalent of the bisphenol A type epoxy resin. In each example, 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975)を0.8重量部添加したものを実施例25、1.8重量部添加したものを実施例26、3.0重量部添加したものを実施例27、5.0重量部添加したものを実施例28とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:1750~2200)を1.6重量部添加したものを実施例29、1.8重量部添加したものを実施例30、3.0重量部添加したものを実施例31、5.0重量部添加したものを実施例32とした。 Example 25, 1.8 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 26 and 3.0 parts by weight were added to Example 27, and 5.0 parts by weight were added to Example 28. Further, 1.6 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 1750 to 2200) was added to 100 parts by weight of the used thermoplastic resin composition, and 1.8 parts by weight of Example 29 was added. Examples 30 and 3.0 parts by weight were added to Example 31, and 5.0 parts by weight were added to Example 32.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表4に示す。実施例25~32において、いずれの再生熱可塑性樹脂組成物も、FT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例25~32の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 4 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Examples 25 to 32, the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 25 to 32 were good.
 ここで、実施例17~20で用いたエポキシ樹脂のエポキシ当量は450~500、分子量は900、軟化点は64℃である。混練時の温度は210℃であるため、実施例17~20で用いたエポキシ樹脂を用いる場合は、投入口でエポキシ樹脂が軟化して粘性が上がり、これにより投入口が詰まるおそれがある。一方、実施例25~28で用いたエポキシ樹脂のエポキシ当量は875~975、分子量は1650、軟化点は97℃である。また、実施例29~32で用いたエポキシ樹脂のエポキシ当量は1750~2200、分子量は2900、軟化点は128℃である。そのため、再生熱可塑性樹脂組成物の製造時に、実施例25~32で用いたエポキシ樹脂を用いれば、実施例17~20で用いたエポキシ樹脂と比較して、投入口でエポキシ樹脂が軟化して粘性が上がることを抑制できる。 Here, the epoxy equivalents of the epoxy resins used in Examples 17 to 20 are 450 to 500, the molecular weight is 900, and the softening point is 64 ° C. Since the temperature at the time of kneading is 210 ° C., when the epoxy resin used in Examples 17 to 20 is used, the epoxy resin may be softened and increased in viscosity at the charging port, which may clog the charging port. On the other hand, the epoxy equivalents of the epoxy resins used in Examples 25 to 28 are 875 to 975, the molecular weight is 1650, and the softening point is 97 ° C. The epoxy equivalents of the epoxy resins used in Examples 29 to 32 are 1750 to 2200, the molecular weight is 2900, and the softening point is 128 ° C. Therefore, if the epoxy resin used in Examples 25 to 32 is used in the production of the regenerated thermoplastic resin composition, the epoxy resin is softened at the inlet as compared with the epoxy resin used in Examples 17 to 20. It is possible to suppress the increase in viscosity.
 なお、実施例17~20及び25~32で用いたエポキシ樹脂であるビスフェノールA型エポキシ樹脂は、分子量が高くなるほど軟化点は上がるが、エポキシ当量は大きくなる。ビスフェノールA型エポキシ樹脂は、反応するエポキシ基が末端にしかなく、エポキシ当量が大きくなるほど、反応するエポキシ基の比率が小さくなることから、分子量が高いビスフェノールA型エポキシ樹脂は、必要となる添加率が高くなる。 In the bisphenol A type epoxy resin, which is the epoxy resin used in Examples 17 to 20 and 25 to 32, the softening point increases as the molecular weight increases, but the epoxy equivalent increases. The bisphenol A type epoxy resin has only the end of the epoxy group to react, and the larger the epoxy equivalent, the smaller the ratio of the reacting epoxy group. Therefore, the bisphenol A type epoxy resin having a high molecular weight requires a necessary addition rate. Will be higher.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
<実施例33~35>
 実施例33~35では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製))及び分散剤としてステアリン酸マグネシウムを含む無機顔料5重量部を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。実施例33~35において、実施例17~20と異なる点は、無機顔料を添加する点である。各実施例において、使用済み熱可塑性樹脂組成物は、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が100重量部含まれている。
<Examples 33 to 35>
In Examples 33 to 35, the used thermoplastic resin composition is subjected to an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Co., Ltd.)) and stearer as a dispersant. 5 parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Examples 33 to 35, the difference from Examples 17 to 20 is that an inorganic pigment is added. In each example, the used thermoplastic resin composition contains 100 parts by weight of the polypropylene resin composition sorted and recovered from the used home electric appliances.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を2.2重量部添加したものを実施例33、3.0重量部添加したものを実施例34、5.0重量部添加したものを実施例35とした。 Example 33, 3.0 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added. Example 34, 5.0 parts by weight was added as Example 35.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表5に示す。実施例33~35において、いずれの再生熱可塑性樹脂組成物も、FT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例33~35の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 5 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Examples 33 to 35, the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 33 to 35 were good.
 着色顔料である無機顔料の分散剤として17重量パーセントのステアリン酸マグネシウムを用いた場合、無機顔料の脂肪酸含有率は、8.2重量パーセントである。使用済み熱可塑性樹脂組成物に無機顔料5重量部を添加した場合は、使用済み熱可塑性樹脂組成物100重量部に対する脂肪酸含有率は、0.41重量パーセントである。また、使用済み熱可塑性樹脂組成物100重量部中の脂肪酸含有率は、0.23重量パーセントである。そのため、無機顔料5重量部中に含まれる脂肪酸と、使用済み熱可塑性樹脂組成物100重量部中に含まれる脂肪酸と合わせると、再生熱可塑性樹脂組成物の脂肪酸含有率は0.64重量パーセントとなる。よって、無機顔料を用いる場合、再生熱可塑性樹脂組成物の樹脂成形品の外観を良好にするためには、添加した無機顔料の分、脂肪酸含有率が高くなるため、より多くのエポキシ樹脂を添加することが必要となる。 When 17% by weight magnesium stearate is used as a dispersant for the inorganic pigment which is a coloring pigment, the fatty acid content of the inorganic pigment is 8.2% by weight. When 5 parts by weight of the inorganic pigment is added to the used thermoplastic resin composition, the fatty acid content with respect to 100 parts by weight of the used thermoplastic resin composition is 0.41% by weight. The fatty acid content in 100 parts by weight of the used thermoplastic resin composition is 0.23% by weight. Therefore, when the fatty acid contained in 5 parts by weight of the inorganic pigment and the fatty acid contained in 100 parts by weight of the used thermoplastic resin composition are combined, the fatty acid content of the regenerated thermoplastic resin composition is 0.64% by weight. Become. Therefore, when an inorganic pigment is used, in order to improve the appearance of the resin molded product of the regenerated thermoplastic resin composition, the fatty acid content is increased by the amount of the added inorganic pigment, so that more epoxy resin is added. It is necessary to do.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
<実施例36~43>
 実施例36~43では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製)又はビスフェノールAノボラック型エポキシ樹脂(157S70、三菱ケミカル(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。実施例36~43において、実施例17~24と異なる点は、使用済み熱可塑性樹脂組成物が無機フィラーを含んでいる点である。各実施例において、使用済み熱可塑性樹脂組成物は、100重量部に、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Examples 36 to 43>
In Examples 36 to 43, an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation) or bisphenol A novolak type epoxy is used with respect to the used thermoplastic resin composition. A resin (157S70, manufactured by Mitsubishi Chemical Corporation) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Examples 36 to 43, the difference from Examples 17 to 24 is that the used thermoplastic resin composition contains an inorganic filler. In each example, 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を0.4重量部添加したものを実施例36、1.8重量部添加したものを実施例37、3.0重量部添加したものを実施例38、5.0重量部添加したものを実施例39とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールAノボラック型エポキシ樹脂を0.2重量部添加したものを実施例40、1.8重量部添加したものを実施例41、3.0重量部添加したものを実施例42、5.0重量部添加したものを実施例43とした。 Example 36, 1.8 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 37 and 3.0 parts by weight were added to Example 38, and 5.0 parts by weight were added to Example 39. In addition, 0.2 parts by weight of bisphenol A novolak type epoxy resin was added to 100 parts by weight of the used thermoplastic resin composition in Examples 40, and 1.8 parts by weight was added in Examples 41 and 3. The product to which 0.0 parts by weight was added was designated as Example 42, and the product to which 5.0 parts by weight was added was designated as Example 43.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表6に示す。実施例36~43において、いずれの再生熱可塑性樹脂組成物も、FT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例36~43の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 6 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Examples 36 to 43, the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 36 to 43 were good.
 さらに、使用済み熱可塑性樹脂組成物に無機フィラーが含まれている場合でも、実施例36~43において得られた再生熱可塑性樹脂組成物の外観が良好で、外観意匠性に優れた再生熱可塑性樹脂組成物であることがわかった。 Further, even when the used thermoplastic resin composition contains an inorganic filler, the regenerated thermoplastic resin compositions obtained in Examples 36 to 43 have a good appearance and excellent appearance design. It turned out to be a resin composition.
 ビスフェノールAノボラック型エポキシ樹脂157S70のエポキシ当量は200~220であり、ビスフェノールA型エポキシ樹脂1001のエポキシ当量450~500の約半分である。つまり、1g当量のエポキシ基を含む樹脂の重量で比較すると、ビスフェノールAノボラック型エポキシ樹脂157S70はビスフェノールA型エポキシ樹脂1001の約半分であるため、表6に示すように、有効な最低添加率はビスフェノールAノボラック型エポキシ樹脂157S70が0.2重量部であり、ビスフェノールA型エポキシ樹脂1001の0.4重量部の半分となった。 The epoxy equivalent of the bisphenol A novolak type epoxy resin 157S70 is 200 to 220, which is about half of the epoxy equivalent of the bisphenol A type epoxy resin 1001 of 450 to 500. That is, when compared by the weight of the resin containing 1 g equivalent of the epoxy group, the bisphenol A novolak type epoxy resin 157S70 is about half that of the bisphenol A type epoxy resin 1001, so that the effective minimum addition rate is as shown in Table 6. The amount of bisphenol A novolak type epoxy resin 157S70 was 0.2 parts by weight, which was half of 0.4 parts by weight of bisphenol A type epoxy resin 1001.
 ここで、ポリプロピレン樹脂組成物が含まれている使用済み熱可塑性樹脂組成物に対して、ビスフェノールA型エポキシ樹脂を添加した際に得られる再生熱可塑性樹脂組成物の例を、以下に示す(化学式1、2及び3中、
l=1~13、
-R-:化学式4で表される置換基
-R:-(CHCH (n=10,12,14,16のいずれか)又は-(CHCH=CH(CHCH (m=5,7のいずれか))。なお、再生熱可塑性樹脂組成物は、以下に示す化学式1、2及び3のうち、1種類の再生熱可塑性樹脂組成物が得られる場合もあれば、複数種類の再生熱可塑性樹脂組成物が得られる場合もある。
Here, an example of the regenerated thermoplastic resin composition obtained when the bisphenol A type epoxy resin is added to the used thermoplastic resin composition containing the polypropylene resin composition is shown below (chemical formula). In 1, 2 and 3,
l = 1-13,
-R 1- : Substituent represented by Chemical Formula 4-R 2 :-(CH 2 ) n CH 3 (any of n = 10, 12, 14, 16) or-(CH 2 ) 7 CH = CH ( CH 2 ) m CH 3 (m = 5, 7)). As the regenerated thermoplastic resin composition, one type of regenerated thermoplastic resin composition may be obtained from the following chemical formulas 1, 2 and 3, or a plurality of types of regenerated thermoplastic resin compositions may be obtained. In some cases.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 また、ポリプロピレン樹脂組成物が含まれている使用済み熱可塑性樹脂組成物に対して、ビスフェノールAノボラック型エポキシ樹脂を添加した際に得られる再生熱可塑性樹脂組成物の例を、以下に示す(化学式5、6及び7中、
k=1~13
-R:-(CHCH(n=10,12,14,16のいずれか)又は-(CHCH=CH(CHCH(m=5,7のいずれか))。なお、再生熱可塑性樹脂組成物は、以下に示す化学式5、6及び7のうち、1種類の再生熱可塑性樹脂組成物が得られる場合もあれば、複数種類の再生熱可塑性樹脂組成物が得られる場合もある。
Further, an example of the regenerated thermoplastic resin composition obtained when the bisphenol A novolak type epoxy resin is added to the used thermoplastic resin composition containing the polypropylene resin composition is shown below (chemical formula). In 5, 6 and 7,
k = 1 to 13
-R 2 :-(CH 2 ) n CH 3 (any of n = 10, 12, 14, 16) or-(CH 2 ) 7 CH = CH (CH 2 ) m CH 3 (m = 5, 7) either)). As the regenerated thermoplastic resin composition, one type of regenerated thermoplastic resin composition may be obtained from the following chemical formulas 5, 6 and 7, or a plurality of types of regenerated thermoplastic resin compositions may be obtained. In some cases.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
<実施例44~51>
 実施例44~51では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975)(1004、三菱ケミカル(株)製)又はビスフェノールA型エポキシ樹脂(エポキシ当量:1750~2200)(1007、三菱ケミカル(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。実施例44~51において、実施例25~32と異なる点は、使用済み熱可塑性樹脂組成物が無機フィラーを含んでいる点である。各実施例において、使用済み熱可塑性樹脂組成物は、100重量部に、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Examples 44 to 51>
In Examples 44 to 51, an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) (1004, manufactured by Mitsubishi Chemical Co., Ltd.) or bisphenol A type epoxy resin) is used with respect to the used thermoplastic resin composition. (Epoxy equivalent: 1750 to 2200) (1007, manufactured by Mitsubishi Chemical Corporation)) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Examples 44 to 51, the difference from Examples 25 to 32 is that the used thermoplastic resin composition contains an inorganic filler. In each example, 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975)を0.8重量部添加したものを実施例44、1.8重量部添加したものを実施例45、3.0重量部添加したものを実施例46、5.0重量部添加したものを実施例47とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:1750~2200)を1.6重量部添加したものを実施例48、1.8重量部添加したものを実施例49、3.0重量部添加したものを実施例50、5.0重量部添加したものを実施例51とした。 Example 44, 1.8 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 45 and 3.0 parts by weight were added to Example 46, and 5.0 parts by weight were added to Example 47. Further, 1.6 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 1750 to 2200) was added to 100 parts by weight of the used thermoplastic resin composition, and 1.8 parts by weight of Example 48 was added. Examples 49 and 3.0 parts by weight were added to Example 50, and 5.0 parts by weight were added to Example 51.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表7に示す。実施例44~51において、いずれの再生熱可塑性樹脂組成物も、FT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例44~51の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 7 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Examples 44 to 51, the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 44 to 51 were good.
 さらに、使用済み熱可塑性樹脂組成物に無機フィラーが含まれている場合でも、実施例44~51において得られた再生熱可塑性樹脂組成物の外観が良好で、外観意匠性に優れた再生熱可塑性樹脂組成物であることがわかった。 Further, even when the used thermoplastic resin composition contains an inorganic filler, the regenerated thermoplastic resin compositions obtained in Examples 44 to 51 have a good appearance and excellent appearance design. It turned out to be a resin composition.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
<実施例52~54>
 実施例52~54では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製))及び分散剤としてステアリン酸マグネシウムを含む無機顔料5重量部を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。実施例52~54において、実施例33~35と異なる点は、使用済み熱可塑性樹脂組成物が無機フィラーを含んでいる点である。各実施例において、使用済み熱可塑性樹脂組成物は、100重量部に、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Examples 52 to 54>
In Examples 52 to 54, the used thermoplastic resin composition is subjected to an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) and stearer as a dispersant. 5 parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Examples 52 to 54, the difference from Examples 33 to 35 is that the used thermoplastic resin composition contains an inorganic filler. In each example, 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を1.8重量部添加したものを実施例52、3.0重量部添加したものを実施例53、5.0重量部添加したものを実施例54とした。 Example 52, 3.0 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 53 and 5.0 parts by weight were added as Example 54.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表8に示す。実施例52~54において、いずれの再生熱可塑性樹脂組成物も、FT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例52~54の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 8 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Examples 52 to 54, the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 52 to 54 were good.
 さらに、使用済み熱可塑性樹脂組成物に無機フィラーが含まれている場合でも、実施例52~54において得られた再生熱可塑性樹脂組成物の外観が良好で、外観意匠性に優れた再生熱可塑性樹脂組成物であることがわかった。 Further, even when the used thermoplastic resin composition contains an inorganic filler, the regenerated thermoplastic resin compositions obtained in Examples 52 to 54 have a good appearance and excellent appearance design. It turned out to be a resin composition.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
<実施例55~57>
 実施例55~57では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製))及び分散剤としてステアリン酸マグネシウムを含む無機顔料2重量部を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。実施例55~57において、実施例52~54と異なる点は、無機顔料の添加率である。各実施例において、使用済み熱可塑性樹脂組成物は、100重量部に、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Examples 55 to 57>
In Examples 55 to 57, the used thermoplastic resin composition is subjected to an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) and stearer as a dispersant. Two parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Examples 55 to 57, the difference from Examples 52 to 54 is the addition rate of the inorganic pigment. In each example, 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を1.4重量部添加したものを実施例55、3.0重量部添加したものを実施例56、5.0重量部添加したものを実施例57とした。 Examples 55 and 3.0 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition were added. Examples 56 and 5.0 parts by weight were added as Example 57.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表9に示す。実施例55~57において、いずれの再生熱可塑性樹脂組成物も、FT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例55~57の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 9 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Examples 55 to 57, the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 55 to 57 were good.
 無機顔料2重量部を含む実施例55では、無機顔料5重量部を含む実施例52よりも添加するビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を0.4重量部少なくできた。これにより、使用済み熱可塑性樹脂組成物への無機顔料の添加率を減らすことで、含有する脂肪酸も減り、より少ないエポキシ樹脂の添加で、再生熱可塑性樹脂組成物の外観及び物性を良好にできることが分かった。 In Example 55 containing 2 parts by weight of the inorganic pigment, the amount of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) to be added could be reduced by 0.4 parts by weight as compared with Example 52 containing 5 parts by weight of the inorganic pigment. As a result, by reducing the addition rate of the inorganic pigment to the used thermoplastic resin composition, the fatty acid contained is also reduced, and by adding a smaller amount of epoxy resin, the appearance and physical properties of the regenerated thermoplastic resin composition can be improved. I understood.
 通常は、無機顔料の添加率を減らすと、目的とする色調に調色できない可能性があるが、例えば、使用済み熱可塑性樹脂組成物を回収する際に、濃色系フレークのみを予め除去しておけば、淡色系の再生熱可塑性樹脂組成物に調色する際の無機顔料の添加率を減らすことができる。また、例えば、外観不良の原因となる異物を予め除去しておけば、異物を隠蔽するための無機顔料を減らすことができる。 Normally, if the addition rate of the inorganic pigment is reduced, it may not be possible to adjust the color to the desired color tone. However, for example, when recovering the used thermoplastic resin composition, only dark-colored flakes are removed in advance. If this is done, the addition rate of the inorganic pigment when toning the light-colored regenerated thermoplastic resin composition can be reduced. Further, for example, if the foreign matter that causes the appearance deterioration is removed in advance, the amount of the inorganic pigment for concealing the foreign matter can be reduced.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
<実施例58>
 実施例58では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製))1.2重量部、酸化防止剤(A-611、(株)ADEKA)0.5重量部、金属不活性化剤(CDA-6、(株)ADEKA)0.1重量部を添加して混合したものを、240℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)220℃、金型温度30℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。実施例58において、使用済み熱可塑性樹脂組成物は、100重量部に、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Example 58>
In Example 58, 1.2 parts by weight of an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) was oxidized with respect to the used thermoplastic resin composition. 0.5 part by weight of an inhibitor (A-611, ADEKA Corporation) and 0.1 part by weight of a metal inactivating agent (CDA-6, ADEKA Corporation) were added and mixed, and the mixture was mixed at 240 ° C. , Kneaded in a kneader while heating and melting. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 30 ° C. In Example 58, 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表10に示す。実施例58において、再生熱可塑性樹脂組成物のFT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例58の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 10 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Example 58, the results of the FT-IR evaluation and the physical property evaluation of the regenerated thermoplastic resin composition were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin composition obtained under the conditions of Example 58 were good.
 さらに、使用済み熱可塑性樹脂組成物に対して、酸化防止剤及び金属不活性化剤を添加しても、得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Furthermore, it was found that the appearance and physical properties of the obtained regenerated thermoplastic resin composition were good even when an antioxidant and a metal inactivating agent were added to the used thermoplastic resin composition.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
<実施例59~61>
 実施例59~61では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製))、分散剤としてステアリン酸マグネシウムを含む無機顔料5重量部、酸化防止剤(A-611、(株)ADEKA)0.5重量部及び金属不活性化剤(CDA-6、(株)ADEKA)0.1重量部を添加して混合したものを、220℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)220℃、金型温度30℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。実施例59~61において、実施例52~54と異なる点は、酸化防止剤0.5重量部、金属不活性化剤0.1重量部を含んでいる点である。各実施例において、使用済み熱可塑性樹脂組成物は、100重量部に、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Examples 59 to 61>
In Examples 59 to 61, an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) was used as a dispersant for the used thermoplastic resin composition. 5 parts by weight of an inorganic pigment containing magnesium acid, 0.5 part by weight of an antioxidant (A-611, ADEKA Corporation) and 0.1 part by weight of a metal inactivating agent (CDA-6, ADEKA Corporation). The added and mixed product was kneaded in a kneader while being heated and melted at 220 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 30 ° C. Examples 59 to 61 differ from Examples 52 to 54 in that they contain 0.5 parts by weight of the antioxidant and 0.1 parts by weight of the metal inactivating agent. In each example, 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を1.8重量部添加したものを実施例59、3.0重量部添加したものを実施例60、5.0重量部添加したものを実施例61とした。 Example 59, 3.0 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 60 and 5.0 parts by weight were added as Example 61.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表11に示す。実施例59~61において、いずれの再生熱可塑性樹脂組成物も、FT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例59~61の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 11 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Examples 59 to 61, the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin compositions obtained under the conditions of Examples 59 to 61 were good.
 さらに、使用済み熱可塑性樹脂組成物に酸化防止剤及び金属不活性化剤が含まれている場合でも、実施例59~61において得られた再生熱可塑性樹脂組成物の外観が良好で、外観意匠性に優れた再生熱可塑性樹脂組成物であることがわかった。 Further, even when the used thermoplastic resin composition contains an antioxidant and a metal inactivating agent, the regenerated thermoplastic resin compositions obtained in Examples 59 to 61 have a good appearance and an appearance design. It was found to be a regenerated thermoplastic resin composition having excellent properties.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
<実施例62~64>
 実施例62~64では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製))、分散剤としてステアリン酸マグネシウムを含む無機顔料2重量部、酸化防止剤(A-611、(株)ADEKA)0.5重量部及び金属不活性化剤(CDA-6、(株)ADEKA)0.1重量部を添加して混合したものを、220℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)220℃、金型温度30℃の条件で、ISOダンベル試験片を、すなわち再生熱可塑性樹脂組成物を成形した。実施例62~64において、実施例55~57と異なる点は、酸化防止剤0.5重量部、金属不活性化剤0.1重量部を含んでいる点である。各実施例において、使用済み熱可塑性樹脂組成物は、100重量部に、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Examples 62 to 64>
In Examples 62 to 64, an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) was used as a dispersant for the used thermoplastic resin composition. 2 parts by weight of an inorganic pigment containing magnesium acid, 0.5 part by weight of an antioxidant (A-611, ADEKA Corporation) and 0.1 part by weight of a metal inactivating agent (CDA-6, ADEKA Corporation). The added and mixed product was kneaded in a kneader while being heated and melted at 220 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 220 ° C. and a mold temperature of 30 ° C. Examples 62 to 64 differ from Examples 55 to 57 in that they contain 0.5 parts by weight of the antioxidant and 0.1 parts by weight of the metal inactivating agent. In each example, 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Japan Talc Co., Ltd.) (Made) is included in 20 parts by weight.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を1.4重量部添加したものを実施例62、3.0重量部添加したものを実施例63、5.0重量部添加したものを実施例64とした。 Example 62, 3.0 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition was added. Examples 63 and 5.0 parts by weight were added as Example 64.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表12に示す。実施例62~64において、いずれの再生熱可塑性樹脂組成物も、FT-IR評価及び物性評価の結果は合格(A)であった。すなわち、実施例62~64の条件において得られた再生熱可塑性樹脂組成物の外観及び物性は良好であることがわかった。 Table 12 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Examples 62 to 64, the results of the FT-IR evaluation and the physical property evaluation of all the regenerated thermoplastic resin compositions were acceptable (A). That is, it was found that the appearance and physical properties of the regenerated thermoplastic resin composition obtained under the conditions of Examples 62 to 64 were good.
 さらに、使用済み熱可塑性樹脂組成物に酸化防止剤及び金属不活性化剤が含まれている場合でも、実施例62~64において得られた再生熱可塑性樹脂組成物の外観が良好で、外観意匠性に優れた再生熱可塑性樹脂組成物であることがわかった。 Further, even when the used thermoplastic resin composition contains an antioxidant and a metal inactivating agent, the regenerated thermoplastic resin compositions obtained in Examples 62 to 64 have a good appearance and an appearance design. It was found to be a regenerated thermoplastic resin composition having excellent properties.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
<比較例1~12>
 比較例1~12では、使用済み熱可塑性樹脂組成物に対して、シランカップリング剤(3-グリシリドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株)製)、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(KBM-603、信越化学工業(株)製)、3―イソシアネートプロピルトリエトキシシラン(KBE-9007N、信越化学工業(株)製)、ビニルトリエトキシシラン(KBE-1003、信越化学工業(株)製)又は3-メタクリロキシプロピルトリメトキシシラン(KBM-503、信越化学工業(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片、すなわち再生熱可塑性樹脂組成物を成形した。なお、使用済み家電製品より選別回収したポリプロピレン樹脂組成物に何も添加しない場合についても上記と同じ条件でISOダンベル試験片を成形した。各比較例において、使用済み熱可塑性樹脂組成物の100重量部は、使用済み家電製品より選別回収したポリプロピレン樹脂組成物で構成される。
<Comparative Examples 1 to 12>
In Comparative Examples 1 to 12, a silane coupling agent (3-glycyridoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.), N-2-) was used with respect to the used thermoplastic resin composition. (Aminoethyl) -3-aminopropyltrimethoxysilane (KBM-603, manufactured by Shin-Etsu Chemical Co., Ltd.), 3-Ixocyanatepropyltriethoxysilane (KBE-9007N, manufactured by Shin-Etsu Chemical Co., Ltd.), vinyl triethoxy Silane (KBE-1003, manufactured by Shin-Etsu Chemical Co., Ltd.) or 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added and mixed, and the mixture was added and mixed at 210 ° C. It was kneaded in a kneader while being heated and melted. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. The ISO dumbbell test piece was molded under the same conditions as above even when nothing was added to the polypropylene resin composition sorted and recovered from used home appliances. In each comparative example, 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances.
 使用済み熱可塑性樹脂組成物100重量部に対して、何も添加しなかったものを比較例1、エポキシ基を有するシランカップリング剤である3-グリシリドキシプロピルトリメトキシシランを0.2重量部添加したものを比較例2、3.0重量部添加したものを比較例3、5.0重量部添加したものを比較例4とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、アミノ基を有するシランカップリング剤であるN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを0.2重量部添加したものを比較例5、3.0重量部添加したものを比較例6、5.0重量部添加したものを比較例7とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、イソシアネート基を有するシランカップリング剤である3―イソシアネートプロピルトリエトキシシランを0.8重量部添加したものを比較例8、3.0重量部添加したものを比較例9、5.0重量部添加したものを比較例10とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、脂肪酸中のカルボキシル基と反応しない官能基(ビニル基)を有するシランカップリング剤であるビニルトリエトキシシランを1.0重量部添加したものを比較例11とし、脂肪酸中のカルボキシル基と反応しない官能基(メタクリル基)を有するシランカップリング剤である3-メタクリロキシプロピルトリメトキシシランを1.0重量部添加したものを比較例12とした。 Comparative Example 1 in which nothing was added to 100 parts by weight of the used thermoplastic resin composition, 0.2 weight of 3-glycyridoxypropyltrimethoxysilane, which is a silane coupling agent having an epoxy group. Comparative Example 2 was added in parts, Comparative Example 3 was added in an amount of 3.0 parts by weight, and Comparative Example 4 was added in an amount of 5.0 parts by weight. Further, 0.2 part by weight of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, which is a silane coupling agent having an amino group, was added to 100 parts by weight of the used thermoplastic resin composition. Comparative Example 5, the one to which 3.0 parts by weight was added was designated as Comparative Example 6, and the one to which 5.0 parts by weight was added was designated as Comparative Example 7. Further, Comparative Examples 8 and 3.0 were prepared by adding 0.8 parts by weight of 3-isocyanatepropyltriethoxysilane, which is a silane coupling agent having an isocyanate group, to 100 parts by weight of the used thermoplastic resin composition. The one to which a part by weight was added was designated as Comparative Example 9, and the one to which 5.0 parts by weight was added was designated as Comparative Example 10. Further, 1.0 part by weight of vinyltriethoxysilane, which is a silane coupling agent having a functional group (vinyl group) that does not react with the carboxyl group in the fatty acid, was added to 100 parts by weight of the used thermoplastic resin composition. Comparative Example 11 was prepared by adding 1.0 part by weight of 3-methacryloxypropyltrimethoxysilane, which is a silane coupling agent having a functional group (methacryl group) that does not react with the carboxyl group in the fatty acid, as Comparative Example 12. And said.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表13に示す。比較例1、2、5、8、11及び12では、引張破断伸び保持率が75%以上であり、物性判定は合格(A)であったが、FT-IR評価は不合格(B)であったため、総合判断を不合格(B)とした。比較例3、4、6、7、9及び10では、FT-IR評価は合格(A)であったが、引張破断伸び保持率が75%未満であり不合格(B)であったため、総合判断を不合格(B)とした。 Table 13 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Comparative Examples 1, 2, 5, 8, 11 and 12, the tensile elongation at break retention rate was 75% or more, and the physical property determination was acceptable (A), but the FT-IR evaluation was unacceptable (B). Because of this, the overall judgment was rejected (B). In Comparative Examples 3, 4, 6, 7, 9 and 10, the FT-IR evaluation was acceptable (A), but the tensile elongation at break retention rate was less than 75% and failed (B). The judgment was rejected (B).
 比較例1の結果から、シランカップリング剤を添加しない場合、脂肪酸のブリードアウトが発生するため、再生熱可塑性樹脂組成物の外観を良好にできないことがわかった。また、比較例2、5及び8の結果から、使用済み熱可塑性樹脂組成物に対して、エポキシ基又はアミノ基を有するシランカップリング剤では0.2重量部より多く、イソシアネート基を有するシランカップリング剤では0.8重量部より多く添加しないと再生熱可塑性樹脂組成物の外観を良好にできないことがわかった。また、比較例3、4、6、7、9及び10の結果から、使用済み熱可塑性樹脂組成物に対して、エポキシ基、アミノ基及びイソシアネート基を有するシランカップリング剤を3.0重量部以上添加すると、得られた再生熱可塑性樹脂組成物の物性が低下することがわかった。また、比較例11及び12の結果から、脂肪酸中のカルボキシル基と反応しない官能基であるビニル基及びメタクリル基を有するシランカップリング剤では、使用済み熱可塑性樹脂組成物に対して、1.0重量部添加しても、得られた再生熱可塑性樹脂組成物の外観を良好にできないことがわかった。 From the results of Comparative Example 1, it was found that when the silane coupling agent was not added, fatty acid bleed-out occurred, so that the appearance of the regenerated thermoplastic resin composition could not be improved. Further, from the results of Comparative Examples 2, 5 and 8, the silane coupling agent having an epoxy group or an amino group has more than 0.2 parts by weight with respect to the used thermoplastic resin composition, and the silane cup having an isocyanate group. It was found that the appearance of the regenerated thermoplastic resin composition could not be improved unless the ring agent was added in an amount of more than 0.8 parts by weight. Further, from the results of Comparative Examples 3, 4, 6, 7, 9 and 10, 3.0 parts by weight of a silane coupling agent having an epoxy group, an amino group and an isocyanate group was added to the used thermoplastic resin composition. It was found that the above addition deteriorated the physical characteristics of the obtained regenerated thermoplastic resin composition. Further, from the results of Comparative Examples 11 and 12, the silane coupling agent having a vinyl group and a methacrylic group, which are functional groups that do not react with the carboxyl group in the fatty acid, is 1.0 with respect to the used thermoplastic resin composition. It was found that the appearance of the obtained regenerated thermoplastic resin composition could not be improved even if it was added by weight.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
<比較例13~22>
 比較例13~22では、使用済み熱可塑性樹脂組成物に対して、シランカップリング剤(3-グリシリドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株)製)、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(KBM-603、信越化学工業(株)製)又は3―イソシアネートプロピルトリエトキシシラン(KBE-9007N、信越化学工業(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片、すなわち再生熱可塑性樹脂組成物を成形した。なお、使用済み家電製品より選別回収したポリプロピレン樹脂組成物に無機フィラー20重量部以外は何も添加しない場合についても上記と同じ条件でISOダンベル試験片を成形した。比較例13~22において、比較例1~10と異なる点は、使用済み熱可塑性樹脂組成物が、無機フィラーを含んでいる点である。各比較例において、使用済み熱可塑性樹脂組成物は、100重量部に、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Comparative Examples 13 to 22>
In Comparative Examples 13 to 22, a silane coupling agent (3-glycyridoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.), N-2-) was used with respect to the used thermoplastic resin composition. (Aminoethyl) -3-aminopropyltrimethoxysilane (KBM-603, manufactured by Shin-Etsu Chemical Co., Ltd.) or 3-Ixoxide propyltriethoxysilane (KBE-9007N, manufactured by Shin-Etsu Chemical Co., Ltd.)) is added. The mixture was kneaded in a kneader at 210 ° C. while being heated and melted. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. The ISO dumbbell test piece was molded under the same conditions as above even when nothing other than 20 parts by weight of the inorganic filler was added to the polypropylene resin composition sorted and recovered from the used home appliances. In Comparative Examples 13 to 22, the difference from Comparative Examples 1 to 10 is that the used thermoplastic resin composition contains an inorganic filler. In each comparative example, 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Nippon Talc Co., Ltd.) (Made) is included in 20 parts by weight.
 使用済み熱可塑性樹脂組成物100重量部に対して、何も添加しなかったものを比較例13、エポキシ基を有するシランカップリング剤である3-グリシリドキシプロピルトリメトキシシランを0.2重量部添加したものを比較例14、3.0重量部添加したものを比較例15、5.0重量部添加したものを比較例16とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、アミノ基を有するシランカップリング剤であるN-2-(アミノエチル)-3-アミノプロピルトリメトキシシランを0.2重量部添加したものを比較例17、3.0重量部添加したものを比較例18、5.0重量部添加したものを比較例19とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、イソシアネート基を有するシランカップリング剤である3―イソシアネートプロピルトリエトキシシランを0.8重量部添加したものを比較例20、3.0重量部添加したものを比較例21、5.0重量部添加したものを比較例22とした。 Comparative Example 13 was obtained by adding nothing to 100 parts by weight of the used thermoplastic resin composition, and 0.2 weight of 3-glycyridoxypropyltrimethoxysilane, which is a silane coupling agent having an epoxy group. Comparative Example 14 was added in parts, Comparative Example 15 was added in an amount of 3.0 parts by weight, and Comparative Example 16 was added in an amount of 5.0 parts by weight. Further, 0.2 part by weight of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, which is a silane coupling agent having an amino group, was added to 100 parts by weight of the used thermoplastic resin composition. Those added in Comparative Example 17 and 3.0 parts by weight were designated as Comparative Example 18, and those to which 5.0 parts by weight were added were designated as Comparative Example 19. Further, Comparative Examples 20 and 3.0 were prepared by adding 0.8 parts by weight of 3-isocyanatepropyltriethoxysilane, which is a silane coupling agent having an isocyanate group, to 100 parts by weight of the used thermoplastic resin composition. The one added by weight was designated as Comparative Example 21, and the one added by 5.0 parts by weight was designated as Comparative Example 22.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表14に示す。比較例13、14、17及び20では、引張破断伸び保持率が75%以上であり、物性判定は合格(A)であったが、FT-IR評価は不合格(B)であったため、総合判断を不合格(B)とした。比較例15、16、18、19、21及び22では、FT-IR評価は合格(A)であったが、引張破断伸び保持率が75%未満であり不合格(B)であったため、総合判断を不合格(B)とした。 Table 14 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Comparative Examples 13, 14, 17 and 20, the tensile elongation at break retention rate was 75% or more, and the physical property determination was acceptable (A), but the FT-IR evaluation was unacceptable (B). The judgment was rejected (B). In Comparative Examples 15, 16, 18, 19, 21 and 22, the FT-IR evaluation was acceptable (A), but the tensile elongation at break retention rate was less than 75% and failed (B). The judgment was rejected (B).
 比較例13の結果から、使用済み熱可塑性樹脂組成物に対して、シランカップリング剤を添加しない場合、脂肪酸のブリードアウトが発生するため、外観を良好にできないことがわかった。また、比較例14、17及び20の結果から、エポキシ基又はアミノ基を有するシランカップリング剤では、0.2重量部より多く、イソシアネート基を有するシランカップリング剤では0.8重量部より多く添加しないと、再生熱可塑性樹脂組成物の外観を良好にできないことがわかった。また、比較例15、16、18、19、21及び22の結果から、エポキシ基、アミノ基及びイソシアネート基を有するシランカップリング剤を3.0重量部以上添加すると、得られた熱可塑性樹脂組成物の物性が低下することがわかった。 From the results of Comparative Example 13, it was found that when the silane coupling agent was not added to the used thermoplastic resin composition, fatty acid bleed-out occurred and the appearance could not be improved. Further, from the results of Comparative Examples 14, 17 and 20, the silane coupling agent having an epoxy group or an amino group had more than 0.2 parts by weight, and the silane coupling agent having an isocyanate group had more than 0.8 parts by weight. It was found that the appearance of the regenerated thermoplastic resin composition could not be improved without the addition. Further, from the results of Comparative Examples 15, 16, 18, 19, 21 and 22, when 3.0 parts by weight or more of a silane coupling agent having an epoxy group, an amino group and an isocyanate group was added, the obtained thermoplastic resin composition was added. It was found that the physical properties of the object deteriorated.
 さらに、比較例1~10の結果と、比較例13~22の結果とから、使用済み熱可塑性樹脂組成物に含まれている無機フィラーは、FT-IR評価及び物性評価の結果に影響を与えないことがわかった。 Further, from the results of Comparative Examples 1 to 10 and the results of Comparative Examples 13 to 22, the inorganic filler contained in the used thermoplastic resin composition affects the results of the FT-IR evaluation and the physical property evaluation. It turned out not.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
<比較例23~26>
 比較例23~26では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製)及びビスフェノールAノボラック型エポキシ樹脂(157S70、三菱ケミカル(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片、すなわち再生熱可塑性樹脂組成物を成形した。比較例23~26において、比較例1~12と異なる点は、使用済み熱可塑性樹脂組成物に対して、シランカップリング剤の代わりにエポキシ樹脂を添加する点である。各比較例において、使用済み熱可塑性樹脂組成物の100重量部は、使用済み家電製品より選別回収したポリプロピレン樹脂組成物で構成される。
<Comparative Examples 23 to 26>
In Comparative Examples 23 to 26, the epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Co., Ltd.) and bisphenol A novolak type epoxy) were used with respect to the used thermoplastic resin composition. A resin (157S70, manufactured by Mitsubishi Chemical Corporation) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Comparative Examples 23 to 26, the difference from Comparative Examples 1 to 12 is that an epoxy resin is added to the used thermoplastic resin composition instead of the silane coupling agent. In each comparative example, 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を0.2重量部添加したものを比較例23、10重量部添加したものを比較例24とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールAノボラック型エポキシ樹脂を0.1重量部添加したものを比較例25、10重量部添加したものを比較例26とした。 Comparative Example 23, 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 24. Further, Comparative Example 25 was prepared by adding 0.1 part by weight of bisphenol A novolak type epoxy resin to 100 parts by weight of the used thermoplastic resin composition, and Comparative Example 26 was added by 10 parts by weight.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表15に示す。比較例23及び25では、引張破断伸び保持率が75%以上であり、物性判定は合格(A)であったが、FT-IR評価は不合格(B)であったため、総合判断を不合格(B)とした。比較例24及び26では、FT-IR評価は合格(A)であったが、引張破断伸び保持率が75%未満であり不合格(B)であったため、総合判断を不合格(B)とした。 Table 15 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Comparative Examples 23 and 25, the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected. It was designated as (B). In Comparative Examples 24 and 26, the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B). did.
 比較例23及び25の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂は0.2重量部より多く、ビスフェノールAノボラック型エポキシ樹脂は0.1重量部より多く添加しないと再生熱可塑性樹脂組成物は外観を良好にできないことがわかった。また、比較例24及び26の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂及びビスフェノールAノボラック型エポキシ樹脂を10重量部添加すると、再生熱可塑性樹脂組成物の物性が低下することがわかった。 From the results of Comparative Examples 23 and 25, the bisphenol A type epoxy resin was more than 0.2 parts by weight and the bisphenol A novolak type epoxy resin was more than 0.1 parts by weight with respect to 100 parts by weight of the used thermoplastic resin composition. It was found that the regenerated thermoplastic resin composition could not have a good appearance unless it was added in a large amount. Further, from the results of Comparative Examples 24 and 26, when 10 parts by weight of the bisphenol A type epoxy resin and the bisphenol A novolak type epoxy resin were added to 100 parts by weight of the used thermoplastic resin composition, the regenerated thermoplastic resin composition was obtained. It was found that the physical properties of
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
<比較例27~30>
 比較例27~30では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975)(1004、三菱ケミカル(株)製)又はビスフェノールA型エポキシ樹脂(エポキシ当量:1750~2200)(1007、三菱ケミカル(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片、すなわち再生熱可塑性樹脂組成物を成形した。比較例27~30において、比較例23及び24と異なる点は、エポキシ樹脂のエポキシ当量の値である。各比較例において、使用済み熱可塑性樹脂組成物の100重量部は、使用済み家電製品より選別回収したポリプロピレン樹脂組成物で構成される。
<Comparative Examples 27 to 30>
In Comparative Examples 27 to 30, an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) (1004, manufactured by Mitsubishi Chemical Corporation) or bisphenol A type epoxy resin) was used with respect to the used thermoplastic resin composition. (Epoxy equivalent: 1750 to 2200) (1007, manufactured by Mitsubishi Chemical Corporation)) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Comparative Examples 27 to 30, the difference from Comparative Examples 23 and 24 is the value of the epoxy equivalent of the epoxy resin. In each comparative example, 100 parts by weight of the used thermoplastic resin composition is composed of a polypropylene resin composition sorted and recovered from used home appliances.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975)を0.6重量部添加したものを比較例27、10重量部添加したものを比較例28とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:1750~2200)を1.4重量部添加したものを比較例29、10重量部添加したものを比較例30とした。 Comparative Example 27, 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 28. Further, in Comparative Example 29, 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 1750 to 2200) added to 100 parts by weight of the used thermoplastic resin composition was added. It was designated as Comparative Example 30.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表16に示す。比較例27及び29では、引張破断伸び保持率が75%以上であり、物性判定は合格(A)であったが、FT-IR評価は不合格(B)であったため、総合判断を不合格(B)とした。比較例28及び30では、FT-IR評価は合格(A)であったが、引張破断伸び保持率が75%未満であり不合格(B)であったため、総合判断を不合格(B)とした。 Table 16 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Comparative Examples 27 and 29, the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected. It was designated as (B). In Comparative Examples 28 and 30, the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B). did.
 比較例27及び29の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975)は0.6重量部より多く、ビスフェノールA型エポキシ樹脂(エポキシ当量:1750~2200)は1.4重量部より多く添加しないと再生熱可塑性樹脂組成物は外観を良好にできないことがわかった。また、比較例28及び30の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975又は1750~2200)を10重量部添加すると、再生熱可塑性樹脂組成物の物性が低下することがわかった。 From the results of Comparative Examples 27 and 29, the bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) was more than 0.6 parts by weight with respect to 100 parts by weight of the used thermoplastic resin composition, and the bisphenol A type epoxy resin. It was found that the regenerated thermoplastic resin composition could not have a good appearance unless (epoxy equivalent: 1750 to 2200) was added in an amount of more than 1.4 parts by weight. Further, from the results of Comparative Examples 28 and 30, when 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 875 to 975 or 1750 to 2200) was added to 100 parts by weight of the used thermoplastic resin composition, it was regenerated. It was found that the physical properties of the thermoplastic resin composition deteriorated.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
<比較例31及び32>
 比較例31及び32では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製))、及び分散剤としてステアリン酸マグネシウムを含む無機顔料5重量部を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片、すなわち再生熱可塑性樹脂組成物を成形した。比較例31及び32において、比較例23及び24と異なる点は、無機顔料を添加する点である。各比較例において、使用済み熱可塑性樹脂組成物は、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が100重量部含まれている。
<Comparative Examples 31 and 32>
In Comparative Examples 31 and 32, the used thermoplastic resin composition was used as an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Co., Ltd.)) and as a dispersant. 5 parts by weight of an inorganic pigment containing magnesium stearate was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Comparative Examples 31 and 32, the difference from Comparative Examples 23 and 24 is that an inorganic pigment is added. In each comparative example, the used thermoplastic resin composition contains 100 parts by weight of the polypropylene resin composition sorted and recovered from the used home electric appliances.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を2.0重量部添加したものを比較例31、10重量部添加したものを比較例32とした。 Comparative Example 31 and 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition. It was set to 32.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表17に示す。比較例31では、引張破断伸び保持率が75%以上であり、物性判定は合格(A)であったが、FT-IR評価は不合格(B)であったため、総合判断を不合格(B)とした。比較例32では、FT-IR評価は合格(A)であったが、引張破断伸び保持率が75%未満であり不合格(B)であったため、総合判断を不合格(B)とした。 Table 17 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Comparative Example 31, the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected (B). ). In Comparative Example 32, the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B).
 比較例31の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)は2.0重量部より多く添加しないと再生熱可塑性樹脂組成物は外観を良好にできないことがわかった。また、比較例32の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を10重量部添加すると、再生熱可塑性樹脂組成物の物性が低下することがわかった。 From the results of Comparative Example 31, the regenerated thermoplastic resin composition must be added in an amount of more than 2.0 parts by weight of the bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) with respect to 100 parts by weight of the used thermoplastic resin composition. It turned out that things couldn't look good. Further, from the results of Comparative Example 32, when 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) was added to 100 parts by weight of the used thermoplastic resin composition, the regenerated thermoplastic resin composition was prepared. It was found that the physical properties deteriorated.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
<比較例33~36>
 比較例33~36では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製)及びビスフェノールAノボラック型エポキシ樹脂(157S70、三菱ケミカル(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片、すなわち再生熱可塑性樹脂組成物を成形した。比較例33~36において、比較例23~26と異なる点は、使用済み熱可塑性樹脂組成物が、無機フィラーを含んでいる点である。各比較例において、使用済み熱可塑性樹脂組成物は、100重量部に、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Comparative Examples 33 to 36>
In Comparative Examples 33 to 36, the epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation) and bisphenol A novolak type epoxy were used with respect to the used thermoplastic resin composition. A resin (157S70, manufactured by Mitsubishi Chemical Corporation) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. Comparative Examples 33 to 36 differ from Comparative Examples 23 to 26 in that the used thermoplastic resin composition contains an inorganic filler. In each comparative example, 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Nippon Talc Co., Ltd.) (Made) is included in 20 parts by weight.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を0.2重量部添加したものを比較例33、10重量部添加したものを比較例34とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールAノボラック型エポキシ樹脂を0.1重量部添加したものを比較例35、10重量部添加したものを比較例36とした。 Comparative Example 33, 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 34. Further, Comparative Example 35 was added with 0.1 part by weight of bisphenol A novolak type epoxy resin to 100 parts by weight of the used thermoplastic resin composition, and Comparative Example 36 was added with 10 parts by weight.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表18に示す。比較例33及び35では、引張破断伸び保持率が75%以上であり、物性判定は合格(A)であったが、FT-IR評価は不合格(B)であったため、総合判断を不合格(B)とした。比較例34及び36では、FT-IR評価は合格(A)であったが、引張破断伸び保持率が75%未満であり不合格(B)であったため、総合判断を不合格(B)とした。 Table 18 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Comparative Examples 33 and 35, the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected. It was designated as (B). In Comparative Examples 34 and 36, the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B). did.
 比較例33及び35の結果から、使用済み熱可塑性樹脂組成物に対して、ビスフェノールA型エポキシ樹脂は0.2重量部より多く、ビスフェノールAノボラック型エポキシ樹脂は0.1重量部より多く添加しないと再生熱可塑性樹脂組成物は外観を良好にできないことがわかった。また、比較例34及び36の結果から、使用済み熱可塑性樹脂組成物に対して、ビスフェノールA型エポキシ樹脂及びビスフェノールAノボラック型エポキシ樹脂を10重量部添加すると、再生熱可塑性樹脂組成物の物性が低下することがわかった。 From the results of Comparative Examples 33 and 35, the bisphenol A type epoxy resin is not added more than 0.2 parts by weight and the bisphenol A novolak type epoxy resin is not added more than 0.1 parts by weight with respect to the used thermoplastic resin composition. It was found that the regenerated thermoplastic resin composition could not have a good appearance. Further, from the results of Comparative Examples 34 and 36, when 10 parts by weight of the bisphenol A type epoxy resin and the bisphenol A novolak type epoxy resin were added to the used thermoplastic resin composition, the physical properties of the regenerated thermoplastic resin composition were improved. It turned out to decrease.
 さらに、比較例23~26の結果と、比較例33~36の結果とから、使用済み熱可塑性樹脂組成物に含まれている無機フィラーは、FT-IR評価及び物性評価の結果に影響を与えないことがわかった。 Further, from the results of Comparative Examples 23 to 26 and the results of Comparative Examples 33 to 36, the inorganic filler contained in the used thermoplastic resin composition affects the results of the FT-IR evaluation and the physical property evaluation. It turned out not.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
<比較例37~40>
 比較例37~40では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975)(1004、三菱ケミカル(株)製)又はビスフェノールA型エポキシ樹脂(エポキシ当量:1750~2200)(1007、三菱ケミカル(株)製))を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片、すなわち再生熱可塑性樹脂組成物を成形した。比較例37~40において、比較例27~30と異なる点は、使用済み熱可塑性樹脂組成物が、無機フィラーを含んでいる点である。各比較例において、使用済み熱可塑性樹脂組成物は、100重量部に、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Comparative Examples 37-40>
In Comparative Examples 37 to 40, an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) (1004, manufactured by Mitsubishi Chemical Co., Ltd.) or bisphenol A type epoxy resin) was used with respect to the used thermoplastic resin composition. (Epoxy equivalent: 1750 to 2200) (1007, manufactured by Mitsubishi Chemical Corporation)) was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Comparative Examples 37 to 40, the difference from Comparative Examples 27 to 30 is that the used thermoplastic resin composition contains an inorganic filler. In each comparative example, 100 parts by weight of the used thermoplastic resin composition, 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and an inorganic filler (general-purpose talc MS-K, Nippon Talc Co., Ltd.) (Made) is included in 20 parts by weight.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975)を0.6重量部添加したものを比較例37、10重量部添加したものを比較例38とした。また、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:1750~2200)を1.4重量部添加したものを比較例39、10重量部添加したものを比較例40とした。 Comparative Example 37, 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 38. Further, in Comparative Example 39, 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 1750 to 2200) was added to 100 parts by weight of the used thermoplastic resin composition. It was designated as Comparative Example 40.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表19に示す。比較例37及び39では、引張破断伸び保持率が75%以上であり、物性判定は合格(A)であったが、FT-IR評価は不合格(B)であったため、総合判断を不合格(B)とした。比較例38及び40では、FT-IR評価は合格(A)であったが、引張破断伸び保持率が75%未満であり不合格(B)であったため、総合判断を不合格(B)とした。 Table 19 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Comparative Examples 37 and 39, the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected. It was designated as (B). In Comparative Examples 38 and 40, the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B). did.
 比較例37及び39の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975)は0.6重量部より多く、ビスフェノールA型エポキシ樹脂(エポキシ当量:1750~2200)は1.4重量部より多く添加しないと再生熱可塑性樹脂組成物は外観を良好にできないことがわかった。また、比較例38及び40の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:875~975又は1750~2200)を10重量部添加すると、再生熱可塑性樹脂組成物の物性が低下することがわかった。 From the results of Comparative Examples 37 and 39, the bisphenol A type epoxy resin (epoxy equivalent: 875 to 975) was more than 0.6 parts by weight with respect to 100 parts by weight of the used thermoplastic resin composition, and the bisphenol A type epoxy resin. It was found that the regenerated thermoplastic resin composition could not have a good appearance unless (epoxy equivalent: 1750 to 2200) was added in an amount of more than 1.4 parts by weight. Further, from the results of Comparative Examples 38 and 40, when 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 875 to 975 or 1750 to 2200) was added to 100 parts by weight of the used thermoplastic resin composition, it was regenerated. It was found that the physical properties of the thermoplastic resin composition deteriorated.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
<比較例41及び42>
 比較例41及び42では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製))、分散剤としてステアリン酸マグネシウムを含む無機顔料5重量部を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片、すなわち再生熱可塑性樹脂組成物を成形した。比較例41及び42において、比較例31及び32と異なる点は、使用済み熱可塑性樹脂組成物が、無機フィラーを含んでいる点である。各比較例において、使用済み熱可塑性樹脂組成物は、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Comparative Examples 41 and 42>
In Comparative Examples 41 and 42, an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Co., Ltd.)) was used as a dispersant for the used thermoplastic resin composition. 5 parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. The difference between Comparative Examples 41 and 42 and Comparative Examples 31 and 32 is that the used thermoplastic resin composition contains an inorganic filler. In each comparative example, the used thermoplastic resin composition is 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and 20 parts by weight of the inorganic filler (general-purpose talc MS-K, manufactured by Nippon Talc Co., Ltd.). Part is included.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を1.6重量部添加したものを比較例41、10重量部添加したものを比較例42とした。 Comparative Example 41, 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 42.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表20に示す。比較例41では、引張破断伸び保持率が75%以上であり、物性判定は合格(A)であったが、FT-IR評価は不合格(B)であったため、総合判断を不合格(B)とした。比較例42では、FT-IR評価は合格(A)であったが、引張破断伸び保持率が75%未満であり不合格(B)であったため、総合判断を不合格(B)とした。 Table 20 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Comparative Example 41, the tensile elongation at break retention rate was 75% or more, and the physical property judgment was passed (A), but the FT-IR evaluation was failed (B), so the comprehensive judgment was rejected (B). ). In Comparative Example 42, the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B).
 比較例41の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)は1.6重量部より多く添加しないと再生熱可塑性樹脂組成物は外観を良好にできないことがわかった。また、比較例42の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を10重量部添加すると、再生熱可塑性樹脂組成物の物性が低下することがわかった。 From the results of Comparative Example 41, the regenerated thermoplastic resin composition must be added in an amount of more than 1.6 parts by weight of the bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) with respect to 100 parts by weight of the used thermoplastic resin composition. It turned out that things couldn't look good. Further, from the results of Comparative Example 42, when 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) was added to 100 parts by weight of the used thermoplastic resin composition, the regenerated thermoplastic resin composition was prepared. It was found that the physical properties deteriorated.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
<比較例43及び44>
 比較例43及び44では、使用済み熱可塑性樹脂組成物に対して、エポキシ樹脂(ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)(1001、三菱ケミカル(株)製))、分散剤としてステアリン酸マグネシウムを含む無機顔料2重量部を添加して混合したものを、210℃で、加熱溶融しながら混練機の中で混練した。そして、射出成形機により、樹脂温度(成形温度)210℃、金型温度50℃の条件で、ISOダンベル試験片、すなわち再生熱可塑性樹脂組成物を成形した。比較例43及び44において、比較例41及び42と異なる点は、無機顔料の添加率である。各比較例において、使用済み熱可塑性樹脂組成物は、使用済み家電製品より選別回収したポリプロピレン樹脂組成物が80重量部、無機フィラー(汎用タルクMS-K、日本タルク(株)製)が20重量部含まれている。
<Comparative Examples 43 and 44>
In Comparative Examples 43 and 44, an epoxy resin (bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) (1001, manufactured by Mitsubishi Chemical Corporation)) was used as a dispersant for the used thermoplastic resin composition. Two parts by weight of an inorganic pigment containing magnesium acid was added and mixed, and the mixture was kneaded in a kneader while being heated and melted at 210 ° C. Then, an ISO dumbbell test piece, that is, a regenerated thermoplastic resin composition was molded by an injection molding machine under the conditions of a resin temperature (molding temperature) of 210 ° C. and a mold temperature of 50 ° C. In Comparative Examples 43 and 44, the difference from Comparative Examples 41 and 42 is the addition rate of the inorganic pigment. In each comparative example, the used thermoplastic resin composition is 80 parts by weight of the polypropylene resin composition sorted and recovered from the used home appliances, and 20 parts by weight of the inorganic filler (general-purpose talc MS-K, manufactured by Nippon Talc Co., Ltd.). Part is included.
 使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を1.2重量部添加したものを比較例43、10重量部添加したものを比較例44とした。 Comparative Example 43, 10 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) added to 100 parts by weight of the used thermoplastic resin composition, Comparative Example. It was set to 44.
 得られた試験片を用いて、熱水暴露後にFT-IR評価及び物性評価を実施した結果を表21に示す。比較例43では、引張破断伸び保持率が75%以上であり、物性判定は合格(A)であったが、FT-IR評価は不合格(B)であったため、総合判断を不合格(B)とした。比較例44では、FT-IR評価は合格(A)であったが、引張破断伸び保持率が75%未満であり不合格(B)であったため、総合判断を不合格(B)とした。 Table 21 shows the results of FT-IR evaluation and physical property evaluation after exposure to hot water using the obtained test pieces. In Comparative Example 43, the tensile elongation at break retention rate was 75% or more, and the physical property determination was acceptable (A), but the FT-IR evaluation was unacceptable (B), so the comprehensive determination was unacceptable (B). ). In Comparative Example 44, the FT-IR evaluation was passed (A), but the tensile elongation at break retention rate was less than 75% and failed (B), so the comprehensive judgment was rejected (B).
 比較例43の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)は1.2重量部より多く添加しないと再生熱可塑性樹脂組成物は外観を良好にできないことがわかった。また、比較例44の結果から、使用済み熱可塑性樹脂組成物100重量部に対して、ビスフェノールA型エポキシ樹脂(エポキシ当量:450~500)を10重量部添加すると、再生熱可塑性樹脂組成物の物性が低下することがわかった。 From the results of Comparative Example 43, the regenerated thermoplastic resin composition must be added in an amount of more than 1.2 parts by weight of the bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) with respect to 100 parts by weight of the used thermoplastic resin composition. It turned out that things couldn't look good. Further, from the results of Comparative Example 44, when 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) was added to 100 parts by weight of the used thermoplastic resin composition, the regenerated thermoplastic resin composition was prepared. It was found that the physical properties deteriorated.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 ここで、図1は、実施の形態1にかかる各化合物の添加量を示す図である。図1の横軸は、使用済み熱可塑性樹脂組成物100重量部に対する各化合物の添加量である。図1は、エポキシ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤、イソシアネート基を有するシランカップリング剤及びエポキシ樹脂をそれぞれ使用済み熱可塑性樹脂組成物100重量部に対して混合した場合の、各化合物の添加量と有効な範囲及び有効でない範囲との関係を示す。ここで、「有効である」とは、上述の総合判断で、Aである場合を指す。 Here, FIG. 1 is a diagram showing the addition amount of each compound according to the first embodiment. The horizontal axis of FIG. 1 is the amount of each compound added to 100 parts by weight of the used thermoplastic resin composition. In FIG. 1, a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having an isocyanate group, and an epoxy resin were mixed with 100 parts by weight of each used thermoplastic resin composition. In this case, the relationship between the amount of each compound added and the effective range and the ineffective range is shown. Here, "effective" refers to the case of A in the above-mentioned comprehensive judgment.
 図1において、白く示している範囲は、各化合物における有効な範囲であり、黒く示している範囲は、各化合物における有効でない範囲である。図1に示すように、使用済み熱可塑性樹脂組成物100重量部に対して、エポキシ基を有するシランカップリング剤は、0.4重量部以上1.8重量部以下、アミノ基を有するシランカップリング剤は、0.4重量部以上1.8重量部以下、イソシアネート基を有するシランカップリング剤は、1.0重量部以上1.8重量部以下、エポキシ樹脂は、0.2重量部以上5.0重量部以下が、有効な範囲、すなわち、総合判断でAとなる範囲である。 In FIG. 1, the range shown in white is the effective range in each compound, and the range shown in black is the ineffective range in each compound. As shown in FIG. 1, the silane coupling agent having an epoxy group is 0.4 parts by weight or more and 1.8 parts by weight or less, and the silane cup having an amino group with respect to 100 parts by weight of the used thermoplastic resin composition. The ring agent is 0.4 parts by weight or more and 1.8 parts by weight or less, the silane coupling agent having an isocyanate group is 1.0 part by weight or more and 1.8 parts by weight or less, and the epoxy resin is 0.2 parts by weight or more. 5.0 parts by weight or less is an effective range, that is, a range that is A in the comprehensive judgment.
 以上のように、使用済み熱可塑性樹脂組成物100重量部に対して、エポキシ基を有するシランカップリング剤を0.4重量部以上1.8重量部以下、アミノ基を有するシランカップリング剤を0.4重量部以上1.8重量部以下、イソシアネート基を有するシランカップリング剤を1.0重量部以上1.8重量部以下、又はエポキシ樹脂を0.2重量部以上5.0重量部以下を混合することによって、再生熱可塑性樹脂組成物が得られる。再生熱可塑性樹脂組成物の製造方法において、使用済み熱可塑性樹脂組成物と、エポキシ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤、イソシアネート基を有するシランカップリング剤又はエポキシ樹脂とを混合する工程を、混合工程という。 As described above, with respect to 100 parts by weight of the used thermoplastic resin composition, 0.4 parts by weight or more and 1.8 parts by weight or less of the silane coupling agent having an epoxy group and the silane coupling agent having an amino group are used. 0.4 parts by weight or more and 1.8 parts by weight or less, 1.0 part by weight or more and 1.8 parts by weight or less of the silane coupling agent having an isocyanate group, or 0.2 parts by weight or more and 5.0 parts by weight of the epoxy resin. By mixing the following, a regenerated epoxy resin composition is obtained. In the method for producing a regenerated thermoplastic resin composition, a used thermoplastic resin composition and a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having an isocyanate group, or an epoxy resin are used. The process of mixing the epoxides is called a mixing process.
 上述の製造方法によって、脂肪酸のブリードアウトを抑制し、外観意匠性を向上できる再生熱可塑性樹脂組成物が得られる。 By the above-mentioned production method, a regenerated thermoplastic resin composition capable of suppressing the bleed-out of fatty acids and improving the appearance design can be obtained.
 なお、本開示において、無機フィラー、酸化防止剤、金属不活性化剤及び着色顔料は混合工程において、使用済み熱可塑性樹脂組成物に添加される。無機フィラーを添加することによって、再生熱可塑性樹脂組成物の耐熱性を向上できる。 In the present disclosure, the inorganic filler, the antioxidant, the metal deactivating agent and the coloring pigment are added to the used thermoplastic resin composition in the mixing step. By adding the inorganic filler, the heat resistance of the regenerated thermoplastic resin composition can be improved.
 また、本開示において、熱可塑性樹脂組成物としてポリプロピレン樹脂組成物を用いた例を示したが、ポリエチレン樹脂組成物、ポリスチレン樹脂組成物、ABS樹脂組成物又はポリカーボネート樹脂組成物を用いてもよい。 Further, in the present disclosure, an example in which a polypropylene resin composition is used as the thermoplastic resin composition is shown, but a polyethylene resin composition, a polystyrene resin composition, an ABS resin composition or a polycarbonate resin composition may be used.
 また、本開示においては、使用済み熱可塑性樹脂組成物に対して、エポキシ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤、イソシアネート基を有するシランカップリング剤、又はエポキシ樹脂を、それぞれ単体で混合する例を示したが、エポキシ基を有するシランカップリング剤、アミノ基を有するシランカップリング剤、イソシアネート基を有するシランカップリング剤、及びエポキシ樹脂の少なくともいずれかを使用済み熱可塑性樹脂組成物に対して混合してもよい。 Further, in the present disclosure, a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having an isocyanate group, or an epoxy resin is used for a used thermoplastic resin composition. An example of mixing each of them alone is shown, but at least one of a silane coupling agent having an epoxy group, a silane coupling agent having an amino group, a silane coupling agent having an isocyanate group, and an epoxy resin is used thermoplasticity. It may be mixed with the resin composition.
 また、本開示において、発明の範囲内において、実施の形態1を適宜、変形及び省略することが可能である。 Further, in the present disclosure, within the scope of the invention, the first embodiment can be appropriately modified and omitted.

Claims (6)

  1.  使用済み熱可塑性樹脂組成物100重量部に対して、エポキシ基を有するシランカップリング剤を0.4重量部以上1.8重量部以下、アミノ基を有するシランカップリング剤を0.4重量部以上1.8重量部以下、イソシアネート基を有するシランカップリング剤を1.0重量部以上1.8重量部以下、及びエポキシ樹脂を0.2重量部以上5.0重量部以下の少なくともいずれかを混合する混合工程を有する、
    再生熱可塑性樹脂組成物の製造方法。
    For 100 parts by weight of the used thermoplastic resin composition, 0.4 parts by weight or more and 1.8 parts by weight or less of the silane coupling agent having an epoxy group, and 0.4 parts by weight of the silane coupling agent having an amino group. At least one of 1.8 parts by weight or less, 1.0 part by weight or more and 1.8 parts by weight or less of the silane coupling agent having an isocyanate group, and 0.2 parts by weight or more and 5.0 parts by weight or less of the epoxy resin. Has a mixing step of mixing,
    A method for producing a regenerated thermoplastic resin composition.
  2.  前記使用済み熱可塑性樹脂組成物は、100重量部のうち、80重量部以上のポリプロピレン樹脂組成物、ポリエチレン樹脂組成物、ポリスチレン樹脂組成物、ABS樹脂組成物又はポリカーボネート樹脂組成物である、
    請求項1に記載の再生熱可塑性樹脂組成物の製造方法。
    The used thermoplastic resin composition is a polypropylene resin composition, a polyethylene resin composition, a polystyrene resin composition, an ABS resin composition or a polycarbonate resin composition in an amount of 80 parts by weight or more out of 100 parts by weight.
    The method for producing a regenerated thermoplastic resin composition according to claim 1.
  3.  前記使用済み熱可塑性樹脂組成物は、100重量部のうち、20重量部以下の無機フィラーを含む、
    請求項1又は2に記載の再生熱可塑性樹脂組成物の製造方法。
    The used thermoplastic resin composition contains 20 parts by weight or less of an inorganic filler out of 100 parts by weight.
    The method for producing a regenerated thermoplastic resin composition according to claim 1 or 2.
  4.  前記混合工程においては、さらに着色顔料を0重量部よりも多く、5.0重量部以下添加する、
    請求項1~3のいずれか一項に記載の再生熱可塑性樹脂組成物の製造方法。
    In the mixing step, more than 0 parts by weight and 5.0 parts by weight or less of the coloring pigment are further added.
    The method for producing a regenerated thermoplastic resin composition according to any one of claims 1 to 3.
  5.  下記化学式1、2及び3
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    の少なくともいずれかを含む再生熱可塑性樹脂組成物。
    (化学式1、2及び3中、
    l=1~13、
    -R-:化学式4で表される置換基、
    -R:-(CHCH (n=10,12,14,16のいずれか)又は-(CHCH=CH(CHCH (m=5,7のいずれか))
    Figure JPOXMLDOC01-appb-C000004
    The following chemical formulas 1, 2 and 3
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    A regenerated thermoplastic resin composition comprising at least one of the above.
    (In chemical formulas 1, 2 and 3,
    l = 1-13,
    -R 1- : Substituent represented by Chemical Formula 4,
    -R 2 :-(CH 2 ) n CH 3 (any of n = 10, 12, 14, 16) or-(CH 2 ) 7 CH = CH (CH 2 ) m CH 3 (m = 5, 7) either))
    Figure JPOXMLDOC01-appb-C000004
  6.  下記化学式5、6及び7
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    の少なくともいずれかを含む再生熱可塑性樹脂組成物。
    (化学式5、6及び7中、
    k=1~13
    -R:-(CHCH(n=10,12,14,16のいずれか)又は-(CHCH=CH(CHCH(m=5,7のいずれか))
    The following chemical formulas 5, 6 and 7
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    A regenerated thermoplastic resin composition comprising at least one of the above.
    (In chemical formulas 5, 6 and 7,
    k = 1 to 13
    -R 2 :-(CH 2 ) n CH 3 (any of n = 10, 12, 14, 16) or-(CH 2 ) 7 CH = CH (CH 2 ) m CH 3 (m = 5, 7) either))
PCT/JP2021/009563 2020-09-07 2021-03-10 Method for producing regenerated thermoplastic resin composition, and regenerated thermoplastic resin composition WO2022049809A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546880A JP7352218B2 (en) 2020-09-07 2021-03-10 Method for producing recycled thermoplastic resin composition and recycled thermoplastic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-149748 2020-09-07
JP2020149748 2020-09-07

Publications (1)

Publication Number Publication Date
WO2022049809A1 true WO2022049809A1 (en) 2022-03-10

Family

ID=80490901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009563 WO2022049809A1 (en) 2020-09-07 2021-03-10 Method for producing regenerated thermoplastic resin composition, and regenerated thermoplastic resin composition

Country Status (2)

Country Link
JP (1) JP7352218B2 (en)
WO (1) WO2022049809A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338827A (en) * 2001-03-15 2002-11-27 Osaka Gas Co Ltd Resin composition for recycling
JP2007154067A (en) * 2005-12-06 2007-06-21 Toray Ind Inc Flame-retardant polyethylene terephthalate resin composition
CN102464830A (en) * 2010-11-18 2012-05-23 上海杰事杰新材料(集团)股份有限公司 Modified polypropylene material as well as preparation method and application thereof
CN103525112A (en) * 2013-09-22 2014-01-22 苏州市湘园特种精细化工有限公司 Method for preparing nano-plastic by waste plastic
EP2770015A1 (en) * 2013-02-26 2014-08-27 Armacell Enterprise GmbH & Co. KG Upgrading polyester wastes with silanes and their blends
CN105348777A (en) * 2015-11-13 2016-02-24 安徽广源科技发展有限公司 A polyurethane composite material modified by recycled electronic waste plastic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338827A (en) * 2001-03-15 2002-11-27 Osaka Gas Co Ltd Resin composition for recycling
JP2007154067A (en) * 2005-12-06 2007-06-21 Toray Ind Inc Flame-retardant polyethylene terephthalate resin composition
CN102464830A (en) * 2010-11-18 2012-05-23 上海杰事杰新材料(集团)股份有限公司 Modified polypropylene material as well as preparation method and application thereof
EP2770015A1 (en) * 2013-02-26 2014-08-27 Armacell Enterprise GmbH & Co. KG Upgrading polyester wastes with silanes and their blends
CN103525112A (en) * 2013-09-22 2014-01-22 苏州市湘园特种精细化工有限公司 Method for preparing nano-plastic by waste plastic
CN105348777A (en) * 2015-11-13 2016-02-24 安徽广源科技发展有限公司 A polyurethane composite material modified by recycled electronic waste plastic

Also Published As

Publication number Publication date
JPWO2022049809A1 (en) 2022-03-10
JP7352218B2 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
US6713545B2 (en) Universal masterbatch
JP5279966B2 (en) Recycled resin and method for producing recycled resin
US7317043B2 (en) Impact modifier, process for producing the same, and thermoplastic resin composition
JP5872577B2 (en) Flame retardant masterbatch and method for producing styrenic flame retardant resin composition using the same
JP6084045B2 (en) Polymer composition and method for producing the same
WO2022049809A1 (en) Method for producing regenerated thermoplastic resin composition, and regenerated thermoplastic resin composition
CN110734623A (en) scratch-resistant ABS (acrylonitrile butadiene styrene) material and preparation method thereof
CN107974026B (en) Extinction flame-retardant ABS material and preparation method thereof
US20140228520A1 (en) Process for producing thermoplastic resin composition, and thermoplastic resin composition produced by the same
CN109810421A (en) Semi-transparent display HIPS resin of one kind and preparation method thereof
JP5867733B2 (en) Flame-retardant styrene resin composition and toner cartridge container using the same
CN112745630B (en) Super-tough high-fluidity regenerated ABS/PA6 composite material and preparation method and application thereof
CN114685899A (en) High-temperature-resistant scratch-resistant polypropylene composite material and preparation method and application thereof
JP5504939B2 (en) Transparent flame retardant thermoplastic resin composition and resin molded product
EP2294097A1 (en) Rheology modifier
JP2015217552A (en) Method for production of styrenic flame-retardant resin composition
CN111087743B (en) Extinction scratch-resistant ABS material and preparation method thereof
JPH0873684A (en) Flame-retardant resin composition
JPWO2017018505A1 (en) Flame retardant masterbatch and method for producing the same
JP2000129141A (en) Production of flame-retarded resin composition
JP2016204572A (en) Resin composition and manufacturing method therefor
CN103980654A (en) Anti-aging and high temperature resistant alloy for automotive interior parts and preparation method thereof
JP6227865B2 (en) Rubber-modified polystyrene-based resin composition, rubber-modified polystyrene-based flame retardant resin composition, and molded products using these.
JP2005320466A (en) Molding material and molded product
JP2007238817A (en) Regenerated thermoplastic resin composition, its manufacturing method, and molded article from regenerated thermoplastic resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863870

Country of ref document: EP

Kind code of ref document: A1