WO2022049673A1 - Elevator - Google Patents

Elevator Download PDF

Info

Publication number
WO2022049673A1
WO2022049673A1 PCT/JP2020/033269 JP2020033269W WO2022049673A1 WO 2022049673 A1 WO2022049673 A1 WO 2022049673A1 JP 2020033269 W JP2020033269 W JP 2020033269W WO 2022049673 A1 WO2022049673 A1 WO 2022049673A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
car
slip
speed
sheave
Prior art date
Application number
PCT/JP2020/033269
Other languages
French (fr)
Japanese (ja)
Inventor
盛臣 見延
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080103129.9A priority Critical patent/CN115867505A/en
Priority to JP2022546779A priority patent/JP7323078B2/en
Priority to PCT/JP2020/033269 priority patent/WO2022049673A1/en
Priority to DE112020007566.4T priority patent/DE112020007566T5/en
Publication of WO2022049673A1 publication Critical patent/WO2022049673A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0037Performance analysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes

Definitions

  • This disclosure relates to elevators.
  • Patent Document 1 discloses an example of an elevator.
  • the control unit controls the braking force applied to the sheave.
  • the control unit applies the full braking force when the difference between the speed of the sheave and the speed of the car is less than or equal to the threshold value.
  • the control unit applies a braking force weaker than the total braking force.
  • the braking distance of the car may become longer.
  • the present disclosure provides an elevator that can reduce the braking distance of the car during an emergency stop.
  • the elevator In the hoisting machine that raises and lowers the car on the hoistway, the elevator according to the present disclosure is a brake that brakes the sheave around which the main rope that suspends the car is wound on the hoistway, and whether or not the main rope slips on the sheave.
  • the slip detection unit that detects, the sheave speed detection unit that detects the speed of the sheave, and the slip detection unit that detects the occurrence of slip during an emergency stop are preset from the start of the emergency stop to the start of the slide.
  • the speed of the sheave detected by the sheave speed detector at an arbitrary reference time is compared with a preset speed threshold, and when the speed at the reference time exceeds the speed threshold, between the sheave and the main rope.
  • a braking force control method that controls the brake by a slip elimination control method that eliminates slip, and controls the braking force of the brake so that the sheave decelerates at the set deceleration when the speed at the reference point does not exceed the speed threshold. It is provided with a brake control unit that controls the brakes by means of.
  • the elevator In the hoisting machine that raises and lowers the car on the hoistway, the elevator according to the present disclosure is a brake that brakes the sheave around which the main rope that suspends the car is wound on the hoistway, and whether or not the main rope slips on the sheave.
  • the slip detection unit detects slip
  • the car speed detection unit that detects the speed of the car the sheave speed detection unit that detects the speed of the sheave
  • the slip detection unit detects the occurrence of slip during an emergency stop.
  • the speed of the car detected by the car speed detector at any preset reference time from the start of the emergency stop to the start is compared with the preset speed threshold, and the speed at the reference time exceeds the speed threshold.
  • the brake is controlled by the slip elimination control method that eliminates the slip between the sheave and the main rope, and when the speed at the reference point does not exceed the speed threshold, the brake is applied so that the sheave decelerates at the set deceleration. It is provided with a brake control unit that controls the brake by a braking force control method that controls the braking force of the above.
  • the braking distance of the car at the time of an emergency stop can be suppressed.
  • FIG. It is a block diagram of the elevator which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the velocity waveform at the time of emergency stop of the car which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the velocity waveform at the time of emergency stop of the car which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the velocity waveform at the time of emergency stop of the car which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the velocity waveform at the time of emergency stop of the car which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the example of the operation of the elevator which concerns on Embodiment 1.
  • It is a hardware block diagram of the main part of the elevator which concerns on Embodiment 1.
  • FIG. It is a block diagram of the elevator which concerns on Embodiment 2.
  • FIG. 1 is a configuration diagram of an elevator 1 according to the first embodiment.
  • Elevator 1 is installed in, for example, a building having a plurality of floors.
  • the hoistway 2 of the elevator 1 is provided in the building.
  • the hoistway 2 is a space that spans a plurality of floors.
  • the elevator 1 includes a car 3, a hoist 4, a main rope 5, a counterweight 6, a speed governor 7, a brake 8, a sheave speed detection unit 9, a car speed detection unit 10, and safety. It includes a switch 11 and a control device 12.
  • the car 3 is arranged in the hoistway 2.
  • the basket 3 is a device for transporting a user or the like between a plurality of floors.
  • the hoisting machine 4 is a device for raising and lowering the car 3 arranged in the hoistway 2.
  • the hoisting machine 4 includes an electric motor (not shown) that generates a driving force and a sheave 13 that is rotationally driven by the electric motor.
  • the main rope 5 is wound around the sheave 13.
  • the main rope 5 suspends the car 3 from the hoistway 2 on one side of the sheave 13.
  • the main rope 5 suspends the counterweight 6 on the hoistway 2 on the other side of the sheave 13.
  • the counterweight 6 is a device that balances the load applied to both sides of the sheave 13 through the main rope 5 with the cage 3.
  • the governor 7 is a device that limits the speed of the car 3.
  • the governor 7 includes a governor rope 14 and a governor sheave 15.
  • the governor rope 14 is a rope attached to the car 3.
  • the governor sheave 15 is a sheave around which the governor rope 14 is wound.
  • the governor sheave 15 is rotated by a governor rope 14 that moves in conjunction with the running of the car 3.
  • the governor 7 limits the speed of the car 3 according to the rotation speed of the governor sheave 15.
  • the brake 8 is a device for braking the sheave 13.
  • the brake 8 is, for example, a disc brake, a drum brake, or a brake having other moving parts.
  • the brake 8 applies a braking force capable of holding the car 3 and the counterweight 6 in a stationary state to the sheave 13.
  • the braking force is, for example, a frictional force that suppresses the rotation of the sheave 13, or a pressing force that causes the frictional force.
  • the brake 8 does not hinder the rotation of the sheave 13 when it is in the released state.
  • the sheave speed detection unit 9 is a part that detects the speed of the sheave 13.
  • the speed of the sheave 13 detected by the sheave speed detection unit 9 is, for example, the speed of the outer circumference of the sheave 13.
  • the sheave speed detection unit 9 has, for example, an encoder that detects the amount of rotation of the sheave 13.
  • the sheave speed detection unit 9 may be equipped with a function of converting the amount of rotation of the sheave 13 into the rotation speed of the sheave 13, the speed of the outer circumference of the sheave 13, or the like.
  • the car speed detection unit 10 is a part that detects the speed of the car 3.
  • the speed of the car 3 detected by the car speed detecting unit 10 is, for example, the traveling speed of the car 3 in the vertical direction.
  • the car speed detection unit 10 includes, for example, an encoder that detects the amount of rotation of the governor sheave 15.
  • the car speed detection unit 10 may be equipped with a function of converting the rotation amount of the speed governor sheave 15 into the traveling speed of the car 3. Further, the car speed detection unit 10 may detect the speed of the car 3 based on the detection result of, for example, a position sensor, a speed sensor, or an acceleration sensor provided in the car 3. Further, the car speed detection unit 10 may detect the speed of the car 3 by detecting the speed of the main rope 5 or the counterweight 6 that operates in conjunction with the car 3.
  • the safety switch 11 is provided in the hoistway 2.
  • the safety switch 11 is arranged at the upper end and the lower end of the hoistway 2.
  • the safety switch 11 is a switch that detects, for example, that the car 3 travels past the landing position on the top floor or the bottom floor.
  • the elevator 1 may stand by without traveling until it is inspected by, for example, a maintenance person. In this case, the user who was in the car 3 may be confined.
  • the control device 12 is a device that controls the operation of the elevator 1.
  • the operation of the elevator 1 includes, for example, traveling of the car 3 and operation of the brake 8.
  • the operation of the brake 8 includes an emergency stop.
  • the emergency stop is an operation of stopping the traveling car 3 by inputting an emergency stop signal, detecting the occurrence of an emergency stop event, or causing a power failure.
  • the emergency stop is started, for example, by detecting some abnormality while the car 3 is running.
  • the abnormality that starts the emergency stop is detected by an abnormality detector (not shown) provided in the elevator 1.
  • the abnormality detector is, for example, a safety device provided in the elevator 1.
  • the control device 12 includes a slip detection unit 16 and a brake control unit 17.
  • the slip detection unit 16 is a part that detects the presence or absence of slippage of the main rope 5 with the sheave 13.
  • the brake 8 applies a braking force to the sheave 13 rotating together with the main rope 5.
  • the position in the hoistway of the car 3 interlocked with the main rope 5 the traveling direction, the traveling acceleration, and the mass, the number of passengers, the load in the car 3 that varies depending on the equipment mounted on the car 3, and the sheave 13
  • the shape of the rope groove, the friction coefficient between the main rope 5 and the sheave 13, the braking force of the brake 8, and the like may cause the main rope 5 to slip with respect to the sheave 13.
  • the slip detection unit 16 detects the presence or absence of slippage of the main rope 5 at the time of an emergency stop or the like.
  • the slip detection unit 16 detects the presence or absence of slippage of the main rope 5 by detecting, for example, the relative motion of the main rope 5 in the circumferential direction with respect to the outer peripheral portion of the sheave 13.
  • the slip detection unit 16 detects the presence or absence of slip as follows, for example.
  • the slip detection unit 16 calculates the difference between the speed of the car 3 and the speed of the sheave 13 detected by the car speed detection unit 10 and the sheave speed detection unit 9, respectively, as the relative speed of the main rope 5 with respect to the sheave 13.
  • the slip detection unit 16 detects the occurrence of slip of the main rope 5 when the calculated relative speed exceeds a preset threshold value.
  • the slip detection unit 16 detects that the slip of the main rope 5 is eliminated when the calculated relative speed falls below a preset threshold value.
  • the slip detection unit 16 uses the reverse model filter of the mechanical characteristics from the car 3 to the car speed detection unit 10 of the car speed detection unit 10. It may be used for the output and processed to remove the influence of the mechanical characteristics.
  • the slip detection unit 16 may calculate the relative speed with the output of the sheave speed detection unit 9, for example, after performing the processing. Further, the slip detection unit 16 applies the mechanical characteristic filters from the hoisting machine 4 to the position of the car 3 and from the car 3 to the car speed detection unit 10 to the output of the car speed detection unit 10, and the car 3
  • the relative speed of the main rope 5 with respect to the sheave 13 may be calculated using the speed of.
  • the brake control unit 17 is a part that controls the operation of the brake 8.
  • the brake control unit 17 controls the operation of the brake 8 by switching a plurality of control methods.
  • the plurality of control methods include a braking force control method and a slip elimination control method.
  • the braking force control method is a control method for controlling the braking force of the brake 8 so that the sheave 13 decelerates at the set deceleration.
  • the set deceleration is a constant deceleration preset between the first deceleration a1 and the second deceleration a2.
  • deceleration is an acceleration that reduces the absolute value of velocity.
  • the absolute value of the first deceleration a1 is larger than the absolute value of the second deceleration a2.
  • the control of the brake 8 in the braking force control method may be performed based on the speed of the sheave 13 detected by the sheave speed detection unit 9.
  • the control of the brake 8 in the braking force control method is performed from the speed of the car 3 detected by the car speed detection unit 10. It may be done based on the estimated deceleration of the sheave 13.
  • the first deceleration a1 is a deceleration that is expected not to cause slippage of the main rope 5 with the sheave 13 when an emergency stop is performed at a deceleration whose absolute value is smaller than that of the first deceleration a1.
  • the first deceleration a1 is calculated in advance from the estimated value of the traction capacity of the hoist 4.
  • the estimated value of the traction capacity is, for example, the difficulty of slipping of the main rope 5 with respect to the sheave 13 calculated based on the specifications or design values such as the shape and material of the sheave 13 of the hoisting machine 4 and the main rope 5. Is.
  • the traveling direction of the car 3 in which the main rope 5 is likely to slip and the load conditions are taken into consideration.
  • Conditions that are prone to slipping include, for example, conditions such as when climbing with no load or when descending with maximum load.
  • the first deceleration a1 is an upper limit deceleration calculated in advance so that slip does not occur when, for example, a decrease in local friction conditions is not taken into consideration.
  • the second deceleration a 2 is a deceleration in which the car 3 is expected not to travel to the position where the safety switch 11 is arranged when the emergency stop is performed at a deceleration having an absolute value larger than that of the second deceleration a 2 . ..
  • the second deceleration a 2 is calculated in advance based on specifications or design values such as the weight of the car 3, the counterweight 6, the main rope 5, and the sheave 13 and the rated speed of the car 3. In the calculation of the second deceleration a2, the traveling direction of the car 3 and the condition of the load in which the excess amount of the car 3 becomes large are taken into consideration.
  • the excess amount is the distance from the landing position of the terminal floor such as the top floor or the bottom floor to the position where the car 3 has stopped past the landing position.
  • the condition in which the excess amount of the car 3 becomes large includes, for example, a condition when ascending with no load or when descending with a maximum load.
  • the second deceleration a2 is, for example, a lower limit deceleration calculated in advance so that the safety switch 11 does not operate when the overshoot of the control of the brake 8 is not taken into consideration.
  • the overshoot of the control of the brake 8 indicates that the braking force becomes excessive with respect to the command.
  • the brake control unit 17 controls the operation of the brake 8 by the braking force control method with the deceleration between the first deceleration a1 and the second deceleration a2 as the set deceleration, and an emergency stop is performed. Also, the occurrence of slippage of the main rope 5 and the occurrence of confinement of the user are suppressed. However, slippage of the main rope 5 may occur due to a decrease in local friction conditions or an overshoot of the control of the brake 8. Therefore, the brake control unit 17 switches to the slip elimination control method according to conditions such as the speed of the car 3 when slip occurs so that the braking distance of the car 3 does not become long.
  • the slip elimination control method is a control method for eliminating slip between the sheave 13 and the main rope 5.
  • the state in which the slip between the main rope 13 and the main rope 5 is eliminated is a state in which the relative speeds of the main rope 5 and the main rope 13 become 0 and they are moving together.
  • the brake control unit 17 controls the braking force of the brake 8 so that the speed of the sheave 13 follows the speed of the car 3, for example.
  • the brake control unit 17 applies a braking force to the sheave 13 so that the difference between the speed of the car 3 detected by the car speed detection unit 10 and the speed of the sheave 13 detected by the sheave speed detection unit 9 becomes small, for example.
  • the deceleration of the sheave 13 is controlled by adjusting the size of.
  • the brake control unit 17 controls the brake 8 while adjusting the braking force so that the state of the brake 8 does not change to the released state while the state of the brake 8 remains in the braking state in the slip elimination control method.
  • the brake control unit 17 may release the brake 8 until the slip detection unit 16 detects that the slip has been eliminated.
  • the method of controlling the brake 8 in the slip elimination control method does not matter as long as the slip is eliminated.
  • FIGS. 2 and 3 are diagrams showing an example of a velocity waveform at the time of emergency stop of the car 3 according to the first embodiment.
  • FIGS. 2 and 3 represent time.
  • the vertical axis of FIGS. 2 and 3 represents the speed of the car 3 and the sheave 13.
  • the solid line represents the velocity waveform of the car 3.
  • the broken line represents the speed waveform of the sheave 13.
  • FIGS. 2 and 3 show an example of a speed waveform when the brake torque is simplified so as to rise in a stepped manner.
  • FIG. 2 shows an example in which the brake control unit 17 does not switch the control method.
  • a detection signal is input to the control device 12.
  • the control device 12 makes an emergency stop of the car 3.
  • the control device 12 outputs a power stop command to the hoisting machine 4.
  • the hoisting machine 4 stops the rotary drive of the sheave 13 based on the input command.
  • a detection signal is input to the control device 12
  • the brake control unit 17 starts an emergency stop of the car 3.
  • Point A in FIG. 2 corresponds to the time when the brake control unit 17 starts the emergency stop of the car 3.
  • the brake control unit 17 controls the brake 8 by the braking force control method.
  • the brake control unit 17 outputs a brake control command to the brake 8.
  • the brake 8 starts braking the sheave 13 after the brake control command is input.
  • Point B in FIG. 2 corresponds to the time when the brake 8 generates the braking force after the delay time after the command is input.
  • the car 3 and the sheave 13 are accelerated or decelerated by the unbalanced torque of the car 3 and the counterweight 6.
  • the case where the car 3 accelerates is shown as a situation where the braking distance of the car 3 becomes long.
  • the situation in which the car 3 is accelerated by the unbalanced torque is, for example, when ascending with no load or when descending with a maximum load.
  • the car 3 accelerates at a constant acceleration during the delay time from the point A to the point B.
  • the acceleration may not actually be constant due to rope imbalance or the like, in the present embodiment, the explanation will be given using a simplified model assuming that the acceleration is constant.
  • FIG. 2 shows an example in which slip occurs immediately after the brake 8 generates a braking force. That is, the point B in FIG. 2 corresponds to the time when the main rope 5 starts to slide.
  • the slip detection unit 16 detects the slip of the main rope 5.
  • the slip detection unit 16 outputs a detection signal to the brake control unit 17.
  • the brake control unit 17 detects the speed of the car 3 or the sheave 13 at the reference time by the car speed detection unit 10 or the sheave speed detection unit 9.
  • the reference time point is any preset time point from the start of the emergency stop to the start of the start. Since the main rope 5 has not yet slipped at the time of reference, the speed of the car 3 interlocking with the main rope 5 and the speed of the sheave 13 are equal.
  • the brake control unit 17 may use at least one value of the speed of the car 3 detected by the car speed detection unit 10 or the speed of the sheave 13 detected by the sheave speed detection unit 9 as the speed at the time of reference. can.
  • the brake control unit 17 determines whether the speed at the reference time exceeds the speed threshold value V lim when the detection signal is input.
  • the speed threshold value V lim is a value of the speed of the car 3 preset so as to suppress the braking distance of the car 3 at the time of emergency stop.
  • the brake control unit 17 of this example determines whether the speed V B at the point B exceeds the speed threshold value V lim with the start point B as a reference time point. For example, the brake control unit 17 may set the detection value of the car speed detection unit 10 or the sheave speed detection unit 9 when the detection signal is input as the speed V B at the point B. Alternatively, the brake control unit 17 calculates the speed VB at the point B at the time of slipping by interpolation or extrapolation based on the time series data of the detection values of the car speed detection unit 10 or the sheave speed detection unit 9. You may. In the example of FIG.
  • the velocity waveform when the main rope 5 continues to slide in the emergency stop operation without applying the content of the present embodiment is shown. Further, the velocity waveform of FIG. 2 applies the content of the present embodiment, and the outline is the velocity waveform when V B does not exceed the velocity threshold V lim , that is, when the main rope 5 continues to slide. Similarly, the velocities at points A and B are small and the time between BCs is short.
  • the sheave 13 and the car 3 decelerate at different decelerations.
  • the brake control unit 17 maintains the braking force control method
  • the sheave 13 decelerates at a constant deceleration and then stops at the point C1.
  • the car 3 decelerates at a constant deceleration due to friction of the main rope 5 sliding against the sheave 13, and then stops at the point F1.
  • the brake control unit 17 determines that the car 3 is stopped.
  • the stop determination of the car 3 is performed based on, for example, the speed of the car 3 detected by the car speed detection unit 10.
  • the brake control unit 17 determines that the car 3 has stopped, for example, when the absolute value of the speed of the car 3 falls below a preset threshold value.
  • the brake control unit 17 is the car 3. May be determined to have stopped.
  • the brake control unit 17 determines to stop the car 3 based on the speed of the sheave 13 detected by the sheave speed detection unit 9. You may. Since the speed of the car 3 and the speed of the sheave 13 are the same when the main rope 5 is not slipping, the brake control unit 17 determines the speed of the sheave 13 in the same manner as the stop determination using the speed of the car 3. It is possible to determine the stop of the used car 3. Further, the brake control unit 17 may determine the stop of the car 3 by another method.
  • the brake control unit 17 After determining that the car 3 has stopped, the brake control unit 17 applies a braking force capable of holding the car 3 and the counterweight 6 in a stationary state as in a normal state to the sheave 13. On the other hand, when it is determined that the car 3 is not stopped, the brake control unit 17 continues to control the brake 8 at the time of emergency stop.
  • the braking distance S1 of the car 3 in the case of FIG. 2 corresponds to the area of the portion between the velocity waveform shown by the solid line and the horizontal axis. Therefore, the estimated value of the braking distance S 1 is expressed by the following equation (1).
  • S AB represents the distance traveled by the car 3 from the point A to the point B.
  • a rope is an estimated deceleration value of the car 3 when the main rope 5 decelerates while sliding with respect to the sheave 13.
  • the acceleration a rope corresponds to the slope of the line segment connecting the points B and F1 in FIG. Since the acceleration a rope is an acceleration that reduces the absolute value of the speed of the car 3, it takes a negative value when the traveling direction of the car 3 is set to a positive direction.
  • the distance SAB may be calculated by, for example, the following equation (2).
  • a k represents the estimated value of the free running acceleration of the car 3 due to the unbalanced torque.
  • the acceleration ak corresponds to the slope of the line segment connecting the points A and B in FIG. Since the acceleration a k is an acceleration that increases the absolute value of the speed of the car 3, it takes a positive value when the traveling direction of the car 3 is set to a positive direction.
  • T 1 represents an estimated time until the brake 8 between the points A and B generates the braking force.
  • the estimated value T 1 includes the estimated time required for the state transition of the brake 8 from the released state to the braking state.
  • the brake control unit 17 may control the brake 8 based on the speed VA at the point A with the point A at the start of the emergency stop as a reference point.
  • the value of the velocity V B calculated from the velocity VA at the point A using the following equation (3) may be used.
  • the brake control unit 17 determines at least one of the speed of the car 3 detected by the car speed detection unit 10 and the speed of the sheave 13 detected by the sheave speed detection unit 9. It can be used as a velocity VA . Further, the brake control unit 17 controls the brake 8 based on the speed at the reference time point, with an arbitrary time point from the point A at the start of the emergency stop to the point B at the time when the main rope 5 starts to slide as a reference time point. May be good. At this time, a value such as a velocity V B calculated from the velocity at the time of reference may be used in the same manner as in the equation (3).
  • FIG. 3 shows an example in which the brake control unit 17 switches the control method.
  • FIG. 3 shows an example in which slip occurs immediately after the brake 8 generates a braking force as in FIG. 2.
  • the brake control unit 17 of this example determines whether the speed V B at the point B at the reference time exceeds the speed threshold value V lim when the detection signal is input from the slip detection unit 16. In this example, the velocity V B exceeds the velocity threshold V lil . At this time, the brake control unit 17 switches the control method from the braking force control method to the slip elimination control method.
  • Point C2 in FIG. 3 corresponds to the time when the braking force of the brake 8 changes from the braking force control method due to the switching to the slip elimination control method after the delay time after the slip occurs.
  • the delay time between points B and C includes a slip detection delay and a brake 8 control response delay.
  • the brake 8 is controlled so that the slip of the main rope 5 is eliminated by the slip elimination control method.
  • the brake control unit 17 controls the braking force applied by the brake 8 to the sheave 13 so that the speed of the sheave 13 follows the speed of the car 3.
  • Point E in FIG. 3 corresponds to the time when the brake 8 generates the braking force based on the braking force control method after the delay time after the slip is eliminated.
  • the braking force based on the slip elimination control method is smaller than the braking force based on the braking force control method so as to eliminate the slip of the main rope 5 generated in the braking force control method. Therefore, during the delay time in which the brake 8 from the point D to the point E generates the braking force, the car 3 is accelerated or decelerated by the unbalanced torque of the car 3 and the counterweight 6. In this example, the case where the car 3 accelerates in a situation where the braking distance of the car 3 becomes long is shown. The car 3 accelerates at a constant acceleration during the delay time from the point D to the point E.
  • the braking distance S2 of the car 3 in the case of FIG . 3 corresponds to the area of the portion between the velocity waveform shown by the solid line and the horizontal axis. Therefore, the estimated value of the braking distance S 2 is expressed by the following equation (4).
  • a c is a command value for deceleration after the traction is restored, that is, after the slip of the main rope 5 is eliminated.
  • the acceleration a c corresponds to the slope of the line segment connecting the points E and F2 in FIG. Since the acceleration a c is an acceleration that reduces the absolute value of the speed of the car 3, it takes a negative value when the traveling direction of the car 3 is a positive direction.
  • a tr is the estimated acceleration of the car 3 during the delay time after the traction is restored. The acceleration a tr corresponds to the slope of the line segment connecting the points D and E in FIG.
  • T 2 is an estimated time required for recovery of traction between points B and D.
  • the estimated value T 2 includes a delay time for detecting the occurrence of slip in the slip detection unit 16. Further, when the state of the brake 8 transitions from the braking state to the released state in the switching from the braking force control method to the slip elimination control method, the estimated value T 2 includes the estimated time required for the state transition.
  • T 3 is an estimated time until the brake 8 between the points D and E generates the braking force based on the braking force control method.
  • the estimated value T 3 includes a delay time for detecting the cancellation of slip in the slip detection unit 16. Further, when the state of the brake 8 transitions from the released state to the braking state in the switching from the slip elimination control method to the braking force control method, the estimated value T 3 includes the estimated time required for the state transition.
  • the command value a for deceleration after traction recovery is set. , Set to a normal range of deceleration where slip does not occur.
  • the absolute value of the command value a c is set to a value larger than the absolute value of the expected deceleration value a rope when slipping occurs, for example.
  • the value of the command value a c is, for example, a set deceleration value.
  • the probable values a k , a rope , a tr , T 1 , T 2 , and T 3 used in equations (1) to (4) are based on, for example, the specifications or design values of elevator 1. It is a value set or calculated in advance.
  • the command value a c is a preset value.
  • FIGS. 4 and 5 are diagrams showing an example of a velocity waveform at the time of emergency stop of the car 3 according to the first embodiment.
  • FIGS. 4 and 5 The horizontal axis of FIGS. 4 and 5 represents time.
  • the vertical axis of FIGS. 4 and 5 represents the speed of the car 3.
  • the solid line represents the speed waveform when the brake control unit 17 switches the control method.
  • the broken line represents the speed waveform when the brake control unit 17 does not switch the control method. Similar to FIGS. 2 and 3, an example of a speed waveform when the brake torque is simplified so as to rise in a step shape is shown in FIGS. 4 and 5.
  • FIG. 4 shows an example in which the braking distance S1 when the brake control unit 17 does not switch the control method and the braking distance S2 when the control method is switched are equal to each other.
  • the speed threshold value V lim is set as the speed at the reference time point when the braking distance S 1 and the braking distance S 2 become equal. Since the point B is the reference time point in this example, the speed threshold V lim is set as the speed at the point B when the braking distance S1 and the braking distance S2 are equal .
  • the braking distance S 1 and the braking distance S 2 , or the speed threshold value V lim are calculated based on preset operating conditions for evaluation.
  • the operating conditions for evaluation include conditions such as the magnitude of the load inside the car 3 and the traveling direction of the car 3.
  • the operating conditions for evaluation may include the acceleration conditions of the car 3 determined according to the position of the car 3.
  • the difference between the braking distance S1 and the braking distance S2 corresponds to the difference between the area ⁇ 1 and the area ⁇ 2 .
  • the area ⁇ 1 is the area of the portion where the velocity waveform of the broken line is larger than the velocity waveform of the solid line.
  • the area ⁇ 2 is the area of the portion where the velocity waveform of the solid line is larger than the velocity waveform of the broken line. In FIG. 4, since the braking distance S 1 and the braking distance S 2 are equal, the area ⁇ 1 and the area ⁇ 2 are equal.
  • FIG. 5 shows an example in which the velocity V B at the reference time point B exceeds the velocity threshold value V lim .
  • the value of the velocity V B is larger than the value of the velocity threshold value V lim by the velocity difference ⁇ V.
  • the speed threshold value V lim is the speed at the reference time point B when the braking distance S 1 and the braking distance S 2 become equal. Therefore, in the region above the one-dot chain line in FIG. 5, the area of the portion where the solid line velocity waveform is larger than the broken line velocity waveform and the area of the portion where the broken line velocity waveform is larger than the solid line velocity waveform are equal. Therefore, the area ⁇ 1 is larger than the area ⁇ 2 by the region below the alternate long and short dash line. Therefore, the braking distance S 1 is larger than the braking distance S 2 .
  • the braking distance S 1 is smaller than the braking distance S 2 .
  • the brake control unit 17 switches the control method based on the comparison between the speed V B and the speed threshold V lim at the reference time point B , so that the car has the shorter braking distance of the braking distance S1 and the braking distance S2.
  • the brake 8 can be controlled so that the brake 8 stops.
  • the brake control unit 17 may use any time point from the point A at the start of the emergency stop to the point B at the time when the main rope 5 starts to slide as a reference time point. Even in this case, the brake control unit 17 also switches the control method based on the result of comparison between the speed threshold value similarly set for the reference time point and the speed at the reference time point, so that the car 3 with a short braking distance can be used.
  • the brake 8 can be controlled so that the brake 8 stops.
  • FIG. 6 is a flowchart showing an example of the operation of the elevator 1 according to the first embodiment.
  • FIG. 6 shows an example of the operation of the brake control unit 17 for an emergency stop.
  • step S1 when the emergency stop is started, the brake control unit 17 controls the braking of the brake 8 by the braking force control method. After that, the operation of the elevator 1 proceeds to step S2.
  • step S2 the brake control unit 17 determines whether or not the slip detection unit 16 has detected slip based on the presence or absence of a detection signal or the like. If the determination result is Yes, the operation of the elevator 1 proceeds to step S3. If the determination result is No, the operation of the elevator 1 proceeds to step S6.
  • step S3 the brake control unit 17 detects the speed V B at the reference time point B with the time when the vehicle starts to start as a reference time point. After that, the operation of the elevator 1 proceeds to step S4.
  • step S4 the brake control unit 17 determines whether the speed V B exceeds the speed threshold value V lim .
  • the determination result is Yes, the operation of the elevator 1 proceeds to step S5. If the determination result is No, the operation of the elevator 1 proceeds to step S6.
  • step S5 the brake control unit 17 controls the braking of the brake 8 by the slip elimination control method. After that, the operation of the elevator 1 proceeds to step S2.
  • step S6 the brake control unit 17 controls the braking of the brake 8 by the braking force control method. After that, the operation of the elevator 1 proceeds to step S7.
  • step S7 the brake control unit 17 determines whether the car 3 has stopped.
  • the determination result is No
  • the operation of the elevator 1 proceeds to step S2.
  • the determination result is Yes, the operation of the elevator 1 for the emergency stop ends.
  • the slip detection unit 16 may detect the presence or absence of slip of the main rope 5 by changing the apparent inertial mass of the sheave 13 as follows.
  • the apparent inertial mass of the sheave 13 is the inertial mass of the sheave 13 itself plus the inertial mass of the cage 3 and the counterweight 6.
  • the apparent inertial mass of the sheave 13 is only the inertial mass of the sheave 13 itself. Therefore, even if the torque applied to the sheave 13 and the braking force applied to the sheave 13 by the brake 8 are the same, the deceleration of the sheave 13 changes depending on the presence or absence of slippage.
  • the slip detection unit 16 may detect the occurrence of slip when the deceleration of the sheave 13 exceeds a preset threshold value. ..
  • the slip detection unit 16 may calculate the deceleration of the sheave 13 from, for example, the speed of the sheave 13 detected by the sheave speed detection unit 9. Further, the slip detection unit 16 decelerates or increases the acceleration of the sheave 13 or the car 3 based on the speed information of at least one of the speeds detected by the sheave speed detection unit 9 and the car speed detection unit 10, and the braking force. Slip detection may be performed using the deceleration command value of the control method.
  • the slip detection unit 16 controls the deceleration or acceleration of the sheave 13 or the car 3 and the brake 8 based on the speed information of at least one of the speeds detected by the sheave speed detection unit 9 and the car speed detection unit 10. Elimination detection of slip may be performed based on the state. Further, the slip detection unit 16 may combine a plurality of means for detecting the presence or absence of slip of the main rope 5.
  • the case where the car 3 speeds up in the traveling direction due to the unbalanced torque of the car 3 and the counterweight 6 is described as an example, but the content of the present disclosure is also applied to the case where the car 3 decelerates. Can be done.
  • the speed of the sheave 13 and the car 3 immediately before the start of deceleration is not the maximum speed, but in the present disclosure, it is referred to as the maximum speed for convenience.
  • the elevator 1 includes a brake 8, a slip detection unit 16, a car speed detection unit 10, and a brake control unit 17.
  • the main rope 5 that suspends the car 3 from the hoistway 2 is wound around the sheave 13 of the hoisting machine 4.
  • the hoisting machine 4 raises and lowers the car 3 on the hoistway 2.
  • the brake 8 brakes the sheave 13 in the hoisting machine 4.
  • the slip detection unit 16 detects the presence or absence of slippage of the main rope 5 with respect to the sheave 13.
  • the car speed detection unit 10 detects the speed of the car 3.
  • the brake control unit 17 compares the speed of the car 3 detected by the car speed detection unit 10 at the reference time with a preset speed threshold value. ..
  • the reference time point is any preset time point from the start of the emergency stop to the start of the start.
  • the elevator 1 may include a sheave speed detection unit 9 together with the car speed detection unit 10 or in place of the car speed detection unit 10. The sheave speed detection unit 9 detects the speed of the sheave 13.
  • the brake control unit 17 uses the speed of the car 3 detected by the car speed detection unit 10 at the time of reference, or the sheave speed detection unit.
  • the speed of the sheave 13 detected in 9 is compared with a preset speed threshold.
  • the brake control unit 17 controls the brake 8 by the slip elimination control method.
  • the slip elimination control method is a control method for eliminating slip between the sheave 13 and the main rope 5.
  • the brake control unit 17 controls the brake 8 by the braking force control method.
  • the braking force control method is a control method that controls the braking force so that the sheave 13 decelerates at the set deceleration.
  • the control method of the brake 8 after the main rope 5 starts to slide is the braking distance of the car 3. Selected to be shorter. Therefore, even when the speed of the car 3 can be increased due to the delay time of the operation of the brake 8 and the delay time of the slip detection, the braking distance of the car 3 at the time of emergency stop can be suppressed. Further, since the control method is selected based on the speed at the reference time until the start of sliding, the brake control unit 17 promptly controls the brake 8 by the selected control method after the occurrence of slip is detected. be able to.
  • the frictional force between the main rope 5 and the sheave 13 when the main rope 5 slides decreases as the relative speed of the main rope 5 and the sheave 13 increases. Therefore, when the braking force control method is continued even after the occurrence of slippage is detected, the deceleration of the car 3 fluctuates until the car 3 stops. From the time of starting to the stop of the sheave 13, the absolute value of the deceleration of the car 3 gradually decreases from the deceleration at the time of starting. After that, after the sheave 13 stops, the deceleration of the car 3 gradually increases because the relative speed decreases.
  • the velocity waveform considering the fluctuation of the deceleration of the car 3 is a waveform higher than the velocity waveform in which the deceleration is constant and decelerated while the deceleration at the time of starting in FIG. 2 or the like. Therefore, the braking distance S1 calculated by the equation ( 1 ) is the braking distance calculated under the minimum condition when the brake 8 is not controlled by the slip elimination control method. Since the brake control unit 17 controls the brake 8 by the slip elimination control method when the braking distance S 2 is less than the braking distance S 1 , the braking distance of the car 3 does not become long by switching the control method.
  • the brake control unit 17 sets the time point at which the main rope 5 starts to slide as a reference time point. As a result, the influence of the braking distance before the time of the start is canceled in the evaluation of the braking distance S1 and the braking distance S2, so that the speed threshold V lim is the movement of the car 3 until the main rope 5 actually starts to slide. Not affected by. Therefore, even when the main rope 5 does not start to slide immediately after the brake 8 starts applying the braking force to the sheave 13, it becomes easy to calculate the speed threshold value V lim and compare it with the speed threshold value V lim .
  • the brake control unit 17 uses the time point at which the emergency stop starts as the reference time point. As a result, the reference time point and the speed threshold value can be compared before the main rope 5 starts to slide, so that the brake control unit 17 controls the brake 8 more quickly by the selected control method after the occurrence of the slip is detected. be able to.
  • the brake control unit 17 controls the brake 8 by the braking force control method before the slip detection unit 16 detects the occurrence of slip in the emergency stop. Further, the brake control unit 17 controls the brake 8 by the braking force control method when the slip detection unit 16 detects the elimination of the slip. As a result, when the main rope 5 is not slipped, the car 3 can be decelerated by a large deceleration such as a set deceleration. Therefore, the braking distance of the car 3 becomes shorter.
  • the brake control unit 17 sets the speed of the car 3 or the rope wheel 13 at the reference time point so that the estimated braking distance S 1 and the estimated braking distance S 2 are equal to each other as the speed threshold V lim , and sets the slip elimination control method. And the braking force control method is switched.
  • the braking distance S 1 is an estimated value of the braking distance of the car 3 when the brake 8 is controlled by the braking force control method when the slip detection unit 16 detects the occurrence of slip.
  • the braking distance S 2 is an estimated value of the braking distance of the car 3 when the brake 8 is controlled by the slip elimination control method when the slip detection unit 16 detects the occurrence of slip. In this way, since the speed threshold value V lim is set based on the estimated braking distance S1 and the estimated braking distance S2, the braking distance of the car 3 at the time of emergency stop can be suppressed more reliably.
  • the speed threshold value V lim is the estimated deceleration value a rope , the estimated acceleration value a tr , the set deceleration, the estimated delay time for detecting the presence or absence of slippage of the slip detection unit 16, and the brake 8. It is calculated based on the estimated value of the delay time of the state transition of and the information including.
  • the estimated value a rope is an estimated deceleration value of the car 3 when the brake 8 is controlled by the braking force control method when the slip detecting unit 16 detects the occurrence of slip.
  • the estimated value a tr is an estimated value of the acceleration of the car 3 when the brake 8 is controlled by the slip elimination control method when the slip of the main rope 5 with respect to the sheave 13 is eliminated.
  • the estimated delay time of detection and the estimated delay time of state transition are included in the estimated delay times T 1 , T 2 , T 3 , and the like.
  • the velocity threshold value V lim can be calculated before slip detection based on known information and the like. Therefore, the brake control unit 17 can control the brake 8 more quickly by the selected control method after the occurrence of slippage is detected.
  • the brake control unit 17 may control the braking force of the brake 8 so that the state transition from the braking state of the brake 8 to the released state does not occur in the slip elimination control method. As a result, the state transition time of the brake 8 is eliminated, so that the braking delay time of the brake 8 is shortened. Therefore, the time for the car 3 to accelerate immediately after the traction is restored can be suppressed.
  • the brake control unit 17 controls the brake 8 with a deceleration having a smaller absolute value than the first deceleration a1 and a larger absolute value than the second deceleration a2 as a set deceleration.
  • the first deceleration a1 is the deceleration of the car 3 calculated in advance from the estimated value of the traction capacity of the hoist 4 as the upper limit deceleration at which the main rope 5 does not slip with respect to the sheave 13.
  • the second deceleration a 2 is a deceleration of the car 3 calculated in advance as a lower limit deceleration that does not activate the safety switch 11 provided in the hoistway 2.
  • a part or all of the slip detection unit 16 and the brake control unit 17 may be mounted on an external device of the control device 12.
  • FIG. 7 is a hardware configuration diagram of a main part of the elevator 1 according to the first embodiment.
  • Each function of elevator 1 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 100a and at least one memory 100b.
  • the processing circuit may include at least one dedicated hardware 200 with or as a substitute for the processor 100a and the memory 100b.
  • each function of the elevator 1 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program.
  • the program is stored in the memory 100b.
  • the processor 100a realizes each function of the elevator 1 by reading and executing the program stored in the memory 100b.
  • the processor 100a is also referred to as a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • the memory 100b is composed of, for example, a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
  • the processing circuit includes the dedicated hardware 200
  • the processing circuit is realized by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Each function of elevator 1 can be realized by a processing circuit. Alternatively, each function of the elevator 1 can be collectively realized by a processing circuit. For each function of the elevator 1, a part may be realized by the dedicated hardware 200, and the other part may be realized by software or firmware. As described above, the processing circuit realizes each function of the elevator 1 by the dedicated hardware 200, software, firmware, or a combination thereof.
  • Embodiment 2 In the second embodiment, the differences from the example disclosed in the first embodiment will be described in particular detail. As for the features not described in the second embodiment, any of the features disclosed in the first embodiment may be adopted.
  • FIG. 8 is a configuration diagram of the elevator 1 according to the second embodiment.
  • Elevator 1 includes a load detection unit 18.
  • the load detection unit 18 is a portion that detects the load inside the car 3.
  • the load detection unit 18 is provided, for example, at the lower part of the car 3 or at the end of the main rope 5 attached to the car 3. In the normal state, the load detection unit 18 is used, for example, to compensate for an unbalanced torque that fluctuates due to the load of the car 3 and to detect an overload of the car 3.
  • the control device 12 includes a direction detection unit 19.
  • the direction detection unit 19 is a portion that detects the traveling direction of the ascending or descending car 3.
  • the direction detection unit 19 determines ascending or descending based on, for example, the code of the speed detected by the sheave speed detecting unit 9 or the car speed detecting unit 10.
  • the brake control unit 17 controls the brake 8 with reference to the time when the vehicle starts to slide.
  • the load of the car 3 affects the torque applied to the sheave 13 through the main rope 5. Further, the direction in which the brake torque is applied changes depending on the traveling direction of the car 3. Therefore, the condition that the main rope 5 does not slip changes depending on the load of the car 3 and the traveling direction. As a result, the maximum deceleration of the main rope 5 starting to slide changes depending on the load of the car 3 and the traveling direction.
  • the condition that the main rope 5 does not slip is expressed by the following equation (5).
  • represents the traction coefficient.
  • exp represents an exponential function.
  • k represents the groove coefficient of the sheave 13.
  • the groove coefficient is a coefficient determined by the shape of the rope groove of the sheave 13.
  • is the coefficient of friction between the main rope 5 and the sheave 13.
  • the product k ⁇ of the groove coefficient k and the friction coefficient ⁇ represents the apparent friction coefficient between the main rope 5 and the sheave 13.
  • represents the winding angle of the main rope 5 around the sheave 13.
  • Ten1 represents the tension on the car 3 side as seen from the sheave 13.
  • Ten2 represents the tension on the balance weight 6 side as seen from the sheave 13.
  • the slip of the main rope 5 occurs when the tension ratio on the right side of the equation (5) exceeds the traction coefficient ⁇ .
  • M tm represents an equivalent mass corresponding to the inertia of the sheave 13.
  • a tm represents the deceleration of the sheave 13.
  • FBK represents a force obtained by converting the brake torque into a force in the rotation direction of the sheave 13. The sign of the force FBK is taken so that it becomes negative when the car 3 rises and becomes positive when the car 3 descends.
  • the deceleration atm at the time of the start is calculated by applying the tension satisfying the condition to the equation (6).
  • the values of tension Ten1 and tension Ten2 can be calculated according to roping using, for example, the mass of the hoist 4, the counterweight 6, and the ropes, and the inertial mass and mass of the pulleys.
  • the ropes include, for example, a main rope 5, a compensation rope, a control cable, a speed governor rope 14, and the like.
  • Pulleys include, for example, warp wheels, return wheels, and compensation sheaves.
  • the brake control unit 17 calculates the deceleration at the time of starting according to the load of the car 3 and the traveling direction of the car 3.
  • the brake control unit 17 calculates the speed threshold value V lim by using the deceleration, for example, by the same calculation method as in the first embodiment.
  • the brake control unit 17 performs brake control at the time of emergency stop based on the calculated speed threshold value V lim . As a result, the control method according to the load condition is selected, so that the braking distance is further shortened.
  • the brake control unit 17 may update the speed threshold value V lim by performing a calculation each time the load of the car 3 and the traveling direction change. Alternatively, the brake control unit 17 may update the speed threshold value V lim by referring to the table of the speed threshold value V lim calculated in advance for each load of the car 3 and the traveling direction.
  • the elevator 1 includes a direction detection unit 19 and a load detection unit 18.
  • the direction detection unit 19 detects the traveling direction of the car 3.
  • the load detection unit 18 detects the load inside the car 3.
  • the speed threshold value V lim is calculated based on information including the traveling direction of the car 3 detected by the direction detection unit 19 and the load of the car 3 detected by the load detection unit 18.
  • the speed threshold value V lim is set according to the operating conditions such as the load of the car 3 and the traveling direction.
  • the control method of the brake 8 that shortens the braking distance of the car 3 is selected according to the operating conditions.
  • the speed threshold value V lim may be calculated based on information including only one of the traveling direction of the car 3 detected by the direction detection unit 19 and the load of the car 3 detected by the load detection unit 18.
  • the speed threshold value V lim may be calculated based on a preset traveling direction of the car 3 for evaluation. ..
  • the speed threshold value V lim may be calculated based on the preset load of the car 3 for evaluation. ..
  • the elevator according to this disclosure can be applied to buildings with multiple floors.

Abstract

Provided is an elevator that can suppress the braking distance of the elevator car during emergency stopping. An elevator (1) includes a slip sensor unit (16), a sheave speed detection unit (9), and a brake control unit (17). The slip detection unit (16) detects slipping of a main rope (5) with respect to a sheave (13) of a hoisting machine (4). During emergency stopping, when the slip detection unit (16) detects an occurrence of slipping, the brake control unit (17) compares the speed of the sheave (13), which is detected by the sheave speed detection unit (9) at a point in time between the start of the emergency stopping and the start of the slipping, with a predetermined threshold. When the speed of the sheave (13) exceeds the threshold, the brake control unit (17) controls a brake (8) by a control method that eliminates the slipping of the main rope (5). Meanwhile, when the speed of the sheave (13) does not exceed the threshold, the brake control unit (17) controls the brake (8) by a control method that controls the breaking force of the brake (8) such that the sheave (13) decelerates at a set deceleration rate.

Description

エレベーターElevator
 本開示は、エレベーターに関する。 This disclosure relates to elevators.
 特許文献1は、エレベーターの例を開示する。エレベーターにおいて、主ロープに吊られるかごの速度、および主ロープが巻き掛けられる綱車の速度が検出される。制御ユニットは、綱車に与える制動力を制御する。エレベーターの非常停止時において、綱車の速度およびかごの速度の差が閾値以下の場合に、制御ユニットは全制動力を与える。一方、主ロープが滑ることで綱車の速度およびかごの速度の差が閾値を超える場合に、制御ユニットは、全制動力より弱い制動力を与える。 Patent Document 1 discloses an example of an elevator. In the elevator, the speed of the car suspended on the main rope and the speed of the sheave around which the main rope is wound are detected. The control unit controls the braking force applied to the sheave. When the elevator is in an emergency stop, the control unit applies the full braking force when the difference between the speed of the sheave and the speed of the car is less than or equal to the threshold value. On the other hand, when the difference between the speed of the sheave and the speed of the car exceeds the threshold value due to the slipping of the main rope, the control unit applies a braking force weaker than the total braking force.
日本特開2004-231355号公報Japanese Patent Application Laid-Open No. 2004-231355
 しかしながら、主ロープの滑りが発生するときのかごの速度などの状況によって、主ロープの滑りを抑えるために制動力を弱めると、かごの制動距離が長くなる場合がある。 However, depending on the situation such as the speed of the car when the main rope slips, if the braking force is weakened to suppress the slip of the main rope, the braking distance of the car may become longer.
 本開示は、このような課題の解決に係るものである。本開示は、非常停止時のかごの制動距離を抑えられるエレベーターを提供する。 This disclosure relates to the solution of such problems. The present disclosure provides an elevator that can reduce the braking distance of the car during an emergency stop.
 本開示に係るエレベーターは、かごを昇降路で昇降させる巻上機において、かごを昇降路に吊り下げる主ロープが巻き掛けられる綱車を制動するブレーキと、綱車に対する主ロープの滑りの有無を検知する滑り検知部と、綱車の速度を検出する綱車速度検出部と、非常停止時において滑り検知部が滑りの発生を検知するときに、非常停止の開始から滑り出しまでの予め設定された任意の参照時点における綱車速度検出部に検出された綱車の速度を予め設定された速度閾値と比較し、当該参照時点の速度が速度閾値を超える場合に、綱車および主ロープの間の滑りを解消させる滑り解消制御方式によってブレーキを制御し、当該参照時点の速度が速度閾値を超えない場合に、設定減速度で綱車が減速するようにブレーキの制動力を制御する制動力制御方式によってブレーキを制御するブレーキ制御部と、を備える。 In the hoisting machine that raises and lowers the car on the hoistway, the elevator according to the present disclosure is a brake that brakes the sheave around which the main rope that suspends the car is wound on the hoistway, and whether or not the main rope slips on the sheave. The slip detection unit that detects, the sheave speed detection unit that detects the speed of the sheave, and the slip detection unit that detects the occurrence of slip during an emergency stop are preset from the start of the emergency stop to the start of the slide. The speed of the sheave detected by the sheave speed detector at an arbitrary reference time is compared with a preset speed threshold, and when the speed at the reference time exceeds the speed threshold, between the sheave and the main rope. A braking force control method that controls the brake by a slip elimination control method that eliminates slip, and controls the braking force of the brake so that the sheave decelerates at the set deceleration when the speed at the reference point does not exceed the speed threshold. It is provided with a brake control unit that controls the brakes by means of.
 本開示に係るエレベーターは、かごを昇降路で昇降させる巻上機において、かごを昇降路に吊り下げる主ロープが巻き掛けられる綱車を制動するブレーキと、綱車に対する主ロープの滑りの有無を検知する滑り検知部と、かごの速度を検出するかご速度検出部と、綱車の速度を検出する綱車速度検出部と、非常停止時において滑り検知部が滑りの発生を検知するときに、非常停止の開始から滑り出しまでの予め設定された任意の参照時点におけるかご速度検出部に検出されたかごの速度を予め設定された速度閾値と比較し、当該参照時点の速度が速度閾値を超える場合に、綱車および主ロープの間の滑りを解消させる滑り解消制御方式によってブレーキを制御し、当該参照時点の速度が速度閾値を超えない場合に、設定減速度で綱車が減速するようにブレーキの制動力を制御する制動力制御方式によってブレーキを制御するブレーキ制御部と、を備える。 In the hoisting machine that raises and lowers the car on the hoistway, the elevator according to the present disclosure is a brake that brakes the sheave around which the main rope that suspends the car is wound on the hoistway, and whether or not the main rope slips on the sheave. When the slip detection unit detects slip, the car speed detection unit that detects the speed of the car, the sheave speed detection unit that detects the speed of the sheave, and the slip detection unit detects the occurrence of slip during an emergency stop. When the speed of the car detected by the car speed detector at any preset reference time from the start of the emergency stop to the start is compared with the preset speed threshold, and the speed at the reference time exceeds the speed threshold. In addition, the brake is controlled by the slip elimination control method that eliminates the slip between the sheave and the main rope, and when the speed at the reference point does not exceed the speed threshold, the brake is applied so that the sheave decelerates at the set deceleration. It is provided with a brake control unit that controls the brake by a braking force control method that controls the braking force of the above.
 本開示に係るエレベーターであれば、非常停止時のかごの制動距離が抑えられる。 With the elevator according to this disclosure, the braking distance of the car at the time of an emergency stop can be suppressed.
実施の形態1に係るエレベーターの構成図である。It is a block diagram of the elevator which concerns on Embodiment 1. FIG. 実施の形態1に係るかごの非常停止時における速度波形の例を示す図である。It is a figure which shows the example of the velocity waveform at the time of emergency stop of the car which concerns on Embodiment 1. FIG. 実施の形態1に係るかごの非常停止時における速度波形の例を示す図である。It is a figure which shows the example of the velocity waveform at the time of emergency stop of the car which concerns on Embodiment 1. FIG. 実施の形態1に係るかごの非常停止時における速度波形の例を示す図である。It is a figure which shows the example of the velocity waveform at the time of emergency stop of the car which concerns on Embodiment 1. FIG. 実施の形態1に係るかごの非常停止時における速度波形の例を示す図である。It is a figure which shows the example of the velocity waveform at the time of emergency stop of the car which concerns on Embodiment 1. FIG. 実施の形態1に係るエレベーターの動作の例を示すフローチャートである。It is a flowchart which shows the example of the operation of the elevator which concerns on Embodiment 1. 実施の形態1に係るエレベーターの主要部のハードウェア構成図である。It is a hardware block diagram of the main part of the elevator which concerns on Embodiment 1. FIG. 実施の形態2に係るエレベーターの構成図である。It is a block diagram of the elevator which concerns on Embodiment 2.
 本開示を実施するための形態について添付の図面を参照しながら説明する。各図において、同一または相当する部分には同一の符号を付して、重複する説明は適宜に簡略化または省略する。 The mode for implementing this disclosure will be explained with reference to the attached drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and duplicate description will be appropriately simplified or omitted.
 実施の形態1.
 図1は、実施の形態1に係るエレベーター1の構成図である。
Embodiment 1.
FIG. 1 is a configuration diagram of an elevator 1 according to the first embodiment.
 エレベーター1は、例えば複数の階床を有する建物に設けられる。建物において、エレベーター1の昇降路2が設けられる。昇降路2は、複数の階床にわたる空間である。 Elevator 1 is installed in, for example, a building having a plurality of floors. In the building, the hoistway 2 of the elevator 1 is provided. The hoistway 2 is a space that spans a plurality of floors.
 エレベーター1は、かご3と、巻上機4と、主ロープ5と、釣合い錘6と、調速機7と、ブレーキ8と、綱車速度検出部9と、かご速度検出部10と、安全スイッチ11と、制御装置12と、を備える。 The elevator 1 includes a car 3, a hoist 4, a main rope 5, a counterweight 6, a speed governor 7, a brake 8, a sheave speed detection unit 9, a car speed detection unit 10, and safety. It includes a switch 11 and a control device 12.
 かご3は、昇降路2に配置される。かご3は、複数の階床の間で利用者などを輸送する装置である。巻上機4は、昇降路2に配置されたかご3を昇降させる装置である。巻上機4は、駆動力を発生させる図示されない電動機と、当該電動機に回転駆動される綱車13と、を備える。主ロープ5は、綱車13に巻き掛けられる。主ロープ5は、綱車13の一方側でかご3を昇降路2に吊り下げる。主ロープ5は、綱車13の他方側で釣合い錘6を昇降路2に吊り下げる。釣合い錘6は、主ロープ5を通じて綱車13の両側にかかる荷重の釣合いをかご3との間でとる装置である。 The car 3 is arranged in the hoistway 2. The basket 3 is a device for transporting a user or the like between a plurality of floors. The hoisting machine 4 is a device for raising and lowering the car 3 arranged in the hoistway 2. The hoisting machine 4 includes an electric motor (not shown) that generates a driving force and a sheave 13 that is rotationally driven by the electric motor. The main rope 5 is wound around the sheave 13. The main rope 5 suspends the car 3 from the hoistway 2 on one side of the sheave 13. The main rope 5 suspends the counterweight 6 on the hoistway 2 on the other side of the sheave 13. The counterweight 6 is a device that balances the load applied to both sides of the sheave 13 through the main rope 5 with the cage 3.
 調速機7は、かご3の速度を制限する装置である。調速機7は、調速機ロープ14と、調速機シーブ15と、を備える。調速機ロープ14は、かご3に取り付けられるロープである。調速機シーブ15は、調速機ロープ14が巻き掛けられるシーブである。調速機シーブ15は、かご3の走行に連動して移動する調速機ロープ14によって回転する。調速機7は、調速機シーブ15の回転速度に応じてかご3の速度を制限する。 The governor 7 is a device that limits the speed of the car 3. The governor 7 includes a governor rope 14 and a governor sheave 15. The governor rope 14 is a rope attached to the car 3. The governor sheave 15 is a sheave around which the governor rope 14 is wound. The governor sheave 15 is rotated by a governor rope 14 that moves in conjunction with the running of the car 3. The governor 7 limits the speed of the car 3 according to the rotation speed of the governor sheave 15.
 ブレーキ8は、綱車13を制動する装置である。ブレーキ8は、例えばディスクブレーキ、ドラムブレーキ、またはその他の可動部を有するブレーキなどである。通常時において制動状態にあるときに、ブレーキ8は、静止した状態でかご3および釣合い錘6を保持できる制動力を綱車13に加える。制動力は、例えば綱車13の回転を抑制する摩擦力、または当該摩擦力を生じさせる押圧力などである。一方、ブレーキ8は、解放状態にあるときに、綱車13の回転を妨げない。 The brake 8 is a device for braking the sheave 13. The brake 8 is, for example, a disc brake, a drum brake, or a brake having other moving parts. When in the braking state in the normal state, the brake 8 applies a braking force capable of holding the car 3 and the counterweight 6 in a stationary state to the sheave 13. The braking force is, for example, a frictional force that suppresses the rotation of the sheave 13, or a pressing force that causes the frictional force. On the other hand, the brake 8 does not hinder the rotation of the sheave 13 when it is in the released state.
 綱車速度検出部9は、綱車13の速度を検出する部分である。綱車速度検出部9が検出する綱車13の速度は、例えば綱車13の外周の速度である。綱車速度検出部9は、例えば綱車13の回転量を検出するエンコーダなどを有する。綱車速度検出部9は、綱車13の回転量を綱車13の回転速度または綱車13の外周の速度などに換算する機能を搭載していてもよい。 The sheave speed detection unit 9 is a part that detects the speed of the sheave 13. The speed of the sheave 13 detected by the sheave speed detection unit 9 is, for example, the speed of the outer circumference of the sheave 13. The sheave speed detection unit 9 has, for example, an encoder that detects the amount of rotation of the sheave 13. The sheave speed detection unit 9 may be equipped with a function of converting the amount of rotation of the sheave 13 into the rotation speed of the sheave 13, the speed of the outer circumference of the sheave 13, or the like.
 かご速度検出部10は、かご3の速度を検出する部分である。かご速度検出部10が検出するかご3の速度は、例えばかご3の鉛直方向の走行速度である。かご速度検出部10は、例えば調速機シーブ15の回転量を検出するエンコーダなどを有する。かご速度検出部10は、調速機シーブ15の回転量をかご3の走行速度などに換算する機能を搭載していてもよい。また、かご速度検出部10は、例えばかご3に設けられる位置センサ、速度センサ、または加速度センサなどの検出結果に基づいてかご3の速度を検出してもよい。また、かご速度検出部10は、かご3に連動して動作する主ロープ5または釣合い錘6などの速度を検出することによってかご3の速度を検出してもよい。 The car speed detection unit 10 is a part that detects the speed of the car 3. The speed of the car 3 detected by the car speed detecting unit 10 is, for example, the traveling speed of the car 3 in the vertical direction. The car speed detection unit 10 includes, for example, an encoder that detects the amount of rotation of the governor sheave 15. The car speed detection unit 10 may be equipped with a function of converting the rotation amount of the speed governor sheave 15 into the traveling speed of the car 3. Further, the car speed detection unit 10 may detect the speed of the car 3 based on the detection result of, for example, a position sensor, a speed sensor, or an acceleration sensor provided in the car 3. Further, the car speed detection unit 10 may detect the speed of the car 3 by detecting the speed of the main rope 5 or the counterweight 6 that operates in conjunction with the car 3.
 安全スイッチ11は、昇降路2に設けられる。安全スイッチ11は、昇降路2の上端部および下端部などに配置される。安全スイッチ11は、例えばかご3が最上階または最下階の着床位置を行き過ぎて走行することを検知するスイッチである。安全スイッチ11が作動するときに、例えば保守員などの点検を受けるまでエレベーター1は走行せずに待機する場合がある。この場合に、かご3に乗車していた利用者の閉じ込めが発生する可能性がある。 The safety switch 11 is provided in the hoistway 2. The safety switch 11 is arranged at the upper end and the lower end of the hoistway 2. The safety switch 11 is a switch that detects, for example, that the car 3 travels past the landing position on the top floor or the bottom floor. When the safety switch 11 is activated, the elevator 1 may stand by without traveling until it is inspected by, for example, a maintenance person. In this case, the user who was in the car 3 may be confined.
 制御装置12は、エレベーター1の動作を制御する装置である。エレベーター1の動作は、例えば、かご3の走行およびブレーキ8の動作などを含む。ブレーキ8の動作は、非常停止を含む。非常停止は、非常停止信号の入力、非常停止する事象の発生の検出、または停電の発生などによって、走行しているかご3を停止させる動作である。非常停止は、例えばかご3の走行中に何らかの異常が検知されることによって開始される。非常停止を開始させる異常は、エレベーター1に設けられる図示されない異常検知器などによって検知される。異常検知器は、例えばエレベーター1に設けられる安全装置などである。制御装置12は、滑り検知部16と、ブレーキ制御部17と、を備える。 The control device 12 is a device that controls the operation of the elevator 1. The operation of the elevator 1 includes, for example, traveling of the car 3 and operation of the brake 8. The operation of the brake 8 includes an emergency stop. The emergency stop is an operation of stopping the traveling car 3 by inputting an emergency stop signal, detecting the occurrence of an emergency stop event, or causing a power failure. The emergency stop is started, for example, by detecting some abnormality while the car 3 is running. The abnormality that starts the emergency stop is detected by an abnormality detector (not shown) provided in the elevator 1. The abnormality detector is, for example, a safety device provided in the elevator 1. The control device 12 includes a slip detection unit 16 and a brake control unit 17.
 滑り検知部16は、綱車13との間の主ロープ5の滑りの有無を検知する部分である。ここで、非常停止において、ブレーキ8は、主ロープ5とともに回転している綱車13に制動力を加える。このとき、主ロープ5に連動するかご3の昇降路内の位置、走行方向、走行加速度、および質量、搭乗人数およびかご3に搭載される機器によって変動するかご3内の荷重、綱車13のロープ溝の形状、主ロープ5と綱車13の摩擦係数、ならびにブレーキ8の制動力などによって、綱車13に対する主ロープ5の滑りが発生する場合がある。滑り検知部16は、このように非常停止などの際の主ロープ5の滑りの有無を検知する。滑り検知部16は、例えば綱車13の外周部に対する主ロープ5の周方向の相対運動を検知することによって主ロープ5の滑りの有無を検知する。滑り検知部16は、例えば次のように滑りの有無を検知する。 The slip detection unit 16 is a part that detects the presence or absence of slippage of the main rope 5 with the sheave 13. Here, in an emergency stop, the brake 8 applies a braking force to the sheave 13 rotating together with the main rope 5. At this time, the position in the hoistway of the car 3 interlocked with the main rope 5, the traveling direction, the traveling acceleration, and the mass, the number of passengers, the load in the car 3 that varies depending on the equipment mounted on the car 3, and the sheave 13 The shape of the rope groove, the friction coefficient between the main rope 5 and the sheave 13, the braking force of the brake 8, and the like may cause the main rope 5 to slip with respect to the sheave 13. The slip detection unit 16 detects the presence or absence of slippage of the main rope 5 at the time of an emergency stop or the like. The slip detection unit 16 detects the presence or absence of slippage of the main rope 5 by detecting, for example, the relative motion of the main rope 5 in the circumferential direction with respect to the outer peripheral portion of the sheave 13. The slip detection unit 16 detects the presence or absence of slip as follows, for example.
 滑り検知部16は、かご速度検出部10および綱車速度検出部9がそれぞれ検出したかご3の速度および綱車13の速度の差を綱車13に対する主ロープ5の相対速度として算出する。滑り検知部16は、算出した相対速度が予め設定された閾値を超えるときに、主ロープ5の滑りの発生を検知する。一方、滑り検知部16は、算出した相対速度が予め設定された閾値を下回るときに、主ロープ5の滑りの解消を検知する。 The slip detection unit 16 calculates the difference between the speed of the car 3 and the speed of the sheave 13 detected by the car speed detection unit 10 and the sheave speed detection unit 9, respectively, as the relative speed of the main rope 5 with respect to the sheave 13. The slip detection unit 16 detects the occurrence of slip of the main rope 5 when the calculated relative speed exceeds a preset threshold value. On the other hand, the slip detection unit 16 detects that the slip of the main rope 5 is eliminated when the calculated relative speed falls below a preset threshold value.
 なお、かご3からかご速度検出部10までに共振系が存在する場合などに、滑り検知部16は、かご3からかご速度検出部10までの機械特性の逆モデルフィルタをかご速度検出部10の出力に用いて、当該機械特性の影響を除去する処理を行ってもよい。滑り検知部16は、例えば当該処理を行った上で綱車速度検出部9の出力との相対速度を算出してもよい。また、滑り検知部16は、巻上機4からかご3の位置までおよびかご3からかご速度検出部10までの各々の機械特性フィルタをかご速度検出部10の出力に適用したものと、かご3の速度とを用いて、綱車13に対する主ロープ5の相対速度を算出してもよい。これにより、主ロープ5の滑りの他の主ロープ5の伸び縮みなどによる影響が除去されるので、綱車13に対する主ロープ5の相対速度が精度よく算出される。このため、滑りの有無の検知に対する閾値を小さくすることができるので、主ロープ5の滑り検知の精度が高められる。 When a resonance system exists from the car 3 to the car speed detection unit 10, the slip detection unit 16 uses the reverse model filter of the mechanical characteristics from the car 3 to the car speed detection unit 10 of the car speed detection unit 10. It may be used for the output and processed to remove the influence of the mechanical characteristics. The slip detection unit 16 may calculate the relative speed with the output of the sheave speed detection unit 9, for example, after performing the processing. Further, the slip detection unit 16 applies the mechanical characteristic filters from the hoisting machine 4 to the position of the car 3 and from the car 3 to the car speed detection unit 10 to the output of the car speed detection unit 10, and the car 3 The relative speed of the main rope 5 with respect to the sheave 13 may be calculated using the speed of. As a result, the influence of the expansion and contraction of the main rope 5 other than the slip of the main rope 5 is removed, so that the relative speed of the main rope 5 with respect to the sheave 13 is calculated accurately. Therefore, since the threshold value for detecting the presence or absence of slippage can be reduced, the accuracy of slip detection of the main rope 5 is improved.
 ブレーキ制御部17は、ブレーキ8の動作を制御する部分である。ブレーキ制御部17は、複数の制御方式を切り替えてブレーキ8の動作を制御する。複数の制御方式は、制動力制御方式および滑り解消制御方式を含む。 The brake control unit 17 is a part that controls the operation of the brake 8. The brake control unit 17 controls the operation of the brake 8 by switching a plurality of control methods. The plurality of control methods include a braking force control method and a slip elimination control method.
 制動力制御方式は、設定減速度で綱車13が減速するようにブレーキ8の制動力を制御する制御方式である。設定減速度は、第1減速度aおよび第2減速度aの間で予め設定された一定の減速度である。ここで、減速度は、速度の絶対値を減少させる加速度である。この例において、第1減速度aの絶対値は、第2減速度aの絶対値より大きい。なお、制動力制御方式におけるブレーキ8の制御は、綱車速度検出部9が検出した綱車13の速度に基づいて行われてもよい。また、滑りが発生していない状況ではかご3の速度と綱車13の速度は概略一致するため、制動力制御方式におけるブレーキ8の制御は、かご速度検出部10が検出するかご3の速度から推定される綱車13の減速度に基づいて行われてもよい。 The braking force control method is a control method for controlling the braking force of the brake 8 so that the sheave 13 decelerates at the set deceleration. The set deceleration is a constant deceleration preset between the first deceleration a1 and the second deceleration a2. Here, deceleration is an acceleration that reduces the absolute value of velocity. In this example, the absolute value of the first deceleration a1 is larger than the absolute value of the second deceleration a2. The control of the brake 8 in the braking force control method may be performed based on the speed of the sheave 13 detected by the sheave speed detection unit 9. Further, since the speed of the car 3 and the speed of the sheave 13 substantially match in the situation where slipping does not occur, the control of the brake 8 in the braking force control method is performed from the speed of the car 3 detected by the car speed detection unit 10. It may be done based on the estimated deceleration of the sheave 13.
 第1減速度aは、第1減速度aより絶対値が小さい減速度で非常停止する場合に、綱車13との間の主ロープ5の滑りが発生しないことが見込まれる減速度である。第1減速度aは、巻上機4のトラクション能力の見込み値から予め計算される。トラクション能力の見込み値は、例えば巻上機4の綱車13および主ロープ5の形状および材質などの仕様または設計値などに基づいて算出される、主ロープ5の綱車13に対する滑りにくさなどである。トラクション能力の見込み値において、綱車13および主ロープ5の間の摩耗などの局所的な摩擦条件の低下などは考慮されない。また、第1減速度aの計算において、主ロープ5の滑りが発生しやすいかご3の走行方向および荷重の条件などが考慮される。滑りが発生しやすい条件は、例えば無負荷での上昇時または最大負荷での下降時などの条件を含む。第1減速度aは、例えば、局所的な摩擦条件の低下などを考慮しない場合に滑りが発生しないように予め計算された上限の減速度である。 The first deceleration a1 is a deceleration that is expected not to cause slippage of the main rope 5 with the sheave 13 when an emergency stop is performed at a deceleration whose absolute value is smaller than that of the first deceleration a1. be. The first deceleration a1 is calculated in advance from the estimated value of the traction capacity of the hoist 4. The estimated value of the traction capacity is, for example, the difficulty of slipping of the main rope 5 with respect to the sheave 13 calculated based on the specifications or design values such as the shape and material of the sheave 13 of the hoisting machine 4 and the main rope 5. Is. In the estimated value of traction capacity, reduction of local friction conditions such as wear between the sheave 13 and the main rope 5 is not taken into consideration. Further, in the calculation of the first deceleration a1, the traveling direction of the car 3 in which the main rope 5 is likely to slip and the load conditions are taken into consideration. Conditions that are prone to slipping include, for example, conditions such as when climbing with no load or when descending with maximum load. The first deceleration a1 is an upper limit deceleration calculated in advance so that slip does not occur when, for example, a decrease in local friction conditions is not taken into consideration.
 第2減速度aは、第2減速度aより絶対値が大きい減速度で非常停止する場合に、安全スイッチ11が配置される位置までかご3が走行しないことが見込まれる減速度である。第2減速度aは、かご3、釣合い錘6、主ロープ5、および綱車13の重量ならびにかご3の定格速度などの仕様または設計値などに基づいて予め算出される。第2減速度aの計算において、かご3の行き過ぎ量が大きくなるかご3の走行方向および荷重の条件などが考慮される。ここで、行き過ぎ量は、最上階または最下階などの終端階の着床位置から当該着床位置を行き過ぎてかご3が停止した位置までの距離である。かご3の行き過ぎ量が大きくなる条件は、例えば無負荷での上昇時または最大負荷での下降時などの条件を含む。第2減速度aは、例えば、ブレーキ8の制御のオーバーシュートなどを考慮しない場合に安全スイッチ11が作動しないように予め計算された下限の減速度である。ここで、ブレーキ8の制御のオーバーシュートは、指令に対して制動力が過大になることを表す。 The second deceleration a 2 is a deceleration in which the car 3 is expected not to travel to the position where the safety switch 11 is arranged when the emergency stop is performed at a deceleration having an absolute value larger than that of the second deceleration a 2 . .. The second deceleration a 2 is calculated in advance based on specifications or design values such as the weight of the car 3, the counterweight 6, the main rope 5, and the sheave 13 and the rated speed of the car 3. In the calculation of the second deceleration a2, the traveling direction of the car 3 and the condition of the load in which the excess amount of the car 3 becomes large are taken into consideration. Here, the excess amount is the distance from the landing position of the terminal floor such as the top floor or the bottom floor to the position where the car 3 has stopped past the landing position. The condition in which the excess amount of the car 3 becomes large includes, for example, a condition when ascending with no load or when descending with a maximum load. The second deceleration a2 is, for example, a lower limit deceleration calculated in advance so that the safety switch 11 does not operate when the overshoot of the control of the brake 8 is not taken into consideration. Here, the overshoot of the control of the brake 8 indicates that the braking force becomes excessive with respect to the command.
 第1減速度aおよび第2減速度aの間の減速度を設定減速度として制動力制御方式でブレーキ制御部17がブレーキ8の動作を制御することで、非常停止が行われる場合においても主ロープ5の滑りの発生および利用者の閉じ込めの発生が抑制される。しかしながら、局所的な摩擦条件の低下またはブレーキ8の制御のオーバーシュートなどによって、主ロープ5の滑りが発生する場合がある。このため、ブレーキ制御部17は、かご3の制動距離が長くならないように、滑りが発生した場合のかご3の速度などの条件に応じて滑り解消制御方式への切り替えを行う。 When the brake control unit 17 controls the operation of the brake 8 by the braking force control method with the deceleration between the first deceleration a1 and the second deceleration a2 as the set deceleration, and an emergency stop is performed. Also, the occurrence of slippage of the main rope 5 and the occurrence of confinement of the user are suppressed. However, slippage of the main rope 5 may occur due to a decrease in local friction conditions or an overshoot of the control of the brake 8. Therefore, the brake control unit 17 switches to the slip elimination control method according to conditions such as the speed of the car 3 when slip occurs so that the braking distance of the car 3 does not become long.
 滑り解消制御方式は、綱車13および主ロープ5の間の滑りを解消させる制御方式である。綱車13および主ロープ5の間の滑りが解消された状態は、主ロープ5および綱車13の相対速度が0になり一体となって運動している状態である。滑り解消制御方式において、ブレーキ制御部17は、例えば綱車13の速度をかご3の速度に追従するようにブレーキ8の制動力を制御する。ブレーキ制御部17は、例えばかご速度検出部10が検出するかご3の速度と綱車速度検出部9が検出する綱車13の速度との差異が小さくなるように、綱車13に加える制動力の大きさを調整することで綱車13の減速度を制御する。これにより、主ロープ5の滑りの解消、すなわちトラクション回復が行われる。望ましくは、ブレーキ制御部17は、滑り解消制御方式においてブレーキ8の状態を制動状態のまま解放状態に状態遷移しないように制動力を調整しながらブレーキ8を制御する。あるいは、ブレーキ制御部17は、滑り検知部16が滑りの解消を検出するまでブレーキ8を解放してもよい。その他、滑りが解消された状態にするものであれば、滑り解消制御方式におけるブレーキ8の制御の方法は問わない。 The slip elimination control method is a control method for eliminating slip between the sheave 13 and the main rope 5. The state in which the slip between the main rope 13 and the main rope 5 is eliminated is a state in which the relative speeds of the main rope 5 and the main rope 13 become 0 and they are moving together. In the slip elimination control method, the brake control unit 17 controls the braking force of the brake 8 so that the speed of the sheave 13 follows the speed of the car 3, for example. The brake control unit 17 applies a braking force to the sheave 13 so that the difference between the speed of the car 3 detected by the car speed detection unit 10 and the speed of the sheave 13 detected by the sheave speed detection unit 9 becomes small, for example. The deceleration of the sheave 13 is controlled by adjusting the size of. As a result, the slip of the main rope 5 is eliminated, that is, the traction is restored. Desirably, the brake control unit 17 controls the brake 8 while adjusting the braking force so that the state of the brake 8 does not change to the released state while the state of the brake 8 remains in the braking state in the slip elimination control method. Alternatively, the brake control unit 17 may release the brake 8 until the slip detection unit 16 detects that the slip has been eliminated. In addition, the method of controlling the brake 8 in the slip elimination control method does not matter as long as the slip is eliminated.
 続いて、図2および図3を用いて、非常停止の際のかご3の制動距離の例を説明する。
 図2および図3は、実施の形態1に係るかご3の非常停止時における速度波形の例を示す図である。
Subsequently, an example of the braking distance of the car 3 at the time of an emergency stop will be described with reference to FIGS. 2 and 3.
2 and 3 are diagrams showing an example of a velocity waveform at the time of emergency stop of the car 3 according to the first embodiment.
 図2および図3の横軸は、時間を表す。図2および図3の縦軸は、かご3および綱車13の速度を表す。図2および図3において、実線はかご3の速度波形を表す。図2および図3において、破線は綱車13の速度波形を表す。なお、説明のため、図2および図3において、ブレーキトルクがステップ状に立ち上がるように単純化した場合の速度波形の例が示される。 The horizontal axis of FIGS. 2 and 3 represents time. The vertical axis of FIGS. 2 and 3 represents the speed of the car 3 and the sheave 13. In FIGS. 2 and 3, the solid line represents the velocity waveform of the car 3. In FIGS. 2 and 3, the broken line represents the speed waveform of the sheave 13. For the sake of explanation, FIGS. 2 and 3 show an example of a speed waveform when the brake torque is simplified so as to rise in a stepped manner.
 図2において、ブレーキ制御部17が制御方式を切り替えない場合の例が示される。 FIG. 2 shows an example in which the brake control unit 17 does not switch the control method.
 エレベーター1の異常検知器が異常を検知する場合に、制御装置12に検知信号が入力される。このとき、制御装置12は、かご3の非常停止を行う。制御装置12は、動力停止指令を巻上機4に出力する。巻上機4は、入力された指令に基づいて、綱車13の回転駆動を停止する。また、例えば制御装置12に検知信号が入力されるときに、ブレーキ制御部17は、かご3の非常停止を開始する。図2の点Aは、ブレーキ制御部17がかご3の非常停止を開始する時刻に対応する。 When the abnormality detector of the elevator 1 detects an abnormality, a detection signal is input to the control device 12. At this time, the control device 12 makes an emergency stop of the car 3. The control device 12 outputs a power stop command to the hoisting machine 4. The hoisting machine 4 stops the rotary drive of the sheave 13 based on the input command. Further, for example, when a detection signal is input to the control device 12, the brake control unit 17 starts an emergency stop of the car 3. Point A in FIG. 2 corresponds to the time when the brake control unit 17 starts the emergency stop of the car 3.
 非常停止を開始するときに、ブレーキ制御部17は、制動力制御方式によってブレーキ8を制御する。ブレーキ制御部17は、ブレーキ制御指令をブレーキ8に出力する。ブレーキ8は、ブレーキ制御指令が入力された後に、綱車13の制動を開始する。ここで、ブレーキ8に指令が入力されてから制動力が発生するまでの間に、ブレーキ8の可動部の動作などのために遅れ時間がある。図2の点Bは、指令が入力されてから遅れ時間後にブレーキ8が制動力を発生させた時刻に対応する。 When starting the emergency stop, the brake control unit 17 controls the brake 8 by the braking force control method. The brake control unit 17 outputs a brake control command to the brake 8. The brake 8 starts braking the sheave 13 after the brake control command is input. Here, there is a delay time due to the operation of the movable portion of the brake 8 or the like between the time when the command is input to the brake 8 and the time when the braking force is generated. Point B in FIG. 2 corresponds to the time when the brake 8 generates the braking force after the delay time after the command is input.
 点Aから点Bまでのブレーキ8が制動力を発生させる遅れ時間の間に、かご3および綱車13は、かご3および釣合い錘6のアンバランストルクによって加速または減速する。この例において、かご3の制動距離が長くなる状況としてかご3が加速する場合が示される。アンバランストルクによってかご3が加速する状況は、例えば無負荷での上昇時、または最大荷重での下降時などである。かご3は、点Aから点Bまでの遅れ時間の間に、一定の加速度で増速する。なお、ロープアンバランスなどによって実際は一定の加速度にならない場合もあるが、本実施の形態では加速度が一定であると仮定して簡素化したモデルで説明を行う。 During the delay time when the brake 8 from the point A to the point B generates the braking force, the car 3 and the sheave 13 are accelerated or decelerated by the unbalanced torque of the car 3 and the counterweight 6. In this example, the case where the car 3 accelerates is shown as a situation where the braking distance of the car 3 becomes long. The situation in which the car 3 is accelerated by the unbalanced torque is, for example, when ascending with no load or when descending with a maximum load. The car 3 accelerates at a constant acceleration during the delay time from the point A to the point B. In addition, although the acceleration may not actually be constant due to rope imbalance or the like, in the present embodiment, the explanation will be given using a simplified model assuming that the acceleration is constant.
 遅れ時間の後にブレーキ8の制動力によって綱車13に減速度が生じた場合に、綱車13およびかご3は減速を開始する。ここで、減速を開始する直前の綱車13およびかご3の速度を最大速度と呼ぶ。綱車13および主ロープ5がブレーキ8の制動力によって減速するときに、綱車13に対する主ロープ5の滑りが生じうる。図2において、ブレーキ8が制動力を発生させた直後に滑りが発生する場合の例が示される。すなわち、図2の点Bは、主ロープ5の滑り出し時に対応する。 When the sheave 13 is decelerated by the braking force of the brake 8 after the delay time, the sheave 13 and the car 3 start decelerating. Here, the speed of the sheave 13 and the car 3 immediately before the start of deceleration is called the maximum speed. When the sheave 13 and the main rope 5 are decelerated by the braking force of the brake 8, the main rope 5 may slip with respect to the sheave 13. FIG. 2 shows an example in which slip occurs immediately after the brake 8 generates a braking force. That is, the point B in FIG. 2 corresponds to the time when the main rope 5 starts to slide.
 主ロープ5の滑りが発生するときに、滑り検知部16は、主ロープ5の滑りを検知する。滑り検知部16は、検知信号をブレーキ制御部17に出力する。ブレーキ制御部17は、滑り検知部16から検知信号が入力されたときに、参照時点におけるかご3または綱車13の速度をかご速度検出部10または綱車速度検出部9によって検出する。参照時点は、非常停止の開始から滑り出しまでのいずれかの予め設定された任意の時点である。参照時点において主ロープ5はまだ滑っていないため、主ロープ5と連動するかご3の速度および綱車13の速度は等しい。このため、ブレーキ制御部17は、かご速度検出部10が検出するかご3の速度または綱車速度検出部9が検出する綱車13の速度の少なくとも一方の値を参照時点の速度として用いることができる。ブレーキ制御部17は、検知信号が入力されたときに、参照時点における速度が速度閾値Vlimを超えるかを判定する。速度閾値Vlimは、非常停止時のかご3の制動距離を抑えうるように予め設定されたかご3の速度の値である。 When the main rope 5 slips, the slip detection unit 16 detects the slip of the main rope 5. The slip detection unit 16 outputs a detection signal to the brake control unit 17. When the detection signal is input from the slip detection unit 16, the brake control unit 17 detects the speed of the car 3 or the sheave 13 at the reference time by the car speed detection unit 10 or the sheave speed detection unit 9. The reference time point is any preset time point from the start of the emergency stop to the start of the start. Since the main rope 5 has not yet slipped at the time of reference, the speed of the car 3 interlocking with the main rope 5 and the speed of the sheave 13 are equal. Therefore, the brake control unit 17 may use at least one value of the speed of the car 3 detected by the car speed detection unit 10 or the speed of the sheave 13 detected by the sheave speed detection unit 9 as the speed at the time of reference. can. The brake control unit 17 determines whether the speed at the reference time exceeds the speed threshold value V lim when the detection signal is input. The speed threshold value V lim is a value of the speed of the car 3 preset so as to suppress the braking distance of the car 3 at the time of emergency stop.
 この例のブレーキ制御部17は、滑り検知部16から検知信号が入力されたときに、滑り出しの点Bを参照時点として点Bにおける速度Vが速度閾値Vlimを超えるかを判定する。ブレーキ制御部17は、例えば検知信号が入力されたときのかご速度検出部10または綱車速度検出部9の検出値を点Bにおける速度Vとしてもよい。あるいは、ブレーキ制御部17は、かご速度検出部10または綱車速度検出部9の検出値の時系列データに基づいて、内挿または外挿などによって滑り出し時の点Bにおける速度Vを算出してもよい。図2の例においては、本実施の形態の内容を適用せずに、非常停止動作において主ロープ5が滑り続けた場合の速度波形が示されている。また図2の速度波形は、本実施の形態の内容を適用し、Vが速度閾値Vlimを超えていない場合、すなわち主ロープ5が滑り続けた場合の速度波形に対して、概形は同じく、点Aおよび点Bにおける速度は小さく、BC間の時間が短くなる。 When the detection signal is input from the slip detection unit 16, the brake control unit 17 of this example determines whether the speed V B at the point B exceeds the speed threshold value V lim with the start point B as a reference time point. For example, the brake control unit 17 may set the detection value of the car speed detection unit 10 or the sheave speed detection unit 9 when the detection signal is input as the speed V B at the point B. Alternatively, the brake control unit 17 calculates the speed VB at the point B at the time of slipping by interpolation or extrapolation based on the time series data of the detection values of the car speed detection unit 10 or the sheave speed detection unit 9. You may. In the example of FIG. 2, the velocity waveform when the main rope 5 continues to slide in the emergency stop operation without applying the content of the present embodiment is shown. Further, the velocity waveform of FIG. 2 applies the content of the present embodiment, and the outline is the velocity waveform when V B does not exceed the velocity threshold V lim , that is, when the main rope 5 continues to slide. Similarly, the velocities at points A and B are small and the time between BCs is short.
 主ロープ5の滑りが発生した後に、綱車13およびかご3は互いに異なる減速度で減速する。この例においてブレーキ制御部17は制動力制御方式を維持しているので、綱車13は一定の減速度で減速した後に、点C1において停止する。また、かご3は、綱車13に対して滑る主ロープ5の摩擦などによって一定の減速度で減速した後に、点F1において停止する。 After the main rope 5 slips, the sheave 13 and the car 3 decelerate at different decelerations. In this example, since the brake control unit 17 maintains the braking force control method, the sheave 13 decelerates at a constant deceleration and then stops at the point C1. Further, the car 3 decelerates at a constant deceleration due to friction of the main rope 5 sliding against the sheave 13, and then stops at the point F1.
 かご3が停止するときに、ブレーキ制御部17は、かご3の停止判定を行う。かご3の停止判定は、例えばかご速度検出部10が検出するかご3の速度に基づいて行われる。ブレーキ制御部17は、例えばかご3の速度の絶対値が予め設定された閾値を下回るときに、かご3が停止したと判定する。あるいは、ブレーキ制御部17は、かご3の速度の絶対値が予め設定された速度の閾値を下回り、かつ、当該速度の時間変化率が予め設定された変化率の閾値を下回るときに、かご3が停止したと判定してもよい。また、例えば主ロープ5が綱車13に対して滑っていない場合などに、ブレーキ制御部17は、綱車速度検出部9が検出する綱車13の速度に基づいてかご3の停止判定を行ってもよい。主ロープ5が滑っていない場合にかご3の速度および綱車13の速度は同一となるので、ブレーキ制御部17は、かご3の速度を用いる停止判定と同様の方法で綱車13の速度を用いたかご3の停止判定を行うことができる。また、ブレーキ制御部17は、他の方法によってかご3の停止判定を行ってもよい。かご3が停止したと判定した後に、ブレーキ制御部17は、通常時と同様に静止した状態でかご3および釣合い錘6を保持できる制動力を綱車13に加える。一方、かご3が停止していないと判定するときに、ブレーキ制御部17は、非常停止時のブレーキ8の制御を継続する。 When the car 3 is stopped, the brake control unit 17 determines that the car 3 is stopped. The stop determination of the car 3 is performed based on, for example, the speed of the car 3 detected by the car speed detection unit 10. The brake control unit 17 determines that the car 3 has stopped, for example, when the absolute value of the speed of the car 3 falls below a preset threshold value. Alternatively, when the absolute value of the speed of the car 3 is lower than the threshold value of the preset speed and the time change rate of the speed is lower than the threshold value of the preset rate of change, the brake control unit 17 is the car 3. May be determined to have stopped. Further, for example, when the main rope 5 is not slipping with respect to the sheave 13, the brake control unit 17 determines to stop the car 3 based on the speed of the sheave 13 detected by the sheave speed detection unit 9. You may. Since the speed of the car 3 and the speed of the sheave 13 are the same when the main rope 5 is not slipping, the brake control unit 17 determines the speed of the sheave 13 in the same manner as the stop determination using the speed of the car 3. It is possible to determine the stop of the used car 3. Further, the brake control unit 17 may determine the stop of the car 3 by another method. After determining that the car 3 has stopped, the brake control unit 17 applies a braking force capable of holding the car 3 and the counterweight 6 in a stationary state as in a normal state to the sheave 13. On the other hand, when it is determined that the car 3 is not stopped, the brake control unit 17 continues to control the brake 8 at the time of emergency stop.
 図2の場合におけるかご3の制動距離Sは、実線で示される速度波形および横軸の間の部分の面積に対応する。このため、制動距離Sの推定値は、次の式(1)によって表される。 The braking distance S1 of the car 3 in the case of FIG. 2 corresponds to the area of the portion between the velocity waveform shown by the solid line and the horizontal axis. Therefore, the estimated value of the braking distance S 1 is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、SABは、点Aから点Bまでの間にかご3が走行する距離を表す。aropeは、主ロープ5が綱車13に対して滑りながら減速する場合のかご3の減速度の見込み値である。加速度aropeは、図2において点Bおよび点F1を結ぶ線分の傾きに対応する。加速度aropeは、かご3の速度の絶対値を減少させる加速度であるため、かご3の走行方向を正の向きとした場合に負の値をとる。 Here, S AB represents the distance traveled by the car 3 from the point A to the point B. a rope is an estimated deceleration value of the car 3 when the main rope 5 decelerates while sliding with respect to the sheave 13. The acceleration a rope corresponds to the slope of the line segment connecting the points B and F1 in FIG. Since the acceleration a rope is an acceleration that reduces the absolute value of the speed of the car 3, it takes a negative value when the traveling direction of the car 3 is set to a positive direction.
 なお、距離SABは、例えば次の式(2)によって算出されてもよい。 The distance SAB may be calculated by, for example, the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、aは、アンバランストルクによるかご3の空走加速度の見込み値を表す。加速度aは、図2において点Aおよび点Bを結ぶ線分の傾きに対応する。加速度aは、かご3の速度の絶対値を増加させる加速度であるため、かご3の走行方向を正の向きとした場合に正の値をとる。Tは、点Aから点Bの間のブレーキ8が制動力を発生させるまでの時間の見込み値を表す。見込み値Tは、解放状態から制動状態へのブレーキ8の状態遷移に要する見込み時間を含む。 Here, a k represents the estimated value of the free running acceleration of the car 3 due to the unbalanced torque. The acceleration ak corresponds to the slope of the line segment connecting the points A and B in FIG. Since the acceleration a k is an acceleration that increases the absolute value of the speed of the car 3, it takes a positive value when the traveling direction of the car 3 is set to a positive direction. T 1 represents an estimated time until the brake 8 between the points A and B generates the braking force. The estimated value T 1 includes the estimated time required for the state transition of the brake 8 from the released state to the braking state.
 また、ブレーキ制御部17は、非常停止の開始時のA点を参照時点として、A点における速度Vに基づいてブレーキ8の制御をおこなってもよい。このとき、式(1)および式(2)において、次の式(3)を用いて点Aにおける速度Vから算出された速度Vの値が用いられてもよい。 Further, the brake control unit 17 may control the brake 8 based on the speed VA at the point A with the point A at the start of the emergency stop as a reference point. At this time, in the equations (1) and (2), the value of the velocity V B calculated from the velocity VA at the point A using the following equation (3) may be used.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、速度Vの場合と同様に、ブレーキ制御部17は、かご速度検出部10が検出するかご3の速度または綱車速度検出部9が検出する綱車13の速度の少なくとも一方の値を速度Vとして用いることができる。また、ブレーキ制御部17は、非常停止の開始時のA点から主ロープ5の滑り出し時のB点までの任意の時点を参照時点として、参照時点における速度に基づいてブレーキ8の制御を行ってもよい。このとき、式(3)と同様にして参照時点における速度から算出された速度Vなどの値が用いられてもよい。 As in the case of speed V B , the brake control unit 17 determines at least one of the speed of the car 3 detected by the car speed detection unit 10 and the speed of the sheave 13 detected by the sheave speed detection unit 9. It can be used as a velocity VA . Further, the brake control unit 17 controls the brake 8 based on the speed at the reference time point, with an arbitrary time point from the point A at the start of the emergency stop to the point B at the time when the main rope 5 starts to slide as a reference time point. May be good. At this time, a value such as a velocity V B calculated from the velocity at the time of reference may be used in the same manner as in the equation (3).
 一方、図3において、ブレーキ制御部17が制御方式を切り替える場合の例が示される。
 図3において、図2と同様にブレーキ8が制動力を発生させた直後に滑りが発生する場合の例が示される。
On the other hand, FIG. 3 shows an example in which the brake control unit 17 switches the control method.
FIG. 3 shows an example in which slip occurs immediately after the brake 8 generates a braking force as in FIG. 2.
 この例のブレーキ制御部17は、滑り検知部16から検知信号が入力されたときに、参照時点である点Bにおける速度Vが速度閾値Vlimを超えるかを判定する。この例において、速度Vは、速度閾値Vlimを超える。このとき、ブレーキ制御部17は、制御方式を制動力制御方式から滑り解消制御方式に切り替える。 The brake control unit 17 of this example determines whether the speed V B at the point B at the reference time exceeds the speed threshold value V lim when the detection signal is input from the slip detection unit 16. In this example, the velocity V B exceeds the velocity threshold V lil . At this time, the brake control unit 17 switches the control method from the braking force control method to the slip elimination control method.
 ここで、滑りが発生してから滑り検知部16が検知信号を出力するまでの間に遅れ時間がある。この遅れ時間の間に、綱車13およびかご3は互いに異なる減速度で減速する。遅れ時間の間にブレーキ制御部17は制御方式を制動力制御方式からまだ切り替えていないので、綱車13は一定の減速度で減速している。また、かご3は、綱車13に対して滑る主ロープ5の摩擦などによって一定の減速度で減速している。 Here, there is a delay time between the occurrence of slip and the output of the detection signal by the slip detection unit 16. During this delay time, the sheave 13 and the car 3 decelerate at different decelerations. Since the brake control unit 17 has not yet switched the control method from the braking force control method during the delay time, the sheave 13 is decelerating at a constant deceleration. Further, the car 3 is decelerated at a constant deceleration due to friction of the main rope 5 sliding against the sheave 13.
 その後、滑り検知の検知遅れなどによる遅れ時間の後に、ブレーキ8は、滑り解消制御方式によって綱車13の制動を開始する。図3の点C2は、滑りが発生してから遅れ時間後に滑り解消制御方式への切替えによってブレーキ8の制動力が制動力制御方式から変化した時刻に対応する。ここで、点Bおよび点Cの間の遅れ時間は、滑りの検出遅れおよびブレーキ8の制御応答遅れを含む。滑り解消制御方式によって、ブレーキ8は、主ロープ5の滑りが解消されるように制御される。例えば、ブレーキ制御部17は、ブレーキ8が綱車13に与える制動力を綱車13の速度がかご3の速度に追従するように制御する。図3の点Dは、滑り解消制御方式によって主ロープ5の滑りが解消された時刻に対応する。ここで、滑りが解消してから滑り検知部16に検知されるまでの間においても、滑りの発生の検知と同様に遅れ時間がある。この遅れ時間の間、ブレーキ8は、滑り解消制御方式に基づく制動力を綱車13に与えている。図3の点Eは、滑りが解消してから遅れ時間後にブレーキ8が制動力制御方式に基づく制動力を発生させた時刻に対応する。 After that, after a delay time due to a delay in detecting slip detection, the brake 8 starts braking the sheave 13 by the slip elimination control method. Point C2 in FIG. 3 corresponds to the time when the braking force of the brake 8 changes from the braking force control method due to the switching to the slip elimination control method after the delay time after the slip occurs. Here, the delay time between points B and C includes a slip detection delay and a brake 8 control response delay. The brake 8 is controlled so that the slip of the main rope 5 is eliminated by the slip elimination control method. For example, the brake control unit 17 controls the braking force applied by the brake 8 to the sheave 13 so that the speed of the sheave 13 follows the speed of the car 3. Point D in FIG. 3 corresponds to the time when the slip of the main rope 5 is eliminated by the slip elimination control method. Here, even between the time when the slip is eliminated and the time when the slip is detected by the slip detection unit 16, there is a delay time as in the detection of the occurrence of the slip. During this delay time, the brake 8 applies a braking force based on the slip elimination control method to the sheave 13. Point E in FIG. 3 corresponds to the time when the brake 8 generates the braking force based on the braking force control method after the delay time after the slip is eliminated.
 図3の例において、滑り解消制御方式に基づく制動力は、制動力制御方式において発生した主ロープ5の滑りを解消しうるように制動力制御方式に基づく制動力より小さい。このため、点Dから点Eまでのブレーキ8が制動力を発生させる遅れ時間の間に、かご3は、かご3および釣合い錘6のアンバランストルクによって加速または減速する。この例において、かご3の制動距離が長くなる状況であるかご3が加速する場合が示される。かご3は、点Dから点Eまでの遅れ時間の間に、一定の加速度で増速する。 In the example of FIG. 3, the braking force based on the slip elimination control method is smaller than the braking force based on the braking force control method so as to eliminate the slip of the main rope 5 generated in the braking force control method. Therefore, during the delay time in which the brake 8 from the point D to the point E generates the braking force, the car 3 is accelerated or decelerated by the unbalanced torque of the car 3 and the counterweight 6. In this example, the case where the car 3 accelerates in a situation where the braking distance of the car 3 becomes long is shown. The car 3 accelerates at a constant acceleration during the delay time from the point D to the point E.
 遅れ時間の後に、点Eにおいて綱車13およびかご3は減速を開始する。このとき、主ロープ5の滑りは解消されているので、主ロープ5および綱車13は一体となって運動している。このため、かご3および綱車13は、互いに等しい一定の減速度で減速した後に点F2において停止する。 After the delay time, the sheave 13 and the car 3 start decelerating at point E. At this time, since the slip of the main rope 5 is eliminated, the main rope 5 and the sheave 13 are moving together. Therefore, the car 3 and the sheave 13 stop at the point F2 after decelerating at a constant deceleration equal to each other.
 図3の場合におけるかご3の制動距離Sは、実線で示される速度波形および横軸の間の部分の面積に対応する。このため、制動距離Sの推定値は、次の式(4)によって表される。 The braking distance S2 of the car 3 in the case of FIG . 3 corresponds to the area of the portion between the velocity waveform shown by the solid line and the horizontal axis. Therefore, the estimated value of the braking distance S 2 is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、aは、トラクションが回復した後、すなわち主ロープ5の滑りが解消した後の減速度の指令値である。加速度aは、図3において点Eおよび点F2を結ぶ線分の傾きに対応する。加速度aは、かご3の速度の絶対値を減少させる加速度であるため、かご3の走行方向を正の向きとした場合に負の値をとる。atrは、トラクションが回復した後の遅れ時間の間のかご3の加速度の見込み値である。加速度atrは、図3において点Dおよび点Eを結ぶ線分の傾きに対応する。加速度atrは、かご3の速度の絶対値を増加させる加速度であるため、かご3の走行方向を正の向きとした場合に正の値をとる。また、ブレーキ8の開放によって滑り状態を解消する場合に、加速度atrは空走加速度aと等しくなる。Tは、点Bから点Dの間のトラクションが回復するまでの時間の見込み値である。見込み値Tは、滑り検知部16における滑りの発生の検知の遅れ時間を含む。また、制動力制御方式から滑り解消制御方式への切り替えにおいてブレーキ8の状態が制動状態から解放状態に遷移する場合に、見込み値Tは、当該状態遷移に要する見込み時間を含む。Tは、点Dから点Eの間のブレーキ8が制動力制御方式に基づく制動力を発生させるまでの時間の見込み値である。見込み値Tは、滑り検知部16における滑りの解消の検知の遅れ時間を含む。また、滑り解消制御方式から制動力制御方式への切り替えにおいてブレーキ8の状態が解放状態から制動状態に遷移する場合に、見込み値Tは、当該状態遷移に要する見込み時間を含む。 Here, a c is a command value for deceleration after the traction is restored, that is, after the slip of the main rope 5 is eliminated. The acceleration a c corresponds to the slope of the line segment connecting the points E and F2 in FIG. Since the acceleration a c is an acceleration that reduces the absolute value of the speed of the car 3, it takes a negative value when the traveling direction of the car 3 is a positive direction. a tr is the estimated acceleration of the car 3 during the delay time after the traction is restored. The acceleration a tr corresponds to the slope of the line segment connecting the points D and E in FIG. Since the acceleration a tr is an acceleration that increases the absolute value of the speed of the car 3, it takes a positive value when the traveling direction of the car 3 is set to a positive direction. Further, when the slip state is eliminated by releasing the brake 8, the acceleration a tr becomes equal to the idling acceleration a k . T 2 is an estimated time required for recovery of traction between points B and D. The estimated value T 2 includes a delay time for detecting the occurrence of slip in the slip detection unit 16. Further, when the state of the brake 8 transitions from the braking state to the released state in the switching from the braking force control method to the slip elimination control method, the estimated value T 2 includes the estimated time required for the state transition. T 3 is an estimated time until the brake 8 between the points D and E generates the braking force based on the braking force control method. The estimated value T 3 includes a delay time for detecting the cancellation of slip in the slip detection unit 16. Further, when the state of the brake 8 transitions from the released state to the braking state in the switching from the slip elimination control method to the braking force control method, the estimated value T 3 includes the estimated time required for the state transition.
 なお、主ロープ5の滑りは、例えば摩擦係数の減少などの局所的な要因、またはブレーキ制御のオーバーシュートなどの一時的な要因などであるため、トラクション回復後の減速度の指令値aは、滑りが発生しない通常の範囲の減速度に設定される。また、指令値aの絶対値は、例えば滑りが発生した場合の減速度の見込み値aropeの絶対値より大きい値に設定される。指令値aの値は、例えば設定減速度の値などである。指令値aの絶対値を見込み値aropeの絶対値より十分大きくとることで、トラクション回復のためにかご3が増速した場合においても制動距離への増速の影響がキャンセルされうる。 Since the slip of the main rope 5 is a local factor such as a decrease in the friction coefficient or a temporary factor such as an overshoot of brake control, the command value a for deceleration after traction recovery is set. , Set to a normal range of deceleration where slip does not occur. Further, the absolute value of the command value a c is set to a value larger than the absolute value of the expected deceleration value a rope when slipping occurs, for example. The value of the command value a c is, for example, a set deceleration value. By setting the absolute value of the command value a c sufficiently larger than the absolute value of the expected value a rope , the influence of the speed increase on the braking distance can be canceled even when the speed of the car 3 is increased for traction recovery.
 この例において、式(1)から式(4)で用いられる見込み値a、arope、atr、T、T、およびTは、例えばエレベーター1の仕様または設計値などに基づいて予め設定または算出される値である。また、指令値aは、予め設定される値である。 In this example, the probable values a k , a rope , a tr , T 1 , T 2 , and T 3 used in equations (1) to (4) are based on, for example, the specifications or design values of elevator 1. It is a value set or calculated in advance. The command value a c is a preset value.
 続いて、図4および図5を用いて、速度閾値Vlimの例を説明する。
 図4および図5は、実施の形態1に係るかご3の非常停止時における速度波形の例を示す図である。
Subsequently, an example of the velocity threshold value V lim will be described with reference to FIGS. 4 and 5.
4 and 5 are diagrams showing an example of a velocity waveform at the time of emergency stop of the car 3 according to the first embodiment.
 図4および図5の横軸は、時間を表す。図4および図5の縦軸は、かご3の速度を表す。図4および図5において、実線はブレーキ制御部17が制御方式を切り替えた場合の速度波形を表す。図4および図5において、破線はブレーキ制御部17が制御方式を切り替えない場合の速度波形を表す。なお、図2および図3と同様に、図4および図5においてブレーキトルクがステップ状に立ち上がるように単純化した場合の速度波形の例が示される。 The horizontal axis of FIGS. 4 and 5 represents time. The vertical axis of FIGS. 4 and 5 represents the speed of the car 3. In FIGS. 4 and 5, the solid line represents the speed waveform when the brake control unit 17 switches the control method. In FIGS. 4 and 5, the broken line represents the speed waveform when the brake control unit 17 does not switch the control method. Similar to FIGS. 2 and 3, an example of a speed waveform when the brake torque is simplified so as to rise in a step shape is shown in FIGS. 4 and 5.
 図4において、ブレーキ制御部17が制御方式を切り替えない場合の制動距離Sと制御方式を切り替えた場合の制動距離Sとが等しくなる場合の例が示される。 FIG. 4 shows an example in which the braking distance S1 when the brake control unit 17 does not switch the control method and the braking distance S2 when the control method is switched are equal to each other.
 速度閾値Vlimは、制動距離Sおよび制動距離Sが等しくなるときの参照時点における速度として設定される。この例において点Bを参照時点とするので、速度閾値Vlimは、制動距離Sおよび制動距離Sが等しくなるときの点Bにおける速度として設定される。式(1)から式(4)においてS=Sとすることで得られる速度閾値Vlimは、見込み値a、arope、atr、T、T、およびT、ならびに指令値aなどによって表される。この例において、制動距離Sおよび制動距離S、または速度閾値Vlimは、予め設定された評価用の運転条件に基づいて算出される。評価用の運転条件は、かご3の内部の荷重の大きさおよびかご3の走行方向などの条件を含む。評価用の運転条件は、かご3の位置に応じて決められるかご3の加速度の条件などを含んでもよい。 The speed threshold value V lim is set as the speed at the reference time point when the braking distance S 1 and the braking distance S 2 become equal. Since the point B is the reference time point in this example, the speed threshold V lim is set as the speed at the point B when the braking distance S1 and the braking distance S2 are equal . The velocity threshold value V lim obtained by setting S 1 = S 2 in the equations (1) to (4) is the estimated values a k , a rope , a tr , T 1 , T 2 , and T 3 , and a command. It is represented by a value a c or the like. In this example, the braking distance S 1 and the braking distance S 2 , or the speed threshold value V lim are calculated based on preset operating conditions for evaluation. The operating conditions for evaluation include conditions such as the magnitude of the load inside the car 3 and the traveling direction of the car 3. The operating conditions for evaluation may include the acceleration conditions of the car 3 determined according to the position of the car 3.
 かご3の制動距離は速度波形および横軸の間の部分の面積に対応するため、制動距離Sおよび制動距離Sの差異は、面積αおよび面積αの差異に対応する。ここで、面積αは、破線の速度波形が実線の速度波形より大きい部分の面積である。面積αは、実線の速度波形が破線の速度波形より大きい部分の面積である。図4において、制動距離Sおよび制動距離Sが等しくなるので、面積αおよび面積αは等しい。 Since the braking distance of the car 3 corresponds to the area between the velocity waveform and the horizontal axis, the difference between the braking distance S1 and the braking distance S2 corresponds to the difference between the area α1 and the area α2 . Here, the area α 1 is the area of the portion where the velocity waveform of the broken line is larger than the velocity waveform of the solid line. The area α 2 is the area of the portion where the velocity waveform of the solid line is larger than the velocity waveform of the broken line. In FIG. 4, since the braking distance S 1 and the braking distance S 2 are equal, the area α 1 and the area α 2 are equal.
 図5において、参照時点Bにおける速度Vが速度閾値Vlimを超える場合の例が示される。この例において、速度Vの値は、速度閾値Vlimの値より速度差ΔVだけ大きい。 FIG. 5 shows an example in which the velocity V B at the reference time point B exceeds the velocity threshold value V lim . In this example, the value of the velocity V B is larger than the value of the velocity threshold value V lim by the velocity difference ΔV.
 速度閾値Vlimは、制動距離Sおよび制動距離Sが等しくなるときの参照時点Bの速度である。よって、図5の一点鎖線より上側の領域において、実線の速度波形が破線の速度波形より大きい部分の面積と破線の速度波形が実線の速度波形より大きい部分の面積は等しい。このため、面積αは、一点鎖線より下側の領域の分だけ面積αより大きくなる。したがって、制動距離Sは制動距離Sより大きくなる。 The speed threshold value V lim is the speed at the reference time point B when the braking distance S 1 and the braking distance S 2 become equal. Therefore, in the region above the one-dot chain line in FIG. 5, the area of the portion where the solid line velocity waveform is larger than the broken line velocity waveform and the area of the portion where the broken line velocity waveform is larger than the solid line velocity waveform are equal. Therefore, the area α 1 is larger than the area α 2 by the region below the alternate long and short dash line. Therefore, the braking distance S 1 is larger than the braking distance S 2 .
 同様に、参照時点Bにおける速度Vが速度閾値Vlimを下回る場合において(図示せず)、面積αは、面積αより小さくなる。したがって、制動距離Sは制動距離Sより小さくなる。 Similarly, when the velocity V B at the reference time point B is below the velocity threshold value V lim (not shown), the area α 1 is smaller than the area α 2 . Therefore, the braking distance S 1 is smaller than the braking distance S 2 .
 ブレーキ制御部17は、参照時点Bにおける速度Vと速度閾値Vlimとの比較に基づいて制御方式を切り替えることで、制動距離Sおよび制動距離Sのうちの短い方の制動距離でかご3が停止するようにブレーキ8の制御を行うことができる。なお、ブレーキ制御部17は、非常停止の開始時のA点から主ロープ5の滑り出し時のB点までの任意の時点を参照時点としてもよい。この場合においても、ブレーキ制御部17は、当該参照時点に対して同様に設定された速度閾値と当該参照時点における速度の比較の結果に基づいて制御方式を切り替えることで、短い制動距離でかご3が停止するようにブレーキ8の制御を行うことができる。 The brake control unit 17 switches the control method based on the comparison between the speed V B and the speed threshold V lim at the reference time point B , so that the car has the shorter braking distance of the braking distance S1 and the braking distance S2. The brake 8 can be controlled so that the brake 8 stops. The brake control unit 17 may use any time point from the point A at the start of the emergency stop to the point B at the time when the main rope 5 starts to slide as a reference time point. Even in this case, the brake control unit 17 also switches the control method based on the result of comparison between the speed threshold value similarly set for the reference time point and the speed at the reference time point, so that the car 3 with a short braking distance can be used. The brake 8 can be controlled so that the brake 8 stops.
 続いて、図6を用いて、エレベーター1の動作の例を説明する。
 図6は、実施の形態1に係るエレベーター1の動作の例を示すフローチャートである。
 図6において、非常停止についてのブレーキ制御部17の動作の例が示される。
Subsequently, an example of the operation of the elevator 1 will be described with reference to FIG.
FIG. 6 is a flowchart showing an example of the operation of the elevator 1 according to the first embodiment.
FIG. 6 shows an example of the operation of the brake control unit 17 for an emergency stop.
 ステップS1において、非常停止を開始するときに、ブレーキ制御部17は、制動力制御方式によってブレーキ8の制動を制御する。その後、エレベーター1の動作は、ステップS2に進む。 In step S1, when the emergency stop is started, the brake control unit 17 controls the braking of the brake 8 by the braking force control method. After that, the operation of the elevator 1 proceeds to step S2.
 ステップS2において、ブレーキ制御部17は、滑り検知部16が滑りを検知したかを検知信号の有無などに基づいて判定する。判定結果がYesの場合に、エレベーター1の動作は、ステップS3に進む。判定結果がNoの場合に、エレベーター1の動作は、ステップS6に進む。 In step S2, the brake control unit 17 determines whether or not the slip detection unit 16 has detected slip based on the presence or absence of a detection signal or the like. If the determination result is Yes, the operation of the elevator 1 proceeds to step S3. If the determination result is No, the operation of the elevator 1 proceeds to step S6.
 ステップS3において、ブレーキ制御部17は、滑り出し時を参照時点として、参照時点Bにおける速度Vを検出する。その後、エレベーター1の動作は、ステップS4に進む。 In step S3, the brake control unit 17 detects the speed V B at the reference time point B with the time when the vehicle starts to start as a reference time point. After that, the operation of the elevator 1 proceeds to step S4.
 ステップS4において、ブレーキ制御部17は、速度Vが速度閾値Vlimを超えるかを判定する。判定結果がYesの場合に、エレベーター1の動作は、ステップS5に進む。判定結果がNoの場合に、エレベーター1の動作は、ステップS6に進む。 In step S4, the brake control unit 17 determines whether the speed V B exceeds the speed threshold value V lim . When the determination result is Yes, the operation of the elevator 1 proceeds to step S5. If the determination result is No, the operation of the elevator 1 proceeds to step S6.
 ステップS5において、ブレーキ制御部17は、滑り解消制御方式によってブレーキ8の制動を制御する。その後、エレベーター1の動作は、ステップS2に進む。 In step S5, the brake control unit 17 controls the braking of the brake 8 by the slip elimination control method. After that, the operation of the elevator 1 proceeds to step S2.
 ステップS6において、ブレーキ制御部17は、制動力制御方式によってブレーキ8の制動を制御する。その後、エレベーター1の動作は、ステップS7に進む。 In step S6, the brake control unit 17 controls the braking of the brake 8 by the braking force control method. After that, the operation of the elevator 1 proceeds to step S7.
 ステップS7において、ブレーキ制御部17は、かご3が停止したかを判定する。判定結果がNoの場合に、エレベーター1の動作は、ステップS2に進む。判定結果がYesの場合に、非常停止についてのエレベーター1の動作は、終了する。 In step S7, the brake control unit 17 determines whether the car 3 has stopped. When the determination result is No, the operation of the elevator 1 proceeds to step S2. When the determination result is Yes, the operation of the elevator 1 for the emergency stop ends.
 なお、滑り検知部16は、次のように綱車13のみかけの慣性質量の変化によって主ロープ5の滑りの有無を検知してもよい。主ロープ5の滑りがない場合に、綱車13のみかけの慣性質量は、綱車13自身の慣性質量に、かご3および釣合い錘6の慣性質量が加わったものとなる。一方、主ロープ5の滑りがある場合に、綱車13のみかけの慣性質量は、綱車13自身の慣性質量のみとなる。このため、綱車13に加えられるトルクおよびブレーキ8が綱車13に与える制動力などが同じ場合であっても、滑りの有無によって綱車13の減速度が変化する。主ロープ5の滑りがあると綱車13の減速度は大きくなるので、滑り検知部16は、綱車13の減速度が予め設定された閾値を超えるときに滑りの発生を検知してもよい。ここで、滑り検知部16は、綱車13の減速度を例えば綱車速度検出部9が検出する綱車13の速度などから算出してもよい。また、滑り検知部16は、綱車速度検出部9およびかご速度検出部10が検出する速度の少なくとも一方の速度情報に基づいた綱車13またはかご3の減速もしくは増速の加速度と、制動力制御方式の減速度指令値とを用いた滑りの検知を行ってもよい。滑り検知部16は、綱車速度検出部9およびかご速度検出部10が検出する速度の少なくとも一方の速度情報に基づいた綱車13またはかご3の減速もしくは増速の加速度と、ブレーキ8の制御状態とに基づく滑りの解消検知を行ってもよい。また、滑り検知部16は、主ロープ5の滑りの有無を検知する複数の手段を組み合わせてもよい。 The slip detection unit 16 may detect the presence or absence of slip of the main rope 5 by changing the apparent inertial mass of the sheave 13 as follows. When the main rope 5 does not slip, the apparent inertial mass of the sheave 13 is the inertial mass of the sheave 13 itself plus the inertial mass of the cage 3 and the counterweight 6. On the other hand, when the main rope 5 slips, the apparent inertial mass of the sheave 13 is only the inertial mass of the sheave 13 itself. Therefore, even if the torque applied to the sheave 13 and the braking force applied to the sheave 13 by the brake 8 are the same, the deceleration of the sheave 13 changes depending on the presence or absence of slippage. Since the deceleration of the sheave 13 becomes large when the main rope 5 slips, the slip detection unit 16 may detect the occurrence of slip when the deceleration of the sheave 13 exceeds a preset threshold value. .. Here, the slip detection unit 16 may calculate the deceleration of the sheave 13 from, for example, the speed of the sheave 13 detected by the sheave speed detection unit 9. Further, the slip detection unit 16 decelerates or increases the acceleration of the sheave 13 or the car 3 based on the speed information of at least one of the speeds detected by the sheave speed detection unit 9 and the car speed detection unit 10, and the braking force. Slip detection may be performed using the deceleration command value of the control method. The slip detection unit 16 controls the deceleration or acceleration of the sheave 13 or the car 3 and the brake 8 based on the speed information of at least one of the speeds detected by the sheave speed detection unit 9 and the car speed detection unit 10. Elimination detection of slip may be performed based on the state. Further, the slip detection unit 16 may combine a plurality of means for detecting the presence or absence of slip of the main rope 5.
 本開示においては、かご3および釣合い錘6のアンバランストルクによってかご3が進行方向に対して増速する場合を例に説明を行ったが、減速する場合についても本開示の内容を適用することができる。なお、減速する場合は、減速を開始する直前の綱車13およびかご3の速度は最大速度とはならないが、本開示においては、便宜上、最大速度と呼ぶ。 In the present disclosure, the case where the car 3 speeds up in the traveling direction due to the unbalanced torque of the car 3 and the counterweight 6 is described as an example, but the content of the present disclosure is also applied to the case where the car 3 decelerates. Can be done. When decelerating, the speed of the sheave 13 and the car 3 immediately before the start of deceleration is not the maximum speed, but in the present disclosure, it is referred to as the maximum speed for convenience.
 以上に説明したように、実施の形態1に係るエレベーター1は、ブレーキ8と、滑り検知部16と、かご速度検出部10と、ブレーキ制御部17と、を備える。かご3を昇降路2に吊り下げる主ロープ5は、巻上機4の綱車13に巻き掛けられる。巻上機4は、かご3を昇降路2で昇降させる。ブレーキ8は、巻上機4において綱車13を制動する。滑り検知部16は、綱車13に対する主ロープ5の滑りの有無を検知する。かご速度検出部10は、かご3の速度を検出する。非常停止時において滑り検知部16が滑りの発生を検知するときに、ブレーキ制御部17は、参照時点におけるかご速度検出部10に検出されたかご3の速度を予め設定された速度閾値と比較する。参照時点は、非常停止の開始から滑り出しまでの予め設定された任意の時点である。
 また、実施の形態1に係るエレベーター1は、かご速度検出部10とともに、またはかご速度検出部10に替えて綱車速度検出部9を備えてもよい。綱車速度検出部9は、綱車13の速度を検出する。このとき、非常停止時において滑り検知部16が滑りの発生を検知する場合に、ブレーキ制御部17は、参照時点におけるかご速度検出部10に検出されたかご3の速度、または綱車速度検出部9に検出された綱車13の速度を予め設定された速度閾値と比較する。
 比較を行った参照時点の速度が速度閾値を超える場合に、ブレーキ制御部17は、滑り解消制御方式によってブレーキ8を制御する。滑り解消制御方式は、綱車13および主ロープ5の間の滑りを解消させる制御方式である。一方、比較を行った参照時点の速度が速度閾値を超えない場合に、ブレーキ制御部17は、制動力制御方式によってブレーキ8を制御する。制動力制御方式は、設定減速度で綱車13が減速するように制動力を制御する制御方式である。
As described above, the elevator 1 according to the first embodiment includes a brake 8, a slip detection unit 16, a car speed detection unit 10, and a brake control unit 17. The main rope 5 that suspends the car 3 from the hoistway 2 is wound around the sheave 13 of the hoisting machine 4. The hoisting machine 4 raises and lowers the car 3 on the hoistway 2. The brake 8 brakes the sheave 13 in the hoisting machine 4. The slip detection unit 16 detects the presence or absence of slippage of the main rope 5 with respect to the sheave 13. The car speed detection unit 10 detects the speed of the car 3. When the slip detection unit 16 detects the occurrence of slip during an emergency stop, the brake control unit 17 compares the speed of the car 3 detected by the car speed detection unit 10 at the reference time with a preset speed threshold value. .. The reference time point is any preset time point from the start of the emergency stop to the start of the start.
Further, the elevator 1 according to the first embodiment may include a sheave speed detection unit 9 together with the car speed detection unit 10 or in place of the car speed detection unit 10. The sheave speed detection unit 9 detects the speed of the sheave 13. At this time, when the slip detection unit 16 detects the occurrence of slip during an emergency stop, the brake control unit 17 uses the speed of the car 3 detected by the car speed detection unit 10 at the time of reference, or the sheave speed detection unit. The speed of the sheave 13 detected in 9 is compared with a preset speed threshold.
When the speed at the reference point in time of comparison exceeds the speed threshold value, the brake control unit 17 controls the brake 8 by the slip elimination control method. The slip elimination control method is a control method for eliminating slip between the sheave 13 and the main rope 5. On the other hand, when the speed at the reference time pointed out by the comparison does not exceed the speed threshold value, the brake control unit 17 controls the brake 8 by the braking force control method. The braking force control method is a control method that controls the braking force so that the sheave 13 decelerates at the set deceleration.
 当該構成によって、非常停止の開始から滑り出しまでの参照時点におけるかご3または綱車13の速度などの状況に応じて、主ロープ5が滑り出した後のブレーキ8の制御方式がかご3の制動距離が短くなるように選択される。このため、ブレーキ8の作動の遅れ時間および滑り検知の遅れ時間などによってかご3が増速しうる場合などにおいても、非常停止時のかご3の制動距離が抑えられる。また、滑り出し時までの参照時点における速度に基づいて制御方式が選択されるので、ブレーキ制御部17は、滑りの発生が検知された後、選択された制御方式によって速やかにブレーキ8の制御を行うことができる。 Depending on the situation such as the speed of the car 3 or the sheave 13 at the reference time from the start of the emergency stop to the start of the emergency stop, the control method of the brake 8 after the main rope 5 starts to slide is the braking distance of the car 3. Selected to be shorter. Therefore, even when the speed of the car 3 can be increased due to the delay time of the operation of the brake 8 and the delay time of the slip detection, the braking distance of the car 3 at the time of emergency stop can be suppressed. Further, since the control method is selected based on the speed at the reference time until the start of sliding, the brake control unit 17 promptly controls the brake 8 by the selected control method after the occurrence of slip is detected. be able to.
 ここで、主ロープ5が滑るときの主ロープ5および綱車13の間の摩擦力は、主ロープ5および綱車13の相対速度が大きくなると低下する。このため、滑りの発生が検知された後も制動力制御方式を継続する場合に、かご3が停止するまでの間にかご3の減速度は変動する。滑り出し時から綱車13が停止するまで、かご3の減速度の絶対値は滑り出し時の減速度から次第に小さくなる。その後、綱車13が停止した後、相対速度が小さくなるためかご3の減速度は次第に大きくなる。その後、遅くともかご3が停止するときまでに、かご3の減速度の絶対値は滑り出し時の減速度まで小さくなる。このため、かご3の減速度の変動を考慮した速度波形は、図2などにおける滑り出し時の減速度のまま一定で減速する速度波形より上側の波形となる。したがって、式(1)によって算出される制動距離Sは、滑り解消制御方式によるブレーキ8の制御を行わない場合において最小の条件で算出された制動距離となる。ブレーキ制御部17は、制動距離Sが制動距離Sを下回る場合に滑り解消制御方式によるブレーキ8の制御を行うので、制御方式の切り替えによってかご3の制動距離が長くなることはない。 Here, the frictional force between the main rope 5 and the sheave 13 when the main rope 5 slides decreases as the relative speed of the main rope 5 and the sheave 13 increases. Therefore, when the braking force control method is continued even after the occurrence of slippage is detected, the deceleration of the car 3 fluctuates until the car 3 stops. From the time of starting to the stop of the sheave 13, the absolute value of the deceleration of the car 3 gradually decreases from the deceleration at the time of starting. After that, after the sheave 13 stops, the deceleration of the car 3 gradually increases because the relative speed decreases. After that, by the time the car 3 stops at the latest, the absolute value of the deceleration of the car 3 becomes smaller to the deceleration at the time of starting. Therefore, the velocity waveform considering the fluctuation of the deceleration of the car 3 is a waveform higher than the velocity waveform in which the deceleration is constant and decelerated while the deceleration at the time of starting in FIG. 2 or the like. Therefore, the braking distance S1 calculated by the equation ( 1 ) is the braking distance calculated under the minimum condition when the brake 8 is not controlled by the slip elimination control method. Since the brake control unit 17 controls the brake 8 by the slip elimination control method when the braking distance S 2 is less than the braking distance S 1 , the braking distance of the car 3 does not become long by switching the control method.
 また、ブレーキ制御部17は、主ロープ5の滑り出しの時点を参照時点とする。これにより、滑り出しの時点より前の制動距離の影響が制動距離Sおよび制動距離Sの評価においてキャンセルされるので、速度閾値Vlimは、主ロープ5が実際に滑り出すまでのかご3の運動の影響をうけない。このため、ブレーキ8が制動力を綱車13に加え始めた直後には主ロープ5が滑り出さない場合においても、速度閾値Vlimの算出および速度閾値Vlimとの比較などが容易になる。 Further, the brake control unit 17 sets the time point at which the main rope 5 starts to slide as a reference time point. As a result, the influence of the braking distance before the time of the start is canceled in the evaluation of the braking distance S1 and the braking distance S2, so that the speed threshold V lim is the movement of the car 3 until the main rope 5 actually starts to slide. Not affected by. Therefore, even when the main rope 5 does not start to slide immediately after the brake 8 starts applying the braking force to the sheave 13, it becomes easy to calculate the speed threshold value V lim and compare it with the speed threshold value V lim .
 また、ブレーキ制御部17は、非常停止の開始の時点を参照時点とする。これにより、主ロープ5が滑り出す前に参照時点および速度閾値を比較できるので、ブレーキ制御部17は、滑りの発生が検知された後、選択された制御方式によってより速やかにブレーキ8の制御を行うことができる。 Further, the brake control unit 17 uses the time point at which the emergency stop starts as the reference time point. As a result, the reference time point and the speed threshold value can be compared before the main rope 5 starts to slide, so that the brake control unit 17 controls the brake 8 more quickly by the selected control method after the occurrence of the slip is detected. be able to.
 また、ブレーキ制御部17は、非常停止時において滑り検知部16が滑りの発生を検知する前に、制動力制御方式によってブレーキ8を制御する。また、ブレーキ制御部17は、滑り検知部16が滑りの解消を検知するときに、制動力制御方式によってブレーキ8を制御する。これにより、主ロープ5の滑りが発生していないときに、設定減速度などの大きい減速度によってかご3を減速できる。このため、かご3の制動距離がより短くなる。 Further, the brake control unit 17 controls the brake 8 by the braking force control method before the slip detection unit 16 detects the occurrence of slip in the emergency stop. Further, the brake control unit 17 controls the brake 8 by the braking force control method when the slip detection unit 16 detects the elimination of the slip. As a result, when the main rope 5 is not slipped, the car 3 can be decelerated by a large deceleration such as a set deceleration. Therefore, the braking distance of the car 3 becomes shorter.
 また、ブレーキ制御部17は、制動距離の推定値Sおよび制動距離の推定値Sが等しくなるような参照時点のかご3または綱車13の速度を速度閾値Vlimとして、滑り解消制御方式および制動力制御方式を切り替える。制動距離Sは、滑り検知部16が滑りの発生を検知したときに制動力制御方式によってブレーキ8が制御される場合のかご3の制動距離の推定値である。制動距離Sは、滑り検知部16が滑りの発生を検知したときに滑り解消制御方式によってブレーキ8が制御される場合のかご3の制動距離の推定値である。このように、速度閾値Vlimが制動距離の推定値Sおよび制動距離の推定値Sに基づいて設定されるので、非常停止時のかご3の制動距離がより確実に抑えられる。 Further, the brake control unit 17 sets the speed of the car 3 or the rope wheel 13 at the reference time point so that the estimated braking distance S 1 and the estimated braking distance S 2 are equal to each other as the speed threshold V lim , and sets the slip elimination control method. And the braking force control method is switched. The braking distance S 1 is an estimated value of the braking distance of the car 3 when the brake 8 is controlled by the braking force control method when the slip detection unit 16 detects the occurrence of slip. The braking distance S 2 is an estimated value of the braking distance of the car 3 when the brake 8 is controlled by the slip elimination control method when the slip detection unit 16 detects the occurrence of slip. In this way, since the speed threshold value V lim is set based on the estimated braking distance S1 and the estimated braking distance S2, the braking distance of the car 3 at the time of emergency stop can be suppressed more reliably.
 また、速度閾値Vlimは、減速度の見込み値aropeと、加速度の見込み値atrと、設定減速度と、滑り検知部16の滑りの有無の検知の遅れ時間の見込み値と、ブレーキ8の状態遷移の遅れ時間の見込み値と、を含む情報に基づいて算出される。見込み値aropeは、滑り検知部16が滑りの発生を検知したときに制動力制御方式によってブレーキ8が制御される場合のかご3の減速度の見込み値である。見込み値atrは、綱車13に対する主ロープ5の滑りが解消したときに滑り解消制御方式によってブレーキ8が制御される場合のかご3の加速度の見込み値である。検知の遅れ時間の見込み値および状態遷移の遅れ時間の見込み値は、遅れ時間の見込み値T、T、およびTなどに含まれる。これにより、速度閾値Vlimは、既知の情報などに基づいて滑り検知の前に算出できる。このため、ブレーキ制御部17は、滑りの発生が検知された後、選択された制御方式によってより速やかにブレーキ8の制御を行うことができる。 Further, the speed threshold value V lim is the estimated deceleration value a rope , the estimated acceleration value a tr , the set deceleration, the estimated delay time for detecting the presence or absence of slippage of the slip detection unit 16, and the brake 8. It is calculated based on the estimated value of the delay time of the state transition of and the information including. The estimated value a rope is an estimated deceleration value of the car 3 when the brake 8 is controlled by the braking force control method when the slip detecting unit 16 detects the occurrence of slip. The estimated value a tr is an estimated value of the acceleration of the car 3 when the brake 8 is controlled by the slip elimination control method when the slip of the main rope 5 with respect to the sheave 13 is eliminated. The estimated delay time of detection and the estimated delay time of state transition are included in the estimated delay times T 1 , T 2 , T 3 , and the like. Thereby, the velocity threshold value V lim can be calculated before slip detection based on known information and the like. Therefore, the brake control unit 17 can control the brake 8 more quickly by the selected control method after the occurrence of slippage is detected.
 また、ブレーキ制御部17は、滑り解消制御方式においてブレーキ8の制動状態から解放状態への状態遷移が生じないようにブレーキ8の制動力を制御してもよい。これにより、ブレーキ8の状態遷移の時間がなくなるので、ブレーキ8の制動遅れ時間が短くなる。このため、トラクション回復直後のかご3が増速する時間が抑えられる。 Further, the brake control unit 17 may control the braking force of the brake 8 so that the state transition from the braking state of the brake 8 to the released state does not occur in the slip elimination control method. As a result, the state transition time of the brake 8 is eliminated, so that the braking delay time of the brake 8 is shortened. Therefore, the time for the car 3 to accelerate immediately after the traction is restored can be suppressed.
 また、ブレーキ制御部17は、第1減速度aより絶対値が小さく、かつ、第2減速度aより絶対値が大きい減速度を設定減速度としてブレーキ8を制御する。第1減速度aは、綱車13に対する主ロープ5の滑りが発生しない上限の減速度として巻上機4のトラクション能力の見込み値から予め計算されたかご3の減速度である。第2減速度aは、昇降路2に設けられた安全スイッチ11を作動させない下限の減速度として予め計算されたかご3の減速度である。これにより、主ロープ5の滑りの発生および安全スイッチ11の作動による閉じ込めの発生が抑えられる。 Further, the brake control unit 17 controls the brake 8 with a deceleration having a smaller absolute value than the first deceleration a1 and a larger absolute value than the second deceleration a2 as a set deceleration. The first deceleration a1 is the deceleration of the car 3 calculated in advance from the estimated value of the traction capacity of the hoist 4 as the upper limit deceleration at which the main rope 5 does not slip with respect to the sheave 13. The second deceleration a 2 is a deceleration of the car 3 calculated in advance as a lower limit deceleration that does not activate the safety switch 11 provided in the hoistway 2. As a result, the occurrence of slippage of the main rope 5 and the occurrence of confinement due to the operation of the safety switch 11 are suppressed.
 なお、滑り検知部16およびブレーキ制御部17などの一部または全部は、制御装置12の外部の装置に搭載されていてもよい。 A part or all of the slip detection unit 16 and the brake control unit 17 may be mounted on an external device of the control device 12.
 続いて、図7を用いて、エレベーター1のハードウェア構成の例について説明する。
 図7は、実施の形態1に係るエレベーター1の主要部のハードウェア構成図である。
Subsequently, an example of the hardware configuration of the elevator 1 will be described with reference to FIG. 7.
FIG. 7 is a hardware configuration diagram of a main part of the elevator 1 according to the first embodiment.
 エレベーター1の各機能は、処理回路により実現し得る。処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。処理回路は、プロセッサ100aおよびメモリ100bと共に、あるいはそれらの代用として、少なくとも1つの専用ハードウェア200を備えてもよい。 Each function of elevator 1 can be realized by a processing circuit. The processing circuit includes at least one processor 100a and at least one memory 100b. The processing circuit may include at least one dedicated hardware 200 with or as a substitute for the processor 100a and the memory 100b.
 処理回路がプロセッサ100aとメモリ100bとを備える場合、エレベーター1の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。そのプログラムはメモリ100bに格納される。プロセッサ100aは、メモリ100bに記憶されたプログラムを読み出して実行することにより、エレベーター1の各機能を実現する。 When the processing circuit includes the processor 100a and the memory 100b, each function of the elevator 1 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 100b. The processor 100a realizes each function of the elevator 1 by reading and executing the program stored in the memory 100b.
 プロセッサ100aは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。メモリ100bは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROMなどの、不揮発性または揮発性の半導体メモリなどにより構成される。 The processor 100a is also referred to as a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, and a DSP. The memory 100b is composed of, for example, a non-volatile or volatile semiconductor memory such as a RAM, a ROM, a flash memory, an EPROM, or an EEPROM.
 処理回路が専用ハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。 When the processing circuit includes the dedicated hardware 200, the processing circuit is realized by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
 エレベーター1の各機能は、それぞれ処理回路で実現することができる。あるいは、エレベーター1の各機能は、まとめて処理回路で実現することもできる。エレベーター1の各機能について、一部を専用ハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、専用ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせでエレベーター1の各機能を実現する。 Each function of elevator 1 can be realized by a processing circuit. Alternatively, each function of the elevator 1 can be collectively realized by a processing circuit. For each function of the elevator 1, a part may be realized by the dedicated hardware 200, and the other part may be realized by software or firmware. As described above, the processing circuit realizes each function of the elevator 1 by the dedicated hardware 200, software, firmware, or a combination thereof.
 実施の形態2.
 実施の形態2において、実施の形態1で開示される例と相違する点について特に詳しく説明する。実施の形態2で説明しない特徴については、実施の形態1で開示される例のいずれの特徴が採用されてもよい。
Embodiment 2.
In the second embodiment, the differences from the example disclosed in the first embodiment will be described in particular detail. As for the features not described in the second embodiment, any of the features disclosed in the first embodiment may be adopted.
 図8は、実施の形態2に係るエレベーター1の構成図である。 FIG. 8 is a configuration diagram of the elevator 1 according to the second embodiment.
 エレベーター1は、荷重検出部18を備える。荷重検出部18は、かご3の内部の荷重を検出する部分である。荷重検出部18は、例えばかご3の下部またはかご3に取り付けられる主ロープ5の端部などに設けられる。通常時において、荷重検出部18は、例えばかご3の荷重によって変動するアンバランストルクの補償およびかご3の過積載の検知などに用いられる。 Elevator 1 includes a load detection unit 18. The load detection unit 18 is a portion that detects the load inside the car 3. The load detection unit 18 is provided, for example, at the lower part of the car 3 or at the end of the main rope 5 attached to the car 3. In the normal state, the load detection unit 18 is used, for example, to compensate for an unbalanced torque that fluctuates due to the load of the car 3 and to detect an overload of the car 3.
 制御装置12は、方向検出部19を備える。方向検出部19は、上昇または下降のかご3の走行方向を検出する部分である。方向検出部19は、例えば綱車速度検出部9またはかご速度検出部10が検出する速度の符号に基づいて上昇または下降を判定する。この例において、ブレーキ制御部17は、滑り出し時を参照時点としてブレーキ8の制御を行う。 The control device 12 includes a direction detection unit 19. The direction detection unit 19 is a portion that detects the traveling direction of the ascending or descending car 3. The direction detection unit 19 determines ascending or descending based on, for example, the code of the speed detected by the sheave speed detecting unit 9 or the car speed detecting unit 10. In this example, the brake control unit 17 controls the brake 8 with reference to the time when the vehicle starts to slide.
 かご3の荷重は、主ロープ5を通じて綱車13にかかるトルクに影響する。また、ブレーキトルクがかかる方向は、かご3の走行方向によって変化する。このため、主ロープ5が滑らない条件はかご3の荷重および走行方向によって変化する。これにより、主ロープ5の滑り出しの最大減速度は、かご3の荷重および走行方向によって変化する。主ロープ5が滑らない条件は、次の式(5)によって表される。 The load of the car 3 affects the torque applied to the sheave 13 through the main rope 5. Further, the direction in which the brake torque is applied changes depending on the traveling direction of the car 3. Therefore, the condition that the main rope 5 does not slip changes depending on the load of the car 3 and the traveling direction. As a result, the maximum deceleration of the main rope 5 starting to slide changes depending on the load of the car 3 and the traveling direction. The condition that the main rope 5 does not slip is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、Γはトラクション係数を表す。expは指数関数を表す。kは綱車13の溝係数を表す。溝係数は、綱車13のロープ溝の形状などによって定まる係数である。μは主ロープ5および綱車13の間の摩擦係数である。溝係数kおよび摩擦係数μの積kμは、主ロープ5および綱車13の間のみかけの摩擦係数を表す。θは主ロープ5の綱車13への巻き付け角を表す。Ten1は綱車13から見たかご3側の張力を表す。Ten2は綱車13から見た釣合い錘6側の張力を表す。主ロープ5の滑りは、式(5)の右辺の張力比がトラクション係数Γを超える場合に発生する。 Here, Γ represents the traction coefficient. exp represents an exponential function. k represents the groove coefficient of the sheave 13. The groove coefficient is a coefficient determined by the shape of the rope groove of the sheave 13. μ is the coefficient of friction between the main rope 5 and the sheave 13. The product kμ of the groove coefficient k and the friction coefficient μ represents the apparent friction coefficient between the main rope 5 and the sheave 13. θ represents the winding angle of the main rope 5 around the sheave 13. Ten1 represents the tension on the car 3 side as seen from the sheave 13. Ten2 represents the tension on the balance weight 6 side as seen from the sheave 13. The slip of the main rope 5 occurs when the tension ratio on the right side of the equation (5) exceeds the traction coefficient Γ.
 また、主ロープ5の滑りが発生していないときの綱車13の回転軸周りの運動方程式は、次の式(6)によって表される。 Further, the equation of motion around the axis of rotation of the sheave 13 when the main rope 5 is not slipped is expressed by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、Mtmは綱車13の慣性に相当する等価質量を表す。atmは綱車13の減速度を表す。FBKはブレーキトルクを綱車13の回転方向の力に換算した力を表す。力FBKの符号は、かご3の上昇時に負となり、かご3の下降時に正となるように取られる。 Here, M tm represents an equivalent mass corresponding to the inertia of the sheave 13. a tm represents the deceleration of the sheave 13. FBK represents a force obtained by converting the brake torque into a force in the rotation direction of the sheave 13. The sign of the force FBK is taken so that it becomes negative when the car 3 rises and becomes positive when the car 3 descends.
 主ロープ5がちょうど滑り出す条件は式(5)において張力比がトラクション係数に等しくなることであるため、当該条件を満たす張力を式(6)に適用することによって滑り出し時の減速度atmが計算できる。ここで、張力Ten1および張力Ten2の値は、例えば巻上機4、釣合い錘6、およびロープ類の質量、ならびに滑車類の慣性質量および質量などを用いて、ローピングに応じて計算できる。ここで、ロープ類は、例えば主ロープ5、コンペンセーションロープ、制御ケーブル、および調速機ロープ14などを含む。滑車類は、例えば反らせ車、返し車、およびコンペンセーションシーブなどを含む。 Since the condition that the main rope 5 just starts to slide is that the tension ratio is equal to the traction coefficient in the equation (5), the deceleration atm at the time of the start is calculated by applying the tension satisfying the condition to the equation (6). can. Here, the values of tension Ten1 and tension Ten2 can be calculated according to roping using, for example, the mass of the hoist 4, the counterweight 6, and the ropes, and the inertial mass and mass of the pulleys. Here, the ropes include, for example, a main rope 5, a compensation rope, a control cable, a speed governor rope 14, and the like. Pulleys include, for example, warp wheels, return wheels, and compensation sheaves.
 ブレーキ制御部17は、かご3の荷重およびかご3の走行方向に応じた滑り出し時の減速度を算出する。ブレーキ制御部17は、当該減速度を用いて例えば実施の形態1と同様の計算方法によって速度閾値Vlimを算出する。ブレーキ制御部17は、算出した速度閾値Vlimに基づいて非常停止時のブレーキ制御を行う。これにより、負荷の条件に応じた制御方式が選択されるため、制動距離がより短縮される。 The brake control unit 17 calculates the deceleration at the time of starting according to the load of the car 3 and the traveling direction of the car 3. The brake control unit 17 calculates the speed threshold value V lim by using the deceleration, for example, by the same calculation method as in the first embodiment. The brake control unit 17 performs brake control at the time of emergency stop based on the calculated speed threshold value V lim . As a result, the control method according to the load condition is selected, so that the braking distance is further shortened.
 なお、ブレーキ制御部17は、かご3の荷重および走行方向が変化する都度計算を行って速度閾値Vlimを更新してもよい。あるいは、ブレーキ制御部17は、かご3の荷重および走行方向ごとに予め計算された速度閾値Vlimのテーブルを参照することで速度閾値Vlimを更新してもよい。 The brake control unit 17 may update the speed threshold value V lim by performing a calculation each time the load of the car 3 and the traveling direction change. Alternatively, the brake control unit 17 may update the speed threshold value V lim by referring to the table of the speed threshold value V lim calculated in advance for each load of the car 3 and the traveling direction.
 以上に説明したように、実施の形態2に係るエレベーター1は、方向検出部19と、荷重検出部18と、を備える。方向検出部19は、かご3の走行方向を検出する。荷重検出部18は、かご3の内部の荷重を検出する。速度閾値Vlimは、方向検出部19が検出するかご3の走行方向と、荷重検出部18が検出するかご3の荷重と、を含む情報に基づいて算出される。 As described above, the elevator 1 according to the second embodiment includes a direction detection unit 19 and a load detection unit 18. The direction detection unit 19 detects the traveling direction of the car 3. The load detection unit 18 detects the load inside the car 3. The speed threshold value V lim is calculated based on information including the traveling direction of the car 3 detected by the direction detection unit 19 and the load of the car 3 detected by the load detection unit 18.
 当該構成によって、かご3の負荷および走行方向などの運転条件に応じて速度閾値Vlimが設定される。これにより、かご3の制動距離がより短くなるブレーキ8の制御方式が運転条件に応じて選択される。 According to this configuration, the speed threshold value V lim is set according to the operating conditions such as the load of the car 3 and the traveling direction. As a result, the control method of the brake 8 that shortens the braking distance of the car 3 is selected according to the operating conditions.
 なお、速度閾値Vlimは、方向検出部19が検出するかご3の走行方向および荷重検出部18が検出するかご3の荷重のいずれか一方のみを含む情報に基づいて算出されてもよい。かご3の走行方向の検出値が速度閾値Vlimを算出する情報に含まれないときに、速度閾値Vlimは、予め設定された評価用のかご3の走行方向に基づいて算出されてもよい。また、かご3の荷重の検出値が速度閾値Vlimを算出する情報に含まれないときに、速度閾値Vlimは、予め設定された評価用のかご3の荷重に基づいて算出されてもよい。 The speed threshold value V lim may be calculated based on information including only one of the traveling direction of the car 3 detected by the direction detection unit 19 and the load of the car 3 detected by the load detection unit 18. When the detection value of the traveling direction of the car 3 is not included in the information for calculating the speed threshold value V lim , the speed threshold value V lim may be calculated based on a preset traveling direction of the car 3 for evaluation. .. Further, when the detected value of the load of the car 3 is not included in the information for calculating the speed threshold value V lim , the speed threshold value V lim may be calculated based on the preset load of the car 3 for evaluation. ..
 本開示に係るエレベーターは、複数の階床を有する建物に適用できる。 The elevator according to this disclosure can be applied to buildings with multiple floors.
 1 エレベーター、 2 昇降路、 3 かご、 4 巻上機、 5 主ロープ、 6 釣合い錘、 7 調速機、 8 ブレーキ、 9 綱車速度検出部、 10 かご速度検出部、 11 安全スイッチ、 12 制御装置、 13 綱車、 14 調速機ロープ、 15 調速機シーブ、 16 滑り検知部、 17 ブレーキ制御部、 18 荷重検出部、 19 方向検出部、 100a プロセッサ、 100b メモリ、 200 専用ハードウェア 1 elevator, 2 hoistway, 3 car, 4 hoist, 5 main rope, 6 balance weight, 7 governor, 8 brake, 9 sheave speed detector, 10 car speed detector, 11 safety switch, 12 control Equipment, 13 sheaves, 14 governor ropes, 15 governor sheaves, 16 slip detectors, 17 brake control units, 18 load detectors, 19 direction detectors, 100a processors, 100b memory, 200 dedicated hardware

Claims (13)

  1.  かごを昇降路で昇降させる巻上機において、前記かごを前記昇降路に吊り下げる主ロープが巻き掛けられる綱車を制動するブレーキと、
     前記綱車に対する前記主ロープの滑りの有無を検知する滑り検知部と、
     前記綱車の速度を検出する綱車速度検出部と、
     非常停止時において前記滑り検知部が滑りの発生を検知するときに、非常停止の開始から滑り出しまでの予め設定された任意の参照時点における前記綱車速度検出部に検出された前記綱車の速度を予め設定された速度閾値と比較し、当該参照時点の速度が前記速度閾値を超える場合に、前記綱車および前記主ロープの間の滑りを解消させる滑り解消制御方式によって前記ブレーキを制御し、当該参照時点の速度が前記速度閾値を超えない場合に、設定減速度で前記綱車が減速するように前記ブレーキの制動力を制御する制動力制御方式によって前記ブレーキを制御するブレーキ制御部と、
     を備えるエレベーター。
    In a hoist that raises and lowers a car on a hoistway, a brake that brakes a sheave around which a main rope that suspends the car on the hoistway is wound.
    A slip detection unit that detects the presence or absence of slippage of the main rope with respect to the sheave, and
    A sheave speed detection unit that detects the speed of the sheave,
    When the slip detection unit detects the occurrence of slip during an emergency stop, the speed of the rope wheel detected by the rope wheel speed detection unit at any preset reference time from the start of the emergency stop to the start of the start of the emergency stop. Is compared with a preset speed threshold, and when the speed at the reference time exceeds the speed threshold, the brake is controlled by a slip elimination control method that eliminates slip between the rope wheel and the main rope. A brake control unit that controls the brake by a braking force control method that controls the braking force of the brake so that the rope wheel decelerates at a set deceleration when the speed at the reference time does not exceed the speed threshold.
    Elevator equipped with.
  2.  前記ブレーキ制御部は、
     前記滑り検知部が滑りの発生を検知したときに前記制動力制御方式によって前記ブレーキが制御される場合の前記かごの制動距離の推定値と、
     前記滑り検知部が滑りの発生を検知したときに前記滑り解消制御方式によって前記ブレーキが制御される場合の前記かごの制動距離の推定値と、
     が等しくなるような前記参照時点の前記綱車の速度を前記速度閾値として、前記滑り解消制御方式および前記制動力制御方式を切り替える
     請求項1に記載のエレベーター。
    The brake control unit
    An estimated value of the braking distance of the car when the brake is controlled by the braking force control method when the slip detection unit detects the occurrence of slip.
    An estimated value of the braking distance of the car when the brake is controlled by the slip elimination control method when the slip detection unit detects the occurrence of slip.
    The elevator according to claim 1, wherein the speed of the sheave at the reference time is set as the speed threshold value, and the slip elimination control method and the braking force control method are switched.
  3.  かごを昇降路で昇降させる巻上機において、前記かごを前記昇降路に吊り下げる主ロープが巻き掛けられる綱車を制動するブレーキと、
     前記綱車に対する前記主ロープの滑りの有無を検知する滑り検知部と、
     前記かごの速度を検出するかご速度検出部と、
     前記綱車の速度を検出する綱車速度検出部と、
     非常停止時において前記滑り検知部が滑りの発生を検知するときに、非常停止の開始から滑り出しまでの予め設定された任意の参照時点における前記かご速度検出部に検出された前記かごの速度を予め設定された速度閾値と比較し、当該参照時点の速度が前記速度閾値を超える場合に、前記綱車および前記主ロープの間の滑りを解消させる滑り解消制御方式によって前記ブレーキを制御し、当該参照時点の速度が前記速度閾値を超えない場合に、設定減速度で前記綱車が減速するように前記ブレーキの制動力を制御する制動力制御方式によって前記ブレーキを制御するブレーキ制御部と、
     を備えるエレベーター。
    In a hoist that raises and lowers a car on a hoistway, a brake that brakes a sheave around which a main rope that suspends the car on the hoistway is wound.
    A slip detection unit that detects the presence or absence of slippage of the main rope with respect to the sheave, and
    The car speed detection unit that detects the speed of the car,
    A sheave speed detection unit that detects the speed of the sheave,
    When the slip detection unit detects the occurrence of slip during an emergency stop, the speed of the car detected by the car speed detection unit at any preset reference time from the start of the emergency stop to the start of the start is set in advance. When the speed at the time of reference exceeds the speed threshold as compared with the set speed threshold, the brake is controlled by the slip elimination control method for eliminating the slip between the rope wheel and the main rope, and the reference is made. A brake control unit that controls the brake by a braking force control method that controls the braking force of the brake so that the rope wheel decelerates at a set deceleration when the speed at a time point does not exceed the speed threshold.
    Elevator equipped with.
  4.  前記ブレーキ制御部は、
     前記滑り検知部が滑りの発生を検知したときに前記制動力制御方式によって前記ブレーキが制御される場合の前記かごの制動距離の推定値と、
     前記滑り検知部が滑りの発生を検知したときに前記滑り解消制御方式によって前記ブレーキが制御される場合の前記かごの制動距離の推定値と、
     が等しくなるような前記参照時点の前記かごの速度を前記速度閾値として、前記滑り解消制御方式および前記制動力制御方式を切り替える
     請求項3に記載のエレベーター。
    The brake control unit
    An estimated value of the braking distance of the car when the brake is controlled by the braking force control method when the slip detection unit detects the occurrence of slip.
    An estimated value of the braking distance of the car when the brake is controlled by the slip elimination control method when the slip detection unit detects the occurrence of slip.
    The elevator according to claim 3, wherein the speed of the car at the reference time is set as the speed threshold value, and the slip elimination control method and the braking force control method are switched.
  5.  前記ブレーキ制御部において、前記参照時点は前記主ロープの滑り出しの時点として予め設定される
     請求項1から請求項4のいずれか一項に記載のエレベーター。
    The elevator according to any one of claims 1 to 4, wherein the reference time point in the brake control unit is preset as a time point at which the main rope starts to slide.
  6.  前記ブレーキ制御部において、前記参照時点は非常停止の開始の時点として予め設定される
     請求項1から請求項4のいずれか一項に記載のエレベーター。
    The elevator according to any one of claims 1 to 4, wherein the reference time point in the brake control unit is preset as a time point for starting an emergency stop.
  7.  前記ブレーキ制御部は、非常停止時において前記滑り検知部が滑りの発生を検知する前に、前記制動力制御方式によって前記ブレーキを制御する
     請求項1から請求項6のいずれか一項に記載のエレベーター。
    The invention according to any one of claims 1 to 6, wherein the brake control unit controls the brake by the braking force control method before the slip detection unit detects the occurrence of slip in an emergency stop. Elevator.
  8.  前記ブレーキ制御部は、前記滑り検知部が滑りの解消を検知するときに、前記制動力制御方式によって前記ブレーキを制御する
     請求項1から請求項7のいずれか一項に記載のエレベーター。
    The elevator according to any one of claims 1 to 7, wherein the brake control unit controls the brake by the braking force control method when the slip detection unit detects the elimination of the slip.
  9.  前記ブレーキ制御部は、
     アンバランストルクによる前記かごの空走加速度の見込み値と、
     前記参照時点と
     前記滑り検知部が滑りの発生を検知したときに前記ブレーキの制御方式を前記ブレーキ制御部が切り替えず前記主ロープが前記綱車に対して滑りながら減速する場合の前記かごの減速度の見込み値と、
     前記綱車に対する前記主ロープの滑りが解消したときに前記滑り解消制御方式によって前記ブレーキが制御される場合の前記かごの加速度の見込み値と、
     前記制動力制御方式における設定減速度と、
     前記滑り検知部の滑りの有無の検知の遅れ時間の見込み値と、
     前記ブレーキの状態遷移の遅れ時間の見込み値と、
     を含む情報に基づいて算出される前記速度閾値によって前記滑り解消制御方式および前記制動力制御方式を切り替える
     請求項1から請求項4のいずれか一項に記載のエレベーター。
    The brake control unit
    The estimated value of the free-running acceleration of the car due to the unbalanced torque,
    Reduction of the car when the brake control unit does not switch the brake control method when the reference time point and the slip detection unit detects the occurrence of slip, and the main rope decelerates while sliding with respect to the sheave. Estimated speed and
    The estimated value of the acceleration of the car when the brake is controlled by the slip elimination control method when the slip of the main rope with respect to the sheave is eliminated.
    The set deceleration in the braking force control method and
    The estimated value of the delay time for detecting the presence or absence of slippage in the slip detection unit, and
    The estimated value of the delay time of the brake state transition and
    The elevator according to any one of claims 1 to 4, wherein the slip elimination control method and the braking force control method are switched according to the speed threshold value calculated based on the information including.
  10.  前記かごの走行方向を検出する方向検出部と、
     を備え、
     前記ブレーキ制御部は、前記方向検出部が検出する前記かごの走行方向を含む情報に基づいて算出される前記速度閾値によって前記滑り解消制御方式および前記制動力制御方式を切り替える
     請求項9に記載のエレベーター。
    A direction detection unit that detects the traveling direction of the car, and
    Equipped with
    The ninth aspect of claim 9, wherein the brake control unit switches between the slip elimination control method and the braking force control method according to the speed threshold value calculated based on the information including the traveling direction of the car detected by the direction detection unit. Elevator.
  11.  前記かごの内部の荷重を検出する荷重検出部と、
     を備え、
     前記ブレーキ制御部は、前記荷重検出部が検出する前記かごの荷重を含む情報に基づいて算出される前記速度閾値によって前記滑り解消制御方式および前記制動力制御方式を切り替える
     請求項9または請求項10に記載のエレベーター。
    A load detection unit that detects the load inside the car,
    Equipped with
    Claim 9 or claim 10 that the brake control unit switches between the slip elimination control method and the braking force control method according to the speed threshold value calculated based on the information including the load of the car detected by the load detection unit. Elevator listed in.
  12.  前記ブレーキ制御部は、前記滑り解消制御方式において前記ブレーキの制動状態から解放状態への状態遷移が生じないように前記ブレーキの制動力を制御する
     請求項1から請求項11のいずれか一項に記載のエレベーター。
    The brake control unit controls the braking force of the brake so that the state transition from the braking state to the released state of the brake does not occur in the slip elimination control method according to any one of claims 1 to 11. The listed elevator.
  13.  前記ブレーキ制御部は、前記綱車に対する前記主ロープの滑りが発生しない上限の減速度として前記巻上機のトラクション能力の見込み値から予め計算された第1減速度より絶対値が小さく、かつ、前記昇降路に設けられた安全スイッチを作動させない下限の減速度として予め計算された第2減速度より絶対値が大きい減速度を前記設定減速度として前記ブレーキを制御する
     請求項1から請求項12のいずれか一項に記載のエレベーター。
    The brake control unit has an absolute value smaller than the first deceleration calculated in advance from the estimated value of the traction capacity of the hoist as the upper limit deceleration at which the main rope does not slip with respect to the rope wheel, and Claims 1 to 12 control the brake with a deceleration having an absolute value larger than the second deceleration calculated in advance as the lower limit deceleration that does not activate the safety switch provided in the hoistway as the set deceleration. The elevator described in any one of the items.
PCT/JP2020/033269 2020-09-02 2020-09-02 Elevator WO2022049673A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080103129.9A CN115867505A (en) 2020-09-02 2020-09-02 Elevator with a movable elevator car
JP2022546779A JP7323078B2 (en) 2020-09-02 2020-09-02 elevator
PCT/JP2020/033269 WO2022049673A1 (en) 2020-09-02 2020-09-02 Elevator
DE112020007566.4T DE112020007566T5 (en) 2020-09-02 2020-09-02 elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033269 WO2022049673A1 (en) 2020-09-02 2020-09-02 Elevator

Publications (1)

Publication Number Publication Date
WO2022049673A1 true WO2022049673A1 (en) 2022-03-10

Family

ID=80491838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033269 WO2022049673A1 (en) 2020-09-02 2020-09-02 Elevator

Country Status (4)

Country Link
JP (1) JP7323078B2 (en)
CN (1) CN115867505A (en)
DE (1) DE112020007566T5 (en)
WO (1) WO2022049673A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190769U (en) * 1983-06-06 1984-12-18 三菱電機株式会社 Elevator emergency stop device
WO2007088599A1 (en) * 2006-02-01 2007-08-09 Mitsubishi Denki Kabushiki Kaisha Door device for elevator
JP2014101210A (en) * 2012-11-21 2014-06-05 Hitachi Ltd Control apparatus for elevator
US20140332322A1 (en) * 2010-01-18 2014-11-13 Kone Corporation Elevator system including monitoring arrangement to activate emergency braking procedure based on deceleration and method of operating the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4267335B2 (en) 2003-01-30 2009-05-27 三菱電機株式会社 Elevator braking control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190769U (en) * 1983-06-06 1984-12-18 三菱電機株式会社 Elevator emergency stop device
WO2007088599A1 (en) * 2006-02-01 2007-08-09 Mitsubishi Denki Kabushiki Kaisha Door device for elevator
US20140332322A1 (en) * 2010-01-18 2014-11-13 Kone Corporation Elevator system including monitoring arrangement to activate emergency braking procedure based on deceleration and method of operating the same
JP2014101210A (en) * 2012-11-21 2014-06-05 Hitachi Ltd Control apparatus for elevator

Also Published As

Publication number Publication date
JPWO2022049673A1 (en) 2022-03-10
CN115867505A (en) 2023-03-28
JP7323078B2 (en) 2023-08-08
DE112020007566T5 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
KR101152565B1 (en) Elevator
JP5214239B2 (en) Elevator equipment
US10196234B2 (en) Method for controlling unintended vertical speed and acceleration of an elevator
JP5459387B2 (en) Elevator equipment
US7669697B2 (en) Elevator apparatus
JP5381716B2 (en) Elevator equipment
JP5333234B2 (en) Elevator equipment
US20120267200A1 (en) Method for monitoring the movement of an elevator car, and an elevator system
JPWO2008117423A1 (en) Elevator brake equipment
JP6256620B2 (en) Elevator equipment
US11286132B2 (en) Enhancing the transport capacity of an elevator system
JP5326474B2 (en) Elevator rope slip detection device and elevator device using the same
CN107922150B (en) Elevator control system and method of operating an elevator system
JP5079288B2 (en) Elevator equipment
JP5079351B2 (en) Elevator equipment
CN112079222A (en) Elevator with a movable elevator car
JP6299926B2 (en) Elevator control system
WO2020090286A1 (en) Control system for elevator
WO2022049673A1 (en) Elevator
JP5573300B2 (en) Elevator control device
JP5977652B2 (en) Elevator control device
JP7274109B1 (en) elevator
JP7078145B1 (en) Elevator control device
WO2022097231A1 (en) Multi-car elevator
JP5310551B2 (en) Elevator equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546779

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20952413

Country of ref document: EP

Kind code of ref document: A1