WO2022048611A1 - Mobile medical device - Google Patents

Mobile medical device Download PDF

Info

Publication number
WO2022048611A1
WO2022048611A1 PCT/CN2021/116332 CN2021116332W WO2022048611A1 WO 2022048611 A1 WO2022048611 A1 WO 2022048611A1 CN 2021116332 W CN2021116332 W CN 2021116332W WO 2022048611 A1 WO2022048611 A1 WO 2022048611A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical device
mobile medical
component
mobile
wheel assembly
Prior art date
Application number
PCT/CN2021/116332
Other languages
French (fr)
Inventor
Panpan Yang
Jie Gu
Bo Shi
Original Assignee
Shanghai United Imaging Healthcare Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021896379.6U external-priority patent/CN213199468U/en
Priority claimed from CN202010966904.5A external-priority patent/CN112043297A/en
Priority claimed from CN202022171862.4U external-priority patent/CN214208360U/en
Priority claimed from CN202022206926.XU external-priority patent/CN214712572U/en
Application filed by Shanghai United Imaging Healthcare Co., Ltd. filed Critical Shanghai United Imaging Healthcare Co., Ltd.
Publication of WO2022048611A1 publication Critical patent/WO2022048611A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/10Application or adaptation of safety means
    • A61B6/102Protection against mechanical damage, e.g. anti-collision devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/40Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for generating radiation specially adapted for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4405Constructional features of apparatus for radiation diagnosis the apparatus being movable or portable, e.g. handheld or mounted on a trolley
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure generally relates to the field of medical devices, and in particular, to a mobile medical device.
  • DR mobile digital radiography
  • ICU intensive care units
  • wards etc.
  • a wheel assembly for a mobile medical device may include a wheel.
  • the wheel assembly may include a frame connected with a body of the mobile medical device.
  • the frame may include a wall.
  • the wheel assembly may include a supporting component movably connected with the frame. A first end of the supporting component may be connected with the wheel, a second end of the supporting component may be connected with a first end of a pull rod, and a second end of the pull rod may extend into the frame through the wall.
  • the wheel assembly may include a first buffer component disposed inside the frame and between the second end of the pull rod and the wall.
  • the wheel assembly may include a second buffer component disposed inside the frame and between the second end of the pull rod and the wall. An elastic coefficient of the first buffer component may be greater than an elastic coefficient of the second buffer component.
  • the wheel assembly may include a mobile plate disposed inside the frame.
  • the mobile plate may be movable relative to the wall.
  • the second end of the pull rod may go through the mobile plate.
  • the first buffer component and the second buffer component may be disposed between the mobile plate and the wall.
  • the first buffer component may include a first spring.
  • the pull rod may go through the first spring. At least one end of the first spring may abut the mobile plate or the wall.
  • the second buffer component may include a second spring. At least one end of the second spring may abut the mobile plate or the wall.
  • the mobile medical device may include a buffer block connected with the mobile plate or the wall.
  • An elastic coefficient of the buffer block may be greater than the elastic coefficient of the first buffer component.
  • a natural length of the buffer block may be shorter than a natural length of the second spring.
  • a nut may be screwed onto the pull rod and between the second end of the pull rod and the mobile plate.
  • the supporting component may include a supporting plate and a connecting rod.
  • a first end of the supporting plate may be connected with the wheel, and a second end of the supporting plate may be connected with the pull rod through the connecting rod.
  • the first buffer component may include two or more buffer units that are disposed symmetrically relative to the second buffer component.
  • a natural length of the first buffer component may be shorter than a natural length of the second buffer component.
  • a mobile medical device may include a wheel assembly and a body.
  • the wheel assembly may include a frame connected with a body of the mobile medical device.
  • the frame may include a wall.
  • the wheel assembly may include a supporting component movably connected with the frame. A first end of the supporting component may be connected with the wheel, a second end of the supporting component may be connected with a first end of a pull rod, and a second end of the pull rod may extend into the frame through the wall.
  • the wheel assembly may include a first buffer component disposed inside the frame and between the second end of the pull rod and the wall.
  • the wheel assembly may include a second buffer component disposed inside the frame and between the second end of the pull rod and the wall. An elastic coefficient of the first buffer component may be greater than an elastic coefficient of the second buffer component.
  • the mobile medical device may include a mobile digital radiography (DR) device, a mobile digital subtraction angiography (DSA) device, or a mobile C-arm device.
  • DR mobile digital radiography
  • DSA mobile digital subtraction angiography
  • a mobile medical device may include a body.
  • the mobile medical device may include a wheel assembly.
  • the mobile medical device may include a suspension component of which a first end is movably connected with the body and a second end is connected with the wheel assembly.
  • the mobile medical device may include a buffer component of which a first end is movably connected with the suspension component and a second end is connected with the body.
  • the mobile medical device may include a mounting plate connected with the wheel assembly.
  • the second end of the suspension component may be connected with the wheel assembly through the mounting plate.
  • the second end of the suspension component may be movably connected with the mounting plate.
  • the suspension component may includes:
  • a second supporting member of which a first end is movably connected with the body and a second end is movably connected with a second end of the mounting plate.
  • the mobile medical device may include a driving assembly.
  • the driving assembly may be disposed on the mounting plate.
  • the driving assembly may be in connection with the wheel assembly to drive the wheel assembly to rotate.
  • the mobile medical device may include a driving assembly configured to drive the wheel assembly to rotate.
  • the driving assembly may be disposed within the wheel assembly.
  • the suspension component may include a plurality of suspension units
  • the wheel assembly may include a plurality of wheels each of which corresponds to at least one of the plurality of suspension units.
  • the body may include a mounting cavity, and the suspension component and the buffer component may be disposed within the mounting cavity.
  • the mobile medical device may include a guide component configured to limit a moving direction of the wheel assembly relative to the body.
  • the guide component may include:
  • a sliding block that is configured to move along the sliding rail and connected with the suspension component.
  • a mobile medical device may include:
  • a body including a functional component and a carrier configured to support the functional component
  • a wheel assembly disposed on the carrier and configured to rotate to drive the carrier to move;
  • a driving assembly configured to drive the wheel assembly to rotate. At least a portion of the driving assembly may be disposed inside the wheel assembly.
  • the wheel assembly may include a plurality of wheels.
  • the driving assembly may include a plurality of driving components at least a portion of which is disposed inside two of the plurality of wheels.
  • At least a portion of the plurality of driving components of the driving assembly may be disposed inside a first pair of wheels of the plurality of wheels.
  • At least a portion of the plurality of driving components of the driving assembly may be disposed inside a second pair of wheels of the plurality of wheels.
  • the wheel assembly includes a plurality of wheels
  • the driving assembly includes a plurality of driving components at least a portion of which is disposed inside four of the plurality of wheels.
  • the driving assembly includes a stator, a rotor, and a rotation shaft, the stator being sleeved on the rotation shaft, the rotor being configured to rotate relative to the stator.
  • the functional component includes an imaging component, the imaging component including an X-ray generator and an X-ray detector.
  • an adjustment component disposed on the carrier and configured to adjust a position of the X-ray generator
  • a lock component disposed on the carrier and configured to lock the adjustment component to fix the position of the X-ray generator.
  • the adjustment component includes:
  • a telescopic arm configured to adjust a first distance and an angle between the X-ray generator and a target object
  • a column configured to adjust a second distance between the X-ray generator and the target object.
  • a display disposed on the carrier and configured to display an interactive interface associated with the mobile medical device.
  • a mobile medical device may include:
  • a first driving assembly configured to drive the wheel assembly to rotate
  • an angle sensor configured to detect an angle of inclination of the body
  • a processing device communicating with the first driving assembly and the angle sensor.
  • the processing device may be configured to perform operations including:
  • the mobile medical device may include a controller configured to control the processing device to initiate or terminate the adjustment of the operation state of the first driving assembly.
  • the controller may include a force sensor configured to detect a force exerted on the body by a user and control, based on the detected force, the processing device to initiate or terminate the adjustment of the operation state of the first driving assembly.
  • the force sensor may include a strain sensor.
  • the controller may include a switch, and the processing device may be controlled to initiate or terminate the adjustment of the operation state of the first driving assembly through turning on or turning off the switch.
  • the mobile medical device may include a speed sensor configured to detect a speed of the body, and the processing device may be configured to perform the operations including:
  • the processing device may be configured to perform the operations including:
  • the mobile medical device may include a deceleration component configured to slow down the body based on the operation state of the first driving assembly.
  • the body may include:
  • an X-ray generator configured to emit X-rays
  • an X-ray detector configured to detect the X-rays emitted from the X-ray generator and disposed opposite to the X-ray generator.
  • the mobile medical device may include a shield component configured to prevent transmission of the X-rays outside the mobile medical device;
  • a second driving assembly configured to drive the shield component to move.
  • the second driving assembly may be configured to drive the shield component to move along at least one of a length direction, a width direction, or a height direction of the body.
  • the wheel assembly may include:
  • a frame connected with the body of the mobile medical device, the frame including a wall;
  • a supporting component movably connected with the frame, a first end of the supporting component being connected with the wheel, a second end of the supporting component being connected with a first end of a pull rod, a second end of the pull rod extending into the frame through the wall;
  • a first buffer component disposed inside the frame and between the second end of the pull rod and the wall;
  • a second buffer component disposed inside the frame and between the second end of the pull rod and the wall, an elastic coefficient of the first buffer component being greater than an elastic coefficient of the second buffer component.
  • the mobile medical device may include a suspension component of which a first end is movably connected with the body and a second end is connected with the wheel assembly;
  • a third buffer component of which a first end is movably connected with the suspension component and a second end is connected with the body.
  • At least a portion of the first driving assembly may be disposed inside the wheel assembly.
  • a method performed by one or more processors may include one or more of the following operations: obtaining an angle of inclination of a mobile medical device from an angle sensor disposed on the mobile medical device; and causing an operation state of a driving assembly of the mobile medical device to be adjusted based on the angle of inclination, so as to control a movement state of the mobile medical device under the angle of inclination.
  • a system may include:
  • an obtaining module configured to obtain an angle of inclination of a mobile medical device from an angle sensor disposed on the mobile medical device
  • an adjustment module configured to cause an operation state of a driving assembly of the mobile medical device to be adjusted based on the angle of inclination, so as to control a movement state of the mobile medical device under the angle of inclination.
  • a non-transitory computer readable medium may comprise at least one set of instructions.
  • the at least one set of instructions may be executed by one or more processors of a computer server.
  • the one or more processors may perform a method including:
  • FIG. 1 is a schematic diagram illustrating an exemplary medical system according to some embodiments of the present disclosure
  • FIGs. 2A and 2B are schematic diagrams illustrating an exemplary mobile medical device according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram illustrating an exemplary wheel assembly according to some embodiments of the present disclosure
  • FIGs. 4 and 5 are schematic diagrams illustrating an exemplary wheel assembly according to some embodiments of the present disclosure
  • FIGs. 6 and 7 are schematic diagrams illustrating an exemplary mobile medical device according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram illustrating an exemplary mobile medical device according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram illustrating an exemplary mobile medical device according to some embodiments of the present disclosure.
  • FIG. 10 is a block diagram illustrating an exemplary mobile medical device 1000 according to some embodiments of the present disclosure.
  • FIG. 11 is a flowchart illustrating an exemplary process for adjusting a movement state of a mobile medical device according to some embodiments of the present disclosure
  • FIG. 12 is a schematic diagram of an exemplary force condition of a mobile medical device according to some embodiments of the present disclosure.
  • FIG. 13 is a block diagram illustrating an exemplary mobile medical device according to some embodiments of the present disclosure.
  • FIG. 14 is a block diagram illustrating an exemplary mobile medical device according to some embodiments of the present disclosure.
  • FIG. 15 is a flowchart illustrating an exemplary process for adjusting a movement state of a mobile medical device according to some embodiments of the present disclosure
  • FIG. 16 is a block diagram illustrating an exemplary mobile medical device 1600 according to some embodiments of the present disclosure.
  • FIG. 17 is a schematic block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure.
  • FIG. 18 is a schematic diagram illustrating exemplary hardware and/or software components of a computing device according to some embodiments of the present disclosure.
  • system, ” “unit, ” “module, ” and/or “block” used herein are one method to distinguish different components, elements, parts, section or assembly of different level in ascending order. However, the terms may be displaced by another expression if they achieve the same purpose.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • the terms “equip, ” “install, ” “mount, ” “connect, ” “couple, ” “fix, ” etc. should be understood in a broad sense, for example, it may be a fixed connection, a non-detachable connection (e.g., a welding connection, a flange connection, a rivet connection, or an adhesive connection, or the like, or any combination thereof) , a detachable connection (apin connection, a key connection, or a threaded connection, or the like, or any combination thereof) , integrated into a whole, a mechanical connection, an electrical connection, directly connected, or indirectly connected via an intermediate medium, an internal connection of two elements, or an interconnection of two elements.
  • the specific meanings of the above terms in the present disclosure may be understood according to specific circumstances.
  • spatial reference terms such as “center, ” “middle, ” “end, ” “longitudinal, ” “transverse, ” “length, ” “width, ” “thickness, ” “height, ” “upper, ” “lower, ” “front, ” “back, ” “rear, ” “left, ” “right, ” “vertical, ” “horizontal, ” “top, ” “bottom, ” “inner, ” “outer, ” “inside, ” “outside, ” “clockwise, ” “counterclockwise, ” “axial, ” “radial, ” “circumferential, ” etc., indicate, in a relative sense, an orientation or positional relationship between two or more elements, assemblies, devices, or systems based on an orientation or positional relationship as shown in the drawings, and are only for the convenience and simplicity of description, rather than indicating or implying that the elements, assemblies, devices, or systems in
  • a first feature being “above” or “below” a second feature may be that the first feature and the second feature are in direct contact, or the first feature and the second feature may be in indirect contact via an intermediate medium.
  • the first feature being “above” or “on” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply mean that a horizontal height of the first feature is higher than a horizontal height of the second feature.
  • the first feature being “below” or “underneath” the second feature may mean that the first feature is directly below or obliquely below the second feature, or it may simply mean that a horizontal height of the first feature is smaller than a horizontal height of the second feature.
  • first, ” “second, ” “third, ” etc. may be used herein to distinguish one element from another.
  • a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of exemplary embodiments of the present disclosure.
  • An aspect of the present disclosure provides a mobile medical device including a wheel assembly that has a shock absorption function.
  • the wheel assembly may include a buffer assembly.
  • the buffer assembly may include a first buffer component and a second buffer component.
  • An elastic coefficient of the first buffer component may be larger than an elastic coefficient of the second buffer component.
  • a natural length of the first buffer component may be shorter than a natural length of the second buffer component.
  • an elastic component may be used to realize position limitation, which avoid rigid impact.
  • a mobile medical device including a suspension component and a buffer component that are configured to absorbing shock of wheels of the mobile medical device, thereby ensuring that the wheels always keep in contact with the road.
  • Yet another aspect of the present disclosure provides a mobile medical device including a driving assembly at least a portion of which is disposed inside at least one wheel of the mobile medical device, which is equivalent to that the mobile medical device is equipped with a hub motor. Therefore, the internal space of the mobile medical device may be saved and the compactness of the mobile medical device may be improved.
  • a processing device of the mobile medical device may obtain an inclination angle of the mobile medical device from an angle sensor disposed on the mobile medical device.
  • the processing device may determine, based on the inclination angle, an adjustment force configured to make the mobile medical device achieve a state of force balance, thereby making the mobile medical device stop on the slope. In this way, the mobile medical device is able to stop on a slope without applying an external force to the mobile medical device by a user or using a brake device.
  • FIG. 1 is a schematic diagram illustrating an exemplary medical system 100 according to some embodiments of the present disclosure.
  • the medical system 100 may include a mobile medical device 110, a network 120, a terminal 130, a processing device 140, and a storage device 150.
  • the components of the medical system 100 may be connected in one or more of various ways.
  • the mobile medical device 110 may be connected to the processing device 140 through the network 120.
  • the mobile medical device 110 may be connected to the processing device 140 directly (as indicated by the bi-directional arrow in dotted lines linking the mobile medical device 110 and the processing device 140) .
  • the storage device 150 may be connected to the processing device 140 directly or through the network 120.
  • a terminal device e.g., 131, 132, 133, etc.
  • the processing device 140 directly (as indicated by the bi-directional arrow in dotted lines linking the terminal 130 and the processing device 140) or through the network 120.
  • the mobile medical device 110 may be configured to scan and/or treat an object.
  • object and “object” are used interchangeably.
  • the object may include a patient, a man-made object, etc.
  • the object may include a specific portion, organ, and/or tissue of a patient.
  • the object may include head, brain, neck, body, shoulder, arm, thorax, cardiac, stomach, blood vessel, soft tissue, knee, feet, or the like, or any combination thereof.
  • the mobile medical device 110 may be movable to a certain location. For example, when a patient is inconvenient to move, the mobile medical device 110 may be moved to the position the patient is located to perform imaging and/or treatment on the patient.
  • the mobile medical device 110 may include a mobile digital radiography (DR) device, a mobile digital subtraction angiography (DSA) device, a mobile C-arm device, etc.
  • DR mobile digital radiography
  • DSA mobile digital subtraction angiography
  • C-arm device etc.
  • the network 120 may include any suitable network that can facilitate the exchange of information and/or data for the medical system 100.
  • one or more components of the medical system 100 e.g., the mobile medical device 110, the terminal 130, the processing device 140, or the storage device 150
  • the processing device 140 may obtain imaging data from the mobile medical device 110 via the network 120.
  • the processing device 140 may obtain signals detected by one or more sensors in the mobile medical device 110 via the network 120.
  • the network 120 may be any type of wired or wireless network, or a combination thereof.
  • the terminal 130 may include a mobile device 131, a tablet computer 132, a laptop computer 133, or the like, or any combination thereof.
  • the mobile device 131 may include a smart home device, a wearable device, a smart mobile device, a virtual reality device, an augmented reality device, or the like, or any combination thereof.
  • the terminal 130 may remotely operate the mobile medical device 110 and/or the processing device 140.
  • the terminal 130 may operate the mobile medical device 110 and/or the processing device 140 via a wireless connection.
  • the terminal 130 may receive information and/or instructions inputted by a user, and send the received information and/or instructions to the mobile medical device 110 or to the processing device 140 via the network 120.
  • the terminal 130 may receive data and/or information from the processing device 140.
  • the terminal 130 may be part of the processing device 140.
  • the terminal 130 may be omitted.
  • the processing device 140 may process data and/or information obtained from the mobile medical device 110, the terminal 130, and/or the storage device 150.
  • the processing device 140 may obtain imaging data from the storage device 150 or the mobile medical device 110 and generate one or more images based on the imaging data.
  • the processing device 140 may obtain signals detected by one or more sensors in the mobile medical device 110 via the network 120 and control a movement state of the mobile medical device 110 based on the signals.
  • the processing device 140 may be a single server, or a server group. The server group may be centralized or distributed.
  • the processing device 140 may be local or remote.
  • the processing device 140 may be implemented on a cloud platform.
  • the processing device 140 may be integrated into the mobile medical device 110.
  • the storage device 150 may store data and/or instructions.
  • the storage device 150 may store data obtained from the mobile medical device 110, the terminal 130 and/or the processing device 140.
  • the storage device 150 may store one or more images.
  • the storage device 150 may store data and/or instructions that the processing device 140 may execute or use to perform exemplary methods described in the present disclosure.
  • the storage device 150 may store instructions that the processing device 140 may execute to control the movement state of the mobile medical device 110.
  • the storage device 150 may include a mass storage device, a removable storage device, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof.
  • the storage device 150 may be implemented on a cloud platform.
  • the storage device 150 may be connected to the network 120 to communicate with one or more components of the medical system 100 (e.g., the mobile medical device 110, the processing device 140, the terminal 130, etc. ) .
  • One or more components of the medical system 100 may access the data or instructions stored in the storage device 150 via the network 120.
  • the storage device 150 may be part of the processing device 140.
  • FIGs. 2A and 2B are schematic diagrams illustrating an exemplary mobile medical device 200 according to some embodiments of the present disclosure.
  • the mobile medical device 110 in the medical system 100 may be implemented based on the mobile medical device 200.
  • the X axis, the Y axis, and the Z axis shown in FIGs. 2A and 2B may form an orthogonal coordinate system.
  • the X axis and the Z axis shown in FIGs. 2A and 2B may be horizontal, and the Y axis may be vertical.
  • the positive X-direction along the X axis may be from the back to the front of the mobile medical device 200;
  • the positive Z-direction along the Z axis shown in FIG. 2A may be from the right side to the left side of the mobile medical device 200 seen from the direction facing the back of the mobile medical device 200;
  • the positive Y-direction along the Y axis shown in FIG. 2A may be from the lower part to the upper part of the mobile medical device 200.
  • FIG. 2B is a schematic diagram illustrating the mobile medical device 200 seen from the negative Z direction.
  • the mobile medical device 200 may include a body and a wheel assembly configured to rotate to drive the body to move.
  • the body may include a functional component configured to perform a function (e.g., imaging and/or treatment) of the mobile medical device 200 and a carrier 203 configured to support the functional component.
  • the functional component may include an imaging component and/or a treatment component.
  • the functional component may be an imaging component including an X-ray generator 204 and an X-ray detector (not shown) .
  • the X-ray generator 204 may be configured to emit X-rays.
  • the X-ray detector may be configured to detect the X-rays emitted from the X-ray generator 204 and disposed opposite to the X-ray generator 204.
  • the X-ray generator 204 may be a single X-ray source or an array X-ray source including a plurality of X-ray sources. In some embodiments, the X-ray generator 204 may be an X-ray source including a hot cathode tube, or an X-ray source including a cold cathode field emission tube. When the X-ray source is an X-ray source including a cold-cathode field emission tube and an array X-ray source, the array X-ray source may be an area array X-ray source or a linear array X-ray source, or an X-ray source including a linear array and an area array.
  • the X-ray detector may be a flat-panel detector or a curved detector.
  • the X-ray detector may also be a detector of other forms.
  • the X-ray detector and the X-ray generator 204 may be disposed opposite to each other, so that the X-rays emitted by the X-ray generator 204 can be received by the X-ray detector.
  • the X-ray generator 204 and the X-ray detector may be disposed on the carrier 203 to be supported by the carrier 203.
  • the installation way of the X-ray generator 204 and the X-ray detector on the carrier 203 may include a non-detachable way, such as a welding connection, a flange connection, a rivet connection, or an adhesive connection, or the like, or any combination thereof.
  • the installation way of the X-ray generator 204 and the X-ray detector on the carrier 203 may include a detachable way, such as a pin connection, a key connection, or a threaded connection, or the like, or any combination thereof.
  • the installation way may also be other connection methods, which may not specifically be limited in the embodiment.
  • the functional component may include other imaging and/or treatment component.
  • the imaging component may include a single modality imaging device and/or a multi-modality imaging device.
  • the single modality imaging device may include, for example, a computed tomography (CT) device, a magnetic resonance imaging (MRI) device, a positron emission tomography (PET) device, a single photon emission computed tomography (SPECT) , etc.
  • the multi-modality imaging device may include, for example, an MRI-CT device, a PET-MRI device, an SPECT-MRI device, a DSA-MRI device, a CT-PET device, etc.
  • the treatment component may include a linear accelerator, a cyclotron, a synchrotron, etc., configured to perform a radio therapy on a subject.
  • the treatment device may include an accelerator of species of particles including, for example, photons, electrons, protons, or heavy ions.
  • the functional component since the functional component is installed on the carrier 203 of the mobile medical device 200, the functional component may be moved in different wards, floors, or buildings according to different needs of different patients to perform scanning and/or treatment on patients who are inconvenient to move, so that patients may be diagnosed and/or treated quickly using the mobile medical device 200.
  • the wheel assembly may be disposed on a chassis of the carrier 203 to drive the carrier 203 to move.
  • the wheel assembly may include at least one wheel.
  • the wheel assembly may include a plurality of wheels, e.g., at least two wheels, at least four wheels, etc.
  • the wheel assembly may include four wheels, such as a first pair of wheels 201 (e.g. two rear wheels) and a second pair of wheels 202 (e.g., two front wheels) .
  • the mobile medical device 200 may include a first driving assembly configured to drive the wheel assembly to rotate as so to drive the mobile medical device 200 to move.
  • the first driving assembly may be in connection with the wheel assembly to drive the wheel assembly to rotate.
  • the mobile medical device 200 may include an adjustment component and a lock component 207.
  • the adjustment component may be configured to adjust the position of the X-ray generator 204.
  • the lock component 207 may be configured to lock the adjustment component to fix the position of the X-ray generator 204.
  • the adjustment component may include a telescopic arm 206 and a column 205.
  • the telescopic arm 206 may be configured to adjust a first distance (e.g., a horizontal distance along the X direction shown in FIG. 2A) and an angle between the X-ray generator 204 and an object.
  • the column 205 may be configured to adjust a second distance (e.g., a vertical distance along the Y direction shown in FIG. 2A) between the X-ray generator 204 and the object.
  • the column 205 may be disposed on the carrier 203.
  • the telescopic arm 206 may be connected with the column 205.
  • the X-ray generator 204 may be connected with the telescopic arm 206.
  • the length of the telescopic arm 206 may be adjustable along the X direction, and the X-ray generator 204 may move along the X direction with the adjustment of the length of the telescopic arm 206.
  • the X-ray generator 204 may move along the X direction independently of the telescopic arm 206, e.g., move along a rail on the telescopic arm 206.
  • the horizontal distance between the X-ray generator 204 and the object may be adjusted by adjusting the length of the telescopic arm 206 along the X direction, and/or adjusting the position of the X-ray generator 204 along the telescopic arm 206.
  • the length of the column 205 may be adjustable along the Y direction, and the telescopic arm 206 may move along the Y direction with the adjustment of the length of the column 205, so that the X-ray generator 204 may move along the Y direction with the telescopic arm 206.
  • the telescopic arm 206 may move along the Y direction independently of the column 205, e.g., move along a rail on the column 205, so that the X-ray generator 204 may move along the Y direction with the telescopic arm 206.
  • the vertical distance between the X-ray generator 204 and the object may be adjusted by adjusting the position of the telescopic arm 206 along the column 205, and/or adjusting the length of the column 205 along the Y direction.
  • the telescopic arm 206 may move to be at an angle with the column 205, so as to adjust the vertical distance between the X-ray generator 204 and the object.
  • the telescopic arm 206 may be at an angle of 90 degrees with the column 205.
  • the telescopic arm 206 may move to be at an angle less than 90 degrees with the column 205, so as to reduce the vertical distance between the X-ray generator 204 and the object.
  • the telescopic arm 206 may move to be at an angle greater than 90 degrees with the column 205, so as to increase the vertical distance between the X-ray generator 204 and the object.
  • the vertical distance between the X-ray generator 204 and the object may be adjusted by adjusting the position of the telescopic arm 206 along the column 205, adjusting the length of the column 205 along the Y direction, adjusting the angle between the telescopic arm 206 and the column 205, or the like, or any combination thereof.
  • the column 205 may be rotatable around the Y axis, and the telescopic arm 206 may rotate with the column 205, so that the X-ray generator 204 may rotate around the Y axis with the telescopic arm 206.
  • the telescopic arm 206 may rotate around the Y axis independently of the column 205, e.g., move along a rail on the column 205, so that the X-ray generator 204 may rotate around the Y axis with the telescopic arm 206.
  • the angle between the X-ray generator 204 and the object may be adjusted by rotating, relative to the column 205, the telescopic arm 206 around the Y axis, and/or rotating the column 205 around the Y axis.
  • a user e.g., a doctor, a technician, an engineer, etc.
  • the mobile medical device 200 may move the mobile medical device 200 to a position near the examination table to scan the object.
  • the X-ray generator 204 may be adjusted to a target projection position through the column 205 and/or the telescopic arm 206 so that the X-rays are delivered to a region of interest (ROI) of the object.
  • ROI region of interest
  • the position of the X-ray generator 204 may be further adjusted by adjusting at least one of the horizontal distance, the angle, and the vertical distance between the X-ray generator 204 and the object.
  • the position of the X-ray generator 204 may be adjusted by adjusting (e.g., by a controller) the column 205 and/or the telescopic arm 206, which may ensure that the mobile medical device 200 does not block the user’s sight under the condition that the ROI of the object is able to be imaged, thereby enabling the mobile medical device 200 to be adapted to scan patients at different positions.
  • the column 205 and the telescopic arm 206 may be locked by a fixing piece (not shown) and the lock component 207, which is conducive to keep the vertical distance, angle, and horizontal distance between the X-ray generator 204 and the object remain to be unchanged, thereby fixing the position of the X-ray generator 204.
  • the X-ray generator 204 and the X-ray detector then may be turned on, so that the X-ray generator 204 and the X-ray detector are in the working state.
  • the X-ray detector may receive the X-rays that are emitted from the X-ray generator 204 and pass through the object, and convert the light signals into electrical signals.
  • An analog digital converter (ADC) may convert the electrical signals into digital signals.
  • a processing device e.g., the processing device 140 in FIG. 1 may generate one or more images of the object based on the digital signals.
  • the mobile medical device 200 may include a display 208 configured to display an interactive interface of the mobile medical device 200.
  • a user may adjust the column 205 and/or the telescopic arm 206 through the interactive interface.
  • a user may turn on or turn off the X-ray generator 204 and the X-ray detector through the interactive interface.
  • a user may input one or more imaging parameters through the interactive interface.
  • the mobile medical device 200 may include a second driving assembly and a shield component (not shown) .
  • the second driving assembly and the shield component may be disposed on the carrier 203.
  • the shield component may be configured to prevent transmission of the X-rays outside the mobile medical device 200.
  • the second driving assembly may be configured to drive the shield component to move along at least one of a length direction (e.g., the X direction) , a width direction (e.g., the Z direction) , or a height direction (e.g., the Y direction) of the mobile medical device 200.
  • the second driving assembly may adjust the position and/or the size of the shield component along the Y direction.
  • the second driving assembly may adjust the position and/or the size of the shield component along the X direction and/or the Z direction.
  • the second driving assembly may drive the shield component to move along the X direction and the Z direction to surround the mobile medical device 200.
  • the shield component may include a shield board or a shield curtain.
  • the second driving assembly may be connected to the shield component to drive the shield component to move.
  • the connection way between the second driving assembly and the shield component may be an electrical connection.
  • the second driving assembly may be the same as or different from the first driving assembly.
  • the first driving assembly and the second driving assembly may be combined into a single driving assembly configured to drive the wheel assembly and the shield component.
  • the shape of the shield component may be determined according to the actual situation, for example, the shape of the shield component may be square, rectangular, or circular.
  • the number (count) of the shield components may be determined according to the actual situation, for example, the number (count) of the shield components may be 1, 2, 3, or the like.
  • the two shield components may be arranged along the X direction, the Y direction, or the Z direction.
  • the two shield components may be arranged in a same plane, in parallel, or at an angle with each other.
  • the two shield components may also be arranged in other forms, which may not be specifically limited in the embodiment.
  • the height of the shield component may be equal to the height of the mobile medical device 200. In some embodiments, the height of the shield component may be different from the height of the mobile medical device 200, for example, the height of the shield component may be smaller or larger than the height of the mobile medical component 200. In some embodiments, the longest length of the shield component may be determined according to the actual situation. For example, the longest length of the shield component may be equal to or slightly longer than the length or width of the mobile medical device 200. As another example, the longest length of the shield component may be equal to or slightly longer than the circumference of the mobile medical device 200.
  • the second driving assembly may be turned on in advance, and the shield component may be driven by the second driving assembly to move to surround the X-ray generator 204 and X-ray detector to prevent transmission of the X-rays outside the mobile medical device 200, thereby isolating X-rays from medical staff and other patients, and avoiding X-rays from harming the health of the medical staff and other patients.
  • the shield component may be controlled to reset, e.g., the shield component may be restored to the original position to avoid the shield component affecting the flexible movement of the mobile medical device 200.
  • the shield component may be restored to the original position, which may also reduce the probability of the shield component being damaged during the movement of the mobile medical device 200, and prolong the life of the shield component.
  • the mobile medical device 200 may include a second driving assembly and a shield component.
  • the second driving assembly and the shield component may be disposed on the carrier 203, and the second driving assembly may be connected to the shield component to drive the shield component to move. Since the second driving assembly on the mobile medical device 200 may drive the shield component to prevent transmission of the X-rays outside the mobile medical device 200, the shield component may prevent the X-rays emitted by the X-ray generator 204 from damaging the medical staff and other patients, and further protect the health of the medical staff and other patients.
  • the mobile medical device 200 may include a handle (not shown in FIGs. 2A and 2B) for a user to hold to push the mobile medical device 200 to move.
  • the handle may be disposed on the carrier 203.
  • the mobile medical device 200 may include a fixing component 209 configured to fix the position of the mobile medical device 200 to prevent the mobile medical device 200 from moving during operation (e.g., imaging or treatment) .
  • a fixing component 209 configured to fix the position of the mobile medical device 200 to prevent the mobile medical device 200 from moving during operation (e.g., imaging or treatment) .
  • the fixing component 209 may include a height-adjustable support foot.
  • the support foot may be arranged at the bottom of the carrier 203.
  • the carrier 203 may be raised by the support foot so that the wheels assembly may be lifted off the ground, and the carrier 203 may be supported on the ground by the support foot, thereby preventing the mobile medical device 200 from moving.
  • an end (e.g., a top end) of the support foot may be connected with the carrier 203 to support the carrier 203.
  • the top end of the support foot may be in threaded connection with the carrier 203, and the height of the support foot protruding from the bottom of the carrier 203 may be adjusted by adjusting the size of the support foot screwed into the carrier 203.
  • the height of the support foot may also be automatically adjusted.
  • the support foot may be a linear motor fixed at the bottom of the carrier 203, and an end (e.g., a lower end) of an output rod of the linear motor may abut on the ground.
  • the wheel assembly may be in contact with the ground or lifted off the ground by adjusting the length of the output rod of the linear motor.
  • FIG. 3 is a diagram illustrating an exemplary wheel assembly 300 according to some embodiments of the present disclosure.
  • the wheel assembly illustrated in the mobile medical device 200 in FIG. 2A may be implemented based on the wheel assembly 300.
  • at least one of the wheels of the mobile medical device 200 may be implemented based on the wheel assembly 300.
  • the wheel assembly 300 may include a frame 310, a wheel 320, a supporting component 330, a rotation rod 340, a stop component 350, and a buffer component 360.
  • the frame 310 may be connected to the bottom of the carrier 203 of the mobile medical device 200 to support the carrier 203.
  • the frame 310 may include a connection component 311.
  • the connection component 311 may be connected with (e.g., in threaded connection with) the carrier 203 of the mobile medical device 200.
  • the frame 310 may include one or more walls.
  • the frame 310 may include a first wall (e.g., a top wall) 312, a second wall (e.g., a bottom wall) 313, and third walls (e.g., two side walls) 314.
  • the first wall 312, the second wall 313, and the third walls 314 may form an accommodation space.
  • the connection component 311 may be mounted on the first wall 312.
  • the wheel 320 may be located between the two side walls 314, and the side walls of the wheel 320 may face the two side walls 314.
  • the stop component 350 may be disposed on one of the one or more walls of the frame 310, for example, an inner side of the side wall 314.
  • the stop component 350 may be configured to limit the position of the supporting component 330.
  • the buffer component 360 may be disposed in the frame 310 (e.g., the accommodation space of the frame 310) .
  • the buffer component 360 may include one or more springs.
  • a first end of the supporting component 330 may be connected with the wheel 320, and a second end of the supporting component 330 may be connected with a first end (e.g., a lower end) of a pull rod 370.
  • a second end (e.g., an upper end) of the pull rod 370 may extend into the frame 310 through the bottom wall 313.
  • the pull rod 370 may go through the buffer component 360.
  • a nut 380 may be screwed onto the pull rod 370.
  • the buffer component 360 may be disposed between the bottom wall 313 and the nut 380 so that the buffer component 360 may be compressed by the nut 380.
  • the supporting component 330 may be moveably connected with the frame 310.
  • the supporting component 330 may be moveably connected with the frame 310 through a rotation rod 340 so that the supporting component 330 is rotatable relative to the frame 310.
  • the connection e.g., the rotation rod 340
  • the connection between the supporting component 330 and the frame 310 may be located between the first end and the second end of the supporting component 330, for example, in the middle position between the first end and the second end of the supporting component 330.
  • the wheel 320 when the wheel assembly 300 is installed on the mobile medical device 200, under the action of the gravity of the body of the mobile medical device 200, the wheel 320 may move upward from the ground.
  • the upward movement of the wheel 320 may drive the supporting component 330 to rotate anticlockwise around the rotation rod 340, and the second end of the supporting component 330 may move downward.
  • the pull rod 370 may move downward with the second end of the supporting component 330, thereby compressing the buffer component 360 using the nut 380.
  • the pull rod 370 Under the action of the compressed buffer component 360's own restoring force, the pull rod 370 may move upward.
  • the second end of the supporting component 330 may move upward with the pull rod 370, thereby driving the wheel 320 to move downward until the wheel 320 falls on the ground.
  • the upward supporting force of the ground may be balanced with the gravity of the wheel 320 and the downward push force of the compressed buffer component 360, so that the wheel 320 is in a balanced state.
  • the wheel 320 When the wheel 320 encounters an obstacle during movement of the mobile medical device 200, the wheel 320 may move upward and drive the supporting component 330 to rotate relative to the rotation rod 340 until the supporting component 330 hits the stop component 350. During the process, the second end of the supporting component 330 may move downward. The pull rod 370 may move downward with the second end of the supporting component 330, thereby compressing the buffer component 360 using the nut 380. Under the action of the elastic force of the buffer component 360, the shock absorption of the wheel assembly 300 may be realized. However, the rigid impact between the supporting component 330 and the stop component 350 may lead to a problem of a large impact acceleration.
  • the wheel 320 When the wheel 320 encounters a concave ground during movement of the mobile medical device 200, the wheel 320 may lose the support of the ground. Under the action of the compressed buffer component 360's downward push force and/or the gravity of the wheel 320, the wheel 320 may move downward to fall on the concave ground. Because of the buffer component 360, the wheel 320 may be guaranteed not to hang in the air within a certain buffer range. However, in order to ensure the buffer effect, the buffer component 360 may be with a large elastic coefficient, e.g., a rigid spring, resulting a relatively small buffer range. For example, due to the large elastic coefficient of the buffer component 360, the strain of the buffer component 360 in the balanced state may be small.
  • a large elastic coefficient e.g., a rigid spring
  • the wheel 320 may still hang in the air. Without the push force of the buffer component 360, the wheel 320 may not continue moving downward based only on the gravity of the wheel 320.
  • FIGs. 4 and 5 are diagrams illustrating an exemplary wheel assembly 400 according to some embodiments of the present disclosure.
  • the wheel assembly illustrated in the mobile medical device 200 in FIG. 2A may be implemented based on the wheel assembly 400.
  • at least one of the wheels of the mobile medical device 200 may be implemented based on the wheel assembly 400.
  • the wheel assembly 400 may be an improved wheel assembly.
  • the wheel assembly 400 may include a wheel 401, a frame 402, a buffer assembly, and a supporting component 404.
  • the buffer assembly may include a first buffer component 403 and a second buffer component 405.
  • the frame 402 may be connected to the bottom of the carrier 203 of the mobile medical device 200 to support the carrier 203.
  • the frame 402 may include a connection component 4021 disposed on the top of the frame 402.
  • the connection component 4021 may be connected with (e.g., in threaded connection with) the carrier 203 of the mobile medical device 200.
  • the frame 402 may include one or more walls.
  • the frame 402 may include a first wall (e.g., a top wall) 4024, a second wall (e.g., a bottom wall) 4023, and third walls (e.g., two side walls) 4022.
  • the connection component 4021 may be disposed on the top wall 4024.
  • the wheel 401 may be located between the two side walls 4022, and the side walls of the wheel 401 may face the two side walls 4022.
  • the supporting component 404 may be movably connected with the frame 402.
  • a first end of the supporting component 404 may be connected with the wheel 401.
  • a second end of the supporting component 404 may be connected with a first end (e.g., a lower end) of a pull rod 406.
  • a second end (e.g., an upper end) of the pull rod 406 may extend into the frame 402 through the bottom wall 4023.
  • the first buffer component 403 may be disposed inside the frame 402.
  • the first buffer component 403 may be disposed between the second end (e.g., the upper end) of the pull rod 406 and the bottom wall 4023.
  • the pull rod 406 may go through the first buffer component 403.
  • the second buffer component 405 may be disposed inside the frame 402.
  • the second buffer component 405 may be disposed between the second end (e.g., the upper end) of the pull rod 406 and the bottom wall 4023.
  • an elastic coefficient of the first buffer component 403 may be greater than an elastic coefficient of the second buffer component 405.
  • a natural length of the first buffer component 403 may be shorter than a natural length of the second buffer component 405.
  • the frame 402 may provide an accommodation space for the first buffer component 403 and the second buffer component 405.
  • the top wall 4024, the side walls 4022, and the bottom wall 4023 may form the accommodation space.
  • the frame 402 may support the first buffer component 403 and the second buffer component 405.
  • the supporting component 404 may be moveably connected with the frame 402.
  • the supporting component 404 may be moveably connected with the frame 402 through a rotation rod 410 so that the supporting component 404 is rotatable relative to the frame 402.
  • the connection e.g., the rotation rod 410 between the supporting component 404 and the frame 402 may be located between the first end and the second end of the supporting component 404, for example, in the middle position between the first end and the second end of the supporting component 404.
  • the supporting component 404 may be movably connected to the two side walls 4022 of the frame 402.
  • the first end of the supporting component 404 may be fixedly connected to the rotation center of the wheel 401 through a central rod 409. When the first end and the second end of the supporting component 404 are subjected to unequal forces, the supporting component 404 may rotate relative to the frame 402.
  • the supporting component 404 may include a supporting plate 4042 and a connecting rod 4041.
  • a first end of the supporting plate 4042 may be connected to the wheel 401 through the central rod 409, and a second end of the supporting plate 4042 may be connected to the pull rod 406 through the connecting rod 4041.
  • the supporting plate 4042 may include two strip-shaped plates. The two strip-shaped plates may be arranged in parallel.
  • the wheel 401 may be located between the two trip-shaped plates, and the two side walls of the wheel 401 may face the two trip-shaped plates, respectively, which may ensure the balance effect of the wheel 401.
  • the connecting rod 4041 may be arranged between the two trip-shaped plates, and the connecting rod 4041 may be arranged to connect the two trip-shaped plates into an integral structure.
  • the first end (e.g., the lower end) of the pull rod 406 may be configured with a fixing ring 4061.
  • the connecting rod 4041 may go through the fixing ring 4061.
  • an interference fit may be preferable between the connecting rod 4041 and the fixing ring 4061 to ensure the fixing effect between the pull rod 406 and the connecting rod 4041.
  • the first end (e.g., the lower end) of the pull rod 406 may go through the connecting rod 4041 and be fixed with the connecting rod 4041 using a nut.
  • the second end (e.g., the upper end) of the pull rod 406 may be configured with a thread, and a fixing nut 411 may be screwed onto the second end of the pull rod 406 through the thread.
  • the fixing nut 411 may be configured to prevent the first buffer component 403 from separating from the pull rod 406.
  • the wheel assembly 400 may include a mobile plate 407.
  • the mobile plate 407 may be movable relative to the bottom wall 4023.
  • the second end of the pull rod 406 may go through the mobile plate 407.
  • the first buffer component 403 and the second buffer component 405 may be disposed between the mobile plate 407 and the bottom wall 4023.
  • the mobile plate 407 may ensure the fixing effect of the first buffer component 403 and/or the second buffer component 405, and play a role of an intermediate connection between the first buffer component 403 (or the second buffer component 405) and the pull rod 406 to ensure the balance effect.
  • the first buffer component 403 and the second buffer component 405 may be disposed between the second end of the pull rod 406 and the bottom wall 4023 so that when the pull rod 406 move downward the first buffer component 403 and the second buffer component 405 are able to be compressed, and when the pull rod 406 move upward the first buffer component 403 and the second buffer component 405 are able to restore but are not stretched.
  • At least one of a first end (e.g., a lower end) and a second end (e.g., an upper end) of the first buffer component 403 may relate to abutting connection to avoid the stretch of the first buffer component 403, thereby ensuring the buffer effect of the first buffer component 403.
  • the abutting connection may refer to a connection of being able to be in contact but not fixed with each other.
  • first end and the second end of the first buffer component 403 may abut on the bottom wall 4023 and the second end of the pull rod 406, respectively. In some embodiments, the first end of the first buffer component 403 may abut on the bottom wall 4023, and the second end of the first buffer component 403 may be connected with the second end of the pull rod 406. In some embodiments, the first end of the first buffer component 403 may be connected with the bottom wall 4023, and the second end of the first buffer component 403 may abut on the second end of the pull rod 406.
  • the first buffer component 403 When the first buffer component 403 is in its natural length, if the pull rod 406 moves upward, the first end of the first buffer component 403 may separate from the bottom wall 4023, and/or when the first buffer component 403 is in its natural length, if the pull rod 406 moves upward, the second end of the first buffer component 403 may separate from the second end of the pull rod 406, which avoids the stretch of the first buffer component 403, thereby ensuring the buffer effect.
  • the first buffer component 403 may abut on or be connected with the second end of the pull rod 406 through the mobile plate 407 or the fixing nut 411.
  • the first buffer component 403 may abut on or be connected with the mobile plate 407 or the fixing nut 411.
  • At least one of a first end (e.g., a lower end) and a second end (e.g., an upper end) of the second buffer component 405 may relate to abutting connection to avoid the stretch of the second buffer component 405, thereby ensuring the buffer effect of the second buffer component 405.
  • the first end and the second end of the second buffer component 405 may abut on the bottom wall 4023 and the second end of the pull rod 406, respectively.
  • the first end of the second buffer component 405 may abut on the bottom wall 4023, and the second end of the second buffer component 405 may be connected with the second end of the pull rod 406.
  • the first end of the second buffer component 405 may be connected with the bottom wall 4023, and the second end of the second buffer component 405 may abut on the second end of the pull rod 406.
  • the first end of the second buffer component 405 may separate from the bottom wall 4023, and/or when the second buffer component 405 is in its natural length, if the pull rod 406 moves upward, the second end of the second buffer component 405 may separate from the second end of the pull rod 406, which avoids the stretch of the second buffer component 405, thereby ensuring the buffer effect.
  • the second buffer component 405 may abut on or be connected with the second end of the pull rod 406 through the mobile plate 407 or the fixing nut 411.
  • the second buffer component 405 may abut on or be connected with the mobile plate 407 or the fixing nut 411.
  • the first buffer component 403 may include one or more first springs.
  • the pull rod 406 may pass through the first spring, and the pull rod 406 may be used for installation of the first spring.
  • a first end (e.g., a lower end) of the first spring may abut on or be connected with the bottom wall 4023, and a second end (e.g., an upper end) of the first spring may abut on or be connected with the mobile plate 407 or the fixing nut 411.
  • the bottom wall 4023 of the frame 402 may be configured to limit the position of the supporting component 404.
  • the mobile plate 407 and the bottom wall 4023 together may play a role of limiting the length of the first spring.
  • the first buffer component 403 may include two or more buffer units (e.g., two or more first springs) , and the two or more buffer units may be symmetrically arranged around the second buffer component 405 to ensure the balance effect on the bottom wall 4023 of the frame 402.
  • the count of the buffer units may be preferably two, and the two buffer units may be symmetrically arranged on two sides of the second buffer component 405. The embodiment may not limit the count of the buffer units. As long as the count of the buffer units is an even number, it may be within the scope of the embodiment.
  • the first buffer component 403 and the second buffer component 405 may be disposed between the mobile plate 407 and the bottom wall 4023.
  • the pull rod 406 may pass through the first buffer component 403 and the mobile plate 407.
  • the fixing nut 411 may be screwed onto the second end of the first buffer component 406 and above the mobile plate 407, e.g., abut on be connected with the top surface of the mobile plate 407. With the downward movement of the pull rod 406, the mobile plate 407 may compress the first buffer component 403 and/or the second buffer component 405.
  • the wheel 401 when the wheel assembly 400 is installed on the mobile medical device 200, under the action of the gravity of the body of the mobile medical device 200, the wheel 401 may move upward from the ground.
  • the upward movement of the wheel 401 may drive the supporting component 402 to rotate anticlockwise around the rotation rod 410, and the second end of the supporting component 402 may move downward.
  • the pull rod 406 may move downward with the second end of the supporting component 402, thereby compressing the first buffer component 403 and the second buffer component 405 using the mobile plate 407 or the fixing nut 411. Under the action of the restoring force of the compressed first buffer component 403 and second buffer component 405, the pull rod 406 may move upward.
  • the second end of the supporting component 404 may move upward with the pull rod 406, thereby driving the wheel 401 to move downward until the wheel 401 falls on the ground.
  • the upward supporting force of the ground may be balanced with the gravity of the wheel 401, and the downward push force of the compressed first buffer component 403 and second buffer component 405, so that the wheel 401 is in a balanced state.
  • the wheel 401 When the wheel 401 encounters an obstacle during movement of the mobile medical device 200, the wheel 401 may move upward and drive the supporting component 404 to rotate relative to the rotation rod 410. During the process, the second end of the supporting component 404 may move downward. The pull rod 406 may move downward with the second end of the supporting component 404, thereby compressing the first buffer component 403 and the second buffer component 405 using the mobile plate 407 or the fixing nut 411. Under the action of the elastic force of the first buffer component 403 and the second buffer component 405, the shock absorption of the wheel assembly 400 may be realized.
  • the wheel 401 When the wheel 401 encounters a concave ground during movement of the mobile medical device 200, the wheel 401 may lose the support of the ground. Under the action of the downward push force of the compressed first buffer component 403 and second buffer component 405, and the gravity of the wheel 401, the wheel 401 may move downward to fall on the concave ground. Because of the first buffer component 403 and the second buffer component 405, the wheel 401 may be guaranteed not to hang in the air within a certain buffer range. Because the natural length of the first buffer component 403 is shorter than the natural length of the second buffer component 405, when the first buffer component 403 has returned to its natural length, the second buffer component 405 has not returned to its natural length, and the second buffer component 405 may continue pushing the wheel 401 until the wheel 401 falls on the ground.
  • the second buffer component 405 may be added on the basis of the first buffer component 403, the purpose of which is that when there is a hole in the ground, when the first buffer component 403 has returned to its natural length, the second buffer component 405 may continue driving the wheel 401 to fall on the ground, which improves the buffer range of the wheel assembly 400.
  • the elastic coefficient of the second buffer component 405 may be smaller than that of the first buffer component 403, and/or the natural length of the first buffer component 403 may be shorter than the natural length of the second buffer component 405.
  • the first buffer component 403 and the second buffer component 405 may be combined to perform shock absorption on the wheel 401.
  • the shock absorption may be mainly performed based on the elastic force of the first buffer component 403.
  • the second buffer component 405 may be configured to achieve a larger buffer adjustment range and avoid the wheel 401 hanging in the air.
  • the wheel assembly 400 may include a buffer block 408.
  • a second end (e.g., an upper end) of the buffer block 408 may be connected to the mobile plate 407, and the mobile plate 407 may play a role of fixing and installing the buffer block 408.
  • the elastic coefficient of the buffer block 408 may be greater than that of the first buffer component 403.
  • the buffer block 408 may be made of elastic material, such as rubber, foamed plastic, sponge, or the buffer block 408 may include a spring.
  • the wheel 401 When the wheel 401 encounters an obstacle during movement of the mobile medical device 200, the wheel 401 may move upward and drive the supporting component 404 to rotate relative to the rotation rod 410. During the process, the second end of the supporting component 404 may move downward. The pull rod 406 may move downward with the second end of the supporting component 404 until the buffer block 408 hits the bottom wall 4023.
  • the buffer block 408 may improve the rigid position limitation way in the wheel assembly 300, so that when the buffer block 408 hits the bottom wall 4023, there may be a buffer to reduce or avoid the rigid impact.
  • the natural length of the buffer block 408 may be smaller than the natural length of the first buffer component 403 and the second buffer component 405.
  • the first buffer component 403 and the second buffer component 405 when the wheel assembly 400 is in a balanced state, the first buffer component 403 and the second buffer component 405 may be in a compressed state.
  • the restoring force of the first buffer component 403 and the second buffer component 405 may pull the second end of the supporting component 404 and push the wheel 401 to fall on the ground, so the buffer block 408 may be separated from the bottom wall 4023, and the buffer block 408 and the bottom wall 4023 may be kept at a certain distance to ensure that there is a certain impact space between the buffer block 408 and the bottom wall 4023.
  • the natural length of the buffer block 408 is not less than the natural lengths of the first buffer component 403 and the second buffer component 405, in the balanced state, the buffer block 408 may abut against the bottom wall 4023, which may affect the stability of the balanced state.
  • the second buffer component 405 may include one or more second springs.
  • the buffer block 408 may pass through the second spring.
  • the buffer block 408 may play a role of installing the second spring.
  • the buffer block 408 may not pass through the second buffer component 405.
  • the buffer block 408 may be disposed next to the second buffer component 405.
  • a first end (e.g., a lower end) of the second spring may abut against or be connected with the bottom wall 4023.
  • a second end (e.g., an upper end) of the second spring may abut against or be connected with the mobile plate 407.
  • the mobile plate 407 and the bottom wall 4023 of the frame 402 together may play a role of limiting the length of the second spring.
  • a first end (e.g., a lower end) of the buffer block 408 may be connected to the bottom wall 4023.
  • the wheel 401 may move upward and drive the supporting component 404 to rotate relative to the rotation rod 410.
  • the second end of the supporting component 404 may move downward.
  • the pull rod 406 may move downward with the second end of the supporting component 404 until the mobile plate 407 hits the buffer block 408 on the bottom wall 4023.
  • the second end of the supporting component 404 may be pulled upward until the supporting component 404 (e.g., the supporting plate 4042) hits the frame 402 (e.g., the bottom wall 4023) .
  • the supporting component 404 e.g., the supporting plate 4042
  • the frame 402 e.g., the bottom wall 4023
  • an elastic member may be disposed between the supporting component 404 and the bottom wall 4023 to solve the problem of rigid impact.
  • the present disclosure provides a mobile medical device with a shock absorption device to solve the problems mentioned above.
  • FIGs. 6 and 7 are diagrams illustrating an exemplary mobile medical device 600 according to some embodiments of the present disclosure.
  • the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 600.
  • the mobile medical device 600 may include a body and a wheel assembly 630.
  • the body may include a carrier 620 and a functional component 610.
  • the functional component 610, the carrier 620 and the wheel assembly 630 may be similar to the corresponding description illustrated in FIGs. 2-5, which will not be repeated here.
  • the mobile medical device 600 may further include a suspension component and a buffer component 640.
  • the suspension component may be arranged on the carrier 620 and connected to the wheel assembly 630 to reduce the vibration of the wheel assembly 630.
  • the suspension component may include an independent suspension or a dependent suspension.
  • the suspension component may include a floating member 650.
  • a first end of the floating member 650 may be movably connected with (e.g., hinged with) the carrier 620, and a second end of the floating member 650 may be installed on the wheel assembly 630.
  • a first end (e.g., a lower end) of the buffer component 640 may be movably connected with (e.g., hinged with) the second end of the floating member 650 that the wheel assembly 630 is installed on, and a second end (e.g., an upper end) of the buffer component 640 may be fixedly installed on the carrier 620, which may absorb the vibration of the wheel assembly 630.
  • the first end (e.g., the inner end) of the floating member 650 may be movably connected with (e.g., hinged with) the carrier 620, so that the second end (e.g., the outer end) of the floating member 650 may have a certain space for up and down movement, and the wheel assembly 630 may be installed on the second end of the floating member 650, so that the wheel assembly 630 may move up and down, thereby ensuring the wheel assembly 630 to adapt to the flatness of the road and always be in contact with the road to avoid the bumpy movement of the mobile medical device 600.
  • the buffer component 640 may buffer the shock transmitted from the wheel assembly 630 to the carrier 620, thereby achieving the purpose of shock absorption for the mobile medical device 600, reducing the impact on the functional component 610, reducing the probability of damage to the functional component 610, and prolong the life of the mobile medical device 600.
  • a mounting cavity 670 may be disposed in the carrier 620.
  • the buffer component 640 and the suspension component may be installed in the mounting cavity 670 to improve the space utilization of the mobile medical device 600.
  • an auxiliary device of the mobile medical device 600, medicines, and instruments that a user needs to carry may also be placed in the mounting cavity 670 to facilitate the use of the user.
  • the suspension component may include a mounting plate 680 vertically arranged in the mounting cavity 670.
  • the wheel assembly 630 may be rotatably arranged on a first side (e.g., an outer side) of the mounting plate 680 facing the outside of the carrier 620, and the second end of the floating member 650 may be connected to a second side (e.g., an inner side) of the mounting plate 680 facing the inside of the carrier 620.
  • the mobile medical device 600 may further include a driving assembly 660 connected with the wheel assembly 630 to drive the wheel assembly 630 to rotate.
  • the driving assembly 660 may be arranged on the second side of the mounting plate 680 facing the inside of the carrier 620.
  • An output shaft 661 of the driving assembly 660 may pass through the mounting plate 680, so that the wheel assembly 630 may be driven to rotate by the rotation of the output shaft 661 of the driving assembly 660.
  • At least a portion of the driving assembly 660 may be disposed inside the wheel assembly 630 as illustrated in FIGs. 8 and 9, so that more space in the carrier 620 may be saved for accommodating the suspension component and the buffer component 640, which may make the volume of the mobile medical device 600 smaller.
  • the mounting plate 680 may also play a role in shielding the floating member 650 to make the appearance of the mobile medical device 600 more beautiful.
  • the floating member 650 may be movably connected with (e.g., hinged with) the mounting plate 680.
  • the inner end of the floating member 650 may be hinged with the carrier 620, and the outer end of the floating member 650 may be hinged with the mounting plate 680 to further increase the movable range of the mounting plate 680, thereby increasing the floating range of the wheel assembly 630, so that the wheel assembly 630 may better adapt to the road surface and always keep the wheel assembly 630 in contact with the road surface.
  • the floating member 650 may include a supporting member.
  • a first end (e.g., an inner end) of the supporting member may be movably connected with (e.g., hinged with) the carrier 620, and a second end (e.g., an outer end) of the supporting member may be movably connected with (e.g., hinged with) the mounting plate 680 to realize the floating of the mounting plate 680.
  • the supporting member may include a rod extending substantially along a rotation axial direction of the wheel assembly 630.
  • the supporting member may include a first supporting member 651 and a second supporting member 652.
  • the first supporting member 651 and the second supporting member 652 may be arranged up and down.
  • a first end (e.g., an inner end) of the first supporting member 651 and a first end (e.g., an inner end) of the second supporting member 652 may be movably connected with (e.g., hinged with) the carrier 620, and a second end (e.g., an outer end) of the first supporting member 651 and a second end (e.g., an outer end) of the second supporting member 652 may be movably connected with (e.g., hinged with) the mounting plate 680.
  • the outer end of the first supporting member 651 may be movably connected with a first end (e.g., an upper end) of the mounting plate 680
  • the outer end of the second supporting member 652 may be movably connected with a second end (e.g., a lower end) of the mounting plate 680, so that the first supporting member 651, the second supporting member 652, and the mounting plate 680 may form a four-bar linkage mechanism.
  • the driving assembly 660 may be arranged between the first supporting member 651 and the second supporting member 652, so that the structure of the mobile medical device 600 may be more compact, and the force acting on the mounting plate 680 may be more uniform.
  • the suspension component may include a plurality of suspension units (e.g., a plurality of floating member 650) .
  • the wheel assembly 630 may include a plurality of wheels each of which corresponds to at least one of the plurality of suspension units.
  • the wheel assembly 630 may include a plurality of wheels at least one of which may be provided with a floating member 650 and a buffer component 640, so that each wheel may have different floating and buffering effects according to the conditions of the road the wheels encounter, thereby improving the buffering effect of the mobile medical device 600.
  • the wheel assembly 630, the suspension component, and the buffer component 640 on the left and right sides of the mobile medical device 600 may be symmetrically arranged, so that the structure of the mobile medical device 600 may be more stable.
  • the wheels on the same side may share a same suspension component and/or a same buffer component 640.
  • the mobile medical device 600 may include a guide component (not shown) configured to limit a moving direction of the wheel assembly 630 relative to the carrier 620.
  • the structural stability of the mobile medical device 600 may be improved, the collision and vibration caused by the deviation of the moving direction of the wheel assembly 630 may be reduced by limiting the moving direction of the wheel assembly 630.
  • the guide component may include a sliding rail and a sliding block configured to move along the sliding rail and connected with the suspension component.
  • the sliding rail may be disposed vertically.
  • the sliding rail may be arranged in the mounting cavity 670 of the carrier 620, and the sliding block may be fixedly connected to the mounting plate 680.
  • FIG. 8 is a diagram illustrating an exemplary mobile medical device 800 according to some embodiments of the present disclosure.
  • the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 800.
  • the mobile medical device 800 may include a carrier 840 and a wheel assembly 810 that are similar to the corresponding description illustrated in FIGs. 2-7, which will not be repeated here.
  • the wheel assembly 810 may include a plurality of wheels at least one of which is connected with a driving assembly configured to drive the wheel to rotate.
  • the driving assembly may include a driven sprocket 820 and a motor 830.
  • the driven sprocket 820 may be connected with the wheel assembly 810.
  • the motor 830 may be configured to drive the driven sprocket 820 to rotate, so as to drive the wheel assembly 810 to rotate and perform the steering operation.
  • the motor 830 and the driven sprocket 820 may be disposed in the carrier 840.
  • FIG. 9 is a diagram illustrating an exemplary mobile medical device 900 according to some embodiments of the present disclosure.
  • the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 900.
  • the mobile medical device 900 may include a carrier 940 and a wheel assembly 910 that are similar to the corresponding description illustrated in FIGs. 2-8, which will not be repeated here.
  • the wheel assembly 910 may include a plurality of wheels at least one of which is connected with a driving assembly 920 configured to drive the wheel to rotate.
  • the driving assembly 920 may be disposed inside the wheel assembly 910.
  • the driving assembly 920 may include a motor connected to the carrier 940. At least a portion of the motor may be installed inside the wheel assembly 910.
  • the driving assembly 920 may be configured to drive the carrier 940 to move by driving the wheel assembly 910 to rotate.
  • the wheel assembly 910 and the driving assembly 920 inside the wheel assembly 910 may form a hub motor.
  • the wheel assembly 910 may include a plurality of wheels.
  • each of two of the plurality of wheels may be arranged with at least one driving component of the driving assembly 920.
  • the front wheels when at least a portion of at least one driving component of the driving assembly 920 is arranged inside each wheel of a first pair (e.g., two front wheels) of the plurality of wheels, the front wheels may be used as the active rotating wheels to drive a second pair (e.g., two rear wheels) of the plurality of wheels to rotate, so as to drive the carrier 940 to move.
  • the rear wheels may be used as the active rotating wheels to drive the front wheels of the plurality of wheels to drive the carrier 940 to move.
  • the four wheel may be used as active rotating wheels to drive the carrier 940 to move.
  • the driving assembly 920 in the mobile medical device 900 may be connected to the carrier 940 and installed inside the wheel assembly 910, which may be understood that the mobile medical device 900 is provided with a hub motor.
  • the installation of the driven sprockets may be omitted and the installation of the motor inside the carrier 940 may be avoided, thereby saving the internal space of the mobile medical device 900, and improving the compactness of the mobile medical device 900, which may be conducive to the compact design of the mobile medical device 900 and improve the effect of flexible movement in a narrow aisle.
  • the internal space of the mobile medical device 900 may be saved for installing other components, e.g., the suspension component and the buffer component illustrated in FIG. 7.
  • the driving assembly 920 may include a stator, a rotor, and a rotating shaft.
  • the stator may be sleeved on the rotating shaft.
  • the rotor may be configured to rotate relative to the stator.
  • the rotating shaft may be connected to the carrier 940.
  • the rotating shaft may be connected to the carrier 940 through a fixing structure 930. For example, when the driving assembly 920 is in a working state, the rotor may be connected to and rotate around the rotating shaft.
  • the stator and the rotating shaft may remain stationary relative to the carrier 940.
  • the driving assembly 920 is installed inside the wheel assembly 910, which is equivalent that the mobile medical device 900 is equipped with a hub motor, the installation of the driven sprocket may be omitted and the installation of the motor inside the carrier 940 may be avoided, thereby saving the internal space of the mobile medical device 900, and improving the structural compactness of the mobile medical device 900.
  • the problem that a driving assembly may occupy a large space in the carrier of the mobile medical device may be solved.
  • it may be conducive to the realization of the compact design of the mobile medical device, and enables the mobile medical device to move flexibly in a narrow aisle.
  • a user usually applies force to the mobile medical device manually, and a driving assembly controls the mobile medical device to move after receiving the force applied by the user.
  • a driving assembly controls the mobile medical device to move after receiving the force applied by the user.
  • the mobile medical device may move downward along the slope, which may cause the mobile medical device to fail to stop on the slope and bring unnecessary troubles.
  • the present disclosure provides a mobile medical device having a function of automatic adjustment of a movement state of the mobile medical device.
  • FIG. 10 is a block diagram illustrating an exemplary mobile medical device 1000 according to some embodiments of the present disclosure.
  • the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 1000.
  • the mobile medical device 1000 may include a carrier 1040, a driving assembly 1030, and a processing device 1020.
  • the driving assembly 1030 may be mechanically connected with the carrier 1040 to drive the carrier 1040 to move.
  • the driving assembly 1030 may be electrical connected with the processing device 1020.
  • the carrier 1040 and the driving assembly 1030 may be similar to the corresponding description illustrated in FIGs. 2-9, which will not be repeated here.
  • the processing device 1020 may be similar to the processing device 140 in FIG. 1, which will not be repeated here.
  • the processing device 1020 may be configured to cause an operation state of the driving assembly 1030 to be adjusted, so as to control a movement state of the mobile medical device 1000, e.g., slow down, speed up, or stop the mobile medical device 1000.
  • a movement state of the mobile medical device 1000 e.g., slow down, speed up, or stop the mobile medical device 1000.
  • the description of the automatic adjustment of a movement state of a mobile medical device may take automatically stopping a mobile medical device on a slope as an example, which are merely some examples or implementations.
  • the principle of automatically slowing down, speeding up, or stopping a mobile medical device on the horizontal ground or a slope may be similar, and the automatic adjustment of a movement state of a mobile medical device provided in the present disclosure may be applied to the scenarios of automatically slowing down, speeding up, and stopping a mobile medical device on the horizontal ground and a slope.
  • the mobile medical device 1000 may include an angle sensor 1010 electrical connected to the processing device 1020.
  • the angle sensor 1010 may be configured to detect an inclination angle of the mobile medical device 1000 (e.g., the carrier 1040) .
  • the angle sensor 1010 may send the inclination angle to the processing device 1020.
  • the processing device 1020 may be configured to cause an operation state of the driving assembly 1030 to be adjusted based on the angle of inclination, so as to control a movement state of the mobile medical device 1000, e.g., slow down, speed up, or stop the mobile medical device 1000.
  • the processing device 1020, the driving assembly 1030, and the angle sensor 1010 may be arranged on the carrier 1040 (e.g., the bottom of the carrier 1040) to increase the stability of the mobile medical device 1000.
  • the bottom of the carrier 1040 may also be configured with a wheel assembly, which is similar to the corresponding description illustrated in FIGs. 2-9 and will not be repeated here.
  • the angle sensor 1010 may include an inclinometer, an inclination switch, an electronic compass, a gyroscope, or the like, or any combination thereof.
  • the driving assembly 1030 may include a two-phase motor, a three-phase motor, or other types of motors.
  • the carrier 1040 of the mobile medical device 1000 may be determined as parallel to the road.
  • the angle sensor 1010 may detect an inclination angle of the carrier 1040 that is determined as the inclination angle of the slope, and then the angle sensor 1010 may send the detected inclination angle of the carrier 1040 to the processing device 1020.
  • the mobile medical device 1000 may include a storage device, for example, the storage device 150 in FIG. 1.
  • the mobile medical device 1000 may include gravity sensor configured to detect the gravity of the mobile medical device 1000 and send the gravity of the mobile medical device 1000 to the processing device 1020.
  • the gravity of the mobile medical device 100 may also be determined in advance, and stored in the storage device.
  • the processing device 1020 may access the storage device to obtain the gravity of the mobile medical device 1000.
  • the processing device 1020 may receive the inclination angle of the carrier 1040 transmitted by the angle sensor 1010. After receiving the inclination angle of the carrier 1040 on the slope, the processing device 1020 may also obtain the gravity of the mobile medical device 1000 from the storage device or the gravity sensor, and determine a first additional force required to adjust the movement state of the mobile medical device 1000, e.g., stop the mobile medical device 1000 on the slope.
  • FIG. 11 is a flowchart illustrating an exemplary process for adjusting a movement state of a mobile medical device according to some embodiments of the present disclosure.
  • the process 1100 may be implemented in the mobile medical device 1000 illustrated in FIG. 10.
  • the process 1100 may be stored in a storage device of the mobile medical device 1000 as a form of instructions, and can be invoked and/or executed by the processing device 1020 (e.g., the processor 1810 illustrated in FIG. 18, or one or more modules in the processing device 1020 illustrated in FIG. 17) .
  • the operations of the illustrated process 1100 presented below are intended to be illustrative. In some embodiments, the process 1100 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 1100 as illustrated in FIG. 11 and described below is not intended to be limiting.
  • the processing device 1020 may obtain an inclination angle of the carrier 1040 transmitted by the angle sensor 1010. In some embodiments, the processing device 1020 may also obtain the gravity of the mobile medical device 1000 from the storage device or the gravity sensor.
  • the processing device 1020 may cause the operation state of the driving assembly 1030 to be adjusted based on the inclination angle, so as to control the movement state of the mobile medical device 1000 under the inclination angle.
  • the processing device 1020 may determine a first additional force based on the inclination angle, and cause the driving assembly 1030 to adjust the operation state based on the first additional force, so as to control the movement state of the mobile medical device 1000 under the inclination angle, e.g., control the mobile medical device 1000 to stop under the inclination angle (e.g., on a slope with the inclination angle) .
  • FIG. 12 is a schematic diagram of a force condition of the mobile medical device 1000 according to some embodiments of the present disclosure.
  • the inclination angle of the carrier 1040 on a slope 1220 may be represented as A, and the gravity of the mobile medical device 1000 may be represented to as G.
  • a first additional force T1 needs to be exerted on the mobile medical device 1000 to offset with the component force of the gravity G along the slope, so as to make the resultant force on the mobile medical device 1000 be zero.
  • Two component forces of the gravity G of the mobile medical device 1000 may be represented as G1 and G2, respectively.
  • G1 may refer to a first downward component force along the slope.
  • G2 may refer to a second downward component force vertical to the slope and G1.
  • G1 may be determined as G ⁇ cosA.
  • the friction force f may be an upward force along the slope. Assuming that the mobile medical device 1000 moves upward, the frictional force f may be a downward force along the slope.
  • the frictional force f may be default or preset.
  • the mobile medical device 1000 may include a speed sensor and/or an acceleration sensor configured to detect an acceleration of the mobile medical device 1000 and electrically connected to the processing device 1020.
  • the processing device 1020 may cause the operation state of the driving assembly 1030 to be adjusted according to T1. Specifically, the processing device 1020 may control the driving assembly 1030 to output a reverse torque according to T1, so that the torque output by the driving assembly 1030 may exert T1 that is upward along the slope on the mobile medical device 1000 to make the resultant force on the mobile medical device 1000 equal to 0, thereby achieving the control of the movement state of the mobile medical device 1000 on the slope, that is, controlling the mobile medical device 1000 to stop on the slope.
  • the processing device 1020 may adjust the operation state of the driving assembly 1030 according to the inclination angle, thereby automatically controlling the movement state of the mobile medical device 1000, e.g., automatically controlling the mobile medical device 1000 to stop on the slope.
  • FIG. 13 is a block diagram illustrating an exemplary mobile medical device 1300 according to some embodiments of the present disclosure.
  • the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 1300.
  • the mobile medical device 1300 may further include a controller 1310 electrically connected to the processing device 1020.
  • the controller 1310 may be configured to control the processing device 1020 to initiate or terminate the adjustment of the operation state of the driving assembly 1030 (e.g., initiate or terminate the process 1100 and/or the process 1500) .
  • the controller 1310 may include a force sensor configured to detect a user's force exerted on the mobile medical device 1300 and control, based on the detection result, the processing device 1020 to initiate or terminate the adjustment of the operation state of the driving assembly 1030.
  • the force sensor may include one or more strain gauge sensors.
  • the force sensor may include one strain gauge sensor, or a plurality of strain gauge sensors, for example, the force sensor may include two strain gauge sensors, three strain gauge sensors, or the like, which may not be specifically limited in the present disclosure.
  • the force sensor include one strain gage sensor
  • the force detected by the strain gage sensor may be directly used as the force exerted by the user on the mobile medical device 1300.
  • the force sensor includes a plurality of strain gage sensors
  • the force detected by the plurality of strain gauge sensors may be summed to obtain the force exerted by the user on the mobile medical device 1300.
  • the controller 1310 may include a trigger switch.
  • the trigger switch may be electrically connected to the processing device 1020 and configured to control the processing device 1020 to initiate or terminate the adjustment of the operation state of the driving assembly 1030.
  • the trigger switch may directly control the processing device 1020 to control the processing device 1020 to initiate or terminate the adjustment of the operation state of the driving assembly 1030.
  • the processing device 1020 may be controlled to initiate or terminate the adjustment of the operation state of the driving assembly 1030 through turning on or turning off the trigger switch.
  • the automatic parking function may be turned off when the user needs to push the mobile medical device 1300, and the automatic parking function may be turned on when parking is required.
  • the control process of turning on or turning off the parking function may be simple and straightforward.
  • the mobile medical device 1300 may include a handle for the user to push or pull the mobile medical device 1300.
  • the shape of the handle may be set according to the actual situation.
  • the force sensor may be installed on the handle, and the installation position may also be set according to the actual situation.
  • the force sensor may be arranged on the inner side of the handle or the outer side of the handle, or the like.
  • the force e.g., thrust, pulling force, or the like
  • the force manually exerted on the mobile medical device 1300 by the user may be detected by the one or more strain gauge sensors, and then the one or more strain gauge sensors may transmit the detected force to the processing device 1020.
  • the processing device 1020 may determine whether the force is 0, and determine whether to initiate terminate the adjustment the operation state of the driving assembly 1030 according to the determination result.
  • the processing device 1020 may determine that the user does not exert any force on the mobile medical device 1300 currently. At this time, there may be only the gravity of the mobile medical device 1300, the supporting force of the ground, and the friction force exerted on the mobile medical device 1300.
  • the function of the processing device 1020 to adjust the operation state of the driving assembly 1030 may be turned on.
  • the processing device 1020 may determine the first additional force according to the basic principles of mechanics at this time, and then cause the driving assembly 1030 to reverse according to the first additional force.
  • the driving assembly 1030 may output a reverse torque based on the first additional force to make the mobile medical device 1300 to stop on the slope.
  • the processing device 1020 may determine that the user exerts a force on the mobile medical device 1300 currently, then the function of the processing device 1020 to adjust the operation state of the driving assembly 1030 may not be turned on or be turned off. At this time, the user's external force may stop the mobile medical device 1300 from moving, so that there is no need to automatically control the mobile medical device 1300 to stop moving by the driving assembly 1030. When the user does not exert a force on the mobile medical device 1300 subsequently, the function of adjusting the operation state of the driving assembly 1030 may be turned on again.
  • the controller 1310 may control the processing device 1020 to initiate terminate the adjustment of the operation state of the driving assembly 1030, so as to avoid the conflict caused by the function of pushing the mobile medical device 1300 via manpower and the function of the driving assembly 1030 to automatically drive the mobile medical device 1300 to stop.
  • the two functions may be compatible and improve the scope of application of the mobile medical device.
  • it may also prevent the processing device 1020 from blindly adjusting the operation state of the driving assembly 1030, causing the problem of disordered control functions of the mobile medical device, so that the operation state of the driving assembly 1030 may be accurately adjusted to achieve accurate control of parking of the mobile medical device 1300.
  • FIG. 14 is a block diagram illustrating an exemplary mobile medical device 1400 according to some embodiments of the present disclosure.
  • the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 1400.
  • the mobile medical device 1400 may further include a speed sensor 1410 electrically connected to the processing device 1020.
  • the speed sensor 1410 may be configured to detect the speed and/or the acceleration of the mobile medical device 1400 and send the speed and/or the acceleration to the processing device 1020.
  • the processing device 1020 may adjust the operation state of the driving assembly 1030 according to the speed and the inclination angle of the mobile medical device 1400 to control the mobile medical device 1400 to stop on the slope.
  • the speed sensor 1410 may be arranged on the carrier 1040.
  • the speed sensor 1410 may include a passive sensor or an active sensor, which may not be specifically limited in the present disclosure.
  • the speed sensor 1410 may include a magnetic electrical sensor, a Hall sensor, or other types of speed sensors.
  • the count of the speed sensors 106 may be one or multiple, which may not be specifically limited in the present disclosure.
  • the magnetic electrical sensor may be a passive sensor, which may output a frequency pulse proportional to the speed of the mobile medical device 1400 through a processing circuit electrically connected to the magnetic electrical sensor, so that the processing device 1020 may obtain the speed of the mobile medical device 1400.
  • the speed sensor 1410 is a Hall sensor
  • the Hall sensor may be an active sensor.
  • the sensor's switch may be electrically connected to the processing circuit, and the output pulse frequency may be proportional to the speed of the mobile medical device 1400, so that the processing device 1020 may obtain the speed of the mobile medical device 1400.
  • the speed of the mobile medical device 1400 may be detected by the speed sensor 1410 on the mobile medical device 1400, so that the speed of the mobile medical device 1400 may be obtained.
  • the speed sensor 1410 may transmit the detected speed of the mobile medical device 1400 to the processing device 1020.
  • the processing device 1020 may determine whether the speed of the mobile medical device 1400 is 0, and adjust the operation state of the driving assembly 1030 according to the determination result.
  • the processing device 1020 may determine a reverse force the mobile medical device 1400 requires to decelerate from the current speed to 0.
  • the processing device 1020 may use the determined reverse force to control the driving assembly 1030 to output a reverse torque, so that the mobile medical device 1400 may decelerates to 0 under the action of the reverse force.
  • the processing device 1020 may determine a first additional force to cause an operation state of the driving assembly 1030 to be adjusted based on the first additional force, so as to control the mobile medical device 1400 stop on the slope.
  • the processing device 1020 in response to determining that the speed of the mobile medical device 1400 is 0, may determine a first additional force to cause an operation state of the driving assembly 1030 to be adjusted based on the first additional force, so as to control the mobile medical device 1400 stop on the slope. Details regarding determining the first additional force may be found elsewhere in the present disclosure (e.g., the description in connection with FIG. 11 and FIG. 12) .
  • the processing device 1020 may obtain the speed of the mobile medical device 1400 through the speed sensor 1410, the processing device 1020 may accurately adjust the operation state of the driving assembly 1030 according to the speed of the mobile medical device 1400 and the inclination angle of the mobile medical device 1400, so as to ensure an accurate adjustment of the operation state of the driving assembly 1030, and further ensure the stability of the mobile medical device 1400 when stopping the mobile medical device 1400.
  • FIG. 15 is a flowchart illustrating an exemplary process for adjusting a movement state of a mobile medical device according to some embodiments of the present disclosure.
  • the process 1500 may be implemented in the mobile medical device 1400 illustrated in FIG. 14.
  • the process 1500 may be stored in a storage device of the mobile medical device 1400 as a form of instructions, and can be invoked and/or executed by the processing device 1020 (e.g., the processor 1810 illustrated in FIG. 18, or one or more modules in the processing device 1020 illustrated in FIG. 17) .
  • the operations of the illustrated process 1500 presented below are intended to be illustrative. In some embodiments, the process 1500 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 1500 as illustrated in FIG. 15 and described below is not intended to be limiting.
  • the processing device 1020 may obtain a speed of the mobile medical device 1400 from the speed sensor 1410.
  • the processing device 1020 may determine whether the speed is equal to 0. In response to determining that the speed is not equal to 0, the process 1500 may proceed to operation 1530, in which the processing device 1020 may determine a second additional force based on the speed.
  • the time t may be default or preset, e.g., 0.01s, 0.05s, 0.1s, 0.5s, 1s, 2s, 5s, etc.
  • the direction of F2 may be the same as the direction of the speed of the mobile medical device 1400.
  • the direction of F2 may be the opposite to the direction of the speed of the mobile medical device 1400, for example, when the mobile medical device 1400 has a speed upward along a slope (e.g., the slope 1220) and is not subjected to an external force (e.g., from a user) .
  • the direction of the second additional force may be opposite to the direction of the speed.
  • the processing device 1020 may cause an operation state of the driving assembly 1030 to be adjusted based on the second additional force, so as to control the mobile medical device 1400 to decelerate to 0.
  • the processing device 1020 may control the driving assembly 1030 to output a reverse torque according to the second additional force, so that the torque output by the driving assembly 1030 may exert the second additional force that is opposite to the direction of the speed on the mobile medical device 1400, thereby control the mobile medical device 1400 to quickly decelerate to 0.
  • the processing device 1020 may cause an operation state of the driving assembly 1030 to be adjusted, so as to control the mobile medical device 1400 to stop under the inclination angle. Details regarding operation 1550 may be found elsewhere in the present disclosure (e.g., the description in connection with FIG. 11 and FIG. 12) .
  • the process 1500 may proceed to operation 1550.
  • the processing device 1020 may determine whether the current acceleration of the mobile medical device 1400 is equal to 0.
  • the processing device 1020 may cause the driving assembly 1030 to maintain the current operation state, so as to keep the stationary state of the mobile medical device 1400.
  • the first additional force may be adjusted to be larger. In some embodiments, if the speed is upward along the slope, which may indicate that the first additional force is large to keep the mobile medical device 1400 still on the slope, the first additional force may be adjusted to be smaller. For example, the first additional force may be increased or decreased for a preset value in each iteration. The first additional force may also be increased or decreased in other ways.
  • the processing device 1020 may repeat the process 1500 in real time, so as to realize real-time dynamic closed-loop control to make the mobile medical device 1400 automatically stop under the inclination angle.
  • FIG. 16 is a block diagram illustrating an exemplary mobile medical device 1600 according to some embodiments of the present disclosure.
  • the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 1600.
  • the mobile medical device 1600 may further include a deceleration component 1610 installed on the carrier 1040 and electrically connected to the driving assembly 1030.
  • the deceleration component 1610 may be configured to control the carrier 1040 to slow down according to the operation state of the driving assembly 1030.
  • connection between the deceleration component 1610 and the driving assembly 1030 may be an electrical connection.
  • the deceleration component 1610 may include a parallel shaft helical gear reducer, a worm gear reducer, a bevel gear reducer, a planetary gear reducer, a cycloid reducer, a worm gear and worm reducer, a planetary friction type mechanical stepless speed changer, or the like, or any combination thereof.
  • the deceleration component 1610 may also include other deceleration mechanisms, which may not be exhaustive herein.
  • the deceleration component 1610 may include a low-speed and high-torque transmission device, which may cause the high-speed running power output by the driving assembly 1030 to be meshed with a large gear on the output shaft through a gear with a small count of teeth on the input shaft of the deceleration component 1610 to achieve the purpose of deceleration.
  • the deceleration component 1610 may usually have large and small gears, and the ratio of the count of teeth of the large and small gears may be a transmission ratio.
  • the transmission ratio may be determined according to the actual situation, which may not specifically be limited in the embodiment.
  • the processing device 1020 may determine a second additional force required to make the mobile medical device 1600 decelerate from the current speed to zero.
  • the processing device 1020 may control the driving assembly 1030 to output the second additional force.
  • the driving assembly 1030 may output the second additional force to the deceleration component 1610, and the deceleration component 1610 may control, according to the second additional force and the transmission ratio, the mobile medical device 1600 to decelerate until the mobile medical device 1600 decelerates from the current speed to zero.
  • the deceleration of the mobile medical device 1600 may be controlled by the deceleration component 1610, which may quickly reduce the speed of the mobile medical device 1600, thereby shortening the overall parking time of the mobile medical device 1600.
  • FIG. 17 is a schematic block diagram illustrating an exemplary processing device 1700 according to some embodiments of the present disclosure.
  • the processing device 1700 may be implemented in the processing device 140 and/or the processing device 1020 in the form of software and/or hardware.
  • the processing device 1700 may include an obtaining module 1710 and an adjustment module 1720.
  • the obtaining module 1710 may obtain an inclination angle of the carrier 1040 transmitted by the angle sensor 1010.
  • the processing device 1020 may also obtain the gravity of the mobile medical device 1000 from the storage device or the gravity sensor.
  • the adjustment module 1720 may cause the operation state of the driving assembly 1030 to be adjusted based on the inclination angle, so as to control the movement state of the mobile medical device 1000 under the inclination angle.
  • the modules in the processing device 1700 may be connected to or communicate with each other via a wired connection or a wireless connection.
  • the wired connection may include a metal cable, an optical cable, a hybrid cable, or the like, or any combination thereof.
  • the wireless connection may include a Local Area Network (LAN) , a Wide Area Network (WAN) , a Bluetooth, a ZigBee, a Near Field Communication (NFC) , or the like, or any combination thereof.
  • LAN Local Area Network
  • WAN Wide Area Network
  • Bluetooth a ZigBee
  • NFC Near Field Communication
  • the processing device 1700 may further include a storage module (not shown in FIG. 17) .
  • the storage module may be configured to store data generated during any process performed by any component of in the processing device 1700.
  • each of the components of the processing device 1700 may include a storage device. Additionally or alternatively, the components of the processing device 1700 may share a common storage device.
  • FIG. 18 is a schematic diagram illustrating exemplary hardware and/or software components of a computing device on which the processing device 140 and/or the processing device 1020 may be implemented according to some embodiments of the present disclosure.
  • the computing device 1800 may include a processor 1810, a storage 1820, an input/output (I/O) 1830, and a communication port 1840.
  • I/O input/output
  • the processor 1810 may execute computer instructions (program code) and perform functions of the processing device1800 in accordance with techniques described herein.
  • the computer instructions may include routines, programs, objects, components, signals, data structures, procedures, modules, and functions, which perform particular functions described herein.
  • the processor 1810 may include a microcontroller, a microprocessor, a reduced instruction set computer (RISC) , an application specific integrated circuits (ASICs) , an application-specific instruction-set processor (ASIP) , a central processing unit (CPU) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a microcontroller unit, a digital signal processor (DSP) , a field programmable gate array (FPGA) , an advanced RISC machine (ARM) , a programmable logic device (PLD) , any circuit or processor capable of executing one or more functions, or the like, or any combinations thereof.
  • RISC reduced instruction set computer
  • ASICs application specific integrated circuits
  • ASIP application-specific instruction-set processor
  • CPU central processing unit
  • GPU graphics processing unit
  • PPU physics processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ARM advanced RISC machine
  • PLD programmable logic device
  • the computing device 1800 in the present disclosure may also include multiple processors, and thus operations of a method that are performed by one processor as described in the present disclosure may also be jointly or separately performed by the multiple processors.
  • the processor of the computing device 1800 executes both operations A and B
  • operations A and step B may also be performed by two different processors jointly or separately in the computing device 1800 (e.g., a first processor executes operation A and a second processor executes operation B, or the first and second processors jointly execute operations A and B) .
  • the storage 1820 may store data/information obtained from the mobile medical device 110, the terminal 130, the storage device 150, or any other component of the medical system 100.
  • the storage 1820 may include a mass storage device, a removable storage device, a volatile read-and- write memory, a read-only memory (ROM) , or the like, or any combination thereof.
  • the mass storage device may include a magnetic disk, an optical disk, a solid-state drive, etc.
  • the removable storage device may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc.
  • the volatile read-and-write memory may include a random access memory (RAM) .
  • the RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc.
  • the ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (PEROM) , an electrically erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc.
  • the storage 1820 may store one or more programs and/or instructions to perform exemplary methods described in the present disclosure.
  • the I/O 1830 may input or output signals, data, or information. In some embodiments, the I/O 1830 may enable user interaction with the processing device 1800. In some embodiments, the I/O 1830 may include an input device and an output device. Exemplary input devices may include a keyboard, a mouse, a touch screen, a microphone, a trackball, or the like, or a combination thereof. Exemplary output devices may include a display device, a loudspeaker, a printer, a projector, or the like, or a combination thereof.
  • Exemplary display devices may include a liquid crystal display (LCD) , a light-emitting diode (LED) -based display, a flat panel display, a curved screen, a television device, a cathode ray tube (CRT) , or the like, or a combination thereof.
  • LCD liquid crystal display
  • LED light-emitting diode
  • CRT cathode ray tube
  • the communication port 1840 may be connected to a network (e.g., the network 120) to facilitate data communications.
  • the communication port 1840 may establish connections between the processing device1800 and the mobile medical device 110, the terminal 130, or the storage device 150.
  • the connection may be a wired connection, a wireless connection, or a combination of both that enables data transmission and reception.
  • the wired connection may include an electrical cable, an optical cable, a telephone wire, or the like, or any combination thereof.
  • the wireless connection may include Bluetooth, Wi-Fi, WiMax, WLAN, ZigBee, mobile network (e.g., 3G, 4G, 5G, etc. ) , or the like, or a combination thereof.
  • the communication port 1840 may be a standardized communication port, such as RS232, RS485, etc. In some embodiments, the communication port 1840 may be a specially designed communication port. For example, the communication port 1840 may be designed in accordance with the digital imaging and communications in medicine (DICOM) protocol.
  • DICOM digital imaging and communications in medicine
  • aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ”

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A mobile medical device may include a wheel; a frame connected with a body of the mobile medical device, the frame including a wall; a supporting component movably connected with the frame, a first end of the supporting component being connected with the wheel, a second end of the supporting component being connected with a first end of a pull rod, a second end of the pull rod extending into the frame through the wall; a first buffer component disposed inside the frame and between the second end of the pull rod and the wall; and a second buffer component disposed inside the frame and between the second end of the pull rod and the wall, an elastic coefficient of the first buffer component being greater than an elastic coefficient of the second buffer component.

Description

MOBILE MEDICAL DEVICE
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to Chinese Patent Application No. 202021896379.6 filed on September 2, 2020, Chinese Patent Application No. 202010966904.5 filed on September 15, 2020, Chinese Patent Application No. 202022171862.4 filed on September 28, 2020, and Chinese Patent Application No. 202022206926. X filed on September 30, 2020, the contents of each of which are hereby incorporated by reference.
TECHNICAL FIELD
The present disclosure generally relates to the field of medical devices, and in particular, to a mobile medical device.
BACKGROUND
At present, mobile medical devices such as mobile digital radiography (DR) devices have become more and more important in hospitals to meet imaging and/or treatment requirements of patients in, for example, intensive care units (ICU) , emergency rooms, or wards, etc., which is convenient for patients who are inconvenient to move.
SUMMARY
According to a first aspect of the present disclosure, a wheel assembly for a mobile medical device may include a wheel. The wheel assembly may include a frame connected with a body of the mobile medical device. The frame may include a wall. The wheel assembly may include a supporting component movably connected with the frame. A first end of the supporting component may be connected with the wheel, a second end of the supporting component may be connected with a first end of a pull rod, and a second end of the pull rod may extend  into the frame through the wall. The wheel assembly may include a first buffer component disposed inside the frame and between the second end of the pull rod and the wall. The wheel assembly may include a second buffer component disposed inside the frame and between the second end of the pull rod and the wall. An elastic coefficient of the first buffer component may be greater than an elastic coefficient of the second buffer component.
In some embodiments, the wheel assembly may include a mobile plate disposed inside the frame. The mobile plate may be movable relative to the wall. The second end of the pull rod may go through the mobile plate. The first buffer component and the second buffer component may be disposed between the mobile plate and the wall.
In some embodiments, the first buffer component may include a first spring. The pull rod may go through the first spring. At least one end of the first spring may abut the mobile plate or the wall.
In some embodiments, the second buffer component may include a second spring. At least one end of the second spring may abut the mobile plate or the wall.
In some embodiments, the mobile medical device may include a buffer block connected with the mobile plate or the wall. An elastic coefficient of the buffer block may be greater than the elastic coefficient of the first buffer component.
In some embodiments, a natural length of the buffer block may be shorter than a natural length of the second spring.
In some embodiments, a nut may be screwed onto the pull rod and between the second end of the pull rod and the mobile plate.
In some embodiments, the supporting component may include a supporting plate and a connecting rod. A first end of the supporting plate may be connected with the wheel, and a second end of the supporting plate may be connected with the pull rod through the connecting rod.
In some embodiments, the first buffer component may include two or more  buffer units that are disposed symmetrically relative to the second buffer component.
In some embodiments, a natural length of the first buffer component may be shorter than a natural length of the second buffer component.
According to another aspect of the present disclosure, a mobile medical device may include a wheel assembly and a body. The wheel assembly may include a frame connected with a body of the mobile medical device. The frame may include a wall. The wheel assembly may include a supporting component movably connected with the frame. A first end of the supporting component may be connected with the wheel, a second end of the supporting component may be connected with a first end of a pull rod, and a second end of the pull rod may extend into the frame through the wall. The wheel assembly may include a first buffer component disposed inside the frame and between the second end of the pull rod and the wall. The wheel assembly may include a second buffer component disposed inside the frame and between the second end of the pull rod and the wall. An elastic coefficient of the first buffer component may be greater than an elastic coefficient of the second buffer component.
In some embodiments, the mobile medical device may include a mobile digital radiography (DR) device, a mobile digital subtraction angiography (DSA) device, or a mobile C-arm device.
According to yet another aspect of the present disclosure, a mobile medical device may include a body. The mobile medical device may include a wheel assembly. The mobile medical device may include a suspension component of which a first end is movably connected with the body and a second end is connected with the wheel assembly. The mobile medical device may include a buffer component of which a first end is movably connected with the suspension component and a second end is connected with the body.
In some embodiments, the mobile medical device may include a mounting plate connected with the wheel assembly. The second end of the suspension  component may be connected with the wheel assembly through the mounting plate.
In some embodiments, the second end of the suspension component may be movably connected with the mounting plate.
In some embodiments, the suspension component may includes:
a first supporting member of which a first end is movably connected with the body and a second end is movably connected with a first end of the mounting plate; and
a second supporting member of which a first end is movably connected with the body and a second end is movably connected with a second end of the mounting plate.
In some embodiments, the mobile medical device may include a driving assembly. The driving assembly may be disposed on the mounting plate. The driving assembly may be in connection with the wheel assembly to drive the wheel assembly to rotate.
In some embodiments, the mobile medical device may include a driving assembly configured to drive the wheel assembly to rotate. The driving assembly may be disposed within the wheel assembly.
In some embodiments, the suspension component may include a plurality of suspension units, and the wheel assembly may include a plurality of wheels each of which corresponds to at least one of the plurality of suspension units.
In some embodiments, the body may include a mounting cavity, and the suspension component and the buffer component may be disposed within the mounting cavity.
In some embodiments, the mobile medical device may include a guide component configured to limit a moving direction of the wheel assembly relative to the body.
In some embodiments, the guide component may include:
a sliding rail disposed on the body; and
a sliding block that is configured to move along the sliding rail and connected with the suspension component.
According to yet another aspect of the present disclosure, a mobile medical device may include:
a body including a functional component and a carrier configured to support the functional component;
a wheel assembly disposed on the carrier and configured to rotate to drive the carrier to move; and
a driving assembly configured to drive the wheel assembly to rotate. At least a portion of the driving assembly may be disposed inside the wheel assembly.
In some embodiments, the wheel assembly may include a plurality of wheels. The driving assembly may include a plurality of driving components at least a portion of which is disposed inside two of the plurality of wheels.
In some embodiments, at least a portion of the plurality of driving components of the driving assembly may be disposed inside a first pair of wheels of the plurality of wheels.
In some embodiments, at least a portion of the plurality of driving components of the driving assembly may be disposed inside a second pair of wheels of the plurality of wheels.
In some embodiments, the wheel assembly includes a plurality of wheels; and
the driving assembly includes a plurality of driving components at least a portion of which is disposed inside four of the plurality of wheels.
In some embodiments, the driving assembly includes a stator, a rotor, and a rotation shaft, the stator being sleeved on the rotation shaft, the rotor being configured to rotate relative to the stator.
In some embodiments, the functional component includes an imaging component, the imaging component including an X-ray generator and an X-ray  detector.
In some embodiments, an adjustment component disposed on the carrier and configured to adjust a position of the X-ray generator; and
a lock component disposed on the carrier and configured to lock the adjustment component to fix the position of the X-ray generator.
In some embodiments, the adjustment component includes:
a telescopic arm configured to adjust a first distance and an angle between the X-ray generator and a target object; and
a column configured to adjust a second distance between the X-ray generator and the target object.
In some embodiments, a display disposed on the carrier and configured to display an interactive interface associated with the mobile medical device.
According to yet another aspect of the present disclosure, a mobile medical device may include:
a body;
a wheel assembly connected with the body;
a first driving assembly configured to drive the wheel assembly to rotate;
an angle sensor configured to detect an angle of inclination of the body; and
a processing device communicating with the first driving assembly and the angle sensor.
The processing device may be configured to perform operations including:
obtaining the angle of inclination of the body from the angle sensor; and
causing an operation state of the first driving assembly to be adjusted based on the angle of inclination, so as to control a movement state of the body under the angle of inclination.
In some embodiments, the mobile medical device may include a controller configured to control the processing device to initiate or terminate the adjustment of the operation state of the first driving assembly.
In some embodiments, the controller may include a force sensor configured to detect a force exerted on the body by a user and control, based on the detected force, the processing device to initiate or terminate the adjustment of the operation state of the first driving assembly.
In some embodiments, the force sensor may include a strain sensor.
In some embodiments, the controller may include a switch, and the processing device may be controlled to initiate or terminate the adjustment of the operation state of the first driving assembly through turning on or turning off the switch.
In some embodiments, the mobile medical device may include a speed sensor configured to detect a speed of the body, and the processing device may be configured to perform the operations including:
causing the operation state of the driving assembly to be adjusted based further on the speed of the body.
In some embodiments, the processing device may be configured to perform the operations including:
obtaining the speed of the body from the speed sensor;
determining whether the speed of the body is equal to 0;
in response to determining that the speed of the body is not equal to 0, determining a second additional force based on the speed, wherein the second additional may be configured to cause the speed of the body to reduce to 0;
causing the operation state of the driving assembly to be adjusted based on the second additional force, so as to reduce the speed of the body to 0;
determining a first additional force based on the angle of inclination of the body; and
causing the operation state of the first driving assembly to be adjusted based on the first additional force so as to make the body keep still under the angle of inclination.
In some embodiments, the mobile medical device may include a deceleration component configured to slow down the body based on the operation state of the first driving assembly.
In some embodiments, the body may include:
an X-ray generator configured to emit X-rays; and
an X-ray detector configured to detect the X-rays emitted from the X-ray generator and disposed opposite to the X-ray generator.
In some embodiments, the mobile medical device may include a shield component configured to prevent transmission of the X-rays outside the mobile medical device; and
a second driving assembly configured to drive the shield component to move.
In some embodiments, the second driving assembly may be configured to drive the shield component to move along at least one of a length direction, a width direction, or a height direction of the body.
In some embodiments, the wheel assembly may include:
a wheel;
a frame connected with the body of the mobile medical device, the frame including a wall;
a supporting component movably connected with the frame, a first end of the supporting component being connected with the wheel, a second end of the supporting component being connected with a first end of a pull rod, a second end of the pull rod extending into the frame through the wall;
a first buffer component disposed inside the frame and between the second end of the pull rod and the wall; and
a second buffer component disposed inside the frame and between the second end of the pull rod and the wall, an elastic coefficient of the first buffer component being greater than an elastic coefficient of the second buffer component.
In some embodiments, the mobile medical device may include a suspension component of which a first end is movably connected with the body and a second end is connected with the wheel assembly; and
a third buffer component of which a first end is movably connected with the suspension component and a second end is connected with the body.
In some embodiments, at least a portion of the first driving assembly may be disposed inside the wheel assembly.
According to yet another aspect of the present disclosure, a method performed by one or more processors may include one or more of the following operations: obtaining an angle of inclination of a mobile medical device from an angle sensor disposed on the mobile medical device; and causing an operation state of a driving assembly of the mobile medical device to be adjusted based on the angle of inclination, so as to control a movement state of the mobile medical device under the angle of inclination.
According to yet another aspect of the present disclosure, a system may include:
an obtaining module configured to obtain an angle of inclination of a mobile medical device from an angle sensor disposed on the mobile medical device; and
an adjustment module configured to cause an operation state of a driving assembly of the mobile medical device to be adjusted based on the angle of inclination, so as to control a movement state of the mobile medical device under the angle of inclination.
According to yet another aspect of the present disclosure, a non-transitory computer readable medium may comprise at least one set of instructions. The at least one set of instructions may be executed by one or more processors of a computer server. The one or more processors may perform a method including:
obtaining an angle of inclination of a mobile medical device from an angle sensor disposed on the mobile medical device; and
causing an operation state of a driving assembly of the mobile medical device to be adjusted based on the angle of inclination, so as to control a movement state of the mobile medical device under the angle of inclination.
Additional features will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following and the accompanying drawings or may be learned by production or operation of the examples. The features of the present disclosure may be realized and attained by practice or use of various aspects of the methodologies, instrumentalities, and combinations set forth in the detailed examples discussed below.
BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure is further described in terms of exemplary embodiments. These exemplary embodiments are described in detail with reference to the drawings. These embodiments are non-limiting exemplary embodiments, in which like reference numerals represent similar structures throughout the several views of the drawings, and wherein:
FIG. 1 is a schematic diagram illustrating an exemplary medical system according to some embodiments of the present disclosure;
FIGs. 2A and 2B are schematic diagrams illustrating an exemplary mobile medical device according to some embodiments of the present disclosure;
FIG. 3 is a schematic diagram illustrating an exemplary wheel assembly according to some embodiments of the present disclosure;
FIGs. 4 and 5 are schematic diagrams illustrating an exemplary wheel assembly according to some embodiments of the present disclosure;
FIGs. 6 and 7 are schematic diagrams illustrating an exemplary mobile medical device according to some embodiments of the present disclosure;
FIG. 8 is a schematic diagram illustrating an exemplary mobile medical device according to some embodiments of the present disclosure;
FIG. 9 is a schematic diagram illustrating an exemplary mobile medical device according to some embodiments of the present disclosure;
FIG. 10 is a block diagram illustrating an exemplary mobile medical device 1000 according to some embodiments of the present disclosure;
FIG. 11 is a flowchart illustrating an exemplary process for adjusting a movement state of a mobile medical device according to some embodiments of the present disclosure;
FIG. 12 is a schematic diagram of an exemplary force condition of a mobile medical device according to some embodiments of the present disclosure;
FIG. 13 is a block diagram illustrating an exemplary mobile medical device according to some embodiments of the present disclosure;
FIG. 14 is a block diagram illustrating an exemplary mobile medical device according to some embodiments of the present disclosure;
FIG. 15 is a flowchart illustrating an exemplary process for adjusting a movement state of a mobile medical device according to some embodiments of the present disclosure;
FIG. 16 is a block diagram illustrating an exemplary mobile medical device 1600 according to some embodiments of the present disclosure;
FIG. 17 is a schematic block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure; and
FIG. 18 is a schematic diagram illustrating exemplary hardware and/or software components of a computing device according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant disclosure. However, it should be apparent to those skilled in the art that the present disclosure may be practiced without such details. In other instances, well- known methods, procedures, systems, components, and/or circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present disclosure. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present disclosure is not limited to the embodiments shown, but to be accorded the widest scope consistent with the claims.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a, ” “an, ” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise, ” “comprises, ” and/or “comprising, ” “include, ” “includes, ” and/or “including, ” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It will be understood that the term “system, ” “unit, ” “module, ” and/or “block” used herein are one method to distinguish different components, elements, parts, section or assembly of different level in ascending order. However, the terms may be displaced by another expression if they achieve the same purpose.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. In the present disclosure, unless otherwise expressly specified, the terms “equip, ” “install, ” “mount, ” “connect, ” “couple, ” “fix, ” etc., should be understood in a broad sense, for example, it may be a fixed connection, a non-detachable connection (e.g., a welding connection, a flange connection, a rivet connection, or an adhesive connection, or the like, or any combination thereof) , a detachable connection (apin connection, a key connection,  or a threaded connection, or the like, or any combination thereof) , integrated into a whole, a mechanical connection, an electrical connection, directly connected, or indirectly connected via an intermediate medium, an internal connection of two elements, or an interconnection of two elements. For those skilled in the art, the specific meanings of the above terms in the present disclosure may be understood according to specific circumstances.
In the present disclosure, spatial reference terms such as “center, ” “middle, ” “end, ” “longitudinal, ” “transverse, ” “length, ” “width, ” “thickness, ” “height, ” “upper, ” “lower, ” “front, ” “back, ” “rear, ” “left, ” “right, ” “vertical, ” “horizontal, ” “top, ” “bottom, ” “inner, ” “outer, ” “inside, ” “outside, ” “clockwise, ” “counterclockwise, ” “axial, ” “radial, ” “circumferential, ” etc., indicate, in a relative sense, an orientation or positional relationship between two or more elements, assemblies, devices, or systems based on an orientation or positional relationship as shown in the drawings, and are only for the convenience and simplicity of description, rather than indicating or implying that the elements, assemblies, devices, or systems in the present disclosure have a particular orientation when the disclosed system, or a portion thereof, is in operation, or are constructed and operated in a particular orientation, and therefore should not be understood as a limitation of the present disclosure.
In the present disclosure, unless expressly stated otherwise, a first feature being “above” or “below” a second feature may be that the first feature and the second feature are in direct contact, or the first feature and the second feature may be in indirect contact via an intermediate medium. In some embodiments, the first feature being “above” or “on” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply mean that a horizontal height of the first feature is higher than a horizontal height of the second feature. The first feature being “below” or “underneath” the second feature may mean that the first feature is directly below or obliquely below the second feature, or it may simply mean that a horizontal height of the first feature is smaller than a  horizontal height of the second feature.
It will be understood that, although the terms “first, ” “second, ” “third, ” etc., may be used herein to distinguish one element from another. For example, a first element may be termed a second element, and similarly, a second element may be termed a first element, without departing from the scope of exemplary embodiments of the present disclosure.
These and other features, and characteristics of the present disclosure, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, may become more apparent upon consideration of the following description with reference to the accompanying drawings, all of which form a part of this disclosure. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended to limit the scope of the present disclosure. It is understood that the drawings are not to scale.
An aspect of the present disclosure provides a mobile medical device including a wheel assembly that has a shock absorption function. The wheel assembly may include a buffer assembly. The buffer assembly may include a first buffer component and a second buffer component. An elastic coefficient of the first buffer component may be larger than an elastic coefficient of the second buffer component. A natural length of the first buffer component may be shorter than a natural length of the second buffer component. With the combination of the first buffer component and the second component, the buffer range may be improved.
In addition, an elastic component may be used to realize position limitation, which avoid rigid impact.
Another aspect of the present disclosure provides a mobile medical device including a suspension component and a buffer component that are configured to absorbing shock of wheels of the mobile medical device, thereby ensuring that the wheels always keep in contact with the road.
Yet another aspect of the present disclosure provides a mobile medical device including a driving assembly at least a portion of which is disposed inside at least one wheel of the mobile medical device, which is equivalent to that the mobile medical device is equipped with a hub motor. Therefore, the internal space of the mobile medical device may be saved and the compactness of the mobile medical device may be improved.
Yet another aspect of the present disclosure provides a mobile medical device having a function of automatically adjusting the movement statement of the mobile medical device. When the mobile medical device is located on a slope, a processing device of the mobile medical device may obtain an inclination angle of the mobile medical device from an angle sensor disposed on the mobile medical device. The processing device may determine, based on the inclination angle, an adjustment force configured to make the mobile medical device achieve a state of force balance, thereby making the mobile medical device stop on the slope. In this way, the mobile medical device is able to stop on a slope without applying an external force to the mobile medical device by a user or using a brake device.
FIG. 1 is a schematic diagram illustrating an exemplary medical system 100 according to some embodiments of the present disclosure. As illustrated, the medical system 100 may include a mobile medical device 110, a network 120, a terminal 130, a processing device 140, and a storage device 150. The components of the medical system 100 may be connected in one or more of various ways. Merely by way of example, as illustrated in FIG. 1, the mobile medical device 110 may be connected to the processing device 140 through the network 120. As another example, the mobile medical device 110 may be connected to the processing device 140 directly (as indicated by the bi-directional arrow in dotted lines linking the mobile medical device 110 and the processing device 140) . As a further example, the storage device 150 may be connected to the processing device 140 directly or through the network 120. As still a further example, a terminal device  (e.g., 131, 132, 133, etc. ) may be connected to the processing device 140 directly (as indicated by the bi-directional arrow in dotted lines linking the terminal 130 and the processing device 140) or through the network 120.
The mobile medical device 110 may be configured to scan and/or treat an object. In the present disclosure, “subject” and “object” are used interchangeably. Merely by way of example, the object may include a patient, a man-made object, etc. As another example, the object may include a specific portion, organ, and/or tissue of a patient. For example, the object may include head, brain, neck, body, shoulder, arm, thorax, cardiac, stomach, blood vessel, soft tissue, knee, feet, or the like, or any combination thereof.
In some embodiments, the mobile medical device 110 may be movable to a certain location. For example, when a patient is inconvenient to move, the mobile medical device 110 may be moved to the position the patient is located to perform imaging and/or treatment on the patient. In some embodiments, the mobile medical device 110 may include a mobile digital radiography (DR) device, a mobile digital subtraction angiography (DSA) device, a mobile C-arm device, etc.
The network 120 may include any suitable network that can facilitate the exchange of information and/or data for the medical system 100. In some embodiments, one or more components of the medical system 100 (e.g., the mobile medical device 110, the terminal 130, the processing device 140, or the storage device 150) may communicate information and/or data with one or more other components of the medical system 100 via the network 120. For example, the processing device 140 may obtain imaging data from the mobile medical device 110 via the network 120. As another example, the processing device 140 may obtain signals detected by one or more sensors in the mobile medical device 110 via the network 120. In some embodiments, the network 120 may be any type of wired or wireless network, or a combination thereof.
The terminal 130 may include a mobile device 131, a tablet computer 132, a  laptop computer 133, or the like, or any combination thereof. In some embodiments, the mobile device 131 may include a smart home device, a wearable device, a smart mobile device, a virtual reality device, an augmented reality device, or the like, or any combination thereof. In some embodiments, the terminal 130 may remotely operate the mobile medical device 110 and/or the processing device 140. In some embodiments, the terminal 130 may operate the mobile medical device 110 and/or the processing device 140 via a wireless connection. In some embodiments, the terminal 130 may receive information and/or instructions inputted by a user, and send the received information and/or instructions to the mobile medical device 110 or to the processing device 140 via the network 120. In some embodiments, the terminal 130 may receive data and/or information from the processing device 140. In some embodiments, the terminal 130 may be part of the processing device 140. In some embodiments, the terminal 130 may be omitted.
The processing device 140 may process data and/or information obtained from the mobile medical device 110, the terminal 130, and/or the storage device 150. For example, the processing device 140 may obtain imaging data from the storage device 150 or the mobile medical device 110 and generate one or more images based on the imaging data. As another example, the processing device 140 may obtain signals detected by one or more sensors in the mobile medical device 110 via the network 120 and control a movement state of the mobile medical device 110 based on the signals. In some embodiments, the processing device 140 may be a single server, or a server group. The server group may be centralized or distributed. In some embodiments, the processing device 140 may be local or remote. In some embodiments, the processing device 140 may be implemented on a cloud platform. In some embodiments, the processing device 140 may be integrated into the mobile medical device 110.
The storage device 150 may store data and/or instructions. In some embodiments, the storage device 150 may store data obtained from the mobile  medical device 110, the terminal 130 and/or the processing device 140. For example, the storage device 150 may store one or more images. In some embodiments, the storage device 150 may store data and/or instructions that the processing device 140 may execute or use to perform exemplary methods described in the present disclosure. For example, the storage device 150 may store instructions that the processing device 140 may execute to control the movement state of the mobile medical device 110. In some embodiments, the storage device 150 may include a mass storage device, a removable storage device, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof. In some embodiments, the storage device 150 may be implemented on a cloud platform.
In some embodiments, the storage device 150 may be connected to the network 120 to communicate with one or more components of the medical system 100 (e.g., the mobile medical device 110, the processing device 140, the terminal 130, etc. ) . One or more components of the medical system 100 may access the data or instructions stored in the storage device 150 via the network 120. In some embodiments, the storage device 150 may be part of the processing device 140.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIGs. 2A and 2B are schematic diagrams illustrating an exemplary mobile medical device 200 according to some embodiments of the present disclosure. In some embodiments, the mobile medical device 110 in the medical system 100 may be implemented based on the mobile medical device 200.
In the present disclosure, the X axis, the Y axis, and the Z axis shown in FIGs. 2A and 2B may form an orthogonal coordinate system. The X axis and the Z  axis shown in FIGs. 2A and 2B may be horizontal, and the Y axis may be vertical. As illustrated, the positive X-direction along the X axis may be from the back to the front of the mobile medical device 200; the positive Z-direction along the Z axis shown in FIG. 2A may be from the right side to the left side of the mobile medical device 200 seen from the direction facing the back of the mobile medical device 200; the positive Y-direction along the Y axis shown in FIG. 2A may be from the lower part to the upper part of the mobile medical device 200. FIG. 2B is a schematic diagram illustrating the mobile medical device 200 seen from the negative Z direction.
In some embodiments, the mobile medical device 200 may include a body and a wheel assembly configured to rotate to drive the body to move. In some embodiments, the body may include a functional component configured to perform a function (e.g., imaging and/or treatment) of the mobile medical device 200 and a carrier 203 configured to support the functional component. In some embodiments, the functional component may include an imaging component and/or a treatment component. For example, as shown in FIGs. 2A and 2B, the functional component may be an imaging component including an X-ray generator 204 and an X-ray detector (not shown) . The X-ray generator 204 may be configured to emit X-rays. The X-ray detector may be configured to detect the X-rays emitted from the X-ray generator 204 and disposed opposite to the X-ray generator 204.
In some embodiments, the X-ray generator 204 may be a single X-ray source or an array X-ray source including a plurality of X-ray sources. In some embodiments, the X-ray generator 204 may be an X-ray source including a hot cathode tube, or an X-ray source including a cold cathode field emission tube. When the X-ray source is an X-ray source including a cold-cathode field emission tube and an array X-ray source, the array X-ray source may be an area array X-ray source or a linear array X-ray source, or an X-ray source including a linear array and an area array.
In some embodiments, the X-ray detector may be a flat-panel detector or a curved detector. The X-ray detector may also be a detector of other forms. In some embodiments, the X-ray detector and the X-ray generator 204 may be disposed opposite to each other, so that the X-rays emitted by the X-ray generator 204 can be received by the X-ray detector.
In some embodiments, the X-ray generator 204 and the X-ray detector may be disposed on the carrier 203 to be supported by the carrier 203. The installation way of the X-ray generator 204 and the X-ray detector on the carrier 203 may include a non-detachable way, such as a welding connection, a flange connection, a rivet connection, or an adhesive connection, or the like, or any combination thereof. In some embodiments, the installation way of the X-ray generator 204 and the X-ray detector on the carrier 203 may include a detachable way, such as a pin connection, a key connection, or a threaded connection, or the like, or any combination thereof. The installation way may also be other connection methods, which may not specifically be limited in the embodiment.
In some embodiments, the functional component may include other imaging and/or treatment component. For example, the imaging component may include a single modality imaging device and/or a multi-modality imaging device. The single modality imaging device may include, for example, a computed tomography (CT) device, a magnetic resonance imaging (MRI) device, a positron emission tomography (PET) device, a single photon emission computed tomography (SPECT) , etc. The multi-modality imaging device may include, for example, an MRI-CT device, a PET-MRI device, an SPECT-MRI device, a DSA-MRI device, a CT-PET device, etc. As another example, the treatment component may include a linear accelerator, a cyclotron, a synchrotron, etc., configured to perform a radio therapy on a subject. The treatment device may include an accelerator of species of particles including, for example, photons, electrons, protons, or heavy ions.
In some embodiments, since the functional component is installed on the  carrier 203 of the mobile medical device 200, the functional component may be moved in different wards, floors, or buildings according to different needs of different patients to perform scanning and/or treatment on patients who are inconvenient to move, so that patients may be diagnosed and/or treated quickly using the mobile medical device 200.
In some embodiments, the wheel assembly may be disposed on a chassis of the carrier 203 to drive the carrier 203 to move. In some embodiments, the wheel assembly may include at least one wheel. In some embodiments, the wheel assembly may include a plurality of wheels, e.g., at least two wheels, at least four wheels, etc. For example, as shown in FIGs. 2A and 2B, the wheel assembly may include four wheels, such as a first pair of wheels 201 (e.g. two rear wheels) and a second pair of wheels 202 (e.g., two front wheels) .
In some embodiments, the mobile medical device 200 may include a first driving assembly configured to drive the wheel assembly to rotate as so to drive the mobile medical device 200 to move. In some embodiments, the first driving assembly may be in connection with the wheel assembly to drive the wheel assembly to rotate.
In some embodiments, the mobile medical device 200 may include an adjustment component and a lock component 207. The adjustment component may be configured to adjust the position of the X-ray generator 204. The lock component 207 may be configured to lock the adjustment component to fix the position of the X-ray generator 204.
In some embodiments, the adjustment component may include a telescopic arm 206 and a column 205. The telescopic arm 206 may be configured to adjust a first distance (e.g., a horizontal distance along the X direction shown in FIG. 2A) and an angle between the X-ray generator 204 and an object. The column 205 may be configured to adjust a second distance (e.g., a vertical distance along the Y direction shown in FIG. 2A) between the X-ray generator 204 and the object.
In some embodiments, the column 205 may be disposed on the carrier 203. The telescopic arm 206 may be connected with the column 205. The X-ray generator 204 may be connected with the telescopic arm 206. In some embodiments, the length of the telescopic arm 206 may be adjustable along the X direction, and the X-ray generator 204 may move along the X direction with the adjustment of the length of the telescopic arm 206. Alternatively or additionally, the X-ray generator 204 may move along the X direction independently of the telescopic arm 206, e.g., move along a rail on the telescopic arm 206. In some embodiments, the horizontal distance between the X-ray generator 204 and the object may be adjusted by adjusting the length of the telescopic arm 206 along the X direction, and/or adjusting the position of the X-ray generator 204 along the telescopic arm 206.
In some embodiments, the length of the column 205 may be adjustable along the Y direction, and the telescopic arm 206 may move along the Y direction with the adjustment of the length of the column 205, so that the X-ray generator 204 may move along the Y direction with the telescopic arm 206. Alternatively or additionally, the telescopic arm 206 may move along the Y direction independently of the column 205, e.g., move along a rail on the column 205, so that the X-ray generator 204 may move along the Y direction with the telescopic arm 206. In some embodiments, the vertical distance between the X-ray generator 204 and the object may be adjusted by adjusting the position of the telescopic arm 206 along the column 205, and/or adjusting the length of the column 205 along the Y direction. Alternatively or additionally, the telescopic arm 206 may move to be at an angle with the column 205, so as to adjust the vertical distance between the X-ray generator 204 and the object. For example, as shown in FIGs. 2A and 2B, the telescopic arm 206 may be at an angle of 90 degrees with the column 205. The telescopic arm 206 may move to be at an angle less than 90 degrees with the column 205, so as to reduce the vertical distance between the X-ray generator 204 and the object. The  telescopic arm 206 may move to be at an angle greater than 90 degrees with the column 205, so as to increase the vertical distance between the X-ray generator 204 and the object. In some embodiments, the vertical distance between the X-ray generator 204 and the object may be adjusted by adjusting the position of the telescopic arm 206 along the column 205, adjusting the length of the column 205 along the Y direction, adjusting the angle between the telescopic arm 206 and the column 205, or the like, or any combination thereof.
In some embodiments, the column 205 may be rotatable around the Y axis, and the telescopic arm 206 may rotate with the column 205, so that the X-ray generator 204 may rotate around the Y axis with the telescopic arm 206. Alternatively or additionally, the telescopic arm 206 may rotate around the Y axis independently of the column 205, e.g., move along a rail on the column 205, so that the X-ray generator 204 may rotate around the Y axis with the telescopic arm 206. In some embodiments, the angle between the X-ray generator 204 and the object may be adjusted by rotating, relative to the column 205, the telescopic arm 206 around the Y axis, and/or rotating the column 205 around the Y axis.
For example, as shown in FIGs. 2A and 2B, when a user (e.g., a doctor, a technician, an engineer, etc. ) uses the mobile medical device 200 to examine an object (e.g., a patient) , after the object is properly located on an examination table, the user may move the mobile medical device 200 to a position near the examination table to scan the object. The X-ray generator 204 may be adjusted to a target projection position through the column 205 and/or the telescopic arm 206 so that the X-rays are delivered to a region of interest (ROI) of the object. In some embodiments, when the X-ray generator 204 moves to the target projection position, in order to ensure that the mobile medical device 200 may not block the user’s sight under the condition that the ROI of the object is able to be imaged, the position of the X-ray generator 204 may be further adjusted by adjusting at least one of the horizontal distance, the angle, and the vertical distance between the X-ray generator  204 and the object. The position of the X-ray generator 204 may be adjusted by adjusting (e.g., by a controller) the column 205 and/or the telescopic arm 206, which may ensure that the mobile medical device 200 does not block the user’s sight under the condition that the ROI of the object is able to be imaged, thereby enabling the mobile medical device 200 to be adapted to scan patients at different positions.
When the adjustment of the position of the X-ray generator 204 through the column 205 and/or the telescopic arm 206 is done, the column 205 and the telescopic arm 206 may be locked by a fixing piece (not shown) and the lock component 207, which is conducive to keep the vertical distance, angle, and horizontal distance between the X-ray generator 204 and the object remain to be unchanged, thereby fixing the position of the X-ray generator 204. The X-ray generator 204 and the X-ray detector then may be turned on, so that the X-ray generator 204 and the X-ray detector are in the working state. The X-ray detector may receive the X-rays that are emitted from the X-ray generator 204 and pass through the object, and convert the light signals into electrical signals. An analog digital converter (ADC) may convert the electrical signals into digital signals. A processing device (e.g., the processing device 140 in FIG. 1) may generate one or more images of the object based on the digital signals.
In some embodiments, the mobile medical device 200 may include a display 208 configured to display an interactive interface of the mobile medical device 200. In some embodiments, a user may adjust the column 205 and/or the telescopic arm 206 through the interactive interface. In some embodiments, a user may turn on or turn off the X-ray generator 204 and the X-ray detector through the interactive interface. In some embodiments, a user may input one or more imaging parameters through the interactive interface.
In some embodiments, the mobile medical device 200 may include a second driving assembly and a shield component (not shown) . The second driving assembly and the shield component may be disposed on the carrier 203. The  shield component may be configured to prevent transmission of the X-rays outside the mobile medical device 200. The second driving assembly may be configured to drive the shield component to move along at least one of a length direction (e.g., the X direction) , a width direction (e.g., the Z direction) , or a height direction (e.g., the Y direction) of the mobile medical device 200. For example, the second driving assembly may adjust the position and/or the size of the shield component along the Y direction. As another example, the second driving assembly may adjust the position and/or the size of the shield component along the X direction and/or the Z direction. Merely by way of example, the second driving assembly may drive the shield component to move along the X direction and the Z direction to surround the mobile medical device 200. In some embodiments, the shield component may include a shield board or a shield curtain.
In some embodiments, the second driving assembly may be connected to the shield component to drive the shield component to move. In some embodiments, the connection way between the second driving assembly and the shield component may be an electrical connection. In some embodiments, the second driving assembly may be the same as or different from the first driving assembly. For example, the first driving assembly and the second driving assembly may be combined into a single driving assembly configured to drive the wheel assembly and the shield component.
In some embodiments, the shape of the shield component may be determined according to the actual situation, for example, the shape of the shield component may be square, rectangular, or circular. In some embodiments, the number (count) of the shield components may be determined according to the actual situation, for example, the number (count) of the shield components may be 1, 2, 3, or the like. Taking two shield components as an example, the two shield components may be arranged along the X direction, the Y direction, or the Z direction. In some embodiments, the two shield components may be arranged in a  same plane, in parallel, or at an angle with each other. The two shield components may also be arranged in other forms, which may not be specifically limited in the embodiment.
In some embodiments, the height of the shield component may be equal to the height of the mobile medical device 200. In some embodiments, the height of the shield component may be different from the height of the mobile medical device 200, for example, the height of the shield component may be smaller or larger than the height of the mobile medical component 200. In some embodiments, the longest length of the shield component may be determined according to the actual situation. For example, the longest length of the shield component may be equal to or slightly longer than the length or width of the mobile medical device 200. As another example, the longest length of the shield component may be equal to or slightly longer than the circumference of the mobile medical device 200.
Merely by way of example, before the mobile medical device 200 takes images of a target patient, e.g., before the X-ray generator 204 emits X-rays to the target patient, the second driving assembly may be turned on in advance, and the shield component may be driven by the second driving assembly to move to surround the X-ray generator 204 and X-ray detector to prevent transmission of the X-rays outside the mobile medical device 200, thereby isolating X-rays from medical staff and other patients, and avoiding X-rays from harming the health of the medical staff and other patients.
After the mobile medical device 200 takes images of the target patient, the shield component may be controlled to reset, e.g., the shield component may be restored to the original position to avoid the shield component affecting the flexible movement of the mobile medical device 200. In some embodiments, the shield component may be restored to the original position, which may also reduce the probability of the shield component being damaged during the movement of the mobile medical device 200, and prolong the life of the shield component.
In summary, the mobile medical device 200 may include a second driving assembly and a shield component. The second driving assembly and the shield component may be disposed on the carrier 203, and the second driving assembly may be connected to the shield component to drive the shield component to move. Since the second driving assembly on the mobile medical device 200 may drive the shield component to prevent transmission of the X-rays outside the mobile medical device 200, the shield component may prevent the X-rays emitted by the X-ray generator 204 from damaging the medical staff and other patients, and further protect the health of the medical staff and other patients.
In some embodiments, the mobile medical device 200 may include a handle (not shown in FIGs. 2A and 2B) for a user to hold to push the mobile medical device 200 to move. The handle may be disposed on the carrier 203.
In some embodiments, the mobile medical device 200 may include a fixing component 209 configured to fix the position of the mobile medical device 200 to prevent the mobile medical device 200 from moving during operation (e.g., imaging or treatment) .
For example, the fixing component 209 may include a height-adjustable support foot. The support foot may be arranged at the bottom of the carrier 203. When the position of the mobile medical device 200 on the ground needs to be fixed, the carrier 203 may be raised by the support foot so that the wheels assembly may be lifted off the ground, and the carrier 203 may be supported on the ground by the support foot, thereby preventing the mobile medical device 200 from moving.
In some embodiments, an end (e.g., a top end) of the support foot may be connected with the carrier 203 to support the carrier 203. For example, the top end of the support foot may be in threaded connection with the carrier 203, and the height of the support foot protruding from the bottom of the carrier 203 may be adjusted by adjusting the size of the support foot screwed into the carrier 203.
In some embodiments, the height of the support foot may also be  automatically adjusted. For example, the support foot may be a linear motor fixed at the bottom of the carrier 203, and an end (e.g., a lower end) of an output rod of the linear motor may abut on the ground. The wheel assembly may be in contact with the ground or lifted off the ground by adjusting the length of the output rod of the linear motor.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 3 is a diagram illustrating an exemplary wheel assembly 300 according to some embodiments of the present disclosure. In some embodiments, the wheel assembly illustrated in the mobile medical device 200 in FIG. 2A may be implemented based on the wheel assembly 300. For example, at least one of the wheels of the mobile medical device 200 may be implemented based on the wheel assembly 300.
As shown in FIG. 3, the wheel assembly 300 may include a frame 310, a wheel 320, a supporting component 330, a rotation rod 340, a stop component 350, and a buffer component 360.
In some embodiments, the frame 310 may be connected to the bottom of the carrier 203 of the mobile medical device 200 to support the carrier 203. For example, the frame 310 may include a connection component 311. The connection component 311 may be connected with (e.g., in threaded connection with) the carrier 203 of the mobile medical device 200. In some embodiments, the frame 310 may include one or more walls. For example, as shown in FIG. 3, the frame 310 may include a first wall (e.g., a top wall) 312, a second wall (e.g., a bottom wall) 313, and third walls (e.g., two side walls) 314. The first wall 312, the second wall 313, and the third walls 314 may form an accommodation space. The connection component  311 may be mounted on the first wall 312. In some embodiments, the wheel 320 may be located between the two side walls 314, and the side walls of the wheel 320 may face the two side walls 314.
In some embodiments, the stop component 350 may be disposed on one of the one or more walls of the frame 310, for example, an inner side of the side wall 314. The stop component 350 may be configured to limit the position of the supporting component 330.
In some embodiments, the buffer component 360 may be disposed in the frame 310 (e.g., the accommodation space of the frame 310) . The buffer component 360 may include one or more springs.
In some embodiments, a first end of the supporting component 330 may be connected with the wheel 320, and a second end of the supporting component 330 may be connected with a first end (e.g., a lower end) of a pull rod 370. A second end (e.g., an upper end) of the pull rod 370 may extend into the frame 310 through the bottom wall 313. In some embodiments, the pull rod 370 may go through the buffer component 360. In some embodiments, a nut 380 may be screwed onto the pull rod 370. The buffer component 360 may be disposed between the bottom wall 313 and the nut 380 so that the buffer component 360 may be compressed by the nut 380. In some embodiments, the supporting component 330 may be moveably connected with the frame 310. For example, as shown in FIG. 3, the supporting component 330 may be moveably connected with the frame 310 through a rotation rod 340 so that the supporting component 330 is rotatable relative to the frame 310. In some embodiments, the connection (e.g., the rotation rod 340) between the supporting component 330 and the frame 310 may be located between the first end and the second end of the supporting component 330, for example, in the middle position between the first end and the second end of the supporting component 330.
In some embodiments, when the wheel assembly 300 is installed on the mobile medical device 200, under the action of the gravity of the body of the mobile  medical device 200, the wheel 320 may move upward from the ground. The upward movement of the wheel 320 may drive the supporting component 330 to rotate anticlockwise around the rotation rod 340, and the second end of the supporting component 330 may move downward. The pull rod 370 may move downward with the second end of the supporting component 330, thereby compressing the buffer component 360 using the nut 380. Under the action of the compressed buffer component 360's own restoring force, the pull rod 370 may move upward. The second end of the supporting component 330 may move upward with the pull rod 370, thereby driving the wheel 320 to move downward until the wheel 320 falls on the ground. For the wheel 320, the upward supporting force of the ground may be balanced with the gravity of the wheel 320 and the downward push force of the compressed buffer component 360, so that the wheel 320 is in a balanced state.
When the wheel 320 encounters an obstacle during movement of the mobile medical device 200, the wheel 320 may move upward and drive the supporting component 330 to rotate relative to the rotation rod 340 until the supporting component 330 hits the stop component 350. During the process, the second end of the supporting component 330 may move downward. The pull rod 370 may move downward with the second end of the supporting component 330, thereby compressing the buffer component 360 using the nut 380. Under the action of the elastic force of the buffer component 360, the shock absorption of the wheel assembly 300 may be realized. However, the rigid impact between the supporting component 330 and the stop component 350 may lead to a problem of a large impact acceleration.
When the wheel 320 encounters a concave ground during movement of the mobile medical device 200, the wheel 320 may lose the support of the ground. Under the action of the compressed buffer component 360's downward push force and/or the gravity of the wheel 320, the wheel 320 may move downward to fall on the  concave ground. Because of the buffer component 360, the wheel 320 may be guaranteed not to hang in the air within a certain buffer range. However, in order to ensure the buffer effect, the buffer component 360 may be with a large elastic coefficient, e.g., a rigid spring, resulting a relatively small buffer range. For example, due to the large elastic coefficient of the buffer component 360, the strain of the buffer component 360 in the balanced state may be small. In this condition, if the depth of the concave ground is large than the compressed strain of the buffer component 360 in the balanced state, when the buffer component 360 has returned to its natural length, the wheel 320 may still hang in the air. Without the push force of the buffer component 360, the wheel 320 may not continue moving downward based only on the gravity of the wheel 320.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIGs. 4 and 5 are diagrams illustrating an exemplary wheel assembly 400 according to some embodiments of the present disclosure. In some embodiments, the wheel assembly illustrated in the mobile medical device 200 in FIG. 2A may be implemented based on the wheel assembly 400. For example, at least one of the wheels of the mobile medical device 200 may be implemented based on the wheel assembly 400. Compared with the wheel assembly 300, the wheel assembly 400 may be an improved wheel assembly.
In some embodiments, as shown in FIGs. 4 and 5, the wheel assembly 400 may include a wheel 401, a frame 402, a buffer assembly, and a supporting component 404. The buffer assembly may include a first buffer component 403 and a second buffer component 405.
In some embodiments, the frame 402 may be connected to the bottom of the  carrier 203 of the mobile medical device 200 to support the carrier 203. For example, the frame 402 may include a connection component 4021 disposed on the top of the frame 402. The connection component 4021 may be connected with (e.g., in threaded connection with) the carrier 203 of the mobile medical device 200. In some embodiments, the frame 402 may include one or more walls. For example, as shown in FIG. 4, the frame 402 may include a first wall (e.g., a top wall) 4024, a second wall (e.g., a bottom wall) 4023, and third walls (e.g., two side walls) 4022. The connection component 4021 may be disposed on the top wall 4024. In some embodiments, the wheel 401 may be located between the two side walls 4022, and the side walls of the wheel 401 may face the two side walls 4022.
In some embodiments, the supporting component 404 may be movably connected with the frame 402. A first end of the supporting component 404 may be connected with the wheel 401. A second end of the supporting component 404 may be connected with a first end (e.g., a lower end) of a pull rod 406. A second end (e.g., an upper end) of the pull rod 406 may extend into the frame 402 through the bottom wall 4023.
In some embodiments, the first buffer component 403 may be disposed inside the frame 402. The first buffer component 403 may be disposed between the second end (e.g., the upper end) of the pull rod 406 and the bottom wall 4023. In some embodiments, the pull rod 406 may go through the first buffer component 403.
In some embodiments, the second buffer component 405 may be disposed inside the frame 402. The second buffer component 405 may be disposed between the second end (e.g., the upper end) of the pull rod 406 and the bottom wall 4023. In some embodiments, an elastic coefficient of the first buffer component 403 may be greater than an elastic coefficient of the second buffer component 405. In some embodiments, a natural length of the first buffer component 403 may be shorter than a natural length of the second buffer component 405.
In some embodiments, the frame 402 may provide an accommodation space  for the first buffer component 403 and the second buffer component 405. For example, the top wall 4024, the side walls 4022, and the bottom wall 4023 may form the accommodation space. The frame 402 may support the first buffer component 403 and the second buffer component 405.
In some embodiments, the supporting component 404 may be moveably connected with the frame 402. For example, as shown in FIG. 4, the supporting component 404 may be moveably connected with the frame 402 through a rotation rod 410 so that the supporting component 404 is rotatable relative to the frame 402. In some embodiments, the connection (e.g., the rotation rod 410) between the supporting component 404 and the frame 402 may be located between the first end and the second end of the supporting component 404, for example, in the middle position between the first end and the second end of the supporting component 404. In some embodiments, the supporting component 404 may be movably connected to the two side walls 4022 of the frame 402.
In some embodiments, the first end of the supporting component 404 may be fixedly connected to the rotation center of the wheel 401 through a central rod 409. When the first end and the second end of the supporting component 404 are subjected to unequal forces, the supporting component 404 may rotate relative to the frame 402.
In some embodiments, the supporting component 404 may include a supporting plate 4042 and a connecting rod 4041. A first end of the supporting plate 4042 may be connected to the wheel 401 through the central rod 409, and a second end of the supporting plate 4042 may be connected to the pull rod 406 through the connecting rod 4041. In some embodiments, the supporting plate 4042 may include two strip-shaped plates. The two strip-shaped plates may be arranged in parallel. The wheel 401 may be located between the two trip-shaped plates, and the two side walls of the wheel 401 may face the two trip-shaped plates, respectively, which may ensure the balance effect of the wheel 401. The connecting rod 4041  may be arranged between the two trip-shaped plates, and the connecting rod 4041 may be arranged to connect the two trip-shaped plates into an integral structure.
In some embodiments, the first end (e.g., the lower end) of the pull rod 406 may be configured with a fixing ring 4061. The connecting rod 4041 may go through the fixing ring 4061. In some embodiments, an interference fit may be preferable between the connecting rod 4041 and the fixing ring 4061 to ensure the fixing effect between the pull rod 406 and the connecting rod 4041. Alternatively, the first end (e.g., the lower end) of the pull rod 406 may go through the connecting rod 4041 and be fixed with the connecting rod 4041 using a nut.
In some embodiments, the second end (e.g., the upper end) of the pull rod 406 may be configured with a thread, and a fixing nut 411 may be screwed onto the second end of the pull rod 406 through the thread. The fixing nut 411 may be configured to prevent the first buffer component 403 from separating from the pull rod 406.
In some embodiments, the wheel assembly 400 may include a mobile plate 407. The mobile plate 407 may be movable relative to the bottom wall 4023. The second end of the pull rod 406 may go through the mobile plate 407. The first buffer component 403 and the second buffer component 405 may be disposed between the mobile plate 407 and the bottom wall 4023. The mobile plate 407 may ensure the fixing effect of the first buffer component 403 and/or the second buffer component 405, and play a role of an intermediate connection between the first buffer component 403 (or the second buffer component 405) and the pull rod 406 to ensure the balance effect.
In some embodiments, the first buffer component 403 and the second buffer component 405 may be disposed between the second end of the pull rod 406 and the bottom wall 4023 so that when the pull rod 406 move downward the first buffer component 403 and the second buffer component 405 are able to be compressed, and when the pull rod 406 move upward the first buffer component 403 and the  second buffer component 405 are able to restore but are not stretched.
In some embodiments, at least one of a first end (e.g., a lower end) and a second end (e.g., an upper end) of the first buffer component 403 may relate to abutting connection to avoid the stretch of the first buffer component 403, thereby ensuring the buffer effect of the first buffer component 403. The abutting connection may refer to a connection of being able to be in contact but not fixed with each other.
In some embodiments, the first end and the second end of the first buffer component 403 may abut on the bottom wall 4023 and the second end of the pull rod 406, respectively. In some embodiments, the first end of the first buffer component 403 may abut on the bottom wall 4023, and the second end of the first buffer component 403 may be connected with the second end of the pull rod 406. In some embodiments, the first end of the first buffer component 403 may be connected with the bottom wall 4023, and the second end of the first buffer component 403 may abut on the second end of the pull rod 406. When the first buffer component 403 is in its natural length, if the pull rod 406 moves upward, the first end of the first buffer component 403 may separate from the bottom wall 4023, and/or when the first buffer component 403 is in its natural length, if the pull rod 406 moves upward, the second end of the first buffer component 403 may separate from the second end of the pull rod 406, which avoids the stretch of the first buffer component 403, thereby ensuring the buffer effect.
In some embodiments, the first buffer component 403 may abut on or be connected with the second end of the pull rod 406 through the mobile plate 407 or the fixing nut 411. For example, the first buffer component 403 may abut on or be connected with the mobile plate 407 or the fixing nut 411.
In some embodiments, at least one of a first end (e.g., a lower end) and a second end (e.g., an upper end) of the second buffer component 405 may relate to abutting connection to avoid the stretch of the second buffer component 405, thereby  ensuring the buffer effect of the second buffer component 405. In some embodiments, the first end and the second end of the second buffer component 405 may abut on the bottom wall 4023 and the second end of the pull rod 406, respectively. In some embodiments, the first end of the second buffer component 405 may abut on the bottom wall 4023, and the second end of the second buffer component 405 may be connected with the second end of the pull rod 406. In some embodiments, the first end of the second buffer component 405 may be connected with the bottom wall 4023, and the second end of the second buffer component 405 may abut on the second end of the pull rod 406. When the second buffer component 405 is in its natural length, if the pull rod 406 moves upward, the first end of the second buffer component 405 may separate from the bottom wall 4023, and/or when the second buffer component 405 is in its natural length, if the pull rod 406 moves upward, the second end of the second buffer component 405 may separate from the second end of the pull rod 406, which avoids the stretch of the second buffer component 405, thereby ensuring the buffer effect.
In some embodiments, the second buffer component 405 may abut on or be connected with the second end of the pull rod 406 through the mobile plate 407 or the fixing nut 411. For example, the second buffer component 405 may abut on or be connected with the mobile plate 407 or the fixing nut 411.
In some embodiments, the first buffer component 403 may include one or more first springs. The pull rod 406 may pass through the first spring, and the pull rod 406 may be used for installation of the first spring. A first end (e.g., a lower end) of the first spring may abut on or be connected with the bottom wall 4023, and a second end (e.g., an upper end) of the first spring may abut on or be connected with the mobile plate 407 or the fixing nut 411. In some embodiments, the bottom wall 4023 of the frame 402 may be configured to limit the position of the supporting component 404. The mobile plate 407 and the bottom wall 4023 together may play a role of limiting the length of the first spring.
In some embodiments, the first buffer component 403 may include two or more buffer units (e.g., two or more first springs) , and the two or more buffer units may be symmetrically arranged around the second buffer component 405 to ensure the balance effect on the bottom wall 4023 of the frame 402. In some embodiments, the count of the buffer units may be preferably two, and the two buffer units may be symmetrically arranged on two sides of the second buffer component 405. The embodiment may not limit the count of the buffer units. As long as the count of the buffer units is an even number, it may be within the scope of the embodiment.
Merely by way of example, as shown in FIG. 4, the first buffer component 403 and the second buffer component 405 may be disposed between the mobile plate 407 and the bottom wall 4023. The pull rod 406 may pass through the first buffer component 403 and the mobile plate 407. The fixing nut 411 may be screwed onto the second end of the first buffer component 406 and above the mobile plate 407, e.g., abut on be connected with the top surface of the mobile plate 407. With the downward movement of the pull rod 406, the mobile plate 407 may compress the first buffer component 403 and/or the second buffer component 405.
In some embodiments, when the wheel assembly 400 is installed on the mobile medical device 200, under the action of the gravity of the body of the mobile medical device 200, the wheel 401 may move upward from the ground. The upward movement of the wheel 401 may drive the supporting component 402 to rotate anticlockwise around the rotation rod 410, and the second end of the supporting component 402 may move downward. The pull rod 406 may move downward with the second end of the supporting component 402, thereby compressing the first buffer component 403 and the second buffer component 405 using the mobile plate 407 or the fixing nut 411. Under the action of the restoring force of the compressed first buffer component 403 and second buffer component 405, the pull rod 406 may move upward. The second end of the supporting  component 404 may move upward with the pull rod 406, thereby driving the wheel 401 to move downward until the wheel 401 falls on the ground. For the wheel 401, the upward supporting force of the ground may be balanced with the gravity of the wheel 401, and the downward push force of the compressed first buffer component 403 and second buffer component 405, so that the wheel 401 is in a balanced state.
When the wheel 401 encounters an obstacle during movement of the mobile medical device 200, the wheel 401 may move upward and drive the supporting component 404 to rotate relative to the rotation rod 410. During the process, the second end of the supporting component 404 may move downward. The pull rod 406 may move downward with the second end of the supporting component 404, thereby compressing the first buffer component 403 and the second buffer component 405 using the mobile plate 407 or the fixing nut 411. Under the action of the elastic force of the first buffer component 403 and the second buffer component 405, the shock absorption of the wheel assembly 400 may be realized.
When the wheel 401 encounters a concave ground during movement of the mobile medical device 200, the wheel 401 may lose the support of the ground. Under the action of the downward push force of the compressed first buffer component 403 and second buffer component 405, and the gravity of the wheel 401, the wheel 401 may move downward to fall on the concave ground. Because of the first buffer component 403 and the second buffer component 405, the wheel 401 may be guaranteed not to hang in the air within a certain buffer range. Because the natural length of the first buffer component 403 is shorter than the natural length of the second buffer component 405, when the first buffer component 403 has returned to its natural length, the second buffer component 405 has not returned to its natural length, and the second buffer component 405 may continue pushing the wheel 401 until the wheel 401 falls on the ground.
The second buffer component 405 may be added on the basis of the first buffer component 403, the purpose of which is that when there is a hole in the  ground, when the first buffer component 403 has returned to its natural length, the second buffer component 405 may continue driving the wheel 401 to fall on the ground, which improves the buffer range of the wheel assembly 400.
For the wheel assembly 400, the elastic coefficient of the second buffer component 405 may be smaller than that of the first buffer component 403, and/or the natural length of the first buffer component 403 may be shorter than the natural length of the second buffer component 405. The first buffer component 403 and the second buffer component 405 may be combined to perform shock absorption on the wheel 401. In some embodiments, when the wheel 401 encounters an obstacle, the shock absorption may be mainly performed based on the elastic force of the first buffer component 403. When there is a hole in the ground, the second buffer component 405 may be configured to achieve a larger buffer adjustment range and avoid the wheel 401 hanging in the air.
In some embodiments, as shown in FIG. 5, the wheel assembly 400 may include a buffer block 408. In some embodiments, a second end (e.g., an upper end) of the buffer block 408 may be connected to the mobile plate 407, and the mobile plate 407 may play a role of fixing and installing the buffer block 408. In some embodiments, the elastic coefficient of the buffer block 408 may be greater than that of the first buffer component 403. The buffer block 408 may be made of elastic material, such as rubber, foamed plastic, sponge, or the buffer block 408 may include a spring.
When the wheel 401 encounters an obstacle during movement of the mobile medical device 200, the wheel 401 may move upward and drive the supporting component 404 to rotate relative to the rotation rod 410. During the process, the second end of the supporting component 404 may move downward. The pull rod 406 may move downward with the second end of the supporting component 404 until the buffer block 408 hits the bottom wall 4023. The buffer block 408 may improve the rigid position limitation way in the wheel assembly 300, so that when the buffer  block 408 hits the bottom wall 4023, there may be a buffer to reduce or avoid the rigid impact.
In some embodiments, the natural length of the buffer block 408 may be smaller than the natural length of the first buffer component 403 and the second buffer component 405. In some embodiments, when the wheel assembly 400 is in a balanced state, the first buffer component 403 and the second buffer component 405 may be in a compressed state. The restoring force of the first buffer component 403 and the second buffer component 405 may pull the second end of the supporting component 404 and push the wheel 401 to fall on the ground, so the buffer block 408 may be separated from the bottom wall 4023, and the buffer block 408 and the bottom wall 4023 may be kept at a certain distance to ensure that there is a certain impact space between the buffer block 408 and the bottom wall 4023. If the natural length of the buffer block 408 is not less than the natural lengths of the first buffer component 403 and the second buffer component 405, in the balanced state, the buffer block 408 may abut against the bottom wall 4023, which may affect the stability of the balanced state.
In some embodiments, the second buffer component 405 may include one or more second springs. The buffer block 408 may pass through the second spring. The buffer block 408 may play a role of installing the second spring. In some embodiments, the buffer block 408 may not pass through the second buffer component 405. For example, the buffer block 408 may be disposed next to the second buffer component 405. In some embodiments, a first end (e.g., a lower end) of the second spring may abut against or be connected with the bottom wall 4023. In some embodiments, a second end (e.g., an upper end) of the second spring may abut against or be connected with the mobile plate 407. The mobile plate 407 and the bottom wall 4023 of the frame 402 together may play a role of limiting the length of the second spring.
Alternatively, a first end (e.g., a lower end) of the buffer block 408 may be  connected to the bottom wall 4023. When the wheel 401 encounters an obstacle during movement of the mobile medical device 200, the wheel 401 may move upward and drive the supporting component 404 to rotate relative to the rotation rod 410. During the process, the second end of the supporting component 404 may move downward. The pull rod 406 may move downward with the second end of the supporting component 404 until the mobile plate 407 hits the buffer block 408 on the bottom wall 4023.
When the wheel 401 encounters a concave ground during movement of the mobile medical device 200, the second end of the supporting component 404 may be pulled upward until the supporting component 404 (e.g., the supporting plate 4042) hits the frame 402 (e.g., the bottom wall 4023) . In this process, there may also be a problem of rigid impact. In some embodiments, an elastic member may be disposed between the supporting component 404 and the bottom wall 4023 to solve the problem of rigid impact.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
Since the ground in hospital may not be flat, and there are even car speed bumps or height differences on the ground, which causes a large vibration during the movement of the mobile medical device. Therefore, the impact on the mobile medical device may be relatively large, which may easily cause damage to the mobile medical device and reduce the life of the mobile medical device. The present disclosure provides a mobile medical device with a shock absorption device to solve the problems mentioned above.
FIGs. 6 and 7 are diagrams illustrating an exemplary mobile medical device 600 according to some embodiments of the present disclosure. In some  embodiments, the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 600.
As shown in FIGs. 6 and 7, the mobile medical device 600 may include a body and a wheel assembly 630. The body may include a carrier 620 and a functional component 610. The functional component 610, the carrier 620 and the wheel assembly 630 may be similar to the corresponding description illustrated in FIGs. 2-5, which will not be repeated here.
In order to reduce the vibration of the mobile medical device 600 during the movement, as shown in FIG. 7, in some embodiments, the mobile medical device 600 may further include a suspension component and a buffer component 640. The suspension component may be arranged on the carrier 620 and connected to the wheel assembly 630 to reduce the vibration of the wheel assembly 630. In some embodiments, the suspension component may include an independent suspension or a dependent suspension.
In some embodiments, the suspension component may include a floating member 650. A first end of the floating member 650 may be movably connected with (e.g., hinged with) the carrier 620, and a second end of the floating member 650 may be installed on the wheel assembly 630. A first end (e.g., a lower end) of the buffer component 640 may be movably connected with (e.g., hinged with) the second end of the floating member 650 that the wheel assembly 630 is installed on, and a second end (e.g., an upper end) of the buffer component 640 may be fixedly installed on the carrier 620, which may absorb the vibration of the wheel assembly 630.
In some embodiments, the first end (e.g., the inner end) of the floating member 650 may be movably connected with (e.g., hinged with) the carrier 620, so that the second end (e.g., the outer end) of the floating member 650 may have a certain space for up and down movement, and the wheel assembly 630 may be installed on the second end of the floating member 650, so that the wheel assembly  630 may move up and down, thereby ensuring the wheel assembly 630 to adapt to the flatness of the road and always be in contact with the road to avoid the bumpy movement of the mobile medical device 600.
The buffer component 640 may buffer the shock transmitted from the wheel assembly 630 to the carrier 620, thereby achieving the purpose of shock absorption for the mobile medical device 600, reducing the impact on the functional component 610, reducing the probability of damage to the functional component 610, and prolong the life of the mobile medical device 600.
In order to make the structure of the mobile medical device 600 more compact and reduce the weight of the mobile medical device 600, and make the mobile medical device 600 lighter, a mounting cavity 670 may be disposed in the carrier 620. The buffer component 640 and the suspension component may be installed in the mounting cavity 670 to improve the space utilization of the mobile medical device 600. In some embodiments, an auxiliary device of the mobile medical device 600, medicines, and instruments that a user needs to carry may also be placed in the mounting cavity 670 to facilitate the use of the user.
In order to facilitate the installation of the suspension component and the wheel assembly 630, the suspension component may include a mounting plate 680 vertically arranged in the mounting cavity 670. The wheel assembly 630 may be rotatably arranged on a first side (e.g., an outer side) of the mounting plate 680 facing the outside of the carrier 620, and the second end of the floating member 650 may be connected to a second side (e.g., an inner side) of the mounting plate 680 facing the inside of the carrier 620.
In some embodiments, the mobile medical device 600 may further include a driving assembly 660 connected with the wheel assembly 630 to drive the wheel assembly 630 to rotate.
In some embodiments, the driving assembly 660 may be arranged on the second side of the mounting plate 680 facing the inside of the carrier 620. An  output shaft 661 of the driving assembly 660 may pass through the mounting plate 680, so that the wheel assembly 630 may be driven to rotate by the rotation of the output shaft 661 of the driving assembly 660.
In some embodiments, at least a portion of the driving assembly 660 may be disposed inside the wheel assembly 630 as illustrated in FIGs. 8 and 9, so that more space in the carrier 620 may be saved for accommodating the suspension component and the buffer component 640, which may make the volume of the mobile medical device 600 smaller.
In some embodiments, the mounting plate 680 may also play a role in shielding the floating member 650 to make the appearance of the mobile medical device 600 more beautiful.
In order to further improve the floating flexibility of the mounting plate 680 so that the wheel assembly 630 installed on the mounting plate 680 may be in contact with the road, the floating member 650 may be movably connected with (e.g., hinged with) the mounting plate 680. The inner end of the floating member 650 may be hinged with the carrier 620, and the outer end of the floating member 650 may be hinged with the mounting plate 680 to further increase the movable range of the mounting plate 680, thereby increasing the floating range of the wheel assembly 630, so that the wheel assembly 630 may better adapt to the road surface and always keep the wheel assembly 630 in contact with the road surface.
In some embodiments, the floating member 650 may include a supporting member. A first end (e.g., an inner end) of the supporting member may be movably connected with (e.g., hinged with) the carrier 620, and a second end (e.g., an outer end) of the supporting member may be movably connected with (e.g., hinged with) the mounting plate 680 to realize the floating of the mounting plate 680. The supporting member may include a rod extending substantially along a rotation axial direction of the wheel assembly 630.
In order to make the floating member 650 more stable, the supporting  member may include a first supporting member 651 and a second supporting member 652. The first supporting member 651 and the second supporting member 652 may be arranged up and down. A first end (e.g., an inner end) of the first supporting member 651 and a first end (e.g., an inner end) of the second supporting member 652 may be movably connected with (e.g., hinged with) the carrier 620, and a second end (e.g., an outer end) of the first supporting member 651 and a second end (e.g., an outer end) of the second supporting member 652 may be movably connected with (e.g., hinged with) the mounting plate 680. For example, the outer end of the first supporting member 651 may be movably connected with a first end (e.g., an upper end) of the mounting plate 680, and the outer end of the second supporting member 652 may be movably connected with a second end (e.g., a lower end) of the mounting plate 680, so that the first supporting member 651, the second supporting member 652, and the mounting plate 680 may form a four-bar linkage mechanism.
In some embodiments, the driving assembly 660 may be arranged between the first supporting member 651 and the second supporting member 652, so that the structure of the mobile medical device 600 may be more compact, and the force acting on the mounting plate 680 may be more uniform.
In some embodiments, the suspension component may include a plurality of suspension units (e.g., a plurality of floating member 650) . The wheel assembly 630 may include a plurality of wheels each of which corresponds to at least one of the plurality of suspension units. For example, the wheel assembly 630 may include a plurality of wheels at least one of which may be provided with a floating member 650 and a buffer component 640, so that each wheel may have different floating and buffering effects according to the conditions of the road the wheels encounter, thereby improving the buffering effect of the mobile medical device 600. In some embodiments, the wheel assembly 630, the suspension component, and the buffer component 640 on the left and right sides of the mobile medical device 600  may be symmetrically arranged, so that the structure of the mobile medical device 600 may be more stable.
In some embodiments, the wheels on the same side may share a same suspension component and/or a same buffer component 640.
In some embodiments, the mobile medical device 600 may include a guide component (not shown) configured to limit a moving direction of the wheel assembly 630 relative to the carrier 620. The structural stability of the mobile medical device 600 may be improved, the collision and vibration caused by the deviation of the moving direction of the wheel assembly 630 may be reduced by limiting the moving direction of the wheel assembly 630.
In some embodiments, the guide component may include a sliding rail and a sliding block configured to move along the sliding rail and connected with the suspension component. In some embodiments, the sliding rail may be disposed vertically. In some embodiments, the sliding rail may be arranged in the mounting cavity 670 of the carrier 620, and the sliding block may be fixedly connected to the mounting plate 680.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 8 is a diagram illustrating an exemplary mobile medical device 800 according to some embodiments of the present disclosure. In some embodiments, the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 800.
In some embodiments, the mobile medical device 800 may include a carrier 840 and a wheel assembly 810 that are similar to the corresponding description illustrated in FIGs. 2-7, which will not be repeated here. The wheel assembly 810  may include a plurality of wheels at least one of which is connected with a driving assembly configured to drive the wheel to rotate. In some embodiments, the driving assembly may include a driven sprocket 820 and a motor 830. The driven sprocket 820 may be connected with the wheel assembly 810. The motor 830 may be configured to drive the driven sprocket 820 to rotate, so as to drive the wheel assembly 810 to rotate and perform the steering operation. In some embodiments, the motor 830 and the driven sprocket 820 may be disposed in the carrier 840.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 9 is a diagram illustrating an exemplary mobile medical device 900 according to some embodiments of the present disclosure. In some embodiments, the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 900.
In some embodiments, the mobile medical device 900 may include a carrier 940 and a wheel assembly 910 that are similar to the corresponding description illustrated in FIGs. 2-8, which will not be repeated here. The wheel assembly 910 may include a plurality of wheels at least one of which is connected with a driving assembly 920 configured to drive the wheel to rotate.
In some embodiments, at least a portion of the driving assembly 920 may be disposed inside the wheel assembly 910. As shown in FIG. 9, the driving assembly 920 may include a motor connected to the carrier 940. At least a portion of the motor may be installed inside the wheel assembly 910. The driving assembly 920 may be configured to drive the carrier 940 to move by driving the wheel assembly 910 to rotate. The wheel assembly 910 and the driving assembly 920 inside the wheel assembly 910 may form a hub motor.
In some embodiments, the wheel assembly 910 may include a plurality of wheels. In some embodiments, each of two of the plurality of wheels may be arranged with at least one driving component of the driving assembly 920. In some embodiments, when at least a portion of at least one driving component of the driving assembly 920 is arranged inside each wheel of a first pair (e.g., two front wheels) of the plurality of wheels, the front wheels may be used as the active rotating wheels to drive a second pair (e.g., two rear wheels) of the plurality of wheels to rotate, so as to drive the carrier 940 to move. In some embodiments, when at least a portion of at least one driving component of the driving assembly 920 is arranged inside each wheel of the rear wheels of the plurality of wheels, the rear wheels may be used as the active rotating wheels to drive the front wheels of the plurality of wheels to drive the carrier 940 to move. In some embodiments, when at least a portion of at least one driving component of the driving assembly 920 is arranged inside each of four wheel, the four wheel may be used as active rotating wheels to drive the carrier 940 to move.
In some embodiments, the driving assembly 920 in the mobile medical device 900 may be connected to the carrier 940 and installed inside the wheel assembly 910, which may be understood that the mobile medical device 900 is provided with a hub motor. Thus, the installation of the driven sprockets may be omitted and the installation of the motor inside the carrier 940 may be avoided, thereby saving the internal space of the mobile medical device 900, and improving the compactness of the mobile medical device 900, which may be conducive to the compact design of the mobile medical device 900 and improve the effect of flexible movement in a narrow aisle. In addition, the internal space of the mobile medical device 900 may be saved for installing other components, e.g., the suspension component and the buffer component illustrated in FIG. 7.
In some embodiments, the driving assembly 920 may include a stator, a rotor, and a rotating shaft. The stator may be sleeved on the rotating shaft. The  rotor may be configured to rotate relative to the stator. The rotating shaft may be connected to the carrier 940. In some embodiments, the rotating shaft may be connected to the carrier 940 through a fixing structure 930. For example, when the driving assembly 920 is in a working state, the rotor may be connected to and rotate around the rotating shaft. The stator and the rotating shaft may remain stationary relative to the carrier 940.
Compared with the mobile medical device 800, since at least a portion of the driving assembly 920 is installed inside the wheel assembly 910, which is equivalent that the mobile medical device 900 is equipped with a hub motor, the installation of the driven sprocket may be omitted and the installation of the motor inside the carrier 940 may be avoided, thereby saving the internal space of the mobile medical device 900, and improving the structural compactness of the mobile medical device 900. In this way, the problem that a driving assembly may occupy a large space in the carrier of the mobile medical device may be solved. To achieve the purpose of saving the internal space of the mobile medical device, it may be conducive to the realization of the compact design of the mobile medical device, and enables the mobile medical device to move flexibly in a narrow aisle.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
During the movement of a mobile medical device, a user usually applies force to the mobile medical device manually, and a driving assembly controls the mobile medical device to move after receiving the force applied by the user. However, when the mobile medical device is on a slope, if the user does not apply force to the mobile medical device, the mobile medical device may move downward along the slope, which may cause the mobile medical device to fail to stop on the  slope and bring unnecessary troubles. The present disclosure provides a mobile medical device having a function of automatic adjustment of a movement state of the mobile medical device.
FIG. 10 is a block diagram illustrating an exemplary mobile medical device 1000 according to some embodiments of the present disclosure. In some embodiments, the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 1000.
As shown in FIG. 10, the mobile medical device 1000 may include a carrier 1040, a driving assembly 1030, and a processing device 1020. The driving assembly 1030 may be mechanically connected with the carrier 1040 to drive the carrier 1040 to move. The driving assembly 1030 may be electrical connected with the processing device 1020. The carrier 1040 and the driving assembly 1030 may be similar to the corresponding description illustrated in FIGs. 2-9, which will not be repeated here. In some embodiments, the processing device 1020 may be similar to the processing device 140 in FIG. 1, which will not be repeated here.
In some embodiments, the processing device 1020 may be configured to cause an operation state of the driving assembly 1030 to be adjusted, so as to control a movement state of the mobile medical device 1000, e.g., slow down, speed up, or stop the mobile medical device 1000. For brevity, the description of the automatic adjustment of a movement state of a mobile medical device may take automatically stopping a mobile medical device on a slope as an example, which are merely some examples or implementations. For persons having ordinary skills in the art, the principle of automatically slowing down, speeding up, or stopping a mobile medical device on the horizontal ground or a slope may be similar, and the automatic adjustment of a movement state of a mobile medical device provided in the present disclosure may be applied to the scenarios of automatically slowing down, speeding up, and stopping a mobile medical device on the horizontal ground and a slope.
In some embodiments, the mobile medical device 1000 may include an angle sensor 1010 electrical connected to the processing device 1020. The angle sensor 1010 may be configured to detect an inclination angle of the mobile medical device 1000 (e.g., the carrier 1040) . The angle sensor 1010 may send the inclination angle to the processing device 1020. The processing device 1020 may be configured to cause an operation state of the driving assembly 1030 to be adjusted based on the angle of inclination, so as to control a movement state of the mobile medical device 1000, e.g., slow down, speed up, or stop the mobile medical device 1000.
In the embodiment, the processing device 1020, the driving assembly 1030, and the angle sensor 1010 may be arranged on the carrier 1040 (e.g., the bottom of the carrier 1040) to increase the stability of the mobile medical device 1000.
In some embodiments, in order to facilitate the movement of the carrier 1040, the bottom of the carrier 1040 may also be configured with a wheel assembly, which is similar to the corresponding description illustrated in FIGs. 2-9 and will not be repeated here.
In some embodiments, the angle sensor 1010 may include an inclinometer, an inclination switch, an electronic compass, a gyroscope, or the like, or any combination thereof. In some embodiments the driving assembly 1030 may include a two-phase motor, a three-phase motor, or other types of motors.
In some embodiments, when the mobile medical device 1000 moves on a road, the carrier 1040 of the mobile medical device 1000 may be determined as parallel to the road. When the mobile medical device 1000 moves on a slope, no matter the mobile medical device 1000 moves up or down, the angle sensor 1010 may detect an inclination angle of the carrier 1040 that is determined as the inclination angle of the slope, and then the angle sensor 1010 may send the detected inclination angle of the carrier 1040 to the processing device 1020.
In some embodiments, the mobile medical device 1000 may include a  storage device, for example, the storage device 150 in FIG. 1. In some embodiments, the mobile medical device 1000 may include gravity sensor configured to detect the gravity of the mobile medical device 1000 and send the gravity of the mobile medical device 1000 to the processing device 1020. In some embodiments, the gravity of the mobile medical device 100 may also be determined in advance, and stored in the storage device. The processing device 1020 may access the storage device to obtain the gravity of the mobile medical device 1000.
When the mobile medical device 1000 is on a slope, the processing device 1020 may receive the inclination angle of the carrier 1040 transmitted by the angle sensor 1010. After receiving the inclination angle of the carrier 1040 on the slope, the processing device 1020 may also obtain the gravity of the mobile medical device 1000 from the storage device or the gravity sensor, and determine a first additional force required to adjust the movement state of the mobile medical device 1000, e.g., stop the mobile medical device 1000 on the slope.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 11 is a flowchart illustrating an exemplary process for adjusting a movement state of a mobile medical device according to some embodiments of the present disclosure. In some embodiments, the process 1100 may be implemented in the mobile medical device 1000 illustrated in FIG. 10. For example, the process 1100 may be stored in a storage device of the mobile medical device 1000 as a form of instructions, and can be invoked and/or executed by the processing device 1020 (e.g., the processor 1810 illustrated in FIG. 18, or one or more modules in the processing device 1020 illustrated in FIG. 17) . The operations of the illustrated process 1100 presented below are intended to be illustrative. In some  embodiments, the process 1100 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 1100 as illustrated in FIG. 11 and described below is not intended to be limiting.
In 1110, the processing device 1020 may obtain an inclination angle of the carrier 1040 transmitted by the angle sensor 1010. In some embodiments, the processing device 1020 may also obtain the gravity of the mobile medical device 1000 from the storage device or the gravity sensor.
In 1120, the processing device 1020 may cause the operation state of the driving assembly 1030 to be adjusted based on the inclination angle, so as to control the movement state of the mobile medical device 1000 under the inclination angle. In some embodiments, the processing device 1020 may determine a first additional force based on the inclination angle, and cause the driving assembly 1030 to adjust the operation state based on the first additional force, so as to control the movement state of the mobile medical device 1000 under the inclination angle, e.g., control the mobile medical device 1000 to stop under the inclination angle (e.g., on a slope with the inclination angle) .
FIG. 12 is a schematic diagram of a force condition of the mobile medical device 1000 according to some embodiments of the present disclosure. As shown in FIG. 12, the inclination angle of the carrier 1040 on a slope 1220 may be represented as A, and the gravity of the mobile medical device 1000 may be represented to as G. If the mobile medical device 1000 is caused to stop on the slope 1220 without considering the frictional force, a first additional force T1 needs to be exerted on the mobile medical device 1000 to offset with the component force of the gravity G along the slope, so as to make the resultant force on the mobile medical device 1000 be zero. Two component forces of the gravity G of the mobile medical device 1000 may be represented as G1 and G2, respectively. G1 may refer to a first downward component force along the slope. G2 may refer to a  second downward component force vertical to the slope and G1. According to the basic principles of mechanics, G1 may be determined as G·cosA. The first additional force T1 may be equal to G1 and upward along the slope, that is, the first additional force T1=G·cosA.
In some embodiments, during the movement of the mobile medical device 1000, there may also be a friction force between the mobile medical device 1000 and the slope 1220. Assuming that the friction force is denoted as f, and the mobile medical device 1000 moves downwards, the friction force f may be an upward force along the slope. Assuming that the mobile medical device 1000 moves upward, the frictional force f may be a downward force along the slope. According to the same basic principles of mechanics mentioned above, e.g., making the resultant force equal to 0, the first additional force T1 may be determined as T1=G*cosA±f, and upward along the slope. In some embodiments, the frictional force f may be default or preset. In some embodiments, the frictional force f may be determined as f = μ×GsinA, wherein μ refers to a friction coefficient and may be default or preset.
In some embodiments, the mobile medical device 1000 may include a speed sensor and/or an acceleration sensor configured to detect an acceleration of the mobile medical device 1000 and electrically connected to the processing device 1020. The first additional force T1 may be determined as T1=ma and upward along the slope, wherein m refers to the mass of the mobile medical device 1000, and a refers to the acceleration of the mobile medical device 1000.
After determining the first additional force T1, the processing device 1020 may cause the operation state of the driving assembly 1030 to be adjusted according to T1. Specifically, the processing device 1020 may control the driving assembly 1030 to output a reverse torque according to T1, so that the torque output by the driving assembly 1030 may exert T1 that is upward along the slope on the mobile medical device 1000 to make the resultant force on the mobile medical device 1000 equal to 0, thereby achieving the control of the movement state of the mobile  medical device 1000 on the slope, that is, controlling the mobile medical device 1000 to stop on the slope.
In some embodiments, since the mobile medical device 1000 may detect the inclination angle on the slope through the angle sensor 1010, and the inclination angle may be transmitted to the processing device 1020 from the angle sensor 1010, the processing device 1020 may adjust the operation state of the driving assembly 1030 according to the inclination angle, thereby automatically controlling the movement state of the mobile medical device 1000, e.g., automatically controlling the mobile medical device 1000 to stop on the slope.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 13 is a block diagram illustrating an exemplary mobile medical device 1300 according to some embodiments of the present disclosure. In some embodiments, the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 1300. Compared with the mobile medical device 1000, the mobile medical device 1300 may further include a controller 1310 electrically connected to the processing device 1020. The controller 1310 may be configured to control the processing device 1020 to initiate or terminate the adjustment of the operation state of the driving assembly 1030 (e.g., initiate or terminate the process 1100 and/or the process 1500) .
In some embodiments, the controller 1310 may include a force sensor configured to detect a user's force exerted on the mobile medical device 1300 and control, based on the detection result, the processing device 1020 to initiate or terminate the adjustment of the operation state of the driving assembly 1030. In some embodiments, the force sensor may include one or more strain gauge sensors.
In some embodiments, the force sensor may include one strain gauge sensor, or a plurality of strain gauge sensors, for example, the force sensor may include two strain gauge sensors, three strain gauge sensors, or the like, which may not be specifically limited in the present disclosure. When the force sensor include one strain gage sensor, the force detected by the strain gage sensor may be directly used as the force exerted by the user on the mobile medical device 1300. When the force sensor includes a plurality of strain gage sensors, the force detected by the plurality of strain gauge sensors may be summed to obtain the force exerted by the user on the mobile medical device 1300.
In some embodiments, the controller 1310 may include a trigger switch. The trigger switch may be electrically connected to the processing device 1020 and configured to control the processing device 1020 to initiate or terminate the adjustment of the operation state of the driving assembly 1030. The trigger switch may directly control the processing device 1020 to control the processing device 1020 to initiate or terminate the adjustment of the operation state of the driving assembly 1030. The processing device 1020 may be controlled to initiate or terminate the adjustment of the operation state of the driving assembly 1030 through turning on or turning off the trigger switch. The automatic parking function may be turned off when the user needs to push the mobile medical device 1300, and the automatic parking function may be turned on when parking is required. The control process of turning on or turning off the parking function may be simple and straightforward.
In some embodiments, the mobile medical device 1300 may include a handle for the user to push or pull the mobile medical device 1300. The shape of the handle may be set according to the actual situation. In some embodiments, the force sensor may be installed on the handle, and the installation position may also be set according to the actual situation. For example, the force sensor may be arranged on the inner side of the handle or the outer side of the handle, or the like.  In summary, the force (e.g., thrust, pulling force, or the like) manually exerted on the mobile medical device 1300 by the user may be detected by the one or more strain gauge sensors, and then the one or more strain gauge sensors may transmit the detected force to the processing device 1020.
After the processing device 1020 obtains the user's force detected by the force sensor, the processing device 1020 may determine whether the force is 0, and determine whether to initiate terminate the adjustment the operation state of the driving assembly 1030 according to the determination result.
In some embodiments, in response to determining that the user's force is 0, the processing device 1020 may determine that the user does not exert any force on the mobile medical device 1300 currently. At this time, there may be only the gravity of the mobile medical device 1300, the supporting force of the ground, and the friction force exerted on the mobile medical device 1300. The function of the processing device 1020 to adjust the operation state of the driving assembly 1030 may be turned on. The processing device 1020 may determine the first additional force according to the basic principles of mechanics at this time, and then cause the driving assembly 1030 to reverse according to the first additional force. The driving assembly 1030 may output a reverse torque based on the first additional force to make the mobile medical device 1300 to stop on the slope.
In some embodiments, in response to determining that the user's force is not 0, the processing device 1020 may determine that the user exerts a force on the mobile medical device 1300 currently, then the function of the processing device 1020 to adjust the operation state of the driving assembly 1030 may not be turned on or be turned off. At this time, the user's external force may stop the mobile medical device 1300 from moving, so that there is no need to automatically control the mobile medical device 1300 to stop moving by the driving assembly 1030. When the user does not exert a force on the mobile medical device 1300 subsequently, the function of adjusting the operation state of the driving assembly 1030 may be turned on  again.
The controller 1310 may control the processing device 1020 to initiate terminate the adjustment of the operation state of the driving assembly 1030, so as to avoid the conflict caused by the function of pushing the mobile medical device 1300 via manpower and the function of the driving assembly 1030 to automatically drive the mobile medical device 1300 to stop. The two functions may be compatible and improve the scope of application of the mobile medical device. In addition, it may also prevent the processing device 1020 from blindly adjusting the operation state of the driving assembly 1030, causing the problem of disordered control functions of the mobile medical device, so that the operation state of the driving assembly 1030 may be accurately adjusted to achieve accurate control of parking of the mobile medical device 1300.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 14 is a block diagram illustrating an exemplary mobile medical device 1400 according to some embodiments of the present disclosure. In some embodiments, the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 1400. Compared with the mobile medical device 1000 and/or the mobile medical device 1300, the mobile medical device 1400 may further include a speed sensor 1410 electrically connected to the processing device 1020. The speed sensor 1410 may be configured to detect the speed and/or the acceleration of the mobile medical device 1400 and send the speed and/or the acceleration to the processing device 1020. The processing device 1020 may adjust the operation state of the driving assembly 1030 according to the speed and the inclination angle of the mobile medical device 1400 to control the mobile medical  device 1400 to stop on the slope.
In some embodiments, the speed sensor 1410 may be arranged on the carrier 1040. The speed sensor 1410 may include a passive sensor or an active sensor, which may not be specifically limited in the present disclosure. For example, the speed sensor 1410 may include a magnetic electrical sensor, a Hall sensor, or other types of speed sensors. The count of the speed sensors 106 may be one or multiple, which may not be specifically limited in the present disclosure.
Assuming that the speed sensor 1410 is a magnetic electrical sensor, the magnetic electrical sensor may be a passive sensor, which may output a frequency pulse proportional to the speed of the mobile medical device 1400 through a processing circuit electrically connected to the magnetic electrical sensor, so that the processing device 1020 may obtain the speed of the mobile medical device 1400. Assuming that the speed sensor 1410 is a Hall sensor, the Hall sensor may be an active sensor. The sensor's switch may be electrically connected to the processing circuit, and the output pulse frequency may be proportional to the speed of the mobile medical device 1400, so that the processing device 1020 may obtain the speed of the mobile medical device 1400.
During the movement of the mobile medical device 1400, the speed of the mobile medical device 1400 may be detected by the speed sensor 1410 on the mobile medical device 1400, so that the speed of the mobile medical device 1400 may be obtained. After the speed sensor 1410 obtains the speed of the mobile medical device 1400, the speed sensor 1410 may transmit the detected speed of the mobile medical device 1400 to the processing device 1020. After the processing device 1020 obtains the speed of the mobile medical device 1400, the processing device 1020 may determine whether the speed of the mobile medical device 1400 is 0, and adjust the operation state of the driving assembly 1030 according to the determination result.
In some embodiments, in response to determining that the speed of the  mobile medical device 1400 is not 0, the processing device 1020 may determine a reverse force the mobile medical device 1400 requires to decelerate from the current speed to 0. The processing device 1020 may use the determined reverse force to control the driving assembly 1030 to output a reverse torque, so that the mobile medical device 1400 may decelerates to 0 under the action of the reverse force.
After the mobile medical device 1400 decelerates to 0, the processing device 1020 may determine a first additional force to cause an operation state of the driving assembly 1030 to be adjusted based on the first additional force, so as to control the mobile medical device 1400 stop on the slope. In some embodiments, in response to determining that the speed of the mobile medical device 1400 is 0, the processing device 1020 may determine a first additional force to cause an operation state of the driving assembly 1030 to be adjusted based on the first additional force, so as to control the mobile medical device 1400 stop on the slope. Details regarding determining the first additional force may be found elsewhere in the present disclosure (e.g., the description in connection with FIG. 11 and FIG. 12) .
Since the processing device 1020 may obtain the speed of the mobile medical device 1400 through the speed sensor 1410, the processing device 1020 may accurately adjust the operation state of the driving assembly 1030 according to the speed of the mobile medical device 1400 and the inclination angle of the mobile medical device 1400, so as to ensure an accurate adjustment of the operation state of the driving assembly 1030, and further ensure the stability of the mobile medical device 1400 when stopping the mobile medical device 1400.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 15 is a flowchart illustrating an exemplary process for adjusting a  movement state of a mobile medical device according to some embodiments of the present disclosure. In some embodiments, the process 1500 may be implemented in the mobile medical device 1400 illustrated in FIG. 14. For example, the process 1500 may be stored in a storage device of the mobile medical device 1400 as a form of instructions, and can be invoked and/or executed by the processing device 1020 (e.g., the processor 1810 illustrated in FIG. 18, or one or more modules in the processing device 1020 illustrated in FIG. 17) . The operations of the illustrated process 1500 presented below are intended to be illustrative. In some embodiments, the process 1500 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 1500 as illustrated in FIG. 15 and described below is not intended to be limiting.
In 1510, the processing device 1020 may obtain a speed of the mobile medical device 1400 from the speed sensor 1410.
In 1520, the processing device 1020 may determine whether the speed is equal to 0. In response to determining that the speed is not equal to 0, the process 1500 may proceed to operation 1530, in which the processing device 1020 may determine a second additional force based on the speed.
In some embodiments, the processing device 1020 may determine a first acceleration configured to decelerate the mobile medical device 1400 to 0 based on v=a 1t, wherein v refers to the speed of the mobile medical device 1400, a 1 refers to the first acceleration, and t refers to the time during which the mobile medical device 1400 decelerates from v to 0. Therefore, in order to make the mobile medical device 1400 decelerates from v to 0, the resultant force on the mobile medical device 1400 may be F1=ma 1, wherein m refers to the mass of the mobile medical device 1400. The direction of F1 may be opposite to the direction of the speed of the mobile medical device 1400. In some embodiments, it is required that the mobile medical device 1400 quickly decelerates to 0. The time t may be default or preset,  e.g., 0.01s, 0.05s, 0.1s, 0.5s, 1s, 2s, 5s, etc.
In some embodiments, the processing device 1020 may obtain a current acceleration of the mobile medical device 1400 from the speed sensor 1410 or an acceleration sensor. Therefore, it may be understood that the current resultant force on the mobile medical device 1400 may be F2=ma 2, wherein a 2 refers to a second acceleration indicating the current acceleration of the mobile medical device 1400. In some embodiments, the direction of F2 may be the same as the direction of the speed of the mobile medical device 1400. The second additional force may be T2=F1+F2. The direction of the second additional force may be opposite to the direction of the speed.
In some embodiments, the direction of F2 may be the opposite to the direction of the speed of the mobile medical device 1400, for example, when the mobile medical device 1400 has a speed upward along a slope (e.g., the slope 1220) and is not subjected to an external force (e.g., from a user) . The second additional force may be T2=F1-F2. The direction of the second additional force may be opposite to the direction of the speed.
In 1540, the processing device 1020 may cause an operation state of the driving assembly 1030 to be adjusted based on the second additional force, so as to control the mobile medical device 1400 to decelerate to 0. In some embodiments, the processing device 1020 may control the driving assembly 1030 to output a reverse torque according to the second additional force, so that the torque output by the driving assembly 1030 may exert the second additional force that is opposite to the direction of the speed on the mobile medical device 1400, thereby control the mobile medical device 1400 to quickly decelerate to 0.
In 1550, the processing device 1020 may cause an operation state of the driving assembly 1030 to be adjusted, so as to control the mobile medical device 1400 to stop under the inclination angle. Details regarding operation 1550 may be found elsewhere in the present disclosure (e.g., the description in connection with  FIG. 11 and FIG. 12) .
In some embodiments, in response to determining that the speed is equal to 0, the process 1500 may proceed to operation 1550. For example, the processing device 1020 may determine whether the current acceleration of the mobile medical device 1400 is equal to 0. In response to determining that the current acceleration of the mobile medical device 1400 is equal to 0, which indicates that the mobile medical device 1400 is stationary currently, the processing device 1020 may cause the driving assembly 1030 to maintain the current operation state, so as to keep the stationary state of the mobile medical device 1400. In response to determining that the current acceleration of the mobile medical device 1400 is not equal to 0, the processing device 1020 may determine the first additional force T1 as T1=ma, wherein a refers to the current acceleration of the mobile medical device 1400.
In some embodiments, if the speed is downward along the slope, which may indicate that the first additional force is small to keep the mobile medical device 1400 still on the slope, the first additional force may be adjusted to be larger. In some embodiments, if the speed is upward along the slope, which may indicate that the first additional force is large to keep the mobile medical device 1400 still on the slope, the first additional force may be adjusted to be smaller. For example, the first additional force may be increased or decreased for a preset value in each iteration. The first additional force may also be increased or decreased in other ways.
In some embodiments, the processing device 1020 may repeat the process 1500 in real time, so as to realize real-time dynamic closed-loop control to make the mobile medical device 1400 automatically stop under the inclination angle.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 16 is a block diagram illustrating an exemplary mobile medical device 1600 according to some embodiments of the present disclosure. In some embodiments, the mobile medical device 200 in FIG. 2A may be implemented based on the mobile medical device 1600. Compared with the mobile medical device 1000, the mobile medical device 1300, and the mobile medical device 1400, the mobile medical device 1600 may further include a deceleration component 1610 installed on the carrier 1040 and electrically connected to the driving assembly 1030. The deceleration component 1610 may be configured to control the carrier 1040 to slow down according to the operation state of the driving assembly 1030.
In some embodiments, the connection between the deceleration component 1610 and the driving assembly 1030 may be an electrical connection. The deceleration component 1610 may include a parallel shaft helical gear reducer, a worm gear reducer, a bevel gear reducer, a planetary gear reducer, a cycloid reducer, a worm gear and worm reducer, a planetary friction type mechanical stepless speed changer, or the like, or any combination thereof. The deceleration component 1610 may also include other deceleration mechanisms, which may not be exhaustive herein.
In some embodiments, the deceleration component 1610 may include a low-speed and high-torque transmission device, which may cause the high-speed running power output by the driving assembly 1030 to be meshed with a large gear on the output shaft through a gear with a small count of teeth on the input shaft of the deceleration component 1610 to achieve the purpose of deceleration. The deceleration component 1610 may usually have large and small gears, and the ratio of the count of teeth of the large and small gears may be a transmission ratio. The transmission ratio may be determined according to the actual situation, which may not specifically be limited in the embodiment.
In some embodiments, when the processing device 1020 determines that the speed of the mobile medical device 1600 is not zero, the processing device 1020  may determine a second additional force required to make the mobile medical device 1600 decelerate from the current speed to zero. The processing device 1020 may control the driving assembly 1030 to output the second additional force. The driving assembly 1030 may output the second additional force to the deceleration component 1610, and the deceleration component 1610 may control, according to the second additional force and the transmission ratio, the mobile medical device 1600 to decelerate until the mobile medical device 1600 decelerates from the current speed to zero.
In some embodiments, since the driving assembly 1030 is connected to the deceleration component 1610, the deceleration of the mobile medical device 1600 may be controlled by the deceleration component 1610, which may quickly reduce the speed of the mobile medical device 1600, thereby shortening the overall parking time of the mobile medical device 1600.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 17 is a schematic block diagram illustrating an exemplary processing device 1700 according to some embodiments of the present disclosure. In some embodiments, the processing device 1700 may be implemented in the processing device 140 and/or the processing device 1020 in the form of software and/or hardware. The processing device 1700 may include an obtaining module 1710 and an adjustment module 1720.
The obtaining module 1710 may obtain an inclination angle of the carrier 1040 transmitted by the angle sensor 1010. In some embodiments, the processing device 1020 may also obtain the gravity of the mobile medical device 1000 from the storage device or the gravity sensor.
The adjustment module 1720 may cause the operation state of the driving assembly 1030 to be adjusted based on the inclination angle, so as to control the movement state of the mobile medical device 1000 under the inclination angle.
The modules in the processing device 1700 may be connected to or communicate with each other via a wired connection or a wireless connection. The wired connection may include a metal cable, an optical cable, a hybrid cable, or the like, or any combination thereof. The wireless connection may include a Local Area Network (LAN) , a Wide Area Network (WAN) , a Bluetooth, a ZigBee, a Near Field Communication (NFC) , or the like, or any combination thereof. Two or more of the modules may be combined as a single module, and any one of the modules may be divided into two or more units.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. For example, the processing device 1700 may further include a storage module (not shown in FIG. 17) . The storage module may be configured to store data generated during any process performed by any component of in the processing device 1700. As another example, each of the components of the processing device 1700 may include a storage device. Additionally or alternatively, the components of the processing device 1700 may share a common storage device.
FIG. 18 is a schematic diagram illustrating exemplary hardware and/or software components of a computing device on which the processing device 140 and/or the processing device 1020 may be implemented according to some embodiments of the present disclosure. As illustrated in FIG. 18, the computing device 1800 may include a processor 1810, a storage 1820, an input/output (I/O) 1830, and a communication port 1840.
The processor 1810 may execute computer instructions (program code) and perform functions of the processing device1800 in accordance with techniques described herein. The computer instructions may include routines, programs, objects, components, signals, data structures, procedures, modules, and functions, which perform particular functions described herein. In some embodiments, the processor 1810 may include a microcontroller, a microprocessor, a reduced instruction set computer (RISC) , an application specific integrated circuits (ASICs) , an application-specific instruction-set processor (ASIP) , a central processing unit (CPU) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a microcontroller unit, a digital signal processor (DSP) , a field programmable gate array (FPGA) , an advanced RISC machine (ARM) , a programmable logic device (PLD) , any circuit or processor capable of executing one or more functions, or the like, or any combinations thereof.
Merely for illustration purposes, only one processor is described in the computing device 1800. However, it should be noted that the computing device 1800 in the present disclosure may also include multiple processors, and thus operations of a method that are performed by one processor as described in the present disclosure may also be jointly or separately performed by the multiple processors. For example, if in the present disclosure the processor of the computing device 1800 executes both operations A and B, it should be understood that operations A and step B may also be performed by two different processors jointly or separately in the computing device 1800 (e.g., a first processor executes operation A and a second processor executes operation B, or the first and second processors jointly execute operations A and B) .
The storage 1820 may store data/information obtained from the mobile medical device 110, the terminal 130, the storage device 150, or any other component of the medical system 100. In some embodiments, the storage 1820 may include a mass storage device, a removable storage device, a volatile read-and- write memory, a read-only memory (ROM) , or the like, or any combination thereof. For example, the mass storage device may include a magnetic disk, an optical disk, a solid-state drive, etc. The removable storage device may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc. The volatile read-and-write memory may include a random access memory (RAM) . The RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc. The ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (PEROM) , an electrically erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc. In some embodiments, the storage 1820 may store one or more programs and/or instructions to perform exemplary methods described in the present disclosure.
The I/O 1830 may input or output signals, data, or information. In some embodiments, the I/O 1830 may enable user interaction with the processing device 1800. In some embodiments, the I/O 1830 may include an input device and an output device. Exemplary input devices may include a keyboard, a mouse, a touch screen, a microphone, a trackball, or the like, or a combination thereof. Exemplary output devices may include a display device, a loudspeaker, a printer, a projector, or the like, or a combination thereof. Exemplary display devices may include a liquid crystal display (LCD) , a light-emitting diode (LED) -based display, a flat panel display, a curved screen, a television device, a cathode ray tube (CRT) , or the like, or a combination thereof.
The communication port 1840 may be connected to a network (e.g., the network 120) to facilitate data communications. The communication port 1840 may establish connections between the processing device1800 and the mobile medical device 110, the terminal 130, or the storage device 150. The connection may be a wired connection, a wireless connection, or a combination of both that enables data  transmission and reception. The wired connection may include an electrical cable, an optical cable, a telephone wire, or the like, or any combination thereof. The wireless connection may include Bluetooth, Wi-Fi, WiMax, WLAN, ZigBee, mobile network (e.g., 3G, 4G, 5G, etc. ) , or the like, or a combination thereof. In some embodiments, the communication port 1840 may be a standardized communication port, such as RS232, RS485, etc. In some embodiments, the communication port 1840 may be a specially designed communication port. For example, the communication port 1840 may be designed in accordance with the digital imaging and communications in medicine (DICOM) protocol.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
Having thus described the basic concepts, it may be rather apparent to those skilled in the art after reading this detailed disclosure that the foregoing detailed disclosure is intended to be presented by way of example only and is not limiting. Various alterations, improvements, and modifications may occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested by this disclosure, and are within the spirit and scope of the exemplary embodiments of this disclosure.
Moreover, certain terminology has been used to describe embodiments of the present disclosure. For example, the terms “one embodiment, ” “an embodiment, ” and/or “some embodiments” mean that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Therefore, it is emphasized and should be appreciated that two or more references to “an embodiment” or “one embodiment” or “an alternative embodiment” in various portions of this specification  are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined as suitable in one or more embodiments of the present disclosure.
Further, it will be appreciated by one skilled in the art, aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ”
Furthermore, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes and methods to any order except as may be specified in the claims. Although the above disclosure discusses through various examples what is currently considered to be a variety of useful embodiments of the disclosure, it is to be understood that such detail is solely for that purpose, and that the appended claims are not limited to the disclosed embodiments, but, on the contrary, are intended to cover modifications and equivalent arrangements that are within the spirit and scope of the disclosed embodiments.
Similarly, it should be appreciated that in the foregoing description of embodiments of the present disclosure, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure aiding in the understanding of one or more of the various embodiments. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed subject matter requires more features than are expressly recited in each claim. Rather, claimed subject matter may lie in less than all features of a single foregoing disclosed embodiment.

Claims (49)

  1. A wheel assembly for a mobile medical device comprising:
    a wheel;
    a frame connected with a body of the mobile medical device, the frame including a wall;
    a supporting component movably connected with the frame, a first end of the supporting component being connected with the wheel, a second end of the supporting component being connected with a first end of a pull rod, a second end of the pull rod extending into the frame through the wall;
    a first buffer component disposed inside the frame and between the second end of the pull rod and the wall; and
    a second buffer component disposed inside the frame and between the second end of the pull rod and the wall, an elastic coefficient of the first buffer component being greater than an elastic coefficient of the second buffer component.
  2. The wheel assembly of claim 1, further comprising a mobile plate disposed inside the frame, the mobile plate being movable relative to the wall, the second end of the pull rod going through the mobile plate, the first buffer component and the second buffer component being disposed between the mobile plate and the wall.
  3. The wheel assembly of claim 2, wherein the first buffer component includes a first spring, the pull rod going through the first spring, at least one end of the first spring abutting the mobile plate or the wall.
  4. The wheel assembly of claim 2 or claim 3, wherein the second buffer component includes a second spring, at least one end of the second spring abutting the mobile plate or the wall.
  5. The wheel assembly of any one of claims 2-4, further comprising a buffer block connected with the mobile plate or the wall, an elastic coefficient of the buffer block being greater than the elastic coefficient of the first buffer component.
  6. The wheel assembly of claim 5, wherein a natural length of the buffer block is shorter than a natural length of the second spring.
  7. The wheel assembly of any one of claims 2-6, wherein a nut is screwed onto the pull rod and between the second end of the pull rod and the mobile plate.
  8. The wheel assembly of any one of claims 1-7, wherein the supporting component includes a supporting plate and a connecting rod, a first end of the supporting plate being connected with the wheel, and a second end of the supporting plate being connected with the pull rod through the connecting rod.
  9. The wheel assembly of any one of claims 1-8, wherein the first buffer component includes two or more buffer units that are disposed symmetrically relative to the second buffer component.
  10. The wheel assembly of any one of claims 1-9, wherein a natural length of the first buffer component is shorter than a natural length of the second buffer component.
  11. A mobile medical device, comprising a wheel assembly and a body, the wheel assembly including:
    a wheel;
    a frame connected with the body of the mobile medical device, the frame including a wall;
    a supporting component movably connected with the frame, a first end of the supporting component being connected with the wheel, a second end of the supporting component being connected with a first end of a pull rod, a second end of the pull rod extending into the frame through the wall;
    a first buffer component disposed inside the frame and between the second end of the pull rod and the wall; and
    a second buffer component disposed inside the frame and between the second end of the pull rod and the wall, an elastic coefficient of the first buffer component being greater than an elastic coefficient of the second buffer component.
  12. The mobile medical device of claim 11, wherein the mobile medical device includes a mobile digital radiography (DR) device, a mobile digital subtraction angiography (DSA) device, or a mobile C-arm device.
  13. A mobile medical device, comprising:
    a body;
    a wheel assembly;
    a suspension component of which a first end is movably connected with the body and a second end is connected with the wheel assembly; and
    a buffer component of which a first end is movably connected with the suspension component and a second end is connected with the body.
  14. The mobile medical device of claim 13, further comprising a mounting plate connected with the wheel assembly, the second end of the suspension component being connected with the wheel assembly through the mounting plate.
  15. The mobile medical device of claim 14, wherein the second end of the suspension component being movably connected with the mounting plate.
  16. The mobile medical device of claim 15, wherein the suspension component includes:
    a first supporting member of which a first end is movably connected with the body and a second end is movably connected with a first end of the mounting plate; and
    a second supporting member of which a first end is movably connected with the body and a second end is movably connected with a second end of the mounting plate.
  17. The mobile medical device of any one of claims 14-16, further comprising a driving assembly, the driving assembly being disposed on the mounting plate, the driving assembly being in connection with the wheel assembly to drive the wheel assembly to rotate.
  18. The mobile medical device of any one of claims 13-16, further comprising a driving assembly configured to drive the wheel assembly to rotate, the driving assembly being disposed within the wheel assembly.
  19. The mobile medical device of any one of claims 13-18, wherein the suspension component includes a plurality of suspension units, and the wheel assembly includes a plurality of wheels each of which corresponds to at least one of the plurality of suspension units.
  20. The mobile medical device of any one of claims 13-19, wherein the body includes a mounting cavity, the suspension component and the buffer component being disposed within the mounting cavity.
  21. The mobile medical device of any one of claims 13-20, further comprising a guide component configured to limit a moving direction of the wheel assembly relative to the body.
  22. The mobile medical device of claim 21, wherein the guide component includes:
    a sliding rail disposed on the body; and
    a sliding block that is configured to move along the sliding rail and connected with the suspension component.
  23. A mobile medical device, comprising:
    a body including a functional component and a carrier configured to support the functional component;
    a wheel assembly disposed on the carrier and configured to rotate to drive the carrier to move; and
    a driving assembly configured to drive the wheel assembly to rotate, at least a portion of the driving assembly being disposed inside the wheel assembly.
  24. The mobile medical device of claim 23, wherein
    the wheel assembly includes a plurality of wheels; and
    the driving assembly includes a plurality of driving components at least a portion of which is disposed inside two of the plurality of wheels.
  25. The mobile medical device of claim 24, wherein at least a portion of the plurality of driving components of the driving assembly is disposed inside a first pair of wheels of the plurality of wheels.
  26. The mobile medical device of claim 24, wherein at least a portion of the  plurality of driving components of the driving assembly is disposed inside a second pair of wheels of the plurality of wheels.
  27. The mobile medical device of claim 23, wherein
    the wheel assembly includes a plurality of wheels; and
    the driving assembly includes a plurality of driving components at least a portion of which is disposed inside four of the plurality of wheels.
  28. The mobile medical device of any one of claims 23-27, wherein the driving assembly includes a stator, a rotor, and a rotation shaft, the stator being sleeved on the rotation shaft, the rotor being configured to rotate relative to the stator.
  29. The mobile medical device of any one of claims 23-28, wherein the functional component includes an imaging component, the imaging component including an X-ray generator and an X-ray detector.
  30. The mobile medical device of claim 29, further comprising:
    an adjustment component disposed on the carrier and configured to adjust a position of the X-ray generator; and
    a lock component disposed on the carrier and configured to lock the adjustment component to fix the position of the X-ray generator.
  31. The mobile medical device of claim 30, wherein the adjustment component includes:
    a telescopic arm configured to adjust a first distance and an angle between the X-ray generator and a target object; and
    a column configured to adjust a second distance between the X-ray generator and the target object.
  32. The mobile medical device of any one of claims 23-31, further comprising a display disposed on the carrier and configured to display an interactive interface associated with the mobile medical device.
  33. A mobile medical device, comprising:
    a body;
    a wheel assembly connected with the body;
    a first driving assembly configured to drive the wheel assembly to rotate;
    an angle sensor configured to detect an angle of inclination of the body; and
    a processing device communicating with the first driving assembly and the angle sensor, the processing device being configured to perform operations including:
    obtaining the angle of inclination of the body from the angle sensor; and
    causing an operation state of the first driving assembly to be adjusted based on the angle of inclination, so as to control a movement state of the body under the angle of inclination.
  34. The mobile medical device of claim 33, further comprising a controller configured to control the processing device to initiate or terminate the adjustment of the operation state of the first driving assembly.
  35. The mobile medical device of claim 34, wherein the controller includes a force sensor configured to detect a force exerted on the body by a user and control, based on the detected force, the processing device to initiate or terminate the adjustment of the operation state of the first driving assembly.
  36. The mobile medical device of claim 35, wherein the force sensor includes a strain sensor.
  37. The mobile medical device of claim 35, wherein the controller includes a switch, the processing device being controlled to initiate or terminate the adjustment of the operation state of the first driving assembly through turning on or turning off the switch.
  38. The mobile medical device of any one of claims 33-37, further comprising a speed sensor configured to detect a speed of the body, the processing device being configured to perform the operations including:
    causing the operation state of the driving assembly to be adjusted based further on the speed of the body.
  39. The mobile medical device of claim 38, wherein the processing device is configured to perform the operations including:
    obtaining the speed of the body from the speed sensor;
    determining whether the speed of the body is equal to 0;
    in response to determining that the speed of the body is not equal to 0, determining a second additional force based on the speed, the second additional being configured to cause the speed of the body to reduce to 0;
    causing the operation state of the driving assembly to be adjusted based on the second additional force, so as to reduce the speed of the body to 0;
    determining a first additional force based on the angle of inclination of the body; and
    causing the operation state of the first driving assembly to be adjusted based on the first additional force so as to make the body keep still under the angle of inclination.
  40. The mobile medical device of claim 39, further comprising a deceleration  component configured to slow down the body based on the operation state of the first driving assembly.
  41. The mobile medical device of any one of claims 34-40, wherein the body includes:
    an X-ray generator configured to emit X-rays; and
    an X-ray detector configured to detect the X-rays emitted from the X-ray generator and disposed opposite to the X-ray generator.
  42. The mobile medical device of claim 41, further comprising:
    a shield component configured to prevent transmission of the X-rays outside the mobile medical device; and
    a second driving assembly configured to drive the shield component to move.
  43. The mobile medical device of claim 42, wherein the second driving assembly configured to drive the shield component to move along at least one of a length direction, a width direction, or a height direction of the body.
  44. The mobile medical device of any one of claims 33-43, wherein the wheel assembly includes:
    a wheel;
    a frame connected with the body of the mobile medical device, the frame including a wall;
    a supporting component movably connected with the frame, a first end of the supporting component being connected with the wheel, a second end of the supporting component being connected with a first end of a pull rod, a second end of the pull rod extending into the frame through the wall;
    a first buffer component disposed inside the frame and between the second end  of the pull rod and the wall; and
    a second buffer component disposed inside the frame and between the second end of the pull rod and the wall, an elastic coefficient of the first buffer component being greater than an elastic coefficient of the second buffer component.
  45. The mobile medical device of any one of claims 33-44, further comprising:
    a suspension component of which a first end is movably connected with the body and a second end is connected with the wheel assembly; and
    a third buffer component of which a first end is movably connected with the suspension component and a second end is connected with the body.
  46. The mobile medical device of any one of claims 33-45, wherein at least a portion of the first driving assembly is disposed inside the wheel assembly.
  47. A method implemented on a machine including one or more storage devices and one or more processing devices, comprising:
    obtaining an angle of inclination of a mobile medical device from an angle sensor disposed on the mobile medical device; and
    causing an operation state of a driving assembly of the mobile medical device to be adjusted based on the angle of inclination, so as to control a movement state of the mobile medical device under the angle of inclination.
  48. A system, comprising:
    an obtaining module configured to obtain an angle of inclination of a mobile medical device from an angle sensor disposed on the mobile medical device; and
    an adjustment module configured to cause an operation state of a driving assembly of the mobile medical device to be adjusted based on the angle of inclination, so as to control a movement state of the mobile medical device under the  angle of inclination.
  49. A non-transitory computer readable medium, comprising at least one set of instructions, wherein when executed by one or more processors of a computing device, the at least one set of instructions causes the computing device to perform a method, the method comprising:
    obtaining an angle of inclination of a mobile medical device from an angle sensor disposed on the mobile medical device; and
    causing an operation state of a driving assembly of the mobile medical device to be adjusted based on the angle of inclination, so as to control a movement state of the mobile medical device under the angle of inclination.
PCT/CN2021/116332 2020-09-02 2021-09-02 Mobile medical device WO2022048611A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202021896379.6U CN213199468U (en) 2020-09-02 2020-09-02 Mobile DR device
CN202021896379.6 2020-09-02
CN202010966904.5 2020-09-15
CN202010966904.5A CN112043297A (en) 2020-09-15 2020-09-15 Mobile medical imaging equipment
CN202022171862.4U CN214208360U (en) 2020-09-28 2020-09-28 Mobile digital X-ray photographic equipment
CN202022171862.4 2020-09-28
CN202022206926.X 2020-09-30
CN202022206926.XU CN214712572U (en) 2020-09-30 2020-09-30 Shock-absorbing caster wheel of mobile medical equipment and mobile medical equipment

Publications (1)

Publication Number Publication Date
WO2022048611A1 true WO2022048611A1 (en) 2022-03-10

Family

ID=80492178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116332 WO2022048611A1 (en) 2020-09-02 2021-09-02 Mobile medical device

Country Status (1)

Country Link
WO (1) WO2022048611A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115006036A (en) * 2022-05-27 2022-09-06 济宁医学院 Orthodontic auxiliary supporting device with multi-gear adjusting structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503416A (en) * 1994-03-10 1996-04-02 Oec Medical Systems, Inc. Undercarriage for X-ray diagnostic equipment
CN101209681A (en) * 2006-12-26 2008-07-02 比亚迪股份有限公司 Electric motor outputting torque moment control system and control method in electric automobile descending condition
CN107567317A (en) * 2015-04-16 2018-01-09 西门子保健有限责任公司 Portable medical device with least one motor driving wheels
CN107961024A (en) * 2016-10-20 2018-04-27 三星电子株式会社 Mobile x-ray imaging device
CN209208396U (en) * 2018-12-06 2019-08-06 宋欢 A kind of vehicle cantilever shalving
CN112043297A (en) * 2020-09-15 2020-12-08 上海联影医疗科技股份有限公司 Mobile medical imaging equipment
CN213199468U (en) * 2020-09-02 2021-05-14 上海联影医疗科技股份有限公司 Mobile DR device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503416A (en) * 1994-03-10 1996-04-02 Oec Medical Systems, Inc. Undercarriage for X-ray diagnostic equipment
CN101209681A (en) * 2006-12-26 2008-07-02 比亚迪股份有限公司 Electric motor outputting torque moment control system and control method in electric automobile descending condition
CN107567317A (en) * 2015-04-16 2018-01-09 西门子保健有限责任公司 Portable medical device with least one motor driving wheels
CN107961024A (en) * 2016-10-20 2018-04-27 三星电子株式会社 Mobile x-ray imaging device
CN209208396U (en) * 2018-12-06 2019-08-06 宋欢 A kind of vehicle cantilever shalving
CN213199468U (en) * 2020-09-02 2021-05-14 上海联影医疗科技股份有限公司 Mobile DR device
CN112043297A (en) * 2020-09-15 2020-12-08 上海联影医疗科技股份有限公司 Mobile medical imaging equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115006036A (en) * 2022-05-27 2022-09-06 济宁医学院 Orthodontic auxiliary supporting device with multi-gear adjusting structure

Similar Documents

Publication Publication Date Title
US11596808B2 (en) Radiation therapy system
US20170189719A1 (en) Radiation therapy positioning system
US20170189724A1 (en) Radiation therapy system
CN108310681B (en) Medical linear accelerator and control method thereof
CN110220926A (en) A kind of x-ray detection device based on 5-axis movement platform
US10772587B2 (en) Radiation irradiation device
WO2022048611A1 (en) Mobile medical device
EP3075318B1 (en) Multiple imaging modality imaging apparatus
CN103750852B (en) A kind of work system of the mobile X-ray diagnostic equipment
JP2002513942A (en) Gantry for medical imaging systems
CN109758174A (en) A kind of human body rapid fixing of Medical CT machine
EP2836129B1 (en) Imaging system subject support
CN103750851A (en) Movable X-ray diagnosing device
CN204274493U (en) A kind of oral cavity X ray image equipment of integrated multiple scan function
CN203524687U (en) Tilted rack, rotating disc, and CT rack component of CT machine, and CT machine
JP6878044B2 (en) Medical diagnostic imaging equipment
CN104771839A (en) Radiating therapeutic apparatus
CN206745375U (en) A kind of Digitized X-ray moves pet radiography bed
CN209751075U (en) CBCT equipment
CN212089567U (en) Movable DR detection device capable of supporting fault fusion
CN104939847A (en) Linear accelerator
JP2023038457A (en) X-ray computer tomographic apparatus and state change control method
CN106725546B (en) Portable digital X-ray machine
JP2017080304A (en) X-ray computed tomographic apparatus and rack moving device
CN216148884U (en) Medical device aperture structure, device and radiotherapy system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863675

Country of ref document: EP

Kind code of ref document: A1