WO2022048583A1 - 资源确定方法及装置、资源配置方法及装置、通信节点、存储介质 - Google Patents

资源确定方法及装置、资源配置方法及装置、通信节点、存储介质 Download PDF

Info

Publication number
WO2022048583A1
WO2022048583A1 PCT/CN2021/116154 CN2021116154W WO2022048583A1 WO 2022048583 A1 WO2022048583 A1 WO 2022048583A1 CN 2021116154 W CN2021116154 W CN 2021116154W WO 2022048583 A1 WO2022048583 A1 WO 2022048583A1
Authority
WO
WIPO (PCT)
Prior art keywords
sps
resource
configuration information
target
reconfiguration message
Prior art date
Application number
PCT/CN2021/116154
Other languages
English (en)
French (fr)
Inventor
许靖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US18/024,866 priority Critical patent/US20230319940A1/en
Priority to EP21863647.0A priority patent/EP4213539A1/en
Publication of WO2022048583A1 publication Critical patent/WO2022048583A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • the present application relates to the field of wireless communication networks, for example, to a resource determination method and device, a resource configuration method and device, a communication node, and a storage medium.
  • the Semi-Persistent Scheduling (SPS) in the IoT communication technology can be used to transmit the uplink data to be transmitted by the terminal, and the amount of data is indicated by the Buffer Status Report (BSR).
  • the network side configures the enabling of the SPS function through radio resource control (Radio Resource Control, RRC) dedicated signaling; activates and allocates SPS resources through downlink control information (Downlink Control Information, DCI). If the terminal receives the RRC connection release message, it will terminate the SPS function and delete the related configuration of the SPS resource.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the IoT communication technology supports multi-carrier, and the SPS resource of the terminal is the physical resource on the dedicated carrier configured on the network side. When the network side switches the terminal to another dedicated frequency, the previously configured SPS resources cannot be used to transmit data directly, which will cause the termination of the SPS function and the inability to transmit the BSR successfully, affecting the communication quality.
  • the present application provides a resource determination method and device, a resource configuration method and device, a communication node, and a storage medium, so as to improve the flexibility and reliability of SPS resource transmission in a carrier switching scenario.
  • the embodiment of the present application provides a resource determination method, including:
  • the embodiment of the present application also provides a resource configuration method, including:
  • RRC reconfiguration message includes dedicated carrier configuration information; configure the target SPS resource in the carrier indicated by the dedicated carrier configuration information according to the relevant resource configuration information.
  • the embodiment of the present application also provides a resource determination device, including:
  • a receiving module configured to receive an RRC reconfiguration message, where the RRC reconfiguration message includes dedicated carrier configuration information; a resource determination module, configured to determine, according to the relevant resource configuration information, a target SPS resource in the carrier indicated by the dedicated carrier configuration information .
  • the embodiment of the present application also provides a resource configuration device, including:
  • the sending module is configured to send an RRC reconfiguration message, where the RRC reconfiguration message includes dedicated carrier configuration information; the resource configuration module configures the target SPS resource in the carrier indicated by the dedicated carrier configuration information according to the relevant resource configuration information.
  • the embodiment of the present application also provides a communication node, including:
  • One or more processors a storage device for storing one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors implement the above Resource determination method or resource configuration method.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the foregoing resource determination method or resource configuration method is implemented.
  • FIG. 1 is a flowchart of a method for determining a resource provided by an embodiment
  • FIG. 2 is a schematic diagram of determining target SPS resources provided by an embodiment
  • FIG. 3 is a schematic diagram of determining a target SPS resource provided by another embodiment
  • FIG. 4 is a schematic diagram of determining a target SPS resource provided by another embodiment
  • FIG. 5 is a flowchart of a resource configuration method provided by an embodiment
  • FIG. 6 is a schematic structural diagram of a resource determination apparatus provided by an embodiment
  • FIG. 7 is a schematic structural diagram of a resource configuration apparatus according to an embodiment
  • FIG. 8 is a schematic diagram of a hardware structure of a communication node according to an embodiment.
  • the SPS function is introduced, that is, the BSR of the terminal is transmitted through the SPS resource, also known as the buffer status report medium access control layer control element (Buffer Status Report Medium Access Control Control Elements, BSR MAC CE).
  • the network side can configure the enabling of the SPS function through the RRC dedicated signaling, and activate and allocate the SPS resources through the DCI; it can also deactivate the SPS through the DCI, that is, the SPS function is turned off. In this case, the terminal stops using the SPS resources until it is turned on again. SPS function.
  • the NB-IoT supports multiple carriers, and the SPS resources of the terminal refer to the physical resources on the dedicated carrier configured on the network side.
  • the terminal and the network side cannot directly use the previously configured SPS resources to transmit data, which will cause the termination of the SPS function and the inability to transmit the BSR successfully, affecting communication. quality.
  • a method for determining resources is provided.
  • the method used in the indicated carrier can be re-determined according to relevant resource configuration information.
  • Target SPS resources improve the flexibility and reliability of SPS resource transmission in carrier switching scenarios.
  • FIG. 1 is a flowchart of a method for determining resources provided by an embodiment.
  • the resource determination method in this embodiment may be applied to a communication node, and the communication node may be a terminal (User Equipment, UE).
  • the method provided in this embodiment includes step 110 and step 120 .
  • step 110 a radio resource control RRC reconfiguration message is received, where the RRC reconfiguration message includes dedicated carrier configuration information.
  • the RRC reconfiguration message (RRC Connection Reconfiguration message) includes dedicated carrier configuration information, which is used to instruct the terminal to switch from the original carrier to the indicated carrier.
  • the terminal works on the original carrier (the original carrier is different from the carrier indicated by the dedicated carrier configuration information), and knows the SPS resources used in the original carrier (described as the existing SPS resources in the following embodiments) .
  • step 120 the target semi-persistently scheduled SPS resource in the carrier indicated by the dedicated carrier configuration information is determined according to the relevant resource configuration information.
  • the target SPS resource is determined according to relevant resource configuration information, and the relevant resource configuration information includes:
  • the carrier where the target SPS resource is located that is, the carrier indicated by the dedicated carrier configuration information; the subcarrier where the target SPS resource is located may be the same as the subcarrier where the terminal is located in the original carrier, or may be re-indicated by the RRC reconfiguration message;
  • the time domain position of the target SPS resource mainly refers to the time domain start position of the SPS Narrowband Physical Uplink Share channel (NPUSCH), which may be the same as the time domain start position of the terminal in the original carrier.
  • NPUSCH Physical Uplink Share channel
  • the repetition period of the NPUSCH of the target SPS resource may be consistent with the repetition period of the NPUSCH of the terminal in the original carrier, or it may be re-indicated by the RRC reconfiguration message; the NPUSCH of the target SPS resource The number of repetitions may be consistent with the number of repetitions of the NPUSCH of the terminal in the original carrier, or may be re-indicated by the RRC reconfiguration message.
  • the terminal can re-receive the activation DCI to enable the SPS function again and activate the target SPS resource; it can also enable the SPS function and activate the target without waiting for the activation of the DCI when receiving the RRC reconfiguration message.
  • SPS resources can be re-receive the activation DCI to enable the SPS function again and activate the target SPS resource; it can also enable the SPS function and activate the target without waiting for the activation of the DCI when receiving the RRC reconfiguration message.
  • the RRC layer of the terminal receives the RRC reconfiguration message, the RRC reconfiguration message includes dedicated physical configuration (Physical Config Dedicated) information, and the dedicated physical configuration information includes dedicated carrier configuration (Carrier Config Dedicated) information, in Before the terminal receives the RRC reconfiguration message, the existing SPS resources activated in the original carrier are known.
  • the RRC reconfiguration message includes dedicated physical configuration (Physical Config Dedicated) information
  • the dedicated physical configuration information includes dedicated carrier configuration (Carrier Config Dedicated) information
  • the resource determination method in this embodiment provides a solution for the terminal to re-determine the target SPS resource in the case where the network side reconfigures the dedicated carrier of the terminal through the RRC reconfiguration message, and the network side can also determine the target SPS resource according to the relevant resource configuration information.
  • the target SPS resource is used to realize the SPS function in the carrier switching scenario and improve the flexibility and reliability of the SPS resource transmission in the carrier switching scenario.
  • it also includes:
  • Step 100 Determine existing SPS resources according to the first activated DCI, the first SPS cell radio network identifier (Cell Radio Network Temporary Identifier, C-RNTI) and the first SPS period.
  • the first SPS cell radio network identifier Cell Radio Network Temporary Identifier, C-RNTI
  • the terminal before the terminal receives the RRC reconfiguration message, the terminal has received the relevant configuration of the SPS function through the RRC message, including the first SPS C-RNTI and the first SPS period.
  • the terminal In one SPS period, under the instruction of the first activated DCI, determine the existing SPS resources used for transmitting the BSR in the original carrier.
  • the relevant resource configuration information includes a first SPS C-RNTI and a first SPS period; step 120 includes: in the case of receiving the second activated DCI, determining the target SPS according to the relevant resource configuration information resource.
  • the terminal activates the SPS function and activates the target SPS resource by re-receiving the activation DCI, that is, when the terminal is reconfigured to the carrier indicated by the dedicated carrier configuration information, it stops using the existing carrier in the original carrier.
  • SPS resource until the second activation DCI is received, the SPS function is activated again, and the first SPS C-RNTI and the first SPS period can be used to determine the target SPS resource in the carrier indicated by the dedicated carrier configuration information.
  • the RRC reconfiguration message does not include the relevant configuration about the target SPS resource, and the target SPS resource can be determined by referring to the position of the existing SPS resource in the original carrier.
  • the subcarrier where the target SPS resource is located is the same as the subcarrier where the terminal is located in the original carrier;
  • the time domain starting position of the target SPS resource is the same as the time domain starting position where the terminal is located in the original carrier;
  • the repetition period of the NPUSCH of the SPS resource is consistent with the repetition period of the NPUSCH of the terminal in the original carrier, that is, the first SPS period;
  • the repetition number of the NPUSCH of the target SPS resource is consistent with the repetition of the NPUSCH of the terminal in the original carrier.
  • it also includes:
  • Step 1101 Release existing SPS resources according to the RRC reconfiguration message.
  • the terminal in the case of receiving the RRC reconfiguration message, releases the existing SPS resources to complete the deactivation of the SPS function.
  • the RRC layer of the terminal instructs the bottom layer to perform deactivation of the SPS function, so that the existing SPS resources are no longer used to send the BSR, until the second activated DCI is received, and the SPS function is activated again.
  • the network side does not need to resend the DCI for deactivation, thereby saving signaling overhead and improving communication efficiency.
  • the relevant resource configuration information includes the first activated DCI, the first SPS C-RNTI and the first SPS period; step 120, including:
  • the target SPS resource is determined according to the relevant resource configuration information.
  • the terminal does not need to re-receive the activated DCI, that is, when the terminal receives the RRC reconfiguration message, it stops using the existing SPS resources in the original carrier, and has activated the SPS function in the first activated DCI
  • the RRC reconfiguration message does not include the configuration of the target SPS resource.
  • the target SPS resource can be determined by referring to the location of the existing SPS resource in the original carrier. The terminal and the network side do not need to deactivate the SPS function, and can continue to The existing SPS resource determines the target SPS resource in the new carrier.
  • the subcarrier where the target SPS resource is located is the same as the subcarrier where the terminal is located in the original carrier;
  • the time domain starting position of the target SPS resource is the same as the time domain starting position where the terminal is located in the original carrier;
  • the repetition period of the NPUSCH of the SPS resource is consistent with the repetition period of the NPUSCH of the terminal in the original carrier, that is, the first SPS period;
  • the repetition number of the NPUSCH of the target SPS resource is consistent with the repetition of the NPUSCH of the terminal in the original carrier.
  • the target SPS resource is determined according to the latest first SPS period saved before the RRC reconfiguration message is received, the subcarrier indicated in the latest first activated DCI, the start position in the time domain, the number of repetitions, etc. , which satisfies:
  • the carrier where the target SPS resource is located that is, the carrier indicated by the dedicated carrier configuration information; the subcarrier where the target SPS resource is located is the same as the subcarrier where the terminal indicated by the first activated DCI is located in the original carrier; the NPUSCH of the target SPS resource is located.
  • the repetition period is consistent with the repetition period of the NPUSCH of the terminal indicated by the first activated DCI in the original carrier, that is, the first SPS period; the repetition number of the NPUSCH of the target SPS resource is the same as the NPUSCH of the terminal indicated by the first activated DCI in the original carrier.
  • the number of repetitions is consistent; the time domain start position of the target SPS resource is consistent with the time domain start position of the terminal in the original carrier.
  • the time domain start position of the target SPS resource satisfies:
  • (10*SFN+subframe) [(10*SFN start time +subframe start time )+N*semiPersistSchedIntervalUL] modulo 10240, where SFN and subframe are the radio frame number and subframe number of the SPS NPUSCH start position; SFN start time and subframe start time is the radio frame number and subframe number where the NPUSCH start position allocated in the first activated DCI is located; semiPersistSchedIntervalUL is the first SPS period.
  • the RRC reconfiguration message further includes at least one of the following: subcarrier information, time domain start position, second SPS C-RNTI, number of repetitions, and second SPS period; the relevant resource configuration information includes all described RRC reconfiguration message; Step 120, including:
  • the target SPS resource is determined according to the relevant resource configuration information.
  • a new information element is added to the RRC reconfiguration message, which is used to indicate the information of the SPS physical resources after RRC reconfiguration.
  • the terminal does not need to re-receive the activated DCI. Stop using the existing SPS resources in the original carrier, and determine the target SPS resource according to the second SPS period, subcarrier, time domain start position and/or repetition times indicated in the RRC reconfiguration message.
  • the RRC reconfiguration message includes the configuration of the target SPS resource, and the terminal and the network side do not need to deactivate the SPS function.
  • the location in the original carrier before the RRC reconfiguration message is received may also be determined with reference to.
  • the RRC reconfiguration message is used to indicate:
  • the carrier where the target SPS resource is located that is, the carrier indicated by the dedicated carrier configuration information; the subcarrier where the target SPS resource is located; the repetition period of the NPUSCH of the target SPS resource, that is, the second SPS period; the number of repetitions of the NPUSCH of the target SPS resource; the target The time domain start position of the SPS resource, which can be indicated in the form of a radio frame number and subframe number, or the interval time between the time domain start position of the target SPS resource and the NPDSCH end subframe of the RRC reconfiguration message.
  • the time domain start position of the target SPS resource satisfies:
  • (10*SFN+subframe) [(10*SFN start time +subframe start time )+N*semiPersistSchedIntervalUL] modulo 10240, where SFN and subframe are the radio frame number and subframe number of the SPS NPUSCH start position; SFN start time and subframe start time are the radio frame number and subframe number where the NPUSCH start position indicated by the RRC reconfiguration message is located; semiPersistSchedIntervalUL is the second SPS period.
  • it also includes:
  • Step 130 After the set time interval of the end subframe of the NPUSCH in which the RRC connection reconfiguration complete message is sent, send the uplink data volume BSR through the target SPS resource.
  • the effective time of the relevant configuration of the target SPS resource is after the terminal sends the RRC Connection Reconfiguration Complete (RRC Connection Reconfiguration Complete) message; After the set time interval of the NPUSCH end subframe of the completion message.
  • the complete target SPS resource is the SPS resource that can be used to send the BSR, and between the terminal receiving the RRC reconfiguration message and the said effective time, the terminal and the network side do not use the existing SPS resources.
  • the SPS resource or the target SPS resource transmits the BSR MAC CE.
  • the following describes the process of determining the target SPS resource through an example.
  • FIG. 2 is a schematic diagram of determining target SPS resources according to an embodiment.
  • the RRC reconfiguration message does not include the relevant configuration of the target SPS resource
  • the target SPS resource is determined according to the first C-RNTI, the first SPS period and the first activated DCI, and the terminal needs to wait for the second activated DCI.
  • the terminal accesses the NB-IoT network in a user plane (User Plane, UP) mode, and the network side is, for example, a base station evolved NodeB (evolved NodeB, eNB).
  • the base station has configured the enabling of the SPS function through the RRC message, and delivered the first C-RNTI and the first SPS cycle.
  • the base station has activated the existing SPS resources through the first activation DCI, and the terminal uses the existing SPS resources to send the BSR MAC CE.
  • the base station sends an RRC reconfiguration message, which includes dedicated carrier configuration information to instruct the terminal to switch to a new uplink carrier.
  • the RRC layer instructs the bottom layer to deactivate the SPS function, and the bottom layer stops using the existing SPS resources to send the BSR MAC CE.
  • the terminal re-establishes an RRC connection with the base station on the carrier indicated by the dedicated carrier configuration information, and sends an RRC connection reconfiguration complete message to the base station.
  • the base station After receiving the RRC connection reconfiguration complete message, the base station defaults to the existing SPS resources of the terminal. Has been deactivated, stop receiving BSR MAC CE on the existing SPS resources, delete the existing SPS resources allocated to the terminal, and send the second activation DCI to the terminal to activate the target SPS resources.
  • the terminal determines the target SPS resource on the carrier indicated by the dedicated carrier configuration information according to the stored first C-RNTI, the first SPS period and the indication of the first activated DCI, and Use the target SPS resource to send the BSR MAC CE; on the new carrier, the base station determines the target SPS resource with reference to the same method, and receives the BSR MAC CE on the target SPS resource.
  • FIG. 3 is a schematic diagram of determining target SPS resources according to another embodiment.
  • the RRC reconfiguration message does not include the relevant configuration of the target SPS resource
  • the target SPS resource is determined according to the first C-RNTI, the first SPS period and the first activated DCI, and the terminal does not need to wait for the second activated DCI.
  • the terminal accesses the NB-IoT network in the UP mode, and the communication node on the network side is, for example, the base station eNB.
  • the base station has configured the enabling of the SPS function through the RRC message, and delivered the first C-RNTI and the first SPS cycle.
  • the base station has activated the existing SPS resources through the first activation DCI, and the terminal uses the existing SPS resources to send the BSR MAC CE.
  • the base station sends an RRC reconfiguration message, which includes dedicated carrier configuration information to instruct the terminal to switch to a new uplink carrier.
  • the RRC layer instructs the bottom layer to deactivate the SPS function, and the bottom layer stops using the existing SPS resources to send the BSR MAC CE.
  • the terminal re-establishes an RRC connection with the base station on the carrier indicated by the dedicated carrier configuration information, and sends an RRC connection reconfiguration complete message to the base station.
  • the base station After receiving the RRC connection reconfiguration complete message, the base station defaults to the existing SPS resources of the terminal. If it has been deactivated, stop receiving BSR MAC CE on the existing SPS resources, and delete the existing SPS resources allocated to the terminal.
  • the terminal is on the carrier indicated by the dedicated carrier configuration information, on the subcarrier indicated by the first activated DCI, according to the saved first SPS period, the NPUSCH start subframe number subframe start time allocated by the first activated DCI, and the radio frame in which it is located.
  • the number SFN start time determines the time domain start position of the target SPS resource, and the radio frame SFN and subframe number subframe where the time domain start position of the target SPS resource is located satisfy:
  • (10*SFN+subframe) [(10*SFN start time +subframe start time )+N*semiPersistSchedIntervalUL] modulo 10240, where SFN and subframe are the radio frame number and subframe number of the SPS NPUSCH start position; SFN start time and subframe start time is the radio frame number and subframe number where the NPUSCH start position allocated in the first activated DCI is located; semiPersistSchedIntervalUL is the first SPS period.
  • the terminal uses the target SPS resource to send the BSR MAC CE immediately after the completion of the RRC connection reconfiguration (or after a certain time interval of the NPUSCH end subframe carrying the RRC connection reconfiguration complete message); the base station determines the target by referring to the same method on the new carrier SPS resource and receive the BSR MAC CE on the target SPS resource.
  • FIG. 4 is a schematic diagram of determining target SPS resources provided by yet another embodiment.
  • the RRC reconfiguration message includes the relevant configuration of the target SPS resource, and the target SPS resource is based on the relevant configuration of the target SPS resource in the RRC reconfiguration message (for the relevant configuration not indicated in the RRC reconfiguration message, please refer to the original The relevant configuration on the carrier) is determined, and the terminal does not need to wait for the second activated DCI.
  • the terminal accesses the NB-IoT network in the UP mode, and the communication node on the network side is, for example, the base station eNB.
  • the base station has configured the enabling of the SPS function through the RRC message, and delivered the first C-RNTI and the first SPS cycle.
  • the base station has activated the existing SPS resources through the first activation DCI, and the terminal uses the existing SPS resources to send the BSR MAC CE.
  • the base station sends an RRC reconfiguration message, which includes dedicated carrier configuration information to instruct the terminal to switch to a new uplink carrier.
  • the RRC reconfiguration message also includes: the subcarrier where the NPUSCH of the target SPS resource is located; the number of repetitions of the NPUSCH of the target SPS resource; the radio frame number SFNstart time and the subframe number subframestart time of the start time domain start position of the NPUSCH of the target SPS resource; Or it is the set interval time T between the start time domain start position of the NPUSCH of the target SPS resource and the end subframe of the NPDSCH carrying the RRC connection reconfiguration complete message.
  • the RRC layer instructs the bottom layer to deactivate the SPS function, and the bottom layer stops using the existing SPS resources to send the BSR MAC CE.
  • the terminal re-establishes an RRC connection with the base station on the carrier indicated by the dedicated carrier configuration information, and sends an RRC connection reconfiguration complete message to the base station.
  • the base station After receiving the RRC connection reconfiguration complete message, the base station defaults to the existing SPS resources of the terminal. If it has been deactivated, stop receiving BSR MAC CE on the existing SPS resources, and delete the existing SPS resources allocated to the terminal.
  • the terminal On the carrier indicated by the dedicated carrier configuration information and the subcarrier indicated by the RRC reconfiguration message, the terminal according to the first SPS cycle (because the second SPS cycle corresponding to the target SPS resource is not indicated in the RRC reconfiguration message), the RRC reconfiguration message
  • the NPUSCH start subframe number subframestart time of the indicated target SPS resource and the radio frame number SFNstart time are used to calculate the time domain start position of the target SPS resource.
  • the time domain start position of the target SPS resource is located in the radio frame SFN and subframe number subframe satisfying The following formula:
  • (10*SFN+subframe) [(10*SFN start time +subframe start time )+N*semiPersistSchedIntervalUL] modulo 10240, where SFN and subframe are the radio frame number and subframe number of the NPUSCH start position of the target SPS resource, respectively ; SFN start time and subframe start time are respectively the radio frame number and subframe number where the NPUSCH start position indicated by the RRC reconfiguration message is located; semiPersistSchedIntervalUL is the first SPS period.
  • the terminal performs the RRC reconfiguration according to the first SPS cycle (because the second SPS cycle corresponding to the target SPS resource is not indicated in the RRC reconfiguration message), Configure the T indicated by the message to calculate the time domain starting position of the target SPS resource.
  • the radio frame SFN and subframe number subframe where the time domain starting position of the target SPS resource is located satisfy the following formula:
  • (10*SFN+subframe) [(10*SFN end time +subframe end time +T)+N*semiPersistSchedIntervalUL] modulo 10240, where SFN and subframe are the radio frame number and subframe of the NPUSCH start position of the target SPS resource number; SFN end time and subframe end time are respectively the radio frame number and subframe number where the NPDSCH end subframe carrying the RRC connection reconfiguration complete message indicated by the RRC reconfiguration message is located; semiPersistSchedIntervalUL is the first SPS period.
  • the terminal uses the target SPS resource to send the BSR MAC CE immediately after the completion of the RRC connection reconfiguration (or after a certain time interval of the NPUSCH end subframe carrying the RRC connection reconfiguration complete message); the base station determines the target by referring to the same method on the new carrier SPS resource and receive the BSR MAC CE on the target SPS resource.
  • the relevant configuration of the target SPS resource in the RRC reconfiguration message may include the subcarrier, the number of repetitions, the second SPS period, the starting time domain starting position (the radio frame number and subframe number of the time domain starting position, or setting One or more of the time interval T), the relevant configuration not indicated in the RRC reconfiguration message can be determined with reference to the relevant configuration on the original carrier, that is, the target SPS resource can be determined according to the relevant configuration and the relevant configuration indicated in the RRC reconfiguration message. At least one of the saved related configurations on the original carrier is determined, so as to provide a complete solution for the deactivation or continued use of the existing SPS resources, improve the flexibility of the SPS function, ensure the effective and reliable transmission of the BSR, and Save signaling overhead.
  • FIG. 5 is a flowchart of a resource configuration method provided by an embodiment.
  • the resource configuration method in this embodiment can be applied to a communication node, for example, a communication node on a network side, a base station.
  • a communication node for example, a communication node on a network side, a base station.
  • the method provided by this embodiment includes step 210 and step 220 .
  • step 210 an RRC reconfiguration message is sent, where the RRC reconfiguration message includes dedicated carrier configuration information.
  • step 220 the target SPS resource in the carrier indicated by the dedicated carrier configuration information is configured according to the relevant resource configuration information.
  • the RRC reconfiguration message includes dedicated carrier configuration information, which is used to instruct the terminal to switch from the original carrier to the indicated carrier.
  • the terminal operates on the original carrier (the original carrier is different from the carrier indicated by the dedicated carrier configuration information), and knows the SPS resources used in the original carrier (described as existing SPS resources in the following embodiments) .
  • the resource configuration method in this embodiment provides a solution for re-determining the target SPS resource in the case where the network side reconfigures the dedicated carrier of the terminal through the RRC reconfiguration message, so as to realize the SPS function in the carrier switching scenario and improve the carrier switching. Flexibility and reliability of SPS resource transmission in scenarios.
  • the RRC reconfiguration message may further include the relevant configuration of the target SPS resource.
  • the base station enables the SPS function and activates the target SPS resource by re-sending the activation DCI, or it may not re-send the activation DCI, and only needs to enable the SPS function and activate the target SPS resource through the RRC reconfiguration message.
  • it also includes:
  • Step 200 Configure existing SPS resources according to the first activated DCI, the first SPS C-RNTI and the first SPS period.
  • the terminal before sending the RRC reconfiguration message, the terminal has received the relevant configuration of the SPS function through the RRC message, including the first SPS C-RNTI and the first SPS period. and the first SPS period, under the instruction of the first activated DCI, determine the existing SPS resources used for transmitting the BSR in the original carrier.
  • the relevant resource configuration information includes a first SPS C-RNTI and a first SPS period; step 220 includes: configuring the target SPS resource according to the relevant resource configuration information, and by sending a second activation DCI activates the target SPS resource.
  • the base station enables the SPS function and activates the target SPS resource by retransmitting the activated DCI (ie, the second activated DCI).
  • the RRC reconfiguration message is used to instruct the terminal to release existing SPS resources.
  • the terminal in the case of receiving the RRC reconfiguration message, releases the existing SPS resources to complete the deactivation of the SPS function.
  • the relevant resource configuration information includes the first activated DCI, the first SPS C-RNTI and the first SPS period; step 220, including:
  • the base station does not need to re-send the activated DCI, and when the terminal receives the RRC reconfiguration message, it stops using the existing SPS resources in the original carrier, and on the basis that the first activated DCI has activated the SPS function
  • the base station determines the target SPS resource in the carrier indicated by the dedicated carrier configuration information.
  • the RRC reconfiguration message further includes at least one of the following: subcarrier information, time domain start position, second SPS C-RNTI, number of repetitions, and second SPS period; the relevant resource configuration information includes RRC reconfiguration message; step 220, including:
  • a new information element is added to the RRC reconfiguration message, which is used to indicate the information of the SPS physical resource after RRC reconfiguration, and the terminal does not need to re-receive the activated DCI.
  • it also includes:
  • Step 230 After the terminal side sends the set time interval of the NPUSCH end subframe of the RRC connection reconfiguration complete message, receive the BSR through the target SPS resource.
  • the effective time of the relevant configuration of the target SPS resource is after the terminal sends the RRC connection reconfiguration complete message; After the set time interval of the frame.
  • the complete target SPS resource is the SPS resource that can be used to transmit the BSR, and between the terminal receiving the RRC reconfiguration message and the effective time, the base station does not use the existing SPS resources or The target SPS resource receives the BSR MAC CE.
  • FIG. 6 is a schematic structural diagram of an apparatus for determining resources according to an embodiment.
  • the resource determining apparatus includes: a receiving module 310 and a resource determining module 320 .
  • the receiving module 310 is configured to receive an RRC reconfiguration message, where the RRC reconfiguration message includes dedicated carrier configuration information; the resource determining module 320 is configured to determine the target in the carrier indicated by the dedicated carrier configuration information according to the relevant resource configuration information SPS resources.
  • the resource determination device of this embodiment in the case of reconfiguring the terminal to the indicated dedicated carrier through the RRC reconfiguration message, can re-determine the target SPS resource used in the indicated carrier according to the relevant resource configuration information, so as to improve the Flexibility and reliability of SPS resource transmission in carrier switching scenarios.
  • it also includes:
  • the existing resource determination module is configured to determine the existing SPS resources according to the first activated DCI, the first SPS C-RNTI and the first SPS period.
  • the relevant resource configuration information includes the first SPS C-RNTI and the first SPS period; the resource determination module 320 is set to:
  • the target SPS resource is determined according to the relevant resource configuration information.
  • it also includes:
  • the releasing module is configured to release the existing SPS resources according to the RRC reconfiguration message.
  • the relevant resource configuration information includes the first activated DCI, the first SPS C-RNTI and the first SPS period; the resource determination module is set to:
  • the target SPS resource is determined according to the relevant resource configuration information.
  • the RRC reconfiguration message further includes at least one of the following: subcarrier information, time domain start position, second SPS C-RNTI, number of repetitions, and second SPS period; the related resource configuration information Including the RRC reconfiguration message; the resource determination module is set to:
  • the target SPS resource is determined according to the relevant resource configuration information.
  • it also includes:
  • the data volume sending module is configured to send the uplink data volume BSR through the target SPS resource after the set time interval of the end subframe of the NPUSCH in which the RRC connection reconfiguration complete message is sent.
  • the resource determination device proposed in this embodiment belongs to the same concept as the resource determination method proposed in the above-mentioned embodiment.
  • FIG. 7 is a schematic structural diagram of a resource configuration apparatus according to an embodiment.
  • the resource configuration apparatus includes: a sending module 410 and a resource configuration module 420 .
  • the sending module 410 is configured to send an RRC reconfiguration message, where the RRC reconfiguration message includes dedicated carrier configuration information; the resource configuration module 420 is configured to configure the target SPS resource in the carrier indicated by the dedicated carrier configuration information according to the relevant resource configuration information .
  • the resource configuration device in this embodiment provides a solution for re-determining the target SPS resource for the situation that the network side reconfigures the dedicated carrier of the terminal through the RRC reconfiguration message, so as to realize the SPS function in the carrier switching scenario and improve the carrier switching. Flexibility and reliability of SPS resource transmission in scenarios.
  • it also includes:
  • the existing resource configuration module is configured to configure the existing SPS resources according to the first activated DCI, the first SPS C-RNTI and the first SPS cycle.
  • the relevant resource configuration information includes the first SPS C-RNTI and the first SPS period; the resource configuration module 420 is set to:
  • the RRC reconfiguration message is used to instruct the terminal to release existing SPS resources.
  • the relevant resource configuration information includes the first activated DCI, the first SPS C-RNTI and the first SPS period; the resource configuration module 420 is set to:
  • the RRC reconfiguration message further includes at least one of the following: subcarrier information, time domain starting position, second SPS C-RNTI, number of repetitions, and second SPS period; the relevant resource configuration information includes the RRC Reconfiguration message; resource configuration module 420, set to:
  • it also includes:
  • the data volume receiving module is configured to receive the BSR through the target SPS resource after the terminal side sends the set time interval of the NPUSCH end subframe of the RRC connection reconfiguration complete message.
  • the resource configuration device proposed in this embodiment belongs to the same concept as the resource determination method proposed in the above-mentioned embodiment.
  • FIG. 8 is a schematic diagram of a hardware structure of a communication node provided by an embodiment.
  • the communication node provided by the present application includes one or more processors 51 , wherein the one or more processors 51 implement the resource determination method or resource configuration method provided by any embodiment of the present application when executing, and correspondingly, the communication node is a terminal or a network side node.
  • the communication node may also include a storage device 52; the number of processors 51 in the communication node may be one or more, and one processor 51 is taken as an example in FIG. 8; the storage device 52 is used to store one or more programs; the one One or more programs are executed by the one or more processors 51, so that the one or more processors 51 implement the resource determination method or the resource configuration method as described in the embodiments of the present application.
  • the communication node further includes: a communication device 53 , an input device 54 and an output device 55 .
  • the processor 51 , the storage device 52 , the communication device 53 , the input device 54 , and the output device 55 in the communication node may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 8 .
  • the input device 54 may be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the communication node.
  • the output device 55 may include a display device such as a display screen.
  • the communication device 53 may include a receiver and a transmitter.
  • the communication device 53 is configured to transmit and receive information according to the control of the processor 51 .
  • the storage device 52 may be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules (for example, the sending module 310 and the resource determination method described in the embodiments of the present application) corresponding to the program instructions/modules. determination module 320).
  • the storage device 52 may include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to use of the communication node, and the like.
  • storage device 52 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • storage device 52 may include memory located remotely from processor 51, which may be connected to the communication node through a network.
  • networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • An embodiment of the present application further provides a storage medium, where the storage medium stores a computer program, and when the computer program is executed by a processor, implements the resource determination method or the resource configuration method described in any of the embodiments of the present application.
  • the resource determination method includes:
  • Resource allocation methods including:
  • RRC reconfiguration message includes dedicated carrier configuration information; configure the target SPS resource in the carrier indicated by the dedicated carrier configuration information according to the relevant resource configuration information.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination of the above.
  • Examples (non-exhaustive list) of computer readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (Read Only Memory) Memory, ROM), erasable programmable read only memory (Erasable Programmable Read Only Memory, EPROM), flash memory, optical fiber, portable CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • terminal encompasses any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, Read-Only Memory (ROM), Random Access Memory (RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • a general purpose computer such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开一种资源确定方法及装置、资源配置方法及装置、通信节点、存储介质。该资源确定方法接收无线资源控制RRC重配消息,所述RRC重配消息包括专用载波配置信息;根据相关资源配置信息,确定所述专用载波配置信息指示的载波中的目标半静态调度SPS资源。

Description

资源确定方法及装置、资源配置方法及装置、通信节点、存储介质 技术领域
本申请涉及无线通信网络领域,例如涉及一种资源确定方法及装置、资源配置方法及装置、通信节点、存储介质。
背景技术
物联网通信技术中的半静态调度(Semi-Persistent Scheduling,SPS)可用于传输终端的上行待传数据,其数据量大小由缓冲状态报告(Buffer Status Report,BSR)指示。网络侧通过无线资源控制(Radio Resource Control,RRC)专用信令配置SPS功能的开启;通过下行控制信息(Downlink Control Information,DCI)激活并分配SPS资源。如果终端收到RRC连接释放消息,则会终止SPS功能,并删除SPS资源的相关配置。物联网通信技术支持多载波,终端的SPS资源是在网络侧配置的专用载波上的物理资源。在网络侧将终端切换到另一个专用频点的情况下,无法直接使用之前配置的SPS资源传输数据,会导致SPS功能终止、BSR无法成功传输,影响通信质量。
发明内容
本申请提供一种资源确定方法及装置、资源配置方法及装置、通信节点、存储介质,以提高载波切换场景下SPS资源传输的灵活性和可靠性。
本申请实施例提供一种资源确定方法,包括:
接收RRC重配消息,所述RRC重配消息包括专用载波配置信息;根据相关资源配置信息,确定所述专用载波配置信息指示的载波中的目标SPS资源。
本申请实施例还提供了一种资源配置方法,包括:
发送RRC重配消息,所述RRC重配消息包括专用载波配置信息;根据相关资源配置信息,配置所述专用载波配置信息指示的载波中的目标SPS资源。
本申请实施例还提供了一种资源确定装置,包括:
接收模块,设置为接收RRC重配消息,所述RRC重配消息包括专用载波配置信息;资源确定模块,设置为根据相关资源配置信息,确定所述专用载波配置信息指示的载波中的目标SPS资源。
本申请实施例还提供了一种资源配置装置,包括:
发送模块,设置为发送RRC重配消息,所述RRC重配消息包括专用载波配置信息;资源配置模块,根据相关资源配置信息,配置所述专用载波配置信息指示的载波中的目标SPS资源。
本申请实施例还提供了一种通信节点,包括:
一个或多个处理器;存储装置,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述的资源确定方法或资源配置方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的资源确定方法或资源配置方法。
附图说明
图1为一实施例提供的一种资源确定方法的流程图;
图2为一实施例提供的确定目标SPS资源的示意图;
图3为另一实施例提供的确定目标SPS资源的示意图;
图4为又一实施例提供的确定目标SPS资源的示意图;
图5为一实施例提供的一种资源配置方法的流程图;
图6为一实施例提供的一种资源确定装置的结构示意图;
图7为一实施例提供的一种资源配置装置的结构示意图;
图8为一实施例提供的一种通信节点的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。
在物联网通信系统,例如窄带物联网(NarrowBand Internet of Things,NB-IoT)中引入了SPS功能,即,通过SPS资源传输终端的BSR,也称为缓存状态报告介质访问控制层控制元素(Buffer Status Report Medium Access Control Control Elements,BSR MAC CE)。网络侧可以通过RRC专用信令配置SPS功能的开启,并通过DCI激活和分配SPS资源;还可以通过DCI去激活SPS,即关闭SPS功能,这种情况下终端就停止使用SPS资源,直至再次开启SPS功能。
NB-IoT支持多载波,终端的SPS资源是指在网络侧配置的专用载波上的物理资源。在发生载波切换,即网络侧将终端重配置到另一个专用频点的情况下,终端和网络侧无法直接使用之前配置的SPS资源传输数据,会导致SPS功能终 止、BSR无法成功传输,影响通信质量。
在本申请实施例中,提供一种资源确定方法,在通过RRC重配消息将终端重配置到所指示的载波的情况下,能够根据相关资源配置信息,重新确定在所指示的载波中使用的目标SPS资源,提高载波切换场景下SPS资源传输的灵活性和可靠性。
图1为一实施例提供的一种资源确定方法的流程图。本实施例的资源确定方法,可应用于通信节点,通信节点可以为终端(User Equipment,UE)。如图1所示,本实施例提供的方法包括步骤110和步骤120。
在步骤110中,接收无线资源控制RRC重配消息,所述RRC重配消息包括专用载波配置信息。
本实施例中,RRC重配消息(RRC连接重配(RRC Connection Reconfiguration)消息)中包括专用载波配置信息,用于指示终端从原有载波切换到所指示的载波。在步骤110之前,终端工作于原有载波(原有载波与专用载波配置信息所指示的载波不同),并且已知在原有载波中使用的SPS资源(以下实施例中描述为已有SPS资源)。
在步骤120中,根据相关资源配置信息,确定所述专用载波配置信息指示的载波中的目标半静态调度SPS资源。
本实施例中,目标SPS资源根据相关资源配置信息确定,相关资源配置信息包括:
目标SPS资源所在的载波,即专用载波配置信息所指示的载波;目标SPS资源所在的子载波,可能与终端在原有载波中所在的子载波位置一致,也可能是由RRC重配消息重新指示;目标SPS资源的时域位置,主要指SPS窄带物理上行共享信道(Narrowband Physical Uplink Share channel,NPUSCH)的时域起始位置,可能与终端在原有载波中的所在的时域起始位置一致,也可能是由RRC重配消息重新指示;目标SPS资源的NPUSCH的重复周期,可能与终端在原有载波中的NPUSCH的重复周期一致,也可能是由RRC重配消息重新指示;目标SPS资源的NPUSCH的重复次数,可能与终端在原有载波中的NPUSCH的重复次数一致,也可能是由RRC重配消息重新指示。
此外,在切换载波的场景下,终端可以通过重新接收激活DCI以再次开启SPS功能并激活目标SPS资源;也可以不等待激活DCI,在接收到RRC重配消息的情况下开启SPS功能并激活目标SPS资源。
在一实施例中,终端的RRC层接收到RRC重配消息,RRC重配消息中包含专用物理配置(Physical Config Dedicated)信息,专用物理配置信息中包含专 用载波配置(Carrier Config Dedicated)信息,在终端接收到RRC重配消息之前,已知原有载波中激活的已有SPS资源。
本实施例的资源确定方法,针对网络侧通过RRC重配消息对终端的专用载波进行重配置的情况,为终端提供了重新确定目标SPS资源的方案,网络侧也可以根据相关资源配置信息确定该目标SPS资源,以实现载波切换场景下的SPS功能,提高载波切换场景下SPS资源传输的灵活性和可靠性。
在一实施例中,还包括:
步骤100:根据第一激活DCI、第一SPS小区无线网络标识(Cell Radio Network Temporary Identifier,C-RNTI)和第一SPS周期确定已有SPS资源。
本实施例中,在终端接收RRC重配消息之前,终端已经通过RRC消息接收到SPS功能的相关配置,包括第一SPS C-RNTI和第一SPS周期,终端根据第一SPS C-RNTI和第一SPS周期,在第一激活DCI的指示下,确定在原有载波中用于传输BSR的已有SPS资源。
在一实施例中,所述相关资源配置信息包括第一SPS C-RNTI和第一SPS周期;步骤120包括:在接收到第二激活DCI的情况下,根据相关资源配置信息确定所述目标SPS资源。
本实施例中,终端通过重新接收激活DCI以开启SPS功能并激活目标SPS资源,即,在终端被重配置至专用载波配置信息所指示的载波的情况下,停止使用原有载波中的已有SPS资源,直至接收到第二激活DCI,再次激活SPS功能,可以利用第一SPS C-RNTI和第一SPS周期,确定在专用载波配置信息所指示的载波中的目标SPS资源。这种情况下,RRC重配消息中不包含关于目标SPS资源的相关配置,目标SPS资源可参考已有SPS资源在原有载波中的位置确定。例如,目标SPS资源所在的子载波,与终端在原有载波中所在的子载波位置一致;目标SPS资源的时域起始位置,与终端在原有载波中的所在的时域起始位置一致;目标SPS资源的NPUSCH的重复周期,与终端在原有载波中的NPUSCH的重复周期即第一SPS周期一致;目标SPS资源的NPUSCH的重复次数,与终端在原有载波中的NPUSCH的重复次数一致。
在一实施例中,还包括:
步骤1101:根据所述RRC重配消息释放已有SPS资源。
本实施例中,终端在接收到RRC重配消息的情况下,释放已有SPS资源,完成SPS功能的去激活。终端的RRC层指示底层执行SPS功能的去激活,从而不再使用已有SPS资源发送BSR,直到接收到第二激活DCI,再次激活SPS功能。
这种情况下,网络侧不需要重新发送DCI以进行去激活,从而节省信令开销,提高通信效率。
在一实施例中,相关资源配置信息包括第一激活DCI、第一SPS C-RNTI和第一SPS周期;步骤120,包括:
在接收到所述RRC重配消息的情况下,根据所述相关资源配置信息确定所述目标SPS资源。
本实施例中,终端不需要重新接收激活DCI,即,在终端接收到RRC重配消息的情况下,就停止使用原有载波中的已有SPS资源,并在第一激活DCI已经激活SPS功能的基础上,根据第一SPS C-RNTI和第一SPS周期,确定在专用载波配置信息所指示的载波中的目标SPS资源。这种情况下,RRC重配消息中不包含关于目标SPS资源的配置,目标SPS资源可参考已有SPS资源在原有载波中的位置确定,终端和网络侧不需要去激活SPS功能,可以继续根据已有SPS资源确定在新的载波中的目标SPS资源。例如,目标SPS资源所在的子载波,与终端在原有载波中所在的子载波位置一致;目标SPS资源的时域起始位置,与终端在原有载波中的所在的时域起始位置一致;目标SPS资源的NPUSCH的重复周期,与终端在原有载波中的NPUSCH的重复周期即第一SPS周期一致;目标SPS资源的NPUSCH的重复次数,与终端在原有载波中的NPUSCH的重复次数一致。
本实施例中,目标SPS资源是根据在接收到RRC重配消息之前保存的最新的第一SPS周期、最近一次的第一激活DCI中指示的子载波、时域起始位置、重复次数等确定,即满足:
目标SPS资源所在的载波,即专用载波配置信息所指示的载波;目标SPS资源所在的子载波,与第一激活DCI指示的终端在原有载波中所在的子载波位置一致;目标SPS资源的NPUSCH的重复周期,与第一激活DCI指示的终端在原有载波中的NPUSCH的重复周期即第一SPS周期一致;目标SPS资源的NPUSCH的重复次数,与第一激活DCI指示的终端在原有载波中的NPUSCH的重复次数一致;目标SPS资源的时域起始位置,与终端在原有载波中的所在的时域起始位置一致。
目标SPS资源的时域起始位置满足:
(10*SFN+subframe)=[(10*SFN start time+subframe start time)+N*semiPersistSchedIntervalUL]modulo 10240,其中,SFN和subframe是SPS NPUSCH起始位置的无线帧号和子帧号;SFN start time和subframe start time是第一激活DCI中分配的NPUSCH起始位置所在的无线帧号和子帧号; semiPersistSchedIntervalUL是第一SPS周期。
在一实施例中,RRC重配消息还包括以下至少之一:子载波信息、时域起始位置、第二SPS C-RNTI、重复次数和第二SPS周期;所述相关资源配置信息包括所述RRC重配消息;步骤120,包括:
在接收到所述RRC重配消息的情况下,根据所述相关资源配置信息确定所述目标SPS资源。
本实施例中,在RRC重配消息中新增信元,用于指示RRC重配后的SPS物理资源的信息,终端不需要重新接收激活DCI,在接收到RRC重配消息的情况下,就停止使用原有载波中的已有SPS资源,并根据RRC重配消息中指示的第二SPS周期、子载波、时域起始位置和/或重复次数确定目标SPS资源。这种情况下,RRC重配消息中包含关于目标SPS资源的配置,终端和网络侧不需要去激活SPS功能。此外,对于在RRC重配消息中没有指示的相关配置,也可以参考在接收到RRC重配消息之前在原有载波中的位置确定。
示例性的,RRC重配消息用于指示:
目标SPS资源所在的载波,即专用载波配置信息所指示的载波;目标SPS资源所在的子载波;目标SPS资源的NPUSCH的重复周期,即第二SPS周期;目标SPS资源的NPUSCH的重复次数;目标SPS资源的时域起始位置,指示形式可以是无线帧号和子帧号,也可以是目标SPS资源的时域起始位置与RRC重配消息的NPDSCH结束子帧之间的间隔时间。
目标SPS资源的时域起始位置满足:
(10*SFN+subframe)=[(10*SFN start time+subframe start time)+N*semiPersistSchedIntervalUL]modulo 10240,其中,SFN和subframe是SPS NPUSCH起始位置的无线帧号和子帧号;SFN start time和subframe start time是RRC重配消息指示的NPUSCH起始位置所在的无线帧号和子帧号;semiPersistSchedIntervalUL是第二SPS周期。
在一实施例中,还包括:
步骤130:在发送RRC连接重配完成消息的NPUSCH的结束子帧的设定时间间隔之后,通过所述目标SPS资源发送上行待传数据量BSR。
本实施例中,在不需要重新接收激活DCI的情况下,目标SPS资源相关配置的生效时间在终端发送RRC连接重配完成(RRC Connection Reconfiguration Complete)消息之后;例如可以为在承载RRC连接重配完成消息的NPUSCH结束子帧的设定时间间隔之后。在目标SPS资源相关配置生效之后,完整的目标SPS资源才为可用于发送BSR的SPS资源,而在终端收到RRC重配消息到所 述的生效时间之间,终端和网络侧不使用已有SPS资源或目标SPS资源传输BSR MAC CE。
以下通过示例对确定目标SPS资源的过程进行说明。
图2为一实施例提供的确定目标SPS资源的示意图。本实施例中,RRC重配消息中不包含目标SPS资源的相关配置,目标SPS资源根据第一C-RNTI、第一SPS周期和第一激活DCI确定,终端需要等待第二激活DCI。
如图2所示,终端以用户面(User Plane,UP)模式接入到NB-IoT网络中,网络侧例如为基站演进型基站(evolved NodeB,eNB)。基站已经通过RRC消息配置了SPS功能开启,并下发了第一C-RNTI和第一SPS周期。基站通过第一激活DCI已经激活已有SPS资源,终端使用已有SPS资源发送BSR MAC CE。
基站发送RRC重配消息,其中包含专用载波配置信息,用于指示终端切换至新的上行载波。
终端接收到RRC重配消息,RRC层指示底层去激活SPS功能,底层停止使用已有SPS资源来发送BSR MAC CE。
终端在专用载波配置信息所指示的载波上,与基站重新建立RRC连接,并向基站发送RRC连接重配完成消息,基站在收到RRC连接重配完成消息后,默认该终端的已有SPS资源已经去激活,停止在已有SPS资源上接收BSR MAC CE,删除给该终端分配的已有SPS资源,并向该终端发送第二激活DCI,激活目标SPS资源。
终端在接收到第二激活DCI的情况下,根据保存的第一C-RNTI、第一SPS周期和第一激活DCI的指示,确定在专用载波配置信息所指示的载波上的目标SPS资源,并使用目标SPS资源发送BSR MAC CE;基站在新的载波上,参考同样的方式确定目标SPS资源,并在目标SPS资源上接收BSR MAC CE。
图3为另一实施例提供的确定目标SPS资源的示意图。本实施例中,RRC重配消息中不包含目标SPS资源的相关配置,目标SPS资源根据第一C-RNTI、第一SPS周期和第一激活DCI确定,终端不需要等待第二激活DCI。
终端以UP模式接入到NB-IoT网络中,网络侧的通信节点例如为基站eNB。基站已经通过RRC消息配置了SPS功能开启,并下发了第一C-RNTI和第一SPS周期。基站通过第一激活DCI已经激活已有SPS资源,终端使用已有SPS资源发送BSR MAC CE。
基站发送RRC重配消息,其中包含专用载波配置信息,用于指示终端切换至新的上行载波。
终端接收到RRC重配消息,RRC层指示底层去激活SPS功能,底层停止使用已有SPS资源来发送BSR MAC CE。
终端在专用载波配置信息所指示的载波上,与基站重新建立RRC连接,并向基站发送RRC连接重配完成消息,基站在收到RRC连接重配完成消息后,默认该终端的已有SPS资源已经去激活,停止在已有SPS资源上接收BSR MAC CE,删除给该终端分配的已有SPS资源。
终端在专用载波配置信息所指示的载波上,在第一激活DCI指示的子载波上,根据保存的第一SPS周期、第一激活DCI分配的NPUSCH起始子帧号subframe start time和所在无线帧号SFN start time确定目标SPS资源的时域起始位置,目标SPS资源的时域起始位置所在无线帧SFN和子帧号subframe满足:
(10*SFN+subframe)=[(10*SFN start time+subframe start time)+N*semiPersistSchedIntervalUL]modulo 10240,其中,SFN和subframe是SPS NPUSCH起始位置的无线帧号和子帧号;SFN start time和subframe start time是第一激活DCI中分配的NPUSCH起始位置所在的无线帧号和子帧号;semiPersistSchedIntervalUL是第一SPS周期。
终端RRC连接重配完成后立即(或者在承载RRC连接重配完成消息的NPUSCH结束子帧间隔一定时间后)使用目标SPS资源发送BSR MAC CE;基站在新的载波上,参考同样的方式确定目标SPS资源,并在目标SPS资源上接收BSR MAC CE。
图4为又一实施例提供的确定目标SPS资源的示意图。本实施例中,RRC重配消息中包含目标SPS资源的相关配置,目标SPS资源根据RRC重配消息中的目标SPS资源的相关配置(对于RRC重配消息中未指示的相关配置可以参考在原有载波上的相关配置)确定,终端不需要等待第二激活DCI。
终端以UP模式接入到NB-IoT网络中,网络侧的通信节点例如为基站eNB。基站已经通过RRC消息配置了SPS功能开启,并下发了第一C-RNTI和第一SPS周期。基站通过第一激活DCI已经激活已有SPS资源,终端使用已有SPS资源发送BSR MAC CE。
基站发送RRC重配消息,其中包含专用载波配置信息,用于指示终端切换至新的上行载波。RRC重配消息还包括:目标SPS资源的NPUSCH所在子载波;目标SPS资源的NPUSCH的重复次数;目标SPS资源的NPUSCH的起始时域起始位置的无线帧号SFNstart time和子帧号subframestart time;或者是目标SPS资源的NPUSCH的起始时域起始位置与承载RRC连接重配完成消息的NPDSCH结束子帧之间的设定间隔时间T。
终端接收到RRC重配消息,RRC层指示底层去激活SPS功能,底层停止使用已有SPS资源来发送BSR MAC CE。
终端在专用载波配置信息所指示的载波上,与基站重新建立RRC连接,并向基站发送RRC连接重配完成消息,基站在收到RRC连接重配完成消息后,默认该终端的已有SPS资源已经去激活,停止在已有SPS资源上接收BSR MAC CE,删除给该终端分配的已有SPS资源。
终端在专用载波配置信息所指示的载波和RRC重配消息指示的子载波上,根据第一SPS周期(由于RRC重配消息中没有指示目标SPS资源对应的第二SPS周期)、RRC重配消息指示的目标SPS资源的NPUSCH起始子帧号subframestart time和无线帧号SFNstart time来计算目标SPS资源的时域起始位置,目标SPS资源的时域起始位置所在无线帧SFN和子帧号subframe满足下面的公式:
(10*SFN+subframe)=[(10*SFN start time+subframe start time)+N*semiPersistSchedIntervalUL]modulo 10240,其中,SFN和subframe分别是目标SPS资源的NPUSCH起始位置的无线帧号和子帧号;SFN start time和subframe start time分别是RRC重配消息指示的NPUSCH起始位置所在的无线帧号和子帧号;semiPersistSchedIntervalUL是第一SPS周期。
或者,终端在专用载波配置信息所指示的载波和RRC重配消息指示的子载波上,根据第一SPS周期(由于RRC重配消息中没有指示目标SPS资源对应的第二SPS周期)、RRC重配消息指示的T来计算目标SPS资源的时域起始位置,目标SPS资源的时域起始位置所在无线帧SFN和子帧号subframe满足下面的公式:
(10*SFN+subframe)=[(10*SFN end time+subframe end time+T)+N*semiPersistSchedIntervalUL]modulo 10240,其中,SFN和subframe是目标SPS资源的NPUSCH起始位置的无线帧号和子帧号;SFN end time和subframe end time分别为RRC重配消息指示的承载RRC连接重配完成消息的NPDSCH结束子帧所在的无线帧号和子帧号;semiPersistSchedIntervalUL是第一SPS周期。
终端RRC连接重配完成后立即(或者在承载RRC连接重配完成消息的NPUSCH结束子帧间隔一定时间后)使用目标SPS资源发送BSR MAC CE;基站在新的载波上,参考同样的方式确定目标SPS资源,并在目标SPS资源上接收BSR MAC CE。
RRC重配消息中的目标SPS资源的相关配置可以包括子载波、重复次数、第二SPS周期、起始时域起始位置(时域起始位置的无线帧号和子帧号,或者 是设定时间间隔T)中的一项或多项,对于RRC重配消息中未指示的相关配置可以参考在原有载波上的相关配置确定,即,目标SPS资源可以根据RRC重配消息指示的相关配置和已保存的在原有载波上的相关配置中的至少一种确定,从而为已有SPS资源的去激活或继续使用提供完善的解决方案,提高SPS功能的灵活性,保证BSR有效可靠的传输,并且节省信令开销。
图5为一实施例提供的一种资源配置方法的流程图。本实施例的资源配置方法可应用于通信节点,例如网络侧的通信节点,基站。未在本实施例中详尽描述的技术方案可参见上述任意实施例。如图5所示,本实施例提供的方法包括步骤210和步骤220。
在步骤210中,发送RRC重配消息,所述RRC重配消息包括专用载波配置信息。
在步骤220中,根据相关资源配置信息,配置所述专用载波配置信息指示的载波中的目标SPS资源。
本实施例中,RRC重配消息中包括专用载波配置信息,用于指示终端从原有载波切换到所指示的载波。在步骤210之前,终端工作于原有载波(原有载波与专用载波配置信息所指示的载波不同),并且已知在原有载波中使用的SPS资源(以下实施例中描述为已有SPS资源)。
本实施例的资源配置方法,针对网络侧通过RRC重配消息对终端的专用载波进行重配置的情况,提供了重新确定目标SPS资源的方案,以实现载波切换场景下的SPS功能,提高载波切换场景下SPS资源传输的灵活性和可靠性。
在一实施例中,RRC重配消息中还可以包括目标SPS资源的相关配置。
在一实施例中,基站通过重新发送激活DCI以开启SPS功能并激活目标SPS资源,也可以不重新发送激活DCI,通过RRC重配消息开启SPS功能并激活目标SPS资源即可。
在一实施例中,还包括:
步骤200:根据第一激活DCI、第一SPS C-RNTI和第一SPS周期配置已有SPS资源。
本实施例中,在发送RRC重配消息之前,终端已经通过RRC消息接收到SPS功能的相关配置,包括第一SPS C-RNTI和第一SPS周期,终端和基站可以根据第一SPS C-RNTI和第一SPS周期,在第一激活DCI的指示下,确定在原有载波中用于传输BSR的已有SPS资源。
在一实施例中,所述相关资源配置信息包括第一SPS C-RNTI和第一SPS周期;步骤220,包括:根据所述相关资源配置信息配置所述目标SPS资源,并通过发送第二激活DCI激活所述目标SPS资源。
本实施例中,基站通过重新发送激活DCI(即第二激活DCI)以开启SPS功能并激活目标SPS资源。
在一实施例中,所述RRC重配消息用于指示终端释放已有SPS资源。
本实施例中,终端在接收到RRC重配消息的情况下,释放已有SPS资源,完成SPS功能的去激活。
在一实施例中,所述相关资源配置信息包括第一激活DCI、第一SPS C-RNTI和第一SPS周期;步骤220,包括:
根据所述相关资源配置信息配置所述目标SPS资源,并通过所述RRC重配消息激活所述目标SPS资源。
本实施例中,基站不需要重新发送激活DCI,在终端接收到RRC重配消息的情况下,就停止使用原有载波中的已有SPS资源,并在第一激活DCI已经激活SPS功能的基础上,根据第一SPS C-RNTI和第一SPS周期,确定在专用载波配置信息所指示的载波中的目标SPS资源。
在一实施例中,RRC重配消息还包括以下至少之一:子载波信息、时域起始位置、第二SPS C-RNTI、重复次数和第二SPS周期;相关资源配置信息包括RRC重配消息;步骤220,包括:
根据所述相关资源配置信息配置所述目标SPS资源,并通过所述RRC重配消息激活所述目标SPS资源。
本实施例中,在RRC重配消息中新增信元,用于指示RRC重配后的SPS物理资源的信息,终端不需要重新接收激活DCI。
在一实施例中,还包括:
步骤230:在终端侧发送RRC连接重配完成消息的NPUSCH的结束子帧的设定时间间隔之后,通过所述目标SPS资源接收BSR。
本实施例中,在不需要重新发送激活DCI的情况下,目标SPS资源相关配置的生效时间在终端发送RRC连接重配完成消息之后;例如可以为在承载RRC连接重配完成消息的NPUSCH结束子帧的设定时间间隔之后。在目标SPS资源相关配置生效之后,完整的目标SPS资源才为可用于传输BSR的SPS资源,而在终端收到RRC重配消息到所述的生效时间之间,基站不使用已有SPS资源或目标SPS资源接收BSR MAC CE。
本申请实施例还提供一种资源确定装置。图6为一实施例提供的一种资源确定装置的结构示意图。如图6所示,所述资源确定装置包括:接收模块310和资源确定模块320。
接收模块310,设置为接收RRC重配消息,所述RRC重配消息包括专用载波配置信息;资源确定模块320,设置为根据相关资源配置信息,确定所述专用载波配置信息指示的载波中的目标SPS资源。
本实施例的资源确定装置,在通过RRC重配消息将终端重配置到所指示的专用载波的情况下,能够根据相关资源配置信息,重新确定在所指示的载波中使用的目标SPS资源,提高载波切换场景下SPS资源传输的灵活性和可靠性。
在一实施例中,还包括:
已有资源确定模块,设置为根据第一激活DCI、第一SPS C-RNTI和第一SPS周期确定已有SPS资源。
在一实施例中,所述相关资源配置信息包括第一SPS C-RNTI和第一SPS周期;资源确定模块320,设置为:
在接收到第二激活DCI的情况下,根据所述相关资源配置信息确定所述目标SPS资源。
在一实施例中,还包括:
释放模块,设置为根据所述RRC重配消息释放已有SPS资源。
在一实施例中,所述相关资源配置信息包括第一激活DCI、第一SPS C-RNTI和第一SPS周期;资源确定模块,设置为:
在接收到所述RRC重配消息的情况下,根据所述相关资源配置信息确定所述目标SPS资源。
在一实施例中,所述RRC重配消息还包括以下至少之一:子载波信息、时域起始位置、第二SPS C-RNTI、重复次数和第二SPS周期;所述相关资源配置信息包括所述RRC重配消息;资源确定模块,设置为:
在接收到所述RRC重配消息的情况下,根据所述相关资源配置信息确定所述目标SPS资源。
在一实施例中,还包括:
数据量发送模块,设置为在发送RRC连接重配完成消息的NPUSCH的结束子帧的设定时间间隔之后,通过所述目标SPS资源发送上行待传数据量BSR。
本实施例提出的资源确定装置与上述实施例提出的资源确定方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行资源确定方法相同的效果。
本申请实施例还提供一种资源配置装置。图7为一实施例提供的一种资源配置装置的结构示意图。如图7所示,所述资源配置装置包括:发送模块410和资源配置模块420。
发送模块410,设置为发送RRC重配消息,所述RRC重配消息包括专用载波配置信息;资源配置模块420,根据相关资源配置信息,配置所述专用载波配置信息指示的载波中的目标SPS资源。
本实施例的资源配置装置,针对网络侧通过RRC重配消息对终端的专用载波进行重配置的情况,提供了重新确定目标SPS资源的方案,以实现载波切换场景下的SPS功能,提高载波切换场景下SPS资源传输的灵活性和可靠性。
在一实施例中,还包括:
已有资源配置模块,设置为:根据第一激活DCI、第一SPS C-RNTI和第一SPS周期配置已有SPS资源。
在一实施例中,所述相关资源配置信息包括第一SPS C-RNTI和第一SPS周期;资源配置模块420,设置为:
根据所述相关资源配置信息配置所述目标SPS资源,并通过发送第二激活DCI激活所述目标SPS资源。
在一实施例中,所述RRC重配消息用于指示终端释放已有SPS资源。
在一实施例中,所述相关资源配置信息包括第一激活DCI、第一SPS C-RNTI和第一SPS周期;资源配置模块420,设置为:
根据所述相关资源配置信息配置所述目标SPS资源,并通过所述RRC重配消息激活所述目标SPS资源。
在一实施例中,RRC重配消息还包括以下至少之一:子载波信息、时域起始位置、第二SPS C-RNTI、重复次数和第二SPS周期;相关资源配置信息包括所述RRC重配消息;资源配置模块420,设置为:
根据所述相关资源配置信息配置所述目标SPS资源,并通过所述RRC重配消息激活所述目标SPS资源。
在一实施例中,还包括:
数据量接收模块,设置为在终端侧发送RRC连接重配完成消息的NPUSCH的结束子帧的设定时间间隔之后,通过所述目标SPS资源接收BSR。
本实施例提出的资源配置装置与上述实施例提出的资源确定方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行资源确定方法相同的效果。
本申请实施例还提供了一种通信节点,图8为一实施例提供的一种通信节点的硬件结构示意图,如图8所示,本申请提供的通信节点,包括一个或多个处理器51,其中所述一个或多个处理器51在执行时实现本申请任一实施例提供的资源确定方法或资源配置方法,相应的,通信节点为终端或者为网络侧节点。
通信节点还可以包括存储装置52;该通信节点中的处理器51可以是一个或多个,图8中以一个处理器51为例;存储装置52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本申请实施例中所述的资源确定方法或资源配置方法。
通信节点还包括:通信装置53、输入装置54和输出装置55。
通信节点中的处理器51、存储装置52、通信装置53、输入装置54和输出装置55可以通过总线或其他方式连接,图8中以通过总线连接为例。
输入装置54可用于接收输入的数字或字符信息,以及产生与通信节点的用户设置以及功能控制有关的按键信号输入。输出装置55可包括显示屏等显示设备。
通信装置53可以包括接收器和发送器。通信装置53设置为根据处理器51的控制进行信息收发通信。
存储装置52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述资源确定方法对应的程序指令/模块(例如,发送模块310和资源确定模块320)。存储装置52可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储装置52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置52可包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的资源确定方法或资源配置方法。
其中,资源确定方法,包括:
接收RRC重配消息,所述RRC重配消息包括专用载波配置信息;根据相关资源配置信息,确定所述专用载波配置信息指示的载波中的目标SPS资源。
资源配置方法,包括:
发送RRC重配消息,所述RRC重配消息包括专用载波配置信息;根据相关资源配置信息,配置所述专用载波配置信息指示的载波中的目标SPS资源。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机 上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
术语终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (18)

  1. 一种资源确定方法,包括:
    接收无线资源控制RRC重配消息,所述RRC重配消息包括专用载波配置信息;
    根据相关资源配置信息,确定所述专用载波配置信息指示的载波中的目标半静态调度SPS资源。
  2. 根据权利要求1所述的方法,还包括:
    根据第一激活下行控制信息DCI、第一SPS小区无线网络标识C-RNTI和第一SPS周期确定已有SPS资源。
  3. 根据权利要求1所述的方法,其中,所述相关资源配置信息包括第一SPS C-RNTI和第一SPS周期;
    所述根据相关资源配置信息,确定所述专用载波配置信息指示的载波中的目标SPS资源,包括:
    在接收到第二激活DCI的情况下,根据所述相关资源配置信息确定所述目标SPS资源。
  4. 根据权利要求3所述的方法,还包括:
    根据所述RRC重配消息释放已有SPS资源。
  5. 根据权利要求1所述的方法,其中,所述相关资源配置信息包括第一激活DCI、第一SPS C-RNTI和第一SPS周期;
    所述根据相关资源配置信息,确定所述专用载波配置信息指示的载波中的目标SPS资源,包括:
    在接收到所述RRC重配消息的情况下,根据所述相关资源配置信息确定所述目标SPS资源。
  6. 根据权利要求1所述的方法,其中,所述RRC重配消息还包括以下至少之一:子载波信息、时域起始位置、第二SPS C-RNTI、重复次数和第二SPS周期;
    所述相关资源配置信息包括所述RRC重配消息;
    所述根据相关资源配置信息,确定所述专用载波配置信息指示的载波中的目标SPS资源,包括:
    在接收到所述RRC重配消息的情况下,根据所述相关资源配置信息确定所述目标SPS资源。
  7. 根据权利要求5或6所述的方法,还包括:
    在发送RRC连接重配完成消息的窄带物理上行共享信道NPUSCH的结束子帧的设定时间间隔之后,通过所述目标SPS资源发送上行待传数据,所述上行待传数据的数据量大小由缓存状态报告BSR指示。
  8. 一种资源配置方法,包括:
    发送无线资源控制RRC重配消息,所述RRC重配消息包括专用载波配置信息;
    根据相关资源配置信息,配置所述专用载波配置信息指示的载波中的目标半静态调度SPS资源。
  9. 根据权利要求8所述的方法,还包括:
    根据第一激活下行控制信息DCI、第一SPS小区无线网络标识C-RNTI和第一SPS周期配置已有SPS资源。
  10. 根据权利要求8所述的方法,其中,所述相关资源配置信息包括第一SPS C-RNTI和第一SPS周期;
    所述根据相关资源配置信息,配置所述专用载波配置信息指示的载波中的目标SPS资源,包括:
    根据所述相关资源配置信息配置所述目标SPS资源,并通过发送第二激活DCI激活所述目标SPS资源。
  11. 根据权利要求10所述的方法,其中,所述RRC重配消息用于指示终端释放已有SPS资源。
  12. 根据权利要求8所述的方法,其中,所述相关资源配置信息包括第一激活DCI、第一SPS C-RNTI和第一SPS周期;
    所述根据相关资源配置信息,配置所述专用载波配置信息指示的载波中的目标SPS资源,包括:
    根据所述相关资源配置信息配置所述目标SPS资源,并通过所述RRC重配消息激活所述目标SPS资源。
  13. 根据权利要求8所述的方法,其中,所述RRC重配消息还包括以下至少之一:子载波信息、时域起始位置、第二SPS C-RNTI、重复次数和第二SPS周期;
    所述相关资源配置信息包括所述RRC重配消息;
    所述根据相关资源配置信息,配置所述专用载波配置信息指示的载波中的 目标SPS资源,包括:
    根据所述相关资源配置信息配置所述目标SPS资源,并通过所述RRC重配消息激活所述目标SPS资源。
  14. 根据权利要求12或13所述的方法,还包括:
    在终端侧发送RRC连接重配完成消息的NPUSCH的结束子帧的设定时间间隔之后,通过所述目标SPS资源接收缓存状态报告BSR。
  15. 一种资源确定装置,包括:
    接收模块,设置为接收无线资源控制RRC重配消息,所述RRC重配消息包括专用载波配置信息;
    资源确定模块,设置为根据相关资源配置信息,确定所述专用载波配置信息指示的载波中的目标半静态调度SPS资源。
  16. 一种资源配置装置,包括:
    发送模块,设置为发送无线资源控制RRC重配消息,所述RRC重配消息包括专用载波配置信息;
    资源配置模块,根据相关资源配置信息,配置所述专用载波配置信息指示的载波中的目标半静态调度SPS资源。
  17. 一种通信节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7中任一项所述的资源确定方法或如权利要求8-14中任一项所述的资源配置方法。
  18. 一种计算机可读存储介质,存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1-7中任一项所述的资源确定方法或如权利要求8-14中任一项所述的资源配置方法。
PCT/CN2021/116154 2020-09-07 2021-09-02 资源确定方法及装置、资源配置方法及装置、通信节点、存储介质 WO2022048583A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/024,866 US20230319940A1 (en) 2020-09-07 2021-09-02 Resource determination method and apparatus, resource configuration method and apparatus, communication node, and storage medium
EP21863647.0A EP4213539A1 (en) 2020-09-07 2021-09-02 Resource determination method and apparatus, resource configuration method and apparatus, communication node, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010930052.4 2020-09-07
CN202010930052.4A CN112055360A (zh) 2020-09-07 2020-09-07 资源确定、配置方法、装置、通信节点及存储介质

Publications (1)

Publication Number Publication Date
WO2022048583A1 true WO2022048583A1 (zh) 2022-03-10

Family

ID=73609844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116154 WO2022048583A1 (zh) 2020-09-07 2021-09-02 资源确定方法及装置、资源配置方法及装置、通信节点、存储介质

Country Status (4)

Country Link
US (1) US20230319940A1 (zh)
EP (1) EP4213539A1 (zh)
CN (1) CN112055360A (zh)
WO (1) WO2022048583A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055360A (zh) * 2020-09-07 2020-12-08 中兴通讯股份有限公司 资源确定、配置方法、装置、通信节点及存储介质
WO2023082110A1 (zh) * 2021-11-10 2023-05-19 北京小米移动软件有限公司 半静态调度的重新去激活、确定方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104982A (zh) * 2010-04-01 2011-06-22 电信科学技术研究院 一种多载波系统的连接重建方法和设备
WO2018024943A1 (en) * 2016-08-05 2018-02-08 Nokia Technologies Oy Semi-persistent scheduling of contention based channel for transmission repetitions
CN111555839A (zh) * 2019-02-11 2020-08-18 成都鼎桥通信技术有限公司 载波聚合中上行载波资源的分配方法及设备
CN112055360A (zh) * 2020-09-07 2020-12-08 中兴通讯股份有限公司 资源确定、配置方法、装置、通信节点及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8706129B2 (en) * 2008-10-30 2014-04-22 Htc Corporation Method of improving semi-persistent scheduling resources reconfiguration in a wireless communication system and related communication device
US20180332606A1 (en) * 2015-12-18 2018-11-15 Lg Electronics Inc. Method and apparatus for allocating common sps resource across multiple cells in wireless communication system
WO2018201679A1 (zh) * 2017-05-05 2018-11-08 华为技术有限公司 半持续调度方法、用户设备和网络设备
CN113115452B (zh) * 2017-08-10 2023-01-13 华为技术有限公司 一种配置资源的方法及设备
CN111065165A (zh) * 2018-10-16 2020-04-24 普天信息技术有限公司 半静态调度的配置方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104982A (zh) * 2010-04-01 2011-06-22 电信科学技术研究院 一种多载波系统的连接重建方法和设备
WO2018024943A1 (en) * 2016-08-05 2018-02-08 Nokia Technologies Oy Semi-persistent scheduling of contention based channel for transmission repetitions
CN111555839A (zh) * 2019-02-11 2020-08-18 成都鼎桥通信技术有限公司 载波聚合中上行载波资源的分配方法及设备
CN112055360A (zh) * 2020-09-07 2020-12-08 中兴通讯股份有限公司 资源确定、配置方法、装置、通信节点及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Physical layer scheduling request for NB-IoT", 3GPP DRAFT; R1-1805858 PHYSICAL LAYER SCHEDULING REQUEST FOR NB-IOT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051441078 *

Also Published As

Publication number Publication date
EP4213539A1 (en) 2023-07-19
CN112055360A (zh) 2020-12-08
US20230319940A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
US11096200B2 (en) Methods, devices and systems for device to device (D2D) data transmission and retransmission
WO2018036433A1 (zh) 信息发送、接收方法及装置、基站、终端
US11388702B2 (en) Resource determining method, apparatus, network element, and system
WO2018201762A1 (zh) 一种资源调度方法及相关设备
WO2016119454A1 (zh) 非授权载波资源的使用方法及装置
WO2017133345A1 (zh) 业务传输的方法和装置
WO2020220230A1 (zh) 上行数据传输方法、装置及存储介质
KR20230065301A (ko) 파라미터 피드백 방법, 업데이트 방법, 연관 방법, 통신 노드, 통신 시스템 및 매체
WO2022048583A1 (zh) 资源确定方法及装置、资源配置方法及装置、通信节点、存储介质
JP2023538890A (ja) フィードバックコードブックの生成方法、フィードバックコードブックの受信方法、通信ノードおよび記憶媒体
WO2020038340A1 (zh) 一种harq反馈方法和装置
WO2017197949A1 (zh) 一种数据传输的控制方法及相关设备
WO2012136101A1 (zh) 一种混合自动重传的处理方法、系统及装置
JP6765446B2 (ja) サービスデータ伝送方法、端末およびネットワーク側機器
WO2021244501A1 (zh) 通信方法及装置
WO2019028792A1 (zh) 一种配置资源的方法及设备
WO2017113405A1 (zh) 一种跨载波调度方法、反馈方法及装置
JP2018510548A (ja) Rlcデータパケットオフロード方法および基地局
US20190261376A1 (en) Method for data transmission in wireless network, apparatus, and system
JP2022502916A (ja) V2xトラフィックに対応するための制御チャネル構造設計
WO2020114441A1 (zh) 一种数据传输方法和设备
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
WO2024067687A1 (zh) 信息传输方法、第一通信节点、第二通信节点及存储介质
WO2019191966A1 (zh) 可靠性传输方法及相关产品
WO2021155604A1 (zh) 信息处理方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021863647

Country of ref document: EP

Effective date: 20230411