WO2022048156A1 - 抽水蓄能电站综合管理方法、平台、系统、设备和介质 - Google Patents

抽水蓄能电站综合管理方法、平台、系统、设备和介质 Download PDF

Info

Publication number
WO2022048156A1
WO2022048156A1 PCT/CN2021/087142 CN2021087142W WO2022048156A1 WO 2022048156 A1 WO2022048156 A1 WO 2022048156A1 CN 2021087142 W CN2021087142 W CN 2021087142W WO 2022048156 A1 WO2022048156 A1 WO 2022048156A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
power plant
plant object
bimgis
pumped
Prior art date
Application number
PCT/CN2021/087142
Other languages
English (en)
French (fr)
Inventor
钟雪辉
季怀杰
江廷锋
黄萌智
潘传鹏
方勇
韩文杰
王胜男
施炫嘉
Original Assignee
清远蓄能发电有限公司
中冶集团武汉勘察研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清远蓄能发电有限公司, 中冶集团武汉勘察研究院有限公司 filed Critical 清远蓄能发电有限公司
Publication of WO2022048156A1 publication Critical patent/WO2022048156A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/103Workflow collaboration or project management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4184Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by fault tolerance, reliability of production system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors

Definitions

  • the invention relates to the field of digital management and calculation of a pumped-storage power station, in particular to a comprehensive management method, platform, system, equipment and medium of a pumped-storage power station.
  • the hydraulic hub project and the underground powerhouse chamber group are located underground, the UHV equipment runs without power for a long time, and the structure of the generator set is complex.
  • the number is also large and the concealment is strong, which makes it difficult for managers to have a comprehensive understanding and tracking of various structures on the production site, and can only rely on engineering reports or two-dimensional design drawings to recall engineering construction when tracing engineering records. information, and lack the means to intuitively understand the digital delivery content of engineering.
  • pumped-storage power stations are highly specialized, have a large number of components, and are densely populated.
  • the model requires very high levels of refinement, which puts forward higher requirements for the user's client hardware graphics card.
  • the limitations of browsers and network resources cause the slow loading efficiency of BIMGIS models, which further aggravates the intuitive feeling of poor user experience and makes it difficult to promote the digital delivery of projects.
  • 3D BIMGIS applications are carried out in the network environment, and the B/S mode is becoming more and more popular.
  • the first object of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide a comprehensive management method for a pumped-storage power station, based on which various structures, units, equipment, and other power plant objects can be monitored on the production site of the pumped-storage power station. Carry out a comprehensive understanding and tracking query, and when the local window outputs and displays the BIMGIS model of the power plant object, on the basis of ensuring the original fineness, there will be no stuck phenomenon.
  • the second object of the present invention is to provide an integrated management platform for a pumped-storage power station.
  • the third object of the present invention is to provide an integrated management system for a pumped-storage power station.
  • a fourth object of the present invention is to provide a storage medium.
  • a fifth object of the present invention is to provide a computing device.
  • the first object of the present invention is achieved through the following technical solutions: a comprehensive management method for a pumped-storage power station, the method comprising:
  • the digitally delivered content of the pumped-storage power station also includes attribute data and documents of the power plant objects at various stages before and after completion;
  • the method also includes:
  • the method further includes:
  • In positioning mode through the name of the camera node displayed in the local window, it is triggered to locate the spatial position of the camera node in the BIMGIS model of the power plant object displayed in 3D, and the camera model is displayed at the corresponding position.
  • the method further includes:
  • the power plant object teaching and training simulation courseware viewing or interactive instruction is triggered;
  • the method further includes a document search process
  • the list of documents related to the corresponding power plant object is searched;
  • the method also includes a model hiding, revealing and transparent revealing process:
  • the corresponding hidden model is displayed in 3D;
  • the selected normal state model becomes the transparent state
  • the selected transparent state model becomes the normal state
  • the selected model is located in the local window. the name of the power plant object
  • the method also includes a project progress display process:
  • the BIMGIS model of each power plant object of the pumped-storage power station after completion includes 3D volume section model and 3D surface section model.
  • the 3D volume section model of the corresponding power plant object will be displayed after completion of the BIMGIS model.
  • the 3D surface section model corresponding to the BIMGIS model after the completion of the power plant object is displayed.
  • the names of the decomposed power plant objects at all levels of the pumped-storage power station are displayed in a tree structure list;
  • the power plant objects of the pumped-storage power station include structures, units, equipment and devices in various projects of the hydro-storage power station;
  • the smallest separable unit model of the power plant object is coded, a BIM model is created and converted into a GIS model, the corresponding BIMGIS model is obtained, and each item in the model is coded.
  • Each component is assigned a cep number and a model code.
  • an integrated management platform for a pumped-storage power station comprising:
  • the acquisition module is used to acquire the digitally delivered content of the pumped storage power station, including the BIMGIS model of each power plant object of the pumped storage power station after completion, as well as the attribute data and document content of each power plant object at various stages before and after completion;
  • the first display control module is used to display the name of each power plant object in the local window
  • the display instruction generation module is used to display the name of each power plant object through the local window, and trigger the display instruction of the BIMGIS model after the completion of each power plant object of the pumped storage power station;
  • the second display control module is configured to perform three-dimensional display of the BIMGIS model corresponding to the power plant object in the local window after cloud rendering through the server when receiving the display instruction of the BIMGIS model.
  • the third object of the present invention is achieved through the following technical solutions: an integrated management system for a pumped-storage power station, including a local computing device and a server;
  • the local computing device is used for the comprehensive management method for a pumped-storage power station according to the first object of the present invention
  • the server when the local computing device receives the display instruction of the BIMGIS model, performs cloud rendering for the BIMGIS model of the power plant object that needs to be displayed, and then sends it to the local computing device, and the local computing device renders the power plant object BIMGIS cloud-rendered by the server.
  • the model is displayed in 3D in the local window.
  • the fourth object of the present invention is achieved by the following technical solutions: a storage medium storing a program, when the program is executed by a processor, the comprehensive management method for a pumped-storage power station described in the first object of the present invention is realized.
  • the fifth object of the present invention is achieved by the following technical solutions: a computing device, comprising a processor and a memory for storing a program executable by the processor, when the processor executes the program stored in the memory, the first object of the present invention is achieved.
  • a computing device comprising a processor and a memory for storing a program executable by the processor, when the processor executes the program stored in the memory, the first object of the present invention is achieved.
  • the present invention has the following advantages and effects:
  • the comprehensive management method of the pumped-storage power station of the present invention includes acquiring the digitally delivered content of the pumped-storage power station, including the BIMGIS model of each power plant object of the pumped-storage power station after completion, and the attribute data and the attribute data of each power plant object at each stage before and after completion.
  • Document display the name of each power plant object through the local window, trigger the display instruction of the BIMGIS model after the completion of each power plant object of the pumped storage power station, when receiving the display instruction of the BIMGIS model, perform cloud rendering through the server and then correspond in the local window 3D display of the BIMGIS model of the power plant object.
  • the present invention can use the BIMGIS model to conduct a comprehensive understanding and tracking query of various structures, units, equipment, and other power plant objects on the production site of the pumped storage power station;
  • the model is rendered in the cloud by the server and then displayed in 3D in the local window, so that when the client, that is, the local window, outputs and displays the BIMGIS model, on the basis of ensuring the original fineness, there will be no stuck phenomenon.
  • the digitally delivered content of the pumped storage power station includes the attribute data and documents of each power plant object at various stages before and after completion, and for the acquired power plant objects at each stage before and after completion Attribute data and document content are associated with the corresponding power plant object; through the name of the power plant object displayed in the local window or the BIMGIS model of the power plant object displayed in three dimensions, the power plant object attribute data viewing instruction or document viewing instruction is triggered.
  • the digitally delivered content can be associated with the corresponding power plant object, so it is possible to quickly query the engineering documents and other contents recorded by the power plant object in various stages under various projects, which effectively solves the problem of pumped storage in the prior art.
  • the teaching and training simulation courseware can be associated with the power plant object, and the corresponding power plant object name displayed in the local window or the BIMGIS model displayed in the three-dimensional window can be obtained and associated to the corresponding Training simulation courseware for power plant objects. It can be seen that the method of the present invention opens up the information islands between the various subsystems by associating the power plant objects of the pumped storage power station with the education and training simulation courseware, documents, etc., and realizes digital document management, education and training, and engineering digitization in a three-dimensional visualization manner.
  • Delivery, remote operation and maintenance, etc. can improve the operation ability and intelligence level of the power plant, solve the problem of enterprise information island to a certain extent, select the design and planning scheme for the pumped storage power station, supervise the construction process, large-scale equipment maintenance and technical transformation, etc. Provide decision-making assistance.
  • the BIMGIS model displayed in the three-dimensional window can be switched to the model that displays the three-dimensional body section and the plane section, which can help the operator to understand the interior of the power plant object in detail. structure and construction.
  • the BIMGIS model of each power plant object displayed in the three-dimensional window can be controlled to be hidden and transparently displayed according to actual needs, which is convenient for operators to view the model.
  • the camera node displayed in the local window is associated with each camera corresponding to the pumped-storage power station, and by triggering the camera node displayed in the local window, the images of the associated cameras can be obtained It is convenient to view the video of each monitoring point of the pumped-storage power station directly through the local window of the client.
  • the progress visualization demonstration can also be performed for each engineering model, so as to help the relevant personnel to easily and quickly understand the construction status of the project at each stage.
  • Fig. 1 is the comprehensive management method of the pumped storage power station of the present invention.
  • 2a and 2b are the model structure tree and the BIMGIS model diagram displayed in the local window in the method of the present invention.
  • 2c and 2d are operation diagrams of the method of the present invention when properties are viewed in the local window.
  • FIG. 2e is an operation diagram when viewing a document in a local window in the method of the present invention.
  • Figure 2f is a document list diagram in the method of the present invention.
  • Figures 2g and 2h are operational diagrams of the method of the present invention when viewing documents for parts.
  • 3a to 3d are operation diagrams when viewing the monitoring point monitoring data in the local window in the method of the present invention.
  • Fig. 3e is a display diagram of the detailed data of the monitoring point in the method of the present invention.
  • FIG. 3f is an alarm list of monitoring data of monitoring points in the method of the present invention.
  • 4a to 4c are operation diagrams when viewing the video surveillance of the camera node in the method of the present invention.
  • Fig. 5a is an operation diagram when searching for documents in a local window in the method of the present invention.
  • Figure 5b is a diagram of a corresponding document list in the document search result in the method of the present invention.
  • Figures 6a and 6b are diagrams of hidden and transparent display operations in the method of the present invention.
  • 7a and 7b are operation diagrams for displaying the project progress in the local window in the method of the present invention.
  • Figures 8a and 8b are respectively a section view and a section view of the BIMGIS three-dimensional model body displayed in the three-dimensional window in the method of the present invention.
  • Figure 9 is a flow chart of digital delivery involved in the method of the present invention.
  • Fig. 10 is a flow chart of BIMGIS multi-source data fusion in the method of the present invention.
  • This embodiment discloses a comprehensive management method for a pumped-storage power station.
  • the method proposes to realize the digital interaction of pumped-storage power station engineering based on BIMGIS technology, and solves the problem that the 3D model of BIMGIS is guaranteed to be guaranteed when output from the client is based on cloud rendering technology.
  • the model does not freeze, and based on the method of this embodiment, the model functions such as production management and control, education and training, progress visualization, and document management and control of the pumped storage power station are expanded, which solves the enterprise information island to a certain extent. question.
  • the comprehensive management method for a pumped-storage power station in this embodiment is mainly implemented in local computer equipment, and specifically includes:
  • the power plant objects of the pumped-storage power station include structures, units, equipment, devices, etc. in various projects of the hydro-storage power station.
  • the engineering types of pumped storage power stations include dam engineering, water diversion tail water system engineering, underground powerhouse system engineering, step-up substation engineering, ventilation and air conditioning fire engineering, construction auxiliary engineering, highway engineering, environmental protection and water conservation engineering, auxiliary engineering, temporary Engineering (safety monitoring engineering), etc.
  • Documentation for each power plant object at various stages before and after completion includes 2D drawings and other documents.
  • the BIMGIS three-dimensional model is obtained from the fusion of BIMGIS multi-source data, and the BIM parametric model of the power plant object in the digital delivery of the pumped-storage power station is dynamically integrated with the three-dimensional model of the GIS large space scene and the multi-source data of the Internet of Things data.
  • the parametric model data, 3ds MAX basic modeling triangular patch data, and Revit fine-structure building data are converted into lightweight model data usable by the GIS system.
  • Model output and data conversion based on GIS system is to integrate CAD/CAE/BIM software from different sources based on 3D model lightweight technology and convert them into general GIS data files, while retaining the geometry, appearance, material and properties of the source CAD model. information.
  • the LOD model with different precision is selected by dynamically determining the threshold value of the model in the 3D viewport, reducing the complexity of the scene, and improving the rendering display rate on the premise of ensuring the quality of the model graphics.
  • the name of the power plant object decomposed at each level of the pumped-storage power station is displayed in a tree structure list.
  • the minimum separable unit model is coded, a BIM model is created and converted into a GIS model, and each component in the model is assigned cep numbers and Model coding.
  • the corresponding pumped-storage power station decomposition structure table is formulated.
  • the pumped-storage power station decomposition structure table contains the model code and the corresponding model tree-shaped decomposition structure; according to the decomposition structure, the model is divided into different typical pumped-storage power plants.
  • the object class of the energy storage power station as shown in Figure 2a, is a structural division of power plant objects such as units, devices, and components in various projects or structures that are decomposed for a pumped storage power station, and the three-dimensional display window is displayed in a tree structure.
  • the hierarchical relationship of the model structure in the middle makes the model hierarchy clearer, and the component level is the last level of the tree structure.
  • a component list window is set to display the detailed component list contained under the corresponding tree node, as shown in the lower left corner of Figure 2b.
  • the data attribute table and model table composed of other information other than the geometric information of the building information model of the pumped-storage power station project are derived according to the decomposition structure, and the model table includes the cep number, model code, model name and related The name of the attribute table corresponding to the object class of a typical pumped-storage power station.
  • an association table is made between the model table and the teaching and training simulation courseware, documents, and monitoring information, and the association between the BIMGIS model and the teaching and training simulation courseware and documents can be realized through the association table, and the interaction between the model and the teaching and training simulation courseware can be realized. View, realize interactive viewing of models and documents. For the specific implementation method, see the following steps.
  • the name positioning command of each power plant object can be triggered, that is, click to select the BIMGIS model of the corresponding power plant object displayed in 3D, and the model structure tree will quickly locate the corresponding tree node.
  • the model structure tree will quickly locate the corresponding tree node.
  • clicking each node (corresponding to the name of each power plant object) on the model structure tree as shown in FIG. 2a through the input device of the local computer device triggers the BIMGIS model display instruction corresponding to the power plant object.
  • the multi-select button on the model structure tree and selecting the tree node check box some models in the 3D window can be turned on/off. Models are displayed. If any model is hidden, it will be displayed and removed from the list of hidden models.
  • the cloud rendering technology is implemented through the server, and the 3D BIMGIS network service is created on the cloud rendering server based on the WebSDK and the 3D BIMGIS model is loaded.
  • the 3D interactive operation screen dynamically renders and outputs the back-end 3D data in the form of sequential frames to generate a real-time image, and then converts the real-time image into a video stream and sends it to the client.
  • the client renders and outputs an HTML5 3D image according to the video stream. Display, and finally solve the problems of model rendering output stuck and slow model loading rate caused by low computer configuration of terminal access users.
  • an attribute data viewing mode, a document viewing mode, a teaching and training simulation courseware viewing mode, and a teaching and training simulation courseware interaction mode are set. in:
  • the attribute data viewing instruction can be triggered, and when the attribute data viewing instruction is received, the local window is triggered to display the corresponding BIMGIS model attribute data.
  • a shortcut button of "View Properties" can be set on the local window.
  • the local computer device detects that the shortcut button is pressed, it enters the property data viewing mode.
  • the power plant object is selected in the three-dimensional window.
  • BIMGIS model after the model is selected, the model flashes and highlights, and the model structure tree will quickly locate the corresponding tree node.
  • the property dialog box can pop up in the local window, and the properties corresponding to the power plant object can be viewed through the property dialog box.
  • the currently selected model or node model is displayed in the document dialog box up to the root node.
  • Hierarchical relationship click a node in the hierarchical relationship, you can view the documents associated with the node in the document list, and the documents are displayed according to the folder to which they belong.
  • a shortcut button of "View Document” can be set on the local window.
  • the local computer device detects that the shortcut button is pressed, it enters the document viewing mode. At this time, select the power plant object in the three-dimensional window.
  • BIMGIS model after the model is selected, the model flashes and highlights, and the model structure tree will quickly locate the corresponding tree node.
  • the document viewing dialog box can pop up in the local window, which is specifically expressed as a document list, which can be viewed or downloaded through the document list. documentation.
  • a shortcut button "View Courseware" can be set on the local window.
  • the local computer device detects that the shortcut button is pressed, it will enter the teaching and training simulation courseware viewing mode.
  • the model flashes and highlights, and the model structure tree will quickly locate the corresponding tree node.
  • View or download documents from the Training Simulation Courseware List Similarly, the model hierarchy relationship of the currently selected model or node all the way up to the root node is displayed in the courseware viewing dialog box. Click the node in the hierarchy relationship to view the related educational training simulation courseware under the node in the educational training simulation courseware list.
  • the teaching and training simulation courseware includes the unit operation process simulation courseware, the equipment maintenance and disassembly simulation courseware, and the like. in:
  • the unit operation process simulation operation courseware according to the unit operation specification of the power plant, the unit operation process (such as virtual switch gate operation, draft pipe filling and draining operation, etc.) is planned into a 3D simulation script, and the Unity3D virtual reality engine is used to independently develop the unit operation process simulation program , simulating the operation flow of the unit.
  • the simulation environment of power plant operation is simulated, and the simulation training is carried out in the three-dimensional scene with interactive operation methods (switch toggle, valve rotation, key insertion and removal, etc.), so as to achieve the purpose of simulating the entire operation process.
  • Running simulation courseware supports functions such as rehearsal teaching, operation practice, scoring and evaluation, and realizes the integration of power plant virtual training teaching-learning-practice-examination.
  • Equipment maintenance and disassembly simulation courseware through the fine hoisting simulation and disassembly simulation courseware modules completed by SOLIDWORKS Composer for large-scale unit equipment such as rotors and stators. , and view the precise disassembly and assembly demonstration of the device directly online in the 3D scene.
  • the eDrawings secondary development interface through the eDrawings plug-in, the high-precision equipment model data corresponding to the courseware can be viewed, and functions such as sectioning, precise measurement, explosion, and quality attribute viewing can be performed to further deepen employees' understanding of complex equipment.
  • S105 The process of production control and monitoring and early warning. This process is driven by production data and three-dimensional models to visualize and analyze the production monitoring information of important structures such as reservoirs, dams, and units, so as to realize three-dimensional visualization of production control and monitoring. Monitoring and early warning. details as follows:
  • S1051. Collect the monitoring data of monitoring points under each monitoring type of each power plant object of the pumped-storage power station in real time, and associate it with the corresponding power plant object; A protocol interface that defines a standard protocol for data transmission.
  • the monitoring data includes the monitoring data of the operating state of the unit, the monitoring data of the reservoir and the dam, and the monitoring data of the hydraulic project. Specifically, it includes various production data such as DCS control system data, hydraulic water regime and environmental monitoring data (such as dam seepage, stress state, water level, rainfall, electromagnetic radiation, etc.).
  • DCS control system data such as DCS control system data
  • hydraulic water regime and environmental monitoring data such as dam seepage, stress state, water level, rainfall, electromagnetic radiation, etc.
  • a BIMGIS model of sensors such as temperature sensors, flowmeters, valves, and meters is established through BIM technology, and a unique code is assigned to the model. association.
  • S1052. Trigger the query of monitoring data corresponding to the monitoring point of the power plant object through the name of the monitoring point of the power plant object displayed in the local window or the BIMGIS model of the power plant object displayed in three dimensions.
  • the monitoring data query of the monitoring point is received, the monitoring data of the monitoring point corresponding to the power plant object is displayed at the position of the corresponding BIMGIS model displayed in three dimensions.
  • the name of the monitoring point of the power plant object displayed in the local window triggers the query of the monitoring data of the power plant object corresponding to the monitoring point.
  • the monitoring point list by selecting the monitoring point classification drop-down menu, the monitoring points under different monitoring types of different units can be filtered. After selection, the monitoring point list will display the monitoring point information under the selected unit and monitoring type, as shown in Figure 3b.
  • the monitoring data of the corresponding monitoring point will be displayed on the BIMGIS model position displayed in 3D, as shown in Figure 3a.
  • the monitoring data of "pressure between the 1# runner and the guide vane of the No. 1 unit" is displayed at the position between the 1# runner and the guide vane of the No. 1 unit displayed in three dimensions.
  • the query of the monitoring data corresponding to the monitoring point of the power plant object is triggered.
  • the specific implementation method can be as follows: the "real-time monitoring" shortcut button can be set in the local window, as shown in the figure As shown in Figure 3c, when it is detected that the "real-time monitoring” shortcut button is pressed, it will enter the monitoring mode, and click "click query” as shown in Figure 3c to enter the monitoring point details mode.
  • the corresponding monitoring point can be opened to display detailed monitoring data, as shown in Figure 3e.
  • the monitoring data of one of the monitoring points can be selected to be displayed, specifically, the monitoring point to be displayed is selected through the selection box as shown in FIG. 3d.
  • the monitoring data of each monitoring point of each power plant object collected within a period of time is made into a state curve.
  • the state curve of the monitoring point within a period of time can be viewed by double-clicking the name of the monitoring point, as shown in the upper left corner of the three-dimensional window of FIG. 3a .
  • S1054 according to the collected monitoring data of the monitoring points under each monitoring type of each power plant object of the pumped-storage power station, determine whether there is an abnormality, and record the abnormality information; when the corresponding abnormality information query is triggered, the BIMGIS of the power plant object displayed in three dimensions is displayed in the BIMGIS In the model, the location of the monitoring point with abnormal information is located.
  • the monitoring historical values are stored according to data categories (temperature, flow rate, pressure, water level, etc.), and the real-time data is compared with the historical thresholds by setting the thresholds of various types of data to determine the “abnormality”. If the measured value of dust exceeds 20% of the value issued by the local weather station, it will be judged that the dust exceeds the standard.
  • an "alarm point" shortcut button can be set under the real-time monitoring shortcut key to trigger abnormal information query.
  • a list of monitoring point alarm points will pop up, such as As shown in Figure 3f, by double-clicking the monitoring point record in the alarm point list, the location of the alarm monitoring point can be quickly located in the three-dimensional window. Wait for the model to be highlighted and a pop-up prompt will appear. Users can quickly deal with the problem according to the alarm point information.
  • exception records are stored in the database for backup for review.
  • each camera node in the pumped-storage power station is determined, and the cameras in each camera node are also used as power plant objects, and a BIMGIS three-dimensional model is produced. details as follows:
  • each camera node is displayed in the local window, as shown on the left in Figure 4a, each camera node corresponds to each video monitoring point respectively.
  • the cameras of the same device or the same area can be classified under the same category, which is convenient to find the corresponding cameras. For example, each camera node in the generator layer is classified under the generator layer.
  • the camera node displayed in the local window triggers the playback of the video captured by the camera associated with the camera node in the local window.
  • a "video" button can be set, and after pressing the button, the video mode is entered.
  • video mode click the camera node displayed in the local window, and the video captured by the camera associated with the camera node is displayed in the 3D window of the local window, as shown in Figure 4b.
  • the camera node displayed in the local window triggers the spatial position of the camera node in the BIMGIS model of the power plant object displayed in three dimensions, and the camera model is highlighted at the corresponding position, as shown in Figure 4c.
  • the types of documents include preliminary reports, meeting minutes, as-built drawings, correspondence, design notices, on-site photos, etc.
  • the shortcut buttons of "Location” and "View” are set in the document list. After clicking the location, the node on the model tree structure of the corresponding power plant object associated with the document can be located. After clicking View, you can view the specific document content.
  • part of the BIMGIS model of the power plant object in the three-dimensional window can be selected to be hidden, displayed and transparently controlled.
  • a “hide/show” button may be set in the local window, as shown in FIG. 6a, when the button is pressed, trigger the model to hide or display Show command, hide mode or show mode is triggered.
  • the button is pressed once to hide the trigger model, and the next time it is pressed, the trigger model is displayed.
  • model hiding instruction When receiving the model hiding instruction, hide the selected model in the BIMGIS model displayed in 3D; in this embodiment, in the hidden mode, click the model in the 3D window to continuously hide the selected 3D model.
  • Model after selecting the model, the model structure tree will quickly locate the corresponding tree node, and open the component list; after the model is hidden, it will be added to the hidden model list, as shown in Figure 6a. If the component is hidden, the component under the model structure tree node changes to the hidden state. Specifically, the corresponding icon behind the component name can be used to indicate the hidden and displayed states.
  • the hidden list as shown in FIG. 6a is provided with a button for canceling the hiding of the corresponding model, for example, each The cross after the model name, through which the model display command can be triggered.
  • the hidden list is set with a "show all" button, which can also trigger the model display command.
  • S1091 first select the scope of the engineering model participating in the progress visualization demonstration, that is, determine the power plant object to participate in the demonstration; in this embodiment, for the engineering model to be displayed in the progress process, obtain each power plant involved in each stage of the engineering model
  • the construction status of the object, including the power plant objects in the corresponding stage are "not under construction”, “under construction”, “construction completed”, and the power plant object is specific to the smallest detachable unit of the power plant.
  • the engineering model participating in the progress visualization demonstration is selected on the model structure tree, as shown in FIG. 7a.
  • the time range of the presentation is set through the local window, including the start time, the end time and the presentation interval.
  • the demonstration interval can be set by day, month, or extreme, such as 1 day per second to demonstrate the progress of the project.
  • S1093 Calculate the playback progress data according to the time attribute of the engineering model, and dynamically demonstrate the visualization simulation process of the engineering construction progress.
  • the 3D BIMGIS model of the project is not displayed.
  • the time progress reaches the start time of a certain engineering model, the corresponding 3D BIMGIS model of the project will be displayed transparently, indicating that the project has entered the construction state.
  • the BIMGIS model of each power plant object of the pumped-storage power station after completion includes a three-dimensional volume section model and a three-dimensional surface section model.
  • the 3D body section model of the BIMGIS model corresponding to the completion of the power plant object is displayed.
  • the 3D surface section model corresponding to the completed BIMGIS model of the power plant object is displayed.
  • the local window is provided with a shortcut button of "sectioning".
  • a sectioning display instruction can be triggered, so that the current BIMGIS model displayed in the 3D window is displayed in the state of volume sectioning or plane sectioning.
  • click "Cut” to enter the "Volume Section” and "Surface Section” sub-items click the "Volume Section” button to cut the model, and you can view the model in the three directions of xyz.
  • the direction of the cutting plane and the cutting range can be adjusted by rotating the direction and moving up and down. Right-click to complete the command; click the "Slice” button to cut the model. , you can view the cross-sectional shape of the model in one direction of xyz, as shown in Figure 8b.
  • step S101 the digital delivery process of the water storage power station involved in step S101 may be as shown in FIG. 9 , and the specific process is as follows:
  • the first step is to determine the rules of digital delivery, including determining the scope of digital delivery, deliverables and format specifications, power station breakdown structure division, power station object coding rules, deliverables naming and numbering rules, power station object classes and attribute rules.
  • the second step is to develop a digital delivery plan.
  • the third step is to integrate and verify the digital delivery information, including attribute data, geographic information data, documents, and 3D models, and form a quality audit report.
  • the fourth step if the review is passed, the digital handover is completed, otherwise, the integration and verification of the digital delivery information will be carried out again.
  • the fifth step after the digital handover is completed, the acceptance of the digital delivery results is carried out, and an acceptance report is issued.
  • the process of BIMGIS multi-source data fusion involved in step S101 may be as shown in Figure 10.
  • the power plant engineering hub layout and geological conditions are complex, involving planning, geology, hydraulic engineering, civil engineering, hydraulic engineering, electrical engineering, and financial engineering. Construction, structure, HVAC, fire protection, water supply and drainage, power lighting, cost and many other majors.
  • Power plant engineering is divided into dam engineering, water diversion tailwater system engineering, underground powerhouse system engineering, booster substation engineering, ventilation and air conditioning fire engineering, construction auxiliary engineering, highway engineering, environmental protection and water conservation engineering, auxiliary engineering, temporary engineering according to the type of engineering.
  • the first step, oblique photography modeling use drones to conduct aerial surveys of the entire plant, collect topographic information of the power plant, and use ContextCapture to complete surface modeling based on oblique photography data.
  • the second step, 3D laser point cloud modeling Use 3D laser scanning technology to collect the appearance information of buildings in open areas, and use 3Ds Max to complete the 3D modeling of buildings based on 3D laser scanning.
  • the third step, parametric modeling According to the design drawings and measured data of complex equipment and equipment, according to the actual structure, design parameters and action mechanism of the equipment and equipment, use Solidworks parametric modeling technology to model according to the smallest separable unit, To the screw level, complete the digitization of complex devices.
  • the modeling method adopts a bottom-up method.
  • the model contains geometric information of the device (such as material, mass, volume, area, etc.) and production information (device name, equipment code, production process, pressure rating, manufacturer, installation unit, etc. ).
  • the fourth step is to create a building information model: the BIM model of the hydraulic hub building is modeled according to the design drawings and as-built drawings, and the model accuracy is above LOD400. Use Revit to complete the modeling of hydraulic hubs, underground workshops, and ground buildings, including architecture, structure, water supply and drainage, HVAC, etc., and generate a standard family library of building structures.
  • the fifth step, BIM+GIS multi-source data fusion The digital delivery of power plants requires the conversion of SolidWorks parametric model data, 3ds MAX basic modeling triangle patch data, and Revit fine-structure building data into lightweight model data that can be used by the GIS system.
  • the CityMaker cloud rendering server is used to complete BIMGIS 3D scene release and background data management.
  • the surface model is published in TED format (GIS format) by CityMakerTerrainPush, and is leveled; buildings in open areas are converted from 3ds format to osg format by the 3dmax plug-in OsgImport number, and then processed by Citymaker builder and published in FDB format (GIS format).
  • the host equipment and piping models are created by SolidWorks and converted into rfa family files in Inventor into Revit, and converted and output to FDB files (GIS format) by the RevitPluginForFDB plug-in.
  • the building model of the hydraulic hub is created by Revit and converted and output to FDB file (GIS format) by the RevitPluginForFDB plug-in.
  • the implementation of the comprehensive management method of the pumped-storage power station in this embodiment adopts the B/S three-layer architecture mode, which are respectively a data resource layer, a core service layer and an application function layer. in:
  • the data resource layer creates the digitally delivered content of the pumped storage power station based on the digital delivery standard of the pumped storage power station, including BIMGIS models, attribute data, documents, as well as the monitoring data of each monitoring point of the power plant object and the video monitoring data obtained through the camera,
  • the core service layer collects the above-mentioned various data information from the data resource layer with various data collection services; among them, the core service layer transmits the collected information such as BIMGIS model and other 3D geographic information data through Ajax channel,
  • the way of Request data request and Restful API is distributed to different application layers.
  • the application layer uses the CityMaker cloud rendering server to realize various functional applications by integrating different business plug-ins on the basis of realizing digital disclosure and 3D display.
  • This embodiment discloses an integrated management platform for a pumped-storage power station.
  • the platform includes an acquisition module, a first display control module, a display instruction generation module, a second display control module, a first association module, a viewing instruction generation module, and a third Display control modules, where the functions of each module are as follows:
  • the acquisition module is used to acquire the digitally delivered content of the pumped storage power station, including the BIMGIS model of each power plant object of the pumped storage power station after completion, as well as the attribute data and document content of each power plant object at various stages before and after completion;
  • the first display control module is used to display the name of each power plant object in the local window
  • the display instruction generation module is used to display the name of each power plant object through the local window, and trigger the display instruction of the BIMGIS model after the completion of each power plant object of the pumped storage power station;
  • the second display control module is used for, when receiving the display instruction of the BIMGIS model, perform cloud rendering through the server and then perform a three-dimensional display of the BIMGIS model corresponding to the power plant object in the local window;
  • the first association module is used for associating the acquired attribute data and document content of the power plant object at various stages before and after completion with the corresponding power plant object;
  • the viewing instruction generation module triggers the power plant object attribute data viewing instruction or document viewing instruction through the name of the power plant object displayed in the local window or the BIMGIS model of the power plant object displayed in three dimensions;
  • the third display control module is used to trigger the local window to display the attribute data of the corresponding power plant object when receiving the attribute data viewing instruction corresponding to the power plant object;
  • the fourth display control module is used for triggering the local window to display the document list corresponding to the power plant object for opening or downloading when receiving the document viewing instruction corresponding to the power plant object.
  • This embodiment discloses an integrated management system for a pumped-storage power station, including a local computing device and a server;
  • Obtain the digital delivery content of the pumped storage power station including the BIMGIS model of each power plant object of the pumped storage power station after completion, as well as the attribute data and documents of each power plant object at various stages before and after completion;
  • the server when the local computing device receives the display instruction of the BIMGIS model, performs cloud rendering for the BIMGIS model of the power plant object that the local computing device needs to display, and sends it to the local computing device, and the local computing device renders the power plant object after cloud rendering by the server.
  • the BIMGIS model is displayed in 3D in the local window.
  • the above-mentioned local computing device may be a desktop computer, a notebook computer, a smart phone, a PDA handheld terminal, a tablet computer, or other terminal devices having a display function.
  • the above-mentioned server may be a cloud server, and the cloud server is used for real-time rendering, and the powerful three-dimensional processing capability of the server is transmitted to the browsing of computers, mobile phones, Pads or embedded devices with common configuration in the form of streaming media services.
  • server client or native APP.
  • the specific process of cloud rendering of the BIMGIS model by the server is as follows:
  • the 3D data of the BIMGIS model is stored on the cloud server, and the computing resources of the cloud graphics server CPU and GPU are used on the cloud rendering server to create a 3D BIMGIS network service based on the CityMaker WebSDK and load the BIMGIS model;
  • the second step is to dynamically render and output the back-end 3D data in sequence frames according to the client's real-time 3D interactive instructions and operation images to generate a real-time image, and use the CityMaker WebSDK to interact with the 3D rendering window using an interactive scripting language;
  • the real-time image transmits the graphics service to the HTML5 browser client (the client must have H.264 and H.265 decoding capabilities) in the form of streaming media to form the three-dimensional image required by the user.
  • This embodiment discloses a storage medium that stores a program.
  • the comprehensive management method for a pumped-storage power station described in Embodiment 1 is implemented, as follows:
  • Obtain the digital delivery content of the pumped storage power station including the BIMGIS model of each power plant object of the pumped storage power station after completion, as well as the attribute data and documents of each power plant object at various stages before and after completion;
  • the storage medium in this embodiment may be a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a U disk, a removable hard disk, and other media.
  • This embodiment discloses a computing device, including a processor and a memory for storing a program executable by the processor, when the processor executes the program stored in the memory, the comprehensive management method for a pumped-storage power station described in Embodiment 1 is implemented, as follows:
  • Obtain the digital delivery content of the pumped storage power station including the BIMGIS model of each power plant object of the pumped storage power station after completion, as well as the attribute data and documents of each power plant object at various stages before and after completion;
  • Obtain the digital delivery content of the pumped storage power station including the BIMGIS model of each power plant object of the pumped storage power station after completion, as well as the attribute data and documents of each power plant object at various stages before and after completion;
  • the computing device described in this embodiment may be a desktop computer, a notebook computer, a smart phone, a PDA handheld terminal, a tablet computer, or other terminal devices with a display function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Data Mining & Analysis (AREA)
  • Primary Health Care (AREA)
  • Operations Research (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了抽水蓄能电站综合管理方法、平台、系统、设备和介质,包括获取抽水蓄能电站数字化交付的内容;通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令,在接收到模型的展示指令时,通过服务器进行云渲染后在本地窗口进行对应电厂对象模型的三维显示;本发明可以对抽水蓄能电站生产现场各类建构筑物、机组、设备、等电厂对象进行全方位的了解与跟踪查询,同时本地窗口输出显示电厂对象BIMGIS模型时,在保证原有精细度的基础上,不会出现卡顿的现象。

Description

抽水蓄能电站综合管理方法、平台、系统、设备和介质 技术领域
本发明涉及抽水蓄能电站数字管理计算领域,特别涉及一种抽水蓄能电站综合管理方法、平台、系统、设备和介质。
背景技术
由于抽水蓄能电站自身的特点:水工枢纽工程和地下厂房硐室群位于地下,特高压设备长期运行不停电,发电机组结构复杂,一旦安装后机组发电长期运行服务不大修,监测监控设备种类、数量也多且隐蔽性强,这造成了管理人员很难对生产现场各类建构筑物进行全方位的了解与跟踪查询,追溯工程记录时只能靠工程报告或二维的设计图纸回忆工程建设信息,缺乏直观了解工程数字化交付内容的手段。
同时,抽水蓄能电站专业性强、构件数量庞大、构件密集,为使三维场景达到现实级逼真程度,模型精细程度要求非常高,这对用户客户端硬件显卡提出了更高要求。但是,目前企业对批量PC端硬件升级所产生的高昂费用难以接受,导致BIMGIS数字化化交付系统难以得到普及应用。此外,浏览器和网络资源的限制条件造成了BIMGIS模型加载效率慢,这进一步加剧了用户体验差的直观感受,造成工程数字化交付成果难以推广。目前,在网络环境下开展三维BIMGIS应用,B/S模式越来越普及,传统使用插件的方式给用户带来很大的不便。随着5G技术的普及,终端用户访问云的延迟降低到局域网水平,带宽也有很大的提升,云渲染技术的应用场景也将极大地拓宽。
发明内容
本发明的第一目的在于克服现有技术的缺点与不足,提供一种抽水蓄能电站综合管理方法,基于该方法可以对抽水蓄能电站生产现场各类建构筑物、机组、设备、等电厂对象进行全方位的了解与跟踪查询,同时本地窗口输出显示电厂对象BIMGIS模型时,在保证原有精细度的基础上,不会出现卡顿的现象。
本发明的第二目的在于提供一种抽水蓄能电站综合管理平台。
本发明的第三目的在于提供一种抽水蓄能电站综合管理系统。
本发明的第四目的在于提供一种存储介质。
本发明的第五目的在于提供一种计算设备。
本发明的第一目的通过下述技术方案实现:一种抽水蓄能电站综合管理方法,所述方法包括:
获取抽水蓄能电站数字化交付的内容,包括抽水蓄能电站各电厂对象竣工后的BIMGIS模型;
在本地窗口显示各电厂对象的名称;
通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令,在接收到BIMGIS模型的展示指令时,通过服务器进行云渲染后在本地窗口进行对应电厂对象BIMGIS模型的三维显示。
优选的,抽水蓄能电站数字化交付的内容还包括电厂对象在竣工前后各个阶段的属性数据和文档;
所述方法还包括:
针对于获取到的电厂对象在竣工前后各个阶段的属性数据和文档内容,将其关联到对应电厂对象;
通过本地窗口显示的电厂对象的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象属性数据查看指令或文档查看指令;
在接收到对应电厂对象的属性数据查看指令时,触发本地窗口显示对应电厂对象的属性数据;
在接收到对应电厂对象的文档查看指令时,触发本地窗口显示对应电厂对象的文档列表,供打开或下载。
优选的,所述方法还包括:
确定抽水蓄能电站各摄像头,并且与各摄像头节点进行关联;
设定视频模式和定位模式;
在视频模式下,通过本地窗口显示的摄像头节点,触发在本地窗口播放摄像头节点所关联摄像头的拍摄到的视频;
在定位模式下,通过本地窗口显示的摄像头节点名称,触发在三维显示的电厂对象的BIMGIS模型中定位到摄像头节点摄像头的空间位置,并且在对应位置显示摄像头模型。
优选的,所述方法还包括:
针对于抽水蓄能电站的各电厂对象,获取对应的教培仿真课件,并且将教培仿真文件与对应电厂对象进行关联;
通过本地窗口显示的电厂对象的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象教培仿真课件查看或交互指令;
在接收到对应电厂对象的文教培仿真课件查看时,触发本地窗口显示对应电厂对象的教培仿真课件列表,供打开或下载;
在接收到对应电厂对象的文教培仿真课件交互时,触发本地窗口显示对应电厂对象的教培仿真课件视频,并且进入交互模式,在交互模式下,接收输入设备的相应操作。
优选的,所述方法还包括文档搜索过程;
通过本地窗口的相应位置,触发文档搜索指令;
在接收到文档搜索指令时,获取对应需要搜索的文档类型以及电厂对象的关键字;
根据文档类型以及电厂对象关键词,搜索到关联到对应电厂对象的文档列表;
通过文档列表中的文档定位到本地窗口显示的电厂对象的名称,或者通过文档列表查看文档内容;
所述方法还包括模型隐藏、显示和透明显示过程:
通过本地窗口的相应位置,触发模型隐藏指令;
在接收到模型隐藏指令时,将三维显示的BIMGIS模型中被选中的模型进行隐藏;
针对于被隐藏的模型,通过隐藏列表相应的位置触发模型显示指令;
在接收到模型显示指令后,将对应被隐藏的模型三维展示出来;
通过本地窗口的相应位置,触发模型透明显示指令;
在接收到模型透明显示指令时,将三维显示的BIMGIS模型中,选择到的正常状态模型变为透明状态,选择到的透明状态模型变为正常状态;根据选中模型,定位到本地窗口中显示的电厂对象的名称;
所述方法还包括工程进度展示过程:
先选择参与进度可视化演示的工程模型;
再设置工程进度可视化模拟的时间范围;
根据工程模型的时间属性计算播放进度数据,动态演示工程施工进度可视化仿真过程;
抽水蓄能电站各电厂对象竣工后的BIMGIS模型包括三维体剖切模型和三维面剖切模型,当接收体剖切模型展示指令时,即展示对应电厂对象竣工后的BIMGIS模型三维体剖切模型;接收面剖切模型展示指令时,即展示对应电厂对象竣工后的BIMGIS模型的三维面剖切模型。
优选的,针对于抽水蓄能电站电厂对象,根据工艺流程或空间布置,按照一定的分类原则和编码体系,以树 状结构列表显示抽水蓄能电站电的各级分解电厂对象名称;
所述抽水蓄能电站电厂对象包括水蓄能电站各类工程中建构筑物、机组、设备和装置;
其中,依据电厂工程分解结构结合抽水蓄能电站标识系统编码导则,对电厂对象最小可拆分单元模型进行编码,创建BIM模型并转换为GIS模型,得到对应BIMGIS模型,并将模型中的每个零部件赋予cep编号和模型编码。
本发明的第二目的通过下述技术方案实现:一种抽水蓄能电站综合管理平台,包括:
获取模块,用于获取抽水蓄能电站数字化交付的内容,包括抽水蓄能电站各电厂对象竣工后的BIMGIS模型以及各电厂对象在竣工前后各个阶段的属性数据和文档内容;
第一显示控制模块,用于在本地窗口显示各电厂对象的名称;
展示指令生成模块,用于通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令;
第二显示控制模块,用于在接收到BIMGIS模型的展示指令时,通过服务器进行云渲染后在本地窗口进行对应电厂对象BIMGIS模型的三维显示。
本发明的第三目的通过下述技术方案实现:一种抽水蓄能电站综合管理系统,包括本地计算设备和服务器;
所述本地计算设备,用于本发明第一目的所述的抽水蓄能电站综合管理方法;
所述服务器,在本地计算设备接收到BIMGIS模型的展示指令时,针对于对应需要展示的电厂对象BIMGIS模型进行云渲染后发送给本地计算设备,由本地计算设备将服务器云渲染后的电厂对象BIMGIS模型在本地窗口进行三维显示。
本发明的第四目的通过下述技术方案实现:一种存储介质,存储有程序,所述程序被处理器执行时,实现本发明第一目的所述的抽水蓄能电站综合管理方法。
本发明的第五目的通过下述技术方案实现:一种计算设备,包括处理器以及用于存储处理器可执行程序的存储器,所述处理器执行存储器存储程序时,实现本发明第一目的所述的抽水蓄能电站综合管理方法。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明抽水蓄能电站综合管理方法,包括获取抽水蓄能电站数字化交付的内容,包括抽水蓄能电站各电厂对象竣工后的BIMGIS模型以及各电厂对象在竣工前后各个阶段的属性数据和文档;通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令,在接收到BIMGIS模型的展示指令时,通过服务器进行云渲染后在本地窗口进行对应电厂对象BIMGIS模型的三维显示。基于上述内容,本发明可以通过BIMGIS模型对抽水蓄能电站生产现场各类建构筑物、机组、设备、等电厂对象进行全方位的了解与跟踪查询;另外,针对于要进行三维显示的电厂对象BIMGIS模型,通过服务器进行云端渲染后在本地窗口进行三维显示,使得客户端即本地窗口输出显示BIMGIS模型时,在保证原有精细度的基础上,不会出现卡顿的现象。
(2)本发明抽水蓄能电站综合管理方法中,抽水蓄能电站数字化交付的内容包括各电厂对象在竣工前后各个阶段的属性数据和文档,针对于获取到的电厂对象在竣工前后各个阶段的属性数据和文档内容,将其关联到对应电厂对象;通过本地窗口显示的电厂对象的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象属性数据查看指令或文档查看指令。基于本发明上述内容,能够将数字交付的内容和对应电厂对象进行关联,因此能够快速查询到各类工程下电厂对象在各个阶段记录的工程文档等内容,有效解决了现有技术中抽水蓄能电站数字化交付方法落后的技术问题,直观了解工程数字化交付内容。
(3)本发明抽水蓄能电站综合管理方法中,可以将教培仿真课件与电厂对象相关联,通过本地窗口中显示的电厂对象名称或三维窗口中显示的BIMGIS模型均可获取到关联到对应电厂对象的教培仿真课件。可见,本发明方法通过将抽水蓄能电站各电厂对象与教培仿真课件、文档等相关联,打通各个子系统之间的信息孤岛,以三维可视化的方式实现数字化文档管理、教育培训、工程数字化交付、远程运维等工作,可以提高电厂的运营能力和智慧化水平,一定程度上解决了企业信息孤岛问题,为抽水蓄能电站设计规划方案选取、施工过程监管、大型设备维修与技改等方面提供决策辅助。
(4)本发明抽水蓄能电站综合管理方法中,针对于三维窗口中显示的BIMGIS模型可以切换到显示三维体剖切和面剖切的模型,可以帮助操作者详细地了解到电厂对象的内部结构和构造。另外可以根据实际需求对三维窗口中显示的各电厂对象BIMGIS模型进行隐藏和透明显示的控制,方便操作者对模型的查看。
(5)本发明抽水蓄能电站综合管理方法中,将本地窗口显示的摄像头节点关联到抽水蓄能电站对应的各摄像头,通过触发本地窗口显示的摄像头节点,能获取到所关联摄像头的拍摄到的视频,方便直接通过客户端本地窗口查看抽水蓄能电站各监控点的视频。
(6)本发明抽水蓄能电站综合管理方法中,还可以针对各工程模型进行进度可视化的演示,帮助相关人员方便快捷地了解到工程在各个阶段的建设情况。
附图说明
图1是本发明抽水蓄能电站综合管理方法。
图2a和2b是本发明方法中本地窗口所显示的模型结构树以及BIMGIS模型图。
图2c和2d是本发明方法中在本地窗口进行属性查看时的操作图。
图2e是本发明方法中在本地窗口进行查看文档时的操作图。
图2f是本发明方法中文档列表图。
图2g和2h是本发明方法中针对零部件查看文档时的操作图。
图3a至3d是本发明方法中在本地窗口进行监测点监测数据查看时的操作图。
图3e是本发明方法中监测点详情数据显示图。
图3f是本发明方法中监测点监测数据报警列表。
图4a至4c是本发明方法中查看摄像头节点视频监控时的操作图。
图5a是本发明方法中在本地窗口进行文档搜索时的操作图。
图5b是本发明方法中文档搜索结果中对应的文档列表图。
图6a和6b是本发明方法中隐藏和透明显示操作图。
图7a和7b是本发明方法中在本地窗口进行工程进度展示的操作图。
图8a和8b分别是本发明方法中三维窗口显示的BIMGIS三维模型体剖切图和面剖切图。
图9是本发明方法中涉及到的数字交付流程图。
图10是本发明方法中BIMGIS多源数据融合的流程图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细地描述,但本发明的实施方式不限于此。
实施例1
本实施例公开了一种抽水蓄能电站综合管理方法,该方法提出了基于BIMGIS技术实现抽水蓄能电站工程的数字化交互,并基于云端渲染技术解决了在客户端输出时,BIMGIS三维模型在保证原有精细度的基础上模型不卡顿的问题,并且基于本实施例方法扩展了抽水蓄能电站的生产管控、教育培训、进度可视化、文档管控等模功能,一定程度上解决了企业信息孤岛问题。
本实施例抽水蓄能电站综合管理方法,该方法主要在本地计算机设备中实现,具体包括:
S101、获取抽水蓄能电站数字化交付的内容,包括抽水蓄能电站各电厂对象竣工后的BIMGIS模型以及各电厂对象在竣工前后各个阶段的属性数据和文档。
在本实施例中,抽水蓄能电站的电厂对象包括水蓄能电站各类工程中建构筑物、机组、设备、装置等。抽水蓄能电站的工程类型包括大坝工程、引水尾水系统工程、地下厂房系统工程、升压变电工程、通风空调消防工程、 施工辅助工程、公路工程、环保水保工程、附属工程、临时工程(安全监测工程)等。其中各类工程类型下电厂构件类型多样;其中设备比如卷扬机、桥机、天车等,装置比如空压机、过滤器、滤油机、油泵等,机组、设备和装置中均包括了各种零部件。在构建机组、设备、装置的BIMGIS模型时,需要具体构建其中各零部件的模型。
各电厂对象在竣工前后各个阶段的文档包括二维图纸和其他文档等。
在本实施例中,BIMGIS三维模型由BIMGIS多源数据融合得到,抽水蓄能电站数字化交付中电厂对象BIM参数化模型与GIS大空间场景三维模型、物联网数据的多源数据动态融合,将SolidWorks参数化模型数据、3ds MAX基础建模三角面片数据、Revit精细建构筑物数据转换为GIS系统可用的轻量化模型数据。基于GIS系统的模型输出与数据转换,是基于三维模型轻量化技术将不同源的CAD/CAE/BIM软件集成,转换成为通用的GIS数据文件,同时保留源CAD模型的几何形状、外观材质和属性信息。通过三维视口内模型远近动态地确定阀值来选取不同精度的LOD模型,降低场景复杂度,在保障模型图形质量的前提下提高渲染显示速率。模型距离视角越远,阈值越大简化效果越粗糙,反之越平滑,用以达到简化效果的微调。
S102、在本地窗口显示各电厂对象的名称。
在本实施例中,针对于抽水蓄能电站对象,根据工艺流程或空间布置,按照一定的分类原则和编码体系,以树状结构列表显示抽水蓄能电站的各级分解的电厂对象名称。具体的,依据电厂工程分解结构结合抽水蓄能电站标识系统编码导则对最小可拆分单元模型进行编码,创建BIM模型并转换为GIS模型,并将模型中的每个零部件赋予cep编号和模型编码,根据工程应用的分类规则制定相应的抽水蓄能电站分解结构表,抽水蓄能电站分解结构表包含模型编码和对应的模型树形分解结构;依据分解结构将模型划分为不同的典型抽水蓄能电站对象类,如图2a所示为针对于某抽水蓄能电站分解得到的各类工程或建构筑物中机组、装置和零部件等电厂对象进行结构划分,以树形结构展示三维显示窗口中模型结构层级关系,使模型层次结构更为清晰,其中,零部件层级为树形结构的最后一个层级。在本实施例中,设置零部件列表窗口,显示对应树节点下所包含的详细零部件列表,如图2b左下角所示。
在本实施例中,依据分解结构导出抽水蓄能电站工程建筑信息模型几何信息以外的其他信息所构成的数据属性表、模型表,模型表包含零部件的cep编号、模型编码、模型名称和与典型抽水蓄能电站对象类对应的属性表的名称。在本实施例中,制作将模型表和教培仿真课件、文档、监测信息的关联表,通过关联表实现BIMGIS模型与教培仿真课件、文档的关联,能够实现模型与教培仿真课件交互式查看,实现模型与文档交互式查看。具体实现方式见下面步骤。
S103、通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令,在接收到BIMGIS模型的展示指令时,通过服务器进行云渲染后在本地三维窗口进行对应电厂对象BIMGIS模型的三维显示,在本实施例中,如图2b所示,通过在模型结构树上双击树节点来触发对应电厂对象BIMGIS模型,右边三维窗口中对应模型高亮并飞入模型所在空间位置,如果该树节点下存在多个模型,那所有模型都高亮。
另外,通过三维显示的电厂对象BIMGIS模型,可以触发各电厂对象的名称定位指令,即点击选中三维显示的对应电厂对象BIMGIS模型,模型结构树会快速定位到对应的树节点处。例如,在如图2a所示,点击右边三维窗口显示的对应电厂对象BIMGIS模型时,可以快速在左边模型结构树上定位到相应树节点,该树节点就是对应电厂对象的名称。
在本实施例中,通过本地计算机设备的输入设备点击如图2a所示的模型结构树上的各节点(对应各电厂对象的名称),触发对应电厂对象的BIMGIS模型展示指令。具体的,通过勾选模型结构树上的多选按钮,选中树节点勾选框,可以开启/关闭三维窗口中的某些模型,选择框选中时,将其所有子节点直到零部件层级的所有模型都显示,如果有模型被隐藏了,则要将其显示,并将其从隐藏模型列表中移除。
在本实施例中,针对于要展示的电厂对象的BIMGIS模型,通过服务器实现云端渲染技术,在云端渲染服务器上基于WebSDK创建三维BIMGIS网络服务并加载三维BIMGIS模型,根据本地计算设备即客户端实时三维交互操作画面将后端三维数据按序列帧的方式动态渲染输出生成实时画面,然后将实时画面转换成视频流发送至客户 端,客户端根据视频流渲染输出为HTML5三维画面,在三维窗口中显示,最终解决终端访问用户电脑配置低带来的模型渲染输出卡顿、模型加载速率慢等问题。具体
S104、针对于获取到的电厂对象在竣工前后各个阶段的属性数据、文档内容以及电厂对象的教培仿真课件,将其关联到对应电厂对象。
本实施例中,设置属性数据查看模式、文档查看模式、教培仿真课件查看模式、教培仿真课件交互模式。其中:
S1041、在属性数据查看模式下,通过点击本地窗口显示的电厂对象的名称或三维显示的对应BIMGIS模型,可以触发属性数据查看指令,在接收到属性数据查看指令时,触发本地窗口显示对应BIMGIS模型的属性数据。
如图2c所示,当要查看零部件的属性时,通过点击零部件名称旁边的对应按钮(如图2c中所示的零部件名称旁边左边数起的第四个按钮)触发属性数据查看指令,使得进入到属性数据查看模式,同时触发本地窗口显示对应零部件的属性对话框。
如图2d所示,可以在本地窗口上设置“查看属性”快捷按键,当本地计算机设备检测到该快捷按键被按下时,进入到属性数据查看模式,此时,在三维窗口内选择电厂对象的BIMGIS模型,选中模型后模型闪烁高亮,模型结构树会快速定位到对应的树节点处,同时,在本地窗口中可以弹出属性对话框,通过属性对话框能够查看到电厂对象对应的属性。
S1042、在文档查看模式下,通过点击本地窗口显示的电厂对象的名称或三维显示的对应BIMGIS模型,可以触发文档查看指令,在接收到文档查看指令时,触发本地窗口显示对应BIMGIS模型的文档列表,供打开或下载。
如图2e所示,当要针对模型结构树上的节点查看文档时,右键模型结构树上对应节点,通过点击“查看文档”功能后,进入到文档查看模式,同时触发文档查看指令,使得本地窗口显示对应节点的文档列表。如图2f所示,为要查看零部件文档时,通过点击零部件名称旁边的对应按钮(如图2f所示的零部件名称旁边左边数起的第三个按钮)触发文件查看指令,使得进入到文件查看模式,同时弹出文档对话框,对话框中显示与对应零部件管理的文档列表,供直接打开或者下载,另外,在文档对话框中展示当前选中模型或节点一直向上至根节点的模型层级关系,点击层级关系中节点,可在文档列表中查看该节点下关联的文档,文档根据其所属文件夹分类显示。
如图2g所示,可以在本地窗口上设置“查看文档”快捷按键,当本地计算机设备检测到该快捷按键被按下时,进入到文档查看模式,此时,在三维窗口内选择电厂对象的BIMGIS模型,选中模型后模型闪烁高亮,模型结构树会快速定位到对应的树节点处,同时,在本地窗口中可以弹出文档查看对话框,具体表现为文档列表,可以通过文档列表查看或下载文档。
S1043、在教培仿真课件查看模式下,通过本地窗口显示的电厂对象的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象教培仿真课件查看指令;在接收到对应电厂对象的教培仿真课件查看时,触发本地窗口显示对应电厂对象的教培仿真课件列表,供打开或下载。
如图2e所示,当要针对模型结构树上的节点查看教培仿真课件时,右键模型结构树上对应节点,通过点击“查看课件”功能后,进入到教培仿真课件查看模式,同时触发教培仿真课件查看指令,使得本地窗口显示对应节点的教培仿真课件列表,供用户打开或下载查看。
如图2h所示,可以在本地窗口上设置“查看课件”快捷按键,当本地计算机设备检测到该快捷按键被按下时,进入到教培仿真课件查看模式,此时,在三维窗口内选择电厂对象的BIMGIS模型,选中模型后模型闪烁高亮,模型结构树会快速定位到对应的树节点处,同时,在本地窗口中可以弹出课件查看对话框,具体表现为教培仿真课件列表,可以通过教培仿真课件列表查看或下载文档。同样的,在课件查看对话框中展示当前选中模型或节点一直向上至根节点的模型层级关系,点击层级关系中节点,可在教培仿真课件列表中查看该节点下关联的教培仿真课件。
S1044、在教培仿真课件交互模式下,通过本地窗口触发电厂对象教培仿真课件交互指令;在接收到对应电厂对象的教培仿真课件交互时,触发本地窗口显示对应电厂对象的教培仿真课件视频,并且进入交互模式,在交 互模式下,接收输入设备的相应操作。
在本实施例中,教培仿真课件包括机组运行流程仿真运行课件、设备检修拆装仿真课件等。其中:
机组运行流程仿真运行课件,根据电厂机组运行规范,将机组运行流程(如虚拟倒闸操作、尾水管充排水操作等)策划成三维仿真的脚本,采用Unity3D虚拟现实引擎自主开发机组运行流程仿真程序,模拟机组运行操作流程。利用虚拟现实技术,模拟电厂运行仿真环境,以可交互的操作方式(开关拨动、阀门转动、钥匙插拔等)在三维场景中进行模拟训练,从而达到操作全过程仿真的目的。运行仿真课件支持演练教学、操作练习、评分考评等功能,实现电站虚拟培训教-学-练-考一体化。
设备检修拆装仿真课件,通过将由SOLIDWORKS Composer完成的转子、定子等大型机组设备精细化吊装模拟仿真、拆装模拟仿真课件模块进行功能的移植,通过集成SOLIDWORKS Composer player插件查看设备检修拆装仿真课件,在三维场景中直接在线查看设备的精准拆装演示。同时,使用eDrawings二次开发接口,通过eDrawings插件可查看课件对应的高精度设备模型数据,并可进行剖切、精准测量、爆炸、质量属性查看等功能,进一步加深员工对复杂设备的理解。
本实施例的抽水蓄能电站综合管理方法还包括如下步骤:
S105、生产管控与监测预警的过程,该过程是以生产数据和三维模型为驱动将水库、大坝、机组等重要建构物的生产监测信息进行可视化展示与智能分析,实现三维可视化的生产管控与监测预警。具体如下:
S1051、实时采集抽水蓄能电站各电厂对象各监测类型下监测点的监测数据,并将其关联到对应电厂对象;在本实施例中,本地计算设备与发电生产系统等电厂生产系统之间各种协议接口,定义数据传输标准协议。
在本实施例中,监测数据包括机组运行状态监控数据、水库与大坝监测数据和水工枢纽建筑物监测数据。具体包括各类生产数据如DCS控制系统数据、水工水情与环境监测数据(如大坝渗流、应力状态、水位、降雨量、电磁辐射等)。在本实施例中,通过BIM技术建立温度传感器、流量计、阀门、仪表等传感器的BIMGIS模型,并赋予模型唯一编码,在数据库中将上述模型唯一编码(可为电厂KKS编码)与监测数据进行关联。
S1052、通过本地窗口显示的电厂对象监测点的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象对应监测点监测数据的查询。在接收到监测点监测数据查询时,将对应电厂对象监测点监测数据在三维显示的对应BIMGIS模型的位置上进行显示。
本实施例中,通过本地窗口显示的电厂对象监测点的名称,触发电厂对象对应监测点监测数据的查询,具体实现方式如下:在本地窗口显示电厂对象各监测点列表,如图3a所示。在监测点列表中,通过选择监测点分类下拉菜单,可以筛选不同机组不同监测类型下的监测点,选中后监测点列表将显示选中机组及监测类型下的监测点信息,如图3b所示。当点击监测点名称时,对应监测点监测数据在三维显示的BIMGIS模型位置上进行显示,如图3a所,例如当点击监测列表中“1号机组1#转轮与导叶之间压力”监测点时,在三维显示的1号机组1#转轮与导叶之间位置显示“1号机组1#转轮与导叶之间压力”的监测数据。
在本实施例中,通过本地窗口三维显示的电厂对象的BIMGIS模型,触发电厂对象对应监测点监测数据的查询,具体实现方式可以如下:可以在本地窗口中设置“实时监测”快捷按键,如图3c所示,当检测到“实时监测”快捷按键被按下时,进入到监测模式,点击如图3c所示的“点击查询”,可以进入监测点详情模式,通过点击三维窗口中BIMGIS模型,能够打开对应的监测点显示详细的监测数据,如图3e所示。在本实施例中,当每个电厂对象包括多个监测点时,可以选择显示其中一个监测点的监测数据,具体通过如图3d所示的选择框选择要显示的监测点。
S1053、在本实施例中,将一段时间内采集的各电厂对象各监测点的监测数据制作成状态曲线。在本实施例中,可以通过双击监测点名称的方式,查看监测点的一段时间内的状态曲线,如图3a的三维窗口中左上角所示的曲线图。
S1054、针对于采集到的抽水蓄能电站各电厂对象各监测类型下监测点的监测数据,判定是否出现异常,并且记录异常信息;当触发对应异常信息查询时,在三维显示的电厂对象的BIMGIS模型中定位到出现异常信息的 监测点位置。
在本实施例中,将监测历史值按数据类别(温度、流量、压力、水位等)进行存储,通过设置各类数据的阀值,将实时数据与历史阀值进行比较,判断其“异常”情况,如扬尘实测值超过当地气象站发布值20%判定扬尘超标。在本实施例中,可以在实时监测快捷键下再设置“报警点”快捷按钮,用于触发异常信息查询,当检测到“报警点”按钮被按下时,弹出监测点报警点列表,如图3f所示,通过双击报警点列表中的监测点记录,可以在三维窗口中快速定位报警的监测点位置,针对于出现监测数据异常的监测点,在三维窗口中对挂接数据的对应传感器等模型进行高亮显示,并进行弹窗提示。用户可以根据报警点信息进行问题的快速处理。另外,异常记录存储于数据库中备份,以便复查。
本实施例的抽水蓄能电站综合管理方法还包括如下步骤:
S106、视频监控过程;在该过程中要确定抽水蓄能电站中各摄像头节点,各摄像头节点中的摄像头也作为电厂对象,制作了BIMGIS三维模型。具体如下:
S1061、确定抽水蓄能电站各摄像头,并且与各摄像头节点进行关联。本实施例中,在本地窗口显示各摄像头节点,如图4a中左边所示,各摄像头节点分别对应各视频监测点。其中同一种设备或同一个区域的摄像头可以归类的同一大类下,方便寻找到对应的摄像头,例如发电机层中的各个摄像头节点归类到发电机层下。
S1062、设定视频模式和定位模式。
在视频模式下,通过本地窗口显示的摄像头节点,触发在本地窗口播放摄像头节点所关联摄像头的拍摄到的视频。在本实施例中,可以设置“视频”按键,在按下该按键后,进入到视频模式。在视频模式下,点击本地窗口显示的摄像头节点,在本地窗口的三维窗口中显示该摄像头节点所关联的摄像头拍摄到的视频,如图4b所示。
在定位模式下,通过本地窗口显示的摄像头节点,触发在三维显示的电厂对象的BIMGIS模型中定位到摄像头节点摄像头的空间位置,并且在对应位置高亮显示摄像头模型,如图4c所示。
本实施例的抽水蓄能电站综合管理方法还包括如下步骤:
S107、文档搜索过程;通过文档搜索过程可以查询到相应电厂对象各个阶段以及各种类型的文档,具体过程如下:
S1071、通过本地窗口的相应位置,触发文档搜索指令。本实施例中,在本地窗口中设置“文档搜索”的快捷按键,当按下该按键时,可以触发文档搜索指令,弹出文档搜索对话框,如图5a所示。
S1072、在接收到文档搜索指令时,获取对应需要搜索的文档类型以及电厂对象的关键字;本实施例中,通过如图5a所示的文档搜索对话框选择文档类型并且输入电厂对象的关键词。其中,文档类型包括初设报告、会议纪要、竣工图纸、往来函信、设计通知、现场照片等。
S1073、根据文档类型以及电厂对象关键词,搜索到关联到对应电厂对象的文档列表。如图5b所示为搜索结果,通过文档列表显示搜索结果。
通过文档列表中的文档可以定位到本地窗口显示的电厂对象的名称,即对应模型结构树上的节点,或者通过文档列表可以查看、下载文档内容。
具体的,在文档列表中设置“定位”和“查看”的快捷按钮,点击定位后,能够定位到文档所关联的对应电厂对象在模型树结构上的节点。点击查看后,能够查看具体文档内容。
本实施例的抽水蓄能电站综合管理方法还包括如下步骤:
S108、包括模型隐藏、显示和透明过程,通过该过程可以选择将三维窗口中的部分电厂对象BIMGIS模型进行隐藏、显示和透明控制。其中:
模型隐藏和显示过程:
S1081、通过本地窗口的相应位置,触发模型隐藏指令;在本实施例中,可以在本地窗口设置“隐藏/显示”按键,如图6a所示,在该按键被按下时,触发模型隐藏或显示指令,隐藏模式或显示模式被触发。其中该按键一次按下为触发模型隐藏,下一次按下时为触发模型显示。
S1082、在接收到模型隐藏指令时,将三维显示的BIMGIS模型中被选中的模型进行隐藏;本实施例中,在隐藏模式下,单击三维窗口内的模型,即可连续性隐藏选中的三维模型,选中模型后模型结构树会快速定位到对应的树节点处,并打开零部件列表;模型隐藏后会被添加到隐藏模型列表中,如图6a中所示的隐藏列表。若零部件被隐藏,则模型结构树节点下该零部件改变为隐藏状态,具体可以采用零部件名称后面的对应图标表示隐藏和显示状态。
S1083、针对于被隐藏的模型,通过隐藏列表相应的位置触发模型显示指令;在本实施例中,如图6a所示的隐藏列表中设置有取消对应模型隐藏的按键,例如,隐藏列表中各模型名称后面的叉号,通过该按键可以触发模型显示指令。另外,隐藏列表设置有“全部显示”的按键,通过该按键也可以触发模型显示指令。
S1084、在接收到模型显示指令后,将对应被隐藏的模型三维展示出来。针对于如图6a所示的隐藏列表,当点击隐藏列表中各模型名称后面的叉号后,可以将隐藏的对应模型在三维窗口中显示出来,另外点击隐藏列表中“全部显示”的按键后,可以在三维窗口中全部显示隐藏列表中原本被隐藏的模型。
模型的透明显示过程:
S1085、通过本地窗口的相应位置,触发模型透明显示指令;如图6b所示,在本地窗口设置“透明”按键,在检测到该按键被按下时,透明显示模式被触发,即发出模型透明显示指令。
S1086、在接收到模型透明显示指令时,将三维显示的BIMGIS模型中,选择到的正常状态模型变为透明状态,选择到的透明状态模型变为正常状态;根据选中模型,在模型结构树中定位到相应树节点,该树节点即为被选中电厂对象BIMGIS模型的名称。如图6b中左边窗口中“机械设备”即为定位到的树节点。
本实施例的抽水蓄能电站综合管理方法还包括如下步骤:
S109、工程进度展示过程,在本实施例中,通过Citymaker二次开发接口,将电厂最小可拆分单元赋予时间属性(计划开始时间、计划完成时间、实际开始时间、实际完成时间),可按天/月/季度模拟电厂计划施工与实际施工过程,实现施工进度可视化模拟。具体实现过程如下:
S1091、先选择参与进度可视化演示的工程模型范围,即确定要参与演示的电厂对象;在本实施例中,针对于要进行进度过程展示的工程模型,获取工程模型各阶段中所涉及的各个电厂对象的建设情况,包括相应阶段各电厂对象的是“未建设”、“建设中”、“建设完成”,电厂对象具体到电厂最小可拆分单元。本实施例中,在模型结构树上勾选参与进度可视化演示的工程模型,如图7a所示。
S1092、再设置工程进度可视化模拟的时间范围;在本实施例中,将电厂最小可拆分单元赋予时间属性,包括计划开始时间、计划完成时间、实际开始时间、实际完成时间等。
如图7中所示,通过本地窗口设置演示的时间范围,包括开始时间、结束时间和演示间隔。演示间隔可按天、月、极度来设置,例如设置每秒演示工程进度的1天。
S1093、根据工程模型的时间属性计算播放进度数据,动态演示工程施工进度可视化仿真过程。在演示过程中,可以提示当前演示的工程时间。例如在演示窗口的左上角提示“当前为第***天,共***天。当前为2011年12月01日”,当时间进度进展到某项工程模型还未建设时,该工程对应的三维BIMGIS模型不显示,当时间进度进展到某项工程模型的开始时间时,该工程对应的三维BIMGIS模型将透明显示,表示该工程进入施工状态,当时间进度进展到某项工程模型的结束时间时,该工程对应的三维BIMGIS模型将实体化显示,表示该工程施工完毕,如图7b所示;当所有时间演示完毕后,左上角提示“演示完毕!”。
在本实施例中,抽水蓄能电站各电厂对象竣工后的BIMGIS模型包括三维体剖切模型和三维面剖切模型。
当接收体剖切模型展示指令时,即展示对应电厂对象竣工后的BIMGIS模型三维体剖切模型。接收面剖切模型展示指令时,即展示对应电厂对象竣工后的BIMGIS模型的三维面剖切模型。
本实施例中,在本地窗口设置有“剖切”快捷按键,通过点击该按键可以触发剖切展示指令,使得三维窗口三维显示的当前BIMGIS模型展示为体剖切或面剖切的状态。本实施例中,点击“剖切”,进入“体剖切”和“面剖切”子项,单击“体剖切”按钮对模型进行体剖切,可查看模型在xyz三个方向上的空间剖切状态,如图8a所示,通过 旋转方向和上下移动可进行剖切面方向和剖切范围的调节,单击右键完成命令;单击“面剖切”按钮对模型进行面剖切,可查看模型xyz一个方向上的截面形状,如图8b所示。
本领域技术人员可以理解,实现本实施例方法中的全部或部分步骤可以通过程序来指令相关的硬件来完成,相应的程序可以存储于计算机可读存储介质中。应当注意,尽管在附图中以特定顺序描述了本实施例1的方法操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
本实施例中,步骤S101中涉及到的水蓄能电站的数字化交付流程可以如图9所示,具体过程如下:
第一步,确定数字化交付的规则,包括确定数字化交付范围、交付物及格式规定、电站分解结构划分、电站对象编码规定、交付物命名编号规定、电站对象类及属性规定。
第二步,制定数字化交付方案。
第三步,对数字化交付信息进行整合与校验,包括属性数据、地理信息数据、文档、三维模型,并形成质量审核报告。
第四步,审核通过,则完成数字化移交,否则再次进行数字化交付信息整合与校验。
第五步,数字化移交完毕,进行数字化交付成果验收,出具验收报告。
本实施例中,步骤S101中涉及到的BIMGIS多源数据融合的过程可以如图10所示,电厂工程枢纽布置、地质条件复杂,涉及规划、地质、水工、土建、水机、电气、金结、建筑、结构、暖通、消防、给排水、动力照明、造价等众多专业。电厂工程按照工程类型分为大坝工程、引水尾水系统工程、地下厂房系统工程、升压变电工程、通风空调消防工程、施工辅助工程、公路工程、环保水保工程、附属工程、临时工程(安全监测工程),电厂对象类型多样,电厂分解结构复杂,模型格式多样,既包括了表现大空间场景的GIS格式数据,又包含了表现精细化模型的BIM格式,数字化移交过程复杂。针对抽水蓄能电站工程数字化交付内容,BIM+GIS多源数据融合具体过程为:
第一步,倾斜摄影建模:利用无人机对全厂进行航测,对电厂地形地貌信息进行采集,利用ContextCapture完成基于倾斜摄影数据的地表建模。
第二步,三维激光点云建模:利用三维激光扫描技术,对空旷区域的建构筑物外观信息进行采集,利用3Ds Max完成基于三维激光扫描的建构筑物实景三维建模。
第三步,参数化建模:依据复杂装置设备的设计图纸与实测数据,根据装置设备的实际结构、设计参数及作用机理,利用Solidworks参数化建模技术按照最小可拆分单元进行建模,至螺丝级别,完成复杂装置设备的数字化。建模方式采用自底向上的方式,模型含装置的几何信息(如材质、质量、体积、面积等)及生产信息(装置名称、设备编码、生产工艺、耐压等级、制造厂家、安装单位等)。利用Inventor完成发电机组核心设备、管路模型优化,最终导入Revit完成机电族库设计。
第四步,建筑信息模型创建:水工枢纽建构筑物BIM模型依据设计图纸、竣工图纸建模,模型精度LOD400以上。利用Revit完成水工枢纽、地下厂房、地面建筑物建模,包含建筑、结构、给排水、暖通等各专业,并生成建筑结构标准族库。
第五步,BIM+GIS多源数据融合:电厂数字化交付需要将SolidWorks参数化模型数据、3ds MAX基础建模三角面片数据、Revit精细建构筑物数据转换为GIS系统可用的轻量化模型数据,系统选用CityMaker云渲染的服务端完成BIMGIS三维场景发布、后台数据管理。其中地表模型由CityMakerTerrainPush发布为TED格式(GIS格式),并进行整平处理;空旷区域的建构筑物由3dmax插件OsgImport number对3ds格式转换为osg格式进Citymaker builder做数据处理,发布为FDB格式(GIS格式);主机设备与管路模型由SolidWorks创建后在Inventor内转换为rfa族文件进入Revit中,由RevitPluginForFDB插件转换输出为FDB文件(GIS格式)。水工枢纽建构筑物模型由Revit创建,由RevitPluginForFDB插件转换输出为FDB文件(GIS格式)。在由BIM数据向GIS数据转换的 过程中,对模型单位、坐标进行标准定义,最终完成了BIM+GIS数据的融合。
本实施例抽水蓄能电站综合管理方法的实现是采用B/S三层架构模式,分别为数据资源层、核心服务层和应用功能层。其中:
数据资源层以抽水蓄能电站数字化交付标准创建抽水蓄能电站数字化交付的内容,包括BIMGIS模型、属性数据、文档,同时也包括电厂对象各监测点监测数据以及通过摄像头获取到的视频监控数据、教培仿真文件数据等,核心服务层以各种数据采集服务从数据资源层采集上述各种数据信息;其中,核心服务层将采集到的BIMGIS模型等三维地理信息数据等信息以Ajax通道传输、Request数据请求和Restful API的方式分发到不同的应用层。应用层以CityMaker云渲染的服务端,在实现数字化交底和三维展示的基础上,通过集成不同的业务插件,实现多种功能应用。
实施例2
本实施例公开了一种抽水蓄能电站综合管理平台,该平台包括获取模块、第一显示控制模块、展示指令生成模块、第二显示控制模块、第一关联模块、查看指令生成模块、第三显示控制模块,其中各个模块的功能如下:
获取模块,用于获取抽水蓄能电站数字化交付的内容,包括抽水蓄能电站各电厂对象竣工后的BIMGIS模型以及各电厂对象在竣工前后各个阶段的属性数据和文档内容;
第一显示控制模块,用于在本地窗口显示各电厂对象的名称;
展示指令生成模块,用于通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令;
第二显示控制模块,用于在接收到BIMGIS模型的展示指令时,通过服务器进行云渲染后在本地窗口进行对应电厂对象BIMGIS模型的三维显示;
第一关联模块,用于针对于获取到的电厂对象在竣工前后各个阶段的属性数据和文档内容,将其关联到对应电厂对象;
查看指令生成模块,通过本地窗口显示的电厂对象的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象属性数据查看指令或文档查看指令;
第三显示控制模块,用于在接收到对应电厂对象的属性数据查看指令时,触发本地窗口显示对应电厂对象的属性数据;
第四显示控制模块,用于在接收到对应电厂对象的文档查看指令时,触发本地窗口显示对应电厂对象的文档列表,供打开或下载。
本实施例上述各个模块的具体实现可以参见上述实施例1,在此不再一一赘述。需要说明的是,本实施例提供的平台仅以上述各功能模块的划分进行举例说明,在实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。可以理解,本实施例平台中所使用的术语“第一”、“第二”等可用于描述各种单元,但这些单元不受这些术语限制。这些术语仅用于将第一个单元与另一个单元区分。举例来说,在不脱离本发明的范围的情况下,可以将第一显示控制模块称为第二显示控制模块,且类似地,可将第二显示控制模块称为第一显示控制模块。
实施例3
本实施例公开了一种抽水蓄能电站综合管理系统,包括本地计算设备和服务器;
本地计算设备,用于执行实施例1所述的抽水蓄能电站管理方法;如下:
获取抽水蓄能电站数字化交付的内容,包括抽水蓄能电站各电厂对象竣工后的BIMGIS模型以及各电厂对象在竣工前后各个阶段的属性数据和文档;
在本地窗口显示各电厂对象的名称;
通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令,在接收到BIMGIS模型的展示指令时,通过服务器进行云渲染后在本地窗口进行对应电厂对象BIMGIS模型的三维显示;
针对于获取到的电厂对象在竣工前后各个阶段的属性数据和文档内容,将其关联到对应电厂对象;
通过本地窗口显示的电厂对象的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象属性数据查看指令或文档查看指令;
在接收到对应电厂对象的属性数据查看指令时,触发本地窗口显示对应电厂对象的属性数据;
在接收到对应电厂对象的文档查看指令时,触发本地窗口显示对应电厂对象的文档列表,供打开或下载。
服务器,在本地计算设备接收到BIMGIS模型的展示指令时,针对于本地计算设备需要展示的电厂对象BIMGIS模型,进行云渲染后发送给本地计算设备,由本地计算设备将服务器云渲染后的电厂对象BIMGIS模型在本地窗口进行三维显示。
在本实施例中,上述本地计算设备可以是台式电脑、笔记本电脑、智能手机、PDA手持终端、平板电脑或其他具有显示功能的终端设备。
在本实施例中,上述服务器可以是云端服务器,利用云端服务器进行实时渲染,以流媒体服务的方式,将服务器强大的三维处理能力传递给普通配置的电脑、手机、Pad或嵌入式设备的浏览器客户端,或原生APP。服务器对BIMGIS模型进行云渲染的具体过程如下:
第一步,BIMGIS模型三维数据存储在云端服务器上,在云端渲染服务器上利用云端图形服务器CPU、GPU的计算资源基于CityMaker WebSDK创建三维BIMGIS网络服务并加载BIMGIS模型;
第二步,根据客户端实时三维交互指令、操作画面将后端三维数据按序列帧的方式动态渲染输出生成实时画面,利用CityMakerWebSDK使用交互式脚本语言与三维渲染窗口进行交互;
第三步,实时画面以流媒体的方式传递图形服务至HTML5的浏览器客户端(要客户端具有H.264、H.265的解码能力),形成用户需要的三维画面。
实施例4
本实施例公开了一种存储介质,存储有程序,所述程序被处理器执行时,实现实施例1所述的抽水蓄能电站综合管理方法,如下:
获取抽水蓄能电站数字化交付的内容,包括抽水蓄能电站各电厂对象竣工后的BIMGIS模型以及各电厂对象在竣工前后各个阶段的属性数据和文档;
在本地窗口显示各电厂对象的名称;
通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令,在接收到BIMGIS模型的展示指令时,通过服务器进行云渲染后在本地窗口进行对应电厂对象BIMGIS模型的三维显示;
针对于获取到的电厂对象在竣工前后各个阶段的属性数据和文档内容,将其关联到对应电厂对象;
通过本地窗口显示的电厂对象的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象属性数据查看指令或文档查看指令;
在接收到对应电厂对象的属性数据查看指令时,触发本地窗口显示对应电厂对象的属性数据;
在接收到对应电厂对象的文档查看指令时,触发本地窗口显示对应电厂对象的文档列表,供打开或下载。
本实施例中的存储介质可以是磁盘、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、U盘、移动硬盘等介质。
实施例5
本实施例公开了一种计算设备,包括处理器以及用于存储处理器可执行程序的存储器,所述处理器执行存储器存储程序时,实现实施例1所述的抽水蓄能电站综合管理方法,如下:
获取抽水蓄能电站数字化交付的内容,包括抽水蓄能电站各电厂对象竣工后的BIMGIS模型以及各电厂对象在竣工前后各个阶段的属性数据和文档;
在本地窗口显示各电厂对象的名称;
通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令,在接收到BIMGIS模型的展示指令时,通过服务器进行云渲染后在本地窗口进行对应电厂对象BIMGIS模型的三维显示;
针对于获取到的电厂对象在竣工前后各个阶段的属性数据和文档内容,将其关联到对应电厂对象;
通过本地窗口显示的电厂对象的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象属性数据查看指令或文档查看指令;
在接收到对应电厂对象的属性数据查看指令时,触发本地窗口显示对应电厂对象的属性数据;
在接收到对应电厂对象的文档查看指令时,触发本地窗口显示对应电厂对象的文档列表,供打开或下载。
获取抽水蓄能电站数字化交付的内容,包括抽水蓄能电站各电厂对象竣工后的BIMGIS模型以及各电厂对象在竣工前后各个阶段的属性数据和文档;
在本地窗口显示各电厂对象的名称;
通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令,在接收到BIMGIS模型的展示指令时,通过服务器进行云渲染后在本地窗口进行对应电厂对象BIMGIS模型的三维显示;
针对于获取到的电厂对象在竣工前后各个阶段的属性数据和文档内容,将其关联到对应电厂对象;
通过本地窗口显示的电厂对象的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象属性数据查看指令或文档查看指令;
在接收到对应电厂对象的属性数据查看指令时,触发本地窗口显示对应电厂对象的属性数据;
在接收到对应电厂对象的文档查看指令时,触发本地窗口显示对应电厂对象的文档列表,供打开或下载。
本实施例中所述的计算设备可以是台式电脑、笔记本电脑、智能手机、PDA手持终端、平板电脑或其他具有显示功能的终端设备。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种抽水蓄能电站综合管理方法,其特征在于,所述方法包括:
    获取抽水蓄能电站数字化交付的内容,包括抽水蓄能电站各电厂对象竣工后的BIMGIS模型;
    在本地窗口显示各电厂对象的名称;
    通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令,在接收到BIMGIS模型的展示指令时,通过服务器进行云渲染后在本地窗口进行对应电厂对象BIMGIS模型的三维显示。
  2. 根据权利要求1所述的抽水蓄能电站综合管理方法,其特征在于,抽水蓄能电站数字化交付的内容还包括电厂对象在竣工前后各个阶段的属性数据和文档;
    所述方法还包括:
    针对于获取到的电厂对象在竣工前后各个阶段的属性数据和文档内容,将其关联到对应电厂对象;
    通过本地窗口显示的电厂对象的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象属性数据查看指令或文档查看指令;
    在接收到对应电厂对象的属性数据查看指令时,触发本地窗口显示对应电厂对象的属性数据;
    在接收到对应电厂对象的文档查看指令时,触发本地窗口显示对应电厂对象的文档列表,供打开或下载。
  3. 根据权利要求1所述的抽水蓄能电站综合管理方法,其特征在于,所述方法还包括:
    确定抽水蓄能电站各摄像头,并且与各摄像头节点进行关联;
    设定视频模式和定位模式;
    在视频模式下,通过本地窗口显示的摄像头节点,触发在本地窗口播放摄像头节点所关联摄像头的拍摄到的视频;
    在定位模式下,通过本地窗口显示的摄像头节点名称,触发在三维显示的电厂对象的BIMGIS模型中定位到摄像头节点摄像头的空间位置,并且在对应位置显示摄像头模型。
  4. 根据权利要求1所述的抽水蓄能电站综合管理方法,其特征在于,所述方法还包括:
    针对于抽水蓄能电站的各电厂对象,获取对应的教培仿真课件,并且将教培仿真文件与对应电厂对象进行关联;
    通过本地窗口显示的电厂对象的名称或三维显示的电厂对象的BIMGIS模型,触发电厂对象教培仿真课件查看或交互指令;
    在接收到对应电厂对象的文教培仿真课件查看时,触发本地窗口显示对应电厂对象的教培仿真课件列表,供打开或下载;
    在接收到对应电厂对象的文教培仿真课件交互时,触发本地窗口显示对应电厂对象的教培仿真课件视频,并且进入交互模式,在交互模式下,接收输入设备的相应操作。
  5. 根据权利要求1所述的抽水蓄能电站综合管理方法,其特征在于,所述方法还包括文档搜索过程;
    通过本地窗口的相应位置,触发文档搜索指令;
    在接收到文档搜索指令时,获取对应需要搜索的文档类型以及电厂对象的关键字;
    根据文档类型以及电厂对象关键词,搜索到关联到对应电厂对象的文档列表;
    通过文档列表中的文档定位到本地窗口显示的电厂对象的名称,或者通过文档列表查看文档内容;
    所述方法还包括模型隐藏、显示和透明显示过程:
    通过本地窗口的相应位置,触发模型隐藏指令;
    在接收到模型隐藏指令时,将三维显示的BIMGIS模型中被选中的模型进行隐藏;
    针对于被隐藏的模型,通过隐藏列表相应的位置触发模型显示指令;
    在接收到模型显示指令后,将对应被隐藏的模型三维展示出来;
    通过本地窗口的相应位置,触发模型透明显示指令;
    在接收到模型透明显示指令时,将三维显示的BIMGIS模型中,选择到的正常状态模型变为透明状态,选择到的透明状态模型变为正常状态;根据选中模型,定位到本地窗口中显示的电厂对象的名称;
    所述方法还包括工程进度展示过程:
    先选择参与进度可视化演示的工程模型;
    再设置工程进度可视化模拟的时间范围;
    根据工程模型的时间属性计算播放进度数据,动态演示工程施工进度可视化仿真过程;
    抽水蓄能电站各电厂对象竣工后的BIMGIS模型包括三维体剖切模型和三维面剖切模型,当接收体剖切模型展示指令时,即展示对应电厂对象竣工后的BIMGIS模型三维体剖切模型;接收面剖切模型展示指令时,即展示对应电厂对象竣工后的BIMGIS模型的三维面剖切模型。
  6. 根据权利要求1所述的抽水蓄能电站综合管理方法,其特征在于,针对于抽水蓄能电站电厂对象,根据工艺流程或空间布置,按照一定的分类原则和编码体系,以树状结构列表显示抽水蓄能电站电的各级分解电厂对象名称;
    所述抽水蓄能电站电厂对象包括水蓄能电站各类工程中建构筑物、机组、设备和装置;
    其中,依据电厂工程分解结构结合抽水蓄能电站标识系统编码导则,对电厂对象最小可拆分单元模型进行编码,创建BIM模型并转换为GIS模型,得到对应BIMGIS模型,并将模型中的每个零部件赋予cep编号和模型编码。
  7. 一种抽水蓄能电站综合管理平台,其特征在于,包括:
    获取模块,用于获取抽水蓄能电站数字化交付的内容,包括抽水蓄能电站各电厂对象竣工后的BIMGIS模型以及各电厂对象在竣工前后各个阶段的属性数据和文档内容;
    第一显示控制模块,用于在本地窗口显示各电厂对象的名称;
    展示指令生成模块,用于通过本地窗口显示各电厂对象的名称,触发抽水蓄能电站各电厂对象竣工后的BIMGIS模型的展示指令;
    第二显示控制模块,用于在接收到BIMGIS模型的展示指令时,通过服务器进行云渲染后在本地窗口进行对应电厂对象BIMGIS模型的三维显示。
  8. 一种抽水蓄能电站综合管理系统,其特征在于,包括本地计算设备和服务器;
    所述本地计算设备,用于执行权利要求1至6中任一项所述的抽水蓄能电站综合管理方法;
    所述服务器,在本地计算设备接收到BIMGIS模型的展示指令时,针对于对应需要展示的电厂对象BIMGIS模型进行云渲染后发送给本地计算设备,由本地计算设备将服务器云渲染后的电厂对象BIMGIS模型在本地窗口进行三维显示。
  9. 一种存储介质,存储有程序,其特征在于:所述程序被处理器执行时,实现权利要求1~6中任一项所述的抽水蓄能电站综合管理方法。
  10. 一种计算设备,包括处理器以及用于存储处理器可执行程序的存储器,其特征在于:所述处理器执行存储器存储程序时,实现权利要求1~6中任一项所述的抽水蓄能电站综合管理方法。
PCT/CN2021/087142 2020-09-04 2021-04-14 抽水蓄能电站综合管理方法、平台、系统、设备和介质 WO2022048156A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010919979.8A CN112053130A (zh) 2020-09-04 2020-09-04 抽水蓄能电站综合管理方法、平台、系统、设备和介质
CN202010919979.8 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022048156A1 true WO2022048156A1 (zh) 2022-03-10

Family

ID=73607370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087142 WO2022048156A1 (zh) 2020-09-04 2021-04-14 抽水蓄能电站综合管理方法、平台、系统、设备和介质

Country Status (3)

Country Link
CN (1) CN112053130A (zh)
LU (1) LU501999B1 (zh)
WO (1) WO2022048156A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826747A (zh) * 2022-04-29 2022-07-29 西安热工研究院有限公司 一种在役智慧电厂管控架构及其建设方法
CN115022379A (zh) * 2022-08-04 2022-09-06 晋江新建兴机械设备有限公司 一种基于5g云平台的陶瓷生产管理系统
CN116127137A (zh) * 2022-11-15 2023-05-16 蜀道投资集团有限责任公司 公路工程结构树构建方法、电子设备和计算机可读介质
CN116860860A (zh) * 2023-09-04 2023-10-10 国网福建省电力有限公司 一种基于变电站电气设备模型全工程数据流转方法及设备
CN116862721A (zh) * 2023-09-05 2023-10-10 中铁建工集团第二建设有限公司 一种基于数据分析的新型装配式结构施工管理方法
CN117078887A (zh) * 2023-10-17 2023-11-17 成都古河云科技有限公司 三维模型视觉穿透方法、系统、电子设备及存储介质
CN117215787A (zh) * 2023-09-14 2023-12-12 北京中水科水电科技开发有限公司 抽水蓄能机组流程执行的人机交互方法、系统、相关设备
CN117829862A (zh) * 2024-03-04 2024-04-05 贵州联广科技股份有限公司 一种基于互联互通的数据源追溯方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112053130A (zh) * 2020-09-04 2020-12-08 清远蓄能发电有限公司 抽水蓄能电站综合管理方法、平台、系统、设备和介质
CN112685820A (zh) * 2020-12-29 2021-04-20 清远蓄能发电有限公司 基于bim和gis的数字化电站交付方法、介质和设备
CN112700555B (zh) * 2020-12-31 2023-11-14 珠海派诺科技股份有限公司 高可配组态化3d数据可视化实现方法、电子设备、存储介质
CN113423002B (zh) * 2021-06-29 2023-05-23 上海禹创工程顾问有限公司 基于物联网数据和bim模型的融合显示方法及装置
CN114510521B (zh) * 2022-04-19 2022-09-09 深圳丰尚智慧农牧科技有限公司 基于三维模型的数据展示方法、装置和计算机设备
CN116975256B (zh) * 2023-07-28 2024-01-16 三峡大学 抽水蓄能电站地下厂房施工过程多源信息的处理方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106339820A (zh) * 2016-08-31 2017-01-18 中国电建集团昆明勘测设计研究院有限公司 一种基于虚拟现实的水工建筑物实测性态多维度分析方法及系统
CN108038915A (zh) * 2017-12-13 2018-05-15 中国能源建设集团江苏省电力设计院有限公司 一种基于web端三维模拟的变电站工程进度信息可视化系统
CN109559381A (zh) * 2018-11-06 2019-04-02 国网福建省电力有限公司 一种基于ar空间测量技术的变电站验收方法
CN110704904A (zh) * 2019-09-12 2020-01-17 国网上海市电力公司 一种多软件协同的变电站三维规划方法
CN110766805A (zh) * 2019-11-29 2020-02-07 中国能源建设集团安徽电力建设第一工程有限公司 火力发电厂交互式三维及vr仿真交底系统
CN111047685A (zh) * 2019-12-16 2020-04-21 中国电力工程顾问集团西南电力设计院有限公司 一种电厂bim模型全景漫游的实现方法
CN112053130A (zh) * 2020-09-04 2020-12-08 清远蓄能发电有限公司 抽水蓄能电站综合管理方法、平台、系统、设备和介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111597005B (zh) * 2020-05-18 2023-09-05 深圳航天智慧城市系统技术研究院有限公司 一种大数据可视化三维gis云渲染项目生成系统与方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106339820A (zh) * 2016-08-31 2017-01-18 中国电建集团昆明勘测设计研究院有限公司 一种基于虚拟现实的水工建筑物实测性态多维度分析方法及系统
CN108038915A (zh) * 2017-12-13 2018-05-15 中国能源建设集团江苏省电力设计院有限公司 一种基于web端三维模拟的变电站工程进度信息可视化系统
CN109559381A (zh) * 2018-11-06 2019-04-02 国网福建省电力有限公司 一种基于ar空间测量技术的变电站验收方法
CN110704904A (zh) * 2019-09-12 2020-01-17 国网上海市电力公司 一种多软件协同的变电站三维规划方法
CN110766805A (zh) * 2019-11-29 2020-02-07 中国能源建设集团安徽电力建设第一工程有限公司 火力发电厂交互式三维及vr仿真交底系统
CN111047685A (zh) * 2019-12-16 2020-04-21 中国电力工程顾问集团西南电力设计院有限公司 一种电厂bim模型全景漫游的实现方法
CN112053130A (zh) * 2020-09-04 2020-12-08 清远蓄能发电有限公司 抽水蓄能电站综合管理方法、平台、系统、设备和介质

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826747A (zh) * 2022-04-29 2022-07-29 西安热工研究院有限公司 一种在役智慧电厂管控架构及其建设方法
CN114826747B (zh) * 2022-04-29 2024-03-22 西安热工研究院有限公司 一种在役智慧电厂管控架构及其建设方法
CN115022379A (zh) * 2022-08-04 2022-09-06 晋江新建兴机械设备有限公司 一种基于5g云平台的陶瓷生产管理系统
CN115022379B (zh) * 2022-08-04 2022-10-11 晋江新建兴机械设备有限公司 一种基于5g云平台的陶瓷生产管理系统
CN116127137B (zh) * 2022-11-15 2023-12-08 蜀道投资集团有限责任公司 公路工程结构树构建方法、电子设备和计算机可读介质
CN116127137A (zh) * 2022-11-15 2023-05-16 蜀道投资集团有限责任公司 公路工程结构树构建方法、电子设备和计算机可读介质
CN116860860B (zh) * 2023-09-04 2023-11-28 国网福建省电力有限公司 一种基于变电站电气设备模型全工程数据流转方法及设备
CN116860860A (zh) * 2023-09-04 2023-10-10 国网福建省电力有限公司 一种基于变电站电气设备模型全工程数据流转方法及设备
CN116862721A (zh) * 2023-09-05 2023-10-10 中铁建工集团第二建设有限公司 一种基于数据分析的新型装配式结构施工管理方法
CN116862721B (zh) * 2023-09-05 2023-11-21 中铁建工集团第二建设有限公司 一种基于数据分析的装配式结构施工管理方法
CN117215787A (zh) * 2023-09-14 2023-12-12 北京中水科水电科技开发有限公司 抽水蓄能机组流程执行的人机交互方法、系统、相关设备
CN117078887A (zh) * 2023-10-17 2023-11-17 成都古河云科技有限公司 三维模型视觉穿透方法、系统、电子设备及存储介质
CN117078887B (zh) * 2023-10-17 2024-01-02 成都古河云科技有限公司 三维模型视觉穿透方法、系统、电子设备及存储介质
CN117829862A (zh) * 2024-03-04 2024-04-05 贵州联广科技股份有限公司 一种基于互联互通的数据源追溯方法及系统

Also Published As

Publication number Publication date
LU501999B1 (en) 2022-09-05
LU501999A1 (en) 2022-05-10
CN112053130A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022048156A1 (zh) 抽水蓄能电站综合管理方法、平台、系统、设备和介质
CN112069580A (zh) 抽水蓄能电站数字化交付方法、平台、系统、设备和介质
CN113887939A (zh) 一种基于bimgis的云端渲染蓄能水电厂数字化交付实现方法、系统、存储介质及设备
CN107153744B (zh) 地下三维管线决策系统
CN112685820A (zh) 基于bim和gis的数字化电站交付方法、介质和设备
CN112017287A (zh) 一种地下电缆设施三维参数化建模及高效渲染方法
CN116542387A (zh) 一种基于Unity3D的智慧水文系统
CN113312736B (zh) 基于云平台的河网水动力模拟实现方法及系统
CN110599116A (zh) 一种基于云数据中心的电网分散协同设计方法及系统
CN110598346B (zh) 一种施工管理系统与gim模型的交互方法
CN114663573A (zh) 石化三维模型库构建方法和系统
CN117351162A (zh) 一种基于数字孪生的实景三维规划设计方法
Shengyi et al. Research on integrated application of virtual reality technology based on BIM
Yang et al. Design of urban landscape visual simulation system based on three-dimensional simulation technology
CN102270219B (zh) 一种火星探测器部件级虚拟样机库的架构方法
CN111651506B (zh) 一种基于历史文化数据的层积性分析方法及装置
Zhang et al. Integration application system of Chinese wooden architecture heritages based on BIM
Talipova et al. Perspectives of interactions CAD and GIS systems
CN112634436A (zh) 一种电力系统bim模型的设备轻量化展示系统
Zhong et al. Visible project management system for highway construction based on 3d virtual reality and information technology
Li et al. The application of BIM in the restoration of historical buildings
Lu et al. Frame design of the BIM based budget software of nuclear power projects
Ma et al. Innovative Applications of Digital Art and Augmented Reality in the Construction Industry through Building Information Modeling
Liu et al. Application of digital technology and PDA+ APPS mobile terminal in historical architecture culture protection and development
Lei et al. System development of making an image map based on google earth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863226

Country of ref document: EP

Kind code of ref document: A1