WO2022048116A1 - 磁辅助焊接装置及焊接方法 - Google Patents

磁辅助焊接装置及焊接方法 Download PDF

Info

Publication number
WO2022048116A1
WO2022048116A1 PCT/CN2021/078408 CN2021078408W WO2022048116A1 WO 2022048116 A1 WO2022048116 A1 WO 2022048116A1 CN 2021078408 W CN2021078408 W CN 2021078408W WO 2022048116 A1 WO2022048116 A1 WO 2022048116A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
welded
electrode
magnetic
welding
Prior art date
Application number
PCT/CN2021/078408
Other languages
English (en)
French (fr)
Inventor
韩晓辉
徐野
李刚卿
叶结和
刘勇
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Publication of WO2022048116A1 publication Critical patent/WO2022048116A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment

Definitions

  • the present application relates to the field of welding technology, and in particular, to a magnetically assisted welding device and a welding method.
  • the resistance spot welding process is the core connection process for thin-walled structures such as car bodies due to its high efficiency, low cost, and easy automation.
  • resistance spot welded joints are prone to joint softening and local overheating, resulting in excessively deep indentation and obvious residual burn marks, which seriously affect the surface quality of the solder joints.
  • the common treatment method is to use single-sided resistance spot welding process, supplemented by manual mechanical or chemical trace removal treatment after welding, but manual trace removal treatment Time consuming and laborious and very limited.
  • the present application aims to solve at least one of the technical problems existing in the prior art.
  • the present application proposes a magnetic-assisted welding device, which is used to solve the defects in the prior art that there are indentations during the appearance welding of parts, which affect the appearance quality of the parts.
  • a magnetic field that stirs the nugget is generated inside the workpiece to be welded, and the interaction between the magnetic field and the welding current performs three-dimensional and real-time control of the molten metal in the welding area, thereby increasing the microhardness of the internal structure of the nugget and improving the nugget. shape, which greatly weakens the softening effect of the melted area in the axial direction and reduces the indentation.
  • the present application also proposes a magnetic-assisted welding method, which is used to solve the defects in the prior art that there are indentations in the appearance welding of parts, which affect the appearance quality of the parts, so as to reduce the surface indentation of the workpiece to be welded and improve the shape of the nugget.
  • a magnetic-assisted welding device includes: a first electrode, a second electrode, a substrate, a first workpiece to be welded, a second workpiece to be welded, and a magnetic unit;
  • the first workpiece to be welded and the second workpiece to be welded are superposed and arranged between the first electrode and the substrate;
  • the second electrode and the second workpiece to be welded are in contact with the substrate;
  • the magnetic unit ring is placed outside the first electrode
  • the first electrode is in contact with the surface of the first workpiece to be welded, and a nugget is formed between the first workpiece to be welded and the second workpiece to be welded;
  • the nugget is stirred by the magnetic unit.
  • the magnetic unit forms a stirring magnetic field between the first workpiece to be welded and the second workpiece to be welded, and the stirring magnetic field guides the nugget to form from the center of the nugget It is in the form of a divergent setting.
  • Electromagnetic stirring improves the microhardness of the joint, improves the shape of the nugget, preferably improves the shape of the nugget to a peanut shape, and minimizes single-sided point indentation to the greatest extent.
  • this solution is used in the welding operation of single-sided resistance spot welding, that is, the first electrode and the magnetic unit form a single-sided resistance spot welding tooling to realize the welding of the first workpiece to be welded and the second workpiece to be welded. .
  • the basic material is copper
  • the materials of the first workpiece to be welded and the second workpiece to be welded are any one or a combination of materials such as stainless steel, aluminum alloy, advanced high-strength steel, and titanium alloy.
  • the heat transfer in the temperature field and the flow velocity of the particles in the flow field can be accelerated, and the quality defects such as internal shrinkage and unmelting caused by insufficient heat in the nugget center of thick-walled materials can be effectively suppressed, and the quality of nucleation can be optimized and improved.
  • this solution can effectively improve the heat distribution.
  • the penetration rate of the nugget in the outer plate area can be reduced from the traditional 50-60% to 30-40%.
  • the appearance can be effectively improved.
  • the outer portion of the magnetic unit is further provided with a clamping unit
  • the clamping unit includes: an outer clamping wall, an inner clamping wall and a connecting rib;
  • the outer clamping wall and the inner clamping wall are sleeved with each other, and the connecting rib connects the outer clamping wall and the inner clamping wall;
  • the inner surface of the outer clamping wall, the outer surface of the inner clamping wall and one side surface of the connecting rib surround and form an accommodation space for accommodating the electromagnetic unit;
  • the inner side of the inner side clamping wall forms a channel through which the first electrode passes;
  • the end of the outer clamping wall on one side of the accommodating space is flush with the first electrode, or the end of the first electrode is located in the accommodating space.
  • the relative position between the magnetic unit and the first electrode is guaranteed to be fixed.
  • the connecting rib is provided with at least one ventilation hole for injecting protective gas into the accommodating space.
  • a shielding gas into the accommodating space for accommodating the magnetic unit, a gas seal is formed, which avoids the problem of oxidation of the solder joints during the welding process. It is economical, convenient and efficient without additional processes such as manual scratch removal after welding, and no additional energy consumption during the welding process.
  • the inner surface of the other side of the outer clamping wall opposite to the accommodating space is provided with a thread for matching with the first electrode.
  • a connection method between the clamping unit and the first electrode is realized, and a detachable connection can be formed between the clamping unit, the magnetic unit and the first electrode.
  • the clamping unit is made of a high temperature resistant material with elasticity.
  • the rigid magnetic unit by nesting elastic high temperature resistant clamping units, such as high temperature resistant rubber.
  • the elastic deformation of the clamping unit can ensure that no damage is caused to the exposed surface, and at the same time, a closed space can be formed to ensure that the shielding gas can effectively cover the welding area and form a good protective effect.
  • the magnetic unit is a cylindrical permanent magnet arranged around the first electrode, an opening connecting the top surface and the bottom surface is provided on the side wall of the cylindrical permanent magnet, and the opening forms a protective gas channel through.
  • the columnar permanent magnet is easy to install and disassemble, which greatly improves the convenience of the welding process.
  • the magnetic unit is a plurality of block-shaped permanent magnets arranged around the first electrode and distributed in a circular array, and a gap between two adjacent block-shaped permanent magnets forms a protection The channel through which the gas passes.
  • a magnetic unit Several block permanent magnets distributed in a circular array make the magnetic field distribution more uniform, and at the same time, it is easier and more sufficient to fill the accommodating space with protective gas.
  • the symmetrical arrangement of the circular array improves the magnetic field form formed by the magnetic unit, and optimizes the stirring of the stirring magnetic field inside the nugget.
  • the magnetic-assisted welding using the above-mentioned magnetic-assisted welding device includes the following steps:
  • the power supply is turned on to enter the welding stage, and the welding of the first workpiece to be welded and the second workpiece to be welded is realized.
  • the step of turning on the power supply to enter the welding stage, and after the step of welding the first workpiece to be welded and the second workpiece to be welded further includes:
  • the current intensity in the holding stage is less than or equal to 15% of the current intensity in the welding stage, and the contact force between the first electrode and the surface of the first workpiece to be welded remains unchanged.
  • a ventilation hole is opened on the clamping unit, so as to ensure the airtightness during the welding process and avoid oxidation of the welding point.
  • the filling of the shielding gas is continued from the beginning of the welding stage to the end of the holding stage, which ensures that the solder joints are always in the gas-tight environment formed by the shielding gas during the welding process, so as to ensure that the solder joints are not oxidized, thereby avoiding Electrolytic decolorization is required after welding.
  • a magnetic-assisted welding device and a welding method provided by the embodiments of the present application, the welding device arranges magnetic units around the electrodes, During the welding process of the workpiece to be welded, a magnetic field that stirs the nugget is generated inside the workpiece to be welded, and the interaction between the magnetic field and the welding current performs three-dimensional real-time control of the molten metal in the welding area, thereby increasing the internal structure of the nugget in mechanism. Microhardness, improve nugget morphology, greatly weaken the softening effect of the melted area in the axial direction and reduce indentation.
  • FIG. 1 is a schematic diagram of the assembly relationship of a first electrode, a second electrode, a substrate, a first workpiece to be welded, a second workpiece to be welded, and a clamping unit in a magnetically assisted welding device provided in an embodiment of the present application;
  • FIG. 2 is a first schematic diagram of the assembly relationship of a first electrode, a second electrode, a substrate, a first workpiece to be welded, a second workpiece to be welded, a clamping unit and a magnetic unit in the magnetically assisted welding device provided by the embodiment of the present application;
  • FIG. 3 is a second schematic diagram of the assembly relationship of the first electrode, the second electrode, the substrate, the first workpiece to be welded, the second workpiece to be welded, the clamping unit and the magnetic unit in the magnetically assisted welding device provided by the embodiment of the present application;
  • FIG. 4 is a first schematic diagram of the structure of the clamping unit in the magnetic-assisted welding device provided by the embodiment of the present application;
  • FIG. 5 is a second schematic diagram of the structure of the clamping unit in the magnetic-assisted welding device provided by the embodiment of the present application;
  • FIG. 6 is a third schematic diagram of the structure of the clamping unit in the magnetic-assisted welding device provided by the embodiment of the present application.
  • Fig. 7 is the first schematic diagram of the control logic flow of the magnetic-assisted welding method provided by the embodiment of the present application.
  • FIG. 8 is a second schematic diagram of the control logic flow of the magnetic-assisted welding method provided by the embodiment of the present application.
  • Clamping unit 701, outer clamping wall; 702, inner clamping wall; 703, connecting rib; 704, vent hole; 705, thread.
  • FIG. 1 is a schematic diagram of the assembly relationship of a first electrode 1 , a second electrode 2 , a substrate 3 , a first workpiece to be welded 4 , a second workpiece to be welded 5 and a clamping unit 7 in the magnetically assisted welding device provided by the embodiment of the present application .
  • the magnetic unit 6 is clamped inside the clamping unit 7 .
  • Figure 1 shows a solution with a clamping unit 7.
  • the clamping unit 7 can also be omitted, and the connection between the magnetic unit 6 and the first electrode 1 can be realized by other methods such as bonding.
  • the magnetization direction of the magnetic units 6 is radial magnetization, and through the mutual repulsion of the magnetic units 6 at the symmetrical positions, a diameter is generated in the nugget and its surrounding area.
  • the mass transfer and heat transfer behavior of the molten metal in the welding area can be controlled in real time by three-dimensional composite real-time control by coupling and interaction with the external magnetic field and the welding current.
  • this solution is used in the welding process of single-sided resistance spot welding, that is, the first electrode 1 and the magnetic unit 6 form a single-sided resistance spot welding tool, which realizes the welding of the first workpiece to be welded 4 and the second workpiece to be welded. Welding of workpiece 5.
  • the present application of resistance spot welding can increase the microhardness of the weld nugget from the mechanism, thereby greatly weakening the melting area.
  • the softening effect in the axial direction reduces the indentation.
  • the present application proposes two embodiments of the magnetic unit 6 , and the corresponding clamping unit 7 also has changes in the structure of the corresponding fixing of the magnetic unit 6 .
  • the overall idea of the clamping unit 7 for fixing the magnetic unit 6 remains unchanged, that is, the magnetic unit 6 is clamped by an elastic wear-resistant material, and is connected to the first electrode 1, which is connected to the first electrode. 1.
  • the connection may be that the clamping unit 7 realizes the connection through the thread 705, or the clamping unit 7 realizes the connection through the compression deformation of the inner clamping wall 702.
  • the first electrode 1 only shows a schematic diagram of the end.
  • the end of the clamping unit 7 is provided with a thread 705
  • the first electrode 1 is also provided with a corresponding external thread connection structure.
  • the grains of the nugget structure are more dense, thereby increasing the microhardness of the nugget, and greatly weakening the joint softening in the melting area in the thickness direction of the nugget, thereby achieving the engineering purpose of reducing indentation. .
  • the macro-shape of traditional welding is optimized from ellipse to peanut shape, so as to minimize the indentation of welding, especially the single-sided point, and reduce the indentation on the premise of ensuring that the effective nugget diameter meets the standard requirements. to depths that are indistinguishable to the naked eye.
  • the present application optimizes the three-dimensional energy distribution of the nugget by utilizing the electromagnetic stirring effect and the coupling enhancement effect of the magnetic field and the electric field, and strengthens the energy weak area in the center of the nugget, which can accelerate the heat transfer in the temperature field and the flow velocity of the particles in the flow field. , to effectively suppress the quality defects such as internal shrinkage and unmelting caused by insufficient heat and insufficient flow in the nugget center of thick-walled materials, and optimize and improve the quality of nucleation.
  • FIG. 4 to 6 are the first, second and third schematic diagrams of the structure of the clamping unit 7 in the magnetic-assisted welding device provided by the embodiment of the present application.
  • the present application provides two structural schematic diagrams of the clamping unit 7 that cooperates with the magnetic unit 6 .
  • the clamping unit 7 is also provided with structures such as threads 705 and ventilation holes 704 .
  • the clamping of the magnetic unit 6 is realized by the outer clamping wall 701 and the inner clamping wall 702
  • the connection with the first electrode 1 is realized by the thread 705 or the inner clamping wall 702 .
  • FIG. 6 the internal structure of a clamping unit 7 is shown in FIG. 6 . It can be seen from FIG. 6 that the vertical rib provided with the ventilation holes 704 is flush with the end of the outer clamping wall 701 . In application, this part can also be set to have a certain distance, and this part of the distance can be set as a thread 705 according to requirements, so as to facilitate connection with the first motor.
  • FIG. 7 and FIG. 8 are the first and second schematic diagrams of the control logic flow of the magnetic-assisted welding method provided by the embodiments of the present application. Schematic diagrams of the control logic for two magnetic-assisted welding methods are presented.
  • connection and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, Or integral connection; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium.
  • connection should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection, Or integral connection; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium.
  • the first feature "on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features pass through the middle indirect contact with the media.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the present solution provides a magnetically assisted welding device, including: a first electrode 1 , a second electrode 2 , a substrate 3 , and a first workpiece to be welded 4 , the second workpiece to be welded 5 and the magnetic unit 6; the first workpiece to be welded 4 and the second workpiece to be welded 5 are superimposed and arranged between the first electrode 1 and the substrate 3; the second electrode 2 and the second workpiece to be welded 5 and The base plate 3 is in contact; the magnetic unit 6 is placed on the outer side of the first electrode 1; wherein, the first electrode 1 is in contact with the surface of the first workpiece to be welded 4, and is in contact with the first workpiece to be welded 4 and the second workpiece to be welded A nugget is formed between 5; the nugget is stirred by the magnetic unit 6.
  • a magnetic-assisted welding device proposed in the present application is used to solve the defect of indentation during the appearance welding of parts in the prior art, which affects the appearance quality of the parts.
  • the workpiece to be welded can be , a magnetic field that stirs the nugget is generated inside the workpiece to be welded, and the interaction between the magnetic field and the welding current performs three-dimensional and real-time control of the molten metal in the welding area, thereby increasing the microhardness of the internal structure of the nugget and improving the shape of the nugget. , which greatly weakens the softening effect of the melted area in the axial direction and reduces the indentation.
  • the magnetic unit 6 forms a stirring magnetic field between the first workpiece 4 to be welded and the second workpiece 5 to be welded, and the stirring magnetic field guides the nugget to form a shape that is diverging from the center of the nugget.
  • the nugget is stirred to form a shape that is divergent from the center of the nugget, which solves the problem of deep indentation during the welding process.
  • Electromagnetic stirring is carried out in the area to improve the microhardness of the joint, and the shape of the nugget is improved, preferably the shape of the nugget is improved to a peanut shape, and the single-sided point indentation is minimized to the greatest extent.
  • this solution is used in the welding operation of single-sided resistance spot welding, that is, the first electrode 1 and the magnetic unit 6 form a single-sided resistance spot welding tool, which realizes the welding of the first workpiece 4 to be welded and the second workpiece to be welded. Welding of piece 5.
  • the basic material is copper
  • the materials of the first workpiece to be welded 4 and the second workpiece to be welded 5 are any one or a combination of materials such as stainless steel, aluminum alloy, advanced high-strength steel, titanium alloy, etc.
  • the magnetic unit 6 is sleeved on the outer periphery of the first electrode 1, so that the appearance quality of the single-sided resistance spot welding process is significantly improved, and the single-sided point indentation is minimized to the greatest extent.
  • the application range includes but It is not limited to related fields such as rail transit equipment, aerospace and automobile manufacturing.
  • the heat transfer in the temperature field and the flow velocity of the particles in the flow field can be accelerated, and the quality defects such as internal shrinkage and unmelting caused by insufficient heat in the nugget center of thick-walled materials can be effectively suppressed, and the quality of nucleation can be optimized and improved.
  • this solution can effectively improve the heat distribution.
  • the penetration rate of the nugget in the outer plate area can be reduced from the traditional 50-60% to 30-40%, On the premise of ensuring the qualified nugget diameter and penetration rate, the appearance can be effectively improved.
  • a clamping unit 7 is also provided on the outside of the magnetic unit 6; the clamping unit 7 includes: an outer clamping wall 701, an inner clamping wall 702 and a connecting rib 703; an outer clamping wall 701 and an inner clamp
  • the holding walls 702 are nested with each other, and the connecting rib 703 connects the outer clamping wall 701 and the inner clamping wall 702; the inner surface of the outer clamping wall 701, the outer surface of the inner clamping wall 702 and the side surface of the connecting rib 703 are surrounded to form a container.
  • the clamping unit 7 by arranging the clamping unit 7 , the relative position between the magnetic unit 6 and the first electrode 1 is guaranteed to be fixed.
  • this embodiment provides two implementations of the first electrode 1 in the accommodating space, and the two arrangements of the first electrode 1 are adjusted according to the abutting force required by the substrate 3 in practical applications, and are Pressing the clamping unit 7 realizes the sealing of the accommodating space where the magnetic unit 6 is located.
  • the connecting rib 703 is provided with at least one ventilation hole 704 for injecting protective gas into the accommodating space.
  • a shielding gas into the accommodating space for accommodating the magnetic unit 6, a gas seal is formed, which avoids the problem of oxidation of the solder joints during the welding process.
  • the arrangement of the ventilation holes 704 in this solution can realize the solder joints after welding. No oxidation color, no need for additional processes such as manual removal of marks after welding, and no need to increase additional energy consumption during the welding process, which is economical, convenient and efficient.
  • the inner surface of the other side of the outer clamping wall 701 opposite to the accommodating space is provided with a thread 705 which is matched with the first electrode 1 .
  • a connection method between the clamping unit 7 and the first electrode 1 is realized, and a detachable connection can be formed between the clamping unit 7, the magnetic unit 6 and the first electrode 1. .
  • the clamping unit 7 is made of a high temperature resistant material with elasticity.
  • an elastic high temperature resistant clamping unit 7 such as high temperature resistant rubber, is nested.
  • the elastic deformation of the clamping unit 7 can ensure that no damage is caused to the exposed surface, and at the same time, a closed space can be formed to ensure that the shielding gas effectively covers the welding area, and a good protective effect is formed.
  • the magnetic unit 6 is a cylindrical permanent magnet disposed around the first electrode 1 , and an opening connecting the top surface and the bottom surface is provided on the side wall of the cylindrical permanent magnet, and the opening forms a passage for the shielding gas to pass through.
  • the columnar permanent magnet is easy to install and disassemble, which greatly improves the convenience of the welding process.
  • the magnetic unit 6 is a plurality of block permanent magnets arranged around the first electrode 1 and distributed in a circular array, and the gap between two adjacent block permanent magnets forms a passage for the shielding gas to pass.
  • an embodiment of the magnetic unit 6 is proposed.
  • Several block permanent magnets distributed in a circular array make the magnetic field distribution more uniform, and at the same time, it is easier and more sufficient to fill the accommodating space with protective gas.
  • the symmetrical arrangement of the circular array improves the magnetic field form formed by the magnetic unit 6, and optimizes the stirring of the stirring magnetic field inside the nugget.
  • the present solution provides a magnetic-assisted welding method, which utilizes the above-mentioned magnetic-assisted welding device to perform magnetic-assisted welding, including the following steps:
  • the magnetic unit 6 with the clamping unit 7 is sleeved and placed outside the first electrode 1;
  • the magnetic assisted welding method proposed in the present application is used to solve the defect of indentation in the appearance welding of parts in the prior art, which affects the appearance quality of the parts, so as to reduce the indentation on the surface of the workpiece to be welded and improve the shape of the nugget.
  • the power supply is turned on to enter the welding stage, and after the step of welding the first workpiece 4 to be welded and the second workpiece 5 to be welded, the method further includes:
  • the current intensity in the holding stage is less than or equal to 15% of the current intensity in the welding stage, and the contact force between the first electrode 1 and the surface of the first workpiece to be welded 4 remains unchanged.
  • a ventilation hole 704 is opened on the clamping unit 7 to ensure airtightness during the welding process and prevent the solder joints from being oxidized.
  • the filling of the shielding gas is continued from the beginning of the welding stage to the end of the holding stage, which ensures that the solder joints are always in the gas-tight environment formed by the shielding gas during the welding process, so as to ensure that the solder joints are not oxidized, thereby avoiding Electrolytic decolorization is required after welding.

Abstract

一种磁辅助焊接装置,包括:第一电极(1)、第二电极(2)、基板(3)、第一待焊工件(4)、第二待焊工件(5)以及磁性单元(6);第一待焊工件与第二待焊工件叠加设置于第一电极与基板之间;第二电极和第二待焊工件与基板抵接;磁性单元环置于第一电极的外侧;其中,第一电极与第一待焊工件的表面抵接,并在第一待焊工件和第二待焊工件之间形成熔核;由磁性单元对熔核进行搅拌。该装置通过在电极周围布置磁性单元,在待焊工件的内部产生搅动熔核的搅拌磁场,搅拌磁场与焊接电流交互作用对焊接区域进行三维符合实时调控,从而增加熔核内部组织的显微硬度、改善熔核形态,削弱熔化区域在轴向的软化效果进而降低压痕。还涉及一种磁辅助焊接方法。

Description

磁辅助焊接装置及焊接方法
相关申请的交叉引用
本申请要求于2020年9月02日提交的申请号为2020109114554,发明名称为“磁辅助焊接装置及焊接方法”的中国专利申请的优先权,其通过引用方式全部并入本公开。
技术领域
本申请涉及焊接技术领域,尤其涉及一种磁辅助焊接装置及焊接方法。
背景技术
焊接是轨道车辆制造中的重要工艺,而电阻点焊在轨道车辆焊接中扮演着重要的角色。电阻点焊工艺因其效率高、成本低、易于实现自动化等优点,是车体等薄壁结构的核心连接工艺。然而,电阻点焊接头容易出现接头软化和局部过热现象,导致压痕过深、残存明显的灼烧痕迹,严重影响焊点表面质量。对于外观要求较高的部件(如无涂装的不锈钢地铁侧墙等),常用的处理方法是采用单面电阻点焊工艺,辅以焊后人工机械或化学消痕处理,然而人工消痕处理耗时费力且效果非常有限。
研究表明,通过降低电流或增加焊接压力可以一定程度减轻压痕,然而这又将严重影响接头焊接质量,造成重大安全隐患。因此,需要采用一种高效、可靠的焊接方式,在保证焊接质量的同时实现无压痕单面电阻点焊。
有鉴于此提出本申请。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种磁辅助焊接装置,用以解决现有技术中部件外观焊接时存在压痕,影响部件外观质量的缺陷,通过在电极周围布置磁性单元,使得待焊工件在焊接过程中,在待焊工件的内部产生搅动熔核的磁场,磁场与焊接电流交互作用对焊接区域的熔融金属进行三维符合实时调控,从而在机理上增加熔核内部组织的显微硬度、改善熔核形态,大幅削弱熔化区域在轴向的 软化效果进而降低压痕。
本申请还提出一种磁辅助焊接方法,用以解决现有技术中部件外观焊接时存在压痕,影响部件外观质量的缺陷,实现降低待焊工件表面压痕,改善熔核的形态。
根据本申请第一方面实施例的一种磁辅助焊接装置,包括:第一电极、第二电极、基板、第一待焊工件、第二待焊工件以及磁性单元;
所述第一待焊工件与所述第二待焊工件叠加设置于所述第一电极与所述基板之间;
所述第二电极和所述第二待焊工件与所述基板抵接;
所述磁性单元环置于所述第一电极的外侧;
其中,所述第一电极与所述第一待焊工件的表面抵接,并在所述第一待焊工件和所述第二待焊工件之间形成熔核;
由所述磁性单元对所述熔核进行搅拌。
根据本申请的一个实施例,所述磁性单元在所述第一待焊工件与所述第二待焊工件之间形成搅拌磁场,所述搅拌磁场引导所述熔核形成自所述熔核中心呈发散状设置的形态。
具体来说,通过设置能够形成搅拌磁场的磁性单元,将熔核搅拌形成自熔核中心呈发散状设置的形态,解决了焊接过程中的压痕过深的问题,利用磁性单元对焊接区域进行电磁搅拌,提升接头显微硬度,将熔核的形态进行改善,优选地将熔核的形态改善为花生形,最大程度地将单面点压痕降至最低。
需要说明的是,本方案使用在单面电阻点焊的焊接作业过程中,即第一电极与磁性单元组成单面电阻点焊工装,实现对第一待焊工件和第二待焊工件的焊接。
还需要说明的是,基本材料为铜,第一待焊工件和第二待焊工件的材料为不锈钢、铝合金、先进高强钢、钛合金等材料中任意一种或几种的组合,本方案通过在第一电极外周套设磁性单元,使得单面电阻点焊工艺下的外观质量得到了显著的提升,最大程度地将单面点压痕降至最低,其应用范围包括但不限于轨道交通装备、航空航天和汽车制造等相关领域。
进一步地,通过电磁搅拌的作用,可以加速温度场热量传输、流场质 点流动速度,有效抑制厚壁材料熔核中心由于热量不足导致的内部缩孔、未熔等质量缺欠,优化提升形核质量。
进一步地,本方案可有效改善热量分配,通过降低作用于第一待焊工件的电阻热量,可将熔核在外板区域的熔透率由传统的50-60%降低至30-40%,在保证获得合格熔核直径和熔透率的前提下,有效改善外观效果。
根据本申请的一个实施例,所述磁性单元的外部还环设有夹持单元;
所述夹持单元包括:外侧夹持壁、内侧夹持壁和连接筋;
所述外侧夹持壁和所述内侧夹持壁彼此套置,所述连接筋连接所述外侧夹持壁和所述内侧夹持壁;
所述外侧夹持壁的内表面、所述内侧夹持壁外表面和所述连接筋的一侧表面包围形成容纳所述电磁单元的容纳空间;
所述内侧夹持壁的内侧形成所述第一电极通过的通道;
其中,所述外侧夹持壁在所述容纳空间一侧的端部与所述第一电极齐平,或者所述第一电极的端部处于所述容纳空间内。
具体来说,通过设置夹持单元,保证了磁性单元与第一电极之间相对位置的固定。
根据本申请的一个实施例,所述连接筋上设置有至少一个用于向所述容纳空间内注入保护气体的通气孔。
具体来说,通过向容纳磁性单元的容纳空间内通入保护气体,形成了气体密封,避免了在焊接过程中焊点的氧化问题,通过本方案的通气孔设置能够实现焊后焊点无氧化色,无需焊后人工消痕等额外的工序,在焊接过程中亦无需增加额外能耗,具有经济、方便、高效的特点。
根据本申请的一个实施例,所述外侧夹持壁相对所述容纳空间的另一侧内表面设置有与所述第一电极配合的螺纹。
具体来说,通过螺纹的设置,实现了夹持单元与第一电极之间的一种连接方式,可以使得夹持单元、磁性单元与第一电极之间形成可拆卸连接。
根据本申请的一个实施例,所述夹持单元由具有弹性的耐高温材料制成。
具体来说,在刚性的磁性单元上,通过嵌套弹性的耐高温的夹持单元,例如耐高温橡胶。利用夹持单元的弹性变形,即可保证对外露表面不造成 损伤,同时又可形成密闭空间保证保护气体有效覆盖焊接区域,形成良好的保护效果。
根据本申请的一个实施例,所述磁性单元为环绕所述第一电极设置的柱状永磁体,所述柱状永磁体的侧壁上设置有连通顶面和底面的开口,所述开口形成保护气体通过的通道。
具体来说,提出了一种磁性单元的实施方式,柱状永磁体便于安装和拆卸,极大的提升了焊接过程的便捷性。
根据本申请的一个实施例,所述磁性单元为环绕所述第一电极设置,并呈圆形阵列分布的若干块状永磁体,相邻两个所述块状永磁体之间的间隙形成保护气体通过的通道。
具体来说,提出了一种磁性单元的实施方式,呈圆形阵列分布的若干块状永磁体使得磁场分布更加均匀,同时向容纳空间内充入保护气体更加容易和充分。呈圆形阵列的对称设置改善了磁性单元形成的磁场形态,对搅拌磁场对熔核内部的搅拌进行了优化。
根据本申请第二方面实施例的一种磁辅助焊接方法,利用上述的一种磁辅助焊接装置进行磁辅助焊接,包括如下步骤:
将套设好夹持单元的所述磁性单元套置于第一电极外部;
移动所述第一电极至与所述第一待焊工件的表面抵接;
向所述夹持单元的容纳空间内注入保护气体;
导通电源进入焊接阶段,实现所述第一待焊工件和所述第二待焊工件的焊接。
根据本申请的一个实施例,所述导通电源进入焊接阶段,实现所述第一待焊工件和所述第二待焊工件的焊接的步骤之后,还包括:
持续通电进入保持阶段,在所述保持阶段内持续向所述容纳空间内注入保护气体;
其中,所述保持阶段的电流强度小于等于所述焊接阶段电流强度的15%,所述第一电极与所述第一待焊工件表面的抵接力保持不变。
具体来说,在第一电极外套设磁性单元和夹持单元后,并在夹持单元上开设通气孔,保证了在焊接过程中的气密封,避免焊点被氧化。
进一步地,保护气体的充入在焊接阶段开始前至保持阶段结束后持续 通入,保证了焊接过程中焊点始终在保护气体形成的气体密封环境下,保证焊点不受氧化,从而避免了焊后需要进行电解消色作业。
本申请实施例中的上述一个或多个技术方案,至少具有如下技术效果之一:本申请实施例提供的一种磁辅助焊接装置及焊接方法,所述焊接装置通过在电极周围布置磁性单元,使得待焊工件在焊接过程中,在待焊工件的内部产生搅动熔核的磁场,磁场与焊接电流交互作用对焊接区域的熔融金属进行三维符合实时调控,从而在机理上增加熔核内部组织的显微硬度、改善熔核形态,大幅削弱熔化区域在轴向的软化效果进而降低压痕。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的磁辅助焊接装置中,第一电极、第二电极、基板、第一待焊工件、第二待焊工件和夹持单元的装配关系示意图;
图2是本申请实施例提供的磁辅助焊接装置中,第一电极、第二电极、基板、第一待焊工件、第二待焊工件、夹持单元和磁性单元的装配关系第一示意图;
图3是本申请实施例提供的磁辅助焊接装置中,第一电极、第二电极、基板、第一待焊工件、第二待焊工件、夹持单元和磁性单元的装配关系第二示意图;
图4是本申请实施例提供的磁辅助焊接装置中,夹持单元结构第一示意图;
图5是本申请实施例提供的磁辅助焊接装置中,夹持单元结构第二示意图;
图6是本申请实施例提供的磁辅助焊接装置中,夹持单元结构第三示意图;
图7是本申请实施例提供的磁辅助焊接方法的控制逻辑流程第一示意 图;
图8是本申请实施例提供的磁辅助焊接方法的控制逻辑流程第二示意图。
附图标记:
1、第一电极;
2、第二电极;
3、基板;
4、第一待焊工件;
5、第二待焊工件;
6、磁性单元;
7、夹持单元;701、外侧夹持壁;702、内侧夹持壁;703、连接筋;704、通气孔;705、螺纹。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
图1是本申请实施例提供的磁辅助焊接装置中,第一电极1、第二电极2、基板3、第一待焊工件4、第二待焊工件5和夹持单元7的装配关系示意图。从图1中可以看出,本申请各部件之间的设置关系,需要说明的是,夹持单元7内部夹持有磁性单元6。图1展示了具有夹持单元7的方 案,在实际应用中,还可以将夹持单元7省略,通过粘接等其他方式实现磁性单元6与第一电极1之间的连接。
进一步地,通过在第一电极1外周设置环绕的磁性单元6,磁性单元6的充磁方向为径向充磁,通过对称位置磁性单元6的互斥作用,在熔核及其周边区域产生径向外部磁场,与焊接电流相互耦合、交互作用对焊接区域熔融金属的传质传热行为进行三维复合实时调控。
在一个实施例中,本方案使用在单面电阻点焊的焊接作业过程中,即第一电极1与磁性单元6组成单面电阻点焊工装,实现对第一待焊工件4和第二待焊工件5的焊接。
进一步地,结合电阻点焊形核过程中的温度场热量传输及流场质点流动的焊接冶金特点,进行电阻点焊的本申请可以从机理上增加焊核的显微硬度,从而大幅削弱熔化区域在轴向的软化效果,从而降低压痕。
图2和图3是本申请实施例提供的磁辅助焊接装置中,第一电极1、第二电极2、基板3、第一待焊工件4、第二待焊工件5、夹持单元7和磁性单元6的装配关系第一、第二示意图。从图2和图3中可以看出,本申请提出了两种关于磁性单元6的实施方式,对应的夹持单元7在结构上也有相应固定磁性单元6的改动。但需要说明的是,夹持单元7固定磁性单元6的整体思路不变,即通过具有弹性的耐磨材料实现对磁性单元6的夹持,并与第一电极1连接,其中与第一电极1连接可以是夹持单元7通过螺纹705实现连接,也可以是夹持单元7通过内侧夹持壁702的压缩形变实现连接。而在图2和图3中,第一电极1只展示了端部的示意图,当夹持单元7端部设置螺纹705时,第一电极1还设置有相应的外螺纹连接结构。
进一步地,本申请通过电磁搅拌作用,熔核组织晶粒更加致密,从而增大了焊核的显微硬度,大幅削弱熔化区域在熔核厚度方向的接头软化,从而达到降低压痕的工程目的。
进一步地,将传统焊接的宏观形貌由椭圆形优化为花生形,最大程度地将焊接,特别是单面点的压痕降至最低,在保证有效熔核直径符合标准要求的前提下降低压痕至肉眼难以分辨的深度。
进一步地,本申请利用电磁的搅拌作用以及磁场与电场耦合增强作用, 优化了熔核的三维能量分布,将熔核中心的能量薄弱区进行强化,可加速温度场热量传输、流场质点流动速度,有效抑制厚壁材料熔核中心由于热量不足、流动不足导致的内部缩孔、未熔等质量缺欠,优化提升形核质量。
图4至图6是本申请实施例提供的磁辅助焊接装置中,夹持单元7结构第一、第二和第三示意图。从图4至图6中可以看出,本申请提供了两种与磁性单元6配合的夹持单元7的结构示意图。夹持单元7上除了设置有容纳磁性单元6的容纳空间外,还设置有螺纹705和通气孔704等结构。此外,通过外侧夹持壁701和内侧夹持壁702实现了对磁性单元6的夹持,通过螺纹705或者内侧夹持壁702实现与第一电极1的连接。
需要说明的是,图6中展示了一种夹持单元7的内部结构,从图6中可以看出设置有通气孔704的竖向筋与外侧夹持壁701的端部齐平,在实际应用中此部分也可以设置为具有一定的距离,而此部分距离可以根据需要设置成螺纹705,便于与第一电机连接。
图7和图8是本申请实施例提供的磁辅助焊接方法的控制逻辑流程第一、第二示意图。提出了两种磁辅助焊接方法的控制逻辑示意图。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本申请的一些具体实施方案中,如图1至图6所示,本方案提供一种磁辅助焊接装置,包括:第一电极1、第二电极2、基板3、第一待焊工件4、第二待焊工件5以及磁性单元6;第一待焊工件4与第二待焊工件5 叠加设置于第一电极1与基板3之间;第二电极2和第二待焊工件5与基板3抵接;磁性单元6环置于第一电极1的外侧;其中,第一电极1与第一待焊工件4的表面抵接,并在第一待焊工件4和第二待焊工件5之间形成熔核;由磁性单元6对熔核进行搅拌。
本申请提出的一种磁辅助焊接装置,用以解决现有技术中部件外观焊接时存在压痕,影响部件外观质量的缺陷,通过在电极周围布置磁性单元6,使得待焊工件在焊接过程中,在待焊工件的内部产生搅动熔核的磁场,磁场与焊接电流交互作用对焊接区域的熔融金属进行三维符合实时调控,从而在机理上增加熔核内部组织的显微硬度、改善熔核形态,大幅削弱熔化区域在轴向的软化效果进而降低压痕。
在一些实施例中,磁性单元6在第一待焊工件4与第二待焊工件5之间形成搅拌磁场,搅拌磁场引导熔核形成自熔核中心呈发散状设置的形态。
具体来说,通过设置能够形成搅拌磁场的磁性单元6,将熔核搅拌形成自熔核中心呈发散状设置的形态,解决了焊接过程中的压痕过深的问题,利用磁性单元6对焊接区域进行电磁搅拌,提升接头显微硬度,将熔核的形态进行改善,优选地将熔核的形态改善为花生形,最大程度地将单面点压痕降至最低。
需要说明的是,本方案使用在单面电阻点焊的焊接作业过程中,即第一电极1与磁性单元6组成单面电阻点焊工装,实现对第一待焊工件4和第二待焊工件5的焊接。
还需要说明的是,基本材料为铜,第一待焊工件4和第二待焊工件5的材料为不锈钢、铝合金、先进高强钢、钛合金等材料中任意一种或几种的组合,本方案通过在第一电极1外周套设磁性单元6,使得单面电阻点焊工艺下的外观质量得到了显著的提升,最大程度地将单面点压痕降至最低,其应用范围包括但不限于轨道交通装备、航空航天和汽车制造等相关领域。
进一步地,通过电磁搅拌的作用,可以加速温度场热量传输、流场质点流动速度,有效抑制厚壁材料熔核中心由于热量不足导致的内部缩孔、未熔等质量缺欠,优化提升形核质量。
进一步地,本方案可有效改善热量分配,通过降低作用于第一待焊工 件4的电阻热量,可将熔核在外板区域的熔透率由传统的50-60%降低至30-40%,在保证获得合格熔核直径和熔透率的前提下,有效改善外观效果。
在一些实施例中,磁性单元6的外部还环设有夹持单元7;夹持单元7包括:外侧夹持壁701、内侧夹持壁702和连接筋703;外侧夹持壁701和内侧夹持壁702彼此套置,连接筋703连接外侧夹持壁701和内侧夹持壁702;外侧夹持壁701的内表面、内侧夹持壁702外表面和连接筋703的一侧表面包围形成容纳电磁单元的容纳空间;内侧夹持壁702的内侧形成第一电极1通过的通道;其中,外侧夹持壁701在容纳空间一侧的端部与第一电极1齐平,或者第一电极1的端部处于容纳空间内。
具体来说,通过设置夹持单元7,保证了磁性单元6与第一电极1之间相对位置的固定。
需要说明的是,本实施例提供了第一电极1在容纳空间内的两种实施方式,两种第一电极1的设置方式根据实际应用中,基板3所需的抵接力进行调节,并且通过挤压夹持单元7实现磁性单元6所在的容纳空间的密封。
在一些实施例中,连接筋703上设置有至少一个用于向容纳空间内注入保护气体的通气孔704。
具体来说,通过向容纳磁性单元6的容纳空间内通入保护气体,形成了气体密封,避免了在焊接过程中焊点的氧化问题,通过本方案的通气孔704设置能够实现焊后焊点无氧化色,无需焊后人工消痕等额外的工序,在焊接过程中亦无需增加额外能耗,具有经济、方便、高效的特点。
在一些实施例中,外侧夹持壁701相对容纳空间的另一侧内表面设置有与第一电极1配合的螺纹705。
具体来说,通过螺纹705的设置,实现了夹持单元7与第一电极1之间的一种连接方式,可以使得夹持单元7、磁性单元6与第一电极1之间形成可拆卸连接。
在一些实施例中,夹持单元7由具有弹性的耐高温材料制成。
具体来说,在刚性的磁性单元6上,通过嵌套弹性的耐高温的夹持单元7,例如耐高温橡胶。利用夹持单元7的弹性变形,即可保证对外露表面不造成损伤,同时又可形成密闭空间保证保护气体有效覆盖焊接区域, 形成良好的保护效果。
在一些实施例中,磁性单元6为环绕第一电极1设置的柱状永磁体,柱状永磁体的侧壁上设置有连通顶面和底面的开口,开口形成保护气体通过的通道。
具体来说,提出了一种磁性单元6的实施方式,柱状永磁体便于安装和拆卸,极大的提升了焊接过程的便捷性。
在一些实施例中,磁性单元6为环绕第一电极1设置,并呈圆形阵列分布的若干块状永磁体,相邻两个块状永磁体之间的间隙形成保护气体通过的通道。
具体来说,提出了一种磁性单元6的实施方式,呈圆形阵列分布的若干块状永磁体使得磁场分布更加均匀,同时向容纳空间内充入保护气体更加容易和充分。呈圆形阵列的对称设置改善了磁性单元6形成的磁场形态,对搅拌磁场对熔核内部的搅拌进行了优化。
在本申请的一些具体实施方案中,如图7和图8所示,本方案提供一种磁辅助焊接方法,利用上述的一种磁辅助焊接装置进行磁辅助焊接,包括如下步骤:
将套设好夹持单元7的磁性单元6套置于第一电极1外部;
移动第一电极1至与第一待焊工件4的表面抵接;
向夹持单元7的容纳空间内注入保护气体;
导通电源进入焊接阶段,实现第一待焊工件4和第二待焊工件5的焊接。
本申请提出的一种磁辅助焊接方法,用以解决现有技术中部件外观焊接时存在压痕,影响部件外观质量的缺陷,实现降低待焊工件表面压痕,改善熔核的形态。
在一些实施例中,导通电源进入焊接阶段,实现第一待焊工件4和第二待焊工件5的焊接的步骤之后,还包括:
持续通电进入保持阶段,在保持阶段内持续向容纳空间内注入保护气体;
其中,保持阶段的电流强度小于等于焊接阶段电流强度的15%,第一电极1与第一待焊工件4表面的抵接力保持不变。
具体来说,在第一电极1外套设磁性单元6和夹持单元7后,并在夹持单元7上开设通气孔704,保证了在焊接过程中的气密封,避免焊点被氧化。
进一步地,保护气体的充入在焊接阶段开始前至保持阶段结束后持续通入,保证了焊接过程中焊点始终在保护气体形成的气体密封环境下,保证焊点不受氧化,从而避免了焊后需要进行电解消色作业。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
最后应说明的是:以上实施方式仅用于说明本申请,而非对本申请的限制。尽管参照实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,对本申请的技术方案进行各种组合、修改或者等同替换,都不脱离本申请技术方案的精神和范围,均应涵盖在本申请的权利要求范围中。

Claims (10)

  1. 一种磁辅助焊接装置,其特征在于,包括:第一电极、第二电极、基板、第一待焊工件、第二待焊工件以及磁性单元;
    所述第一待焊工件与所述第二待焊工件叠加设置于所述第一电极与所述基板之间;
    所述第二电极和所述第二待焊工件与所述基板抵接;
    所述磁性单元环置于所述第一电极的外侧;
    其中,所述第一电极与所述第一待焊工件的表面抵接,并在所述第一待焊工件和所述第二待焊工件之间形成熔核;
    由所述磁性单元对所述熔核进行搅拌。
  2. 根据权利要求1所述的一种磁辅助焊接装置,其特征在于,所述磁性单元在所述第一待焊工件与所述第二待焊工件之间形成搅拌磁场,所述搅拌磁场引导所述熔核形成自所述熔核中心呈发散状设置的形态。
  3. 根据权利要求1所述的一种磁辅助焊接装置,其特征在于,所述磁性单元的外部还环设有夹持单元;
    所述夹持单元包括:外侧夹持壁、内侧夹持壁和连接筋;
    所述外侧夹持壁和所述内侧夹持壁彼此套置,所述连接筋连接所述外侧夹持壁和所述内侧夹持壁;
    所述外侧夹持壁的内表面、所述内侧夹持壁外表面和所述连接筋的一侧表面包围形成容纳所述电磁单元的容纳空间;
    所述内侧夹持壁的内侧形成所述第一电极通过的通道;
    其中,所述外侧夹持壁在所述容纳空间一侧的端部与所述第一电极齐平,或者所述第一电极的端部处于所述容纳空间内。
  4. 根据权利要求3所述的一种磁辅助焊接装置,其特征在于,所述连接筋上设置有至少一个用于向所述容纳空间内注入保护气体的通气孔。
  5. 根据权利要求4所述的一种磁辅助焊接装置,其特征在于,所述外侧夹持壁相对所述容纳空间的另一侧内表面设置有与所述第一电极配合的螺纹。
  6. 根据权利要求4所述的一种磁辅助焊接装置,其特征在于,所述夹持单元由具有弹性的耐高温材料制成。
  7. 根据权利要求4至6任一所述的一种磁辅助焊接装置,其特征在于,所述磁性单元为环绕所述第一电极设置的柱状永磁体,所述柱状永磁体的侧壁上设置有连通顶面和底面的开口,所述开口形成保护气体通过的通道。
  8. 根据权利要求4至6任一所述的一种磁辅助焊接装置,其特征在于,所述磁性单元为环绕所述第一电极设置,并呈圆形阵列分布的若干块状永磁体,相邻两个所述块状永磁体之间的间隙形成保护气体通过的通道。
  9. 一种磁辅助焊接方法,其特征在于,利用上述权利要求1至8任一所述的一种磁辅助焊接装置进行磁辅助焊接,包括如下步骤:
    将套设好夹持单元的所述磁性单元套置于第一电极外部;
    移动所述第一电极至与所述第一待焊工件的表面抵接;
    向所述夹持单元的容纳空间内注入保护气体;
    导通电源进入焊接阶段,实现所述第一待焊工件和所示第二待焊工件的焊接。
  10. 根据权利要求9所述的一种磁辅助焊接方法,其特征在于,所述导通电源进入焊接阶段,实现所述第一待焊工件和所述第二待焊工件的焊接的步骤之后,还包括:
    持续通电进入保持阶段,在所述保持阶段内持续向所述容纳空间内注入保护气体;
    其中,所述保持阶段的电流强度小于等于所述焊接阶段电流强度的15%,所述第一电极与所述第一待焊工件表面的抵接力保持不变。
PCT/CN2021/078408 2020-09-02 2021-03-01 磁辅助焊接装置及焊接方法 WO2022048116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010911455.4A CN112077434B (zh) 2020-09-02 2020-09-02 磁辅助焊接装置及焊接方法
CN202010911455.4 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022048116A1 true WO2022048116A1 (zh) 2022-03-10

Family

ID=73733047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078408 WO2022048116A1 (zh) 2020-09-02 2021-03-01 磁辅助焊接装置及焊接方法

Country Status (2)

Country Link
CN (1) CN112077434B (zh)
WO (1) WO2022048116A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112077434B (zh) * 2020-09-02 2022-02-15 中车青岛四方机车车辆股份有限公司 磁辅助焊接装置及焊接方法
CN113953645B (zh) * 2021-11-18 2023-07-07 江苏科技大学 一种磁化程度可调弹巢式嵌磁搅拌摩擦焊接装置
CN114247981B (zh) * 2021-12-31 2023-06-20 张家港市海星集装箱制造有限公司 一种焊接区金属径向扩散粘性驱动式搅拌头
CN115213513B (zh) * 2022-07-14 2023-09-26 中国电子科技集团公司第二十九研究所 一种多芯片真空共晶焊接装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201900377U (zh) * 2010-12-28 2011-07-20 上海英伦帝华汽车部件有限公司 汽车白车身无痕点焊装置
CN202291810U (zh) * 2011-10-31 2012-07-04 上海泰礼实业有限公司 冷藏集装箱壁板与厚板加强筋的电阻焊装置
KR101571983B1 (ko) * 2014-10-31 2015-11-25 (주) 청운테크 프로젝션/스폿 용접기용 스패터 포집기능을 갖는 커버유닛
CN105081545A (zh) * 2015-09-15 2015-11-25 上海交通大学 电阻点焊焊核偏移控制装置及方法
KR20160077291A (ko) * 2014-12-22 2016-07-04 주식회사 포스코 편방향 저항 점 용접방법
CN108655552A (zh) * 2018-06-01 2018-10-16 上海交通大学 径向充磁单侧磁控电阻点焊装置
CN108788419A (zh) * 2017-04-27 2018-11-13 上海交通大学 分体式磁控电阻点焊装置
CN112077434A (zh) * 2020-09-02 2020-12-15 中车青岛四方机车车辆股份有限公司 磁辅助焊接装置及焊接方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081546B (zh) * 2015-09-15 2017-05-24 上海交通大学 位置可调的电阻点焊磁控装置
CN111201105A (zh) * 2017-08-14 2020-05-26 诺维尔里斯公司 电磁体增强的电阻点焊

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201900377U (zh) * 2010-12-28 2011-07-20 上海英伦帝华汽车部件有限公司 汽车白车身无痕点焊装置
CN202291810U (zh) * 2011-10-31 2012-07-04 上海泰礼实业有限公司 冷藏集装箱壁板与厚板加强筋的电阻焊装置
KR101571983B1 (ko) * 2014-10-31 2015-11-25 (주) 청운테크 프로젝션/스폿 용접기용 스패터 포집기능을 갖는 커버유닛
KR20160077291A (ko) * 2014-12-22 2016-07-04 주식회사 포스코 편방향 저항 점 용접방법
CN105081545A (zh) * 2015-09-15 2015-11-25 上海交通大学 电阻点焊焊核偏移控制装置及方法
CN108788419A (zh) * 2017-04-27 2018-11-13 上海交通大学 分体式磁控电阻点焊装置
CN108655552A (zh) * 2018-06-01 2018-10-16 上海交通大学 径向充磁单侧磁控电阻点焊装置
CN112077434A (zh) * 2020-09-02 2020-12-15 中车青岛四方机车车辆股份有限公司 磁辅助焊接装置及焊接方法

Also Published As

Publication number Publication date
CN112077434B (zh) 2022-02-15
CN112077434A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2022048116A1 (zh) 磁辅助焊接装置及焊接方法
CN105728934B (zh) 一种电磁辅助搅拌摩擦焊装置及其细化晶粒的方法
CN101767246B (zh) 一种提高tig焊接速度的装置和方法
CN108788419B (zh) 分体式磁控电阻点焊装置
CN102728937B (zh) 一种钛合金与奥氏体不锈钢异种金属的焊接方法
CN103028838A (zh) 电磁塑性搅拌摩擦焊焊具及其方法
CN108655552A (zh) 径向充磁单侧磁控电阻点焊装置
CN105108316A (zh) 一种搅拌摩擦点焊设备去除积屑的装置
CN113857623A (zh) 一种铁磁性钢gtaw窄间隙焊接的磁控摆动电弧磁路装置及应用
CN111607791A (zh) 一种电磁复合场辅助制备分布可控的wc增强金属基复合涂层的方法及装置
CN105798429A (zh) 一种用于窄间隙埋弧焊的磁控焊缝跟踪传感器
CN109623132A (zh) 一种提高7系铝合金搅拌摩擦焊接头性能的装置和方法
CN109262117A (zh) 一种高效冷却的锁孔效应tig深熔焊焊枪
CN204975681U (zh) 一种搅拌摩擦点焊设备去除积屑的装置
CN111922482A (zh) 一种半球壳焊接工艺及焊接系统
CN101699571A (zh) 大型高频谐振腔体内导电杆的制造方法
CN113102891B (zh) 一种外加磁场抑制铝合金激光-mig复合焊接塌陷的方法及装置
CN113953648A (zh) 一种永磁铁辅助回填式搅拌摩擦点焊装置
CN106695086A (zh) 一种基于水冷永磁铁的磁控k‑tig焊枪
CN103692100A (zh) 阳极导杆与阳极钢爪的无过渡焊接装置及焊接方法
CN215845586U (zh) 一种多磁位的电磁磁力搅拌结晶设备
CN209754321U (zh) 用于窄间隙焊接的等离子-mig复合焊接装置
Sharma et al. Recent developments in the design, development, and analysis of the influence of external magnetic-field on gas-metal arc welding of non-ferrous alloys: review on optimization of arc-structure to enhance the morphology, and mechanical properties of welded joints for automotive applications
CN104772561B (zh) 焊接板结构与柱体的搅拌摩擦焊接方法
CN113172306A (zh) 一种中空电极送丝电弧增材制造系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863187

Country of ref document: EP

Kind code of ref document: A1