WO2022047789A1 - 接近检测装置及电子设备 - Google Patents

接近检测装置及电子设备 Download PDF

Info

Publication number
WO2022047789A1
WO2022047789A1 PCT/CN2020/113786 CN2020113786W WO2022047789A1 WO 2022047789 A1 WO2022047789 A1 WO 2022047789A1 CN 2020113786 W CN2020113786 W CN 2020113786W WO 2022047789 A1 WO2022047789 A1 WO 2022047789A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
capacitance
human body
variation
electronic device
Prior art date
Application number
PCT/CN2020/113786
Other languages
English (en)
French (fr)
Inventor
李可
杨明
陈淡生
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP20924984.6A priority Critical patent/EP3992670A4/en
Priority to PCT/CN2020/113786 priority patent/WO2022047789A1/zh
Priority to KR1020217030405A priority patent/KR20220033045A/ko
Priority to US17/483,238 priority patent/US20220077854A1/en
Publication of WO2022047789A1 publication Critical patent/WO2022047789A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/955Proximity switches using a capacitive detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/088Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with electric fields
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K2017/9602Touch switches characterised by the type or shape of the sensing electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960735Capacitive touch switches characterised by circuit details
    • H03K2217/960745Capacitive differential; e.g. comparison with reference capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches
    • H03K2217/960765Details of shielding arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960755Constructional details of capacitive touch and proximity switches
    • H03K2217/960775Emitter-receiver or "fringe" type detection, i.e. one or more field emitting electrodes and corresponding one or more receiving electrodes

Definitions

  • the embodiments of the present application relate to the field of capacitance detection, and more particularly, to a proximity detection device and an electronic device.
  • Electronic devices bring a rich user experience to people.
  • detecting whether a wearable device is worn by the human body has gradually become a standard function of wearable devices.
  • a detection module can be set in the wearable device to detect whether the human body is wearing the device.
  • the traditional detection method has the problem that it is easily affected by the proximity of non-human bodies such as sweat. For example, when there is water remaining on the device, it is easy to misjudge that the device is approached by water as the device is worn by the human body, which will affect the user experience.
  • the embodiments of the present application provide a proximity detection device and an electronic device, which are beneficial to improve the degree of distinction between a human body approaching an electronic device and a non-human body approaching an electronic device.
  • a proximity detection device for electronic equipment comprising: a first electrode, a second electrode, and a device for detecting a change in mutual capacitance between the first electrode and the second electrode
  • the change amount of the mutual capacitance value is used to determine the proximity state of the electronic device, wherein, when the human body approaches the electronic device, the change amount of the mutual capacitance value is the first change amount , when a non-human body approaches the electronic device, the variation of the mutual capacitance value is a second variation, and the first variation and the second variation are one positive and one negative.
  • the mutual capacitance detection method is adopted, so that the variation of the mutual capacitance value caused by the proximity of the human body and the proximity of the non-human body is one positive and the other negative, that is, the change of the mutual capacitance value caused by the proximity of the human body and the proximity of the non-human body.
  • the change direction of the quantity is just the opposite, for example, the mutual capacitance value becomes smaller when the human body approaches, but the mutual capacitance value increases when the non-human body approaches, or the mutual capacitance value increases when the human body approaches, but the mutual capacitance value decreases when the non-human body approaches. , which can improve the distinction between human body and non-human body.
  • the detection module only needs to detect whether the mutual capacitance value becomes larger or smaller to determine whether the human body is close to the electronic device or the non-human body is close to the electronic device, which can more easily identify the electronic device. Close to the state, which is beneficial to reduce the false positive rate.
  • the first electrode and the second electrode are arranged in the same plane; or the first electrode and the second electrode are arranged in parallel, and the first electrode is arranged in the same plane.
  • the projections of the first electrode and the second electrode in the direction perpendicular to the surface of the first electrode do not overlap, or a part of the second electrode and the first electrode The projections in the direction perpendicular to the surface of the first electrode overlap.
  • the first electrode When an external object approaches the electronic device, in the direction facing the human body, the first electrode will not block the second electrode or only partially block the second electrode, so as to ensure that both the first electrode and the second electrode can communicate with the outside world.
  • Objects form capacitance.
  • the first electrode and the second electrode are arranged in the same plane, the first electrode is arranged in the middle area of the second electrode, and the second electrode is arranged around the The annular structure of the first electrode is described.
  • Using the ring-shaped pattern arrangement can increase the coupling length between the first electrode and the second electrode, and can increase the amount of signal induced between the first electrode and the second electrode.
  • the first electrode and the second electrode are concentric.
  • first electrode and the second electrode are concentric.
  • the amount is relatively uniform, that is, the size of the signal induction is the same.
  • the first electrode is a rectangular structure
  • the second electrode is a square annular structure surrounding the first electrode.
  • the substrate carrying the proximity detection device is rectangular, and arranging the electrodes in a rectangular shape can improve the space utilization of the substrate.
  • the proximity area of the human body to the electronic device is usually rectangular, setting the electrodes in a rectangular shape can more fully sense the influence of the human body on the mutual capacitance signal.
  • the width of the second electrode is greater than or equal to the gap between the first electrode and the second electrode.
  • annular width of the second electrode is beneficial to ensure that the absolute value of the change in the mutual capacitance value is a positive value, and the absolute value of the change in the mutual capacitance value is a negative value. The difference between them is small, so that the accuracy of the detection result of the proximity of the human body to the electronic device can be improved.
  • the gap between the first electrode and the second electrode is L/6 ⁇ L/4, where L is the length of the long side of the first electrode, which is beneficial to It is ensured that the difference between the absolute value when the change amount of the mutual capacitance value is a positive value and the absolute value when the change amount of the mutual capacitance value is a negative value is small, so that the accuracy of the detection result of the human body approaching the electronic device can be improved.
  • the width of the second electrode is greater than or equal to 0.2 mm, which ensures that there is sufficient signal induction between the second electrode and the human body.
  • the first electrode and the second electrode are arranged in the same plane, the first electrode and the second electrode are arranged in a dentate structure, and the first electrode includes The first toothed structure, the second electrode includes a second toothed structure, and the first toothed structure and the second toothed structure are engaged with each other.
  • the solution of adopting the zigzag structure arrangement can increase the coupling length between the first electrode and the second electrode, and can increase the amount of signal induced between the first electrode and the second electrode.
  • the tooth widths of the first toothed structure and the second toothed structure are equal.
  • the tooth widths of the two tooth structures are equal to ensure that the areas of the first electrode and the second electrode are equal, so that the first electrode and the second electrode and the human body have equal signal induction.
  • the gap between the first electrode and the second electrode is q/3 ⁇ q/2, where q is the teeth of the first electrode or the second electrode.
  • the number of teeth of the first electrode and the second electrode is 2 or 3.
  • the number of 2 or 3 teeth is beneficial to avoid too small tooth widths of the first electrode and the second electrode, and is beneficial to the processing, manufacture and installation of the first electrode and the second electrode.
  • it further includes a third electrode, the first electrode and the second electrode are arranged in the same plane, and the third electrode is arranged below the first electrode and is different from the first electrode.
  • the first electrodes are parallel.
  • the third electrode can absorb a part of the electric field line between the first electrode and the second electrode, it is easier to realize that the changes of the mutual capacitance value caused by the approach of the human body and the approach of the non-human body are exactly opposite. the goal of.
  • the projection of the third electrode in a direction perpendicular to the surface of the third electrode at least makes the gap between the first electrode and the second electrode in the direction All projections are covered.
  • the projection of the third electrode covers the gap area between the first electrode and the second electrode, which can ensure that the third electrode has sufficient influence on the electric field line between the first electrode and the second electrode.
  • the edge of the third electrode is aligned with the edge of the pattern formed by the first electrode and the second electrode. This facilitates the encapsulation of the first electrode, the second electrode and the third electrode.
  • the distance between the third electrode and the first electrode is less than or equal to 200 ⁇ m, which can prevent the distance between the third electrode and the first electrode from being too large, and can ensure the third electrode Influence of the electrodes on the electric field lines between the first electrode and the second electrode.
  • the distance between the third electrode and the first electrode is less than or equal to 100 ⁇ m, which can prevent the distance between the third electrode and the first electrode from being too large, and can ensure the third electrode Influence of the electrodes on the electric field lines between the first electrode and the second electrode.
  • the first electrode and the second electrode are arranged in parallel, and the third electrode and the second electrode are arranged on the same plane.
  • the third electrode is coplanar with the second electrode, which can ensure the influence of the third electrode on the electric field line between the first electrode and the second electrode.
  • the distance between the third electrode and the first electrode is less than or equal to 100 ⁇ m, which can not only ensure that there is sufficient signal induction between the first electrode and the second electrode, but also It is also possible to ensure the influence of the third electrode on the electric field lines between the first electrode and the second electrode.
  • a first capacitance is formed between the first electrode and an external object
  • a second capacitance is formed between the second electrode and the external object
  • a system is formed between the external object and the external object.
  • a third capacitance is formed, wherein the external object includes the human body and the non-human body, and the first capacitance, the second capacitance and the third capacitance make the first variation and the second The amount of change is one positive and one negative.
  • the first capacitor, the second capacitor and the third capacitor can affect the variation of the mutual capacitance value. Therefore, in this application, the capacitance values of the first capacitor, the second capacitor and the third capacitor can be adjusted so that the first variation and the The second variation is one positive and one negative.
  • the detection module is further configured to detect a change in the self-capacitance value of the first electrode and/or the second electrode, where the change in the self-capacitance value is greater than a preset threshold for determining that the external object is close to the electronic device, and the detection module detects the first electrode and the second electrode when the variation of the self-capacitance value is greater than the preset threshold The amount of change in mutual capacitance between.
  • the present application combines the respective advantages of self-capacitance detection and mutual-capacitance detection, and adopts an integrated detection method of self-capacity and mutual-capacity, which can further improve the accuracy of the detection result of the human body approaching the electronic device.
  • an electronic device including: the first aspect or the proximity detection apparatus in any possible implementation manner of the first aspect.
  • FIG. 1 is a schematic diagram of a conventional self-capacitance detection method.
  • FIG. 2 is a schematic diagram of a proximity detection device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a capacitance generated on a proximity detection device when an external object approaches according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a capacitance generated between a first electrode and a second electrode when an external object is approached according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a back-shaped electrode structure provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another back-shaped electrode structure provided by an embodiment of the present application.
  • FIG. 7 is a cross-sectional view of a back-shaped electrode structure provided by an embodiment of the present application.
  • FIG. 8 is a cross-sectional view of another back-shaped electrode structure provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a toothed electrode provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another dentate-shaped electrode structure provided by an embodiment of the present application.
  • 11 is a schematic diagram of electric field lines induced between electrodes and system ground during self-capacitance sensing.
  • FIG. 12 is a schematic diagram of electric field lines induced between the first electrode, the second electrode and the system ground during mutual capacitance sensing.
  • the electronic device in the embodiment of the present application may be a smart wearable device, a smart pen, a game handle, or other capacitive touch products.
  • the smart wearable device can be a wearable device such as a headset, a watch, a wristband, and the like.
  • the following description takes the earphone as an example.
  • Earphones with in-ear detection function can monitor whether the earphones are worn or detached from the human ear in real time, and use this information to switch the working state. For example, in the process of music playing, when it is recognized that the user has taken off the earphone, the music will be paused immediately; and when it is recognized that the earphone is re-inserted, the music will automatically continue to play. For another example, if the user takes off the headset during the call, the call will be seamlessly switched to the mobile phone channel.
  • the mainstream front-end sensors for in-ear detection are capacitive and optical.
  • the capacitor scheme does not need to open holes, and has significant advantages in appearance, dustproof, waterproof performance of the whole machine, so it has a broader prospect.
  • the traditional capacitance detection scheme has always been vulnerable to sweat and temperature interference.
  • Traditional wear detection or human proximity sensing methods generally use self-capacitance detection, that is, to detect the self-capacitance value of the electrode pair to the system ground, and determine whether the user is wearing a wearable device according to the change in the self-capacitance value.
  • the electrode 11 is a self-capacitance electrode, and the electrode 11 has a base capacitance C 1_1 to the system ground 10 .
  • the capacitance C 1_2 is the capacitance between the external object 12 and the electrode 11
  • the capacitance C 1_3 is the capacitance between the external object 12 and the system ground 10 .
  • the total capacitance of the electrode 11 to the system ground 10 will increase, and the increment size is approximately the series connection of the capacitance C 1_2 and the capacitance C 1_3 . Therefore, in the self-capacitance detection mode, the discrimination between the human body and the non-human body mainly comes from the difference of the series result of the capacitor C 1_2 and the capacitor C 1_3 .
  • the approach of human body and sweat will cause the increase of the total capacitance of the electrode 11 to the system ground 10 .
  • the increment of total capacitance caused by human body and sweat has a fuzzy interval that is difficult to identify, that is, when it is detected that the increment of total capacitance is within this fuzzy interval , the increase may be caused by the electronic equipment worn by the human body, or may be caused by residual sweat. Therefore, in many cases, the difference between the increase in the total capacitance caused by the human body and the sweat is not enough, which makes it easy to put the device on the device. Residual sweat is mistaken for human wear.
  • the embodiments of the present application provide a proximity detection device, so that the change direction of the mutual capacitance signal change caused by the human body and the non-human body is opposite, which can effectively improve the degree of discrimination between the human body and the non-human body, thereby improving the proximity of the human body to the electronic device. Accuracy of detection results and improved user experience.
  • the non-human body in the embodiments of the present application may be various conductor media, such as water and sweat. When the user wears the wearable device, the sweat may easily remain on the wearable device.
  • the proximity detection device of the embodiment of the present application can be used in electronic equipment, and the device can include a first electrode, a second electrode and a detection module, the detection module is electrically connected with the first electrode and the second electrode, and is used for detecting the first electrode and the second electrode.
  • the variation of the mutual capacitance value between the second electrodes, the variation of the mutual capacitance value is used to determine the proximity state of the electronic device.
  • the change of the mutual capacitance value is the first change amount
  • the change amount of the mutual capacitance value is the second change amount Variation
  • the first variation and the second variation are one positive and one negative.
  • the first electrode and the second electrode are arranged in the same plane; or the first electrode and the second electrode are arranged in parallel, and the first electrode is arranged above the second electrode, and the first electrode is arranged above the second electrode.
  • the projections of the electrode and the second electrode in a direction perpendicular to the surface of the first electrode do not overlap, or a portion of the second electrode and the first electrode are in a direction perpendicular to the surface of the first electrode projections overlap.
  • the detection module only needs to detect whether the change of the mutual capacitance value is positive or negative to determine whether the human body is approaching the device or the non-human body is approaching the device, which can easily identify whether the device is approached by the human body, which is beneficial to reduce the misjudgment rate.
  • the electronic device can accurately identify whether the headset is worn by the user, whether the stylus is held by the user, whether the gamepad is held by the user, etc., which is beneficial for the electronic device to perform corresponding control operations and improve user experience according to whether it is approached by the human body.
  • a first capacitance is formed between the first electrode and an external object
  • a second capacitance is formed between the second electrode and the external object
  • a third capacitance is formed systematically with the external object, wherein the The external object includes the human body and the non-human body, and the first capacitance, the second capacitance and the third capacitance make the first change amount and the second change amount one positive and one negative.
  • the capacitance values of the first capacitor, the second capacitor and the third capacitor can be adjusted so that the The first change amount and the second change amount are one positive and one negative.
  • the first capacitance, the second capacitance, and the third capacitance make the first change positive
  • the first capacitance, the second capacitance, and the third capacitance Make the second variation negative
  • the first capacitance, the second capacitance and the third capacitance make the first variation negative
  • the first capacitance, the second capacitance and the third capacitance makes the second variation positive
  • the non-human body in the embodiment of the present application may be a conductor, and the conductor may be liquid, such as sweat.
  • the proximity detection device in the embodiment of the present application may also be referred to as a contact detection device.
  • the contact of an external object with an electronic device may cause a change in the mutual capacitance value between the first electrode and the second electrode.
  • the mutual capacitance value between the first electrode and the second electrode may also change when the distance between the devices is relatively close but the electronic device has not been contacted.
  • FIG. 2 shows the induction situation between the first electrode 21 and the second electrode 22 when no external object is approaching;
  • FIG. 4 shows the situation of the equivalent capacitance formed between the two electrodes due to the capacitance introduced by the approach of the external object.
  • the proximity detection device 200 may include a first electrode 21 and a second electrode 22 , and a detection module 211 .
  • the detection module 211 is used to detect the change of the mutual capacitance value between the first electrode 21 and the second electrode 22 , and the change of the mutual capacitance value is used to determine whether the human body is close to the electronic device.
  • the detection module can detect the change of the mutual capacitance value between the first electrode and the second electrode. For example, when the external object is not close to the electronic device, the mutual capacitance between the first electrode and the second electrode can be detected as the base capacitance, And in the subsequent proximity detection process, the first mutual capacitance value between the first electrode and the second electrode is detected, and the processor can calculate the difference between the first mutual capacitance value and the base capacitance, and use the difference as The amount of change in mutual capacitance.
  • the embodiments of the present application can satisfy the relationship by reducing the original mutual capacitance between the first electrode and the second electrode and the equivalent capacitance between the first electrode and the second electrode: equivalent capacitance (human body) ⁇ original mutual capacitance Reduction amount ⁇ equivalent capacitance (non-human body), or equivalent capacitance (non-human body) ⁇ original mutual capacitance reduction ⁇ equivalent capacitance (human body), to make the mutual capacitance value caused when the human body and the non-human body are close to the electronic device
  • the amount of change is one positive and one negative.
  • the change in the mutual capacitance value caused when the human body and the non-human body approach is one positive and one negative.
  • the equivalent capacitance can be understood as a capacitance having an equal capacitance effect formed between the first electrode and the second electrode by the first capacitance, the second capacitance and the third capacitance.
  • the reduction in the original mutual capacitance can be understood as the amount of change in the mutual capacitance value between the first electrode and the second electrode in the absence of the equivalent capacitance.
  • the equivalent capacitance represents the equivalent capacitance formed between the first electrode and the second electrode by the first capacitance, the second capacitance and the third capacitance caused by the proximity of the human body to the electronic device, and the equivalent capacitance (non-human body) It represents the equivalent capacitance formed between the first electrode and the second electrode due to the first capacitance, the second capacitance and the third capacitance caused by the non-human body approaching the electronic device.
  • the equivalent capacitance that is, the above-mentioned equivalent capacitance (human body)
  • the equivalent capacitance that is, the above-mentioned equivalent capacitance (non-human body)
  • the change of the actual mutual capacitance value between the first electrode and the second electrode is exactly one positive and one negative, so as to achieve the purpose of improving the distinction between human body and non-human body.
  • the electrode 21 and the electrode 22 are the first electrode and the second electrode respectively, and there is a base capacitance C 2_0 between the electrode 21 and the electrode 22 when no external object is approaching.
  • the first capacitor C 2_2 , the second capacitor C 2_3 and the third capacitor C 2_4 will also be introduced when the external object 23 approaches , the three capacitances will form an equivalent capacitance C 2_5 between the electrode 21 and the electrode 22 , and the equivalent capacitance will affect the variation of the actually detected mutual capacitance value.
  • the actually detected mutual capacitance value between the two electrodes is the parallel connection of the capacitance C 2_1 and the equivalent capacitance C 2_5 , as shown in FIG.
  • the capacitance value is (C 2_0 - ⁇ C+C 2_5 ), wherein the first capacitance 2_2 is the capacitance between the external object 23 and the electrode 21 , the second capacitance C 2_3 is the capacitance between the external object 23 and the electrode 22 , the third capacitance The capacitance C 2_4 is the capacitance between the external object 23 and the system ground 20 .
  • the size of the original mutual capacitance reduction ⁇ C and the equivalent capacitance C 2_5 can be adjusted so that C 2_5 (human body) ⁇ C ⁇ C 2_5 (non-human body) , or C 2_5 (non-human body) ⁇ C ⁇ C 2_5 (human body) , so that the variation of the mutual capacitance value is one positive and one negative.
  • the external object 23 in the embodiment of the present application may be a human body, or any non-human body that can conduct electricity.
  • the non-human body may be sweat.
  • the human body or sweat as a conductor will affect the connection between the electrode 21 and the electrode 22. mutual capacitance value.
  • the present application changes the capacitance values of the first capacitor C 2_2 , the second capacitor C 2_3 and the third capacitor C 2_4 by designing the parameters of the first electrode and the second electrode.
  • the first capacitor C 2_2 , the second capacitance C 2_3 , and the third capacitance C 2_4 make the first change amount negative/positive, and when the external object 23 is a non-human body, the first capacitance C 2_2 , the second capacitance C 2_3 , and the third capacitance C 2_4
  • the second variation is positive/negative, and the wearing state of the device can be accurately identified through the difference between a positive and a negative variation.
  • a change in the mutual capacitance value greater than zero may be referred to as a positive change, and a change in the mutual capacitance value less than zero may be referred to as a negative change.
  • the variation of the mutual capacitance value greater than zero can also be referred to as negative, and the variation of the mutual capacitance value less than zero can be referred to as positive.
  • the former method is used for description below.
  • the following description takes the non-human body as sweat as an example. Due to the difference in conductivity between the human body and sweat, the equivalent capacitance C 2_5 caused by sweat is generally larger than the equivalent capacitance C 2_5 caused by the human body. Therefore, the embodiments of the present application can satisfy the condition C 2_5 (human body) ⁇ C ⁇ C 2_5 (water sweat) , the change of mutual capacitance value (C 2_5 - ⁇ C) caused by human body and water sweat presents a positive and negative state.
  • the variation of the mutual capacitance value greater than zero can be used to determine that the human body is close to the electronic device, and the variation of the mutual capacitance value less than zero can be used to determine that the human body is not close to the electronic device.
  • the detection module only needs to detect whether the change of the mutual capacitance value is greater than or less than zero to determine whether it is a human body approaching the device or a non-human body approaching the device, which can accurately identify the wearing state of the device and help reduce the misjudgment rate.
  • condition C 2_5 (human body) ⁇ C ⁇ C 2_5 (sweat) may be satisfied by adjusting at least one of the first capacitor C 2_2 , the second capacitor C 2_3 , and the third capacitor C 2_4 .
  • C 2_5 (human body) ⁇ C ⁇ C 2_5 (sweat) can be satisfied by adjusting the size of the third capacitance C 2_4 generated by the proximity of the human body to the electronic device and the third capacitance C 2_4 generated by the proximity of sweat to the electronic device, or , it is also possible to meet the requirements of C 2_5 (human body ) ⁇ C ⁇ C 2_5 (sweat) .
  • the equivalent capacitance C 2_5 decreases to 0; when either of the first capacitance C 2_2 and the second capacitance C 2_3 approaches 0 , the equivalent capacitance C 2_5 also approaches 0.
  • the third capacitance C 2_4 produced by the human body and sweat is different, and generally C 2_4 (human body) > C 2_4 (sweat) , which will lead to a difference in the equivalent capacitance C 2_5 produced by the human body and sweat. Since the equivalent capacitance C 2_5 is inversely proportional to the third capacitance C 2_4 , C 2_5 (human body) ⁇ C 2_5 (sweat) .
  • condition C 2_5 human body
  • C ⁇ C ⁇ C 2_5 water sweat
  • the equivalent capacitance C 2_5 is also related to the sum of the first capacitance C 2_2 and the second capacitance C 2_3 , and the equivalent capacitance C 2_5 is proportional to (C 2_2 +C 2_3 ).
  • the third capacitance C 2_4 of the human body and the sweat to the ground can be regarded as a determined value, and it is assumed that
  • the sweat and the electronic device are the same, that is, the first capacitance C 2_2 and the second capacitance C 2_3 caused by the proximity of the human body to the electronic device and the proximity of the sweat to the electronic device are the same, then the The ratio between the effective capacitance C 2_5 is Among them, g represents a functional relationship.
  • k is known to be determined, m increases as (C 2_2 +C 2_3 ) decreases, and decreases as (C 2_2 +C 2_3 ) increases.
  • m approaches m approaches k; when (C 2_2 +C 2_3 ) approaches infinity, m approaches 1, that is, 1 ⁇ m ⁇ k.
  • the larger the m value the greater the difference between the equivalent capacitance C 2_5 produced by the human body and the sweat, and the easier it is to distinguish the proximity of the human body and the sweat
  • the smaller the m value the larger the equivalent capacitance C 2_5 produced by the human body and water sweat.
  • the smaller the difference between C 2_5 the less easy it is to distinguish the proximity of human and sweat. It can be seen from the above analysis that reducing the first capacitance C 2_2 and the second capacitance C 2_3 can both increase the m value, that is, increase the difference between the equivalent capacitance C 2_5 generated by the human body and sweat. Therefore, in this embodiment of the present application, the first capacitance C 2_2 and the second capacitance C 2_3 can be reduced to achieve the opposite purpose of the change in the mutual capacitance value caused by the proximity of the human body and the proximity of sweat.
  • the first capacitance C 2_2 , the second capacitance C 2_3 and the original mutual capacitance reduction ⁇ C can be changed by changing the parameters of the electrode 21 and the electrode 22 .
  • the parameters of the electrode 21 and the electrode 22 may include at least one of a coupling length between the electrode 21 and the electrode 22, a gap, a distance, and an area of the electrode.
  • the first electrode and the second electrode can be arranged on the same plane; or the first electrode and the second electrode are arranged in parallel and the first electrode is arranged above the second electrode, wherein the first electrode and the second electrode are perpendicular to each other.
  • the projection on the direction of the first electrode surface does not overlap, or a part of the second electrode and the projection of the first electrode in the direction perpendicular to the first electrode surface overlap, so that when an external object approaches the electronic device, it faces the human body.
  • the first electrode does not block the second electrode or only partially blocks the second electrode, so as to ensure that both the first electrode and the second electrode can form capacitance with external objects.
  • the first electrode is arranged above the second electrode, which means that the first electrode is arranged at a position closer to the external object than the second electrode, that is, the distance between the first electrode and the external object is smaller than that between the second electrode and the external object the distance between.
  • the overlapping projection of a part of the second electrode and the first electrode in the direction perpendicular to the surface of the first electrode means that the first electrode located above will not completely block the second electrode located below, and both the first electrode and the second electrode can be Forms capacitance with external objects.
  • the first electrode and the second electrode may be arranged on the same plane, or the first electrode and the second electrode may be arranged in parallel and the projections of the first electrode and the second electrode in the direction perpendicular to the surface of the first electrode do not overlap, so that , when the human body is close to the electronic device, the first electrode and the second electrode are both directly facing the human body and will not be blocked by another electrode.
  • the capacitance value of the resulting capacitor is easier to control.
  • the first electrode and the second electrode can be arranged on the same plane, so that the mutual capacitance value between the first electrode and the second electrode will be relatively large, which is beneficial to improve the accuracy of the detection result of the human body approaching the electronic device.
  • the distance between the first electrode and the second electrode cannot be too large.
  • the distance between the first electrode and the second electrode may be less than 100 ⁇ m. Taking FIG. 8 as an example, the distance h between the first electrode 51 and the second electrode 52 is less than 100 ⁇ m.
  • first electrode and the second electrode will be described in detail below with reference to FIGS. 5 to 10 .
  • the shape of the coupling line between the first electrode and the second electrode may be a non-straight line, for example, the shape of the coupling line may be a ring shape, a square wave shape, or a curve, etc.
  • the coupling length between the first electrode and the second electrode increases the amount of signal induced between the first electrode and the second electrode.
  • the first electrodes 51 and the second electrodes 52 may be arranged in a ring-shaped pattern, that is, the second electrodes 52 surround the first electrodes 51 .
  • the use of a ring-shaped pattern arrangement can increase the coupling length between the first electrode 51 and the second electrode 52, thereby increasing the induction between the first electrode and the second electrode. semaphore.
  • the first electrode may be disposed in the middle area of the second electrode, and the second electrode is a ring-shaped structure surrounding the first electrode.
  • the second electrode surrounding the first electrode in the embodiments of the present application, it may mean that the second electrode surrounds the first electrode on a plane coplanar with the first electrode, or it may mean that the second electrode surrounds the first electrode on a plane coplanar with the first electrode.
  • An electrode is parallel to the plane surrounding the first electrode.
  • the pattern formed by the projection of the first electrode and the second electrode in a direction perpendicular to the surface of the first electrode is that the projection of the second electrode surrounds the projection of the first electrode.
  • the second electrode may be concentric with the first electrode.
  • Setting the first electrode and the second electrode to be concentric is beneficial to ensure that the gaps between the two electrodes at different positions are equal, so that no matter where the external object is close to the electronic device, the gap between the first electrode and the second electrode can be made.
  • the signal induction amount is more uniform, that is, when the external object is at the same distance from the electronic device but at different positions, the first electrode and the second electrode both have the same signal induction amount.
  • the first electrode is a square structure
  • the second electrode is a square ring structure surrounding and concentric with the first electrode, as shown in FIG. 5 and FIG. 6 .
  • the first electrode is a circular structure
  • the second electrode is a ring structure surrounding the first electrode and co-centered with the first electrode.
  • the first electrode and the second electrode can also have other shapes and structures.
  • the first electrode 51 may adopt a rectangular structure. As shown in FIG. 6 , the size of the first electrode 51 is L ⁇ W, where L ⁇ W.
  • the substrate carrying the proximity detection device is rectangular, that is, the electrodes are usually arranged on the substrate, and the substrate has a rectangular structure. Therefore, setting the electrodes in a rectangular shape can improve the space utilization of the substrate. In addition, considering that the proximity area where the human body approaches the electronic device is usually rectangular, setting the electrodes in a rectangular shape can also more fully sense the influence of the proximity of the human body on the mutual capacitance signal.
  • the width of the second electrode may be greater than or equal to the gap between the first electrode and the second electrode. As shown in FIG. 6 , the width e of the second electrode ⁇ the gap d between the first electrode and the second electrode. This is beneficial to ensure that the absolute value of the change of mutual capacitance value is a positive value, and the difference between the absolute value of the change of the mutual capacitance value is a negative value is small, that is, the original mutual capacitance reduction ⁇ C is basically equivalent
  • the intermediate value of the capacitance C 2_5 ( human body ) and the equivalent capacitance C 2_5 (sweat) can improve the accuracy of the detection result of the human body approaching the electronic device.
  • e ⁇ 0.2 mm can also be selected to ensure the amount of the induced signal between the second electrode and the human body.
  • the gap between the first electrode and the second electrode cannot be too large.
  • the gap d between the first electrode 51 and the second electrode 52 is preferably between L/6 and L/4, which is beneficial to It is guaranteed that the absolute value of the change of the mutual capacitance value is a positive value, and the difference between the absolute value of the change of the mutual capacitance value is a negative value is small, that is, the original mutual capacitance reduction ⁇ C is basically the equivalent capacitance C 2_5 (human body) and the intermediate value of the equivalent capacitance C 2_5 (sweat) , so that the accuracy of the detection result of the human body approaching the electronic device can be improved.
  • Setting the first electrode 51 and the second electrode 52 into a back-shaped structure can increase the coupling length between the first electrode 51 and the second electrode 52, and the coupling length is about the circumference of the first electrode 51, which is beneficial to The signal amount of the inductive capacitance between the first electrode 51 and the second electrode 52 is increased, and the accuracy of the detection result of the human body approaching the electronic device is improved.
  • the total size of the mutual capacitance electrodes is usually fixed. For example, for an earphone, the volume is small and the internal space is small. Therefore, the space for setting the corresponding electrodes is relatively limited. For example, in FIG. 5, the outer contour of electrode 52 is determined. If the gap 54 is increased, the area of the electrode 51 will decrease, and the second capacitance C 2_3 generated after the external object approaches will decrease.
  • the decrease of the second capacitance C 2_3 will lead to the increase of the equivalent capacitance C 2_5 generated by the approach of the external object, which will increase the m value, that is, the equivalent capacitance C 2_5 generated by the human body and sweat The difference between them increases, which is helpful to distinguish the proximity of the human body and sweat.
  • the gap 54 between the first electrode 51 and the second electrode 52 can be adjusted so that C 2_5 (human body) ⁇ C ⁇ C 2_5 (sweat) .
  • the first electrode and the second electrode can also be arranged in a zigzag structure, because the zigzag structure can also increase the coupling length between the first electrode and the second electrode, thereby increasing the first electrode and the second electrode.
  • the amount of signal induced between the electrode and the second electrode. 9 and 10 are schematic diagrams showing that the shape of the coupling line is a square wave shape.
  • the first electrode includes a first tooth structure
  • the second electrode includes a second tooth structure
  • the first tooth structure and the second tooth structure are engaged with each other.
  • the tooth widths of the first tooth structure and the second tooth structure can be equal, so that the amount of signals induced between the first electrode and the second electrode and the human body can be equal.
  • the gap between the first electrode and the second electrode is q/3 ⁇ q/2, where q is the tooth width of the first electrode or the second electrode, as shown in FIG. 10 .
  • This is beneficial to ensure that the absolute value of the change of mutual capacitance value is a positive value, and the difference between the absolute value of the change of the mutual capacitance value is a negative value is small, that is, the original mutual capacitance reduction ⁇ C is basically equivalent
  • the intermediate value of the capacitance C 2_5 (human body) and the equivalent capacitance C 2_5 (sweat) can improve the accuracy of the detection result of the human body approaching the electronic device.
  • parameters such as the number of teeth of the first electrode and the second electrode, the tooth width q and the tooth pitch p, and the gap d between the two electrodes can be adjusted so that C 2_5 (human body) ⁇ C ⁇ C 2_5 ( sweat) .
  • the greater the number of teeth the smaller the width of the teeth, which is not conducive to the processing and installation of the first electrode and the second electrode. Based on this, the number of engagements in the embodiments of the present application may not exceed five. Preferably, the number of teeth of the first electrode and the second electrode may be 2 or 3.
  • FIG. 9 shows a case where the first electrode 61 and the second electrode 62 include three dentate numbers.
  • FIG. 10 shows a case where the first electrode 61 and the second electrode 62 include two dentate numbers.
  • the overall size of the electrode 61 and the electrode 62 is fixed, that is, the outer contour size of the electrode 61 is fixed.
  • the gap between the electrode 61 and the electrode 62 is increased, the area of the electrode 62 will decrease, and after the external object approaches the electrode, the capacitance between the external object and the electrode 62
  • the second capacitance C 2_3 will decrease , which will increase the difference between the equivalent capacitance generated by the proximity of the human body and sweat.
  • the tooth widths of the first toothed structure and the second toothed structure are equal.
  • the tooth widths of the two tooth structures are equal to ensure that the areas of the first electrode and the second electrode are equal, so that the first electrode and the second electrode and the human body have equal signal induction.
  • the gap d between the first electrode 61 and the second electrode 62 may be between q/3 ⁇ q/2, where q is the tooth width of the first electrode or the second electrode.
  • q is the tooth width of the first electrode or the second electrode.
  • Increasing the number of teeth can increase the coupling length between the first electrode 61 and the second electrode 62 , thereby increasing the amount of the induced signal between the first electrode 61 and the second electrode 62 .
  • the increase in the number of teeth will reduce the width of the teeth, which is not conducive to the processing, manufacture and installation of the electrode. Therefore, the specific meshing number and tooth width can be adjusted according to actual needs.
  • the first electrode 61 and the second electrode 62 can also be arranged in parallel, and the first electrode 61 can be arranged on the second electrode Above 62, wherein the projections of the first electrode 61 and the second electrode 62 in the direction perpendicular to the surface of the first electrode 61 do not overlap, or a part of the second electrode 62 and the first electrode are perpendicular to the surface of the first electrode 61
  • the projections in the direction overlap to ensure that the first electrode 61 located above will not block or only partially block the second electrode 62 located below, and both the first electrode 61 and the second electrode 62 can be formed with external objects. capacitance, so that there is sufficient signal induction between the first electrode 61 and the second electrode 62 and the external object.
  • the proximity detection device may further include a third electrode disposed below the first electrode and in a plane parallel to the first electrode.
  • the third electrode can absorb a part of the electric field lines between the first electrode and the second electrode, it is easier to achieve the opposite purpose of the change of the mutual capacitance value caused by the proximity of the human body and the proximity of sweat.
  • the third electrode can be grounded or connected to a fixed level, or can also be left floating.
  • the third electrode is grounded or connected to a fixed level, so that the electric field lines between the first electrode and the second electrode flow to the ground or a fixed level through the third electrode.
  • the third electrode can also be suspended, which means that the third electrode is not connected to any level.
  • the third electrode can form a capacitive structure with other devices in the electronic device, and the capacitive structure will also affect the first electrode and the electronic device.
  • the electric field lines between the second electrodes have an effect.
  • the projection of the third electrode in a direction perpendicular to the surface of the third electrode covers the projection of the first electrode and the second electrode in this direction, or the projection of the third electrode in a direction perpendicular to the surface of the third electrode At least the projection of the gap between the first electrode and the second electrode in this direction is completely covered, which is beneficial to improve the influence of the third electrode on the reduction ⁇ C of the original mutual capacitance.
  • the projection of the third electrode covers the projection of the gap between the first electrode and the second electrode, which can ensure that the third electrode has sufficient influence on the electric field line between the first electrode and the second electrode.
  • the first electrode is electrode 51
  • the second electrode is electrode 52
  • the third electrode is electrode 53 .
  • the distance between the third electrode and the first electrode and the second electrode cannot be too large, for example, the distance can be less than or equal to 200 ⁇ m . Preferably, this distance is less than or equal to 100 ⁇ m.
  • the first electrode 51 and the second electrode 52 may be arranged in the same plane
  • the third electrode 53 may be arranged under the first electrode 51
  • the third electrode 53 may be arranged on the same plane as the third electrode 53 .
  • the projection in the direction perpendicular to the surface at least covers the projection of the gap between the first electrode 51 and the second electrode 52 in this direction, which can ensure that the third electrode can better absorb the electric field lines between the first electrode and the second electrode .
  • the projection of the third electrode 53 in the direction perpendicular to the surface of the third electrode completely covers the first electrode 51 and the second electrode 52, and the edge of the third electrode 53 is aligned with the edge of the second electrode, which is beneficial to Encapsulation of the first electrode, the second electrode and the third electrode.
  • the first electrode and the second electrode may be arranged in parallel, the second electrode is an annular structure surrounding the first electrode, and the second electrode is arranged below the first electrode, in this case, the third electrode It can be arranged on the same plane as the second electrode.
  • the first electrode 51 and the second electrode 52 are arranged in parallel, the second electrode 52 is an annular structure surrounding the first electrode 51 , and the first electrode 51 and the second electrode 52 are perpendicular to the first electrode 51 .
  • the projections in the direction of the surface do not overlap.
  • the distance between the first electrode 51 and the second electrode 52 is less than 100 ⁇ m to ensure the amount of the induced signal between the first electrode 51 and the second electrode 52 .
  • the third electrode 53 and the second electrode 52 are arranged on the same plane. Under this structure, the third electrode 53 can also improve the reduction speed of the original mutual capacitance reduction ⁇ C with the increase of the gap, so that it is easier to realize C 2_5 (human body) ⁇ C ⁇ C 2_5 (water sweat) .
  • the third electrode 53 can be arranged in the middle area of the second electrode 52 , and the third electrode 53 and the second electrode 53 are concentric, which can ensure that the third electrode 53 is between the first electrode 51 and the second electrode 52 The effects of the electric field lines at different positions are consistent.
  • a third electrode can also be added to the structure, so that C 2_5 (human body) ⁇ C ⁇ C 2_5 (sweat) can be more easily achieved.
  • the first electrode, the second electrode, and the third electrode in the embodiments of the present application may be disposed in a substrate, and the substrate may be a printed circuit board (printed circuit board, PCB) or a flexible printed circuit (flexible printed circuit, FPC). As shown in FIGS. 7 and 8 , the first electrode 51 , the second electrode 52 and the third electrode 53 may be provided in the substrate 55 . If the substrate 55 is a PCB, the electrodes may be provided on the top layer of the substrate.
  • PCB printed circuit board
  • FPC flexible printed circuit
  • the mutual capacitance sensor improves the discrimination between human body and sweat, it is usually necessary to reduce the original mutual capacitance reduction ⁇ C to achieve C 2_5 (human body) ⁇ C ⁇ C 2_5 (sweat) , which is higher than self-capacitance in terms of signal amount.
  • the detection method has disadvantages.
  • the value of the original mutual capacitance reduction ⁇ C is close to the value of the equivalent capacitance C 2_5 ( human body ), that is, when the human body is close to the electronic device, the mutual capacitance between the first electrode and the second electrode
  • the change of the value is relatively small, such as close to zero. At this time, there may be no external objects close to the electronic device, or the human body may be close to the electronic device.
  • the embodiments of the present application also provide a solution that combines the respective advantages of self-capacitance detection and mutual-capacitance detection, and adopts an integrated detection method of self-capacity and mutual-capacity to further improve the accuracy of the detection result of human body approaching electronic equipment.
  • the self-capacitance detection method can be used to determine whether the variation of the self-capacitance value reaches the threshold, and then the mutual capacitance detection method can be used to determine whether the variation is caused by the proximity of the human body or the proximity of the non-human body.
  • the amount of change in the self-capacitance value of the electrodes can be detected first, and if the amount of change in the self-capacitance value of the electrodes reaches a preset threshold, it is determined that an external object is approaching the electronic device, and then the amount of change in the mutual capacitance value can be further detected to determine Whether the external object is a human body or a non-human body.
  • the variation of the self-capacitance value of the electrodes is smaller than the preset threshold, it is determined that no external object is close to the electronic device, and there is no need to further detect the variation of the mutual capacitance value of the electrodes.
  • the variation of the self-capacitance value is greater than the preset threshold and the variation of the mutual capacitance value is greater than zero, which can be used to determine that the human body is close to the electronic device; the variation of the self-capacitance value is greater than the preset threshold and the mutual capacitance value is greater than zero.
  • a change in value less than zero can be used to determine that the human body is not approaching the electronic device.
  • the variation of the self-capacitance value is greater than the preset threshold, even if the variation of the mutual capacitance value is greater than zero and the variation is small, it can be directly determined that the human body is close to the electronic device, which can improve the proximity of the human body to the electronic device. the accuracy of the test results.
  • the structures of the first electrode and the second electrode may not be changed.
  • the self-capacitance value of the first electrode may be independently detected, or the self-capacitance value of the second electrode may be independently detected, or
  • the total self-capacitance value can be detected by taking the first electrode and the second electrode as a whole, and whether there is an external object touch is determined according to the magnitude of the change of the self-capacitance value.
  • the area of the electrode can be greater than or equal to 3 mm 2 .
  • the area of the first electrode is greater than or equal to 3 mm 2 .
  • the wearing detection device of the embodiment of the present application can also reduce the influence of temperature on the wearing detection result.
  • FIG. 11 shows a schematic diagram of a conventional self-capacitance detection device.
  • 91 is the self-capacitance electrode
  • 92 is the system ground.
  • the system ground 92 generally consists of the system ground on the FPC/PCB board, the battery/antenna in the electronic device, and the system ground on the main board.
  • the electric field lines (dotted lines in FIG. 11 ) between the electrode 91 and the system ground 92 are generally mainly distributed in the dielectric 93 , and the dielectric 93 may be polyimide (PI), FR4 or glue.
  • PI polyimide
  • FR4 glue
  • FIG. 12 is a schematic diagram of a mutual capacitance detection apparatus provided by an embodiment of the present application.
  • the electrode 101 and the electrode 102 are two mutual capacitance electrodes, the electrode 103 is the system ground, the electrode 101 and the electrode 102 can be arranged in the substrate 104, and the substrate 104 can be FPC or PCB, and the electrode 101 and the electrode 102 can preferably be arranged on the substrate 104, which makes part of the electric field lines between the electrode 101 and the electrode 102 distributed in the air, so that the mutual capacitance between the two electrodes can be reduced by the dielectric constant of the dielectric.
  • the temperature drift coefficient of the air is extremely low, the mutual capacitance between the two electrodes is less affected by temperature than the self-capacitance detection device, and the mutual capacitance detection can effectively suppress the temperature drift.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence, or the parts that make contributions to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium , which includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage medium includes: U disk, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • division of units, modules or components in the apparatus embodiments described above is only a logical function division, and other division methods may be used in actual implementation.
  • multiple units, modules or components may be combined or integrated To another system, or some units or modules or components can be ignored, or not implemented.
  • the above-mentioned units/modules/components described as separate/display components may or may not be physically separated, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units/modules/components may be selected according to actual needs to achieve the purpose of the embodiments of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

提供了一种接近检测装置及电子设备,有利于提升人体接近设备和非人体接近设备的区分度。该装置用于电子设备,包括:第一电极、第二电极、以及用于检测第一电极和第二电极之间的互容值的变化量的检测模块,该检测模块与第一电极及第二电极相电连接,所述互容值的变化量用于确定电子设备的接近状态,其中,在人体接近电子设备的情况下,互容值的变化量为第一变化量,在非人体接近所述电子设备的情况下,互容值的变化量为第二变化量,该第一变化量和该第二变化量为一正一负。

Description

接近检测装置及电子设备 技术领域
本申请实施例涉及电容检测领域,并且更具体地,涉及一种接近检测装置及电子设备。
背景技术
电子设备,如可穿戴设备,给人们带来了丰富的用户体验。随着智能化的发展,检测可穿戴设备是否被人体佩戴上已经逐渐成为可穿戴设备的标配功能。传统方案可以在可穿戴设备中设置检测模块,以检测人体是否佩戴了设备。但是,传统的检测方式存在易受水汗等非人体的接近的影响的问题,例如,当设备上残留有水时,容易将水接近设备误判为人体佩戴了设备,这会影响用户体验。
因此,如何准确检测用户接近电子设备成为亟需解决的问题。
发明内容
本申请实施例提供了一种接近检测装置及电子设备,有利于提升区分人体接近电子设备和非人体接近电子设备的区分度。
第一方面,提供了一种接近检测装置,用于电子设备,包括:第一电极、第二电极、以及用于检测所述第一电极和所述第二电极之间的互容值的变化量的检测模块,所述互容值的变化量用于确定所述电子设备的接近状态,其中,在人体接近所述电子设备的情况下,所述互容值的变化量为第一变化量,在非人体接近所述电子设备的情况下,所述互容值的变化量为第二变化量,所述第一变化量和所述第二变化量为一正一负。
基于上述技术方案,采用互容检测的方式,使得人体接近和非人体接近引起的互容值的变化量为一正一负,也就是说,人体接近和非人体接近引起的互容值的变化量的变化方向正好相反,如,人体接近时互容值变小,而非人体接近时互容值变大,或者,人体接近时互容值变大,而非人体接近时互容值变小,这样能够提高人体和非人体的区分度,检测模块仅需检测互容值是变大还是变小,即可确定是人体接近电子设备还是非人体接近电子设备,这样能够更容易识别电子设备的接近状态,有利于降低误判率。
在一种可能的实现方式中,所述第一电极和所述第二电极设置在同一平面内;或所述第一电极和所述第二电极平行设置,且所述第一电极设置在所述第二电极的上方,所述第一电极和所述第二电极在垂直于所述第一电极表面的方向上的投影不重叠、或所述第二电极的一部分和所述第一电极在垂直于所述第一电极表面的方向上的投影重叠。
当外界对象接近电子设备时,在面向人体接近的方向上,第一电极不会对第二电极造成遮挡或仅对第二电极进行部分遮挡,以保证第一电极和第二电极均可以与外界对象形成电容。
在一种可能的实现方式中,所述第一电极和所述第二电极设置在同一平面内,所述第一电极设置在所述第二电极的中间区域,所述第二电极为围绕所述第一电极的环状结构。
采用环形形状的图案布置能够增大第一电极和第二电极之间的耦合长度,能够增大第一电极和第二电极之间感应的信号量。
在一种可能的实现方式中,所述第一电极与所述第二电极共中心。
将第一电极和第二电极设置为共中心有利于保证两个电极在不同位置之间的间隙相等,这样不论外界对象在哪个位置接近电子设备,第一电极和第二电极之间的信号感应量都比较均匀,即信号感应量的大小是一致的。
在一种可能的实现方式中,所述第一电极为长方形结构,所述第二电极为围绕所述第一电极的方形环状结构。
通常承载接近检测装置的基板为长方形,将电极设置为长方形能够提高基板的空间利用率。另外,考虑到人体接近电子设备的接近区域通常为长方形,将电极设置为长方形能够更充分感测到人体对互容信号的影响。
在一种可能的实现方式中,所述第二电极的宽度大于或等于所述第一电极与所述第二电极之间的间隙。
将第二电极的环形宽度设置为大于或等于两个电极之间的间隙,有利于保证互容值的变化量为正值时的绝对值,与互容值的变化量为负值的绝对值之间的差异较小,从而能够提高人体接近电子设备的检测结果的准确性。
在一种可能的实现方式中,所述第一电极与所述第二电极之间的间隙为L/6~L/4,其中,L为所述第一电极的长边的长度,有利于保证互容值的变化量为正值时的绝对值,与互容值的变化量为负值的绝对值之间的差异较小,从而能够提高人体接近电子设备的检测结果的准确性。
在一种可能的实现方式中,所述第二电极的宽度大于或等于0.2mm,保证第二电极与人体之间具有足够的信号感应量。
在一种可能的实现方式中,所述第一电极和所述第二电极设置在同一平面内,所述第一电极和所述第二电极采用齿合型结构布置,所述第一电极包括第一齿形结构,所述第二电极包括第二齿形结构,所述第一齿形结构和所述第二齿形结构相齿合。
采用齿合形结构布置的方案能够增大第一电极和第二电极之间的耦合长度,能够增大第一电极和第二电极之间感应的信号量。
在一种可能的实现方式中,所述第一齿形结构和所述第二齿形结构的齿宽相等。
两个齿形结构的齿宽相等可以保证第一电极和第二电极的面积相等,从而使得第一电极和第二电极与人体之间具有相等的信号感应量。
在一种可能的实现方式中,所述第一电极和所述第二电极之间的间隙为q/3~q/2,其中,q为所述第一电极或所述第二电极的齿宽,这样有利于保证互容值的变化量为正值时的绝对值,与互容值的变化量为负值的绝对值之间的差异较小,从而能够提高人体接近电子设备的检测结果的准确性。
在一种可能的实现方式中,所述第一电极和所述第二电极的齿合数量为2个或3个。
2个或3个的齿合数量有利于避免第一电极和第二电极的齿宽过小,有利于第一电极和第二电极的加工制造和安装。
在一种可能的实现方式中,还包括第三电极,所述第一电极和所述第二电极设置在同一平面内,所述第三电极设置在所述第一电极的下方,且与所述第一电极平行。
通过增加第三电极,由于第三电极能够吸走第一电极和第二电极之间的一部分电场线,从而更容易实现人体接近和非人体接近引起的互容值的变化量的方向正好是相反的目的。
在一种可能的实现方式中,所述第三电极在与所述第三电极表面垂直的方向上的投影至少将所述第一电极和所述第二电极之间的间隙在所述方向上的投影全部覆盖。
第三电极的投影覆盖第一电极和第二电极之间的间隙区域,能够保证第三电极对第一电极和第二电极之间的电场线产生足够的影响。
在一种可能的实现方式中,所述第三电极的边缘与所述第一电极、所述第二电极形成的图案的边缘对齐。这样有利于第一电极、第二电极和第三电极的封装。
在一种可能的实现方式中,所述第三电极与所述第一电极之间的距离小于或等于200μm,这样可以避免第三电极与第一电极之间的距离过大,能够保证第三电极对第一电极和第二电极之间的电场线的影响。
在一种可能的实现方式中,所述第三电极与所述第一电极之间的距离小于或等于100μm,这样可以避免第三电极与第一电极之间的距离过大,能够保证第三电极对第一电极和第二电极之间的电场线的影响。
在一种可能的实现方式中,所述第一电极和所述第二电极平行设置,所述第三电极与所述第二电极设置在同一个平面上。
第三电极与第二电极共面,能够保证第三电极对第一电极和第二电极之间的电场线的影响。
在一种可能的实现方式中,所述第三电极与所述第一电极之间的距离小于或等于100μm,这样不仅能保证第一电极和第二电极之间有足够的信号感应量,而且还能够保证第三电极对第一电极和第二电极之间的电场线的影响。
在一种可能的实现方式中,所述第一电极与外界对象之间形成第一电容、所述第二电极与所述外界对象之间形成第二电容、系统地与所述外界对象之间形成第三电容,其中,所述外界对象包括所述人体和所述非人体,所述第一电容、所述第二电容和所述第三电容使得所述第一变化量和所述第二变化量为一正一负。
第一电容、第二电容和第三电容能够对互容值的变化量产生影响,因此,本申请可以通过调整第一电容、第二电容和第三电容的电容值,使得第一变化量和第二变化量为一正一负。
在一种可能的实现方式中,所述检测模块还用于检测所述第一电极和/或所述第二电极的自容值的变化量,所述自容值的变化量大于预设阈值用于确定有所述外界对象靠近所述电子设备,且所述检测模块在所述自容值的变化量大于所述预设阈值的情况下,检测所述第一电极和所述第二电极之间的互容值的变化量。
本申请结合自容检测和互容检测各自的优势,采取自互容一体的检测方 式,能够进一步提高人体接近电子设备的检测结果的准确性。
第二方面,提供了一种电子设备,包括:第一方面或第一方面中任一种可能实现方式中的接近检测装置。
附图说明
图1是传统的自容检测方式的示意图。
图2是本申请实施例提供的一种接近检测装置的示意图。
图3是本申请实施例提供的一种当外界对象接近时,接近检测装置上产生的电容的示意图。
图4是本申请实施例提供的一种当外界对象靠近时,第一电极和第二电极之间产生的电容的示意图。
图5是本申请实施例提供的一种回字形的电极结构示意图。
图6是本申请实施例提供的另一种回字形的电极结构示意图。
图7是本申请实施例提供的一种回字形的电极结构的剖视图。
图8是本申请实施例提供的另一种回字形的电极结构的剖视图。
图9是本申请实施例提供的一种齿合形的电极结构示意图。
图10是本申请实施例提供的另一种齿合形的电极结构示意图。
图11是自容感测过程中电极与系统地之间感应的电场线的示意图。
图12是互容感测过程中第一电极、第二电极以及系统地之间感应的电场线的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例中的电子设备可以为智能可穿戴设备、智能笔、游戏手柄或其它电容触控类产品。智能可穿戴设备例如可以为耳机、手表、手环等佩戴设备。
下面以耳机为例进行描述。
近年来,随着耳机朝着无线化、智能化发展,入耳检测已经逐渐成为智能无线耳机的标配功能。具备入耳检测功能的耳机,能够实时监测耳机是否佩戴或脱离人耳,并借助这一信息切换工作状态。例如,在音乐播放的过程中,当识别到用户摘下耳机,则会立刻暂停播放音乐;而当识别到耳机重新 入耳,则音乐又会自动继续播放。又例如,在通话的过程中如果用户摘下耳机,则通话会无缝切换到手机通道上。
入耳检测的主流前端传感器有电容和光学两种。其中,电容方案无需开孔,在外观、防尘、整机防水等性能上具有显著优势,因而具有更广阔的前景。但传统的电容检测方案一直存在易受水汗和温度干扰的缺陷。
传统的佩戴检测(或人接近感应)方式一般多采用自容检测方式,即检测电极对系统地的自容值,并根据该自容值的变化量大小,确定用户是否佩戴了可穿戴设备。
以图1为例,电极11为自容电极,电极11对系统地10有一个基电容C 1_1,当外界对象12接近时,会再引入两个电容C 1_2和C 1_3,其中,电容C 1_2为外界对象12与电极11之间的电容,电容C 1_3为外界对象12与系统地10之间的电容。外界对象12接近时,电极11对系统地10的总电容会增加,增量大小近似为电容C 1_2与电容C 1_3的串联。因此,在自容检测模式下,人体和非人体的区分度主要来源于电容C 1_2与电容C 1_3的串联结果的差异。
对于自容检测方式,人体和水汗接近时均会引起电极11对系统地10的总电容的增加。但由于人群佩戴的离散性以及汗水形态的多样性和不确定性,人体和水汗引起的总电容的增量存在难以鉴别的模糊区间,即当检测到总电容的增量在该模糊区间时,该增量可能是人体佩戴电子设备引起的,也可能是由于残留的水汗引起的,因此,很多情况下人体与水汗引起的总电容的增量的区分度不够,导致易把设备上残留的水汗误判为人体佩戴。
基于此,本申请实施例提供一种接近检测装置,使得人体与非人体引起的互容信号变化量的变化方向相反,能够有效提升人体与非人体接近的区分度,进而提高人体接近电子设备的检测结果的准确性和改善用户体验。本申请实施例中的非人体可以为各种导体介质,例如水汗,用户在佩戴可穿戴设备的过程中,容易将水汗残留在可穿戴设备上。
本申请实施例的接近检测装置可用于电子设备,该装置可以包括第一电极、第二电极和检测模块,该检测模块与第一电极、第二电极相电连接,并用于检测第一电极和第二电极之间的互容值的变化量,该互容值的变化量用于确定电子设备的接近状态。其中,在人体接近所述电子设备的情况下,所述互容值的变化量为第一变化量,在非人体接近所述电子设备的情况下,所述互容值的变化量为第二变化量,所述第一变化量和所述第二变化量为一正 一负。
第一电极和所述第二电极设置在同一平面内;或所述第一电极和所述第二电极平行设置,且所述第一电极设置在所述第二电极的上方,所述第一电极和所述第二电极在垂直于所述第一电极表面的方向上的投影不重叠、或所述第二电极的一部分和所述第一电极在垂直于所述第一电极表面的方向上的投影重叠。
由于外界对象为人体和非人体时的互容值的变化量为一正一负,即两者引起的互容值的变化量的变化方向相反,这样能够提高人体和非人体的区分度。检测模块仅需检测互容值的变化量为正还是为负,即可确定是人体接近设备还是非人体接近设备,这样能够容易地识别设备是否被人体接近,进而有利于降低误判率。例如,准确地识别耳机是否被用户佩戴,触控笔是否被用户手持,游戏手柄是否被用户手持等,进而有利于电子设备根据是否被人体接近来进行对应的控制操作及改善用户体验。
为方便描述,下文将人体和非人体统称为外界对象。
所述第一电极与外界对象之间形成第一电容、所述第二电极与所述外界对象之间形成第二电容、系统地与所述外界对象之间形成第三电容,其中,所述外界对象包括所述人体和所述非人体,所述第一电容、所述第二电容和所述第三电容使得所述第一变化量和所述第二变化量为一正一负。
由于第一电容、第二电容和第三电容能够对互容值的变化量产生很大影响,因此,本申请实施例可以通过调整第一电容、第二电容和第三电容的电容值,使得第一变化量和第二变化量为一正一负。
作为一种示例,当外界对象为人体时,第一电容、第二电容和第三电容使得第一变化量为正,当外界对象为非人体时,第一电容、第二电容和第三电容使得第二变化量为负。
作为另一种示例,当外界对象为人体时,第一电容、第二电容和第三电容使得第一变化量为负,当外界对象为非人体时,第一电容、第二电容和第三电容使得第二变化量为正。
本申请实施例中的非人体可以为导体,该导体可以是液体,如水汗。
本申请实施例的接近检测装置也可以称为接触检测装置,外界对象接触电子设备可以引起第一电极和第二电极之间的互容值发生变化,但是在某些情况下,外界对象与电子设备之间的距离比较近但还未接触电子设备的情况 下,也可以引起第一电极和第二电极之间的互容值发生变化。
下面结合图2-图4详细描述本申请实施例的方案。
图2示出的是在没有外界对象接近的情况下,第一电极21和第二电极22之间的感应情况;图3示出的是在外界对象接近的情况下,第一电极21、第二电极22、外界对象23及系统地20之间的感应情况;图4示出的是由于外界对象接近而引入的电容在两个电极之间形成的等效电容的情况。
该接近检测装置200可以包括第一电极21和第二电极22,以及检测模块211。该检测模块211用于检测第一电极21和第二电极22之间的互容值的变化量,该互容值的变化量用于确定人体是否接近电子设备。
检测模块可以检测第一电极和第二电极之间的互容值的变化量,例如,可以在外界对象未接近电子设备时,检测第一电极和第二电极之间的互电容作为基电容,并在之后的接近检测过程中,检测第一电极和第二电极之间的第一互容值,处理器可以计算第一互容值与基电容之间的差值,并将该差值作为互容值的变化量。
本申请实施例可以通过使第一电极和第二电极之间的原始互容减小量与第一电极和第二电极之间的等效电容满足关系:等效电容(人体)<原始互容减小量<等效电容(非人体),或者等效电容(非人体)<原始互容减小量<等效电容(人体),来使得人体和非人体接近电子设备时引起的互容值的变化量为一正一负。也就是说,通过使人体接近时产生的等效电容与非人体接近时产生的等效电容位于原始互容减小量的两侧,来使得人体和非人体接近时引起的互容值的变化量为一正一负。
等效电容可以理解为第一电容、第二电容和第三电容在第一电极和第二电极之间形成的具有相等电容效果的电容。原始互容减小量可以理解为在没有该等效电容的情况下,第一电极和第二电极之间的互容值的变化量。其中,等效电容(人体)表示由于人体接近电子设备引起的第一电容、第二电容和第三电容在第一电极和第二电极之间形成的等效电容,等效电容(非人体)表示由于非人体接近电子设备引起的第一电容、第二电容和第三电容在第一电极和第二电极之间形成的等效电容。
由于第一电极和第二电极之间实际的互容值的变化量为等效电容与原始互容值减小量的差值,若等效电容小于原始互容减小量,则两者的差值小于零,若等效电容大于原始互容减小量,则两者的差值大于零。因此,当人 体接近时产生的等效电容(即上述等效电容(人体))与非人体接近时产生的等效电容(即上述等效电容(非人体))位于原始互容减小量的两侧时,第一电极和第二电极之间实际的互容值的变化量正好为一正一负,从而能够达到提高人体和非人体的区分度的目的。
以图2-图4为例,电极21和电极22分别为第一电极和第二电极,在没有外界对象接近的情况下,电极21和电极22之间存在一个基电容C 2_0。当外界对象23接近时,外界对象23作为导体,会使基电容C 2_0中的一部分电荷流到系统地20,因此电容C 2_0会减小,变为电容C 2_1,即C 2_1=C 2_0-ΔC,此处的ΔC为原始互容减小量,并不表示实际的减小量。理论上只要检测出该原始互容减小量ΔC就能确定是否有外界对象接近电子设备,但是外界对象23接近时还会引入第一电容C 2_2、第二电容C 2_3和第三电容C 2_4,这三个电容会在电极21和电极22之间形成一个等效电容C 2_5,该等效电容会影响实际检测到的互容值的变化量。在存在该等效电容C 2_5的情况下,实际检测到的两个电极之间的互容值为电容C 2_1与等效电容C 2_5的并联,如图4所示,即实际检测到的互容值为(C 2_0-ΔC+C 2_5),其中,第一电容2_2为外界对象23与电极21之间的电容,第二电容C 2_3为外界对象23与电极22之间的电容,第三电容C 2_4为外界对象23与系统地20之间的电容。
由于C 2_0为基电容,因此,实际检测到的电极21和电极22之间的互容值的变化量为(C 2_5-ΔC)。
本申请实施例可以通过调整原始互容减小量ΔC与等效电容C 2_5的大小,使得C 2_5(人体)<ΔC<C 2_5(非人体),或者C 2_5(非人体)<ΔC<C 2_5(人体),从而使得互容值的变化量为一正一负。
本申请实施例中的外界对象23可以为人体,也可以为任何可导电的非人体,该非人体例如可以为水汗,人体或水汗作为导体,均会影响电极21和电极22之间的互容值。本申请通过设计第一电极和第二电极的参数,来改变第一电容C 2_2、第二电容C 2_3和第三电容C 2_4的电容值的大小,当外界对象23为人体时,第一电容C 2_2、第二电容C 2_3和第三电容C 2_4使得第一变化量为负/正,而当外界对象23为非人体时,第一电容C 2_2、第二电容C 2_3和第三电容C 2_4使得第二变化量为正/负,通过一正一负的变化量差异,能够准确地识别设备的佩戴状态。
可选地,本申请实施例可以将互容值的变化量大于零称为变化量为正, 将互容值的变化量小于零称为变化量为负。当然,也可以将互容值的变化量大于零称为变化量为负,将互容值的变化量小于零称为变化量为正。下文采用前一种方式进行描述。
下文以非人体为水汗为例进行描述。由于人体和水汗导电性的差异,水汗引起的等效电容C 2_5通常大于人体引起的等效电容C 2_5,因此,本申请实施例可以通过满足在条件C 2_5(人体)<ΔC<C 2_5(水汗),使人体与水汗引起的互容值的变化量(C 2_5-ΔC)呈现一正一负的状态。
在该情况下,互容值的变化量大于零可用于确定人体接近电子设备,互容值的变化量小于零可用于确定人体未接近电子设备。
检测模块仅需检测互容值的变化量是大于零还是小于零,即可确定是人体接近设备还是非人体接近设备,这样能够准确识别设备的佩戴状态,有利于降低误判率。
本申请实施例可以通过调整第一电容C 2_2、第二电容C 2_3、第三电容C 2_4中的至少一个来满足条件C 2_5(人体)<ΔC<C 2_5(水汗)。例如,可以通过调整人体接近电子设备产生的第三电容C 2_4和水汗接近电子设备产生的第三电容C 2_4的大小,来满足C 2_5(人体)<ΔC<C 2_5(水汗),或者,也可以通过调整人体接近电子设备产生的第一电容C 2_2、第二电容C 2_3和水汗接近电子设备产生的第一电容C 2_2、第二电容C 2_3的大小,来满足C 2_5(人体)<ΔC<C 2_5(水汗)
等效电容C 2_5的大小与第一电容C 2_2、第二电容C 2_3、第三电容C 2_4的大小相关,用函数表示即为C 2_5=f(C 2_2,C 2_3,C 2_4),其中,f表示一种函数关系。通过实验数据可知,等效电容C 2_5随第三电容C 2_4的增大而减小,而随第一电容C 2_2和第二电容C 2_3的减小而减小。当第三电容C 2_4无穷大时(相当于外界对象23理想接地),则等效电容C 2_5减小至0;当第一电容C 2_2和第二电容C 2_3中的任一个趋近于0时,等效电容C 2_5亦趋近于0。
人体和水汗产生的第三电容C 2_4有差异,通常C 2_4(人体)>C 2_4(水汗),从而会导致人体和水汗产生的等效电容C 2_5有差异。由于等效电容C 2_5与第三电容C 2_4成反比,从而有C 2_5(人体)<C 2_5(水汗)。因此,可以通过调整人体和水汗产生的第三电容C 2_4的大小,来满足条件C 2_5(人体)<ΔC<C 2_5(水汗),使人体与水汗引起的互容值的变化量(C 2_5-ΔC)呈现一正一负的状态,从而提升人体和水汗的区分度。
等效电容C 2_5除了与第三电容C 2_4有关外,还与第一电容C 2_2和第二电 容C 2_3之和有关,且等效电容C 2_5与(C 2_2+C 2_3)成正比。通常,对于确定的电子设备结构,人体和水汗对地的第三电容C 2_4可视为已经确定,为确定值,并假设
Figure PCTCN2020113786-appb-000001
假设人体、水汗与电子设备的接近面积的大小和形状均相同,即人体接近电子设备和水汗接近电子设备引起的第一电容C 2_2和第二电容C 2_3相同,则两者产生的等效电容C 2_5之间的比值为
Figure PCTCN2020113786-appb-000002
其中,g表示一种函数关系。已知k确定的前提下,m随(C 2_2+C 2_3)的减小而增大,随(C 2_2+C 2_3)的增大而减小。当(C 2_2+C 2_3)趋近于0时,m趋近于k;当(C 2_2+C 2_3)趋近无穷大时,m接近1,即1<m<k。
m值越大,表示人体和水汗产生的等效电容C 2_5之间的差异越大,越容易区分人体和水汗的接近,而m值越小,表示人体和水汗产生的等效电容C 2_5之间的差异越小,越不容易区分人体和水汗的接近。通过上文分析可知,减小第一电容C 2_2和第二电容C 2_3均可提高m值,即增大人体和水汗产生的等效电容C 2_5之间的差异。因此,本申请实施例可以通过减小第一电容C 2_2和第二电容C 2_3,以实现人体接近和水汗接近引起的互容值的变化量的方向正好是相反的目的。
但是减小第一电容C 2_2和第二电容C 2_3的值,也会同时减小C 2_1的值,即会导致原始互容减小量ΔC变大,有可能会造成等效电容C 2_5(人体)和等效电容C 2_5(水汗)均小于原始互容减小量ΔC,因此,本申请实施例在减小第一电容C 2_2和第二电容C 2_3的同时,还考虑原始互容减小量ΔC的变化情况。
因此,本申请实施例可以通过改变第一电容C 2_2、第二电容C 2_3与原始互容减小量ΔC的大小,使得C 2_5(人体)<ΔC<C 2_5(水汗)。具体地,本申请实施例可以通过改变电极21和电极22的参数,来改变第一电容C 2_2、第二电容C 2_3与原始互容减小量ΔC的大小。
电极21和电极22的参数可以包括电极21和电极22之间的耦合长度、间隙、距离、电极的面积中的至少一个。
可选地,第一电极和第二电极可以设置在同一平面;或第一电极和第二 电极平行设置且第一电极设置在第二电极的上方,其中,第一电极和第二电极在垂直于第一电极表面的方向上的投影不重叠、或第二电极的一部分和第一电极在垂直于第一电极表面的方向上的投影重叠,这样,当外界对象接近电子设备时,在面向人体接近的方向上,第一电极不会对第二电极造成遮挡或仅对第二电极进行部分遮挡,以保证第一电极和第二电极均可以与外界对象形成电容。
第一电极设置在第二电极的上方,表示相对于第二电极而言,第一电极设置在更靠近外界对象的位置,即第一电极与外界对象之间的距离小于第二电极与外界对象之间的距离。
第二电极的一部分和第一电极在垂直于第一电极表面的方向上的投影重叠表示,位于上方的第一电极不会完全遮挡位于下方的第二电极,第一电极和第二电极均可以与外界对象形成电容。
优选地,第一电极和第二电极可以设置在同一平面,或第一电极和第二电极平行设置且第一电极和第二电极在垂直于第一电极表面的方向上的投影不重叠,这样,当人体接近电子设备时,第一电极和第二电极都是直接面向人体,不会被另外一个电极遮挡,第一电极与人体之间形成的电容的电容值以及第二电极与人体之间形成的电容的电容值更容易控制。
更优选地,第一电极和第二电极可以设置在同一平面,这样,第一电极和第二电极之间的互容值会比较大,有利于提高人体接近电子设备的检测结果的准确性。
当第一电极和第二电极平行设置时,为了保证第一电极和第二电极之间感测的信号量,第一电极和第二电极之间的距离不能过大。本申请实施例中第一电极和所述第二电极之间的距离可以小于100μm。以图8为例,第一电极51和第二电极52之间的距离h小于100μm。
下面结合图5-图10,详细描述第一电极和第二电极的结构。
第一电极和第二电极之间的耦合线的形状可以为非直线,例如,耦合线的形状可以为环形形状、方波形状、或者曲线等,这样能够在空间有限的情况下,增大第一电极和第二电极之间的耦合长度,增大第一电极和第二电极之间感应的信号量。
以图5、图6为例,第一电极51和第二电极52可以采用环形形状的图案布置,即第二电极52包围第一电极51的方式。
相比于耦合线的形状为直线的方式,采用环形形状的图案布置能够增大第一电极51和第二电极52之间的耦合长度,从而能够增大第一电极和第二电极之间感应的信号量。
第一电极可以设置在第二电极的中间区域,第二电极为围绕第一电极的环状结构。
可以理解的是,本申请实施例中的第二电极围绕第一电极的方案,可以指第二电极在与第一电极共面的平面上围绕第一电极,也可以指第二电极在与第一电极平行的平面上围绕第一电极。第一电极和第二电极在垂直于第一电极表面的方向上的投影形成的图案为第二电极的投影包围第一电极的投影。
优选地,第二电极可以与第一电极共中心。将第一电极和第二电极设置为共中心有利于保证两个电极在不同位置之间的间隙相等,这样不论外界对象在哪个位置接近电子设备,能够使得第一电极和第二电极之间的信号感应量更均匀,即在外界对象在距离电子设备相同的距离但是为不同的位置时,第一电极和第二电极之间均具有一致的信号感应量。
例如,第一电极为方形结构,第二电极为围绕第一电极且与第一电极共中心的方形环状结构,如图5和图6所示。又例如,第一电极为圆形结构,第二电极为围绕第一电极且与第一电极共圆心的圆环结构。当然,第一电极和第二电极还可以是其他形状结构。
优选地,第一电极51可以采用长方形的结构,如图6所示,第一电极51的尺寸为L×W,其中,L≥W。
通常承载接近检测装置的基板为长方形,即电极通常是设置在基板上的,而该基板为长方形结构,因此,将电极设置为长方形能够提高基板的空间利用率。另外,考虑到人体接近电子设备的接近区域通常为长方形,因此,将电极设置为长方形还能够更充分地感测到人体接近对互容信号的影响。
另外,第二电极的宽度可以大于或等于第一电极和第二电极之间的间隙。如图6所示,第二电极的宽度e≥第一电极和第二电极之间的间隙d。这样有利于保证互容值的变化量为正值时的绝对值,与互容值的变化量为负值的绝对值之间的差异较小,即原始互容减小量ΔC基本为等效电容C 2_5(人 体)与等效电容C 2_5(水汗)的中间值,从而能够提高人体接近电子设备的检测结果的准确性。
如果电子设备的空间有限,则也可以选择e≥0.2mm,以保证第二电极与人体之间的感应信号量。
第一电极和第二电极之间的间隙不能过大,以图6为例,第一电极51和第二电极52之间的间隙d优选为L/6~L/4之间,这样有利于保证互容值的变化量为正值时的绝对值,与互容值的变化量为负值的绝对值之间的差异较小,即原始互容减小量ΔC基本为等效电容C 2_5(人体)与等效电容C 2_5(水汗)的中间值,从而能够提高人体接近电子设备的检测结果的准确性。
将第一电极51和第二电极52设置为回字形结构,可以增大第一电极51和第二电极52之间的耦合长度,其耦合长度约为第一电极51的周长,这样有利于增大第一电极51和第二电极52之间感应电容的信号量,提高人体接近电子设备的检测结果的准确性。
第一电极和第二电极之间具有间隙,在不同位置处,该间隙可以均相等。如图5所示,d1=d2。这样不论外界对象在哪个位置接近电子设备,均可以保证第一电极和第二电极之间具有一致的信号感应量,且不论外界对象在哪个位置接近电子设备均能准确地识别到其是否接近到电子设备。
在给定电子设备结构后,通常互容电极的总尺寸固定,例如,对于耳机,其体积较小且内部空间较小,因此,对应的电极的设置空间就比较有限。例如,在图5中,电极52的外轮廓确定。若增大间隙54,则电极51的面积就会减小,外界对象接近后产生的第二电容C 2_3将减小。根据上文描述的原理,第二电容C 2_3减小,会导致外界对象接近产生的等效电容C 2_5增大,这样会使得m值增大,即人体和水汗产生的等效电容C 2_5之间的差异增大,这样有利于区分人体和水汗的接近。本申请可以通过调整第一电极51和第二电极52之间的间隙54,使得C 2_5(人体)<ΔC<C 2_5(水汗)
除了上述回字形结构外,第一电极和第二电极还可以采用齿合形结构布置,因为齿合形结构也可以提高第一电极和第二电极之间的耦合长度,从而能够增大第一电极和第二电极之间感应的信号量。图9和图10示出的是耦合线的形状为方波形状的示意图。
第一电极包括第一齿形结构,第二电极包括第二齿形结构,且第一齿形结构和第二齿形结构相齿合。
第一齿形结构和第二齿形结构的齿宽可以相等,这样可以使得第一电极和第二电极与人体之间感应的信号量相等。
第一电极和第二电极之间的间隙为q/3~q/2,其中,q为第一电极或第二电极的齿宽,如图10所示。这样有利于保证互容值的变化量为正值时的绝对值,与互容值的变化量为负值的绝对值之间的差异较小,即原始互容减小量ΔC基本为等效电容C 2_5(人体)与等效电容C 2_5(水汗)的中间值,从而能够提高人体接近电子设备的检测结果的准确性。
本申请实施例可以通过调整第一电极和第二电极的齿合数量、齿宽q和齿距p、两个电极之间的间隙d等参数,使得C 2_5(人体)<ΔC<C 2_5(水汗)
在空间有限的情况下,齿合数量越多,齿宽则会越小,不利于第一电极和第二电极的加工和安装。基于此,本申请实施例中的齿合数量可以不超过5个。优选地,第一电极和第二电极的齿合数量可以为2个或3个。
图9示出的是第一电极61和第二电极62包括3个齿合数量的情况。图10示出的是第一电极61和第二电极62包括2个齿合数量的情况。
以图9为例,通常情况下,在电子设备的结构固定后,电极61和电极62的总尺寸固定,即电极61的外轮廓尺寸固定。根据上文的分析,若增大电极61和电极62之间的间隙,则电极62的面积减小,外界对象接近电极后,外界对象与电极62之间的电容第二电容C 2_3会减小,从而会增大人体和水汗接近后产生的等效电容之间的差异。
优选地,第一齿形结构和第二齿形结构的齿宽相等。两个齿形结构的齿宽相等可以保证第一电极和第二电极的面积相等,从而使得第一电极和第二电极与人体之间具有相等的信号感应量。
优选地,以图10为例,第一电极61和第二电极62之间的间隙d可以在q/3~q/2之间,其中,q为第一电极或第二电极的齿宽。这样有利于保证互容值的变化量为正值时的绝对值,与互容值的变化量为负值的绝对值之间的差异较小,从而能够提高人体接近电子设备的检测结果的准确性。
增加齿合数量,可以增大第一电极61和第二电极62之间的耦合长度,从而能够增大第一电极61和第二电极62之间的感应信号量。在电子设备结构固定后,齿合数量增加后,会使齿宽减小,会不利于电极的加工制造和安装。因此,具体的齿合数量和齿宽可以根据实际需要进行调整。
除了图9和图10所示的第一电极61和第二电极62设置在同一个平面的方式外,第一电极61和第二电极62也可以平行设置且第一电极61设置在第二电极62的上方,其中,第一电极61和第二电极62在与第一电极61 表面垂直的方向上的投影不重叠、或第二电极62的一部分与第一电极在与第一电极61表面垂直的方向上的投影重叠,以保证位于上方的第一电极61不会对位于下方的第二电极62造成遮挡或仅部分遮挡,第一电极61和第二电极62均可以与外界对象之间形成电容,从而使得第一电极61和第二电极62与外界对象之间均有足够的信号感应量。
但是,会存在一种情况,当增大第一电极和第二电极之间的间隙后,第一电极51和第二电极52之间的原始互容减小量ΔC也会减小,如增大图5中的间隙54后,原始互容减小量ΔC的减小速度小于等效电容C 2_5的减小速度,导致人体和水汗接近时产生的等效电容C 2_5都小于原始互容减小量ΔC。基于此,本申请实施例提出一种进一步的方案,有利于保证C 2_5(人体)<ΔC<C 2_5(水汗)
例如,该接近检测装置还可以包括第三电极,该第三电极设置在第一电极的下方且与第一电极平行的平面内。
由于第三电极能够吸走第一电极和第二电极之间的一部分电场线,从而更容易实现人体接近和水汗接近引起的互容值的变化量的方向正好是相反的目的。
该第三电极可以接地或接固定电平,或者也可以悬空。优选地,第三电极接地或接固定电平,这样第一电极和第二电极之间的电场线通过第三电极流到地或固定电平。但是第三电极也可以悬空,悬空表示第三电极没有接任何电平,在该情况下,第三电极可以与电子设备中的其他器件形成一个电容结构,该电容结构也会对第一电极和第二电极之间的电场线产生影响。
可选地,第三电极在与第三电极表面垂直的方向上的投影覆盖第一电极和第二电极在该方向上的投影,或第三电极在与第三电极表面垂直的方向上的投影至少将第一电极和第二电极之间的间隙在该方向上的投影全部覆盖,这样有利于提高第三电极对原始互容减小量ΔC的影响。
第三电极的投影覆盖第一电极和第二电极之间的间隙的投影,能够保证第三电极对第一电极和第二电极之间的电场线产生足够的影响。
以图6为例,第一电极为电极51,第二电极为电极52,第三电极为电极53。在检测电极51和电极52之间的互容值时,由于电极51和电极52之间的一部分电场线会被电极53吸走,因此,加入电极53后,可明显提高原始互容减小量ΔC随间隙54增大的减小速度,即间隙54越大,被电极53 吸收的电场线越多,从而更容易实现C 2_5(人体)<ΔC<C 2_5(水汗)
为了保证第三电极对第一电极和第二电极之间的电场线的上述影响,第三电极与第一电极、第二电极之间的距离不能过大,例如,该距离可以小于或等于200μm。优选地,该距离小于或等于100μm。
作为一种方式,如图7所示,第一电极51和第二电极52可以设置在同一平面内,第三电极53设置在第一电极51的下方,且第三电极53在与第三电极表面垂直的方向上的投影至少覆盖第一电极51和第二电极52之间的间隙在该方向上的投影,能够保证第三电极较好地吸收第一电极和第二电极之间的电场线。
可选地,第三电极53在与第三电极表面垂直的方向上的投影完全覆盖第一电极51和第二电极52,且第三电极53的边缘与第二电极的边缘对齐,这样有利于第一电极、第二电极和第三电极的封装。
作为另一种方式,第一电极和第二电极可以平行设置,第二电极为围绕第一电极的环状结构,且第二电极设置在第一电极的下方,在该情况下,第三电极可以与第二电极设置在同一个平面上。
如图8所示,第一电极51和第二电极52平行设置,第二电极52为围绕第一电极51的环状结构,且第一电极51和第二电极52在垂直于第一电极51的表面的方向上的投影不重叠。第一电极51和第二电极52之间的距离小于100μm,以保证第一电极51和第二电极52之间的感应信号量。
第三电极53与第二电极52设置在同一个平面上,在这种结构下,第三电极53也可以提高原始互容减小量ΔC随间隙增大的减小速度,从而更容易实现C 2_5(人体)<ΔC<C 2_5(水汗)
优选地,第三电极53可以设置在第二电极52的中间区域,且第三电极53与第二电极53共中心,这样能够保证第三电极53对第一电极51和第二电极52之间的不同位置处的电场线的影响均一致。
当然,对于采用图9和图10所示的齿合形结构的电极结构,也可以在该结构中增加第三电极,从而更容易实现C 2_5(人体)<ΔC<C 2_5(水汗)
本申请实施例中的第一电极、第二电极和第三电极可以设置在基板中,该基板可以为印刷电路板(printed circuit board,PCB)或柔性印刷电路(flexible printed circuit,FPC)。如图7和图8所示,第一电极51、第二电极52和第三电极53可以设置在基板55中。如果基板55为PCB,则电极可 以设置在基板的顶层。
由于互容传感器提升人体和水汗的区分度时,通常需要减小原始互容减小量ΔC以实现C 2_5(人体)<ΔC<C 2_5(水汗),在信号量大小上比自容检测方式有劣势。例如,在某些情况下,原始互容减小量ΔC的值与等效电容C 2_5(人 体)的值接近,即人体接近电子设备时,第一电极和第二电极之间的互容值的变化量比较小,如接近零,这时候可能是没有外界对象接近电子设备,也可能是人体接近电子设备。
基于此,本申请实施例还提供了一种方案,结合自容检测和互容检测各自的优势,采取自互容一体的检测方式,以进一步提高人体接近电子设备的检测结果的准确性。
例如,可以使用自容检测方式判断自容值的变化量是否达到阈值,再用互容检测方式甄别该变化量是由人体接近引起还是非人体接近引起的。
具体地,可以首先检测电极的自容值的变化量,如果电极的自容值的变化量达到预设阈值,则确定有外界对象接近电子设备,然后可以进一步检测互容值的变化量,判断该外界对象是人体还是非人体。
若电极的自容值的变化量小于预设阈值,则确定没有外界对象接近电子设备,则没必要进一步检测电极互容值的变化量。
以人体和水汗为例,其中,自容值的变化量大于预设阈值且互容值的变化量大于零可用于确定人体接近电子设备;自容值的变化量大于预设阈值且互容值的变化量小于零可用于确定人体未接近电子设备。
在自容值的变化量大于预设阈值的情况下,即使互容值的变化量大于零,且变化量很小的情况下,也可以直接确定人体接近电子设备,这样能够提高人体接近电子设备的检测结果的准确性。
本申请实施例可以不改变第一电极和第二电极的结构,在自容检测过程中,可以单独检测第一电极的自容值,或者也可以单独检测第二电极的自容值,或者也可以将第一电极和第二电极作为整体检测总的自容值,并根据该自容值的变化量的大小确定是否有外界对象触摸。
另外,为了使自容检测时有足够的信号量,电极的面积可以大于或等于3mm 2。例如,如果检测的是第一电极的自容值,则第一电极的面积大于或等于3mm 2
此外,本申请实施例的佩戴检测装置还可以减小温度对佩戴检测结果的 影响。
图11示出的是传统的自容检测装置的示意图。其中,91为自容电极,92为系统地。系统地92一般由FPC/PCB板上的系统地、电子设备中的电池/天线以及主板上的系统地组成。电极91与系统地92之间的电场线(图11中的虚线)一般主要分布在电介质93内,电介质93可以为聚酰亚胺(polyimide,PI)、FR4或胶水等。这些电介质的介电常数会随温度变化而变化,因此电极91与系统地92之间的自容值也会随温度变化而变化,从而产生温漂问题。
图12是本申请实施例提供的互容检测装置的示意图。电极101和电极102为两个互容电极,电极103为系统地,电极101和电极102可以设置在基板104中,该基板104可以为FPC或PCB,电极101和电极102可以优选地设置在基板104的顶层,这会使得电极101和电极102之间的电场线中的一部分分布在空气中,从而能够减小两个电极之间的互容受电介质的介电常数的影响。另外,因为空气的温漂系数极低,因此,两个电极之间的互容受温度的影响小于自容检测装置,互容检测能够有效地抑制温漂。
需要说明的是,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储 介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的电子设备、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种接近检测装置,用于电子设备,其特征在于,包括:
    第一电极、第二电极、以及用于检测所述第一电极和所述第二电极之间的互容值的变化量的检测模块,所述互容值的变化量用于确定所述电子设备的接近状态,其中,在人体接近所述电子设备的情况下,所述互容值的变化量为第一变化量,在非人体接近所述电子设备的情况下,所述互容值的变化量为第二变化量,所述第一变化量和所述第二变化量为一正一负。
  2. 根据权利要求1所述的装置,其特征在于,所述第一电极和所述第二电极设置在同一平面内;或所述第一电极和所述第二电极平行设置,且所述第一电极设置在所述第二电极的上方,所述第一电极和所述第二电极在垂直于所述第一电极表面的方向上的投影不重叠、或所述第二电极的一部分和所述第一电极在垂直于所述第一电极表面的方向上的投影重叠。
  3. 根据权利要求2所述的装置,其特征在于,所述第一电极和所述第二电极设置在同一平面内,所述第一电极设置在所述第二电极的中间区域,所述第二电极为围绕所述第一电极的环状结构。
  4. 根据权利要求3所述的装置,其特征在于,所述第一电极与所述第二电极共中心。
  5. 根据权利要求4所述的装置,其特征在于,所述第一电极为长方形结构,所述第二电极为围绕所述第一电极的方形环状结构。
  6. 根据权利要求5所述的装置,其特征在于,所述第二电极的宽度大于或等于所述第一电极与所述第二电极之间的间隙。
  7. 根据权利要求5或6所述的装置,其特征在于,所述第一电极与所述第二电极之间的间隙为L/6~L/4,其中,L为所述第一电极的长边的长度。
  8. 根据权利要求3-7中任一项所述的装置,其特征在于,所述第二电极的宽度大于或等于0.2mm。
  9. 根据权利要求2所述的装置,其特征在于,所述第一电极和所述第二电极设置在同一平面内,所述第一电极和所述第二电极采用齿合型结构布置,所述第一电极包括第一齿形结构,所述第二电极包括第二齿形结构,所述第一齿形结构和所述第二齿形结构相齿合。
  10. 根据权利要求9所述的装置,其特征在于,所述第一齿形结构和所 述第二齿形结构的齿宽相等。
  11. 根据权利要求9或10所述的装置,其特征在于,所述第一电极和所述第二电极之间的间隙为q/3~q/2,其中,q为所述第一电极或所述第二电极的齿宽。
  12. 根据权利要求9-11中任一项所述的装置,其特征在于,所述第一电极和所述第二电极的齿合数量为2个或3个。
  13. 根据权利要求2-12中任一项所述的装置,其特征在于,还包括第三电极,所述第一电极和所述第二电极设置在同一平面内,所述第三电极设置在所述第一电极的下方,且与所述第一电极平行。
  14. 根据权利要求13所述的装置,其特征在于,所述第三电极在与所述第三电极表面垂直的方向上的投影至少将所述第一电极和所述第二电极之间的间隙在所述方向上的投影全部覆盖。
  15. 根据权利要求13或14所述的装置,其特征在于,所述第三电极的边缘与所述第一电极、所述第二电极形成的图案的边缘对齐。
  16. 根据权利要求13-15中任一项所述的装置,其特征在于,所述第三电极与所述第一电极之间的距离小于或等于200μm。
  17. 根据权利要求13-16中任一项所述的装置,其特征在于,所述第三电极与所述第一电极之间的距离小于或等于100μm。
  18. 根据权利要求2所述的装置,其特征在于,还包括第三电极,所述第一电极和所述第二电极平行设置,所述第三电极与所述第二电极设置在同一个平面上。
  19. 根据权利要求18所述的装置,其特征在于,所述第三电极与所述第一电极之间的距离小于或等于100μm。
  20. 根据权利要求1-19中任一项所述的装置,其特征在于,所述第一电极与外界对象之间形成第一电容、所述第二电极与所述外界对象之间形成第二电容、系统地与所述外界对象之间形成第三电容,其中,所述外界对象包括所述人体和所述非人体,所述第一电容、所述第二电容和所述第三电容使得所述第一变化量和所述第二变化量为一正一负。
  21. 根据权利要求1-20中任一项所述的装置,其特征在于,所述检测模块还用于检测所述第一电极和/或所述第二电极的自容值的变化量,所述自容值的变化量大于预设阈值用于确定有所述外界对象靠近所述电子设备,且 所述检测模块在所述自容值的变化量大于所述预设阈值的情况下,检测所述第一电极和所述第二电极之间的互容值的变化量。
  22. 一种电子设备,其特征在于,包括:
    如权利要求1-21中任一项所述的接近检测装置。
PCT/CN2020/113786 2020-09-07 2020-09-07 接近检测装置及电子设备 WO2022047789A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20924984.6A EP3992670A4 (en) 2020-09-07 2020-09-07 PROXIMITY SENSING DEVICE AND ELECTRONIC DEVICE
PCT/CN2020/113786 WO2022047789A1 (zh) 2020-09-07 2020-09-07 接近检测装置及电子设备
KR1020217030405A KR20220033045A (ko) 2020-09-07 2020-09-07 접근 검출 장치 및 전자장치
US17/483,238 US20220077854A1 (en) 2020-09-07 2021-09-23 Approaching detection apparatus and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113786 WO2022047789A1 (zh) 2020-09-07 2020-09-07 接近检测装置及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/483,238 Continuation US20220077854A1 (en) 2020-09-07 2021-09-23 Approaching detection apparatus and electronic device

Publications (1)

Publication Number Publication Date
WO2022047789A1 true WO2022047789A1 (zh) 2022-03-10

Family

ID=80470932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113786 WO2022047789A1 (zh) 2020-09-07 2020-09-07 接近检测装置及电子设备

Country Status (4)

Country Link
US (1) US20220077854A1 (zh)
EP (1) EP3992670A4 (zh)
KR (1) KR20220033045A (zh)
WO (1) WO2022047789A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201707661U (zh) * 2010-05-31 2011-01-12 比亚迪股份有限公司 一种互电容检测电路
JP2014203205A (ja) * 2013-04-03 2014-10-27 アルプス電気株式会社 静電容量検出装置
CN104122974A (zh) * 2013-04-24 2014-10-29 华硕电脑股份有限公司 具有识别人体功能的移动通信装置
CN104769446A (zh) * 2012-07-13 2015-07-08 Sem技术公司 电容式人体近距离传感器系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2451267A (en) * 2007-07-26 2009-01-28 Harald Philipp Capacitive position sensor
EP2187241B1 (en) * 2007-10-04 2018-09-19 Fujikura Ltd. Capacitive proximity sensor and proximity detection method
DE202007016734U1 (de) * 2007-11-30 2009-04-09 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Einklemmsensor
KR20110110513A (ko) * 2010-04-01 2011-10-07 (주)삼원에스티 터치패널센서
JP2016100662A (ja) * 2014-11-19 2016-05-30 アイシン精機株式会社 車両用操作検出装置
US10879896B2 (en) * 2016-09-07 2020-12-29 Semtech Corporation Capacitive proximity sensor in a mobile device and method of limiting radiation absorption
FR3060733B1 (fr) * 2016-12-16 2019-01-25 Fogale Nanotech Dispositif et procede de detection de l'approche et/ou de contact, et de l'appui d'un objet, relativement a une surface de detection
FR3062205B1 (fr) * 2017-01-23 2020-01-31 Fogale Nanotech Dispositif capacitif de detection d'un objet electriquement flottant
US10877612B2 (en) * 2018-02-14 2020-12-29 Continental Automotive Systems, Inc. Capacitive touch/proximity sensor with integrated ultra-high frequency antenna
JP2021020289A (ja) * 2019-07-30 2021-02-18 セイコーエプソン株式会社 ロボット
US11107153B2 (en) * 2019-10-01 2021-08-31 Palo Alto Research Center Incorporated Interface including passive touch sensitive input device
US11133799B2 (en) * 2019-11-20 2021-09-28 Ford Global Technologies, Llc Capacitive proximity sensor assembly having multiple sensing configurations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201707661U (zh) * 2010-05-31 2011-01-12 比亚迪股份有限公司 一种互电容检测电路
CN104769446A (zh) * 2012-07-13 2015-07-08 Sem技术公司 电容式人体近距离传感器系统
JP2014203205A (ja) * 2013-04-03 2014-10-27 アルプス電気株式会社 静電容量検出装置
CN104122974A (zh) * 2013-04-24 2014-10-29 华硕电脑股份有限公司 具有识别人体功能的移动通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992670A4 *

Also Published As

Publication number Publication date
US20220077854A1 (en) 2022-03-10
EP3992670A1 (en) 2022-05-04
EP3992670A4 (en) 2022-08-03
KR20220033045A (ko) 2022-03-15

Similar Documents

Publication Publication Date Title
CN212031757U (zh) 接近检测装置及电子设备
US11448675B2 (en) Capacitance detection module, method and electronic device
CN107422932B (zh) 显示面板、移动终端及其驱动方法
US11907483B2 (en) Wearing detection apparatus and method, and earphone
EP2538313B1 (en) Touch sensor panel
KR102028783B1 (ko) 링킹 트랙들의 배치를 가지는 용량성 검출을 위한 장치 및 이러한 장치를 구현하는 방법
CN103926727B (zh) 触控显示面板及显示装置
CN110784793A (zh) 一种佩戴检测器和穿戴式电子设备
WO2012022053A1 (en) Touch panel, touch input device and method for determining real coordinates of multiple touch points
CN108008855B (zh) 一种显示面板和显示装置
EP3608763B1 (en) Touch-fingerprint complex sensor and electronic apparatus including the same
KR20130040117A (ko) 터치 기기 및 그 터치 기기 제조 방법
TWI630537B (zh) 具有壓力感測的觸控顯示系統
EP3493037B1 (en) Touch-fingerprint complex sensor, operating method thereof, and electronic apparatus including the touch-fingerprint complex sensor
WO2013155911A1 (zh) 触控面板及其制作方法
CN104123052A (zh) 电容触敏面板和使用电容触敏面板的移动终端
EP4016259A1 (en) Touch sensor, touch display screen, and electronic device
WO2022047789A1 (zh) 接近检测装置及电子设备
TW201901380A (zh) 觸控面板
CN103970333B (zh) 触控面板
WO2022105723A1 (zh) 一种基于电容触摸输入设备的传感输入装置及方法
TWM507018U (zh) 觸控面板
US11262859B2 (en) Rotation input device for a capacitive sense cord
CN114003149A (zh) 一种电子设备控制方法、装置、电子设备及存储介质
CN115714262A (zh) 电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020924984

Country of ref document: EP

Effective date: 20210923

ENP Entry into the national phase

Ref document number: 2020924984

Country of ref document: EP

Effective date: 20210923

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE