WO2022047760A1 - 电容指纹识别装置、制备方法和电子设备 - Google Patents

电容指纹识别装置、制备方法和电子设备 Download PDF

Info

Publication number
WO2022047760A1
WO2022047760A1 PCT/CN2020/113657 CN2020113657W WO2022047760A1 WO 2022047760 A1 WO2022047760 A1 WO 2022047760A1 CN 2020113657 W CN2020113657 W CN 2020113657W WO 2022047760 A1 WO2022047760 A1 WO 2022047760A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitive fingerprint
fingerprint identification
arc
identification device
layer
Prior art date
Application number
PCT/CN2020/113657
Other languages
English (en)
French (fr)
Inventor
刘相英
段晓锋
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN202080005633.5A priority Critical patent/CN112889067B/zh
Priority to KR1020227026068A priority patent/KR20220119483A/ko
Priority to EP20952004.8A priority patent/EP4080326A4/en
Priority to PCT/CN2020/113657 priority patent/WO2022047760A1/zh
Publication of WO2022047760A1 publication Critical patent/WO2022047760A1/zh
Priority to US17/869,887 priority patent/US12008833B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/328Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by welding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/189Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10151Sensor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • H05K3/305Affixing by adhesive

Definitions

  • the present application relates to the technical field of fingerprint identification, and more particularly, to a capacitive fingerprint identification device, a preparation method and an electronic device.
  • fingerprint recognition sensors are widely used in mobile terminal equipment, smart home, automotive electronics and other fields.
  • the requirements of users for products are not only the pursuit of high quality and high performance, but have expanded to the diversification of appearance requirements, and the aesthetic vision of different user groups is also diversified.
  • the capacitive fingerprint devices in the mainstream market are all flat structures, which are relatively simple in appearance, without a three-dimensional sense, and the customer experience is not novel enough.
  • dust and other substances are often easily adsorbed on the flat capacitive fingerprint device, resulting in the appearance of fingerprint recognition. Misjudgment and other problems, and when the mobile phone is dropped, it will cause damage to the plane of the entire capacitive fingerprint identification device, affecting the performance of the fingerprint identification device.
  • Embodiments of the present application provide a capacitive fingerprint identification device, a preparation method, and an electronic device, which can improve the performance of the capacitive fingerprint device and user experience.
  • a capacitive fingerprint identification device which is arranged on an arc-shaped surface of an electronic device, including:
  • Capacitive fingerprint identification package structure
  • a curved surface structure including a first surface and a second surface, wherein the first surface of the curved surface structure is a plane, the second surface of the curved surface structure is a curved surface, and the first surface of the curved surface structure is connected to the capacitor
  • the first surface of the fingerprint identification package structure, the first surface of the capacitive fingerprint identification package structure is the surface facing the outside of the electronic device.
  • the embodiment of the present application proposes a capacitive fingerprint identification device with a novel structure, which has a curved surface structure, which can not only make itself and the electronic equipment in which it is located more aesthetically pleasing in appearance, and has a more three-dimensional sense, bringing a brand-new sense to the user group. In addition, it can protect the electronic equipment.
  • the contact with the capacitive fingerprint identification device is a point instead of a surface, so the impact on the capacitive fingerprint identification device is small, and the curved surface design It also acts as a buffer when the electronic device falls.
  • dust and the like are also difficult to be adsorbed on the curved surface of the capacitive fingerprint identification device, and the interference to fingerprint identification is small. Therefore, the capacitive fingerprint identification device in the embodiment of the present application has higher fingerprint identification performance, and can improve the performance of fingerprint identification. User experience.
  • the capacitive fingerprint identification package structure includes: a capacitive fingerprint sensor, a first substrate, an electrical connector and a packaging material layer;
  • the capacitive fingerprint sensor is connected to the first substrate through the electrical connector
  • the packaging material layer covers the capacitive fingerprint sensor and the electrical connector, and is connected to the first substrate.
  • the maximum distance between the second surface of the arc structure and the capacitive fingerprint sensor is less than or equal to a first preset threshold, so that the fingerprint capacitance value detected by the capacitive fingerprint sensor can be used for fingerprint detection.
  • the first preset threshold is 250 ⁇ m.
  • the maximum distance between the second surface of the arc structure and the capacitive fingerprint sensor is greater than or equal to 160 ⁇ m.
  • the radius of curvature of the edge region of the second surface of the arc structure is smaller than the radius of curvature of the middle region of the second surface of the arc structure.
  • the radius of curvature of the edge region in the second surface of the arc surface structure is in a range of 5 to 5.5, and the radius of curvature of the edge region in the second surface of the arc surface structure is 0.2.
  • the edge region of the first surface of the packaging material layer is provided with a stepped structure, and the middle region of the first surface of the packaging material layer is connected to the middle region of the first surface of the arc surface structure.
  • an opening is provided in the arc-shaped surface of the electronic device, and the capacitive fingerprint identification device is used to be disposed in the opening; the first surface of the stepped structure parallel to the first surface of the arc-surface structure A stepped surface is located within the opening.
  • the maximum distance between the second surface of the arc structure and the first stepped surface is greater than or equal to 0.9 mm.
  • the width of the first step surface is greater than or equal to 0.1 mm.
  • the width of the capacitive fingerprint identification package structure is greater than or equal to 2.4mm.
  • the capacitive fingerprint identification device further includes:
  • a color coating layer covers the arc structure and the packaging material layer.
  • the capacitive fingerprint identification package structure further includes:
  • the second substrate is electrically connected to the first substrate for transmitting the fingerprint capacitance signal of the capacitive fingerprint sensor.
  • the capacitive fingerprint identification package structure further includes:
  • the underfill is filled between the second substrate and the first substrate to improve the connection reliability between the second substrate and the first substrate.
  • an edge region of the first substrate is formed with a stepped structure, and the stepped structure is used for accommodating the underfill.
  • the material of the arc structure is high temperature resistant ultraviolet light UV glue.
  • the dielectric constant of the arc structure is greater than 3.4.
  • the capacitive fingerprint identification device is arranged in an arc-shaped side surface of the electronic device.
  • the capacitive fingerprint identification device is arranged on a target key of the electronic device, and the target key is used to realize the target function and the fingerprint identification function.
  • a preparation method for preparing a capacitive fingerprint identification device comprising:
  • the encapsulation sheet including several capacitive fingerprint sensors
  • a plurality of cambered structures are prepared on the package sheet by a cambered jig, and the several cambered structures are arranged in one-to-one correspondence with a plurality of capacitive fingerprint sensors;
  • each package structure in the several package structure sheets includes a capacitive fingerprint sensor and a curved surface structure
  • the capacitive fingerprint identification device is prepared.
  • the material of the cambered fixture is a transparent material, and a plurality of first concave cambered surfaces are formed on the surface of the cambered fixture;
  • a plurality of cambered structures are prepared on the package sheet by the cambered jig, including:
  • the first UV glue is irradiated with first UV light, and the first UV glue in the plurality of first concave arc surfaces is cured to form the plurality of arc structures, and the plurality of arc structures are connected to the packaging material layer.
  • the curved surface fixture includes: a first support layer and a first curved surface layer;
  • the plurality of first concave arc surfaces are formed on the first surface of the first arc surface layer
  • the second surface of the first arc surface layer is flat and connected with the first support layer.
  • the preparation method further includes: preparing the first support layer and the first arc structure layer.
  • the preparation of the first support layer and the first arc structure layer includes:
  • the material of the first model jig is non-transparent material, and a plurality of second concave arc surfaces are formed on the surface of the first model jig;
  • the first support layer and the first arc structure layer are prepared by using the first model jig.
  • the first support layer and the first arc structure layer are prepared by the first model jig, including:
  • the second UV glue is irradiated with a second UV light, and the second UV glue in the plurality of second concave arc surfaces is cured to form a plurality of second arc surface structures, and the plurality of second arc surface structures are connected to the second arc surface structure.
  • the support layer forms the second model fixture;
  • the first support layer and the first arc surface structure layer are prepared by the second model jig.
  • the preparation of the first support layer and the first arc structure layer by the second model jig includes:
  • the first support layer is prepared above the third UV glue
  • the third UV glue is irradiated with a third UV light, the third UV glue is cured to form the first arc surface layer, and the first arc surface layer is connected to the first support layer to form the arc surface fixture;
  • the Rockwell hardness of the material of the first model jig needs to be greater than the first preset value, and/or the surface roughness of the first model jig is smaller than the second preset value, In order to improve the reliability of the first model fixture.
  • the first model jig includes: a steel jig.
  • the capacitive fingerprint identification device is prepared based on the packaging structure, including:
  • a color coating layer is prepared on the surface of the package structure to obtain the capacitive fingerprint identification device.
  • the preparation of the encapsulation sheet includes:
  • a plurality of first grooves are prepared on the surface of the first substrate layer of the package sheet, and each first groove of the plurality of first grooves is disposed between two adjacent capacitive fingerprint sensors among the plurality of capacitive fingerprint sensors During this time, the plurality of first grooves are used for accommodating the underfill.
  • a third aspect provides a capacitive fingerprint identification device, characterized in that it includes:
  • a capacitive fingerprint identification device manufactured according to the second aspect and the manufacturing method in any possible implementation manner of the second aspect is included.
  • an electronic device including the first aspect and the capacitive fingerprint identification device in any possible implementation manner of the first aspect.
  • the capacitive fingerprint identification device is arranged in the side surface of the electronic device.
  • the capacitive fingerprint identification device is disposed on a target key of the electronic device, the target key is disposed on the side of the electronic device, and the target key is used to realize the target function and the fingerprint identification function.
  • the target key is a power key of an electronic device.
  • FIG. 1 is a schematic structural diagram of an electronic device to which the present application applies.
  • FIG. 2 is a schematic structural diagram of a capacitive fingerprint identification device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a capacitive fingerprint identification device according to an embodiment of the present application.
  • FIGS. 4 to 6 are schematic structural diagrams of other capacitive fingerprint identification devices according to embodiments of the present application.
  • FIG. 7 is a flowchart of a method for manufacturing a capacitive fingerprint identification device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a process according to an embodiment of the present application.
  • FIG. 9 is a flowchart of another method for manufacturing a capacitive fingerprint identification device according to an embodiment of the present application.
  • FIG. 10 and FIG. 11 are schematic diagrams of a process according to an embodiment of the present application.
  • FIG. 12 is a flowchart of another method for manufacturing a capacitive fingerprint identification device according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a process according to an embodiment of the present application.
  • FIG. 14 is a flow chart of a method for manufacturing a cambered jig according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a process according to an embodiment of the present application.
  • the embodiments of the present application can be applied to capacitive fingerprint devices, including but not limited to capacitive fingerprint identification devices and products based on capacitive fingerprint imaging.
  • the embodiments of the present application only take capacitive fingerprint devices as an example for description, but should not be implemented in this application. Examples constitute any limitation.
  • the capacitive fingerprint device provided in the embodiments of the present application can be applied to smart phones, tablet computers, and other types of mobile terminals or other electronic devices. More specifically, in the above electronic device, the capacitive fingerprint system can be disposed on any surface where the electronic system interacts with the user, including but not limited to the front, back or side of the electronic device.
  • the electronic device where the capacitive fingerprint device provided by the embodiment of the present application is located is a mobile phone, and the capacitive fingerprint device may be arranged on the side of the mobile phone.
  • the capacitive fingerprint device can be an independent component embedded in the side of the mobile phone, and is only used to realize the fingerprint identification function;
  • the capacitive fingerprint device can be integrated on a target button embedded in the side of the mobile phone.
  • the target button includes but is not limited to a power button of an electronic device.
  • the power button is used to start/wake up the mobile phone.
  • it can also be used to realize the fingerprint recognition function.
  • the mobile phone on the basis of successful fingerprint identification, can be restarted/wake-up to improve the security performance of mobile phone authentication.
  • FIG. 2 shows a schematic structural diagram of a capacitive fingerprint identification device 100 .
  • the capacitive fingerprint identification device 100 can be disposed on the keys shown in FIG. 1
  • the schematic structural diagram is a schematic cross-sectional view of the capacitive fingerprint identification device 100 on the plane where the XZ axis is located.
  • the positive direction of the X-axis is the direction toward the outside of the side surface of the electronic device.
  • the capacitive fingerprint identification device 100 may include: a capacitive fingerprint sensor 110 , a substrate 120 , a packaging material layer 130 , a coating layer 140 and an electrical connector 150 .
  • the capacitive fingerprint sensor 110 is used to determine which position is the ridge and which position is the valley according to the difference in the capacitance value formed by the ridges and valleys of the fingerprint and the sensing electrodes;
  • the capacitive sensing electrodes are precharged to a certain reference voltage.
  • a capacitive array will be formed between the fingerprint and the pixel array; the capacitance value of each fingerprint capacitor of the capacitive array will decrease with the increase of the distance between the conductors, because The ridges are convex, while the valleys are concave. According to the relationship between the capacitance value and the distance, different capacitance values will be formed on the ridges and valleys respectively.
  • discharge is performed with a discharge current, and a fingerprint image is obtained by reading the capacitance difference between charging and discharging.
  • the capacitive fingerprint sensor 110 includes many pixel circuits, each pixel circuit has a pixel electrode (ie, a sensing plate) to generate fingerprint capacitance with the texture on the surface of the finger, and all the pixel electrodes form a pixel array. Among them, the distances between the ridges and valleys of the fingerprint and the pixel electrodes are different, so the capacitance values of the fingerprint capacitors formed are different. The detection result of the circuit can get the fingerprint image.
  • a pixel electrode ie, a sensing plate
  • the capacitive fingerprint sensor 110 is a sensor chip, which can be disposed on the substrate 130 through an adhesive layer, such as a die attach film (DAF) adhesive layer, and connected through an electrical connector 150 (eg, gold wires) are connected to the pads of the substrate 120, so as to transmit the detected capacitance value to the circuit of the substrate 120 through the electrical connector 150, and further transmit the capacitance value to other electronic modules on the substrate 120, Or transmitted to other electronic modules electrically connected with the substrate 120, the other electronic modules including but not limited to a processing module or a storage module and the like.
  • DAF die attach film
  • an encapsulation material layer 130 is coated around the capacitive fingerprint sensor 110 , and the encapsulation material layer 130 is used to protect the capacitive fingerprint sensor 110 and its electrical connectors 150 , and the surface of the encapsulation material layer 130 is flat.
  • a coating layer 140 is further provided above the packaging material layer 130, and the surface of the coating layer 140 is also flat.
  • the coating layer 140 may be a coating layer with a color to further protect the capacitive fingerprint identification device 100 and improve its appearance.
  • the finger is placed on the surface of the coating layer 140 to affect the capacitance value detected by the capacitive fingerprint sensor 110.
  • the area of the coating layer 140 corresponding to the capacitive fingerprint sensor 110 can be called a capacitive fingerprint recognition device. 100 fingerprint detection area.
  • the sides of most of the terminal electronic devices are designed as curved surfaces.
  • the surface of the current capacitive fingerprint identification device for example, the capacitive fingerprint identification device 100 shown in FIG. 2
  • the planar capacitive fingerprint device is embedded in the curved surface of the side of the mobile phone, it will not only affect the performance of the electronic equipment
  • the aesthetics of the appearance will also affect the user's feel.
  • dust is often easily adsorbed on the plane of the capacitive fingerprint device, resulting in misjudgment of fingerprint recognition and other problems.
  • the entire plane of the capacitive fingerprint identification device will be damaged, which will affect the performance of the fingerprint identification device.
  • the present application proposes a capacitive fingerprint identification device with a new structure, which has an arc-shaped three-dimensional surface, which can not only make the electronic equipment in which it is located more aesthetically pleasing in appearance, but also has a more three-dimensional sense, and brings a brand new look to the user group.
  • the curved three-dimensional design is adopted to protect the electronic equipment when it is dropped, and the contact with the capacitive fingerprint identification device is a point instead of a surface, so that the impact on the capacitive fingerprint identification device is small, and the arc
  • the surface design also acts as a buffer when the electronic device falls.
  • dust and the like are also difficult to be adsorbed on the curved three-dimensional surface of the capacitive fingerprint identification device, and the interference to the fingerprint identification is small.
  • FIG 3 is a schematic structural diagram of a capacitive fingerprint identification device 200 provided by an embodiment of the present application.
  • the capacitive fingerprint identification device 200 is configured to be disposed on an arc-shaped surface of an electronic device, for example, may be disposed on an arc-shaped side surface of the electronic device.
  • the capacitive fingerprint identification device 200 can also be disposed on the keys shown in FIG. 1 .
  • the positive direction of the X-axis is the direction toward the outer side of the side surface of the electronic device.
  • the capacitive fingerprint identification device 200 includes:
  • Capacitive fingerprint identification packaging structure 210
  • the arc surface structure 220 includes a first surface 221 and a second surface 222.
  • the first surface 221 of the arc surface structure 220 is a flat surface
  • the second surface 222 of the arc surface structure 220 is an arc surface
  • the first surface 222 of the arc surface structure 220 is an arc surface.
  • One side 221 is connected to the first side of the capacitive fingerprint identification package structure 210
  • the first side of the capacitive fingerprint identification package structure 210 is the side facing the outside of the electronic device.
  • the capacitive fingerprint recognition package structure 210 is generally approximated as a block structure, which includes a first surface opposite (eg, the upper surface of the capacitive fingerprint recognition package structure 210 in FIG. 3 ) and a second surface (for example, The lower surface of the capacitive fingerprint identification package structure 210 in FIG. 3 ), wherein the first surface of the capacitive fingerprint identification package structure 210 is the side facing the outside of the electronic device, and the second surface of the capacitive fingerprint identification package structure 210 is facing the electronic device. the inner side of the . With respect to the second surface, the first surface is located in the positive direction of its X axis.
  • the second surface 222 of the curved surface structure 220 is located in the positive direction of its X axis, in other words, the second surface 222 of the curved surface structure 220 faces The outside of the electronic device is convenient for sensing the user's finger to detect the user's fingerprint.
  • FIG. 4 shows a schematic structural diagram of another capacitive fingerprint identification device 200.
  • the above capacitive fingerprint identification package structure 210 may include: a capacitive fingerprint sensor 211, a first substrate 212, a package Material layer 213 and electrical connections 214 .
  • the capacitive fingerprint sensor 211 the first substrate 212 , the packaging material layer 213 and the electrical connector 214 , please refer to the relevant description of the capacitive fingerprint sensor 110 , the substrate 120 , the packaging material layer 130 and the electrical connector 150 in FIG. 2 above.
  • the capacitive fingerprint sensor 211 is disposed above the first substrate 212 and connected to the first substrate 212 through the electrical connector 214 , and the packaging material layer 213 covers the capacitive fingerprint sensor 211 and the first substrate 212 .
  • the electrical connector 214 is connected to the first substrate 212 .
  • the packaging material layer 213 is generally a block material, and its first surface (the upper surface of the packaging material layer 213 in FIG. 4 ) is connected to the first surface 221 of the arc surface structure 220 to form a stable connection structure.
  • the arc structure 220 can be directly grown on the first surface of the packaging material layer 213, or, in other embodiments, the arc structure 220 can also be connected to the The first side of the packaging material layer 213 .
  • the shape and area of the first surface of the packaging material layer 213 are the same as the shape and area of the first surface 221 of the curved surface structure 220 .
  • the shape and area of the curved surface structure 220 and the capacitive fingerprint identification package structure 210 cooperate with each other, and have high practicability and aesthetics.
  • the design of the first surface 221 of the arc structure 220 is related to the surface of the packaging material layer 213 .
  • the second surface 222 of the arc structure 220 may satisfy at least one of the following characteristics:
  • the maximum distance between the second surface 222 of the arc structure 220 and the capacitive fingerprint sensor 211 (for example, the distance D1 from the top of the second surface 222 to the surface of the capacitive fingerprint sensor 211 shown in FIG. 4 ) is less than or equal to the first preset threshold, so that the fingerprint capacitance value detected by the capacitive fingerprint sensor 211 can be used for fingerprint detection. Check performance.
  • the capacitance value of the fingerprint is the capacitance value between the surface of the finger and the pixel electrode in the capacitive fingerprint sensor 211 .
  • the above-mentioned first preset threshold may be 250 ⁇ m.
  • the maximum distance between the second surface 222 of the curved surface structure 220 and the first surface of the capacitive fingerprint sensor 211 is greater than or equal to the second preset threshold to ensure that the curved surface structure 220 and the packaging material layer 213 have sufficient thickness to protect the capacitive fingerprint sensor 211 .
  • This embodiment can prevent the arc structure 220 above the capacitive fingerprint sensor 211 and the packaging material layer 213 from being small in thickness, easily damaged or falling off, and cannot protect the capacitive fingerprint sensor 211 well, thereby affecting the Fingerprint detection performance of capacitive fingerprint sensor 211 .
  • the above-mentioned second preset threshold may be 160 ⁇ m.
  • the maximum distance between the second surface 222 of the arc structure 220 and the capacitive fingerprint sensor 211 satisfies the above two conditions simultaneously, 160 ⁇ m ⁇ D1 ⁇ 250 ⁇ m.
  • the curvature radius of the edge region in the second surface 222 of the arc structure 220 is smaller than the curvature radius of the middle region.
  • the radius of curvature of the edge region in the second surface 222 may be set larger, and the radius of curvature of the middle region in the second surface 222 may be set smaller, in other words, the center of the second surface 222
  • the regions are flatter and the edge regions are steeper.
  • the curvature radius of the middle area in the second surface 222 is designed to be small, and on the basis of ensuring the arc surface design, the distance difference between each part in the middle area and the capacitive fingerprint sensor 211 can be made smaller, and the capacitance of the fingerprint sensor 211 can be reduced.
  • the fingerprint recognition by the fingerprint sensor 211 has no or little influence.
  • the radius of curvature of the edge area in the second surface 222 is designed to be larger, to prevent a sharp angle formed between the second surface 222 and the side surface of the packaging material layer 213, and to improve the edge area between the user's finger and the second surface 222. The feel of the touch, thereby enhancing the user experience.
  • the radius of curvature of the edge region in the second surface 222 includes, but is not limited to, 0.2.
  • the radius of curvature of the intermediate region in the second face 222 may range from 5 to 5.5.
  • the material of the curved surface structure 220 can be any insulating material, which can be prepared in various ways, such as computer numerical control (computer numerical control, CNC) processing, profiling grinding, encapsulation and injection molding (molding) It is prepared by molding, secondary molding molding, ultraviolet (ultraviolet, UV) glue curing and the like.
  • the curved surface structure 220 can be prepared by light curing.
  • the curved surface structure 220 can be cured UV glue, and the curved surface structure 220 can be prepared by this light curing method. low and high productivity.
  • the material of the curved surface structure 220 is a high temperature resistant material, which can prevent the high temperature in the process from affecting it.
  • the temperature in the surface-mount technology (SMT) process will not affect the curved surface.
  • the influence of the structure 220 will not cause the camber structure 220 to fall off, nor will it cause the camber structure 220 to change color.
  • the dielectric constant of the arc structure 220 is greater than a preset threshold, for example, may be greater than 3.4, thereby increasing the fingerprint capacitance value detected by the capacitive fingerprint sensor 211 and improving the performance of the capacitive fingerprint identification device.
  • the maximum distance between the first surface of the packaging material layer 213 and the first surface of the capacitive fingerprint sensor 211 is less than or equal to a third preset threshold, so that the capacitive fingerprint sensor The fingerprint capacitance value detected by 211 can be used for fingerprint detection.
  • the design principle of the third preset threshold is similar to the design principle of the first preset threshold above, and will not be repeated here.
  • the third predetermined threshold may be 150 ⁇ m. If it is a low dielectric constant material (eg, the dielectric constant is less than 4), the third preset threshold may be 70 ⁇ m.
  • the material of the encapsulation material layer 213 includes but is not limited to epoxy molding compound (epoxy molding compound, EMC), which can also be other encapsulation materials in the related art.
  • EMC epoxy molding compound
  • the specific type of 213 is not limited.
  • the first substrate 212 includes, but is not limited to, a printed circuit board (printed circuit board, PCB), a flexible printed circuit (FPC), or a rigid flex board (rigid flex board), etc.
  • PCB printed circuit board
  • FPC flexible printed circuit
  • rigid flex board rigid flex board
  • the electrical connector 214 includes, but is not limited to, a gold wire, which is electrically connected to the capacitive fingerprint sensor 211 and the substrate pad by wire bonding (WB).
  • the electrical connector 214 may also be an electrical connector in other related technologies such as through silicon via (TSV), and the specific type of the electrical connector 214 is also not limited in the embodiment of the present application.
  • TSV through silicon via
  • the equidistant distances of D1 and D2 are designed to meet the needs of fingerprint detection.
  • the width of the capacitive fingerprint identification package structure 210 is greater than or equal to a fourth preset threshold, so as to increase the fingerprint detection area of the capacitive fingerprint sensor 211 , thereby The fingerprint detection performance of the capacitive fingerprint sensor 211 is guaranteed.
  • the width W1 of the capacitive fingerprint identification package structure 210 is also the width of the package material layer 213 in the Z direction.
  • the fourth preset threshold may be 2.4mm, that is, W1 ⁇ 2.4mm.
  • FIG. 5 is a schematic structural diagram of another capacitive fingerprint identification device 200 provided by an embodiment of the present application.
  • the capacitive fingerprint identification device 200 may further include:
  • the color coating layer 230 covers the above-mentioned curved surface structure 220 and the packaging material layer 213 .
  • the color coating layer 230 covers the second surface 222 of the arc structure 220 and also covers the four side surfaces of the packaging material layer 213 .
  • the color of the color coating layer 230 may be the same as the appearance color of the electronic device where the capacitive fingerprint identification device 200 is located, or may be any other preset color.
  • the color coating layer 230 By disposing the color coating layer 230 on the curved surface structure 220, the appearance of the capacitive fingerprint identification device 200 can be improved, and the user experience can be improved. In addition, the color coating layer 230 can also be used to further protect the capacitive fingerprint identification device 200. Capacitive fingerprint sensor 211 in .
  • the thickness of the color coating layer 230 (the thickness F1 as shown in FIG. 5 ) is within a preset threshold range, so that it has sufficient thickness and can also ensure the capacitive fingerprint sensor. 211 fingerprint detection performance.
  • the thickness of the color coating layer 230 may have a threshold range of 10 ⁇ m to 40 ⁇ m, that is, 10 ⁇ m ⁇ F1 ⁇ 40 ⁇ m.
  • the surface hardness of the arc structure 220 needs to be greater than a certain preset threshold, and the water drop angle also needs to be smaller than a certain preset threshold.
  • the surface hardness of the arc structure 220 is greater than 4H, and the water drop angle is less than 60°.
  • the capacitive fingerprint identification package structure 210 further includes: a second substrate 215 electrically connected to the first substrate 212 for transmitting the fingerprint capacitance of the capacitive fingerprint sensor 211 Signal.
  • a plurality of connection points are formed in the first substrate 212, and the plurality of connection points are electrically connected to the second substrate 215 through solder balls.
  • a connector 217 is also provided on the second substrate 215 for electrically connecting the capacitive fingerprint identification device 200 and other electrical devices in the electronic equipment.
  • the first substrate 212 may be a PCB circuit board
  • the second substrate 215 may be an FPC circuit board.
  • a reinforcement layer 218 is also provided in a part of the area connected to the second substrate 215 to support and reinforce the second substrate 215.
  • the reinforcement layer 218 Including but not limited to reinforcing steel plate, which can also be any other type of reinforcing material layer.
  • the second substrate 215 and the reinforcement layer 218 can form a rigid-flex board, wherein the reinforcement layer 218 is a core material layer.
  • the reinforcing layer 218 is disposed in a corresponding area of the area where the first substrate 212 is located. In addition to supporting the second substrate 215 , the reinforcing layer 218 also supports the first substrate 212 and the first substrate 212 . Connected capacitive fingerprint sensor 211, packaging material layer 213 and other related components. In addition, the reinforcing layer 218 is disposed in a corresponding area of the area where the connector 217 is located, and is used to support the connector 217 .
  • the capacitive fingerprint recognition package structure 210 may further include: an underfill glue 216, which is filled between the first substrate 212 and the second substrate 215, and is used to improve the relationship between the first substrate 212 and the second substrate 215. reliability of soldering.
  • a stepped structure is formed in the edge region thereof, and the stepped structure is used for accommodating the above-mentioned underfill 216 .
  • the step structure can facilitate the realization of the underfill process.
  • FIG. 6 is a schematic structural diagram of another capacitive fingerprint identification device 200 provided by an embodiment of the present application.
  • the packaging material layer 213 is further improved.
  • the edge region of the first surface of the packaging material layer 213 is provided with a stepped structure 2131 , and the middle region of the first surface of the packaging material layer 213 is connected to the first surface of the curved surface structure 220 .
  • the stepped structure 2131 may contain the same material as that of the arc structure 220, or may contain air or other transparent substances.
  • an opening 301 is provided in the outer frame 300 of the electronic device, and the capacitive fingerprint identification device 200 is configured to be arranged in the opening 301 .
  • the surface of the outer frame 300 is Curved surface.
  • the first stepped surface parallel to the first surface 221 of the arc structure 220 is located in the opening 301 .
  • the interface of the packaging material layer 213 can be hidden in the outer frame 300 , so that the user cannot easily observe the packaging material layer 213 in appearance, thereby improving the user's use experience.
  • the maximum distance between the second surface 222 of the arc structure 220 and the surface of the outer frame 300 (eg, the distance D3 shown in FIG. 6 ) needs to be greater than or equal to the fifth preset threshold to satisfy the capacitive fingerprint identification
  • the active stroke of the device 200 as a button.
  • the fifth preset threshold is equal to 0.8mm, ie D5 ⁇ 0.8mm.
  • the maximum distance between the second surface 222 of the curved surface structure 220 and the first stepped surface is greater than or equal to the sixth preset threshold, and the sixth preset threshold is greater than the above-mentioned fifth preset threshold.
  • the sixth preset threshold is equal to 0.9mm, ie D6 ⁇ 0.9mm.
  • the width of the first step surface in the Z direction (for example, the width W2 shown in FIG. 6 ) is greater than or equal to the seventh preset threshold, so that the interface of the packaging material layer 213 can be better hidden from the outside.
  • the user experience is improved.
  • the seventh preset threshold is equal to 0.1 mm, ie W2 ⁇ 0.1 mm.
  • FIG. 7 shows a flow chart of a method 20 for manufacturing a capacitive fingerprint identification device.
  • the preparation method 20 of the capacitive fingerprint identification device may include the following steps.
  • S210 Prepare an encapsulation sheet, where the encapsulation sheet includes a plurality of capacitive fingerprint sensors.
  • the plurality of arc structures are arranged in a one-to-one correspondence with the plurality of capacitive fingerprint sensors.
  • each package structure in the plurality of package structure sheets includes a capacitive fingerprint sensor and a curved surface structure.
  • FIG. 8 shows the structure of the packaging sheet prepared in step S210.
  • the packaging sheet includes a first substrate 202 , a plurality of capacitive fingerprint sensors 211 are disposed on the first substrate 202 , and the packaging material layer 203 covers the plurality of capacitive fingerprint sensors 211 .
  • the first substrate 202 can be separated into a plurality of first substrates 212 in the above device embodiments, and the packaging material layer 203 can be separated into a plurality of first substrates 212 in the above device embodiments
  • the encapsulation material layer 213 Therefore, in this embodiment of the method, for the related technical solutions of the first substrate 202 and the packaging material layer 203, reference may be made to the relevant descriptions of the first substrate 212 and the packaging material layer 213 above, or reference may also be made to the relevant descriptions in related packaging technologies. , and will not be repeated here.
  • a plurality of arc structures may be directly prepared on the package sheet shown in (a) of FIG. 8 , that is, the above step S220 is directly performed.
  • step S220 may also be performed after further processing the packaging sheet shown in FIG. 8(a).
  • the step S210 may include the following steps.
  • S211 Prepare a plurality of first grooves on the surface of the first substrate of the packaging sheet.
  • each first groove in the plurality of first grooves is disposed between two adjacent capacitive fingerprint sensors among the plurality of capacitive fingerprint sensors, and the plurality of first grooves are used for accommodating the subsequent welding process. underfill.
  • a CNC machining method may be used to prepare a plurality of first grooves on the surface of the first substrate of the package sheet.
  • the above-mentioned packaging sheet is turned upside down, and a protective film 204 is attached to the surface of the packaging material layer 203 of the packaging sheet to prevent the CNC processing
  • the surface of the encapsulation material layer 203 causes contamination.
  • the protective film 204 includes, but is not limited to, polyethylene terephthalate (PET) film.
  • the depth of the first groove needs to be controlled so as to meet the requirements of the subsequent glue dispensing process.
  • the depth of the first groove is greater than 0.2 mm.
  • step S220 is performed.
  • FIG. 9 shows a flowchart of another method 20 for preparing a capacitive fingerprint identification device provided by an embodiment of the present application.
  • step S220 may include the following steps.
  • S223 Irradiate the first UV light to the first UV glue, the first UV glue in the plurality of first concave arc surfaces is cured to form a plurality of arc structures, and the plurality of arc structures are connected to the packaging material layer.
  • UV glue is cured by UV light to A plurality of cambered structures are prepared, and the cambered structures are prepared in this way, and the unit hourly capacity (units per hour, UPH) is high and the cost is low.
  • the cambered surface structure obtained after curing the UV glue requires a high temperature resistant material, which can prevent the high temperature in the subsequent process from affecting it, and will not cause the cambered surface structure to fall off, nor will it As a result, the cambered surface structure is discolored.
  • the relevant description of the cambered surface structure 220 in the above device embodiment which will not be repeated here.
  • the material of the cambered fixture is a transparent material, which can be used to transmit UV light, and a plurality of first concave cambered surfaces are formed on the surface of the cambered fixture.
  • the first concave arc surface is an arc surface structure that corresponds to each other, and the structure of the first concave arc surface can also refer to the related description of the arc surface structure 220 in the device embodiment above.
  • FIG. 10 shows a schematic structural diagram of a curved surface jig.
  • the arc surface fixture includes a first support layer 402 and a first arc surface layer 401 , wherein a plurality of first concave arc surfaces are formed on the first surface of the first arc surface layer 401 , and a second arc surface of the first arc surface layer 402 is formed.
  • the surface is flat and connected to the first support layer 402 .
  • the material of the first supporting layer 402 includes, but is not limited to, PET film, which can be any layered structure that is transparent and has a supporting function.
  • the material of the first arc surface layer 401 includes, but is not limited to, cured UV glue, and can also be other light-transmitting materials.
  • the cambered fixture in addition to the structure shown in FIG. 10( a ), can also be any other light-transmitting structure having a plurality of first concave cambered surfaces,
  • a plurality of first concave arc surfaces are formed on a light-transmitting substrate such as glass or quartz, and the embodiment of the present application does not specifically limit the specific structure and material of the arc surface fixture.
  • Figures (b) to (d) in FIG. 10 respectively show schematic diagrams of the process for performing steps S221 to S223.
  • the first ultraviolet UV glue 403 is dropped into a plurality of first concave cambers in the camber fixture;
  • the encapsulation sheet shown in (d) of FIG. 8 is attached to the cambered jig, wherein the encapsulation sheet is on the top and the cambered jig is on the bottom, so that a plurality of The first UV glue 403 in the first recessed arc surface is in contact with the packaging material layer 203 in the packaging sheet.
  • the first UV glue 403 is irradiated with the first UV light, the first UV glue 403 is cured to form a plurality of arc structures, and the plurality of arc structures are connected to the packaging material layer 203 .
  • the first UV glue can chemically react with the packaging material layer 203 . Therefore, after the first UV glue is cured, a plurality of The arc structure can be stably connected to the packaging material layer 203 .
  • the cambered fixture is separated from the plurality of cambered structures 220 .
  • a plurality of cambered structures 220 are prepared and formed on the packaging sheet.
  • Each capacitive fingerprint sensor 221 is set in a one-to-one correspondence.
  • the arc surface structure can be 220 is separated from the cambered fixture.
  • the first UV glue needs to be able to chemically react with the material of the packaging material layer 203 and not chemically react with the material of the first arc surface layer 401 , in order to realize this step S220, a plurality of arc structures are prepared on the packaging sheet.
  • step S230 the above-mentioned encapsulation sheet prepared with a plurality of cambered structures may be cut by a CNC machining method to obtain a plurality of encapsulation structures.
  • a protective film 204 needs to be attached to the surface of the first substrate 202, and then the packaging sheet is cut.
  • each package structure includes a capacitive fingerprint sensor 211 , a curved surface structure 220 , a package material layer 213 and a first substrate 212 .
  • FIG. 11 shows a schematic diagram of another package structure after cutting.
  • the edge region of the upper surface of the package material layer 213 is formed with a stepped structure, and the preparation of the stepped structure can improve the capacitive fingerprint. Identify the appearance of the device.
  • each package structure may further include an electrical connector that electrically connects the first substrate 212 and the capacitive fingerprint sensor 211 and other related structures.
  • an electrical connector that electrically connects the first substrate 212 and the capacitive fingerprint sensor 211 and other related structures.
  • step S240 is performed, and based on the package structure, a capacitive fingerprint identification device is prepared.
  • FIG. 12 shows a flowchart of another method 20 for preparing a capacitive fingerprint identification device provided by an embodiment of the present application.
  • step S240 may include the following steps.
  • S242 filling underfill between the second substrate and the first substrate
  • Figures (a) to (c) in Figure 13 respectively show schematic diagrams of the process of performing steps S241 to S243 on the package structure shown in Figure (b) in Figure 11 .
  • the first substrate 212 in the package structure may be soldered on the second substrate 215 through an SMT process.
  • the underfill 216 is filled between the second substrate 215 and the first substrate 212 .
  • a masking fixture 410 is required to limit the amount of the underfill 216 .
  • the flow is only allowed to fill between the second substrate 215 and the first substrate 212 and the stepped structure at the edge of the first substrate 212 .
  • a color coating layer 230 is prepared on the surface of the package structure to obtain a capacitive fingerprint identification device.
  • a capacitive fingerprint identification device For the structure of the capacitive fingerprint identification device, refer to the related technical solutions in FIG. 5 above.
  • the package structure shown in (c) of FIG. 11 is processed by the above step S240 to obtain the capacitive fingerprint identification device shown in FIG. 6 , and the specific process will not be repeated here.
  • the cambered jig shown in (a) of FIG. 9 can be prepared by a model jig, so as to avoid using a large number of expensive model jigs to prepare cambered structures, and low-cost cambers can be used.
  • the surface jig prepares a curved surface structure, thereby reducing the manufacturing cost in the entire manufacturing process of the capacitive fingerprint identification device.
  • FIG. 14 shows a flowchart of a method 30 for manufacturing a curved surface jig provided by an embodiment of the present application.
  • the preparation method 30 of the cambered jig may include the following steps.
  • S370 A first support layer is prepared over the third UV glue.
  • FIG. 15 shows a schematic diagram of the process of each of the above steps S310 to S380 .
  • FIG. 15 shows a schematic structural diagram of a first model jig 510 .
  • the first model jig is a cambered jig made of a non-transparent material, and its reliability and durability are greater than those of a cambered jig directly prepared from a transparent material.
  • the Rockwell hardness of the first model jig needs to be greater than a certain preset value, and/or the surface roughness needs to be smaller than a certain preset value, so as to improve the reliability of the first model jig, that is, Can be used repeatedly.
  • the Rockwell hardness of the first model jig is greater than 50, and the surface roughness is less than 0.08.
  • the first model jig may be a steel jig, which is more durable than a model jig made of aluminum alloy, bakelite or plastic.
  • the second UV glue 520 is dropped into a plurality of second concave arc surfaces on the surface of the first mold jig 510 .
  • a second support layer 530 is prepared on the surface of the first mold jig 510 , and the second support layer 520 is in contact with the second UV glue 520 in the plurality of second concave arc surfaces. .
  • the material of the second supporting layer 530 includes, but is not limited to, PET film, which can be any layered structure that is transparent and has a supporting function.
  • the second UV glue 520 is irradiated with a second UV light, the second UV glue 520 is cured to form a plurality of second arc structures, and the plurality of second arc structures are connected to the first Two supporting layers 530, thereby forming a second mold jig.
  • the second UV glue can chemically react with the second supporting layer 530 . Therefore, many of the formed UV glue after curing Each of the second arc structures can be stably connected to the second support layer 530 to form a second model jig.
  • the second model jig is separated from the first model jig, and the second model jig is turned over.
  • the upper surface of the second model jig forms a plurality of convex first Two arc structures 502 .
  • the second UV glue cannot chemically react with the material of the first model jig, therefore, the second arc surface can be The structure 502 is separated from the first model jig.
  • a third UV glue 540 is dropped into the gaps between the plurality of second arc structures 502 .
  • a first support layer 401 is prepared over the third UV glue 540 .
  • the third UV glue 540 is irradiated with a third UV light, and the third UV glue 540 is cured to form the first arc surface layer 402 .
  • the first arc surface layer 402 is separated from the second mold jig to obtain the above-mentioned transparent arc surface jig including the first arc surface layer 402 and the first support layer 401 .
  • the present application also provides a capacitive fingerprint identification device prepared according to the above preparation method.
  • the present application also provides an electronic device including the above capacitive fingerprint identification device, or an electronic device including the capacitive fingerprint identification device prepared according to any one of the above preparation methods.
  • the disclosed systems and apparatuses may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solutions of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application are essentially or part of contributions to the prior art, or all or part of the technical solutions can be embodied in the form of software products, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种电容指纹识别装置、制备方法和电子设备,能够提升电容指纹装置的性能以及用户使用体验。一种电容指纹识别装置,用于设置在电子设备的弧形表面,包括:电容指纹识别封装结构;弧面结构,包括第一面和第二面,其中,弧面结构的第一面为平面,弧面结构的第二面为弧面,弧面结构的第一面连接于电容指纹识别封装结构的第一面,电容指纹识别封装结构的第一面为朝向电子设备的外侧的一面。在电容指纹识别装置设置弧面结构,不仅能够使其以及其所在的电子设备在外观上更具美感和立体感,且在电子设备摔落时,保护电子设备,对该电容指纹识别装置的影响较小。灰尘等也很难吸附在电容指纹识别装置的弧形表面上,对指纹识别的干扰较小。

Description

电容指纹识别装置、制备方法和电子设备 技术领域
本申请涉及指纹识别技术领域,并且更具体地,涉及一种电容指纹识别装置、制备方法和电子设备。
背景技术
目前,随着生物识别传感器的发展,尤其指纹识别传感器的迅猛发展,指纹识别传感器广泛应用于移动终端设备,智能家居,汽车电子等领域,市场对生物识别传感器的需求与日俱增,市场需求体量越来越大,用户对产品的要求不仅仅是高品质高性能的追求,已经扩展到外观需求的多样化,并且不同的用户群体审美的眼光也是多样化的。
目前主流市场的电容指纹装置都是平面结构,外观上比较单一,没有立体感,客户体验没有足够的新颖,另外,灰尘等物质经常会很容易吸附在平面的电容指纹装置上,导致指纹识别出现误判等问题,且手机在摔落时,会对整个电容指纹识别装置的平面造成损伤,影响指纹识别装置的性能。
因此,如何提升电容指纹装置的性能以及用户使用体验,是一项亟待解决的技术问题。
发明内容
本申请实施例提供了一种电容指纹识别装置、制备方法和电子设备,能够提升电容指纹装置的性能以及用户使用体验。
第一方面,提供了一种电容指纹识别装置,用于设置在电子设备的弧形表面,包括:
电容指纹识别封装结构;
弧面结构,包括第一面和第二面,其中,该弧面结构的第一面为平面,该弧面结构的第二面为弧面,该弧面结构的第一面连接于该电容指纹识别封装结构的第一面,该电容指纹识别封装结构的第一面为朝向该电子设备的外侧的一面。
本申请实施例提出一种新型结构的电容指纹识别装置,其具有弧面结构,不仅能够使其自身以及其所在的电子设备在外观上更具美感,更具立体 感,带给用户群体全新的既视感,此外,可以保护电子设备,当电子设备摔落时,接触电容指纹识别装置的是一个点,而不会是一个面,从而对电容指纹识别装置的影响较小,且弧面设计对电子设备摔落时也会起到一个缓冲的作用。另外,灰尘等也很难吸附在电容指纹识别装置的弧形表面上,对指纹识别的干扰较小,因此,本申请实施例中的电容指纹识别装置具有较高的指纹识别性能,并能够提高用户使用体验。
在一种可能的实施方式中,该电容指纹识别封装结构包括:电容指纹传感器,第一基板,电连接件和封装材料层;
该电容指纹传感器通过该电连接件连接至该第一基板;
该封装材料层包覆该电容指纹传感器以及该电连接件,并与该第一基板连接。
在一种可能的实施方式中,该弧面结构的第二面与该电容指纹传感器的最大距离小于或等于第一预设阈值,使得该电容指纹传感器检测的指纹电容值能够用于指纹检测。
在一种可能的实施方式中,该第一预设阈值为250μm。
在一种可能的实施方式中,该弧面结构的第二面与该电容指纹传感器的最大距离大于或等于160μm。
在一种可能的实施方式中,该弧面结构的第二面的边缘区域的曲率半径小于该弧面结构的第二面的中间区域的曲率半径。
在一种可能的实施方式中,该弧面结构的第二面中边缘区域的曲率半径的范围在5至5.5之间,该弧面结构的第二面中边缘区域的曲率半径为0.2。
在一种可能的实施方式中,该封装材料层的第一面的边缘区域设置有台阶结构,该封装材料层的第一面的中间区域连接于该弧面结构的第一面的中间区域。
在一种可能的实施方式中,该电子设备的弧形表面中设置有开口,该电容指纹识别装置用于设置在该开口中;该台阶结构中平行于该弧面结构的第一面的第一台阶面位于该开口内。
在一种可能的实施方式中,该弧面结构的第二面与该第一台阶面的最大距离大于或等于0.9mm。
在一种可能的实施方式中,该第一台阶面的宽度大于或等于0.1mm。
在一种可能的实施方式中,该电容指纹识别封装结构的宽度大于或等于 2.4mm。
在一种可能的实施方式中,该电容指纹识别装置还包括:
颜色涂覆层,覆盖该弧面结构以及该封装材料层。
在一种可能的实施方式中,该电容指纹识别封装结构还包括:
第二基板,电连接至该第一基板,用于传输该电容指纹传感器的指纹电容信号。
在一种可能的实施方式中,该电容指纹识别封装结构还包括:
底部填充胶,填充于该第二基板与该第一基板之间,用于提高该第二基板与该第一基板之间的连接可靠性。
在一种可能的实施方式中,该第一基板的边缘区域形成有台阶结构,该台阶结构用于容纳该底部填充胶。
在一种可能的实施方式中,该弧面结构的材料为耐高温的紫外光UV胶。
在一种可能的实施方式中,该弧面结构的介电常数大于3.4。
在一种可能的实施方式中,该电容指纹识别装置用于设置在该电子设备的弧形侧面中。
在一种可能的实施方式中,该电容指纹识别装置设置于该电子设备的目标按键上,该目标按键用于实现目标功能以及指纹识别功能。
第二方面,提供一种制备电容指纹识别装置的制备方法,包括:
制备封装片,该封装片包括若干个电容指纹传感器;
通过弧面治具在该封装片上制备若干个弧面结构,该若干个弧面结构与若干个电容指纹传感器一一对应设置;
切割该封装片,得到若干个封装结构,该若干个封装结构片中每个封装结构包括一个电容指纹传感器和一个弧面结构;
基于该封装结构,制备该电容指纹识别装置。
在一种可能的实施方式中,该弧面治具的材料为透明材料,该弧面治具的表面形成有若干个第一凹陷弧面;
该通过弧面治具在该封装片上制备若干个弧面结构,包括:
将第一紫外光UV胶滴入该弧面治具中的若干个第一凹陷弧面中;
将该封装片与该弧面治具贴合,使得该若干个第一凹陷弧面中的第一UV胶与该封装片中的封装材料层接触;
对该第一UV胶照射第一UV光,该若干个第一凹陷弧面中的该第一 UV胶固化形成该若干个弧面结构,且该若干个弧面结构连接至该封装材料层。
在一种可能的实施方式中,该弧面治具包括:第一支撑层与第一弧面层;
该第一弧面层的第一表面形成有该若干个第一凹陷弧面;
该第一弧面层的第二表面为平面,且与该第一支撑层连接。
在一种可能的实施方式中,该制备方法还包括:制备该第一支撑层与该第一弧面结构层。
在一种可能的实施方式中,该制备该第一支撑层与该第一弧面结构层,包括:
获取第一模型治具,该第一模型治具的材料为非透明材料,且该第一模型治具的表面形成有若干个第二凹陷弧面;
通过该第一模型治具,制备该第一支撑层与该第一弧面结构层。
在一种可能的实施方式中,该通过该第一模型治具制备该第一支撑层与该第一弧面结构层,包括:
将第二UV胶滴入该第一模型治具的表面的若干个第二凹陷弧面中;
在该第一模型治具的表面制备第二支撑层;
对该第二UV胶照射第二UV光,该若干个第二凹陷弧面中的第二UV胶固化形成若干个第二弧面结构,且该若干个第二弧面结构连接至该第二支撑层,形成第二模型治具;
分离该第二模型治具与该第一模型治具;
通过该第二模型治具,制备该第一支撑层与该第一弧面结构层。
在一种可能的实施方式中,该通过该第二模型治具,制备该第一支撑层与该第一弧面结构层,包括:
翻转该第二模型治具,该第二模型治具中该若干个第二弧面结构朝上;
在该若干个第二弧面结构的间隙滴入第三UV胶;
在该第三UV胶的上方制备该第一支撑层;
对该第三UV胶照射第三UV光,该第三UV胶固化形成该第一弧面层,且该第一弧面层连接至该第一支撑层,形成该弧面治具;
分离该第二模型治具与该弧面治具。
在一种可能的实施方式中,该第一模型治具的材料的洛氏硬度需大于第一预设值,和/或,该第一模型治具的表面粗糙度小于第二预设值,以提高该 第一模型治具的使用可靠性。
在一种可能的实施方式中,该第一模型治具包括:钢质治具。
在一种可能的实施方式中,该基于该封装结构,制备该电容指纹识别装置,包括:
将该封装结构中的第一基板焊接在第二基板上,
在该第二基板与该第一基板之间填充底部填充胶;
在该封装结构表面制备颜色涂覆层,得到该电容指纹识别装置。
在一种可能的实施方式中,该制备封装片,包括:
在该封装片的第一基板层的表面制备若干个第一凹槽,该若干个第一凹槽中每个第一凹槽设置于该若干个电容指纹传感器中相邻两个电容指纹传感器之间,该若干个第一凹槽用于容纳该底部填充胶。
第三方面,提供一种电容指纹识别装置,其特征在于,包括:
包括按照第二方面以及第二方面中任一种可能的实施方式中的制造方法制造的电容指纹识别装置。
第四方面,提供了一种电子设备,包括第一方面以及第一方面中任一种可能的实施方式中的电容指纹识别装置。
在一种可能的实施方式中,该电容指纹识别装置用于设置在该电子设备的侧面中。
在一种可能的实施方式中,该电容指纹识别装置设置于该电子设备的目标按键上,该目标按键设置于该电子设备的侧面,该目标按键用于实现目标功能以及指纹识别功能。
在一种可能的实施方式中,该目标按键为电子设备的电源键。
附图说明
图1是本申请所适用的电子设备的结构示意图。
图2是根据本申请实施例的一种电容指纹识别装置的结构示意图。
图3是根据本申请实施例的一种电容指纹识别装置的示意性结构图。
图4至图6是根据本申请实施例的另几种电容指纹识别装置的示意性结构图。
图7是根据本申请实施例的一种电容指纹识别装置的制备方法的流程框图。
图8是根据本申请实施例的工艺制程示意图。
图9是根据本申请实施例的另一种电容指纹识别装置的制备方法的流程框图。
图10和图11是根据本申请实施例的工艺制程示意图。
图12是根据本申请实施例的另一种电容指纹识别装置的制备方法的流程框图。
图13是根据本申请实施例的工艺制程示意图。
图14是根据本申请实施例的一种弧面治具的制备方法的流程框图。
图15是根据本申请实施例的工艺制程示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例可以应用于电容指纹装置,包括但不限于电容指纹识别装置和基于电容指纹成像的产品,本申请实施例仅以电容指纹装置为例进行说明,但不应对本申请实施例构成任何限定。
作为一种常见的应用场景,本申请实施例提供的电容指纹装置可以应用在智能手机、平板电脑以及其他类型的移动终端或者其他电子设备中。更具体地,在上述电子设备中,电容指纹系统可以设置于电子系统与用户交互的任意面,包括但不限于是电子设备的正面、背面或者侧面。
作为示例,如图1所示,本申请实施例提供的电容指纹装置所在的电子设备为手机,该电容指纹装置可以设置在手机的侧面。
在一些实施方式中,该电容指纹装置可以为嵌入手机侧面的一个独立部件,仅用于实现指纹识别功能;
在另一些实施方式中,该电容指纹装置可以集成设置于嵌入手机侧面的目标按键上,例如,该目标按键包括但不限于是电子设备的电源按键,该电源按键除了用于实现启动/唤醒手机外,还可以用于实现指纹识别功能。进一步地,在该实施方式中,可以在指纹识别成功的基础上,再启动/唤醒手机,提高手机认证的安全性能。
图2示出了一种电容指纹识别装置100的结构示意图。该电容指纹识别装置100可以设置在图1中所示的按键上,该结构示意图为电容指纹识别装置100在XZ轴所在平面的截面示意图。其中,X轴的正方向为朝向电子设 备侧面的外侧的方向。
如图2所示,该电容指纹识别装置100可以包括:电容指纹传感器110,基板120,封装材料层130、涂覆层140以及电连接件150。
其中,电容指纹传感器110用于根据指纹的纹脊和纹谷与感应电极形成的电容值大小不同,来判断什么位置是纹脊什么位置是纹谷;其工作过程是通过对每个像素点上的电容感应电极预先充电到某一参考电压。当手指接触到半导体电容指纹传感器表面上时,手指指纹与像素阵列之间会形成一个电容阵列;其中,电容阵列的各个指纹电容的电容值会随着导体之间距离的增加而变小,因为纹脊是凸起的,而纹谷是凹下,根据电容值与距离的关系,会在纹脊和纹谷分别形成不同的电容值。然后,利用放电电流进行放电,通过读取充电和放电的电容差得到指纹图像。
简单来说,电容指纹传感器110包括许多像素(pixel)电路,每一个像素电路都会有一个像素电极(即感应极板)来跟手指表面的纹路来产生指纹电容,所有像素电极构成一个像素阵列。其中,指纹的纹脊和纹谷与像素电极之间距离不同因此形成的指纹电容的电容值是不同的,通过检测电容值便可以识别出像素电极所在位置是纹脊还是纹谷,根据各个像素电路的检测结果便可以得到指纹图像。
具体地,图2中,电容指纹传感器110为一种传感器芯片,其可以通过胶层,例如芯片粘接薄膜(die attach film,DAF)胶层,设置于基板130上,并通过电连接件150(例如,金线)连接至基板120的焊盘上,以将其检测的电容值通过电连接件150传输至基板120的电路中,进一步的将电容值传输至基板120上的其它电子模块,或者传输至与基板120电连接的其它电子模块,该其它电子模块包括但不限于是处理模块或者是存储模块等等。
进一步地,电容指纹传感器110的周围包覆有封装材料层130,该封装材料层130用于保护电容指纹传感器110以及其电连接件150,该封装材料层130的表面为平面。
此外,在该电容指纹识别装置100中,在封装材料层130上方还设置有涂覆层140,该涂覆层140的表面同样为平面。可选地,该涂覆层140可以为具有颜色的涂覆层,用于进一步保护电容指纹识别装置100,并提升其外观美观度。在指纹识别过程中,手指放置于涂覆层140的表面,以影响电容指纹传感器110检测的电容值,该涂覆层140中对应于电容指纹传感器110 的区域,可以称之为电容指纹识别装置100的指纹检测区域。
目前,如图1所示,在终端电子设备中,为了便于用户握持提升用户体验,或者提升电子设备的外观的美观度,大部分终端电子设备的侧面会设计为弧面,在此情况下,由于目前的电容指纹识别装置(例如,图2中所示的电容指纹识别装置100)的表面为平面,若将该平面电容指纹装置嵌入手机侧边的弧面中,不仅会影响电子设备的外观的美观度,也会影响用户的使用手感。此外,在风沙、粉尘等恶劣环境下,灰尘经常会很容易吸附在电容指纹装置的平面上,导致指纹识别出现误判等问题。并且,在手机在摔落时,且手机在摔落时,会对整个电容指纹识别装置的平面造成损伤,会影响指纹识别装置的性能。
基于上述问题,本申请提出一种新型结构的电容指纹识别装置,其具有弧形立体表面,不仅能够使其所在的电子设备在外观上更具美感,更具立体感,带给用户群体全新的既视感,此外,采用弧面立体设计以保护电子设备在摔落时,接触电容指纹识别装置的是一个点,而不会是一个面,从而对电容指纹识别装置的影响较小,且弧面设计对电子设备摔落时也会起到一个缓冲的作用。第三、灰尘等也很难吸附在电容指纹识别装置的弧形立体表面上,对指纹识别的干扰较小。
以下,结合图3至图6,详细介绍本申请实施例的电容指纹识别装置。
需要说明的是,为便于理解,在以下示出的实施例中,相同的结构采用相同的附图标记,并且为了简洁,省略对相同结构的详细说明。
图3是本申请实施例提供的一种电容指纹识别装置200的示意性结构图,该电容指纹识别装置200用于设置在电子设备的弧形表面,例如可以设置在电子设备的弧形侧面。
与图2中的电容指纹识别装置100类似,该电容指纹识别装置200也可以设置在图1中所示的按键上,该结构示意图为电容指纹识别装置200在XY轴所在平面的截面示意图。其中,X轴的正方向为朝向电子设备侧面的外侧的方向。
如图3所示,该电容指纹识别装置200包括:
电容指纹识别封装结构210;
弧面结构220,包括第一面221和第二面222,该弧面结构220的第一面221为平面,该弧面结构220的第二面222为弧面,该弧面结构220的第 一面221连接于该电容指纹识别封装结构210的第一面,该电容指纹识别封装结构210的第一面为朝向电子设备的外侧的一面。
具体地,如图3所示,电容指纹识别封装结构210一般近似为块状结构,其包括相对的第一面(例如图3中电容指纹识别封装结构210的上表面)和第二面(例如图3中电容指纹识别封装结构210的下表面),其中,电容指纹识别封装结构210的第一面为朝向电子设备的外侧的一面,而电容指纹识别封装结构210的第二面为朝向电子设备的内侧的一面。相对于第二面,第一面位于其X轴正方向。
进一步地,如图3所示,相对于电容指纹识别封装结构210的第一面,弧面结构220的第二面222位于其X轴正方向,换言之,弧面结构220的第二面222朝向电子设备的外侧,便于感应用户手指,以检测用户的指纹。
可选地,图4示出了另一种电容指纹识别装置200的示意性结构图,如图4所示,上述电容指纹识别封装结构210可以包括:电容指纹传感器211,第一基板212,封装材料层213和电连接件214。
其中,该电容指纹传感器211,第一基板212,封装材料层213和电连接件214可以参见上文图2中电容指纹传感器110,基板120,封装材料层130以及电连接件150的相关描述。
与图2类似,在本申请实施例中,电容指纹传感器211设置于第一基板212的上方,并通过电连接件214连接至第一基板212,封装材料层213包覆该电容指纹传感器211和电连接件214,并连接于第一基板212。
具体地,封装材料层213一般为块状材料,其第一面(如图4中的封装材料层213的上表面)与弧面结构220的第一面221连接,形成稳固的连接结构。
在一些实施方式中,该弧面结构220可以直接生长于该封装材料层213的第一面上,或者,在另一些实施方式中,该弧面结构220也可以通过胶层等连接层连接于该封装材料层213的第一面。
可选地,该封装材料层213的第一面的形状和面积与该弧面结构220的第一面221的形状和面积相同。在此情况下,弧面结构220与电容指纹识别封装结构210的形状面积相互配合,具有较高的实用度以及美观度。
通过上文的说明可知,弧面结构220的第一面221的设计与封装材料层213的表面相关。可选地,在本申请实施例中,弧面结构220的第二面222 可以满足以下至少一种特征:
(1)弧面结构220的第二面222与上述电容指纹传感器211的最大距离(例如图4中所示的从第二面222的顶部至电容指纹传感器211的表面之间的距离D1)小于或等于第一预设阈值,使得电容指纹传感器211检测的指纹电容值能够用于指纹检测,换言之,可以使得该电容指纹传感器211检测的指纹电容值大于目标阈值,从而保证电容指纹传感器211的指纹检测性能。
可以理解的是,指纹电容值为手指表面与电容指纹传感器211中的像素电极之间的电容值,在本申请实施例中,手指可以设置于弧面结构220的第二面222上,该第二面222与电容指纹传感器211的距离越大,则手指与电容指纹传感器211中的像素电极之间的距离越大,指纹电容值越小,不利于电容指纹传感器211进行指纹检测。因此,弧面结构220的第二面222与电容指纹传感器211最大距离需要小于一定的预设阈值,以保证电容指纹传感器211的指纹检测性能。
作为示例,上述第一预设阈值可以为250μm。
(2)该弧面结构220的第二面222与上述电容指纹传感器211的第一面的最大距离大于或等于第二预设阈值,以保证该弧面结构220以及封装材料层213具有足够的厚度,保护该电容指纹传感器211。
通过该实施方式,可以防止在后续的使用过程中,电容指纹传感器211上方的弧面结构220以及封装材料层213的厚度较小,易损坏或者脱落,不能良好的保护电容指纹传感器211,从而影响电容指纹传感器211的指纹检测性能。
作为示例,上述第二预设阈值可以为160μm。
即若弧面结构220的第二面222与电容指纹传感器211的最大距离(例如图4中所示的距离D1)同时满足上述两个条件,则160μm≤D1≤250μm。
(3)该弧面结构220的第二面222中边缘区域的曲率半径小于中间区域的曲率半径。
在本申请实施例中,可以将第二面222中的边缘区域的曲率半径设置的较大,第二面222中的中间区域的曲率半径设置的较小,换言之,第二面222中的中间区域较为平缓,边缘区域较为陡峭。
通过该实施方式,将第二面222中的中间区域曲率半径设计的较小,在 保证弧面设计的基础上,能够使得中间区域中各部分至电容指纹传感器211的距离差异较小,对电容指纹传感器211的指纹识别不造成影响或者影响较小。
进一步地,将第二面222中的边缘区域曲率半径设计的较大,防止第二面222与封装材料层213的侧面形成的较尖的夹角,提升用户手指与第二面222的边缘区域接触时的手感,从而提升用户的使用体验。
作为示例,该第二面222中边缘区域的曲率半径包括但不限于是0.2。该第二面222中中间区域的曲率半径的范围可以在5至5.5之间。
进一步地,该弧面结构220的材料可以为任意绝缘材料,其可以通过多种方式制备得到,例如计算机数字控制机床(computer numerical control,CNC)加工,仿形磨削加工,封装注塑(molding)成型、二次molding成型、紫外光(ultraviolet,UV)胶固化等等方式制备得到。
优选地,在本申请实施例中,该弧面结构220可以通过光固化方式制备得到,例如,弧面结构220可以为固化后的UV胶,采用该光固化方式制备得到弧面结构220,成本低且产能较高。
进一步地,该弧面结构220的材料为耐高温材料,能够防止工艺制程中的高温对其造成影响,例如,表面贴装(surface-mount technology,SMT)工艺下的温度不会对该弧面结构220造成影响,不会造成该弧面结构220的脱落,也不会造成该弧面结构220变色。
此外,该弧面结构220的介电常数大于预设阈值,例如可以大于3.4,从而提高电容指纹传感器211检测的指纹电容值,以提高电容指纹识别装置的性能。
在本申请实施例提供的电容指纹识别装置200中,除了上文说明的弧面结构220的相关设计以外,其它各部件的相关设计方案说明如下:
(1)封装材料层213
可选地,该封装材料层213的第一面与上述电容指纹传感器211的第一面的最大距离(例如图4中所示的距离D2)小于或等于第三预设阈值,使得电容指纹传感器211检测的指纹电容值能够用于指纹检测。
该第三预设阈值的设计原理与上文中第一预设阈值的设计原理类似,此处不再赘述说明。
作为示例,若封装材料层213为高介电常数材料(例如,介电常数大于 7),则该第三预设阈值可以为150μm。若为低介电常数材料(例如,介电常数小于4),则该第三预设阈值可以为70μm。
可选地,该封装材料层213的材料包括但不限于是环氧树脂模塑料(epoxy molding compound,EMC),其还可以为相关技术中的其它封装材料,本申请实施例对该封装材料层213的具体类型不做限定。
(2)第一基板212和电连接件214
可选地,第一基板212包括但不限于是印制电路板(printed circuit board,PCB)、柔性电路板(flexible printed circuit,FPC)或者软硬结合板(rigid flex board)等等,本申请实施例对第一基板212的具体类型也不做限定。
可选地,该电连接件214包括但不限于是金线,通过引线键合(wire bonding,WB)的方式电连接至电容指纹传感器211和基板焊盘。该电连接件214还可以是硅通孔(through silicon via,TSV)等其它相关技术中的电连接件,本申请实施例对电连接件214的具体类型同样不做限定。
具体地,在图4中,在X方向上,对D1和D2等距离进行了设计,以满足指纹检测的需求。可选地,在Z方向上,该电容指纹识别封装结构210的宽度(例如图4中所示的距离W1)大于或等于第四预设阈值,以提高电容指纹传感器211的指纹检测面积,从而保证电容指纹传感器211的指纹检测性能。
在图4所示的实施例中,该电容指纹识别封装结构210的宽度W1也为封装材料层213在Z方向上的宽度。
作为示例,该第四预设阈值可以为2.4mm,即W1≥2.4mm。
图5是本申请实施例提供的另一种电容指纹识别装置200的示意性结构图。
如图5所示,该电容指纹识别装置200还可以包括:
颜色涂覆层230,覆盖上述弧面结构220以及封装材料层213。
具体地,如图5所示,该颜色涂覆层230覆盖于弧面结构220的第二面222,还覆盖于封装材料层213的四个侧面。
可选地,该颜色涂覆层230的颜色可以与电容指纹识别装置200所在的电子设备的外观颜色相同,或者也可以为其它任意预设的颜色。
通过在弧面结构220上设置颜色涂覆层230,可以提高电容指纹识别装置200的外观美观度,提高用户体验,此外,该颜色涂覆层230也能够用于 进一步的保护电容指纹识别装置200中的电容指纹传感器211。
在一些实施方式中,该颜色涂覆层230的厚度(如图5中所示的厚度F1)在预设的阈值范围之内,使得其在具有足够的厚度的同时,也能保证电容指纹传感器211的指纹检测性能。
作为示例,该颜色涂覆层230的厚度的阈值范围可以为10μm至40μm,即10μm≤F1≤40μm。
为了能够在弧面结构220上设置颜色涂覆层230,该弧面结构220的表面硬度需要大于一定的预设阈值,且水滴角也需要小于一定的预设阈值。作为示例,弧面结构220的表面硬度大于4H,水滴角小于60°。
可选地,如图5所示,在本申请实施例中,电容指纹识别封装结构210还包括:第二基板215,电连接至上述第一基板212,用于传输电容指纹传感器211的指纹电容信号。
可选地,第一基板212中形成有多个连接点,该多个连接点通过焊球电连接至第二基板215。且在第二基板215上还设置有连接器217,用于电连接该电容置指纹识别装置200与其所在电子设备中的其它电学装置。
作为示例,该第一基板212可以为PCB电路板,第二基板215可以为FPC电路板。
可以理解的是,若第二基板215为FPC电路板,与该第二基板215连接的部分区域还设置有补强层218,以对第二基板215进行支撑和补强,该补强层218包括但不限于补强钢板,其还可以为其它任意类型的补强材料层。
类似地,该第二基板215和补强层218可以形成软硬结合板,其中,补强层218为芯(core)材料层。
如图5所示,该补强层218设置于第一基板212所在区域的对应区域,该补强层218除了用于支撑第二基板215以外,还支撑第一基板212以及与第一基板212连接的电容指纹传感器211、封装材料层213等相关部件。另外,该补强层218设置于连接器217所在区域的对应区域,用于支撑连接器217。
进一步地,电容指纹识别封装结构210还可以包括:底部填充(underfill)胶216,其填充于上述第一基板212和第二基板215之间,用于提高第一基板212与第二基板215之间焊接的可靠性。
可选地,如图5所示,第一基板212中与第二基板215相对的第一面中, 其边缘区域形成有台阶结构,该台阶结构用于容纳有上述底部填充胶216,设置该台阶结构可以便于底部填充胶的工艺实现。
图6是本申请实施例提供的另一种电容指纹识别装置200的示意性结构图。
与图5相比,图6所示的电容指纹识别装置200中,封装材料层213进行了进一步的改进。
如图6所示,在本申请实施例中,封装材料层213的第一面的边缘区域设置有台阶结构2131,封装材料层213的第一面的中间区域连接于弧面结构220的第一面221的中间区域。
可选地,在该台阶结构2131中,可以容纳有与弧面结构220相同的材料,或者也可以容纳有空气或者其它透明物质。
可选地,如图6所示,电子设备的外框300中设置有开口301,该电容指纹识别装置200用于设置在该开口301中,在一些实施方式中,该外框300的表面为弧形表面。
参见图6所示,台阶结构中平行于弧面结构220的第一面221的第一台阶面位于开口301内。
通过该实施方式,封装材料层213的界面可以隐藏于外框300中,使得用户在外观上不易观察到该封装材料层213,从而提升用户的使用体验。
作为示例,弧面结构220的第二面222与外框300的表面之间的最大距离(例如图6中所示的距离D3)需要大于或等于第五预设阈值,以满足该电容指纹识别装置200作为按键时的活动行程。
作为示例,该第五预设阈值等于0.8mm,即D5≥0.8mm。
进一步地,在此基础上,为了将台阶结构中第一台阶面隐藏于开口301内,该弧面结构220的第二面222与第一台阶面之间的最大距离(例如图6中所示的距离D4)大于或等于第六预设阈值,该第六预设阈值大于上述第五预设阈值。
作为示例,该第六预设阈值等于0.9mm,即D6≥0.9mm。
可选地,该第一台阶面在Z方向上的宽度(例如,图6中所示的宽度W2)大于或等于第七预设阈值,使得封装材料层213的界面可以更好的隐藏于外框300中,提升用户的使用体验。
作为示例,该第七预设阈值等于0.1mm,即W2≥0.1mm。
上文结合图3至图6,详细描述了本申请的电容指纹识别装置的实施例,下文结合图7至图15,详细描述本申请的电容指纹识别装置的制造方法的实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照装置实施例。
图7示出了一种电容指纹识别装置的制备方法20的流程框图。
如图7所示,该电容指纹识别装置的制备方法20可以包括以下步骤。
S210:制备封装片,该封装片包括多个电容指纹传感器。
S220:通过弧面治具在该封装片上制备多个弧面结构。
具体地,该多个弧面结构与多个电容指纹传感器一一对应设置。
S230:切割该封装片,得到多个封装结构。
具体地,该多个封装结构片中每个封装结构包括一个电容指纹传感器和一个弧面结构。
S240:基于该封装结构,制备所述电容指纹识别装置。
为了便于理解,按照上述步骤顺序,下文结合附图对每个步骤依次进行说明。
具体地,图8中的(a)图示出了步骤S210中制备得到的封装片的结构。
如图8中的(a)图所示,该封装片中包括第一基板202,多个电容指纹传感器211设置在该第一基板202上,封装材料层203包覆多个电容指纹传感器211。
可以理解的是,对该封装片进行切割后,第一基板202可以分离成多个上文装置实施例中的第一基板212,封装材料层203可以分离成多个上文装置实施例中的封装材料层213。因此,在本方法实施例中,第一基板202以及封装材料层203的相关技术方案可以参见上文中第一基板212以及封装材料层213的相关描述,或者也可以参见相关封装技术中的相关描述,此处不再赘述。
在本步骤中,需要控制封装材料层203的上表面与电容指纹传感器211的上表面的最大距离(例如图中所示的距离D2),该距离D2的相关技术方案可以参见上文图4中的相关描述。
可选地,在一些实施方式中,可以直接对该图8中的(a)图所示的封装片上制备多个弧面结构,即直接在执行上述步骤S220。
可选地,在另一些实施方式中,也可以进一步地对该图8(a)图所示封 装片进行进一步的处理之后,再执行上述步骤S220。
在该实施方式下,该步骤S210可以包括以下步骤。
S211:在封装片的第一基板的表面制备多个第一凹槽。
具体地,该多个第一凹槽中每个第一凹槽设置于多个电容指纹传感器中相邻两个电容指纹传感器之间,该多个第一凹槽用于容纳后段焊接工艺中的底部填充胶。
可选地,在本申请实施例中,可以采用CNC加工方法,在封装片的第一基板的表面制备多个第一凹槽。
具体地,参见图8中的(b)图,在采用CNC加工之前,将上述封装片上下翻转,并在封装片的封装材料层203的表面贴保护膜204,以防止CNC加工过程中,对封装材料层203的表面造成污染。可选地,该保护膜204包括但不限于是聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)薄膜。
然后采用CNC加工方式在封装片的第一基板202的表面制备多个第一凹槽,形成后的封装片如图8中的(c)图所示。
在本步骤中,需要控制第一凹槽的深度,才能满足后续的点胶工艺要求。
在一些实施方式中,该第一凹槽的深度大于0.2mm。
最后,去除封装材料层203表面的保护膜204,得到如图8中的(d)图所示的封装片,对该封装片进行清洗后,执行步骤S220。
图9示出了本申请实施例提供的另一种电容指纹识别装置的制备方法20的流程框图。
如图9所示,上述步骤S220可以包括以下步骤。
S221:将第一紫外光UV胶滴入弧面治具中的多个第一凹陷弧面中;
S222:将封装片与弧面治具贴合,使得多个第一凹陷弧面中的第一UV胶与封装片中的封装材料层接触;
S223:对第一UV胶照射第一UV光,多个第一凹陷弧面中的第一UV胶固化形成多个弧面结构,且多个弧面结构连接至封装材料层。
具体地,相比于其它制备弧面结构的工艺,例如CNC加工,仿形磨削加工,封装Molding成型,二次Molding成型等等,在本申请实施例中,通过UV光固化UV胶,以制备得到多个弧面结构,采用该方式制备弧面结构,单位小时产能(units per hour,UPH)较高且成本低。
具体地,在本申请实施例中,UV胶固化后得到的弧面结构需要耐高温材料,能够防止后续工艺制程中的高温对其造成影响,不会造成该弧面结构的脱落,也不会造成该弧面结构变色,此外,本申请实施例中的多个弧面结构可以参见上文装置实施例中弧面结构220的相关描述,此处不再赘述。
具体地,在步骤S220中,弧面治具的材料为透明材料,可以用于透过UV光,该弧面治具的表面形成有多个第一凹陷弧面。可以理解的是,该第一凹陷弧面为弧面结构为相互对应的结构,该第一凹陷弧面的结构也可以参见上文中装置实施例中弧面结构220的相关描述。
可选地,图10中的(a)图示出了一种弧面治具的结构示意图。
该弧面治具包括第一支撑层402与第一弧面层401,其中,第一弧面层401的第一表面形成有多个第一凹陷弧面,第一弧面层402的第二表面为平面,且与第一支撑层402连接。
作为示例,其中第一支撑层402的材料包括但不限于是PET膜,其可以为任意透光且具有支撑作用的层状结构。第一弧面层401的材料包括但不限于是固化后的UV胶,也可以为其它透光材料。
可以理解的是,在本申请实施例中,弧面治具除了可以为图10(a)中所示出的结构以外,还可以为其它任意具有多个第一凹陷弧面的透光结构,例如,在玻璃,石英等透光基体上形成多个第一凹陷弧面等等,本申请实施例对弧面治具的具体结构和材料不做具体限定。
进一步地,图10中的(b)图至(d)图分别示出了执行步骤S221至步骤S223的工艺制程示意图。
如图10中的(b)图所示,将第一紫外光UV胶403滴入弧面治具中的多个第一凹陷弧面中;
如图10中的(c)图所示,将图8中的(d)图所示的封装片与弧面治具贴合,其中,封装片在上,弧面治具在下,使得多个第一凹陷弧面中的第一UV胶403与封装片中的封装材料层203接触.
如图10中的(d)图所示,对第一UV胶403照射第一UV光,第一UV胶403固化形成多个弧面结构,且多个弧面结构连接至封装材料层203。
需要说明的是,在本申请实施例中,在第一UV胶固化过程中,该第一UV胶是能够与封装材料层203发生化学反应的,因而,第一UV胶固化后形成的多个弧面结构能够与封装材料层203稳定连接。
如图10中的(e)图所示,将弧面治具与多个弧面结构220分离,此时,封装片上制备形成了多个弧面结构220,该多个弧面结构220与多个电容指纹传感器221一一对应设置。
需要说明的是,在本申请实施例中,在第一UV胶固化过程中,该第一UV胶是不能够与第一弧面层401的材料发生化学反应的,因而,能够将弧面结构220与弧面治具进行分离。
因此,综上所述,在第一UV光照射的过程中,第一UV胶需要同时满足能够与封装材料层203的材料发生化学反应,且不与第一弧面层401的材料发生化学反应,才能实现本步骤S220,在封装片上制备多个弧面结构。
进一步地,在步骤S230中,可以采用CNC加工方式切割上述制备有多个弧面结构的封装片,得到多个封装结构。
类似的,参见图11中的(a)图,在采用CNC加工方式切割之前,需要在第一基板202的表面贴保护膜204,然后对封装片进行切割。
图11中的(b)图示出了一种切割后的封装结构的示意图,每个封装结构包括一个电容指纹传感器211、一个弧面结构220、封装材料层213和第一基板212。
图11中的(c)图示出了另一种切割后的封装结构的示意图,在该图中,封装材料层213的上表面的边缘区域形成有台阶结构,制备该台阶结构能够改善电容指纹识别装置的外观问题。
可以理解的是,每个封装结构还可以包括电连接第一基板212和电容指纹传感器211的电连接件以及其它相关结构,具体方案可以参见上文装置实施例中的相关描述,此处不再赘述。
更进一步地,切割得到封装结构后,执行步骤S240,基于该封装结构,制备电容指纹识别装置。
图12示出了本申请实施例提供的另一种电容指纹识别装置的制备方法20的流程框图。
如图12所示,上述步骤S240可以包括以下步骤。
S241:将封装结构中的第一基板焊接在第二基板上,
S242:在第二基板与第一基板之间填充底部填充胶;
S243:在封装结构表面制备颜色涂覆层,得到电容指纹识别装置。
图13中的(a)图至(c)图分别示出了对图11中(b)图所示的封装 结构执行步骤S241至步骤S243的工艺制程示意图。
如图13中的(a)图所示,可以通过SMT工艺将封装结构中的第一基板212焊接在第二基板215上。
如图13中的(b)图所示,在第二基板215与第一基板212之间填充底部填充胶216,在此过程中,需用到遮喷治具410,限制底部填充胶216的流动,仅让其填充在第二基板215与第一基板212之间,以及第一基板212边缘的台阶结构内。
如图13中的(c)图所示,在封装结构表面制备颜色涂覆层230,得到电容指纹识别装置,该电容指纹识别装置的结构可以参见上文图5中的相关技术方案。
类似地,将图11中(c)图所示的封装结构经过上述步骤S240处理后得到图6中所示的电容指纹识别装置,具体过程此处不再赘述。
上文中,结合图7至图13说明了本申请实施例中,通过弧面治具,具体制备电容指纹识别装置的制备过程。
在一些实施方式中,上述图9中(a)图所示的弧面治具可以通过模型治具制备得到,从而避免大量使用昂贵的模型治具制备弧面结构,而可以采用低成本的弧面治具制备弧面结构,从而降低整个电容指纹识别装置制造过程中的制造成本。
下面结合图14和图15,说明本申请实施例中弧面治具的制备方法。
图14示出了本申请实施例提供的一种弧面治具的制备方法30的流程框图。
如图14所示,该弧面治具的制备方法30可以包括以下步骤。
S310:获取第一模型治具。
S320:将第二UV胶滴入第一模型治具的表面的多个第二凹陷弧面中。
S330:在第一模型治具的表面制备第二支撑层。
S340:对第二UV胶照射第二UV光,多个第二凹陷弧面中的第二UV胶固化形成多个第二弧面结构,形成第二模型治具。
S350:分离第二模型治具与第一模型治具,并翻转第二模型治具。
S360:在多个第二弧面结构的间隙滴入第三UV胶。
S370:在第三UV胶的上方制备第一支撑层。
S380:对第三UV胶照射第三UV光,第三UV胶固化形成第一弧面层, 以形成弧面治具。
图15示出了上述步骤S310至S380每个步骤的工艺制程示意图。
图15中的(a)图示出了一种第一模型治具510的结构示意图。
具体地,该第一模型治具为非透明材料制备的弧面治具,其可靠性和耐用性均大于透明材料直接制备得到的弧面治具。
可选地,该第一模型治具的洛氏硬度需大于一定的预设值,和/或表面粗糙度需要小于一定的预设值,以提高该第一模型治具的使用可靠性,即可以多次反复使用。
作为示例,该第一模型治具的洛氏硬度大于50,表面粗糙度小于0.08。可选地,该第一模型治具可以为钢质治具,相对于铝合金、电木或者塑料材质的模型治具,钢质治具更为耐用。
进一步地,该第一模型治具中多个第二凹陷弧面的具体相关设计可以参见上文中第一凹陷弧面以及弧面结构的相关描述,此处不再赘述。
如图15中的(b)图所示,将第二UV胶520滴入第一模型治具510的表面的多个第二凹陷弧面中。
如图15中的(c)图所示,在第一模型治具510的表面制备第二支撑层530,第二支撑层520与多个第二凹陷弧面中的第二UV胶520相互接触。
作为示例,其中第二支撑层530的材料包括但不限于是PET膜,其可以为任意透光且具有支撑作用的层状结构。
如图15中的(d)图所示,对第二UV胶520照射第二UV光,第二UV胶520固化形成多个第二弧面结构,且多个第二弧面结构连接至第二支撑层530,从而形成第二模型治具。
需要说明的是,在本申请实施例中,在第二UV胶固化过程中,该第二UV胶是能够与第二支撑层530发生化学反应的,因而,第二UV胶固化后形成的多个第二弧面结构能够与第二支撑层530稳定连接,形成第二模型治具。
如图15中的(e)图所示,将第二模型治具与第一模型治具分离,并翻转第二模型治具,该第二模型治具的上表面形成多个凸起的第二弧面结构502。
需要说明的是,在本申请实施例中,在第二UV胶固化过程中,该第二UV胶是不能够与第一模型治具的材料发生化学反应的,因而,能够将第二 弧面结构502与第一模型治具进行分离。
如图15中的(f)图所示,在多个第二弧面结构502的间隙滴入第三UV胶540。
如图15中的(g)图所示,在第三UV胶540的上方制备第一支撑层401。
如图15中的(h)图所示,对第三UV胶540照射第三UV光,第三UV胶540固化形成第一弧面层402。
如图15中的(i)图所示,将第一弧面层402与第二模型治具分离,得到上述包括第一弧面层402和第一支撑层401的透明弧面治具。
本申请还提供了一种根据上述制备方法制备的电容指纹识别装置。
本申请还提供了一种包括上述电容指纹识别装置的电子设备,或者包括按照上述制备方法中任意一种方法制备的电容指纹识别装置的电子设备。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置, 可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (36)

  1. 一种电容指纹识别装置,其特征在于,用于设置在电子设备的弧形表面,包括:
    电容指纹识别封装结构;
    弧面结构,包括第一面和第二面,其中,所述弧面结构的第一面为平面,所述弧面结构的第二面为弧面,所述弧面结构的第一面连接于所述电容指纹识别封装结构的第一面,所述电容指纹识别封装结构的第一面为朝向所述电子设备的外侧的一面。
  2. 根据权利要求1所述的电容指纹识别装置,其特征在于,所述电容指纹识别封装结构包括:电容指纹传感器,第一基板,电连接件和封装材料层;
    所述电容指纹传感器通过所述电连接件连接至所述第一基板;
    所述封装材料层包覆所述电容指纹传感器以及所述电连接件,并与所述第一基板连接。
  3. 根据权利要求2所述的电容指纹识别装置,其特征在于,所述弧面结构的第二面与所述电容指纹传感器的最大距离小于或等于第一预设阈值,使得所述电容指纹传感器检测的指纹电容值能够用于指纹检测。
  4. 根据权利要求3所述的电容指纹识别装置,其特征在于,所述第一预设阈值为250μm。
  5. 根据权利要求2至4中任一项所述的电容指纹识别装置,其特征在于,所述弧面结构的第二面与所述电容指纹传感器的最大距离大于或等于160μm。
  6. 根据权利要求2至5中任一项所述的电容指纹识别装置,其特征在于,所述弧面结构的第二面的边缘区域的曲率半径小于所述弧面结构的第二面的中间区域的曲率半径。
  7. 根据权利要求6所述的电容指纹识别装置,其特征在于,所述弧面结构的第二面中边缘区域的曲率半径的范围在5至5.5之间,所述弧面结构的第二面中边缘区域的曲率半径为0.2。
  8. 根据权利要求3至7中任一项所述的电容指纹识别装置,其特征在于,所述封装材料层的第一面的边缘区域设置有台阶结构,所述封装材料层的第一面的中间区域连接于所述弧面结构的第一面的中间区域。
  9. 根据权利要求8所述的电容指纹识别装置,其特征在于,所述电子设备的弧形表面中设置有开口,所述电容指纹识别装置用于设置在所述开口中;
    所述台阶结构中平行于所述弧面结构的第一面的第一台阶面位于所述开口内。
  10. 根据权利要求9所述的电容指纹识别装置,其特征在于,所述弧面结构的第二面与所述第一台阶面的最大距离大于或等于0.9mm。
  11. 根据权利要求9所述的电容指纹识别装置,其特征在于,所述第一台阶面的宽度大于或等于0.1mm。
  12. 根据权利要求1至11中任一项所述的电容指纹识别装置,其特征在于,所述电容指纹识别封装结构的宽度大于或等于2.4mm。
  13. 根据权利要求2至12中任一项所述的电容指纹识别装置,其特征在于,所述电容指纹识别装置还包括:
    颜色涂覆层,覆盖所述弧面结构以及所述封装材料层。
  14. 根据权利要求2至13中任一项所述的电容指纹识别装置,其特征在于,所述电容指纹识别封装结构还包括:
    第二基板,电连接至所述第一基板,用于传输所述电容指纹传感器的指纹电容信号。
  15. 根据权利要求14所述的电容指纹识别装置,其特征在于,所述电容指纹识别封装结构还包括:
    底部填充胶,填充于所述第二基板与所述第一基板之间,用于提高所述第二基板与所述第一基板之间的连接可靠性。
  16. 根据权利要求15所述的电容指纹识别装置,其特征在于,所述第一基板的边缘区域形成有台阶结构,所述台阶结构用于容纳所述底部填充胶。
  17. 根据权利要求1至16中任一项所述的电容指纹识别装置,其特征在于,所述弧面结构的材料为耐高温的紫外光UV胶。
  18. 根据权利要求1至17中任一项所述的电容指纹识别装置,其特征在于,所述弧面结构的介电常数大于3.4。
  19. 根据权利要求1至18中任一项所述的电容指纹识别装置,其特征在于,所述电容指纹识别装置用于设置在所述电子设备的侧面中。
  20. 根据权利要求1至19中任一项所述的电容指纹识别装置,其特征在于,所述电容指纹识别装置设置于所述电子设备的目标按键上,所述目标按键设置于所述电子设备的侧面,所述目标按键用于实现目标功能以及指纹识别功能。
  21. 一种电容指纹识别装置的制备方法,其特征在于,包括:
    制备封装片,所述封装片包括若干个电容指纹传感器;
    通过弧面治具在所述封装片上制备若干个弧面结构,所述若干个弧面结构与所述若干个电容指纹传感器一一对应设置;
    切割所述封装片,得到若干个封装结构,所述若干个封装结构片中每个封装结构包括一个电容指纹传感器和一个弧面结构;
    基于所述封装结构,制备所述电容指纹识别装置。
  22. 根据权利要求21所述的制备方法,其特征在于,所述弧面治具的材料为透明材料,所述弧面治具的表面形成有若干个第一凹陷弧面;
    所述通过弧面治具在所述封装片上制备若干个弧面结构,包括:
    将第一紫外光UV胶滴入所述弧面治具中的若干个第一凹陷弧面中;
    将所述封装片与所述弧面治具贴合,使得所述若干个第一凹陷弧面中的第一UV胶与所述封装片中的封装材料层接触;
    对所述第一UV胶照射第一UV光,所述若干个第一凹陷弧面中的所述第一UV胶固化形成所述若干个弧面结构,且所述若干个弧面结构连接至所述封装材料层。
  23. 根据权利要求22所述的制备方法,其特征在于,所述弧面治具包括:第一支撑层与第一弧面层;
    所述第一弧面层的第一表面形成有所述若干个第一凹陷弧面;
    所述第一弧面层的第二表面为平面,且与所述第一支撑层连接。
  24. 根据权利要求23所述的制备方法,其特征在于,所述制备方法还包括:制备所述第一支撑层与所述第一弧面结构层。
  25. 根据权利要求24所述的制备方法,其特征在于,所述制备所述第一支撑层与所述第一弧面结构层,包括:
    获取第一模型治具,所述第一模型治具的材料为非透明材料,且所述第一模型治具的表面形成有若干个第二凹陷弧面;
    通过所述第一模型治具,制备所述第一支撑层与所述第一弧面结构层。
  26. 根据权利要求25所述的制备方法,其特征在于,所述通过所述第一模型治具制备所述第一支撑层与所述第一弧面结构层,包括:
    将第二UV胶滴入所述第一模型治具的表面的若干个第二凹陷弧面中;
    在所述第一模型治具的表面制备第二支撑层;
    对所述第二UV胶照射第二UV光,所述若干个第二凹陷弧面中的第二UV胶固化形成若干个第二弧面结构,且所述若干个第二弧面结构连接至所述第二支撑层,形成第二模型治具;
    分离所述第二模型治具与所述第一模型治具;
    通过所述第二模型治具,制备所述第一支撑层与所述第一弧面结构层。
  27. 根据权利要求26所述的制备方法,其特征在于,所述通过所述第二模型治具,制备所述第一支撑层与所述第一弧面结构层,包括:
    翻转所述第二模型治具,所述第二模型治具中所述若干个第二弧面结构朝上;
    在所述若干个第二弧面结构的间隙滴入第三UV胶;
    在所述第三UV胶的上方制备所述第一支撑层;
    对所述第三UV胶照射第三UV光,所述第三UV胶固化形成所述第一弧面层,且所述第一弧面层连接至所述第一支撑层,形成所述弧面治具;
    分离所述第二模型治具与所述弧面治具。
  28. 根据权利要求25至27中任一项所述的制备方法,其特征在于,所述第一模型治具的材料的洛氏硬度需大于第一预设值,和/或,所述第一模型治具的表面粗糙度小于第二预设值,以提高所述第一模型治具的使用可靠性。
  29. 根据权利要求28所述的制备方法,其特征在于,所述第一模型治具包括:钢质治具。
  30. 根据权利要求21至29中任一项所述的制备方法,其特征在于,所述基于所述封装结构,制备所述电容指纹识别装置,包括:
    将所述封装结构中的第一基板焊接在第二基板上,
    在所述第二基板与所述第一基板之间填充底部填充胶;
    在所述封装结构表面制备颜色涂覆层,得到所述电容指纹识别装置。
  31. 根据权利要求30所述的制备方法,其特征在于,所述制备封装片,包括:
    在所述封装片的第一基板层的表面制备若干个第一凹槽,所述若干个第一凹槽中每个第一凹槽设置于所述若干个电容指纹传感器中相邻两个电容指纹传感器之间,所述若干个第一凹槽用于容纳所述底部填充胶。
  32. 一种电容指纹识别装置,其特征在于,包括:
    按照权利要求21至31中任一项所述的制造方法制造的电容指纹识别装置。
  33. 一种电子设备,其特征在于,包括:
    权利要求1至18中任一项所述的电容指纹识别装置。
  34. 根据权利要求33所述的电子设备,其特征在于,所述电容指纹识别装置用于设置在所述电子设备的侧面。
  35. 根据权利要求33所述的电子设备,其特征在于,所述电容指纹识别装置设置于所述电子设备的目标按键上,所述目标按键设置于所述电子设备的侧面,所述目标按键用于实现目标功能以及指纹识别功能。
  36. 根据权利要求35所述的电子设备,其特征在于,所述目标按键为所述电子设备的电源键。
PCT/CN2020/113657 2020-09-06 2020-09-06 电容指纹识别装置、制备方法和电子设备 WO2022047760A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080005633.5A CN112889067B (zh) 2020-09-06 2020-09-06 电容指纹识别装置、制备方法和电子设备
KR1020227026068A KR20220119483A (ko) 2020-09-06 2020-09-06 정전용량식 지문 인식 장치, 제조방법 및 전자기기
EP20952004.8A EP4080326A4 (en) 2020-09-06 2020-09-06 CAPACITIVE FINGERPRINT IDENTIFICATION APPARATUS, METHOD OF MANUFACTURE AND ELECTRONIC DEVICE
PCT/CN2020/113657 WO2022047760A1 (zh) 2020-09-06 2020-09-06 电容指纹识别装置、制备方法和电子设备
US17/869,887 US12008833B2 (en) 2022-07-21 Capacitive fingerprint identification apparatus, preparation method and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113657 WO2022047760A1 (zh) 2020-09-06 2020-09-06 电容指纹识别装置、制备方法和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/869,887 Continuation US12008833B2 (en) 2022-07-21 Capacitive fingerprint identification apparatus, preparation method and electronic device

Publications (1)

Publication Number Publication Date
WO2022047760A1 true WO2022047760A1 (zh) 2022-03-10

Family

ID=76046103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113657 WO2022047760A1 (zh) 2020-09-06 2020-09-06 电容指纹识别装置、制备方法和电子设备

Country Status (4)

Country Link
EP (1) EP4080326A4 (zh)
KR (1) KR20220119483A (zh)
CN (1) CN112889067B (zh)
WO (1) WO2022047760A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105760014A (zh) * 2015-11-30 2016-07-13 友达光电股份有限公司 具有指纹识别功能的显示装置及其操作方法
CN108388404A (zh) * 2018-04-24 2018-08-10 北京小米移动软件有限公司 终端、终端的控制方法、终端的制造方法和存储介质
CN108416339A (zh) * 2018-05-03 2018-08-17 北京小米移动软件有限公司 指纹识别装置及电子设备
US20190250752A1 (en) * 2018-02-13 2019-08-15 Lg Electronics Inc. Mobile terminal
CN110674686A (zh) * 2019-08-19 2020-01-10 华为技术有限公司 指纹识别装置和电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104182737B (zh) * 2014-08-26 2017-09-15 南昌欧菲生物识别技术有限公司 指纹识别传感器封装结构及封装方法
CN104182739A (zh) * 2014-08-26 2014-12-03 南昌欧菲生物识别技术有限公司 指纹识别装置及其电子设备、封装方法
CN104916549B (zh) * 2014-10-31 2018-08-14 深圳市东方聚成科技有限公司 一种具有弧边的指纹识别芯片的封装设备及封装和切割方法
CN109585596B (zh) * 2017-09-29 2020-09-15 致伸科技股份有限公司 光学指纹感测单元及其制造方法、触控屏幕
CN211409086U (zh) * 2019-12-06 2020-09-04 上海思立微电子科技有限公司 具有血压测量功能的电容指纹集成模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105760014A (zh) * 2015-11-30 2016-07-13 友达光电股份有限公司 具有指纹识别功能的显示装置及其操作方法
US20190250752A1 (en) * 2018-02-13 2019-08-15 Lg Electronics Inc. Mobile terminal
CN108388404A (zh) * 2018-04-24 2018-08-10 北京小米移动软件有限公司 终端、终端的控制方法、终端的制造方法和存储介质
CN108416339A (zh) * 2018-05-03 2018-08-17 北京小米移动软件有限公司 指纹识别装置及电子设备
CN110674686A (zh) * 2019-08-19 2020-01-10 华为技术有限公司 指纹识别装置和电子设备

Also Published As

Publication number Publication date
EP4080326A4 (en) 2023-08-23
CN112889067A (zh) 2021-06-01
US20220375249A1 (en) 2022-11-24
EP4080326A1 (en) 2022-10-26
KR20220119483A (ko) 2022-08-29
CN112889067B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
US10061962B2 (en) Fingerprint identification module and manufacturing method thereof
US11410450B2 (en) Method for manufacturing an electronic device including multiple fixing members to fix a biometric sensor to a display
CN104183560B (zh) 电容式的指纹传感器封装结构及封装的方法
WO2015085786A1 (zh) 指纹识别装置和移动终端
TWI604388B (zh) 指紋辨識模組及其製造方法
CN106897712B (zh) 指纹模组、显示屏和移动终端
CN204011397U (zh) 电容式的指纹传感器封装结构
TWI636511B (zh) 超音波式指紋辨識模組及其製造方法
EP3086208B1 (en) Smart card with touch-based interface
KR101675465B1 (ko) 필름 커버를 포함하는 생체인식센서 모듈 및 생체인식센서 모듈의 패키징 방법
CN104239848A (zh) 制造指纹识别起始键的方法
CN201881604U (zh) 指纹传感器、用于指纹传感器的薄膜
CN112203824B (zh) 包括指纹传感器的智能卡以及用于制造智能卡的方法
US20220057846A1 (en) Electronic device comprising sensor module
WO2022047760A1 (zh) 电容指纹识别装置、制备方法和电子设备
KR101165087B1 (ko) 보강판을 구비한 지문인식 카드
CN114999926A (zh) 指纹辨识芯片模块的封装结构与其制作方法
US12008833B2 (en) Capacitive fingerprint identification apparatus, preparation method and electronic device
US11288476B2 (en) Fingerprint sensor package
KR101440344B1 (ko) 지문 인식용 반도체 장치 및 그 제조 방법
US9836683B2 (en) Microelectronics device with exposed user interfaces
TWI730812B (zh) 用於智慧卡之指紋感測晶片模組及其封裝方法
US20240009702A1 (en) Manufacturing method of wafer level ultrasonic device
WO2022141367A1 (zh) 一种弧面电容指纹封装结构、模组、电子设备及封装方法
KR20190131263A (ko) 지문 센서 패키지 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227026068

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020952004

Country of ref document: EP

Effective date: 20220720

NENP Non-entry into the national phase

Ref country code: DE