WO2022047680A1 - 一种浅水条件下等离子体震源子波高精度测量装置 - Google Patents

一种浅水条件下等离子体震源子波高精度测量装置 Download PDF

Info

Publication number
WO2022047680A1
WO2022047680A1 PCT/CN2020/113106 CN2020113106W WO2022047680A1 WO 2022047680 A1 WO2022047680 A1 WO 2022047680A1 CN 2020113106 W CN2020113106 W CN 2020113106W WO 2022047680 A1 WO2022047680 A1 WO 2022047680A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
cable
digital
vertical cable
data
Prior art date
Application number
PCT/CN2020/113106
Other languages
English (en)
French (fr)
Inventor
邢磊
刘洪卫
刘怀山
李倩倩
吕博然
张进
Original Assignee
中国海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国海洋大学 filed Critical 中国海洋大学
Priority to PCT/CN2020/113106 priority Critical patent/WO2022047680A1/zh
Priority to JP2021543347A priority patent/JP7273429B2/ja
Priority to ZA2021/04262A priority patent/ZA202104262B/en
Publication of WO2022047680A1 publication Critical patent/WO2022047680A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention relates to a three-dimensional measurement device for seismic wavelets in marine seismic exploration, in particular to a high-precision measurement device for plasma seismic source wavelets under shallow water conditions.
  • the basic working principle of the plasma source is to generate a high-energy plasma channel through a pulsed discharge in water to form a strong pressure pulse.
  • the plasma source has the advantages of high wavelet dominant frequency, wide frequency band, fast charging and discharging, high resolution, strong reflected energy, and good continuity of event axis.
  • the far-field wavelet of plasma source is not only an important index to measure the performance of the source, but also an important input data in seismic data processing.
  • the far-field wavelet of a plasma source can be relatively simple to obtain signal characteristics, easy to visualize and understand, and is an important criterion for measuring the performance of the source.
  • the purpose of the present invention is to provide a high-precision measurement device for plasma source wavelets under shallow water conditions, so as to overcome the deficiencies of the prior art.
  • a high-precision measurement device for plasma source wavelets under shallow water conditions which is characterized by comprising two submarine cables and a vertical cable connected with a digital package, as well as a floating ball and an underwater compass;
  • the digital package is located on the ocean floor, and the two submarine cables They are laid along the x-direction and the y-direction respectively.
  • the top of the vertical cable is connected to the floating ball, and the bottom end is connected to the digital package.
  • the vertical cable is laid along the z-direction and its length is less than the water depth.
  • the underwater compass is fixed on the vertical cable;
  • the above-mentioned submarine cables are provided with multiple sensor groups at equal intervals.
  • Each sensor group includes a vibration sensor and a pressure sensor.
  • the distance between the sensor groups is 0.5 meters.
  • the number of channels is 8 to 16;
  • the above-mentioned vertical cables are provided with multiple sensor groups at equal intervals, each sensor group is composed of two pressure sensors in parallel, and the channel spacing is 0.5 meters; the number of sound pressure sensors is 8 to 16; the pressure
  • the sensor and the vibration sensor are used to measure the scalar and vector information of the seabed position, respectively;
  • the above digital package includes a base and a hollow spherical shell above the base.
  • the shell is provided with a pressure sensor, a temperature sensor and GPS, wherein the GPS is used for timing of the entire device, and the pressure sensor and temperature sensor are used for the depth of the digital package. Continuous recording of all time and temperature parameters to eliminate the influence of seawater depth and temperature on wavelets in the later stage;
  • the lower part of the inner cavity of the shell is provided with a battery compartment, which is equipped with a large-capacity lithium battery;
  • the upper part is provided with four layers of digital boards, one of which contains the general control board, GPS and inclination data acquisition board, temperature and pressure data acquisition board, data acquisition board Cache memory board A and data cache memory board B;
  • the other three layers of digital boards are used to collect data of cables in x, y, and z directions respectively, and each layer includes seismic data acquisition boards and analog-to-digital converters with a number equal to the number of cable channels in that direction plate;
  • the above-mentioned GPS is connected with the inclination data acquisition board and GPS, and is used to collect the data in the GPS and transmit the collected data to the data cache storage board A for storage;
  • the temperature and pressure data acquisition board is used to collect the data in the temperature sensor and the pressure sensor, and output the data to the data cache memory board A for storage;
  • the data cache storage board B is used to store the data collected by submarine cables and vertical cables.
  • the submarine cable includes an outer protective sleeve, a pressure sensor, a vibration sensor and a wire; the pressure sensor and the vibration sensor are located in the outer protective sleeve, and are connected to the digital package through multiple sets of wires located in the outer protective sleeve.
  • a solid polyurethane material is filled between the inner side of the sleeve and the pressure sensor and vibration sensor.
  • the outer protective sheath of the submarine cable is made of high-strength polyamide material, and Kevlar fiber is mixed in the middle of the polyamide material.
  • the vertical cable includes an outer protective sleeve, a pressure sensor and a wire; the pressure sensor is located in the outer protective sleeve, and is connected to the digital package by using multiple sets of wires located in the outer protective sleeve, and the inner side of the outer protective sleeve is connected to the sound pressure sensor. Filled with polyurethane solid material between.
  • the outer protective sheath of the vertical cable is made of high-strength polyamide material, and Kevlar fiber is mixed in the middle of the polyamide material.
  • the end of the vertical cable or submarine cable that is connected with the digital package is provided with a connecting end, and the connecting end is provided with a protective sleeve made of high-strength titanium alloy metal, and the diameter of the protective sleeve is from the end of the vertical cable to the end of the digital package.
  • the direction is a step-by-step increase; the top of the digital package is provided with a 19-pin watertight connector, and is connected to the connecting end of the vertical cable through the 19-pin watertight connector; the submarine cables are respectively located on the side of the digital package.
  • the 19-pin cable Watertight connectors and digital packet connections are respectively located on the side of the digital package.
  • the main control board of the digital package uses ARM9 as the main controller to control the work of the entire digital package; uses CS5372/5376 components to form a 32-bit analog-to-digital converter; uses ACTEL, AGL250V5, FPGA for address latching, selection Communication, data serial-parallel format conversion, counting, frequency division, logic control; FIFO buffer and flash electronic disk are used to ensure the accuracy and authenticity of recorded data.
  • the battery compartment is provided with a lithium battery and a circuit unit.
  • the lithium battery is charged through the 19-pin watertight connector located at the top of the digital package, which is responsible for supplying power to all components of the entire device, and the circuit unit is responsible for converting the battery voltage into various power sources required by the acquisition system, including digital system power and analog system power. , A/D converter high-precision reference voltage, etc.
  • the invention utilizes submarine cables and vertical cables to measure plasma source wavelets under shallow water conditions. Compared with the traditional measurement device, it is suitable for the specific environment of shallow water, and is a measurement device for the high-frequency wavelet of the plasma source.
  • the present invention has the following significant advantages:
  • the underwater compass is fixed on the vertical cable, which can record the attitude of the vertical cable and reduce the measurement error;
  • Kevlar fibers in the outer protective sleeve of the collection cable which increases the tensile strength, and the tensile strength is more than 1 ton;
  • the stepped connection end is adopted, which can not only ensure the stability of the joint connection, but also can bend in a certain range, which is convenient for retraction;
  • the dynamic range is up to 128dB
  • the time sampling rate can reach 1/64ms
  • various sampling rates can be selected: 1/64ms, 1/32ms, 1/16ms, 1 /8ms, 1/4ms, 1/2ms.
  • FIG. 1 is a schematic diagram of the overall structure of the present invention.
  • FIG. 2 is a schematic diagram of the internal structure of the digital packet of the present invention.
  • Figure 3 is an exploded view of the digital package watertight joint of the present invention.
  • Figure 4 is a front view of the watertight joint.
  • Figure 5 is a front view of the watertight joint.
  • Fig. 6 is a perspective view of a watertight joint.
  • Figure 7 is an exploded view of the connecting end of the vertical cable and the submarine cable of the invention (without protective cover).
  • Fig. 8 is a cross-sectional view of the connection terminal.
  • FIG. 9 is a perspective view of the connection terminal.
  • Figure 10 is an assembly view of the watertight joint of the present invention.
  • the present invention includes two submarine cables 1 , one vertical cable 2 , a digital package 3 , a floating ball 4 and an underwater compass 5 .
  • the digital package 3 is located on the seabed, and the two submarine cables 1 are laid along the x-direction and the y-direction respectively.
  • the top of the vertical cable 2 is connected to the floating ball 4, and the bottom end is connected to the digital package 3.
  • the vertical cable 2 is laid along the z-direction and has a length less than When the water is deep, the underwater compass 5 is fixed on the vertical cable 2, and the floating ball 4 keeps the vertical cable 2 in a vertical state.
  • the high weight of the base allows the entire unit to be fixed on the seabed.
  • the three cables are perpendicular to each other, forming a three-dimensional observation method in space.
  • the above-mentioned submarine cable 1 is provided with multiple vibration sensors and pressure sensors at equal intervals, and the same pressure sensor and vibration sensor are arranged in the same position of the submarine cable 1, and are respectively used to measure the scalar and vector information of the submarine position. 2.
  • the digital package 3 of the present invention includes a base 313 and a hollow spherical shell 301 above the base 313.
  • the shell is provided with a pressure sensor 302, a temperature sensor 304 and a GPS 303; the lower part of the inner cavity of the shell is provided with a battery
  • the warehouse 312 is equipped with a large-capacity lithium battery; the upper part is provided with four layers of digital boards, one of which includes the general control board 305, the GPS and inclination data acquisition board 306, the temperature and pressure data acquisition board 307, and the data cache storage board A308 and data cache storage board B309; the other three layers of digital boards are used to collect data of cables in the x, y, and z directions respectively, and each layer includes a seismic data acquisition board 310 and an analog-to-digital conversion board 311 with a number equal to the number of cable channels in this direction; Above-mentioned GPS is connected with inclination data acquisition board 306 and GPS 303, is used for collecting the data in GPS
  • the main control board 305 of the digital package 3 uses ARM9 as the main controller to control the work of the entire digital package 3; uses CS5372/5376 components to form a 32-bit analog-to-digital converter; uses ACTEL, AGL250V5, FPGA for address lock Storage, strobe, data string-parallel format conversion, counting, frequency division, logic control; FIFO buffer and flash electronic disk are used to ensure the accuracy and authenticity of recorded data.
  • the submarine cable 1 includes an outer protective cover, a pressure sensor, a vibration sensor and a wire; the pressure sensor and the vibration sensor are located in the outer protective cover, and can be connected to the digital package 3 through multiple groups of wires located in the outer protective cover. , the inner side of the outer protective cover and the pressure sensor and the vibration sensor are filled with polyurethane solid material.
  • the outer protective cover of the submarine cable 1 is made of high-strength polyamide material, and Kevlar fibers are mixed in the polyamide material.
  • the pressure sensor and the vibration sensor are combined in parallel, the track spacing is 0.5 meters, and the number of tracks is 8 to 16.
  • the vertical cable 2 includes an outer protective sleeve, a pressure sensor and a wire; the pressure sensor is located in the outer protective sleeve, and is connected to the digital package 3 by using multiple sets of wires located in the outer protective sleeve.
  • the pressure sensor is filled with polyurethane solid material.
  • the outer protective sheath of the vertical cable 2 is made of high-strength polyamide material, and Kevlar fiber is mixed in the polyamide material.
  • two pressure sensors are combined in parallel for each track, and the track spacing is 0.5 meters; the number of sound pressure sensors is 8 to 16.
  • the vertical cable 2 or the submarine cable 1 of the present invention is connected with the digital package 3 at one end with a connection end, and the connection end is provided with a protective cover made of high-strength titanium alloy metal.
  • the diameter of the protective sleeve increases in steps from the end of the vertical cable 2 to the digital package 3; the top of the digital package is provided with a 19-pin watertight connector, and is connected with the connection end of the vertical cable 2 through the 19-pin watertight connector;
  • the submarine cable 1 is connected to the digital package 3 through a 19-pin cable watertight connector located on the side of the digital package 3, respectively.
  • the watertight connector is divided into male and female.
  • the watertight connector on the numerical package 3 is a female connector, and the watertight connector on the cable is a male connector. External rotatable screws are used for connection and fixation; the watertight joint and the connecting part with the cable are provided with a protective cover made of high-strength titanium alloy metal. There is a certain gap, so that the protective cover can be bent within a certain range.
  • the battery compartment 312 is provided with a lithium battery and a circuit unit.
  • the lithium battery is charged through the 19-pin watertight connector located at the top of the digital package 3, which is responsible for supplying power to all components of the entire device, and the circuit unit is responsible for converting the battery voltage into various power sources required by the acquisition system, including digital system power, analog system power Power supply, A/D converter high-precision reference voltage, etc.
  • a small boat After sinking the digital package into the seabed, a small boat is used to drag a submarine cable to a pre-designed designated position, and the cable is slowly placed on the seabed by pulling the rope. , and finally lay the other submarine cable to the designated location in the same way.
  • the plasma source is excited for data acquisition. After the work is completed, the entire device is recovered and the data is read. During construction, the source wavelet signal received by the device is converted from an analog signal to a digital signal, and transmitted to the storage and recording unit in the digital package, which collects and records. At the same time, the temperature sensor and pressure sensor recording device above the digital package The environmental information of the underwater compass records the attitude information of the vertical cable.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oceanography (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种浅水条件下等离子体震源子波高精度测量装置,包括与数字包(3)相连的两条海底电缆(1)和一条垂直电缆(2),以及浮球(4)和水下罗盘(5);两条海底电缆(1)分别沿x向和y向布设,垂直电缆(2)顶端连接浮球(4)、底端与数字包(3)相连,垂直电缆(2)沿z向布设且长度小于水深,水下罗盘(5)固定在垂直电缆(2)上;海底电缆(1)等间距设有多道传感器组,每道传感器组包括一个振动传感器和一个压力传感器(302);垂直电缆(2)等间距设有多道传感器组,每道传感器组由两个压力传感器(302)并联组成。利用海底电缆(1)和垂直电缆(2)对浅水条件下等离子体震源子实现了三维立体观测,提高了浅水条件下震源子波的测量精度,在横向、纵向上都能监测到等震源子波的变化规律;相对水平拖缆,垂直电缆和海底电缆大大减少了噪音干扰。

Description

一种浅水条件下等离子体震源子波高精度测量装置 技术领域
本发明涉及一种海洋地震勘探中的地震子波立体测量装置,特别涉及一种浅水条件下等离子体震源子波高精度测量装置。
背景技术
等离子体震源的基本工作原理就是通过水中脉冲放电产生高能的等离子体通道形成强压力脉冲。等离子体震源具有子波主频高、频带宽、充放电快、分辨率高、反射能量强、同相轴连续性好等优点。
等离子体震源的远场子波不仅是衡量震源性能的重要指标,还是地震资料处理中的重要输入数据。等离子体震源的远场子波可以相对简单地获得信号特性,易于可视化和理解,是衡量震源性能的重要标准。
在浅水条件下,复杂的多次波、导波、潮汐、涌浪等特殊干扰波和水体结构严重影响了等离子体震源子波的稳定性。常规的多道水平电缆,由于其距离海平面较近,观测系统处于一个动态的过程,其获得的数据精度较低,分辨率仅能满足中深层或浅层工程地震勘探的需要,达不到高精度地震勘探的要求;常规的浅层地震以及浅地层剖面等方法存在频带窄、抗干扰能力差等缺点,也无法获得准确的等离子体震源的远场子波。
因此鉴于现有技术的局限性和浅水条件的特殊性,目前还没有针对浅水条件下的等离子体震源子波的测量装置,但设计这样一种装置又是非常必要的。
发明内容
本发明的目的是提供一种浅水条件下等离子体震源子波高精度测量装置,以克服现有技术的不足。
一种浅水条件下等离子体震源子波高精度测量装置,其特征是包括与数字包相连的两条海底电缆和一条垂直电缆,以及浮球和水下罗盘;数字包坐落于海底,两条海底电缆分别沿x向和y向布设,垂直缆顶端连接浮球、底端与数字包相连,垂直电缆沿z向布设且长度小于水深,水下罗盘固定在垂直电缆上;
上述海底电缆等间距设有多道传感器组,每道传感器组包括一个振动传感器和一个压力传感器,二者独立记录波形并分别传输至数字包进行存储,传感器组之间的道间距为0.5米,道数为8到16;上述垂直电缆等间距设有多道传感器组,每道传感器组由两个压力传感器并联组成,道间距为0.5米;声压传感器道数为8到16;所述压力传感器和振动传感器分别 用来测量海底位置的标量和矢量信息;
上述数字包包括底座和底座上方的中空的球形壳体,壳体上设有压力传感器、温度传感器和GPS,其中GPS用于整个装置的授时,压力传感器和温度传感器用于对数字包所处深度和温度参数的全时段连续记录,以后期消除海水深度和温度对子波的影响;
壳体内腔下部设有电池仓,内部装有大容量锂电池;上部设有四层数字板,其中一层数字板含有总控制板、GPS与倾角数据采集板、温度与压力数据采集板、数据缓存存储板A和数据缓存存储板B;另外三层数字板分别用于采集x、y、z方向电缆的数据,每层均包括地震数据采集板和数量等于该方向电缆道数的模数转换板;
上述的GPS与倾角数据采集板和GPS连接,用于采集GPS内的数据并将采集到的数据传输到数据缓存存储板A上进行存储;
温度与压力数据采集板用于采集温度传感器和压力传感器内的数据,并将数据输出到数据缓存存储板A上进行存储;
数据缓存存储板B用于存储海底电缆、垂直电缆采集到的数据。
所述的海底电缆包括外保护套、压力传感器、振动传感器和导线;所述的压力传感器和振动传感器均位于外保护套内,通过位于外保护套内的多组导线与数字包相连,外保护套内侧与压力传感器和振动传感器之间填充聚氨酯固体材料。所述海底电缆的外保护套采用高强度聚酰胺材料制作,且聚酰胺材料中间混有凯夫拉纤维。
所述的垂直电缆包括外保护套、压力传感器和导线;所述的压力传感器位于外保护套内,通过用位于外保护套内的多组导线与数字包相连,外保护套内侧与声压传感器之间填充聚氨酯固体材料。所述垂直电缆的外保护套采用高强度聚酰胺材料制作,且聚酰胺材料中间混有凯夫拉纤维。
所述的垂直电缆或海底电缆与数字包进行连接的一端设有连接端头,连接端头设有高强度钛合金金属制作的保护套,所述的保护套直径自垂直电缆末端往数字包的方向是呈阶梯式递增;所述数字包顶部设有19针水密接头,并通过该19针水密接头与垂直电缆的连接端头相连;所述的海底电缆分别通过位于数字包侧面的19针电缆水密接头和数字包连接。
所述数字包的总控制板内采用ARM9作为主控制器,控制整个数字包的工作;采用CS5372/5376组件组成32位模数转换器;采用ACTEL、AGL250V5、FPGA,用于地址锁存、选通、数据串—并格式转换、计数、分频、逻辑控制;采用FIFO缓存器及闪存电子盘保证记录数据的准确性和真实性。
所述电池仓内设有锂电池和电路单元。其中,锂电池通过位于数字包顶部的19针水密 接头进行充电,负责给整个装置的各部件供电,电路单元负责将电池电压转换成采集系统需要的各种电源,包括数字系统电源、模拟系统电源、A/D转换器高精度参考电压等。
本发明利用了海底电缆和垂直缆对浅水条件下等离子体震源子波进行测量。与传统的测量装置相比,其适用于浅水这一特定环境,是针对等离子体震源高频子波的测量装置,本发明具有以下显著优点:
a、采用了0.5m的小道间距排列,实现了三维立体观测,较常规地震采集6.25m道间距或12.5m道间距而言增加了采样点密度,提高了浅水条件下震源子波的测量精度,并实现了数模转换;
b、采用海底电缆和垂直缆的组合测量方式,在横向、纵向上都能监测到等震源子波的变化规律;
c、投放至海底,相对水平拖缆,垂直缆和海底电缆都远离海面,没有波浪和涌浪噪音的影响,且采集数据时处于静止状态,大大减少了噪音干扰;
d、水下罗盘固定在垂直电缆上,能够记录垂直电缆的姿态,减小了测量误差;
e、设有温度、压力传感器,能够获取温度压力信息,从而能够准确反演震源子波的演变过程;
f、设有GPS,在设备投放和回收后,进行钟差校正,消除了时钟漂移的影响;
g、采集缆外部保护套中设有凯夫拉纤维,增大了抗拉能力,抗拉力1吨以上;
h、采用了阶梯式的连接端头,即能保证接头连接的稳定性,又能够一定范围弯曲,便于收放;
i、采用CS5372/5376组件组成32位模数转换器,动态范围高达128dB,时间采样率可达1/64ms,且可选择多种采样率:1/64ms,1/32ms,1/16ms,1/8ms,1/4ms,1/2ms。
附图说明
图1是本发明的总体结构示意图。
图2是本发明数字包内部结构示意图。
图3是本发明数字包水密接头分解图。
图4是水密接头的前视图。
图5是水密接头的前视图。
图6是水密接头的立体图。
图7发明垂直缆和海底电缆的连接端头分解图(不含保护套)。
图8是连接端头的剖视图。
图9是连接端头的立体图。
图10本发明水密接头组装图。
其中,1海底电缆,2垂直电缆,3数字包,4浮球,5水下罗盘,301数字包水密接头,302压力传感器,303GPS,304温度传感器,305总控制板,GPS与倾角数据采集板306,温度与压力采集板307,数据缓存存储板A308,数据缓存存储板B309,地震数据采集板310,模数转换板311,电池仓312,底座313。
具体实施方式
如图1所示,本发明包括两条海底电缆1、一条垂直电缆2、数字包3、浮球4和水下罗盘5。其中,数字包3坐落于海底,两条海底电缆1分别沿x向和y向布设,垂直缆2顶端连接浮球4、底端与数字包3相连,垂直电缆2沿z向布设且长度小于水深,水下罗盘5固定在垂直电缆2上,浮球4使垂直电缆2保持垂直状态。底座具有较高的重量可以使整个装置固定在海底。三条缆两两垂直,组成了空间立体观测方式。上述海底电缆1等间距设有多道振动传感器和压力传感器,同一道压力传感器和振动传感器设置在海底电缆1的同一位置,且分别用来测量海底位置的标量和矢量信息,所述的垂直电缆2上等间距设有多道压力传感器;
如图2所示,本发明的数字包3包括底座313和底座313上方的中空的球形壳体301,壳体上设有压力传感器302、温度传感器304和GPS 303;壳体内腔下部设有电池仓312,内部装有大容量锂电池;上部设有四层数字板,其中一层数字板含有总控制板305、GPS与倾角数据采集板306、温度压力数据采集板307、数据缓存存储板A308和数据缓存存储板B309;另外三层数字板分别用于采集x、y、z方向电缆的数据,每层均包括地震数据采集板310和数量等于该方向电缆道数的模数转换板311;上述的GPS与倾角数据采集板306和GPS 303连接,用于采集GPS 303内的数据并将采集到的数据传输到数据缓存存储板A308上进行存储;温度压力数据采集板307分别用于采集温度传感器304和压力传感器302内的数据,并将数据输出到数据缓存存储板A308上进行存储;数据缓存存储板B309用于存储海底电缆1、垂直电缆2采集到的数据。
所述数字包3的总控制板305内采用ARM9作为主控制器,控制整个数字包3的工作;采用CS5372/5376组件组成32位模数转换器;采用ACTEL、AGL250V5、FPGA,用于地址锁存、选通、数据串—并格式转换、计数、分频、逻辑控制;采用FIFO缓存器及闪存电子盘保证记录数据的准确性和真实性。
所述的海底电缆1包括外保护套、压力传感器、振动传感器和导线;所述的压力传感器和振动传感器均位于外保护套内,能够通过位于外保护套内的多组导线与数字包3相连,外保护套内侧与压力传感器和振动传感器之间填充聚氨酯固体材料。所述海底电缆1的外保护套采用高强度聚酰胺材料制作,且聚酰胺材料中间混有凯夫拉纤维。所述的海底电缆1中, 压力传感器和振动传感器并联组合,道间距为0.5米,道数为8到16。
所述的垂直电缆2包括外保护套、压力传感器和导线;所述的压力传感器位于外保护套内,通过用位于外保护套内的多组导线与数字包3相连,外保护套内侧与声压传感器之间填充聚氨酯固体材料。所述垂直电缆2的外保护套采用高强度聚酰胺材料制作,且聚酰胺材料中间混有凯夫拉纤维。所述的垂直电缆2中,每道采用两个压力传感器并联组合,道间距为0.5米;声压传感器道数为8到16。
如图3-10所示,本发明的垂直电缆2或海底电缆1与数字包3进行连接的一端设有连接端头,连接端头设有高强度钛合金金属制作的保护套,所述的保护套直径自垂直电缆2末端往数字包3的方向是呈阶梯式递增;所述数字包顶部设有19针水密接头,并通过该19针水密接头与垂直电缆2的连接端头相连;述的海底电缆1分别通过位于数字包3侧面的19针电缆水密接头和数字包3连接。水密接头有公、母之分,数值包3上的水密接头为母头,电缆上的水密接头为公头,水密接头采用多部件分级嵌套组合而成,内部19针接口保持不动,通过外部可旋转的螺丝进行连接固定;水密接头及与电缆连接部分设有高强度钛合金金属制作的保护套,保护套的直径自电缆到水密接头呈阶梯式递增,且各级保护套之间有一定空隙,使保护套能够在一定范围内弯曲。
所述电池仓312内设有锂电池和电路单元。其中,锂电池通过位于数字包3顶部的19针水密接头进行充电,负责给整个装置的各部件供电,电路单元负责将电池电压转换成采集系统需要的各种电源,包括数字系统电源、模拟系统电源、A/D转换器高精度参考电压等。
使用本发明时,先对海底电缆1和垂直缆2进行测试,将数字包和电缆的水密接头连接并密封,仔细检查各部位接口,确保无松动现象,进行电池的电压和电量测试,将整套装置各个部件组装完毕。进行GPS定位,对设备进行授时,并使之进入采集状态,待工作船到达预定点位后,首先将浮球和垂直缆缓缓放到水中,然后将数字包投放下去,拉住两根海底电缆慢慢下放,海底电缆末端用凯夫拉绳连接,将数字包沉入海底之后,再用小船将一条海底电缆拖到预先设计好的指定位置,拉住绳子将海底电缆缓缓放置到海底,最后将另一条海底电缆用同样的方式布放到指定位置。
电缆放置完毕后,激发等离子体震源进行数据采集工作,待工作完成后回收整套装置,并读取数据。施工作业时,装置接收到的震源子波信号从模拟信号转换为数字信号,传输给数字包内的存储记录单元,由其进行采集和记录,同时,数字包上方的温度传感器、压力传感器记录装置的环境信息,水下罗盘记录垂直缆的姿态信息。

Claims (4)

  1. 一种浅水条件下等离子体震源子波高精度测量装置,其特征是包括与数字包(3)相连的两条海底电缆(1)和一条垂直电缆(2),以及浮球(4)和水下罗盘(5);数字包(3)坐落于海底,两条海底电缆(1)分别沿x向和y向布设,垂直缆(2)顶端连接浮球(4)、底端与数字包(3)相连,垂直电缆(2)沿z向布设且长度小于水深,水下罗盘(5)固定在垂直电缆(2)上;
    上述海底电缆(1)等间距设有多道传感器组,每道传感器组包括一个振动传感器和一个压力传感器,二者独立记录波形并分别传输至数字包进行存储,传感器组之间的道间距为0.5米,道数为8到16;上述垂直电缆(2)等间距设有多道传感器组,每道传感器组由两个压力传感器并联组成,道间距为0.5米;声压传感器道数为8到16;所述压力传感器和振动传感器分别用来测量海底位置的标量和矢量信息;
    上述数字包(3)包括底座(313)和底座(313)上方的中空的球形壳体(301),壳体(301)上设有压力传感器(302)、温度传感器(304)和GPS(303),其中GPS(303)用于整个装置的授时,压力传感器(302)和温度传感器(304)用于对数字包(3)所处深度和温度参数的全时段连续记录;
    壳体(301)内腔下部设有电池仓(312),内部装有大容量锂电池;上部设有四层数字板,其中一层数字板含有总控制板(305)、GPS与倾角数据采集板(306)、温度与压力数据采集板(307)、数据缓存存储板A(308)和数据缓存存储板B(309);另外三层数字板分别用于采集x、y、z方向电缆的数据,每层均包括地震数据采集板(310)和数量等于该方向电缆道数的模数转换板(311);
    上述的GPS与倾角数据采集板(306)和GPS(303)连接,用于采集GPS(303)内的数据并将采集到的数据传输到数据缓存存储板A(308)上进行存储;
    温度与压力数据采集板(307)用于采集温度传感器(304)和压力传感器(302)内的数据,并将数据输出到数据缓存存储板A(308)上进行存储;
    数据缓存存储板B(309)用于存储海底电缆(1)、垂直电缆(2)采集到的数据。
  2. 如权利要求1所述的浅水条件下等离子体震源子波高精度测量装置,其特征是所述的海底电缆(1)还包括外保护套、振动传感器、压力传感器和导线;所述的压力传感器和振动传感器均位于外保护套内,通过位于外保护套内的多组导线与数字包(3)相连,外保护套内侧与压力传感器和振动传感器之间填充聚氨酯固体材料。
  3. 如权利要求1所述的浅水条件下等离子体震源子波高精度测量装置,其特征是所述的垂直电缆(2)包括外保护套、压力传感器和导线;所述的压力传感器位于外保护套内,通过用位于外保护套内的多组导线与数字包(3)相连,外保护套内侧与声压传感器之间填充聚氨酯固体材料。
  4. 如权利要求1所述的浅水条件下等离子体震源子波高精度测量装置,其特征是所述的垂直电缆(2)或海底电缆(1)与数字包(3)进行连接的一端设有连接端头,连接端头设有高强度钛合金金属制作的保护套,所述的保护套直径自垂直电缆(2)末端往数字包(3)的方向是呈阶梯式递增;所述数字包顶部设有19针水密接头,并通过该19针水密接头与垂直电缆(2)的连接端头相连;所述的海底电缆(1)分别通过位于数字包(3)侧面的19针电缆水密接头和数字包(3)连接。
PCT/CN2020/113106 2020-09-02 2020-09-02 一种浅水条件下等离子体震源子波高精度测量装置 WO2022047680A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/113106 WO2022047680A1 (zh) 2020-09-02 2020-09-02 一种浅水条件下等离子体震源子波高精度测量装置
JP2021543347A JP7273429B2 (ja) 2020-09-02 2020-09-02 浅水条件下でのプラズマ震源ウェーブレット高精度測定装置
ZA2021/04262A ZA202104262B (en) 2020-09-02 2021-06-21 Device for high-precision measurement of wavelets from plasma source in shallow water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113106 WO2022047680A1 (zh) 2020-09-02 2020-09-02 一种浅水条件下等离子体震源子波高精度测量装置

Publications (1)

Publication Number Publication Date
WO2022047680A1 true WO2022047680A1 (zh) 2022-03-10

Family

ID=77411304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113106 WO2022047680A1 (zh) 2020-09-02 2020-09-02 一种浅水条件下等离子体震源子波高精度测量装置

Country Status (3)

Country Link
JP (1) JP7273429B2 (zh)
WO (1) WO2022047680A1 (zh)
ZA (1) ZA202104262B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706584A (zh) * 2009-11-29 2010-05-12 中国海洋大学 高精度海洋地震勘探数据采集系统
CN201540371U (zh) * 2009-11-29 2010-08-04 中国海洋大学 高精度海洋地震勘探多道数字固体拖缆
CN104049278A (zh) * 2014-06-24 2014-09-17 国家海洋局第一海洋研究所 多震源多拖缆触发时序控制系统及方法
CN105510977A (zh) * 2015-12-31 2016-04-20 中国海洋大学 拖曳式海洋地震勘探垂直缆数据采集系统
US20190377097A1 (en) * 2018-06-08 2019-12-12 Ion Geophysical Corporation Sensor node attachment mechanism and cable retrieval system
CN111123348A (zh) * 2019-12-30 2020-05-08 浙江大学 一种用于淡水浅地层高分辨率探测的等离子体震源系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113377A (en) * 1991-05-08 1992-05-12 Atlantic Richfield Company Receiver array system for marine seismic surveying
US5257241A (en) * 1991-05-08 1993-10-26 Atlantic Richfield Company Method and system for acquisition of 3-dimensional marine seismic data
JP3464200B2 (ja) * 2000-08-30 2003-11-05 日本熱水開発株式会社 海底の地下構造探査方法及び同方法を実施するための装置
US6588980B2 (en) * 2001-05-15 2003-07-08 Halliburton Energy Services, Inc. Underwater cable deployment system and method
US7023213B2 (en) * 2002-12-10 2006-04-04 Schlumberger Technology Corporation Subsurface conductivity imaging systems and methods
US7970546B1 (en) * 2007-06-22 2011-06-28 Westerngeco L.L.C. Diplet-based imaging of seismic data in shot or receiver records
CN104597483A (zh) * 2013-02-04 2015-05-06 英洛瓦(天津)物探装备有限责任公司 使用混合模式的地震勘探系统获取地震数据的方法
CN105467453A (zh) * 2015-12-31 2016-04-06 中国海洋大学 自容式海洋垂直缆地震勘探数据采集系统
CN105510978B (zh) * 2015-12-31 2016-11-23 中国海洋大学 高精度海洋地震勘探垂直缆
WO2019112035A1 (ja) * 2017-12-08 2019-06-13 株式会社地球科学総合研究所 海底下地層の探査方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706584A (zh) * 2009-11-29 2010-05-12 中国海洋大学 高精度海洋地震勘探数据采集系统
CN201540371U (zh) * 2009-11-29 2010-08-04 中国海洋大学 高精度海洋地震勘探多道数字固体拖缆
CN104049278A (zh) * 2014-06-24 2014-09-17 国家海洋局第一海洋研究所 多震源多拖缆触发时序控制系统及方法
CN105510977A (zh) * 2015-12-31 2016-04-20 中国海洋大学 拖曳式海洋地震勘探垂直缆数据采集系统
US20190377097A1 (en) * 2018-06-08 2019-12-12 Ion Geophysical Corporation Sensor node attachment mechanism and cable retrieval system
CN111123348A (zh) * 2019-12-30 2020-05-08 浙江大学 一种用于淡水浅地层高分辨率探测的等离子体震源系统

Also Published As

Publication number Publication date
JP7273429B2 (ja) 2023-05-15
JP2022550226A (ja) 2022-12-01
ZA202104262B (en) 2021-08-25

Similar Documents

Publication Publication Date Title
CA2072107C (en) Seismic cable device
CN109143325B (zh) 一种海底四分量节点地震仪器系统及海底地震数据采集方法
CN113759423A (zh) 海底四分量节点地震数据采集系统及其数据采集方法
WO2018209838A1 (zh) 一种近海底水合物探测系统
WO2022257429A1 (zh) 海底光纤四分量地震仪器系统及其数据采集方法
CN105372332B (zh) 一种海底沉积物纵波声波参数原位自动测量装置及方法
CN106404222A (zh) 基于组合式高精度测温电缆的海洋温深剖面探测系统
CA2946611C (en) Long-term seafloor heat flow monitoring probe based on underwater robot platform
CN105974480A (zh) 一种双舱球组合式海底电磁仪
CN106959466A (zh) 海洋地震数据采集系统和方法
GB2589011A (en) Modified simultaneous long-offset acquistion with improved low frequency performance for full wavefield inversion
WO2022047680A1 (zh) 一种浅水条件下等离子体震源子波高精度测量装置
AU2020104461A4 (en) Device for high-precision measurement of wavelets from plasma source in shallow water
CN208872883U (zh) 一种海底四分量节点地震仪器系统
CN105510978B (zh) 高精度海洋地震勘探垂直缆
CN101706584A (zh) 高精度海洋地震勘探数据采集系统
CN110749926A (zh) 一种基于声学原理的海洋地质勘查参数测量装置
CN206696442U (zh) 海洋地震数据采集系统
CN109975875A (zh) 一种随机接收的垂直电缆地震数据采集系统与方法
CN104515499A (zh) 新型内河航道断面测量系统及其测量方法
CN206411279U (zh) 移动式海洋地震长期实时探测器
CN215180930U (zh) 海底底质小尺度原位声学成像系统
CN202485672U (zh) 水下测波验潮工作站
CN214067407U (zh) 一种大间距、多单元单道地震国产接收缆
CN112558010A (zh) 一种烷基苯介质中的声源精确定位装置及方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021543347

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20951927

Country of ref document: EP

Kind code of ref document: A1