WO2022047598A1 - Dispositivo de motor lineal reciprocante de inducción. - Google Patents

Dispositivo de motor lineal reciprocante de inducción. Download PDF

Info

Publication number
WO2022047598A1
WO2022047598A1 PCT/CL2020/050100 CL2020050100W WO2022047598A1 WO 2022047598 A1 WO2022047598 A1 WO 2022047598A1 CL 2020050100 W CL2020050100 W CL 2020050100W WO 2022047598 A1 WO2022047598 A1 WO 2022047598A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive ring
primary winding
electrical conductive
transformer
core
Prior art date
Application number
PCT/CL2020/050100
Other languages
English (en)
French (fr)
Inventor
Borja RODRÍGUEZ RÍOS
Original Assignee
Rodriguez Rios Borja
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rodriguez Rios Borja filed Critical Rodriguez Rios Borja
Priority to US18/043,893 priority Critical patent/US20240030795A1/en
Priority to PCT/CL2020/050100 priority patent/WO2022047598A1/es
Publication of WO2022047598A1 publication Critical patent/WO2022047598A1/es
Priority to CL2023000143A priority patent/CL2023000143A1/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/02Drilling rigs characterised by means for land transport with their own drive, e.g. skid mounting or wheel mounting
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/025Asynchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/08Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing

Definitions

  • Mine Operations an important part of the operational efficiency can be achieved in the first part of the process, called "Mine Operations”.
  • This set of operations contemplates, among other stages: (i) “drilling”, in which certain specialized machines drill the rock; (ii) “burn” (or explosion), in which each of the perforations is loaded with explosives. Once these explosives are detonated, the rock is reduced to suitable sizes to be processed in later stages; (iii) and finally the "loading”, in which the rock is mounted on large trucks thanks to the operation of the loading shovel.
  • the critical equipment that carries out the "Mine Operations" is rock drills, loading shovels and large trucks.
  • the proportions in which this equipment is found in the field are approximately one loading shovel and two drilling machines for every 5 to 10 trucks. Therefore, one of the critical equipment in the operation of a mining company is rock drilling, in which the critical variables for its operation are its reliability, the speed at which it drills the rock and the energy efficiency with which it is carried out. .
  • This type of equipment such as the loading shovel and some drilling rigs, are powered by medium voltage three-phase electricity (8kV or 15kV). Therefore, the power supply that allows the correct operation of this equipment is also critical.
  • Rock drilling its techniques and applications in the industry.
  • drilling rock There are different techniques for drilling rock, depending on: (i) the application (oil wells, civil works, mining production, etc.); (ii) the hardness of the surface to be drilled; (iii) the drilling diameter; (iv) the desired depth, etc.
  • Rock drilling methods There are many rock drilling methods. In order from most to least used, they are: (i) mechanical (percussion, rotation, rotary percussion); (ii) thermal (thermal lance, plasma, hot fluid, freezing); (iii) hydraulic (water jet, erosion, cavitation); (iv) sonic (high frequency vibration); (v) chemicals (micro blasting, dissolution); (vi) electrical (electric arc, magnetic induction); (vii) seismic (laser beams); (viii) nuclear (fusion and fission).
  • Tophammers are pneumatic or hydraulic actuators. Both rotation and percussion take place outside the hole. Percussion is transmitted through the rods to the mouth of the hole. Given this, for drilling depths greater than 30 meters, this type of hammer is not effective. Tophammer drilling diameters range from (38mm to 127mm). There are pneumatic drills. For these teams the piston stroke is between 35mm and 95mm. Hit frequency between 25Hz and 55Hz. There are also hydraulic drilling rigs, whose impact power is between 6kW and 20kW and a hitting frequency between 30Hz and 80Hz.
  • Down-the-hole hammers are pneumatic actuators.
  • the piston drive is through compressed air and the percussion takes place directly on the drilling mouth.
  • the rotation takes place outside the hole. Its penetration rate is quite homogeneous with increasing depth and depths greater than 100m can be achieved.
  • Down-the-hole drilling diameters range from (85mm to 200mm). Drilling speeds are between 0.5 and 0.6m/min for diameters between 105mm and 165mm. The beat frequency is between 10Hz and 26Hz (beats per second).
  • the piston strokes are of the order of 100mm and it competes with drilling with Hydraulic top hammer for ranges from 76mm to 125mm. As for the efficiency of the tool, it is of the order of 10%. That is, to deliver 30kW to the rock, the air compressor consumes around 300kW.
  • the different widely used rotopercussion techniques use a fluid (air or oil, respectively) to transmit energy to the percussion tool.
  • This fluid is pressurized centrally through a compressor or a hydraulic pump, respectively, in such a way that the flow transmitted to the tool is driven by this pressurized fluid.
  • the power delivered to the tool is the product of pressure times flow rate, with flow rate being a pressure-dependent variable. If you want to increase the power transmitted to the tool through the fluid, you increase the pressure with which the fluid is pushed and this higher pressure increases the flow rate. In other words, both variables are tied.
  • the power received by the pressurized fluid is transformed into power delivered to the rock, which is the product between the kinetic energy of the piston when hitting the chisel, times the impact frequency of the piston when chisel.
  • the impact frequency must be increased, ensuring a minimum impact to break the rock.
  • current tools pneumatic and hydraulic
  • to increase the impact frequency the power to the tool is increased and the end result is that the impact frequency and the energy with which the tool is impacted are increased at the same time. rock. This is not the most efficient, since in theory it would not be necessary to increase the impact energy, because the rock is already breaking. The desirable thing would be to transform the installed power into frequency, keeping the impact energy to a minimum to break the rock.
  • a very versatile device is sought that is capable of delivering a sufficiently high power and that can also modify its operating conditions, keeping its efficiency within acceptable ranges.
  • the reason that justifies the development of an electric striker is based precisely on the properties that electric systems present: high efficiency and remote control of parameters. It is interesting then, to combine the properties of the various electrical systems with the requirements and characteristics of rock drilling.
  • the possibility of varying the parameters of an electromechanical system allows the percussion frequencies to be varied while maintaining high cycle efficiency. By adjusting the parameters for different rocks, a higher penetration rate could be achieved.
  • the ferrous mass When the coils are excited with electrical energy coming from outside the device (it can be alternating or continuous), the ferrous mass is attracted to the center of the coil, because in this way the energy of the system is at a minimum and the ferrous mass finds a balance inside the coil, at its center.
  • the reciprocating movement is achieved by changing the position of the ferrous mass from one coil to another and the patent proposes a power system that extends the life of the coils through the use of a flywheel that stores energy externally to the device. .
  • U, CN 1,061,922 A disclose similar coil drive systems for generating reciprocating motion of a ferrous mass using coils that attract the ferrous mass to the center of the coil.
  • An electric drilling device includes a linear reciprocating induction motor, confined inside an electrical transformer (101), and that through an air chamber (1704) delivers power to the percussion piston (1705). This hits the chisel (1706) which is the one that finally destroys the rock.
  • the characteristics of this device are: (i) its energy efficiency (electrical power consumed versus power delivered to the rock); (ii) flexibility to control operating parameters, such as impact frequency, stroke and impact energy; (iii) it has a much lower capital cost because, unlike hydraulic and pneumatic drills, the entire tool is self-contained. That is, hydraulic and pneumatic drills require a hydraulic pump and an air compressor, respectively, to drive the fluid to the tool.
  • hydraulic and pneumatic drills require a hydraulic pump or an air compressor, respectively, to drive the fluid to the tool, requiring two elements to generate the desired effect: the fluid drive element and the drilling tool.
  • hydraulic pumps and air compressors are maintenance-intensive equipment.
  • the same transformer generates the movement of the electrical conductive ring and it is maintenance free.
  • the different widely used rotopercussion techniques use a fluid (air or oil, respectively) to transmit energy to the percussion tool.
  • This fluid is pressurized centrally through a compressor or a hydraulic pump, respectively, in such a way that the flow transmitted to the tool is driven by this pressurized fluid.
  • the power delivered to the tool is the product of pressure times flow rate, with flow rate being a pressure-dependent variable. If you want to increase the power transmitted to the tool through the fluid, you increase the pressure with which the fluid is pushed and this higher pressure increases the flow rate. In other words, both variables are tied.
  • the power received by the pressurized fluid is transformed into power delivered to the rock, which is the product between the kinetic energy of the piston when hitting the chisel, times the impact frequency of the piston when chisel.
  • the impact frequency must be increased, ensuring a minimum impact to break the rock.
  • current tools pneumatic and hydraulic
  • the power to the tool is increased and the end result is that the impact frequency and the energy with which the tool is impacted are increased at the same time. rock.
  • a very versatile device is sought, small in size (that does not depend on the size of its installed power and delivered to the rock) that is capable of delivering a sufficiently high power and that can also modify its operating conditions, maintaining its efficiency within acceptable ranges.
  • the possibility of varying the parameters of an electromechanical system allows the percussion frequencies to be varied while maintaining high cycle efficiency. By adjusting the parameters for different rocks, a higher rate of penetration can be achieved.
  • the present development proposes an electric drilling device that comprises a reciprocating linear induction motor, confined inside an electrical transformer (101), and that through an air chamber (1704) delivers power to the percussion piston (1705). This hits the chisel (1706) which is the one that finally destroys the rock.
  • the characteristics of this device are its efficiency and flexibility to control the operating parameters such as impact frequency, stroke and impact energy and a small size, independent of power requirements compared to known hydraulic and pneumatic systems.
  • a configuration such as the one proposed comes to solve the technical problems of: (i) energy efficiency, in the sense that a significant proportion of the power consumed by the equipment can be converted into mechanical power and this, delivered to the rock; (ii) a size of the equipment independent of the required power compared to the hydraulic and pneumatic systems, and (iii) control of the parameters that allow the exchange of impact energy in impact frequency.
  • the proposed device has two degrees of freedom: a) The frequency with which the lower and upper primary windings (104) are excited alternately.
  • the device can better face the possible scenarios:
  • the tool must hit with a strong impact to break the rock.
  • the distance between the primary windings (104) must be lengthened and with it, the stroke of the electrical conductive ring (201) must be lengthened to ensure that during a longer path of the electrical conductive ring (201), there is thrust from the coils. and the action of gravity accelerating the electrical conductive ring (201).
  • This will result in higher speed of the electrical conductive ring (201) at the moment of impact and therefore, greater impact energy delivered to the rock.
  • all the installed power can be transformed into a higher oscillation frequency of the electrical conductive ring (201) which in turn will cause a higher impact frequency. In this way, the drilling speed will be increased as much as possible. This increase in oscillation frequency is achieved by increasing the frequency of the envelopes (801, 803, 901, 903, 1001, 1003, 1101, 1103).
  • the tool must hit with less impact to break the rock.
  • the distance between the primary windings (104) must be shortened and with it, the stroke of the electrical conductive ring (201) must be shortened, accelerating it just enough and necessary to deliver the minimum impact energy to the rock to break it.
  • the great advantage of shortening the stroke is that it allows to further increase the frequency with which the upper and lower primary windings (104) alternate.
  • the proposed linear induction motor device is of very simple construction. It does not contain brushes, carbons, slip rings or commutators, which results in fewer parts and easy maintenance of the equipment with fewer man hours dedicated to this purpose.
  • the linear induction motor device of the present development is of a very robust construction, which makes it a reliable device. It has no delicate elements, such as permanent magnets or electrical contacts with moving parts. This results in few failures and a low rotation of spare parts.
  • the proposed linear induction motor device has no electrical contacts on moving parts. Due to the absence of brushes and carbons as electrical contact elements, there are no sparks and therefore it can be operated in dangerous conditions, such as coal mines. This makes it a more secure device.
  • the axial perforations (1401) help to substantially improve the efficiency of the system, since they cool the ring and reduce air resistance.
  • Air gap is the region located in the air between the two magnetic poles of a magnet or an electromagnet.
  • the air gap introduces a magnetic reluctance into the magnetic circuit, that is, a resistance to the passage of a magnetic flux when influenced by a magnetic field.
  • Magnetic field lines are an abstraction of the invisible lines that extend in the magnetic circuit from the north pole to the south pole. Magnetic field lines are a consequence of the magnetization of permanent magnets or electromagnets and characterize the geometric arrangement of their magnetic fields. The stronger a magnetic field, the denser the magnetic field lines. If iron powder is pulverized in a piece of paper and placed in position just above the magnet, the iron powder will pick up structures that show the course of the magnetic field lines.
  • H-Bridge is an electronic circuit typically used to allow a DC electric motor to rotate in both forward and reverse directions. They are widely used in robotics and as power converters. H-bridges are available as integrated circuits, but can also be built from discrete components. In this development it is used to generate the excitation of the primary windings (401) with a different frequency from the electrical network (50 Hz or 60 Hz), which allows the double function: to induce currents in the electrical conductive ring (201) from of a high-frequency excitation and at the same time make it alternate between the primary windings (401) with a low-frequency excitation, the latter being the envelope of the excitation signals.
  • the electrical network 50 Hz or 60 Hz
  • Envelope In geometry, an envelope of a family of curves in the plane is a curve that is tangent to each member of the family at some point, and these points of tangency together form the entire envelope. In the case of this punctual development, it refers to the curve that surrounds the signals, voltages or currents of high frequency, to graph the signals, voltages or currents of low frequency.
  • the linear reciprocating induction motor device for percussion applications comprises a conductive ring (201) that oscillates inside a single-phase transformer (101), with a ferrous core (annealed iron or ferrite wire or preferably laminated silicous iron) closed, with two primary windings (104) of annealed enameled wire, which can be of copper or aluminum.
  • the primary windings (104) can also be made of annealed copper tubing, internally cooled with soft water, as is normally done in induction heating devices. If this is the case, the pipe must be externally insulated with tape or enamel and subsequently coiled to form the coil. This wire or pipe is wound on a plastic reel, this being a dry transformer (not immersed in oil).
  • the primary windings (104) are excited alternately with direct or alternating current, and in a complementary way, implying that while one of the primary windings is excited, the other is not and vice versa.
  • the oscillation of the electrical conductive ring (201) is produced by the interaction between the magnetic field (301) and the current (501) of the primary winding (104).
  • the current (501) of the primary winding (104) produces an alternating magnetic field (102) within the laminated silica iron (101) of the transformer.
  • the ferrous material of the transformer can also be annealed iron wire or ferrite or any other material that concentrates the magnetic field, preferably laminated silica iron with the largest number of field lines prior to saturation.
  • this alternating magnetic field (102) induces an alternating current (401) within the electrical conducting ring (201) in the opposite direction to the current (501) of the primary winding (104).
  • the current induced (401) within the electrically conductive ring (201) generates an alternating magnetic field (301) that opposes the original magnetic field (102).
  • each field line has a vertical component (503A) and a horizontal component (503B).
  • This radial horizontal force (602) has a resultant equal to zero, since it cancels (vector sum equal to zero).
  • This horizontal radial force (602) allows the electrical conductive ring (201) to be centered and to move practically without friction along the vertical column of the transformer (101).
  • the oscillating movement of the electrical conductive ring (201) is generated because the lower primary winding (104) and the upper primary winding (104) are excited alternately.
  • the vertical repulsion force (601) is upwards when the lower primary winding (104) is actuated and the electrical conductive ring (201) moves upwards.
  • the electrical conductive ring (201) is close to the upper primary winding (104), it is activated and the vertical repulsion force (601) is downward, generating a displacement of the ring towards the lower primary winding (104). And so on.
  • the excitation of the upper and lower primary windings (104, 702) can be done directly from the electrical network (103), with frequencies of 50 Hz or 60 Hz, as the case may be, or through a special source, such as an H bridge (701). There must be one H-bridge for each primary winding (104, 702).
  • the excitation frequency that generates induction in the electrical conductive ring (201) is the frequency of the network (902, 904, 1102). , 1104).
  • each primary winding (104, 702) must be alternately actuated by some switching device, such as a relay (using Normal Open and Normal Close states), two solid state relays, or transistors.
  • the H-bridge (701) itself allows voltage and current to be delivered to the primary windings (104, 702) to achieve high (induction) frequency. and additionally the low frequency, (alternating between them) to oscillate the electrical conductive ring (201).
  • the H-bridge (701) allows to excite the primary windings (104, 702) to achieve a current in one direction (positive on the right) with the activation of the transistors 703 (mosfet, igbt, bjt, among others). At a later point in time (half an induction cycle) transistors 703 are turned off and transistors 704 are turned on to generate current flow in the reverse direction (positive on the left).
  • the driving signals of the H-bridge (701) of the primary windings (104, 702) must be out of phase by 180°, in such a way as to achieve the oscillation of the electrical conductive ring (201).
  • the drive signal from the H-bridge (701) to the upper primary winding (104, 702) is the induction signal (802) and also the envelope (801) that generates the oscillation of the electrical conductive ring (201).
  • the drive signal of the H-bridge (701) for the lower primary winding (104, 702) is the induction signal (804) and also the envelope (803) that generates the oscillation of the electrical conductive ring (201).
  • the drive signal from the H-bridge (701) to the upper primary winding (104, 702) is the induction signal (1002) and also the envelope (1001) that generates the oscillation of the electrical conductive ring (201).
  • the activation signal of the H-bridge (701) for the lower primary winding (104, 702) is the induction signal (1004) and also the envelope (1003) that generates the oscillation of the electrical conductive ring (201).
  • the excitation frequency of the coils (envelope) (801, 803, 901, 903, 1001, 1003, 1101, 1103) can be varied externally to the device.
  • the electrical conductive ring (201) must be capable of oscillating at more than 30Hz.
  • the induction frequencies must be substantially higher (on the order of 10 times more), so that with each oscillation the ring has at least complete induction cycles and thus ensure that the currents inside it are effectively very high.
  • the path of the electrical conductive ring (201) inside the transformer (stroke) can be varied. The distance traveled by the electrical conductive ring is determined by the distance between the upper and lower primary windings (104). As can be understood, at a greater distance, the frequency of the electrical conductive ring (201) will be lower and vice versa.
  • the proposed configuration is that of a closed-core single-phase transformer comprising:
  • This field density is measured in number of field lines or Tesla and before saturation it can range from 10,000 lines or 1 Tesla to 20,000 lines or 2.0 Tesla, depending on the material.
  • the material must have the property of concentrating the field lines, generating a high field density in a small transformer volume (101).
  • the material that concentrates the magnetic field can be annealed iron wire or ferrite.
  • This primary winding (104) consists of a coil of enamelled annealed copper or aluminum wire, dielectrically insulated by means of paper, treated paper, elastomers, among others for this purpose, which, electrically powered, generates the magnetic field in the iron, which in turn induces gigantic currents in the electrical conducting ring (201).
  • the magnetic field in the laminated silicous iron (101) must be varying over time.
  • the primary winding 104 can also be made of annealed copper tubing so that it can be internally cooled with some fluid, preferably soft water. If this is the case, the pipe must be externally insulated with some material such as electrical insulating tape that also withstands temperature, such as fiberglass tape, enameled or not. It can also be simply enamelled.
  • An electrically conductive ring (201) of low cost, low specific weight, low electrical resistivity and high thermal conductivity is aluminum and its alloys, without being restricted to just this material.
  • This electrically conductive ring (201) will act as the secondary winding of the transformer, with a single turn short-circuited in its winding.
  • cooling of the electrical conductive ring (201) must be ensured, which is achieved preferably!, by the surrounding air generated by the movement of the ring, without ruling out, but being only an option, the use of inert or dielectric gases such as nitrogen, argon, SF6, among others.
  • the electrical conductive ring (201) considers axial perforations (1401) parallel to the direction of its displacement. In this way, by forced convection and thanks to the good thermal conductivity of aluminum, the heat generated in the electrical conductive ring (201) is displaced by the high current density in it.
  • the average speed of the electrical conductive ring (201) is of the order of tens of meters per second, and the resistance with the air increases quadratically with the speed, reducing this aerodynamic resistance increases the efficiency of the system. That is why the electrical conductive ring (201) considers axial perforations (1401).
  • the mobile element is simply an electrically conductive ring (201), preferably aluminum or its alloys, without ruling out other materials, in which currents (401) are induced without electrical contact of any kind. That is, the active component of the conductive ring (201) that generates reciprocating movement are induced currents. Unlike those solutions that propose permanent magnets or electrical coils in the moving element that must make contact with the stator, the electrical conductive ring (201) is capable of handling hundreds or thousands of amperes without making electrical contact with the rest of the stator. equipment.
  • the reciprocating vertical linear movement is achieved from a sliding fit between the inside diameter of the electrical conductive ring (201) and the central column of the transformer (101).
  • the manufacturing method of the linear reciprocating induction motor device has variations, depending on the format of the ferrous core that is used. Basically it depends on whether: (i) the core can be opened and closed during the manufacturing process, or ( ⁇ i) that once the core has been manufactured, it cannot be opened again.
  • the manufacturing method is such that the laminated silica iron or ferrite or any other material that concentrates the magnetic field is assembled sheet by sheet if it is the case, and it is left open to incorporate the rest of the elements (springs, electrical conductive ring (201), primary windings (104)). to.
  • the design of the transformer core is such that it is two elements E and I, as in Figure 1, it is inserted into the central column of the transformer in that order: the lower primary winding, the lower spring in the center of the lower primary winding, the electrical conductive ring (201), the upper primary winding, and the upper spring in the center of the upper primary winding.
  • the transformer is closed, adding the element of the ferrous core in the form of I to close the magnetic core of the transformer.
  • the design of the transformer core is such that it involves two elements C and I, as in Figure 16, it is inserted into one or both columns of the transformer in that order: the lower primary winding, the lower spring in the center of the lower primary winding, the electrical conductive ring (201 ), the upper primary winding and the upper spring in the center of the upper primary winding.
  • the format of the kernel is such that it can NOT be reopened, then there are variations in the method of manufacturing the device.
  • This method can be used when annealed iron wire is used for cost reasons. and the first step in manufacturing is to assemble the ferrous core from several turns of iron wire.
  • the iron core is assembled from several turns of the annealed iron wire.
  • the spools for the coils are divided into two parts.
  • the parts of the spools are inserted into the ferrous core and each primary winding (104) is wound, making the spool rotate within the iron core;
  • the springs are inserted into the iron core and finally the electrical conductive ring (201) is open in two parts, they are inserted inside the core and it is joined to give rise to the short-circuited electrical conductive ring (201).
  • the application example of the present development of the linear induction motor device corresponds to:
  • the upper and lower primary windings (104) are 2 coils of enamelled annealed copper wire, with paper insulation between the layers of the winding of 250 turns, of AWG 7 gauge, for 220V and a capacity of conducting 30A, with a density of 3A/mm 2 .
  • the height of the coil is 70mm, with an inner diameter of 106mm and an outer diameter of 206mm.
  • the coils have 10 leads to have the possibility to vary the value of the inductance. This flexibility is important because when the excitation frequency of the coil that generates induction in the ring increases, above 50Hz, the impedance of the coil begins to rise and the current decreases.
  • An electrical conductive ring (201) made of aluminum with a mass of 1.5 kg, an internal diameter of 76 mm, an external diameter of 165 mm and a height of 35 mm, with 36 axial through holes of 5 mm diameter.
  • a 5kVA single-phase variac was used in which one of the variac outputs goes directly to one of the poles of the primary windings (104) and the other output of the variac passes through a pair of solid-state relays that allow each of the primary windings (104) to be alternately powered.
  • the control of the solid state relays is done with a PWM signal and its negated signal, both to each of the bases of two NPN 547C transistors that activate the SSRs.
  • 7) Additionally, as can be seen in figure 17/17, there is an air chamber that transmits the movement of the electrical conductive ring (201) to the rock. In this way, the reciprocating vertical movement of the electrical conductive ring (201) generates a volume change in the air chamber (1704) that drives the piston (1705), which, in turn, hits the chisel (1706), which , in turn, hits the rock.
  • oscillation frequencies of the aluminum electrical conductor ring (201) higher than 10Hz are achieved, with a stroke of 500mm, theoretical currents within the aluminum electrical conductor ring (201) around at 180kA, a current density of 115 A/mm 2 and an average speed of more than 5m/s.
  • the frequencies developed by the electrical conductive ring (201) of aluminum are comparable to the tools used in the industry with a much higher stroke.
  • the application example did not consider hitting a rock, but when removing the springs and making an impact, the frequency managed to stay above 7Hz.
  • Figure 1/17 shows an electrical transformer, with a closed core, made from sheets of silicous iron (101).
  • a primary winding (104) which, excited by the alternating source (103), generates an alternating magnetic field (102) inside the silicous laminated iron (101).
  • Number 101 is the laminated silicous iron core.
  • the number 102 corresponds to the magnetic field lines.
  • Number 103 is the drive source for the primary windings (104). It can be alternating current or direct current. If it is direct current, the inductive effect on the electrical conducting ring (201) will only be in the transient period.
  • Number 104 corresponds to the primary winding.
  • Figure 2/17 shows the same electrical transformer made from sheets of silicous iron (101) of figure 1/17. In this figure, the electrical conductive ring (201) is added, which will act as a mechanical oscillator.
  • Number 201 is the electrically conductive ring.
  • the number 301 is the magnetic field generated by the current induced in the electrical conductive ring (201), product of the alternating magnetic field (102) in the laminated silicous iron (101).
  • Figure 4/17 shows a sectional view (201 A) and a top view (201 B) of the electrical conductive ring (201).
  • the induced current (401) for each of the views can be seen in detail.
  • the sectional view (201 A) on the right side of the ring, you can see the current entering the sheet (401 A).
  • Number 201 B is a top view of the electrical conductive ring (201).
  • Number 401 is the induced current for each of the views.
  • the number 401 A is the current induced in the electrically conducting ring (201 ), entering the sheet.
  • the number 401 B is the current induced in the electrical conductive ring (201), coming out of the sheet.
  • the number 301 is the vector magnetic field generated by the induced current 401 .
  • the magnetic field (102) in the laminated iron (101) of the transformer has a downward direction (502) in the central column of the transformer given the right-hand rule.
  • This magnetic field in the iron (101) induces a current (401) in the electrical conducting ring (201) in the opposite direction to the original current (501).
  • the induced current (401) generates a second magnetic field (301), whose vectorial field is represented by the arrows (503).
  • the predominant component is vertical, with an upward direction, but the magnetic field, being vectorial, always has a horizontal component (503B) and a vertical component (503A).
  • the number 501 is the current in the primary winding (104).
  • the number 502 is the direction of the magnetic field (102) in the laminated iron (101) of the transformer.
  • the number 503 is the direction and sense of the vectorial magnetic field (301), in the center of the electrical conducting ring (201).
  • the number 503A is the vertical component of the vector magnetic field (301).
  • the number 503B is the horizontal component of the vector magnetic field
  • Figure 6/17 shows the interaction between the vertical (503A) and horizontal (503B) components of the vectorial magnetic field (301) and the current (501) in the primary winding (104).
  • each field line has a vertical component (503A) and a horizontal component (503B).
  • This radial horizontal force (602) has a resultant equal to zero, since it cancels (vector sum equal to zero).
  • the number 601 corresponds to a vertical repulsion force between the electrical conductive ring (201) and the primary winding (104).
  • the number 602 corresponds to a horizontal radial force between the electrical conductive ring (201) and the primary winding (104).
  • Figure 7/17 shows an H-bridge (701). It is a transistor configuration that allows inverting the direction of the currents in a certain load (104, 702). If it is desired to drive the primary windings (104, 702) with an H-bridge (701), the same H-bridge (701) allows the primary windings (104, 702) to be driven to achieve the excitation of the primary windings (104, 702). and additionally the alternation between them to oscillate the electrical conductive ring (201).
  • the H-bridge (701) allows to excite the primary windings (104, 702) to achieve a current in one direction (from positive to negative) with the activation of the transistors 703 (mosfet, igbt, bjt, etc). At a later time (half an induction cycle) transistors 703 are turned off and transistors 704 are turned on to generate current flow in the reverse direction (from negative to positive).
  • the number 701 corresponds to the H bridge.
  • the number 702 corresponds to the load that feeds the H-bridge, which, in this case, corresponds to the primary windings (104).
  • the number 703 corresponds to the group of transistors that allows the flow of current in the positive direction to the right.
  • Number 704 corresponds to the group of transistors that allows current flow in the positive direction to the left.
  • Figure 8/17 shows the drive signals (input) of the H-bridge (701) of the primary windings (104, 702). These signals must be out of phase by 180°, in such a way as to achieve the oscillation of the electrical conductive ring (201).
  • the drive signal from the H-bridge (701) to the upper primary winding (104, 702) is the high-frequency induction signal (802) and also the envelope (801). , of low frequency, which generates the oscillation of the electrical conductive ring (201).
  • the driving signal of the H-bridge (701) for the lower primary winding (104, 702) is the high-frequency induction signal (804) and also the low-frequency envelope (803) that generates the oscillation of the conductive ring.
  • the number 801 is the signal (input) of the bridge H (701) that feeds the upper primary winding (104).
  • This signal is a low-frequency envelope that generates the activation of the transistors (703, 704) that allow the current output from the H-bridge to the upper primary winding (104, 702) and that ensures the oscillation of the electrical conductive ring (201). ).
  • the duty cycle is 50%.
  • the number 802 is the signal (input) of the bridge H (701) that feeds the upper primary winding (104). This is the high-frequency excitation signal that generates the activation of the transistors (703, 704) and allows the current output from the H-bridge to the upper primary winding (104, 702), which ensures the induction of currents in the ring. electrical conductor (201). As can be seen in the figure, the duty cycle is 50%.
  • the number 803 is the signal (input) of the bridge H (701) that feeds the lower primary winding (104).
  • This signal is a low-frequency envelope that generates the activation of the transistors (703, 704) and allows the current output of the H-bridge towards the lower primary winding (104, 702) and that ensures the oscillation of the electrical conductive ring (201). ).
  • the duty cycle is 50%.
  • the number 804 is the signal (input) of the bridge H (701) that feeds the lower primary winding (104). This is the high-frequency drive signal that drives the transistors (703, 704) and enables the current output of the bridge. H towards the lower primary winding (104, 702), which ensures the induction of currents in the electrical conductor ring (201). As can be seen in the figure, the duty cycle is 50%.
  • Figure 9/17 shows the output voltage (in case the H-bridge is a voltage source) or current (in the case the H-bridge is a current source) from the H-bridge (701) to the primary windings (104, 702).
  • the output current from the H-bridge (701) to the upper primary winding (104, 702) is the high frequency current that generates induction (902) and also the envelope current of low frequency (901) that generates the oscillation of the electrical conductive ring (201).
  • H-bridge output current for the lower primary winding (104, 702) is the high-frequency current that generates induction (904) and also the low-frequency envelope current (903) that generates the oscillation of the electrical conducting ring ( 201).
  • the number 901 is the voltage that from the H-bridge (701) feeds the upper primary winding (104). This voltage is of low frequency and generates the current of the H bridge to upper primary winding (104, 702). It is this current that ensures the oscillation of the electrical conductive ring (201). As can be seen in the figure, the duty cycle is 50%.
  • the number 902 is the voltage that from the H-bridge (701) feeds the upper primary winding (104). This voltage is the high-frequency excitation that allows the current output from the H-bridge to the upper primary winding (104, 702), which ensures the induction of currents in the electrical conductor ring (201). As can be seen in the figure, the duty cycle is 50%.
  • the number 903 is the voltage that from the H-bridge (701) feeds the lower primary winding (104). This voltage is low frequency and generates the H-bridge current output to the lower primary winding (104, 702). This current ensures the oscillation of the electrical conductive ring (201). As can be seen in the figure, the duty cycle is 50%.
  • the number 904 is the voltage from the H-bridge (701) that feeds the lower primary winding (104). This voltage is the high-frequency excitation and generates the H-bridge current output to the lower primary winding (104, 702), which ensures the induction of currents in the electrical conducting ring (201). As can be seen in the figure, the duty cycle is 50%.
  • Figure 10/17 is the voltage from the H-bridge (701) that feeds the lower primary winding (104). This voltage is the high-frequency excitation and generates the H-bridge current output to the lower primary winding (104, 702), which ensures the induction of currents in the electrical conducting ring (201). As can be seen in the figure, the duty cycle is 50%.
  • Figure 10/17 shows the drive signals (input) of the H-bridge (701) of the primary windings (104, 702). These signals must be out of phase by 180°, in such a way as to achieve the oscillation of the electrical conductive ring (201).
  • the driving signal of the H-bridge (701) for the upper primary winding (104, 702) is the induction signal (1002) and also the envelope (1001) that it generates. the oscillation of the electrical conductive ring (201).
  • the activation signal of the H-bridge (701) for the lower primary winding (104, 702) is the induction signal (1004) and also the envelope (1003) that generates the oscillation of the electrical conductive ring (201).
  • the number 1001 is the signal (input) of the bridge H (701) that feeds the upper primary winding (104).
  • This signal is a low-frequency envelope that generates the activation of the transistors (703, 704) that allow the current output from the H-bridge to the upper primary winding (104, 702) and that ensures the oscillation of the electrical conductive ring (201). ).
  • the duty cycle is less than 50%.
  • Number 1002 is the signal (input) of the H-bridge (701) that feeds the upper primary winding (104). This is the high-frequency drive signal that drives the transistors (703, 704) and allows current output from the H-bridge to the upper primary winding (104, 702), which ensures the induction of currents in the electrical conductive ring (201). As can be seen in the figure, the duty cycle is less than 50%.
  • the number 1003 is the signal (input) of the H-bridge (701) that feeds the lower primary winding (104).
  • This signal is a low-frequency envelope that generates the activation of the transistors (703, 704) and allows the current output of the H-bridge towards the lower primary winding (104, 702) and that ensures the oscillation of the electrical conductive ring (201). ).
  • the duty cycle is less than 50%.
  • the number 1004 is the signal (input) of the H-bridge (701) that feeds the lower primary winding (104). This is the high-frequency excitation signal that generates the activation of the transistors (703, 704) and allows the current output from the H-bridge to the lower primary winding (104, 702), which ensures the induction of currents in the ring. electrical conductor (201). As can be seen in the figure, the duty cycle is less than 50%.
  • Figure 1 1/17 shows the output voltage (in case the H-bridge is a voltage source) or current (in the case the H-bridge is a current source) of the H-bridge (701). to the primary windings (104, 702). These voltages or currents are out of phase by 180°, in such a way as to achieve the oscillation of the electrical conductive ring (201).
  • the current output from the H-bridge (701) for the upper primary winding (104, 702) is the high frequency current that generates induction (1102) and also the current low frequency envelope (1101) that generates the oscillation of the electrical conductive ring (201).
  • H-bridge output current for the lower primary winding (104, 702) is the high-frequency current that generates induction (1104) and also the low-frequency envelope current (1103) that generates the oscillation of the electrical conducting ring ( 201).
  • the number 1101 is the voltage that from the H-bridge (701) feeds the upper primary winding (104). This voltage is low frequency and generates the H-bridge current to the upper primary winding (104, 702). It is this current that ensures the oscillation of the electrical conductive ring (201). As can be seen in the figure, the duty cycle is less than 50%.
  • the number 1102 is the voltage that from the H-bridge (701) feeds the upper primary winding (104). This voltage is the high-frequency excitation that allows the current output from the H-bridge to the upper primary winding (104, 702), which ensures the induction of currents in the electrical conductor ring (201). As can be seen in the figure, the duty cycle is less than 50%.
  • the number 1103 is the voltage that from the H-bridge (701) feeds the lower primary winding (104). This voltage is low frequency and generates the H-bridge current output to the lower primary winding (104, 702). This current ensures the oscillation of the electrical conductive ring (201). As can be seen in the figure, the duty cycle is less than 50%.
  • the number 1104 is the voltage from the H-bridge (701) that feeds the lower primary winding (104). This voltage is the high-frequency excitation and generates the H-bridge current output to the lower primary winding (104, 702), which ensures the induction of currents in the electrical conducting ring (201). As can be seen in the figure, the duty cycle is less than 50%.
  • Figure 12/17 shows an elevation view of the electrical conductive ring (201) and a top view of the electrical conductive ring (201). You can see the forces acting on the electrical conductive ring (201).
  • each field line has a vertical component (503A) and a horizontal component (503B).
  • the horizontal component (503B) of the vectorial magnetic (301) and the current (501) circulating in the primary winding (104) interact with each other.
  • Figure 13/17 is the complete schematic of the linear reciprocating induction motor device. You can see the upper (104 A) and lower (104 B) windings (104), which, when actuated alternately, allow the electrical conductive ring (201) to oscillate.
  • Figure 14/17 shows a top view of the electrical conductive ring (201) and its axial through holes (1401) that have a dual purpose.
  • the electrical conductive ring (201) to reduce the aerodynamic resistance of the ring with the air and on the other hand, to ensure its cooling, given the very high currents (401) circulating inside it.
  • the ring As the ring is going to oscillate traveling through the central column of the transformer (101) at a high frequency (of the order of tens of Hz), its average speed is of the order of tens of meters per second. This means that the air will travel through the axial perforations (1401) at a high speed, ensuring the cooling of the electrical conductive ring (201).
  • the number 1401 corresponds to the axial through holes in the electrical conductive ring (201).
  • Figure 15/17
  • Figure 15/17 plots the existence of an air gap (1504) in a magnetic circuit (given by the field lines (1505)).
  • This air gap (1504) is the distance of air (1509) with a very low magnetic permeability compared to the iron zone (1510) that has a magnetic permeability several orders of magnitude higher. Depending on the material, it can be in the order of 100 to 1000 times.
  • the effect of this air gap (1504) is such that the magnetic circuit (1505) finds it difficult to generate a high field density inside the iron, generating a boundary effect (1502), in which the field becomes less dense (less field lines (1501) per unit area (1503)).
  • the air gap (1504) generates a high reluctance in the magnetic circuit (1505).
  • high reluctance due to air gaps prevents the passage of magnetic flux. This generates that for the same excitation (magnetomotive force N*l, given by the product of the winding of N turns (1507) and the current circulating in the winding (1508)), a lower field density is obtained (magnetic field lines (1501 ) divided by the cross section of the iron core (1503)) in the magnetic core.
  • the number 1501 corresponds to the magnetic field lines in the air gap.
  • the number 1502 plots the boundary effect on the air gap.
  • the number 1503 is the cross section of the iron core.
  • the number 1504 is the air gap.
  • the number 1505 corresponds to the magnetic field lines.
  • the number 1506 is the length of the iron core.
  • Number 1507 is the winding with N turns.
  • the number 1508 is the current circulating in the winding.
  • Number 1509 is the zone with magnetic permeability equal to that of air.
  • the number 1510 the area with magnetic permeability equal to that of iron.
  • Figure 16/17 shows a variation of the linear reciprocating induction motor device, in which the electrical conductor ring (201) is double and oscillates on both columns of the transformer (101). This configuration is very efficient in terms of the space used by the device.
  • Figure 17/17 In figure 17/17 you can see the dynamic model of the linear reciprocating induction motor device, by way of example and without restricting the field of application of the linear reciprocating induction motor device, in a possible configuration for the striker.
  • the electrical conductive ring (201) is restricted in its vertical movement by two ideal springs: the upper ideal spring (1701 A) and the lower ideal spring (1701 B).
  • These ideal springs (1701 A, 1701 B) become real springs through the dynamic model that conceptualizes them in parallel with the dampers (1702).
  • the reciprocating vertical movement of the electrical conductive ring (201) generates a volume change in the air chamber (1704) that drives the piston (1705), which in turn hits the chisel (1706), which in turn hits the rock.
  • the number 1701 A corresponds to the upper ideal spring.
  • Number 1701 B corresponds to the lower ideal spring.
  • Number 1702 corresponds to two shock absorbers that make the action of the springs real (1701 A, 1701 B), according to the dynamic model of figure 17/17.
  • the number 1703 corresponds to the largest plunger in the air chamber (1704).
  • Number 1704 is the air chamber that transmits the movement of the electrical conductive ring to the piston (1705).
  • Number 1705 is the piston which in turn hits the chisel (1706) which in turn hits the rock.
  • Number 1706 is the chisel that strikes the rock.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

E! presente desarrollo es un dispositivo de motor lineal de inducción reciprocante, construido con fierro laminado silicoso de transformador, de circuito magnético cerrado, sin entrehierro, con dos bobinas y un anillo conductor eléctrico que oscila en la columna central del transformador. La oscilación del anillo se da por la inducción de enormes corrientes en él y el campo magnético generado por esas corrientes al interactuar con el embobinado primario del transformador; y su método de operación y fabricación.

Description

DISPOSITIVO DE MOTOR LINEAL RECIPROCANTE DE INDUCCIÓN
Descripción de lo conocido en la materia y campo de aplicación
En la actualidad, ciertas industrias se han beneficiado de un alza fuerte y sostenida del precio de los productos que comercializan como resultado de su actividad. Un ejemplo de lo anterior es el caso de la explotación Minera, que desde hace un tiempo ha experimentado un incremento del precio de los minerales que se extrae como resultado de la explotación. Como consecuencia de este fenómeno, el foco de la operación ha estado últimamente en aumentar la producción para aprovechar el buen precio de estos productos. Tal es el caso de la explotación de varios minerales como el hierro, el cobre, el aluminio, la plata, el oro, etc.
Para aumentar la producción y aprovechar los altos precios de los minerales es de vital importancia la eficacia de los equipos críticos y su eficiencia energética. Esto es una realidad en toda industria intensiva en maquinaria y en el caso de la Minería, parte importante de la eficiencia operacional puede lograrse en la primera parte del proceso, llamado “Operaciones Mina”. Este conjunto de operaciones contempla, entre otras etapas: (i) “perforación”, en que ciertas máquinas especializadas perforan la roca; (¡i) “quema” (o explosión), en que cada una de las perforaciones es cargada con explosivos. Una vez detonados estos explosivos, la roca se reduce a tamaños adecuados para ser procesados en etapas posteriores; (iii) y por último el “carguío”, en que la roca es montada sobre camiones de gran tamaño gracias a la operación de la pala de carguío. En una faena minera los equipos críticos que llevan a cabo las “Operaciones Mina” son perforadoras de roca, palas de carguío y camiones de gran tamaño. Las proporciones en que estos equipos se encuentra en terreno son de aproximadamente una pala de carguío y dos perforadoras por cada 5 a 10 camiones. Por lo tanto, uno de los equipos críticos en la operación de una minera son las perforadoras de roca, en que las variables críticas para su operación son su confiabilidad, la velocidad en que perforan la roca y la eficiencia energética con que lo llevan a cabo.
De esta forma, cualquier mejora que permita hacer más eficaz y eficiente la operación de este tipo de equipos, puede traducirse en eficiencias operacionales de la faena minera vista como un todo.
En la minería subterránea las operaciones son las mismas, aunque los modelos de los equipos son distintos, fundamentalmente por su altura y la estrechez de espacio disponible.
Este tipo de equipos tales como la pala de carguío y algunas perforadoras, son alimentados con energía eléctrica trifásica de media tensión (8kV ó 15kV). Por lo tanto, también es crítico el suministro de energía que permite el correcto funcionamiento de estos equipos. La perforación de roca: sus técnicas y aplicaciones en la industria.
Existen distintas técnicas para perforar roca, dependiendo de: (i) la aplicación (pozos petroleros, obras civiles, producción minera, etc); (¡i) de la dureza de la superficie a perforar; (iii) el diámetro de perforación; (iv) la profundidad deseada, etc. Sin embargo, todas buscan el mismo objetivo: aumentar la velocidad de perforación (tasa de penetración), consumiendo la menor cantidad de energía posible. Es por ello que la industria está constantemente buscando distintas alternativas para mejorar velocidad y eficiencia.
Métodos de perforación de roca. Existe muchos métodos de perforación de roca. Ordenados de más a menos usados son: (i) mecánicos (percusión, rotación, rotopercusión); (¡i) térmicos (lanza térmica, plasma, fluido caliente, congelación); (iii) hidráulicos (chorro de agua, erosión, cavitación); (iv) sónicos (vibración de alta frecuencia); (v) químicos (micro voladura, disolución); (vi) eléctricos (arco eléctrico, inducción magnética); (vii) sísmicos (rayos láser); (viii) nucleares (fusión y fisión).
A pesar de la gran variedad de sistemas posibles de penetración de la roca, en minería y obras civiles, la perforación se realiza actualmente en una forma casi general, utilizando energía mecánica.
De esta forma, existe masivamente básicamente dos tipos de perforación. La perforación puramente rotativa y la perforación por rotopercusión. El tipo de perforación elegido dependerá básicamente del tipo de terreno y su dureza, del diámetro del barreno y la profundidad deseada, para lograr siempre el mismo objetivo: aumentar la velocidad de perforación (conocida como tasa de penetración), con el menor consumo energético posible.
Perforación rotativa.
En general es usada para grandes diámetros, hasta 300mm y terrenos blandos (baja resistencia a la compresión, medida en MPa). Consiste en aplicar energía a la roca, haciendo rotar una herramienta, conjuntamente con la acción de una fuerza de empuje vertical que presiona la roca. Tiene su origen en pozos petrolíferos, limitado a rocas blandas. A principios de los años 50 se empieza a aplicar en la perforación para voladuras. Diámetros habituales entre 50mm y 300mm.
Perforación por rotopercusión.
En general es usado para diámetros pequeños y medios, hasta 200mm y terrenos duros (media hasta alta resistencia a la compresión, medida en MPa). Consiste en aplicar energía a la roca, a través del impacto de una pieza de acero (pistón) sobre un útil (cincel) que transmite la energía al fondo del barreno. Especialmente adecuado para rocas duras y con pequeño diámetro de perforación (50mm a 200mm). Dependiendo del lugar donde esté instalado el martillo, se puede distinguir: Percusión con martillo en cabeza (TOH, Top Of Hole).
Los martillos en cabeza son actuadores neumáticos o hidráulicos. Tanto la rotación como la percusión toman lugar fuera del barreno. La percusión se transmite por las barras hasta la boca de la perforación. Dado esto, para perforaciones de profundidades mayores a 30 metros, este tipo de martillos no son efectivos. Los diámetros de perforación con martillo en cabeza van de (38mm a 127mm). Existe perforadoras neumáticas. Para estos equipos la carrera del pistón es entre 35mm y 95mm. Frecuencia de golpe entre 25Hz y 55Hz. También existe perforadoras hidráulicas, cuya potencia de impacto es entre 6kW y 20kW y una frecuencia de golpe entre 30Hz y 80Hz.
Percusión con martillo en fondo (DTH, Down The Hole).
Los martillos en fondo son actuadores neumáticos. El accionamiento del pistón es a través de aire comprimido y la percusión toma lugar directamente sobre la boca de perforación. La rotación toma lugar fuera del barreno. Su velocidad de penetración es bastante homogénea con el aumento de la profundidad y se puede lograr profundidades superiores a 100m.
Los diámetros de perforación con martillo en fondo van de (85mm a 200mm). Las velocidades de perforación son entre 0,5 y 0,6m/min para diámetros entre 105mm y 165mm. La frecuencia de golpe es entre 10Hz y 26Hz (golpes por segundo). Las carreras del pistón son del orden de 100mm y entra en competencia con la perforación con martillo hidráulico en cabeza para rangos de 76mm a 125mm. En cuanto a la eficiencia de la herramienta es del orden del 10%. Es decir, para entregar 30kW a la roca, el compresor de aire consume del orden de 300kW.
Las distintas técnicas de rotopercusión masivamente usadas (neumática e hidráulica), usan un fluido (aire o aceite, respectivamente) para transmitir la energía a la herramienta de percusión. Ese fluido es presurizado en forma centralizada a través de un compresor o una bomba hidráulica, respectivamente, de manera tal que el caudal que se transmite a la herramienta es impulsado por ese fluido presurizado. Entonces, la potencia entregada a la herramienta es el producto de presión por caudal, siendo el caudal una variable dependiente de la presión. Si se quiere aumentar la potencia transmitida a la herramienta a través del fluido, se aumenta la presión con que se impulsa el fluido y esa mayor presión hace aumentar el caudal. En otras palabras, ambas variables están amarradas.
Ahora bien, desde el punto de vista de la herramienta, la potencia recibida por el fluido presurizado es transformada en potencia entregada a la roca, la cual es el producto entre energía cinética del pistón al golpear el cincel, por frecuencia de impacto del pistón al cincel. Para lograr más velocidad de perforación, se debe aumentar la frecuencia de impacto, asegurando un impacto mínimo para romper la roca. Sin embargo, con las herramientas actuales (neumática e hidráulica), para aumentar la frecuencia de impacto, se aumenta la potencia a la herramienta y el resultado final es que se aumenta al mismo tiempo la frecuencia de impacto y la energía con que se impacta la roca. Esto no es lo más eficiente, pues en teoría no haría falta aumentar la energía de impacto, porque ya se está rompiendo la roca. Lo deseable sería transformar la potencia instalada en frecuencia, manteniendo la energía de impacto en el mínimo para romper la roca.
Por otro lado, la experiencia en la industria demuestra que, para una potencia instalada del equipo perforador, puede lograrse mayor velocidad de perforación, dependiendo cómo se distribuya, por un lado, la energía entregada a la superficie y por otro lado, la frecuencia de impacto.
Dado lo anterior, existen varios intentos por desarrollar artefactos que sean más flexibles en cuanto al control de sus parámetros de operación. En ese sentido, los artefactos eléctricos permiten controlar fácilmente voltajes, corrientes, frecuencias, etc. y por otro lado, ya está la energización disponible en la faena minera.
Es por ello que las motivaciones que llevan al estudio de percutores eléctricos son claras. En general los sistemas de tracción eléctrica se caracterizan por tener alta eficiencia y porque se pueden controlar a distancia. Entonces, podría eventualmente controlarse la frecuencia de percusión, además del impacto mismo, manteniendo una alta eficiencia energética del ciclo.
Es decir, se busca un dispositivo muy versátil que sea capaz de entregar una potencia lo suficientemente alta y que además pueda modificar sus condiciones de operación, manteniendo su eficiencia dentro de rangos aceptables. La razón que justifica el desarrollo de un percutor eléctrico se basa justamente en las propiedades que presentan los sistemas eléctricos: alta eficiencia y control de parámetros a distancia. Resulta interesante entonces, conjugar las propiedades de los diversos sistemas eléctricos con los requerimientos y características de la perforación de roca.
Concretamente, la posibilidad de variar los parámetros de un sistema electromecánico permite variar las frecuencias de percusión manteniendo una alta eficiencia del ciclo. Ajustando los parámetros para las distintas rocas, podría lograrse una mayor tasa de penetración.
No se ve en el mercado el uso masivo de ningún equipo de perforación que use energía eléctrica en forma directa para generar la percusión sobre la roca. Sin embargo, la especificación de la técnica en perforación de roca, y las nuevas aplicaciones que actualmente requieren del uso de percutores, motivan el estudio de nuevas posibilidades que hagan más rápido y más eficiente el proceso de perforar roca.
Estado del Arte de herramientas de percusión eléctricas.
Existe una variedad de patentes y publicaciones científicas de herramientas de perforación eléctricas. La gran mayoría de ellas contempla el uso de solenoides que mueven masas ferromagnéticas en combinación con resortes para generar un movimiento oscilatorio. Tal es el caso de la patente US 6,201 ,362 B1 , que propone una masa ferrosa ubicada en el interior de bobinas eléctricas y que es impulsada por una o dos bobinas. En conjunto, la masa ferrosa y una bobina forman un solenoide. Las bobinas impulsan la masa ferrosa en contra de un cincel y posterior al impacto, las bobinas elevan la masa nuevamente, generando un movimiento reciprocante. Cuando las bobinas son excitadas con energía eléctrica proveniente del exterior del dispositivo (puede ser alternante o continua), la masa ferrosa es atraída al centro de la bobina, pues de esa forma la energía del sistema se encuentra en un mínimo y la masa ferrosa encuentra un equilibrio al interior de la bobina, en su centro. El movimiento reciprocante se logra al cambiar la posición de la masa ferrosa desde una bobina a otra y la patente propone un sistema de alimentación que alarga a vida de las bobinas a través del uso de una rueda de inercia que almacena energía en forma externa al dispositivo.
Otro caso de herramienta eléctrica de perforación de roca es la patente US5,168,939A, que propone un sistema de cañón electromagnético de aceleración de una masa ferrosa que pasa por el centro de sucesivas bobinas que la aceleran. Las bobinas son excitadas secuencialmente en forma retroalimentada según la posición de la masa ferrosa. Esta herramienta está diseñada para impactar muy fuertemente, pero con una frecuencia muy baja. Es decir, una alta energía cinética (1/2*mvA2) de impacto (medida en Joules) en combinación con una baja frecuencia (medida en Hz = 1 /segundo). El producto de energía de impacto por frecuencia de impacto, entrega como resultado la potencia entregada a la roca (medida en Watts = Joules/segundo). Entonces, si la frecuencia es demasiado baja, la potencia entregada a la roca es baja y como puede suponerse la tasa de penetración será baja. Ambas herramientas eléctricas, al igual que las propuestas en US 6,520,269, US
4,215,297, US 4,015,671 , US 2,861 ,778, US 1 ,941 655, US 1 ,725,504, CN 205,317,438
U, CN 1 ,061 ,922 A, dan a conocer sistemas similares en cuanto al accionamiento de bobinas para generar un movimiento reciprocante de una masa ferrosa usando bobinas que atraen la masa ferrosa al centro de la bobina.
Sin embargo, la configuración en todas estas patentes considera el uso de circuitos magnéticos (1505) abiertos en algún punto del fierro, dando espacios a entrehierros (1504). En las configuraciones propuestas en las patentes citadas, los entrehierros están presentes para permitir el movimiento de la masa ferrosa. Estos entrehierros (1504) son distancias de aire (1509) con una permeabilidad magnética muy baja en comparación a la zona de fierro (1510) que tiene una permeabilidad magnética varios órdenes de magnitud superior. Dependiendo del material puede ser del orden de 100 a 1000 veces. El efecto de este entrehierro (1504) es que el circuito magnético (1505) encuentra dificultades para generar una alta densidad de campo al interior del fierro, generándose un efecto de frontera (1502), en que el campo se hace menos denso (menos líneas de campo (1501 ) por unidad de superficie). Al igual que en los circuitos eléctricos, en que una alta resistencia impide el paso de la corriente, en el caso de los circuitos magnéticos una alta reluctancia (debido a los entrehierros), impide el paso del flujo magnético. Esto genera que para una misma excitación (fuerza magnetomotriz N*l, dada por el producto del enrollamiento de N vueltas (1507) y la corriente circulando en el enrollamiento (1508)), se obtenga una menor densidad de campo (líneas de campo magnético (1501 ) dividido por la sección transversal del núcleo de fierro (1503)) en el núcleo magnético. Dicho de otro modo, para generar una densidad de campo magnético que sea suficientemente buena como para generar alta potencia, es necesario consumir mucha energía eléctrica.
De esta forma, aquellas propuestas que contemplen entrehierros (1504), o bien consumen mucha energía o generan poco movimiento mecánico.
Otras patentes hablan de motores lineales de paso a paso, como la patente de 1926 US 1 ,720,854, pero también considera entrehierros para permitir el movimiento mecánico. Esta patente considera una configuración compleja, pues las fuerzas de atracción entre los elementos de fierro son altas y por lo mismo contempla el uso de rodamientos lineales o de sistemas que aseguren un centrado muy preciso del elemento móvil. Por otra parte, el uso de enrollamientos que deben ser alimentados eléctricamente en la zona móvil, implica la necesidad de contactos eléctricos móviles (escobillas, carbones, etc) que generan muchas necesidades de mantenimiento que hacen muy costosa la operación del dispositivo o decididamente lo hacen poco confiable.
Otras alternativas propuestas en publicaciones científicas (Tao, Bekken y Zhang etal) corresponde a motores lineales síncronos de ¡manes permanentes para generar el movimiento de traslación y reciprocante. En estas alternativas, el estator contiene los ¡manes permanentes y el elemento que genera el movimiento tiene sólo bobinas. Sin embargo, el uso de ¡manes permanentes en aplicaciones con altas temperaturas, alta vibración y alto impacto no es deseable, ni menos dada la estructura de los ¡manes permanentes modernos, fabricados por sinterización. Este proceso de fabricación consiste en compactar a alta presión los polvos metálicos y/o cerámicos de ciertos materiales particulares, mezclados homogéneamente y, una vez compactados, realizar un tratamiento térmico a una temperatura inferior a la de fusión de la mezcla, obteniéndose una pieza consolidada y compacta.
Problemas técnicos que resuelve el presente desarrollo.
Se propone un dispositivo perforador eléctrico que incluye un motor lineal reciprocante de inducción, confinado al interior de un transformador eléctrico (101 ), y que a través de una cámara de aire (1704) entrega potencia al pistón percutor (1705). Éste golpea al cincel (1706) que es el que finalmente destruye la roca. Las características de este dispositivo son: (i) su eficiencia energética (potencia eléctrica consumida versus potencia entregada a la roca); (¡i) flexibilidad para controlar los parámetros de funcionamiento, tales como frecuencia de impacto, carrera y energía de impacto; (iii) posee un mucho menor costo de capital debido a que, a diferencia de las perforadoras hidráulicas y neumáticas, toda la herramienta está autocontenida. Es decir, las perforadoras hidráulicas y neumáticas requieren de una bomba hidráulica y un compresor de aire, respectivamente, para impulsar el fluido hasta la herramienta. Estas bombas hidráulicas y los compresores de aire son equipos de un alto costo de capital por la cantidad de partes y piezas que componen el equipo. Sin embargo, en el caso del desarrollo propuesto, el mismo transformador (101 ) genera el movimiento del anillo conductor eléctrico (201 ) y la cantidad e interacción de las piezas de un transformador eléctrico es mucho más bajo que el de una bomba neumática o un compresor de aire; (iv) posee un menor costo de mantención debido a que, a diferencia de las perforadoras hidráulicas y neumáticas que requieren de una intensiva revisión y manutención, toda la herramienta del presente desarrollo está autocontenida. Las mantenciones de los equipos eléctricos, en específico de los transformadores, es mucho más baja por la menor mano de obra y robustez de los equipos, que los equipos hidráulicos y neumáticos, especialmente cuando estos últimos dependen de motores de combustión interna para generar el movimiento. De esta forma, las perforadoras hidráulicas y neumáticas requieren de una bomba hidráulica o un compresor de aire, respectivamente, para impulsar el fluido hasta la herramienta, necesitándose dos elementos para generar el efecto deseado: el elemento impulsor del fluido y la herramienta de perforación. Como mencionábamos anteriormente, las bombas hidráulicas y los compresores de aire son equipos intensivos en mantención. Sin embargo, en el caso del desarrollo propuesto, el mismo transformador genera el movimiento del anillo conductor eléctrico y éste es libre de mantención.
Las distintas técnicas de rotopercusión masivamente usadas (neumática e hidráulica), usan un fluido (aire o aceite, respectivamente) para transmitir la energía a la herramienta de percusión. Ese fluido es presurizado en forma centralizada a través de un compresor o una bomba hidráulica, respectivamente, de manera tal que el caudal que se transmite a la herramienta es impulsado por ese fluido presurizado. Entonces, la potencia entregada a la herramienta es el producto de presión por caudal, siendo el caudal una variable dependiente de la presión. Si se quiere aumentar la potencia transmitida a la herramienta a través del fluido, se aumenta la presión con que se impulsa el fluido y esa mayor presión hace aumentar el caudal. En otras palabras, ambas variables están amarradas. Ahora bien, desde el punto de vista de la herramienta, la potencia recibida por el fluido presurizado es transformada en potencia entregada a la roca, la cual es el producto entre energía cinética del pistón al golpear el cincel, por frecuencia de impacto del pistón al cincel. Para lograr más velocidad de perforación, se debe aumentar la frecuencia de impacto, asegurando un impacto mínimo para romper la roca. Sin embargo, con las herramientas actuales (neumática e hidráulica), para aumentar la frecuencia de impacto, se aumenta la potencia a la herramienta y el resultado final es que se aumenta al mismo tiempo la frecuencia de impacto y la energía con que se impacta la roca.
Esto no es lo más eficiente, pues en teoría no haría falta aumentar la energía de impacto, porque ya se está rompiendo la roca. Lo deseable sería transformar la potencia instalada en frecuencia, manteniendo la energía de impacto en el mínimo para romper la roca.
Por otro lado, la experiencia en la industria demuestra que, para una determinada potencia instalada del equipo perforador, puede lograrse mayor velocidad de perforación, dependiendo de cómo se distribuya, por un lado, la energía entregada a la superficie, y por otro lado, la frecuencia de impacto.
Las motivaciones que llevan al estudio de percutores eléctricos son claras. En general los sistemas de tracción eléctrica se caracterizan por tener alta eficiencia y porque se pueden controlar a distancia. Para ello es necesario controlar la frecuencia de percusión, además del impacto mismo. Todo lo anterior, intentando mantener una alta eficiencia del ciclo.
Es decir, se busca un dispositivo muy versátil, de tamaño pequeño (que no dependa el tamaño de su potencia instalada y entregada a la roca) que sea capaz de entregar una potencia lo suficientemente alta y que además pueda modificar sus condiciones de operación, manteniendo su eficiencia dentro de rangos aceptables.
La razón que justifica el desarrollo de un percutor eléctrico se basa justamente en las propiedades que presentan los sistemas eléctricos: alta eficiencia y control de parámetros a distancia. Resulta interesante entonces, conjugar las propiedades de los diversos sistemas eléctricos con los requerimientos y características de la perforación de roca.
Concretamente, la posibilidad de variar los parámetros de un sistema electromecánico permite variar las frecuencias de percusión manteniendo una alta eficiencia del ciclo. Ajustando los parámetros para las distintas rocas, puede lograrse una mayor tasa de penetración.
El presente desarrollo propone un dispositivo perforador eléctrico que comprende un motor lineal reciprocante de inducción, confinado al interior de un transformador eléctrico (101 ), y que a través de una cámara de aire (1704) entrega potencia al pistón percutor (1705). Éste golpea al cincel (1706) que es el que finalmente destruye la roca. Las características de este dispositivo son su eficiencia y flexibilidad para controlar los parámetros de funcionamiento, tales como frecuencia de impacto, carrera y energía de impacto y un tamaño pequeño, independiente de los requerimientos de potencia en comparación con los sistemas hidráulicos y neumáticos conocidos.
De esta forma, respecto de las herramientas rotopercusivas, tanto hidráulicas y neumáticas, una configuración como la que se propone viene a solucionar los problemas técnicos de: (i) eficiencia energética, en el sentido de que una proporción importante de la potencia consumida por el equipo podrá ser convertida en potencia mecánica y ésta, entregada a la roca; (¡i) un tamaño del equipo independiente de la potencia requerida en comparación con los sistemas hidráulicos y neumáticos, y (iii) control de los parámetros que permiten intercambiar energía de impacto en frecuencia de impacto. Para ello, el dispositivo propuesto tiene dos grados de libertad: a) La frecuencia con que se excitan los embobinados primarios (104) inferior y superior en forma alternada. Cada vez que uno de ellos es excitado, se genera el desplazamiento del anillo conductor eléctrico (201 ), por lo tanto, la frecuencia de excitación envolvente, determina en forma directa la frecuencia de oscilación del anillo conductor eléctrico (201 ). b) La carrera que recorre el anillo conductor eléctrico, determinada por la distancia entre los embobinados primarios (104) superior e inferior. Como puede entenderse, a mayor distancia, la frecuencia del anillo conductor eléctrico (201 ), será menor y viceversa. Con estas posibilidades de cambiar en forma externa la frecuencia del anillo conductor eléctrico (201 ), el dispositivo puede enfrentar de mejor manera los escenarios posibles:
I. Roca dura.
En este escenario, la herramienta debe golpear con un fuerte impacto para lograr romper la roca. De esta forma, se debe alargar la distancia entre los embobinados primarios (104) y con ello, alargar la carrera del anillo conductor eléctrico (201 ) para asegurar que durante un mayor recorrido del anillo conductor eléctrico (201 ), exista empuje de las bobinas y la acción de la gravedad acelerando el anillo conductor eléctrico (201 ). Esto redundará en mayor velocidad del anillo conductor eléctrico (201 ) al momento del impacto y por lo tanto, mayor energía de impacto entregada a la roca. Una vez logrado el impacto mínimo para romper la roca, toda la potencia instalada puede transformarse en mayor frecuencia de oscilación del anillo conductor eléctrico (201 ) que a su vez provocará una mayor frecuencia de impacto. De esta forma se logrará aumentar todo cuanto sea posible la velocidad de perforación. Este aumento de la frecuencia de oscilación se logra aumentando la frecuencia de las envolventes (801 , 803, 901 , 903, 1001 , 1003, 1101 , 1103).
I. Roca media.
En este escenario, la herramienta debe golpear con un impacto menor para romper la roca. De esta forma, se debe acortar la distancia entre los embobinados primarios (104) y con ello, acortar la carrera del anillo conductor eléctrico (201 ), acelerándolo lo justo y necesario para entregar la mínima energía de impacto a la roca para romperla. La gran ventaja de acortar la carrera es que permite aumentar aún más la frecuencia con que se alterna los embobinados primarios (104) superior e inferior. Una vez logrado el impacto mínimo para romper la roca, toda la potencia instalada puede transformarse en mayor frecuencia de oscilación del anillo conductor eléctrico (201 ) que a su vez provocará una mayor frecuencia de impacto. De esta forma se logrará aumentar todo cuanto sea posible la velocidad de perforación. Este aumento de la frecuencia de oscilación se logra aumentando la frecuencia de las envolventes (801 , 803, 901 , 903, 1001 , 1003, 1101 , 1103).
Respecto a las herramientas eléctricas para percusión, la solución presentada en este documento se diferencia fuertemente en:
1) El dispositivo motor lineal de inducción propuesto es de una construcción muy simple. No contiene escobillas, carbones, anillos colectores ni conmutadores, lo cual redunda en una menor cantidad de piezas y una sencilla mantención del equipo con menos horas hombre destinadas a este propósito.
2) El dispositivo motor lineal de inducción del presente desarrollo es de una construcción muy robusta, lo cual lo hace un dispositivo confiable. No tiene elementos delicados, como ¡manes permanentes ni contactos eléctricos con partes móviles. Esto redunda en pocas fallas y una baja rotación de repuestos. Respecto de las herramientas eléctricas que usan ¡manes permanentes, la fragilidad de los ¡manes en un ambiente de mucha vibración y polvo con golpes fuertes. Asimismo, en las herramientas eléctricas con imanes permanentes existe el riesgo de desmagnetización por alta temperatura (efecto Curie).
3) El dispositivo motor lineal de inducción propuesto no tiene contactos eléctricos en las partes móviles. Debido a la ausencia de escobillas y carbones como elementos de contacto eléctrico, no hay chispas y por ello puede ser operado en condiciones peligrosas, como minas de carbón. Esto lo convierte en un dispositivo de mayor seguridad.
4) No tiene entrehierros para generar la inducción en el anillo conductor eléctrico (201 ). Esto redunda en una alta eficiencia al comparar la potencia eléctrica consumida por el dispositivo con la potencia mecánica entregada a la roca, expresada como energía de impacto por frecuencia de impacto.
Adicionalmente a lo anterior, las perforaciones axiales (1401 ) ayudan a mejorar sustancialmente la eficiencia del sistema, pues refrigeran el anillo y disminuyen la resistencia con el aire.
5) Variando la frecuencia de inducción (802, 804, 902, 904, 1002, 1004, 1102, 1 104), se genera más corriente en el anillo, pues la corriente inducida en el anillo es proporcional a la frecuencia de inducción. Esto da un grado de libertad más a la configuración propuesta, pues bien, se podrían usar materiales como la ferrita en el caso de que el fierro silicoso presente una limitante por la frecuencia de inducción. Normalmente el fierro silicoso se usa para aplicaciones cuyas frecuencias de trabajo son menores a 1 kHz, pues las corrientes parásitas comienzan a hacer muy ineficiente el fierro silicoso.
Descripción del desarrollo propiamente tal.
Debe entenderse que el presente desarrollo no está limitado a la metodología particular, compuestos, materiales, técnicas de manufactura, usos y aplicaciones aquí descritas, pues éstas pueden variar. También debe entenderse que la terminología empleada aquí es usada con el solo propósito de describir una representación particular, y no intenta limitar la perspectiva y el potencial del presente desarrollo.
Debe notarse que el dispositivo, sistema, procedimiento, uso y método, aquí, en el pliego de reivindicaciones y en todo el texto que el singular no excluye el plural, salvo que en el contexto claramente lo implique. Entonces, por ejemplo, la referencia a un “dispositivo o sistema”, es una referencia a uno o más dispositivos o sistemas e incluye equivalentes conocidos por quienes conocen de la materia (el arte). Similarmente, como otro ejemplo, la referencia a “un paso”, “una etapa” o a “un modo”, es una referencia a uno o más pasos, etapas o modos y que puede incluir sub-pasos, etapas o modos, implícitos y/o sobrevinientes. Todas las conjunciones usadas han de entenderse en su sentido menos restrictivo y más inclusivo posible. Así, por ejemplo, la conjunción “o” debe entenderse en su sentido lógico ortodoxo, y no como un “o excluyente”, salvo que el contexto o el texto expresamente lo necesite o indique. Las estructuras, materiales y/o elementos descritos han de entenderse que también se refieren a aquellos equivalentes funcionalmente y así evitar enumeraciones taxativas interminables.
Las expresiones usadas para indicar aproximaciones o conceptualizaciones deben entenderse así, salvo que el contexto mande una interpretación distinta.
Todos los nombres y términos técnicos y/o científicos aquí empleados tienen el significado común que le otorga una persona común, calificada en estas materias, salvo indicación expresa, distinta.
Los métodos, técnicas, elementos, dispositivos y sistemas son descritos, aunque métodos, técnicas, elementos, dispositivos y sistemas similares y/o equivalentes a los descritos pueden ser usados o preferidos en la práctica y/o pruebas del presente desarrollo.
Se incorporan todas las patentes y otras publicaciones como referencias, con el propósito de describir y/o informar, por ejemplo, las metodologías descritas en dichas publicaciones, que puedan resultar útiles en relación con el presente desarrollo. Se incluyen estas publicaciones sólo por su información previa a la fecha de registro de la presente solicitud de patente.
A este respecto nada debe considerarse como una admisión o aceptación, rechazo o exclusión, de que los autores y/o inventores no estén legitimados de serlo, o de estar ante-fechadas dichas publicaciones en virtud de otras anteriores, o por cualquier otra razón.
Para aportar claridad al presente desarrollo se definirán los siguientes conceptos:
Entrehierro: el entrehierro es la región situada en el aire entre los dos polos magnéticos de un imán o de un electroimán. El entrehierro introduce en el circuito magnético una reluctancia magnética, es decir, una resistencia al paso de un flujo magnético cuando es influenciado por un campo magnético.
Línea de campo magnético: Las líneas de campo magnético son una abstracción de las líneas invisibles que se extienden en el circuito magnético desde el polo norte hasta el polo sur. Las líneas de campo magnético son una consecuencia de la magnetización de los ¡manes permanentes o electroimanes y caracterizan la disposición geométrica de sus campos magnéticos. Cuanto más fuerte es un campo magnético, más densas son las líneas del campo magnético. Si se pulveriza polvo de hierro en un pedazo de papel y se coloca en posición justo encima del imán, el polvo de hierro recogerá estructuras que muestran el curso de las líneas del campo magnético.
Puente H: un puente H es un circuito electrónico que generalmente se usa para permitir a un motor eléctrico de corriente continua girar en ambos sentidos, avance y retroceso. Son ampliamente usados en robótica y como convertidores de potencia. Los puentes H están disponibles como circuitos integrados, pero también pueden construirse a partir de componentes discretos. En este desarrollo se usa para generar la excitación de los embobinados primarios (401 ) con una frecuencia distinta de la red eléctrica (50 Hz ó 60 Hz), que permita la doble función: inducir corrientes en el anillo conductor eléctrico (201 ) a partir de una excitación de alta frecuencia y al mismo tiempo hacerlo alternar entre los embobinados primarios (401 ) con una excitación de baja frecuencia, siendo esta última la envolvente de las señales de excitación.
Envolvente: en geometría, una envolvente de una familia de curvas en el plano es una curva que es tangente a cada miembro de la familia en algún punto, y estos puntos de tangencia juntos forman la envolvente completa. Para el caso de este desarrollo puntual, se refiere a la curva que envuelve las señales, voltajes o corrientes de alta frecuencia, para graficar las señales, voltajes o corrientes de baja frecuencia.
El dispositivo motor lineal reciprocante de inducción para aplicaciones de percusión que se propone en el presente desarrollo, comprende un anillo conductor eléctrico (201 ) que oscila al interior de un transformador monofásico (101 ), de núcleo ferroso (alambre de fierro recocido o ferrita o preferentemente fierro silicoso laminado) cerrado, con dos embobinados primarios (104) de alambre recocido esmaltado, que pueden ser de cobre o aluminio. Los embobinados primarios (104) pueden ser también de tubería de cobre recocido, refrigerada por dentro con agua blanda, como se hace normalmente en los artefactos de calentamiento por inducción. Si este es el caso, la tubería debe ser aislada exteriormente con cintas o esmalte y posteriormente enrollada para formar la bobina. Este alambre o tubería está enrollado sobre un carrete plástico, siendo éste un transformador seco (no sumergido en aceite). Los embobinados primarios (104) se excitan alternadamente con corriente continua o alterna, y de forma complementaria, dándose a entender que mientras se excita uno de los embobinados primarios el otro no y viceversa. La oscilación del anillo conductor eléctrico (201 ) se produce por la interacción entre el campo magnético (301 ) y la corriente (501 ) del embobinado primario (104).
De esta forma la corriente (501 ) del embobinado primario (104) produce un campo magnético alternante (102) dentro del fierro silicoso laminado (101 ) del transformador. El material ferroso del transformador puede ser también alambre de fierro recocido o ferrita o cualquier otro material que concentre el campo magnético, de preferencia fierro silicoso laminado con la mayor cantidad de líneas de campo previo a la saturación. Por la ley de Fadaray y la ley de Lenz, ese campo magnético alternante (102) induce una corriente alternante (401 ) dentro del anillo conductor eléctrico (201 ) en sentido contrario a la corriente (501 ) del embobinado primario (104). La corriente inducida (401 ) dentro del anillo conductor eléctrico (201 ) genera un campo magnético alternante (301 ) que se opone al campo magnético original (102).
Como el campo magnético alternante (301 ) es un campo vectorial, cada línea de campo tiene una componente vertical (503A) y una componente horizontal (503B).
De esta forma, la componente horizontal (503B) del magnético (301 ) y la corriente (501 ) del embobinado primario (104) interactúan entre sí y su producto vectorial (F = I x B) genera una fuerza de repulsión vertical (601 ) entre el anillo conductor eléctrico (201 ) y el embobinado primario (104). Esa fuerza de repulsión vertical (601 ) es la que permite que el anillo conductor eléctrico (201 ) oscile en la columna central del transformador de núcleo cerrado.
Asimismo, la componente vertical (503A) del campo magnético (301 ) y la corriente (501 ) del embobinado primario (104) interactúan entre sí y su producto vectorial (F = I x B) genera una fuerza horizontal radial (602) entre el anillo conductor eléctrico (201 ) y el embobinado primario (104). Esta fuerza horizontal radial (602) tiene una resultante igual a cero, pues se cancela (suma vectorial igual a cero). Esta fuerza horizontal radial (602) permite centrar el anillo conductor eléctrico (201 ) y que se desplace prácticamente sin roce por la columna vertical del transformador (101 ). El movimiento oscilante del anillo conductor eléctrico (201 ) se genera pues se excita en forma alternante el embobinado primario (104) inferior y el embobinado primario (104) superior. Entones la fuerza vertical de repulsión (601 ) es hacia arriba cuando se acciona el embobinado primario (104) inferior y el anillo conductor eléctrico (201 ) se desplaza hacia arriba. Cuando el anillo conductor eléctrico (201 ) se encuentra cercano al embobinado primario (104) superior, éste se acciona y la fuerza vertical de repulsión (601 ) es hacia abajo, generando un desplazamiento del anillo hacia el embobinado primario (104) inferior. Y así sucesivamente.
La excitación de los embobinados primarios (104, 702) superior e inferior puede hacerse en forma directa de la red eléctrica (103), con frecuencias de 50 Hz ó 60 Hz, según sea el caso, o bien a través de una fuente especial, como puede ser un puente H (701 ). Debe existir un puente H por cada embobinado primario (104, 702).
Si se desea excitar los embobinados primarios (104, 702) en forma directa de la red eléctrica (103), la frecuencia de excitación que genera inducción en el anillo conductor eléctrico (201 ) es la frecuencia de la red (902, 904, 1102, 1104). Y cada embobinado primario (104, 702) debe accionarse en forma alternante a través de algún dispositivo interruptor, como puede ser un relé (usando los estados Normal Abierto y Normal Cerrado), dos relés de estado sólido o transistores. La alternancia con la que se accione el embobinado primario (104, 702) inferior y posteriormente el embobinado primario (104, 702) superior y así sucesivamente, dará lugar a la frecuencia de oscilación del anillo conductor eléctrico (201 ) dentro del transformador (101 ), que corresponde a las envolventes (901 , 903) para un ciclo de trabajo de 50% y a las envolventes (1101 , 1 103) para un ciclo de trabajo menor a 50%.
Si se desea excitar los embobinados primarios (104, 702) con un puente H (701 ), el mismo puente H (701 ) permite entregar voltaje y corriente a los embobinados primarios (104, 702) para lograr la frecuencia alta (de inducción) y adicionalmente la frecuencia baja, (alternancia entre ellos) para hacer oscilar el anillo conductor eléctrico (201 ).
El puente H (701 ) permite excitar los embobinados primarios (104, 702) para lograr con una corriente en un sentido (positivo a la derecha) con el accionamiento de los transistores 703 (mosfet, igbt, bjt, entre otros). Un instante de tiempo posterior (medio ciclo de inducción) se deja de accionar los transistores 703 y se accionan los transistores 704 para generar un flujo de corriente en sentido inverso (positivo a la izquierda).
Para un ciclo de trabajo de 50%, las señales de accionamiento del puente H (701 ) de los embobinados primarios (104, 702) deben estar desfasados en 180°, de manera tal de lograr la oscilación del anillo conductor eléctrico (201 ). De esta forma para un ciclo de trabajo de 50%, la señal de accionamiento del puente H (701 ) para el embobinado primario (104, 702) superior es la señal de inducción (802) y también la envolvente (801 ) que genera la oscilación del anillo conductor eléctrico (201 ). Asimismo, la señal de accionamiento del puente H (701 ) para el embobinado primario (104, 702) inferior es la señal de inducción (804) y también la envolvente (803) que genera la oscilación del anillo conductor eléctrico (201 ).
Para un ciclo de trabajo menor a 50%, la señal de accionamiento del puente H (701 ) para el embobinado primario (104, 702) superior es la señal de inducción (1002) y también la envolvente (1001 ) que genera la oscilación del anillo conductor eléctrico (201 ). Asimismo, la señal de accionamiento del puente H (701 ) para el embobinado primario (104, 702) inferior es la señal de inducción (1004) y también la envolvente (1003) que genera la oscilación del anillo conductor eléctrico (201 ).
Con el uso de las fuentes modernas como puede ser un puente H, como fuente de corriente o voltaje se puede tener mucha flexibilidad en los parámetros de frecuencia de oscilación (801 , 803, 901 , 903, 1001 , 1003, 1 101 , 1103) del anillo conductor eléctrico (201 ). De manera externa al dispositivo se puede variar la frecuencia de excitación de las bobinas (envolvente) (801 , 803, 901 , 903, 1001 , 1003, 1101 , 1103).
Es conveniente el uso de fuentes modernas como puede ser el puente H como fuente de voltaje o corriente, pues para que el presente dispositivo pueda ser competitivo el anillo conductor eléctrico (201 ) debe ser capar de oscilar a más de 30Hz. Para ello, las frecuencias de inducción deber ser sustancialmente mayores (del orden de 10 veces más), para que con cada oscilación el anillo tenga al menos de ciclos completos de inducción y asegurar de esta forma que las corrientes en su interior sean efectivamente muy altas. Adicionalmente a Io anterior, se puede variar el recorrido del anillo conductor eléctrico (201 ) al interior del transformador (carrera). La carrera que recorre el anillo conductor eléctrico está determinada por la distancia entre los embobinados primarios (104) superior e inferior. Como puede entenderse, a mayor distancia, la frecuencia del anillo conductor eléctrico (201 ), será menor y viceversa.
La configuración que se propone es la de un transformador monofásico de núcleo cerrado que comprende:
(i) Un arreglo de láminas fierro silicoso de trasformador eléctrico (101 ) que genera circuito magnético cerrado (sin entrehierro), pudiendo ser este fierro silicoso de grano orientado o material similar, que soporta una gran densidad de campo magnético (102) previo a su saturación. Esta densidad de campo se mide en número de líneas de campo o Tesla y antes de su saturación puede llegar de 10.000 líneas o 1 Tesla a 20.000 líneas o 2,0 Tesla, dependiendo del material. El material debe tener la propiedad de concentrar las líneas de campo, generando una alta densidad de campo en poco volumen de transformador (101 ). Alternativamente a las láminas de fierro silicoso, el material que concentra el campo magnético puede ser alambre de fierro recocido o ferrita.
(¡i) Dos embobinados primarios (104) que se excitan en forma alternante con corriente directa o preferentemente corriente alterna (103). Este embobinado primario (104) consiste en un enrollamiento de alambre recocido esmaltado de cobre o aluminio, dieléctricamente aislado mediante papel, papel tratado, elastómeros, entre otros para este propósito, que, alimentado eléctricamente, genera el campo magnético en el fierro, que a su vez induce corrientes gigantescas en el anillo conductor eléctrico (201 ). Para que se dé el fenómeno de inducción, el campo magnético en el fierro silicoso laminado (101 ) debe estar variando en el tiempo. De esta forma, si el embobinado primario (104) se alimenta con corriente (501 ) directa, la corriente inducida (401 ) en el anillo conductor eléctrico (201 ) se dará sólo en el período transiente, hasta que la corriente del embobinado (501 ) deje de variar en el tiempo y la corriente inducida (401 ) dentro del anillo conductor eléctrico (201 ) llegue a magnitud cero. Alternativamente, el embobinado primario (104) también puede ser hecho de tubería de cobre recocido, de manera que se pueda refrigerar internamente con algún fluido, de preferencia agua blanda. Si este es el caso, la tubería debe ser aislada externamente con algún material como cinta aislante eléctrica que además soporte temperatura, como cinta de fibra de vidrio, esmaltada o no. También puede ser sencillamente esmaltada.
(iii) Un anillo conductor eléctrico (201 ) de bajo costo, bajo peso específico, baja resistividad eléctrica y alta conductividad térmica. Un buen candidato de material que cumpla con todas estas condiciones es el aluminio y sus aleaciones, sin ser restrictivo a solo este material. Este anillo conductor eléctrico (201 ) actuará como el embobinado secundario del transformador, con una sola vuelta cortocircuitada en su enrollamiento. Esto generará una corriente (401 ) dentro del anillo conductor eléctrico (201 ) del orden de los cientos de miles de amperes y dependerá de la temperatura del aluminio, de su resistividad, del perímetro medio del anillo conductor eléctrico (201 ), de la sección transversal del anillo conductor eléctrico (201 ), de la sección transversal del fierro silicoso (101 ), de la densidad de campo magnético (102), y de la frecuencia de excitación de los embobinados primarios (104).
La combinación entre un circuito magnético cerrado (101 ), sin entrehierro, con gran capacidad de concentrar el campo magnético (102) y un embobinado primario (104) que genere ese campo magnético, induciendo corrientes gigantescas en el anillo conductor eléctrico (201 ), provoca un sistema muy eficiente en el sentido de que no genera pérdidas para su funcionamiento.
Para asegurar la eficacia (movimiento) y la eficiencia (proporción entre energía eléctrica consumida y energía transformada en movimiento mecánico) del sistema y disminuir las pérdidas en el funcionamiento, se debe asegurar la refrigeración del anillo conductor eléctrico (201 ), lo cual se logra de modo preferencia!, por el aire circundante generado por el movimiento del anillo, sin descartar, pero siendo sólo una opción, la utilización de gases inertes o dieléctricos como el nitrógeno, argón, SF6, entre otros. Lo anterior es debido a que si la corriente inducida (401 ) en el anillo conductor eléctrico (201 ) es de cientos de miles de amperes y la densidad de corriente es del orden de los cientos de amperes por milímetro cuadrado, el anillo conductor eléctrico (201 ) tenderá a calentarse y esto va a generar por un lado: (i) pérdidas en el sistema ya que parte de la potencia consumida por el dispositivo motor lineal reciprocante se va a convertir en calor, pero por otro lado (¡i) un menor movimiento del anillo conductor eléctrico (201 ). Este menor movimiento se deberá a que al calentarse el anillo conductor eléctrico (201 ) aumentará su resistencia eléctrica y disminuirá la corriente inducida (401 ). Al disminuir la corriente inducida (401 ) bajará la intensidad del campo magnético (301 ) asociado a las corrientes inducidas (401 ) en el anillo conductor eléctrico (201 ).
Es por ello que el anillo conductor eléctrico (201 ) considera perforaciones axiales (1401 ) paralelas al sentido de desplazamiento del mismo. De esta forma, por convección forzada y gracias a la buena conductividad térmica del aluminio, se desplaza el calor generado en el anillo conductor eléctrico (201 ) por la gran densidad de corriente en el mismo.
Las perforaciones axiales (1401 ) que refrigeran el anillo conductor eléctrico (201 ), también disminuyen la resistencia del aire al desplazamiento del anillo. Como la velocidad media del anillo conductor eléctrico (201 ) es del orden de las decenas de metros por segundo, y la resistencia con el aire aumenta cuadráticamente con la velocidad, el disminuir esa resistencia aerodinámica aumenta la eficiencia del sistema. Es por ello que el anillo conductor eléctrico (201 ) considera perforaciones axiales (1401 ).
El elemento móvil es sencillamente un anillo conductor eléctrico (201 ), preferentemente de aluminio o sus aleaciones, sin descartar otros materiales, en el cual se inducen corrientes (401 ) sin contacto eléctrico de ninguna especie. Es decir, la componente activa del anillo conductor (201 ) que genera movimiento reciprocante, son corrientes inducidas. A diferencia de aquellas soluciones que proponen en el elemento móvil, ¡manes permanentes o espiras eléctricas que deben hacer contacto con el estator, el anillo conductor eléctrico (201 ) es capaz de manejar cientos o miles de amperes sin hacer contacto eléctrico con el resto del equipo. El movimiento lineal vertical reciprocante se logra a partir de un ajuste deslizante entre el diámetro interior del anillo conductor eléctrico (201 ) y la columna central del transformador (101 ). Es decir, no se requiere rodamientos lineales que deban restringir movimientos radiales, dados por fuerzas radiales resultantes entre el transformador (101 ) y el anillo conductor eléctrico (201 ). Esto se debe a que no existen fuerzas de atracción entre el fierro silicoso laminado del transformador (101 ) y el anillo conductor eléctrico (201 ). De hecho, las fuerzas radiales (602) que existen entre la componente vertical (503A) del campo magnético (301 ) generado por el anillo conductor eléctrico (201 ) y la corriente de la bobina (104), se cancelan en todo el perímetro del anillo conductor eléctrico (201 ).
Método de fabricación del dispositivo de motor lineal reciprocante de inducción
El método de fabricación del dispositivo de motor lineal reciprocante de inducción tiene variaciones, dependiendo del formato del núcleo ferroso que se use. Básicamente depende de que: (i) el núcleo se pueda abrir y cerrar durante el proceso de fabricación, o bien, (¡i) que una vez fabricado el núcleo, ya no se pueda volver a abrir.
(i) Si el formato del núcleo es tal que se puede abrir y cerrar, entonces el método de fabricación es tal que el fierro silicoso laminado o la ferrita o cualquier otro material que concentre el campo magnético, se arma lámina por lámina si es el caso, y se deja abierto para incorporar el resto de los elementos (resortes, anillo conductor eléctrico (201 ), embobinados primarios (104)). a. Si el diseño del núcleo del transformador es tal que se trata de dos elementos E e I, como el de la Figura 1 , se introduce en la columna central del transformador en ese orden: el embobinado primario inferior, el resorte inferior en el centro del embobinado primario inferior, el anillo conductor eléctrico (201 ), el embobinado primario superior y el resorte superior en el centro del embobinado primario superior. Una vez introducidos todos los elementos, se cierra el transformador, agregando el elemento del núcleo ferroso en forma de I para cerrar el núcleo magnético del transformador. b. Si el diseño del núcleo del transformador es tal que de trata de dos elementos C e I, como el de la Figura 16, se introduce en una o en ambas columnas del transformador en ese orden: el embobinado primario inferior, el resorte inferior en el centro del embobinado primario inferior, el anillo conductor eléctrico (201 ), el embobinado primario superior y el resorte superior en el centro del embobinado primario superior. Una vez introducidos todos los elementos, se cierra el transformador, agregando el elemento del núcleo ferroso en forma de I para cerrar el núcleo magnético del transformador.
(¡i) Si el formato del núcleo es tal que NO se puede volver a abrir, entonces hay variaciones en el método de fabricación del dispositivo. Este método puede ser usado cuando por razones de costo, se utiliza alambre de fierro recocido y el primer paso de la fabricación es armar el núcleo ferroso a partir de varias vueltas de alambre de fierro. En este caso, se puede: a. Pasar varias vueltas de alambre de fierro recocido por el centro de los resortes, anillo conductor eléctrico (201 ) y embobinados primarios (104), hasta conformar un núcleo de fierro con suficiente sección para el buen funcionamiento del dispositivo. De esta forma al mismo tiempo que van pasando vueltas por el centro de los elementos (resortes, bobinas y anillo), se va conformando el núcleo. b. Se arma el núcleo de fierro a partir de varias vueltas del alambre de fierro recocido. Una vez armado el núcleo ferroso ya cerrado, posteriormente: se tiene los carretes para las bobinas partidos en dos partes. Se introducen las partes de los carretes en el núcleo ferroso y se embobina cada enrollamiento primario (104), haciendo girar el carrete dentro del núcleo de fierro; se introducen los resortes en el núcleo de fierro y finalmente se tiene el anillo conductor eléctrico (201 ) abierto en dos partes, se introducen dentro del núcleo y se lo une para dar lugar al anillo cortocircuitado conductor eléctrico (201 ).
Ejemplo de aplicación.
El ejemplo de aplicación del presente desarrollo del dispositivo de motor lineal de inducción corresponde a:
1 ) Un núcleo de fierro silicoso laminado (101 ) de una altura total de 720mm, una carrera de 500mm y sección de fierro en su columna central de 3660 mm2.
2) Los embobinados primarios (104) superior e inferior son 2 bobinas de alambre esmaltado de cobre recocido, con aislación de papel entre las capas del enrollamiento de 250 vueltas, de calibre AWG 7, para 220V y una capacidad de conducir 30A, con una densidad de 3A/mm2. La altura de la bobina es de 70mm, con un diámetro interior de 106mm y un diámetro exterior de 206mm. Las bobinas tienen 10 derivaciones para tener posibilidad de variar el valor de la inductancia. Esa flexibilidad es importante pues al aumentar la frecuencia de excitación de la bobina que genera inducción en el anillo, por sobre los 50Hz, la impedancia de la bobina comienza a subir y la corriente disminuye. Si eso sucede al punto que la fuerza magnetomotriz es demasiado baja como para generar potencia mecánica, es conveniente bajar el número de vueltas en la bobina (usar una de las derivaciones), para bajar la inductancia y con ello la impedancia de la bobina. 3) Un anillo conductor eléctrico (201 ) de aluminio de 1 ,5 kgs de masa, de 76 mm de diámetro interior, 165mm de diámetro exterior y 35mm de altura, con 36 perforaciones pasantes axiales de 5mm de diámetro.
4) Dos resortes de acero inoxidable de 8 espiras de 10mm de diámetro, 78mm de diámetro interior y 98mm de diámetro exterior y 160mm de altura. Estos resortes se ubican al interior de cada uno de los embobinados primarios (104) superior e inferior. Cuando el anillo conductor eléctrico (201 ) de aluminio se acerca a uno de los embobinados primarios (104), éste comienza a almacenar su energía cinética en el resorte, que se la devuelve en el momento en que se acciona la bobina que está cercana al anillo conductor eléctrico (201 ).
5) De los 720 mm de largo total del transformador (101 ), una vez descontado el espacio ocupado por la sección misma del transformador (101 ) y los embobinados primarios (104), quedan 500mm libres que corresponden a la carrera máxima del anillo conductor eléctrico (201 ) de aluminio.
6) Para alimentar cada uno de los embobinados primarios (104) superior e inferior se dispuso de un variac monofásico de 5kVA en que una de las salidas del variac va directamente a uno de los polos de los embobinados primarios (104) y la otra salida del variac pasa por un par de relés de estado sólido que permiten alimentar en forma alternada cada uno de los embobinados primarios (104). El control de los relés de estado sólido se hace con una señal PWM y su negada, ambas a cada una de las bases de dos transistores NPN 547C que activan los SSR. 7) Adicionalmente, como puede verse en la figura 17/17, se tiene una cámara de aire que trasmite el movimiento del anillo conductor eléctrico (201 ) a la roca. De esta forma, el movimiento vertical reciprocante del anillo conductor eléctrico (201 ) genera un cambio de volumen en la cámara de aire (1704) que impulsa el pistón (1705), que, a su vez, golpea el cincel (1706), que, a su vez, golpea la roca.
Con la configuración anterior, sin optimización de ningún tipo, se logran frecuencias de oscilación del anillo conductor eléctrico (201 ) de aluminio superiores a los 10Hz, con una carrera de 500mm, corrientes teóricas dentro del anillo conductor eléctrico (201 ) de aluminio en torno a los 180kA, una densidad de corriente de 115 A/mm2 y velocidad promedio de más de 5m/s.
Como puede apreciarse, para este ejemplo de aplicación, las frecuencias desarrolladas por el anillo conductor eléctrico (201 ) de aluminio son comparables a las herramientas usadas en la industria con una carrera bastante superior. Ahora bien, el ejemplo de aplicación no consideró el impactar sobre una roca, pero al momento de retirar los resortes y efectuar un impacto, la frecuencia logró mantenerse sobre los 7Hz.
Descripción de las Figuras
Figura 1/17
La figura 1/17 muestra un transformador eléctrico, de núcleo cerrado, fabricado a partir de láminas de fierro silicoso (101 ). En una de las columnas verticales del transformador se encuentra un embobinado primario (104) que, excitado por la fuente alterna (103), genera un campo magnético alternante (102) en el interior del fierro laminado silicoso (101 ).
El número 101 es el núcleo de fierro silicoso laminado.
El número 102 corresponde a las líneas de campo magnético.
El número 103 es la fuente de excitación de los embobinados primarios (104). Puede ser de corriente alterna o en su defecto corriente directa. Si se trata de corriente directa, el efecto inductivo en el anillo conductor eléctrico (201 ) será sólo en el período transiente.
El número 104 corresponde al embobinado primario.
Figura 2/17 La figura 2/17 muestra el mismo transformador eléctrico hecho a partir de láminas de fierro silicoso (101 ) de la figura 1 /17. En esta figura se adiciona el anillo conductor eléctrico (201 ) que actuará como oscilador mecánico.
El número 201 es el anillo conductor eléctrico.
Figura 3/17
En figura 3/17 se puede ver el campo magnético (301 ) generado por la corriente inducida en el interior del anillo conductor eléctrico (201 ).
El número 301 es el campo magnético generado por la corriente inducida en el anillo conductor eléctrico (201 ), producto del campo magnético alternante (102) en el fierro silicoso laminado (101 ).
Figura 4/17
En figura 4/17 se tiene una vista en corte (201 A) y una vista superior (201 B) del anillo conductor eléctrico (201 ). Se aprecia en detalle la corriente inducida (401 ) para cada una de las vistas. En la vista en corte (201 A), en el lado derecho del anillo, se puede apreciar la corriente entrando a la hoja (401 A). En el lado izquierdo del anillo, se puede apreciar la corriente saliendo de la hoja (401 B).
El número 201 A una vista en corte del anillo conductor eléctrico (201 ).
El número 201 B una vista superior del anillo conductor eléctrico (201 ).
El número 401 es la corriente inducida para cada una de las vistas.
El número 401 A es la corriente inducida en el anillo conductor eléctrico (201 ), entrando a la hoja.
El número 401 B es la corriente inducida en el anillo conductor eléctrico (201 ), saliendo de la hoja.
El número 301 es el campo magnético vectorial generado por la corriente inducida 401 . Figura 5/17
En la figura 5/17 se puede ver las direcciones y sentidos del campo magnético vectorial (301 ) generado por la corriente inducida (401 ) en el anillo conductor eléctrico (201 ) y la corriente (501 ) en el embobinado primario (104).
El campo magnético (102) en el fierro laminado (101 ) del transformador tiene un sentido hacia abajo (502) en la columna central del transformador dada la regla de la mano derecha. Ese campo magnético en el fierro (101 ) induce una corriente (401 ) en el anillo conductor eléctrico (201 ) en sentido contrario a la corriente original (501 ). La corriente inducida (401 ) genera un segundo campo magnético (301 ), cuyo campo vectorial está representado por las flechas (503). Como puede apreciarse, en el centro del anillo, la componente que prima es la vertical, con sentido hacia arriba, pero el campo magnético, al ser vectorial tiene siempre una componente horizontal (503B) y una componente vertical (503A).
El número 501 es la corriente en el embobinado primario (104).
El número 502 es el sentido del campo magnético (102) en el fierro laminado (101 ) del transformador.
El número 503 es la dirección y sentido del campo magnético vectorial (301 ), en el centro del anillo conductor eléctrico (201 ).
El número 503A es la componente vertical del campo magnético vectorial (301 ). El número 503B es la componente horizontal del campo magnético vectorial
(301 ).
Figura 6/17
La figura 6/17 muestra la interacción entre las componentes vertical (503A) y horizontal (503B) del campo magnético vectorial (301 ) y la corriente (501 ) en el embobinado primario (104).
Como el campo magnético alternante (301 ) es un campo vectorial, cada línea de campo tiene una componente vertical (503A) y una componente horizontal (503B). De esta forma, la componente horizontal (503B) del magnético vectorial (301 ) y la corriente (501 ) del embobinado primario (104) interactúan entre sí y su producto vectorial (F = I x B) genera una fuerza de repulsión vertical (601 ) entre el anillo conductor eléctrico (201 ) y el embobinado primario (104).
Asimismo, la componente vertical (503A) del campo magnético vectorial (301 ) y la corriente (501 ) del embobinado primario (104) interactúan entre sí y su producto vectorial (F = I x B) genera una fuerza horizontal radial (602) entre el anillo conductor eléctrico (201 ) y el embobinado primario (104). Esta fuerza horizontal radial (602) tiene una resultante igual a cero, pues se cancela (suma vectorial igual a cero). El número 601 corresponde a una fuerza de repulsión vertical entre el anillo conductor eléctrico (201 ) y el embobinado primario (104).
El número 602 corresponde a una fuerza horizontal radial entre el anillo conductor eléctrico (201 ) y el embobinado primario (104).
Figura 7/17
La figura 7/17 muestra un puente H (701 ). Se trata de una configuración de transistores que permite invertir el sentido de las corrientes en una determinada carga (104, 702). Si se desea excitar los embobinados primarios (104, 702) con un puente H (701 ), el mismo puente H (701 ) permite excitar los embobinados primarios (104, 702) para lograr la excitación de los embobinados primarios (104, 702) y adicionalmente la alternancia entre ellos para hacer oscilar el anillo conductor eléctrico (201 ).
El puente H (701 ) permite excitar los embobinados primarios (104, 702) para lograr con una corriente en un sentido (de positivo a negativo) con el accionamiento de los transistores 703 (mosfet, igbt, bjt, etc). Un instante de tiempo posterior (medio ciclo de inducción) se deja de accionar los transistores 703 y se accionan los transistores 704 para generar un flujo de corriente en sentido inverso (de negativo a positivo). El número 701 corresponde al puente H.
El número 702 corresponde a la carga que alimenta el puente H, que, en este caso, corresponde a los embobinados primarios (104).
El número 703 corresponde al grupo de transistores que permite la circulación de corriente en sentido positivo a la derecha.
El número 704 corresponde al grupo de transistores que permite la circulación de corriente en sentido positivo a la izquierda.
Figura 8/17
La figura 8/17 muestra las señales de accionamiento (input) del puente H (701 ) de los embobinados primarios (104, 702). Estas señales deben estar desfasadas en 180°, de manera tal de lograr la oscilación del anillo conductor eléctrico (201 ). De esta forma para un ciclo de trabajo de 50%, la señal de accionamiento del puente H (701 ) para el embobinado primario (104, 702) superior es la señal de inducción (802) de alta frecuencia y también la envolvente (801 ), de baja frecuencia, que genera la oscilación del anillo conductor eléctrico (201 ). Asimismo, la señal de accionamiento del puente H (701 ) para el embobinado primario (104, 702) inferior es la señal de inducción (804) de alta frecuencia y también la envolvente (803) de baja frecuencia que genera la oscilación del anillo conductor eléctrico (201 ). El número 801 es la señal (input) del puente H (701 ) que alimenta el embobinado primario (104) superior. Esta señal es una envolvente de baja frecuencia que genera el accionamiento de los transistores (703, 704) que permiten la salida de corriente del puente H hacia el embobinado primario superior (104, 702) y que asegura la oscilación del anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es de 50%.
El número 802 es la señal (input) del puente H (701 ) que alimenta el embobinado primario (104) superior. Esta es la señal de excitación de alta frecuencia que genera el accionamiento de los transistores (703, 704) y permiten la salida de corriente del puente H hacia el embobinado primario superior (104, 702), que asegura la inducción de corrientes en el anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es de 50%.
El número 803 es la señal (input) del puente H (701 ) que alimenta el embobinado primario (104) inferior. Esta señal es una envolvente de baja frecuencia que genera el accionamiento de los transistores (703, 704) y permite la salida de corriente del puente H hacia el embobinado primario inferior (104, 702) y que asegura la oscilación del anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es de 50%.
El número 804 es la señal (input) del puente H (701 ) que alimenta el embobinado primario (104) inferior. Esta es la señal de excitación de alta frecuencia que genera el accionamiento de los transistores (703, 704) y permite la salida de corriente del puente H hacia el embobinado primario inferior (104, 702), que asegura la inducción de corrientes en el anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es de 50%.
Figura 9/17
La figura 9/17 muestra el voltaje (en el caso de que el puente H sea una fuente de voltaje) o la corriente (en el caso de que el puente H sea una fuente de corriente) de salida del puente H (701 ) hacia los embobinados primarios (104, 702).
Estos voltajes o corrientes están desfasados en 180°, de manera tal de lograr la oscilación del anillo conductor eléctrico (201 ). De esta forma para un ciclo de trabajo de 50%, la corriente de salida del puente H (701 ) para el embobinado primario (104, 702) superior es la corriente de alta frecuencia que genera inducción (902) y también la corriente envolvente de baja frecuencia (901 ) que genera la oscilación del anillo conductor eléctrico (201 ). Asimismo, corriente de salida del puente H para el embobinado primario (104, 702) inferior es la corriente de alta frecuencia que genera inducción (904) y también la corriente envolvente de baja frecuencia (903) que genera la oscilación del anillo conductor eléctrico (201 ).
El número 901 es el voltaje que desde el puente H (701 ) alimenta el embobinado primario (104) superior. Este voltaje es de baja frecuencia y genera la corriente del puente H hacia el embobinado primario superior (104, 702). Es esta corriente la que asegura la oscilación del anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es de 50%.
El número 902 es el voltaje que desde el puente H (701 ) alimenta el embobinado primario (104) superior. Este voltaje es la excitación de alta frecuencia que permite la salida de corriente del puente H hacia el embobinado primario superior (104, 702), que asegura la inducción de corrientes en el anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es de 50%.
El número 903 es el voltaje que desde el puente H (701 ) alimenta el embobinado primario (104) inferior. Este voltaje es de baja frecuencia y genera la salida de corriente del puente H hacia el embobinado primario inferior (104, 702). Esta corriente asegura la oscilación del anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es de 50%.
El número 904 es el voltaje que desde el puente H (701 ) que alimenta el embobinado primario (104) inferior. Este voltaje es la excitación de alta frecuencia y genera la salida de corriente del puente H hacia el embobinado primario inferior (104, 702), que asegura la inducción de corrientes en el anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es de 50%. Figura 10/17
La figura 10/17 muestra las señales de accionamiento (input) del puente H (701 ) de los embobinados primarios (104, 702). Estas señales deben estar desfasados en 180°, de manera tal de lograr la oscilación del anillo conductor eléctrico (201 ). De esta forma para un ciclo de trabajo menor a 50%, la señal de accionamiento del puente H (701 ) para el embobinado primario (104, 702) superior es la señal de inducción (1002) y también la envolvente (1001 ) que genera la oscilación del anillo conductor eléctrico (201 ). Asimismo, la señal de accionamiento del puente H (701 ) para el embobinado primario (104, 702) inferior es la señal de inducción (1004) y también la envolvente (1003) que genera la oscilación del anillo conductor eléctrico (201 ).
El número 1001 es la señal (input) del puente H (701 ) que alimenta el embobinado primario (104) superior. Esta señal es una envolvente de baja frecuencia que genera el accionamiento de los transistores (703, 704) que permiten la salida de corriente del puente H hacia el embobinado primario superior (104, 702) y que asegura la oscilación del anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo menor a 50%.
El número 1002 es la señal (input) del puente H (701 ) que alimenta el embobinado primario (104) superior. Esta es la señal de excitación de alta frecuencia que genera el accionamiento de los transistores (703, 704) y permiten la salida de corriente del puente H hacia el embobinado primario superior (104, 702), que asegura la inducción de corrientes en el anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es menor a 50%.
El número 1003 es la señal (input) del puente H (701 ) que alimenta el embobinado primario (104) inferior. Esta señal es una envolvente de baja frecuencia que genera el accionamiento de los transistores (703, 704) y permite la salida de corriente del puente H hacia el embobinado primario inferior (104, 702) y que asegura la oscilación del anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es menor a 50%.
El número 1004 es la señal (input) del puente H (701 ) que alimenta el embobinado primario (104) inferior. Esta es la señal de excitación de alta frecuencia que genera el accionamiento de los transistores (703, 704) y permite la salida de corriente del puente H hacia el embobinado primario inferior (104, 702), que asegura la inducción de corrientes en el anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es menor a 50%.
Figura 11/17
La figura 1 1/17 muestra el voltaje (en el caso de que el puente H sea una fuente de voltaje) o la corriente (en el caso de que el puente H sea una fuente de corriente) de salida del puente H (701 ) hacia los embobinados primarios (104, 702). Estos voltajes o corrientes están desfasados en 180°, de manera tal de lograr la oscilación del anillo conductor eléctrico (201 ). De esta forma para un ciclo de trabajo de menos de 50%, la corriente de salida del puente H (701 ) para el embobinado primario (104, 702) superior es la corriente de alta frecuencia que genera inducción (1102) y también la corriente envolvente de baja frecuencia (1101 ) que genera la oscilación del anillo conductor eléctrico (201 ). Asimismo, corriente de salida del puente H para el embobinado primario (104, 702) inferior es la corriente de alta frecuencia que genera inducción (1104) y también la corriente envolvente de baja frecuencia (1103) que genera la oscilación del anillo conductor eléctrico (201 ).
El número 1101 es el voltaje que desde el puente H (701 ) alimenta el embobinado primario (104) superior. Este voltaje es de baja frecuencia y genera la corriente del puente H hacia el embobinado primario superior (104, 702). Es esta corriente la que asegura la oscilación del anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es menor a 50%.
El número 1102 es el voltaje que desde el puente H (701 ) alimenta el embobinado primario (104) superior. Este voltaje es la excitación de alta frecuencia que permite la salida de corriente del puente H hacia el embobinado primario superior (104, 702), que asegura la inducción de corrientes en el anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es menor a 50%. El número 1103 es el voltaje que desde el puente H (701 ) alimenta el embobinado primario (104) inferior. Este voltaje es de baja frecuencia y genera la salida de corriente del puente H hacia el embobinado primario inferior (104, 702). Esta corriente asegura la oscilación del anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es menor a 50%.
El número 1104 es el voltaje que desde el puente H (701 ) que alimenta el embobinado primario (104) inferior. Este voltaje es la excitación de alta frecuencia y genera la salida de corriente del puente H hacia el embobinado primario inferior (104, 702), que asegura la inducción de corrientes en el anillo conductor eléctrico (201 ). Como se aprecia en la figura el ciclo de trabajo es menor a 50%.
Figura 12/17
La figura 12/17 muestra una vista en alzada del anillo conductor eléctrico (201 ) y una vista superior del anillo conductor eléctrico (201 ). Se puede observar las fuerzas que actúan sobre el anillo conductor eléctrico (201 ).
En la vista de alzada se puede observar la fuerza vertical-axial (601 ) ejercida sobre el anillo conductor eléctrico (201 ), la cual es la responsable de su oscilación dentro del transformador eléctrico (101 ). Como el campo magnético alternante (301 ) es un campo vectorial, cada línea de campo tiene una componente vertical (503A) y una componente horizontal (503B). De esta forma, la componente horizontal (503B) del magnético vectorial (301 ) y la corriente (501 ) circulando en embobinado primario (104) interactúan entre sí. Su producto vectorial (F = I x B) genera una fuerza de repulsión vertical (601 ) entre el anillo conductor eléctrico (201 ) y el embobinado primario (104).
En la vista superior se puede observar la fuerza horizontal-radial (602) ejercida sobre el anillo conductor eléctrico (201 ), la cual es la responsable de que el anillo conductor eléctrico (201 ) se auto-centre en la columna central del transformador eléctrico (101 ).
Asimismo, la componente vertical (503A) del campo magnético vectorial (301 ) y la corriente (501 ) del embobinado primario (104) interactúan entre sí y su producto vectorial (F = I x B) genera una fuerza horizontal radial (602) entre el anillo conductor eléctrico (201 ) y el embobinado primario (104). Esta fuerza horizontal radial (602) tiene una resultante igual a cero, pues se cancela (suma vectorial igual a cero). Esto permite que el anillo conductor eléctrico (201 ) se auto-centre en la columna central del transformador eléctrico (101 ). Figura 13/17
La figura 13/17 es el esquema completo del dispositivo motor lineal de inducción reciprocante. Se puede observar los embobinados (104) superior (104 A) e inferior (104 B) que accionados de forma alternante permiten la oscilación del anillo conductor eléctrico (201 ).
Figura 14/17
En la Figura 14/17 se muestra una vista superior del anillo conductor eléctrico (201 ) y sus perforaciones pasantes axiales (1401 ) que tienen un doble propósito. Por un lado, disminuir la resistencia aerodinámica del anillo con el aire y por otro lado, asegurar su refrigeración, dadas las altísimas corrientes (401 ) circulando en su interior. Como el anillo va a oscilar viajando por la columna central del transformador (101 ) a una frecuencia alta (del orden de las decenas de Hz), su velocidad media es del orden de las decenas de metros por segundo. Esto significa que el aire va a viajar por las perforaciones axiales (1401 ) a una alta velocidad, asegurando la refrigeración del anillo conductor eléctrico (201 ).
El número 1401 corresponde a las perforaciones pasantes axiales en el anillo conductor eléctrico (201 ). Figura 15/17
La figura 15/17 gráfica la existencia de un entrehierro (1504) en un circuito magnético (dado por las líneas de campo (1505)). Este entrehierro (1504) es la distancia de aire (1509) con una permeabilidad magnética muy baja en comparación a la zona de fierro (1510) que tiene una permeabilidad magnética varios órdenes de magnitud superior. Dependiendo del material puede ser del orden de 100 a 1000 veces. El efecto de este entrehierro (1504) es tal que el circuito magnético (1505) encuentra dificultades para generar una alta densidad de campo al interior del fierro, generándose un efecto de frontera (1502), en que el campo se hace menos denso (menos líneas de campo (1501 ) por unidad de superficie (1503)).
El entrehierro (1504) genera en el circuito magnético (1505) una alta reluctancia. Al igual que en los circuitos eléctricos, en que una alta resistencia impide el paso de la corriente, en el caso de los circuitos magnéticos una alta reluctancia (debido a los de entrehierros), impide el paso del flujo magnético. Esto genera que para una misma excitación (fuerza magnetomotriz N*l, dada por el producto del enrollamiento de N vueltas (1507) y la corriente circulando en el enrollamiento (1508)), se obtenga una menor densidad de campo (líneas de campo magnético (1501 ) dividido por la sección transversal del núcleo de fierro (1503)) en el núcleo magnético.
El número 1501 corresponde a las líneas de campo magnético en el entrehierro. El número 1502 gráfica el efecto de frontera en el entrehierro.
El número 1503 es la sección transversal del núcleo de fierro.
El número 1504 es el entrehierro.
El número 1505 corresponde a las líneas de campo magnético.
El número 1506 es la longitud del núcleo de fierro.
El número 1507 es el enrollamiento con N vueltas.
El número 1508 es la corriente circulando en el enrollamiento.
El número 1509 es la zona con permeabilidad magnética igual a la del aire.
El número 1510 la zona con permeabilidad magnética igual a la del fierro.
Figura 16/17
En la figura 16/17 se puede ver una variación del dispositivo motor lineal reciprocante de inducción, en que el anillo conductor eléctrico (201 ) es doble y oscila en ambas columnas del transformador (101 ). Esta configuración es muy eficiente en cuanto al espacio que usa el dispositivo.
Figura 17/17 En la figura 17/17 se puede ver el modelo dinámico del dispositivo de motor lineal reciprocante de inducción, a modo de ejemplo y sin restringir el campo de aplicación del dispositivo de motor lineal reciprocante de inducción, en una configuración posible para el percutor. Como se ve en la figura 17/17, el anillo conductor eléctrico (201 ) tiene restringido su movimiento vertical por dos resortes ideales: el resorte ideal superior (1701 A) y el resorte ideal inferior (1701 B). Estos resortes ideales (1701 A, 1701 B) se convierten en resortes reales a través del modelo dinámico que los conceptualize en paralelo con los amortiguadores (1702).
El movimiento vertical reciprocante del anillo conductor eléctrico (201 ) genera un cambio de volumen en la cámara de aire (1704) que impulsa el pistón (1705), que a su vez, golpea el cincel (1706), que a su vez, golpea la roca.
El número 1701 A corresponde al resorte ideal superior.
El número 1701 B corresponde al resorte ideal inferior.
El número 1702 corresponde a dos amortiguadores que hacen reales el actuar de los resortes (1701 A, 1701 B), según el modelo dinámico de la figura 17/17.
El número 1703 corresponde al émbolo de mayor tamaño de la cámara de aire (1704).
El número 1704 es la cámara de aire que transmite el movimiento del anillo conductor eléctrico al pistón (1705).
El número 1705 es el pistón que a su vez, golpea el cincel (1706), que a su vez, golpea la roca. 5 El número 1706 es el cincel que golpea la roca.

Claims

REIVINDICACIONES
1.- Dispositivo de Motor lineal de inducción reciprocante, CARACTERIZADO porque comprende un anillo conductor eléctrico (201 ) que no hace contacto eléctrico con ningún elemento del dispositivo y que oscila al interior de un transformador eléctrico de núcleo cerrado seco, monofásico (101 ) configurado como un circuito magnético cerrado, sin entrehierros más que el propio de la construcción del circuito magnético cerrado, con dos embobinados primarios (104) independientes de alambre recocido esmaltado o tubería recocida aislada, refrigerada, donde el embobinado primario superior (104 A) y el embobinado primario inferior (104 B) están posicionados arriba y debajo de dicho anillo conductor eléctrico (201 ), donde estos alambres recocidos esmaltados están enrollados sobre un carrete aislante eléctrico.
2.- Dispositivo de Motor lineal, según la reivindicación 1
CARACTERIZADO porque el anillo conductor eléctrico que oscila sobre el material ferroso, alternativamente, como primera opción se confina dentro del circuito magnético del material ferroso, en su columna central, o como segunda opción se confina dentro del circuito magnético del material ferroso, en las columnas laterales, siempre entre dos bobinas que son el embobinado primario (104).
3.- Dispositivo de Motor lineal, según las reivindicaciones 1 y 2,
CARACTERIZADO porque el núcleo ferroso del transformador está construido
59 con material ferroso, de preferencia ferrita o fierro laminado silicoso de grano orientado o alambre de fierro recocido.
4.- Dispositivo de Motor lineal, según las reivindicaciones 1 y 2, CARACTERIZADO porque el anillo conductor eléctrico (201 ) posee perforaciones.
5.- Dispositivo de Motor lineal, según las reivindicaciones 1 y 2, CARACTERIZADO porque el anillo y la estructura interna del transformador se enfría con un conjunto de gases tales como aire, aire seco, SF6, gases inertes tales como Nitrógeno y Argón o gases dieléctricos, de preferencia aire.
6.- Dispositivo de Motor lineal, según las reivindicaciones 1 y 2, CARACTERIZADO porque la distancia entre las bobinas superior (104 A) e inferior (104 B) es variable para ampliar el rango de frecuencias en el que puede oscilar el dispositivo.
7.- Método de operación del dispositivo de Motor lineal de inducción reciprocante, CARACTERIZADO porque comprende las etapas de: a.- inyectar corriente eléctrica alterna o continua a uno de los dos embobinado primario inferior o superior (104), directamente desde la red eléctrica, con 50Hz o 60Hz según corresponda. b.- generar una enorme circulación de corriente inducida en el anillo conductor eléctrico (201 ) y su campo magnético asociado, sin contacto eléctrico alguno entre el anillo conductor eléctrico (201 ) y ningún elemento del dispositivo, todo esto debido a la corriente eléctrica inyectada en la etapa (a); c.- excitar los embobinados primarios (104) en forma alternada y complementaria con corriente continua o alterna a través de dispositivos como relés con partes móviles, relés de estado sólido, circuitos sencillos con transistores o circuitos más versátiles como un puente H; d.- hacer oscilar el anillo conductor eléctrico (201 ) en respuesta a la interacción entre el campo magnético (301 ) y la corriente (501 ) del embobinado primario (104); y e.- mover, asociado al anillo conductor eléctrico, algún elemento mecánico, hidráulico o neumático que canalice la fuerza ejercida.
8.- Método de operación del dispositivo de Motor lineal, según la reivindicación 7, CARACTERIZADO porque en la etapa c), la excitación de las bobinas, para generar el movimiento oscilante, se realiza a partir de corriente continua o corriente alterna, controlando las frecuencias de forma externa a través de dispositivos como relés con partes móviles, relés de estado sólido, circuitos sencillos con transistores o circuitos más versátiles como un puente H, para generar al mismo tiempo mayor inducción magnética en el anillo conductor eléctrico que lo que se podría lograr con la frecuencia de la red y adicionalmente controlar su oscilación entre las bobinas.
61
9.- Método de fabricación del dispositivo de Motor lineal de inducción reciprocante, CARACTERIZADO porque comprende las etapas de:
(i) Si el formato del núcleo es tal que se puede abrir y cerrar, entonces el método de fabricación es tal que el fierro silicoso laminado o la ferrita o cualquier otro material que concentre el campo magnético, se arma lámina por lámina si es el caso, y se deja abierto para incorporar el resto de los elementos (resortes, anillo conductor eléctrico (201 ), embobinados primarios (104)). a. Si el diseño del núcleo del transformador es tal que se trata de dos elementos E e I, como el de la Figura 1 , se introduce en la columna central del transformador en ese orden: el embobinado primario inferior, el resorte inferior en el centro del embobinado primario inferior, el anillo conductor eléctrico (201 ), el embobinado primario superior y el resorte superior en el centro del embobinado primario superior. Una vez introducidos todos los elementos, se cierra el transformador, agregando el elemento del núcleo ferroso en forma de I para cerrar el núcleo magnético del transformador. b. Si el diseño del núcleo del transformador es tal que de trata de dos elementos C e I, como el de la Figura 16, se introduce en una o en ambas columnas del transformador en ese orden: el embobinado primario inferior, el resorte inferior en el centro del embobinado primario inferior, el anillo conductor eléctrico (201 ), el embobinado primario superior y el resorte superior en el centro del embobinado
62 primario superior. Una vez introducidos todos los elementos, se cierra el transformador, agregando el elemento del núcleo ferroso en forma de I para cerrar el núcleo magnético del transformador.
(¡i) Si el formato del núcleo es tal que NO se puede volver a abrir, entonces hay variaciones en el método de fabricación del dispositivo. Este método puede ser usado cuando por razones de costo, se utiliza alambre de fierro recocido y el primer paso de la fabricación es armar el núcleo ferroso a partir de varias vueltas de alambre de fierro. En este caso, se puede: a. Pasar varias vueltas de alambre de fierro recocido por el centro de los resortes, anillo conductor eléctrico (201 ) y embobinados primarios (104), hasta conformar un núcleo de fierro con suficiente sección para el buen funcionamiento del dispositivo. De esta forma al mismo tiempo que van pasando vueltas por el centro de los elementos (resortes, bobinas y anillo), se va conformando el núcleo. b. Se arma el núcleo de fierro a partir de varias vueltas del alambre de fierro recocido. Una vez armado el núcleo ferroso ya cerrado, posteriormente: se tiene los carretes para las bobinas partidos en dos partes. Se introducen las partes de los carretes en el núcleo ferroso y se embobina cada enrollamiento primario (104), haciendo girar el carrete dentro del núcleo de fierro; se introducen los resortes en el núcleo de fierro y finalmente se tiene el anillo conductor
63 eléctrico (201 ) abierto en dos partes, se introducen dentro del núcleo y se lo une para dar lugar al anillo cortocircuitado conductor eléctrico
(201 ).
PCT/CL2020/050100 2020-09-03 2020-09-03 Dispositivo de motor lineal reciprocante de inducción. WO2022047598A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/043,893 US20240030795A1 (en) 2020-09-03 2020-09-03 Induction reciprocating linear motor device
PCT/CL2020/050100 WO2022047598A1 (es) 2020-09-03 2020-09-03 Dispositivo de motor lineal reciprocante de inducción.
CL2023000143A CL2023000143A1 (es) 2020-09-03 2023-01-13 Dispositivo de motor lineal reciprocante de inducción

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2020/050100 WO2022047598A1 (es) 2020-09-03 2020-09-03 Dispositivo de motor lineal reciprocante de inducción.

Publications (1)

Publication Number Publication Date
WO2022047598A1 true WO2022047598A1 (es) 2022-03-10

Family

ID=80492301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050100 WO2022047598A1 (es) 2020-09-03 2020-09-03 Dispositivo de motor lineal reciprocante de inducción.

Country Status (3)

Country Link
US (1) US20240030795A1 (es)
CL (1) CL2023000143A1 (es)
WO (1) WO2022047598A1 (es)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1871446A (en) * 1928-04-24 1932-08-16 Stiles M Decker Electric hammer
SU1585881A1 (ru) * 1988-02-29 1990-08-15 Войсковая Часть 14262 Электродвигатель ударного действи
US5168939A (en) * 1990-08-29 1992-12-08 Joseph F. Long Electromagnetically accelerated impact oil well drill
EP1111137A1 (fr) * 1999-12-22 2001-06-27 Entreprise de Travaux Publics et Privés Georges Durmeyer Marteau électromagnétique à masse ferromagnétique mobile
US20170237329A1 (en) * 2014-10-30 2017-08-17 Qixing Chen Linear motor based on radial magnetic tubes
CN108825122B (zh) * 2018-06-20 2019-12-27 郑州大学 一种高频冲击直线永磁电机系统
WO2020058565A1 (en) * 2018-09-21 2020-03-26 Lekatech Oy A linear electric machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1871446A (en) * 1928-04-24 1932-08-16 Stiles M Decker Electric hammer
SU1585881A1 (ru) * 1988-02-29 1990-08-15 Войсковая Часть 14262 Электродвигатель ударного действи
US5168939A (en) * 1990-08-29 1992-12-08 Joseph F. Long Electromagnetically accelerated impact oil well drill
EP1111137A1 (fr) * 1999-12-22 2001-06-27 Entreprise de Travaux Publics et Privés Georges Durmeyer Marteau électromagnétique à masse ferromagnétique mobile
US20170237329A1 (en) * 2014-10-30 2017-08-17 Qixing Chen Linear motor based on radial magnetic tubes
CN108825122B (zh) * 2018-06-20 2019-12-27 郑州大学 一种高频冲击直线永磁电机系统
WO2020058565A1 (en) * 2018-09-21 2020-03-26 Lekatech Oy A linear electric machine

Also Published As

Publication number Publication date
CL2023000143A1 (es) 2023-07-07
US20240030795A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
US10014802B2 (en) Systems and methods of harvesting energy in a wellbore
EP2062345B1 (en) Improvements in electromagnetic machines
US10718163B2 (en) Pulse transformer for downhole electrocrushing drilling
US5465789A (en) Apparatus and method of magnetic well stimulation
KR20170045235A (ko) 진동 흡수기들을 위한 마그네틱 댐퍼
CN1324712A (zh) 带电磁冲击机械的手操纵工具
CA3036434C (en) Resonant transformer for downhole electrocrushing drilling
JPS62502442A (ja) 電気機械的変換器及び交流起電力を誘導する方法
JP2013530328A (ja) ラジアル振動装置
RU2630026C1 (ru) Электромагнитный молот с приводом от линейного электрического двигателя
WO2022047598A1 (es) Dispositivo de motor lineal reciprocante de inducción.
US6257355B1 (en) Downhole power generator
CN101403378A (zh) 直线磁力驱动双活塞智能采油泵
CN110259375B (zh) 用于低冲击场合的电磁谐振式气动冲击器及其工作方法
RU2315181C2 (ru) Электромолот
US20070000181A1 (en) Magnetic induction dynamical devices for damping impacts and heating objects
WO2016003643A1 (en) Electromagnetic actuator
RU2217592C2 (ru) Электромагнитный ударный механизм
CN114739247B (zh) 一种基于电磁力精准定向破拆装置及其使用方法
RU2175083C1 (ru) Вибрационный насос
RU2215964C2 (ru) Устройство для предотвращения образования накипи
US3074492A (en) Well drilling system
SU874948A1 (ru) Подводный электромагнитный молот
ES2615155B1 (es) Generador eléctrico compensado
CN109996652A (zh) 线圈划分

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18043893

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951847

Country of ref document: EP

Kind code of ref document: A1