WO2022045422A1 - Controller for solar lighting system and method for resetting solar lighting system - Google Patents

Controller for solar lighting system and method for resetting solar lighting system Download PDF

Info

Publication number
WO2022045422A1
WO2022045422A1 PCT/KR2020/011691 KR2020011691W WO2022045422A1 WO 2022045422 A1 WO2022045422 A1 WO 2022045422A1 KR 2020011691 W KR2020011691 W KR 2020011691W WO 2022045422 A1 WO2022045422 A1 WO 2022045422A1
Authority
WO
WIPO (PCT)
Prior art keywords
reset
secondary battery
control unit
solar
lighting system
Prior art date
Application number
PCT/KR2020/011691
Other languages
French (fr)
Korean (ko)
Inventor
손창우
제갈혁
이병흥
Original Assignee
주식회사 엘씨엠싸이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘씨엠싸이언스 filed Critical 주식회사 엘씨엠싸이언스
Publication of WO2022045422A1 publication Critical patent/WO2022045422A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a solar lighting system, and more specifically, for example, a system capable of generating electric power using sunlight, storing the produced electric power in a secondary battery, and driving a lighting device such as a street lamp or a security lamp with the stored electric power It relates to a controller for a solar lighting system comprising a, and a reset method of the solar lighting system using such a controller.
  • a lighting system such as a street lamp or a security lamp is installed along a roadside for safety and security of traffic and pedestrians at night.
  • a typical lighting system has a highway type, a bracket type, a main type, etc. depending on the type of the pole of the lighting system, and a high-pressure mercury lamp, a sodium lamp, a metal halide lamp, a CDM, etc. are used as a light source.
  • Solar lighting systems are mainly installed in places where there are few people or where it is difficult to install facilities for power supply or where the installation cost is excessive. It is a system that protects the safety of pedestrians.
  • a solar street light system includes a solar cell module, a battery module capable of storing power generated from the solar cell module, a charge/discharge controller that charges the battery module with the power generated from the solar cell module, and an LED from the charged battery module, for example. and a control module for supplying power to a lighting device such as a lamp and managing the state of charge of the battery module.
  • a street light dimming control system using the ubiquitous solar-based street light detects the current state of street lamps in real time through the ubiquitous sensor network and independent power supply by sunlight, and identifies the efficient lamp management and safety and functional normality according to the illuminance, and performs remote control to prevent unnecessary energy waste of street lamps and continuously This is to keep you in control.
  • a battery management system (BMS) used for a secondary battery of a solar lighting system cuts off power applied to the controller when the voltage of the battery module falls below a threshold voltage. For example, when the power of the battery module is consumed due to the operation of the lighting device of the solar lighting system and the voltage of the battery module is lowered below the threshold voltage and the controller is turned off, the operation of the current solar lighting system is stopped. . After that, even if power is supplied by the solar panel, the controller does not operate, so the solar riding system does not operate. In this case, service personnel must directly charge the battery module to set the controller to work again.
  • the solar lighting system is often installed in a remote location, it is difficult to service it, especially in the case of a so-called all-in-one system in which the battery module and the controller are built inside the head of the lighting device, service personnel are dispatched. However, there is a problem that access is not easy.
  • the present invention was devised to solve the problems of the prior art described above, and the solar lighting system is located at a remote location or the battery module and controller are built in the all-in-one head of the lighting device, so that service personnel can easily access it If not, or if the system's unstable state is expected or not, for the stable operation of the system, the controller of the system and/or the BMS of the secondary battery that is normally operated by a reset signal wirelessly input from an external device from a remote or short distance
  • An object of the present invention is to provide a controller for a solar lighting system and a reset method of the solar lighting system configured to be reset in a periodic automatic manner or in an arbitrary manual manner as required.
  • a controller for a solar lighting system a solar cell panel; a secondary battery electrically connected to the solar panel and provided with a BMS to store electrical energy generated from the solar panel; and a lighting device electrically connected to the secondary battery to receive power from the secondary battery to emit light
  • the controller for a solar lighting system comprising: a charging unit configured to interface between the solar cell panel and the secondary battery; a discharge unit configured to interface between the secondary battery and the lighting device; a wireless communication unit configured to enable wireless communication with an external device; a main control unit configured to process and control interface information between the solar panel and the secondary battery and/or interface information between the secondary battery and the lighting device and/or information from the wireless communication unit; and a reset control unit configured to reset the BMS of the main control unit and/or the secondary battery by a reset signal input from the external device through the wireless communication unit.
  • the reset control unit includes a software reset circuit having a power input node to which a voltage is applied, a clock input node to receive a clock, and a reset output node to generate a reset signal.
  • the reset control unit includes a hardware reset circuit by an R-C circuit.
  • the wireless communication unit includes an IoT-based wireless communication module or a short-range wireless communication module.
  • the main control unit further includes a sensing module, a WiFi module, a GPS module, a speaker module, or a camera module.
  • the secondary battery and the controller are hermetically housed in a sealing accommodation portion of a writing head of the lighting device.
  • the reset control unit is configured to operate within a predetermined time period after the end of charging of the secondary battery by the operation of the solar cell panel and before the start of discharging of the secondary battery by the operation of the lighting device.
  • the reset signal input from the external device through the wireless communication unit is input in an automatic manner according to a predetermined period or in a manual manner arbitrarily determined by a user.
  • the reset control unit is configured to be driven by power generated by the solar cell panel.
  • the reset control unit is provided between the solar cell panel and the reset control unit, and further includes a regulator capable of adjusting the voltage generated from the solar cell panel to a predetermined voltage.
  • a reset method of a solar lighting system for achieving the above object, a solar cell panel; a secondary battery electrically connected to the solar panel and provided with a BMS to store electrical energy generated from the solar panel; a lighting device electrically connected to the secondary battery to receive power from the secondary battery to emit light; and a controller configured to process and control interface information between the solar panel and the secondary battery and/or interface information between the secondary battery and the lighting device and/or information from the wireless communication unit
  • a method of resetting a system comprising operating a reset control unit configured to reset the BMS of the main control unit and/or the secondary battery by a reset signal input from an external device through a wireless communication unit of the controller.
  • the step of operating the reset control unit is performed within a predetermined time interval after the end of charging of the secondary battery by the operation of the solar cell panel and before the start of discharging of the secondary battery by the operation of the lighting device.
  • the reset control unit is configured to be driven by the power generated by the solar cell panel.
  • the reset control unit is provided between the solar cell panel and the reset control unit, and is operated by a regulator that adjusts a voltage generated from the solar cell panel to a voltage capable of driving the reset control unit.
  • the actuating the reset control is performed in an automatic manner by a predetermined period or in a manual manner arbitrarily determined by the user.
  • the actuating of the reset controller is performed through a software reset circuit having a power input node to which a voltage is applied, a clock input node to receive a clock, and a reset output node to generate a reset signal.
  • the step of operating the reset control unit is performed through a hardware reset circuit by an R-C circuit.
  • the method for resetting the solar lighting system controller and the solar lighting system according to the present invention has the following effects.
  • the BMS of the controller and/or the secondary battery of the system which is normally operated by a reset signal wirelessly input from an external device from a remote location or a short distance, can be reset in a periodic automatic manner or in an arbitrary manual method if necessary. , you can always keep your solar lighting system in optimum condition.
  • a system capable of stable operation can be implemented by configuring a circuit by a separate reset algorithm.
  • FIG. 1 is a schematic configuration diagram of a controller for a solar lighting system according to an aspect of the present invention.
  • FIG. 2 is a block diagram of a reset control unit of a controller according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a reset control unit of a controller according to another embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a controller for a solar lighting system according to an aspect of the present invention.
  • the solar lighting system 100 is electrically connected to the solar cell panel 10 so as to store electric energy generated from the solar cell panel 10 and the solar cell panel 10 .
  • a secondary battery 20 connected and provided with a BMS 22 , and a lighting device 30 electrically connected to the secondary battery 20 to emit light by receiving power from the secondary battery 20 are provided.
  • the controller 40 for the solar lighting system 100 of the above-described embodiments is a charging unit 42 configured to interface between the solar cell panel 10 and the secondary battery 20, the secondary battery 20 ) and a discharging unit 44 configured to interface between the lighting device 30, a wireless communication unit 46 configured to enable wireless communication with an external device 50, a charging unit 42, a discharging unit 44, and a wireless communication unit ( 46 as well as the main control unit 48 for controlling other modules of the controller 40 and processing information therebetween, and the main control unit by a reset signal input from the external device 50 through the wireless communication unit 46 (48) and/or a reset control unit (60) configured to reset the BMS (22).
  • the main control unit 48 includes interface information between the solar cell panel 10 and the secondary battery 20 and/or interface information between the secondary battery 20 and the lighting device 30 and/or the wireless communication unit 46 . It is configured to process and control the information of
  • the solar cell panel 10 is configured to produce power using the sun during the day, and may be manufactured from a conventional solar cell module or a flexible solar cell module currently in circulation.
  • Solar cells are disposed on one surface of the solar cell panel 10 and can be rotated or rotatable to a panel installation part (not shown) of a pole (not shown) on the other surface, and optionally fixed to be separated from the panel installation part A fitting portion (not shown) is provided.
  • the solar cell panel 10 is installed inclinedly on the top of the pole of the lighting system 100 .
  • the solar cell panel 10 is a solar cell device for converting light coming from the sun into electrical energy during the daytime using a photovoltaic effect.
  • the solar cell panel 10, the amount of power generation and voltage, etc. may be determined according to the required lighting conditions or environment, for example, a solar cell panel of 310W (32V) may be used.
  • the secondary battery 20 is a soft pack capable of binding a cell assembly in which a plurality of pouch-type or cylindrical cells electrically connected to each other and stacked are assembled, a main box in which the soft pack can be accommodated, and a cell.
  • a sub box capable of accommodating a protection circuit module (PCS) connected to the assembly and detachably coupled to the outer wall surface of the main box is provided.
  • the soft pack has a size of 235 (length) * 120 (width) * 120 (height), an energy of 0.53 kWh, a rated capacity of 36 Ah, a nominal voltage of 14.8 DVC, and a pouch-type lithium to have a weight of approximately 2.3 to 3 kg.
  • Bare cells for secondary batteries may be configured by, for example, physically binding a cell assembly electrically connected in a 3P4S method using, for example, an insulating tape or the like.
  • a cell assembly electrically connected in a 3P4S method using, for example, an insulating tape or the like.
  • an electrode assembly in which a plurality of positive plates and a plurality of negative plates are arranged at predetermined intervals on both sides of a separator is sealed inside a pouch together with an electrolyte.
  • the secondary battery 20 may include a charge/discharge circuit for connecting the electrode terminals of the cell assembly.
  • the secondary battery 20 includes the BMS 22 as described above.
  • BMS 22 is installed to be connected to the printed circuit board to control to prevent overcharge, overdischarge, overcurrent, and short-circuit of the cells of the secondary battery 20 as well as Instead, the cells are balanced so that the charging of each cell is uniformly performed, and the cells are installed to be connected to a thermoelectric element to control the cells not to overheat.
  • the BMS 22 includes a protection circuit module (PCM) for preventing overcharge, overdischarge, overcurrent, and short circuit of individual cells, and a cell balancer for uniformly charging each cell. ), and a heat dissipation control unit for preventing each cell from overheating.
  • PCM protection circuit module
  • the BMS 22 is manufactured in the form of a complex IC configured to simultaneously perform a PCM function, a cell balancing function, and an overcurrent control function.
  • a chip performing the above-described PCM function, cell balancing function, and overcurrent control function may exist separately.
  • the lighting device 30 is configured to be electrically connected to the secondary battery 20 to illuminate the surroundings at night using the power of the secondary battery 20 , for example, consisting of LED chips. A so-called 'All-in- One)' head. It should be noted that, according to an alternative embodiment, the lighting device 30 of the solar lighting system 100 may use any type of lighting that emits light, such as a halogen lamp or a mercury lamp.
  • the secondary battery 20 and the controller 40 are not integrally accommodated in the head body of the lighting device 30 of the solar lighting system 100, but are provided separately from the pole and the terminal box and/or the pole. It can also be installed in the interior space.
  • the controller 40 for the solar lighting system 100 by adopting the so-called 3C technology (smart charging technology, DC/DC dimming converting technology, smart controlling technology) , to protect and improve the function and performance of the BMS 22 built into the secondary battery 20 , improve the efficiency of the system 100 and extend the life of the secondary battery 20 , and improve the charging performance of the secondary battery 20 . and to prevent overcharge and overdischarge, have a so-called battery wake-up function, maximize the power generation efficiency of the solar panel 10, and manage the lighting device 30 at a low energy level there is.
  • the controller 40 can implement automatic on/off, multi-step dimming, etc. of the lighting device 30 using the interfaced GPS module 41 / timer program, and moreover, these functions are, for example, App (App) )/Web (Web) can be set in various ways.
  • the charging unit 42 is controlled by the main control unit 48 in order to stably and efficiently charge the DC current supplied from the solar cell panel 10 to the secondary battery 20 , and the amount of power provided at the input terminal of the controller 40 .
  • the amount of power supplied to the controller 40 is sensed through the sensor 72 .
  • the charging unit 42 continues to be charged even in a fully charged state so that the voltage of the secondary battery 20 continues to rise. It has a function of preventing the possibility of the secondary battery 20 from being heated or ignited when the internal pressure rises and, in particular, at a high temperature. Accordingly, the charging unit 42 generally controls the voltage to not exceed the rating of the secondary battery 20 during charging through constant current-constant voltage type charging.
  • the charging unit 42 blocks the charging current so as not to exceed the maximum rating of the secondary battery 20 .
  • the overcharge protection function of the charging unit 42 may be similarly implemented in the BMS 22 as described above. Accordingly, the charging unit 42 has a function of backing up the overcharge protection function of the BMS 22 .
  • the overcharge detection voltage performed by the charging unit 42 to make the maximum use of the capacity of the secondary battery 20 must be very high precision, and the cells or battery modules of the secondary battery 20 are connected in series In this case, the voltage of each cell and battery module is detected.
  • the charging unit 42 includes an overcharge protection circuit having a precision of, for example, ⁇ 25 mV.
  • the discharging to the lighting device 30 is made through the parasitic diode of the charge cutoff FET.
  • the charging unit 42 needs a delay time to respond to pulse charging or to prevent malfunction due to noise.
  • the charging unit 42 sends an OFF signal to the gate terminal of the charging cut-off FET to block the circuit.
  • the discharge unit 44 detects the amount of current supplied from the secondary battery 20 to the lighting device 30 through the supply amount sensor 74 provided at the input end of the lighting device 30, thereby basically lighting It is controlled by the main control unit 48 to check or manage the power usage of the device 30 .
  • the charging unit 42 charges the secondary battery 20 to approximately 41 to 43 V
  • the discharging unit 44 terminates discharging of the secondary battery 20 in the approximately 27 to 30 V range.
  • the secondary battery 20 is overdischarged, discharging continues even after the lithium in the negative electrode is depleted.
  • the copper foil is melted. Even in this case, the secondary battery 20 has a risk of ignition due to an internal short circuit and loses its function as a secondary battery.
  • the discharge unit 44 is configured to block the discharge current when the voltage of the secondary battery 20 is equal to or less than a predetermined value.
  • the discharge unit 44 since the BMS 22 of the secondary battery 20 also has such an overdischarge protection function, the discharge unit 44 has a function of backing up the BMS 22 .
  • the discharge unit 44 sends an off (0ff) signal to the gate terminal of the discharge blocking FET when the voltage of the secondary battery 20 becomes less than or equal to a reference value while continuously sensing the voltage of the secondary battery 20 . to break the circuit.
  • the wireless communication unit 46 is configured to be able to communicate wirelessly with the external device 50 and to be controlled by the main control unit 48 . Additionally, the wireless communication unit 46 operates the solar lighting system 100 (eg, on/off, dimming, receiving a reset command, operating a speaker or camera and storing data, measuring environmental pollution and storing data, pests). Logic or modules for controlling the controller 40 using the web or app as described above to enable two-way communication, long-distance communication, short-distance communication, and individual remote control.
  • the solar lighting system 100 eg, on/off, dimming, receiving a reset command, operating a speaker or camera and storing data, measuring environmental pollution and storing data, pests.
  • Logic or modules for controlling the controller 40 using the web or app as described above to enable two-way communication, long-distance communication, short-distance communication, and individual remote control.
  • the wireless communication unit 46 may remotely manage and control the solar lighting system 100 , and in particular, as will be described later, may receive a reset signal from the external device 50 . That is, the wireless communication unit 46 transmits the operating status of individual components of the solar lighting system 100 that exist in a remote place, the occurrence of a failure, unique identification information of the system, and the location thereof with the central computer 52, mobile phone or smart device. The same may be transmitted to the mobile terminal 56, such as a user terminal 54, a radio or a remote control, and vice versa, may receive commands related to the operation or management of the system 100 from a user or operator.
  • the wireless communication unit 46 is a solar lighting system 100 due to malfunction of individual elements of the solar cell panel 10 , the secondary battery 20 , and the lighting device 30 constituting the solar lighting system 100 . ) can actively and actively respond to civil complaints caused by errors. Moreover, since the operation of the solar lighting system 100 is performed at night, it is possible to solve a substantial part of the practical problem that it is not easy to check whether there is an abnormality in the operation of the solar lighting system 100 during the daytime.
  • the wireless communication unit 46 includes an antenna 45 for transmission and reception that can be installed inside and outside the main body of the controller 40 .
  • the wireless communication unit 46 acts as a communication network to obtain a variety of information from a sensor in the surrounding environment, a service interface technology for processing and processing information according to the service field and form, and the right to control the leakage of collected data and the device.
  • a service interface technology for processing and processing information according to the service field and form
  • the right to control the leakage of collected data and the device Combined with security technology to protect it, it is possible to implement an Internet of Things (IoT) function that enables devices connected to the network to send and receive information smartly with each other without human intervention.
  • IoT Internet of Things
  • the wireless communication unit 46 has a wide bandwidth, so it consumes a lot of power instead of a large amount of data transmission and has a short signal reach, WiFi, Bluetooth, short-range wireless communication (NFC), used within a licensed band NB-IoT for ultra-low power that intermittently transmits low-capacity data as one of the low-power, wide-area (LPWA) Internet of Things (IoT) technologies using LTE frequencies LORA, which has a simpler structure than SIGFOX and LTE-M, and can simplify the structure of base station equipment and terminals by connecting various things to a network using LTE Internet of Small Things).
  • LPWA low-power, wide-area
  • IoT Internet of Things
  • each component of the system 100 to which the sensor is attached is connected to the LTE network. Because it can be connected, a user can remotely control components anytime, anywhere, and control between components is also possible through mutual communication.
  • the Internet of Things IoT
  • the Internet of Things can be implemented only by upgrading software without building additional equipment, thus reducing the cost burden compared to existing IoT networks such as Zegbee.
  • the main control unit 48 may calculate the amount of power generated by the solar cell panel 10 from the input voltage and current values of the charging unit 42 according to time.
  • the charge amount of the secondary battery 20 may be calculated by measuring the output voltage and current of the charging unit 42 over time, and the discharge amount of the secondary battery 20 is the input voltage of the DC/DC driver 47 over time and by measuring the current, and the remaining amount of the secondary battery 20 may be calculated by subtracting the amount of discharge from the amount of charge.
  • data may be measured or calculated by other methods, and if necessary, a circuit for detecting such data may be separately designed. Data such as the temperature of the secondary battery 20 , the brightness of the light emitting part of the lighting device 30 , power consumption, voltage and current, etc. may also be measured or calculated in a similar manner or by other suitable methods.
  • the controller 40 has a measurement/calculation module 49 that interfaces with the various sensors of the system 100 .
  • the main controller 48 controls the brightness of the light emitting part of the lighting device 30 according to the remaining amount of the secondary battery 20 by controlling the DC/DC driver 47 . Accordingly, it is possible to overcome a situation in which the lighting device is not operated at night even when the amount of charge of the electric power generated by the solar cell panel 10 is insufficient due to poor weather conditions.
  • the main control unit 48 controls the wireless communication unit 46 so that the system 100 and the central computer 52 of the control center operating as a management server are connected, so that the It is configured to be able to receive various control signals and, conversely, transmit various status information of the system 100 to the central computer 52 .
  • the main control unit 48 controls the dimming electronic ballast capable of adjusting the output power by the regulated DC input voltage and the lighting device whose illuminance is controlled by the output power of such a ballast, turn off and control the illuminance. It further includes a wireless dimming control unit (not shown).
  • the controller 40 stores the state information extraction module including the above-described sensors to extract the state information within the system 100 , the extracted or measured data, or data transmitted from the external device 50 . It may include a memory module or a data conversion module for converting transmitted and received data into an appropriate form. Additionally or alternatively, the controller 40 may further include a Bluetooth module, an IoT module, a WiFi module, a speaker module, and a camera module. For example, the controller 40 is connected to a speaker (not shown) installed on the pole of the solar lighting system 100 through a speaker module and is configured to output external device or self-stored information.
  • controller 40 is configured to remotely control a camera (not shown) installed on the pole of the solar lighting system 100 through the camera module, or to store data recorded by the camera or to transmit it to the outside.
  • the image captured by the camera may be viewed in real time or on the web/app whenever necessary.
  • the main control unit 48 of the controller 40 and the BMS 22 of the secondary battery 20 are each provided with a microcomputer (Micom), and when the system 100 is unstable, the controller 40 The system 100 may self-reset to stabilize the system.
  • the controller 40 is a reset configured to be able to reset the system 100 at an appropriate period or arbitrarily, even if the operation of individual components of the solar lighting system 100 is not unstable.
  • a control unit 60 .
  • the reset control unit 60 maintains the system 100 in an optimal state semi-permanently to extend the life of the system 100 and increase energy efficiency. ) can be reset.
  • the reset control unit 60 before the start of discharging of the secondary battery 20 by the operation of the lighting device 30 after the charging of the secondary battery 20 by the operation of the solar cell panel 10 (for example) , before and after sunset) during a kind of rest period within a predetermined time interval.
  • the reason for operating the reset control unit 60 during the time before and after sunset is to avoid the time during which the solar cell panel 10 and the secondary battery 20 are actively operated during the day and at night, thereby making the solar lighting system 100 ) to prevent unnecessary interference and to increase energy efficiency.
  • the reset signal input from the external device 50 through the wireless communication unit 46 is input in an automatic manner according to a predetermined cycle (eg, monthly, quarterly or annually) or in a manual method arbitrarily determined by the user. can be
  • the reset control unit 60 embeds a watch dog timer in the microcontroller for an automatic reset function, and when a specified period or more elapses, a reset operation is performed using a reset pulse. is configured to start and remain in the reset state for a period of time. It can be configured to support the operation monitoring and reset function of the microcontroller by adding a reset IC that is independent hardware that provides a reset signal to the outside of the microcontroller in case reset is impossible.
  • the automatic reset process of such a system checks the system re-execution and initial execution status, transmits a signal to the output port according to the time period of the timer to transmit a periodic signal to the reset IC, and periodically (e.g., a watchdog operation prohibition command) 0.5sec) and if the prohibition command is not executed for a certain period of time (eg 1.8sec), reset is executed and the timer time is initialized.
  • the reset IC detects a signal from the WDI pin and transmits a reset signal when there is no signal for a certain period of time.
  • the controller receives the reset signal from the reset IC to restart the system.
  • the reset controller 60 includes a power input node VCC_ON to which a voltage is applied, a clock input node CLK_IN to receive a clock, and a reset output node for generating a reset signal. and a software reset circuit 62 with (RESET).
  • the software reset circuit 62 is connected to circuits receiving a reset signal through the reset output node RESET, for example, the charging unit 42 and/or the BMS 22 .
  • the reset control unit 60 includes a hardware reset circuit 64 by means of an R-C circuit.
  • a hardware reset circuit 64 provides the capacitor voltage of the R-C circuit as an output node.
  • the output node signal is transmitted to the controller 40 and/or the BMS 22 which needs to be initialized by a reset signal via an inverter circuit which is an output processing circuit.
  • the reset control unit 60 is configured to be driven by power generated by the solar cell panel 10 .
  • the reset control unit 60 is provided between the solar cell panel 10 and the reset control unit 60 , and sets the voltage generated from the solar cell panel 10 to the reset control unit 60 .
  • It further includes a regulator 66 for adjusting the voltage to be driven.
  • the main controller 48 when electric power is charged from the solar cell panel 10 to the secondary battery 20 , or when electric power charged in the secondary battery 20 is discharged to the lighting device 30 , the secondary battery 20 is charged. Since the discharging operation is controlled by the main controller 48 , the operation of the regulator 66 is switched to the sleep mode by the main controller 48 when there is surplus power in the secondary battery 20 .
  • the sleep mode refers to a standby state that consumes low power without being completely turned off. Accordingly, when the operation of the main controller 48 is stopped, the regulator 66 may wake up from the sleep and regenerate the main controller 48 .
  • the main controller 310 turns off the operation of the BMS 22 in order to protect the secondary battery 20 . That is, when the voltage of the secondary battery 20 is less than the threshold voltage, the output is completely cut off, so the power applied to the controller 40 may be 0V.
  • the regulator 66 may adjust the voltage of the electric power generated from the solar cell panel 10 to a predetermined voltage (eg, a voltage capable of regenerating the controller 40 ). .
  • the present invention can be used in any controller configured to store electric power generated by using a solar cell panel in a secondary battery and use the stored electric power of the secondary battery to emit light of a lighting device and a device using the controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

The present disclosure relates to a controller for a solar lighting system. The controller is a controller for a solar lighting system comprising: a photovoltaic panel; a secondary battery which is electrically connected to the photovoltaic panel so as to store electrical energy generated from the photovoltaic panel and is provided with a BMS; and a lighting device which is electrically connected to the secondary battery so as to be supplied with power from the secondary battery and emit light. The controller comprises: a charging unit configured to be interfaced between the photovoltaic panel and the secondary battery; a discharging unit configured to be interfaced between the secondary battery and the lighting device; a wireless communication unit configured to be capable of wireless communication with an external device; a main control unit configured to be able to process and control interface information between the photovoltaic panel and the secondary battery and/or interface information between the secondary battery and the lighting device and/or information of the wireless communication unit; and a reset control unit configured to be able to reset the main control unit and/or the BMS of the secondary battery by a reset signal input from the external device through the wireless communication unit. Further, the present disclosure provides a method for resetting a solar lighting system.

Description

태양광 라이팅 시스템용 컨트롤러 및 태양광 라이팅 시스템의 리셋 방법Controller for solar lighting system and reset method of solar lighting system
본 출원은 2020년 08월 28일자로 출원된 한국 특허 출원번호 제10-2020-0109608호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.This application is an application for priority claiming Korean Patent Application No. 10-2020-0109608 filed on August 28, 2020, and all contents disclosed in the specification and drawings of the application are incorporated herein by reference.
본 발명은 태양광 라이팅 시스템에 관한 것으로서, 보다 구체적으로 예컨대, 태양광을 이용하여 전력을 생산하여 생산된 전력을 이차 전지에 저장하고 저장된 전력으로 가로등 또는 보안등과 같은 조명 디바이스를 구동할 수 있는 시스템을 포함하는 태양광 라이팅 시스템을 위한 컨트롤러 및 이러한 컨트롤러를 이용한 태양광 라이팅 시스템의 리셋 방법에 관한 것이다. The present invention relates to a solar lighting system, and more specifically, for example, a system capable of generating electric power using sunlight, storing the produced electric power in a secondary battery, and driving a lighting device such as a street lamp or a security lamp with the stored electric power It relates to a controller for a solar lighting system comprising a, and a reset method of the solar lighting system using such a controller.
일반적으로, 가로등 또는 보안등과 같은 라이팅 시스템은 야간의 교통과 보행의 안전과 보안을 위하여 길가를 따라 설치된다. 또한, 통상적인 라이팅 시스템은 라이팅 시스템의 폴(pole)의 형식에 따라 하이웨이형, 브라켓형, 주두형 등이 있으며, 광원으로는 고압수은등, 나트륨등, 메탈할라이드 램프, CDM 등이 이용된다.In general, a lighting system such as a street lamp or a security lamp is installed along a roadside for safety and security of traffic and pedestrians at night. In addition, a typical lighting system has a highway type, a bracket type, a main type, etc. depending on the type of the pole of the lighting system, and a high-pressure mercury lamp, a sodium lamp, a metal halide lamp, a CDM, etc. are used as a light source.
한편, 이러한 종류의 대부분의 라이팅 시스템은 광원의 전력 소비가 심하고, 수명이 짧아 유지 보수에 많은 시간과 비용이 소요되는 문제점이 있었다. 이러한 문제점을 해결하기 위하여 근래에는 밝기는 높고, 전력 소비량은 낮으면서 수명이 상대적으로 긴 LED 광원이 이용되고 있다. 한편, 라이팅 시스템의 광원에 전력을 공급하기 위해 태양전지 패널을 이용하여 전력을 생산하고 그렇게 생산된 전력을 이차 전지에 저장하여 야간에 조명을 밝히는 태양광 라이팅 시스템이 존재한다. On the other hand, most of these types of lighting systems consume a lot of power from the light source and have a short lifespan, so maintenance takes a lot of time and money. In order to solve this problem, recently, LED light sources with high brightness, low power consumption, and relatively long lifespan have been used. On the other hand, there is a solar lighting system that produces electric power using a solar cell panel to supply electric power to a light source of the lighting system, and stores the produced electric power in a secondary battery to illuminate the light at night.
태양광 라이팅 시스템은 인적이 드문 곳이나 전력 공급을 위한 설비를 설치하기 곤란하거나 그 설치 비용이 과다하게 소요되는 곳에 주로 설치되는 것으로서, 독자적으로 태양광을 이용하여 전력을 생산하고 야간에 가로등을 작동시켜서 보행자의 안전을 보호하는 시스템이다. 이러한 태양광 가로등 시스템은 태양전지 모듈, 태양전지 모듈로부터 생산된 전력을 저장할 수 있는 배터리 모듈, 태양전지 모듈로부터 생산된 전력으로 배터리 모듈을 충전하는 충,방전 컨트롤러, 충전된 배터리 모듈로부터 예컨대, LED 램프와 같은 조명 디바이스로 전력을 공급하고 배터리 모듈의 충전 상태를 관리하기 위한 제어 모듈을 포함한다. Solar lighting systems are mainly installed in places where there are few people or where it is difficult to install facilities for power supply or where the installation cost is excessive. It is a system that protects the safety of pedestrians. Such a solar street light system includes a solar cell module, a battery module capable of storing power generated from the solar cell module, a charge/discharge controller that charges the battery module with the power generated from the solar cell module, and an LED from the charged battery module, for example. and a control module for supplying power to a lighting device such as a lamp and managing the state of charge of the battery module.
선행기술에 따르면, 태양광 기반 가로등의 유비쿼터스를 이용한 가로등 디밍 제어 시스템을 개시한다. 이것은 유비쿼터스 센서 네트워크 및 태양광에 의한 독립적 전원 공급을 통한 가로등의 현재 상태를 실시간으로 감지하여 조도에 따른 효율적 램프 관리 및 안전과 기능적 정상 유무를 파악하고 원격 제어를 함으로써 가로등의 불필요한 에너지 낭비 예방 및 지속적 관리를 유지할 수 있도록 하기 위한 것이다.According to the prior art, a street light dimming control system using the ubiquitous solar-based street light is disclosed. It detects the current state of street lamps in real time through the ubiquitous sensor network and independent power supply by sunlight, and identifies the efficient lamp management and safety and functional normality according to the illuminance, and performs remote control to prevent unnecessary energy waste of street lamps and continuously This is to keep you in control.
태양광 라이팅 시스템의 이차 전지에 이용되는 배터리 관리 시스템(BMS: Battery Management System)은 배터리 모듈의 전압이 임계전압 이하로 낮아지면 컨트롤러에 인가되는 전원을 차단한다. 예를 들어, 태양광 라이팅 시스템의 조명 디바이스의 작동으로 배터리 모듈의 전력이 소모되어 배터리 모듈의 전압이 임계전압 이하로 낮아져 컨트롤러의 동작이 오프된 경우, 현재의 태양광 라이팅 시스템의 동작은 멈추게 된다. 이후, 태양전지 패널에 의해 전력이 공급되더라도 컨트롤러가 동작하지 않으므로 태양광 라이딩 시스템은 동작하지 않는다. 이러한 경우, 서비스 요원은 배터리 모듈을 직접 충전시켜 컨트롤러가 다시 동작하도록 세팅해야 한다. 그러나, 태양광 라이팅 시스템은 주로 원격지에 설치되는 경우가 많기 때문에 서비스 처리가 어렵고, 특히 배터리 모듈과 컨트롤러가 조명 디바이스의 헤드 내부에 내장되어 있는 소위, 올-인-원 시스템인 경우 서비스 요원이 출동하더라도 접근이 용이하지 못한 문제점이 있다.A battery management system (BMS) used for a secondary battery of a solar lighting system cuts off power applied to the controller when the voltage of the battery module falls below a threshold voltage. For example, when the power of the battery module is consumed due to the operation of the lighting device of the solar lighting system and the voltage of the battery module is lowered below the threshold voltage and the controller is turned off, the operation of the current solar lighting system is stopped. . After that, even if power is supplied by the solar panel, the controller does not operate, so the solar riding system does not operate. In this case, service personnel must directly charge the battery module to set the controller to work again. However, since the solar lighting system is often installed in a remote location, it is difficult to service it, especially in the case of a so-called all-in-one system in which the battery module and the controller are built inside the head of the lighting device, service personnel are dispatched. However, there is a problem that access is not easy.
본 발명은 전술한 선행기술의 문제점을 해결하기 위해 창안된 것으로서, 태양광 라이팅 시스템이 원격지에 위치되어거나 조명 디바이스의 올-인-원 헤드에 배터리 모듈과 컨트롤러가 내장되어 서비스 요원의 접근이 용이하지 못한 경우, 또는 시스템의 불안정 상태가 예상되거나 그렇지 않더라도 시스템의 안정적인 작동을 위해, 원격지 또는 근거리에서 외부 기기로부터 무선으로 입력되는 리셋 신호에 의해 정상적으로 작동되는 시스템의 컨트롤러 및/또는 이차 전지의 BMS를 주기적인 자동 방식으로 또는 필요에 따라 임의적인 수동 방식으로 리셋할 수 있도록 구성된 태양광 라이팅 시스템용 컨트롤러 및 태양광 라이팅 시스템의 리셋 방법을 제공하는 것을 목적으로 한다.The present invention was devised to solve the problems of the prior art described above, and the solar lighting system is located at a remote location or the battery module and controller are built in the all-in-one head of the lighting device, so that service personnel can easily access it If not, or if the system's unstable state is expected or not, for the stable operation of the system, the controller of the system and/or the BMS of the secondary battery that is normally operated by a reset signal wirelessly input from an external device from a remote or short distance An object of the present invention is to provide a controller for a solar lighting system and a reset method of the solar lighting system configured to be reset in a periodic automatic manner or in an arbitrary manual manner as required.
상기 목적을 달성하기 위하여, 본 발명의 일 측면에 따른 태양광 라이팅 시스템용 컨트롤러는, 태양전지 패널; 상기 태양전지 패널로부터 생성되는 전기 에너지를 저장할 수 있도록 상기 태양전지 패널에 전기적으로 연결되고 BMS가 마련된 이차 전지; 및 이차 전지로부터 전력을 공급받아 발광할 수 있도록 상기 이차 전지에 전기적으로 연결된 조명 디바이스를 포함하는 태양광 라이팅 시스템을 위한 컨트롤러로서, 상기 태양전지 패널과 상기 이차 전지 사이에 인터페이스되도록 구성된 충전부; 상기 이차 전지와 상기 조명 디바이스 사이에 인터페이스되도록 구성된 방전부; 외부 기기와 무선통신이 가능하도록 구성된 무선 통신부; 상기 태양전지 패널과 상기 이차 전지 사이의 인터페이스 정보 및/또는 상기 이차 전지와 상기 조명 디바이스 사이의 인터페이스 정보 및/또는 상기 무선 통신부의 정보를 처리 및 제어할 수 있도록 구성된 메인 제어부; 및 상기 무선 통신부를 통해 상기 외부 기기로부터 입력되는 리셋 신호에 의해 상기 메인 제어부 및/또는 상기 이차 전지의 BMS를 리셋할 수 있도록 구성된 리셋 제어부를 구비한다.In order to achieve the above object, a controller for a solar lighting system according to an aspect of the present invention, a solar cell panel; a secondary battery electrically connected to the solar panel and provided with a BMS to store electrical energy generated from the solar panel; and a lighting device electrically connected to the secondary battery to receive power from the secondary battery to emit light, the controller for a solar lighting system comprising: a charging unit configured to interface between the solar cell panel and the secondary battery; a discharge unit configured to interface between the secondary battery and the lighting device; a wireless communication unit configured to enable wireless communication with an external device; a main control unit configured to process and control interface information between the solar panel and the secondary battery and/or interface information between the secondary battery and the lighting device and/or information from the wireless communication unit; and a reset control unit configured to reset the BMS of the main control unit and/or the secondary battery by a reset signal input from the external device through the wireless communication unit.
바람직하게, 상기 리셋 제어부는 전압이 인가되는 전원 입력 노드, 클럭을 입력받는 클럭 입력 노드, 및 리셋 신호를 발생시키는 리셋 출력 노드를 가진 소프트웨어 리셋 회로를 포함한다. Preferably, the reset control unit includes a software reset circuit having a power input node to which a voltage is applied, a clock input node to receive a clock, and a reset output node to generate a reset signal.
바람직하게, 상기 리셋 제어부는 R-C 회로에 의한 하드웨어 리셋 회로를 포함한다. Preferably, the reset control unit includes a hardware reset circuit by an R-C circuit.
바람직하게, 상기 무선 통신부는 IoT 기반 무선 통신 모듈 또는 근거리 무선 통신 모듈을 포함한다. Preferably, the wireless communication unit includes an IoT-based wireless communication module or a short-range wireless communication module.
바람직하게, 상기 메인 제어부는, 센싱 모듈, WiFi 모듈, GPS 모듈, 스피커 모듈 또는 카메라 모듈을 더 구비한다. Preferably, the main control unit further includes a sensing module, a WiFi module, a GPS module, a speaker module, or a camera module.
바람직하게, 상기 이차 전지와 상기 컨트롤러는 상기 조명 디바이스의 라이팅 헤드의 밀봉 수납부에 밀봉 수납된다. Preferably, the secondary battery and the controller are hermetically housed in a sealing accommodation portion of a writing head of the lighting device.
바람직하게, 상기 리셋 제어부는 상기 태양전지 패널의 작동에 의한 상기 이차 전지의 충전 종료 후 상기 조명 디바이스의 작동에 의한 상기 이차 전지의 방전 시작 전의 미리결정된 시간 구간 내에 작동하도록 구성된다. Preferably, the reset control unit is configured to operate within a predetermined time period after the end of charging of the secondary battery by the operation of the solar cell panel and before the start of discharging of the secondary battery by the operation of the lighting device.
바람직하게, 상기 무선 통신부를 통해 상기 외부 기기로부터 입력되는 상기 리셋 신호는 미리결정된 주기에 의한 자동 방식으로 또는 사용자에 의해 임의적으로 결정되는 수동 방식으로 입력된다. Preferably, the reset signal input from the external device through the wireless communication unit is input in an automatic manner according to a predetermined period or in a manual manner arbitrarily determined by a user.
바람직하게, 상기 리셋 제어부는 상기 태양전지 패널에 의해 생성되는 전력에 의해 구동될 수 있도록 구성된다.Preferably, the reset control unit is configured to be driven by power generated by the solar cell panel.
바람직하게, 상기 리셋 제어부는 상기 태양전지 패널과 상기 리셋 제어부 사이에 마련되고, 상기 태양전지 패널로부터 생성되는 전압을 미리결정된 전압으로 조정할 수 있는 레귤레이터를 더 구비한다. Preferably, the reset control unit is provided between the solar cell panel and the reset control unit, and further includes a regulator capable of adjusting the voltage generated from the solar cell panel to a predetermined voltage.
상기 목적을 달성하기 위한 본 발명의 다른 측면에 따른 태양광 라이팅 시스템의 리셋 방법은, 태양전지 패널; 상기 태양전지 패널로부터 생성되는 전기 에너지를 저장할 수 있도록 상기 태양전지 패널에 전기적으로 연결되고 BMS가 마련된 이차 전지; 이차 전지로부터 전력을 공급받아 발광할 수 있도록 상기 이차 전지에 전기적으로 연결된 조명 디바이스; 및 상기 태양전지 패널과 상기 이차 전지 사이의 인터페이스 정보 및/또는 상기 이차 전지와 상기 조명 디바이스 사이의 인터페이스 정보 및/또는 상기 무선 통신부의 정보를 처리 및 제어할 수 있도록 구성된 컨트롤러를 구비하는 태양광 라이팅 시스템의 리셋 방법으로서, 상기 컨트롤러의 무선 통신부를 통해 외부 기기로부터 입력되는 리셋 신호에 의해 상기 메인 제어부 및/또는 상기 이차 전지의 BMS를 리셋할 수 있도록 구성된 리셋 제어부를 작동시키는 단계를 포함한다. A reset method of a solar lighting system according to another aspect of the present invention for achieving the above object, a solar cell panel; a secondary battery electrically connected to the solar panel and provided with a BMS to store electrical energy generated from the solar panel; a lighting device electrically connected to the secondary battery to receive power from the secondary battery to emit light; and a controller configured to process and control interface information between the solar panel and the secondary battery and/or interface information between the secondary battery and the lighting device and/or information from the wireless communication unit A method of resetting a system, comprising operating a reset control unit configured to reset the BMS of the main control unit and/or the secondary battery by a reset signal input from an external device through a wireless communication unit of the controller.
바람직하게, 상기 리셋 제어부를 작동시키는 단계는 상기 태양전지 패널의 작동에 의한 상기 이차 전지의 충전 종료 후 상기 조명 디바이스의 작동에 의한 상기 이차 전지의 방전 시작 전의 미리결정된 시간 구간 내에 수행된다. Preferably, the step of operating the reset control unit is performed within a predetermined time interval after the end of charging of the secondary battery by the operation of the solar cell panel and before the start of discharging of the secondary battery by the operation of the lighting device.
바람직하게, 상기 리셋 제어부는 상기 리셋 제어부는 상기 태양전지 패널에 의해 생성되는 전력으로 구동될 수 있도록 구성된다.Preferably, the reset control unit is configured to be driven by the power generated by the solar cell panel.
바람직하게, 상기 리셋 제어부는 상기 태양전지 패널과 상기 리셋 제어부 사이에 마련되고, 상기 태양전지 패널로부터 생성되는 전압을 상기 리셋 제어부를 구동시킬 수 있는 전압으로 조정하는 레귤레이터에 의해 작동된다. Preferably, the reset control unit is provided between the solar cell panel and the reset control unit, and is operated by a regulator that adjusts a voltage generated from the solar cell panel to a voltage capable of driving the reset control unit.
바람직하게, 상기 리셋 제어부를 작동시키는 단계는, 미리결정된 주기에 의해 자동 방식으로 또는 사용자에 의해 임의적으로 결정되는 수동 방식으로 수행된다.Preferably, the actuating the reset control is performed in an automatic manner by a predetermined period or in a manual manner arbitrarily determined by the user.
바람직하게, 상기 리셋 제어부를 작동시키는 단계는, 전압이 인가되는 전원 입력 노드, 클럭을 입력받는 클럭 입력 노드, 및 리셋 신호를 발생시키는 리셋 출력 노드를 가진 소프트웨어 리셋 회로를 통해 수행된다. Preferably, the actuating of the reset controller is performed through a software reset circuit having a power input node to which a voltage is applied, a clock input node to receive a clock, and a reset output node to generate a reset signal.
바람직하게, 상기 리셋 제어부를 작동시키는 단계는, R-C 회로에 의한 하드웨어 리셋 회로를 통해 수행된다. Preferably, the step of operating the reset control unit is performed through a hardware reset circuit by an R-C circuit.
본 발명에 따른 태양광 라이팅 시스템용 컨트롤러 및 태양광 라이팅 시스템의 리셋 방법은 다음과 같은 효과를 가진다.The method for resetting the solar lighting system controller and the solar lighting system according to the present invention has the following effects.
첫째, 원격지 또는 근거리에서 외부 기기로부터 무선으로 입력되는 리셋 신호에 의해 정상적으로 작동되는 시스템의 컨트롤러 및/또는 이차 전지의 BMS를 주기적인 자동 방식으로 또는 필요에 따라 임의적인 수동 방식으로 리셋할 수 있기 때문에, 태양광 라이팅 시스템을 항상 최적으로 상태로 유지할 수 있다.First, because the BMS of the controller and/or the secondary battery of the system, which is normally operated by a reset signal wirelessly input from an external device from a remote location or a short distance, can be reset in a periodic automatic manner or in an arbitrary manual method if necessary. , you can always keep your solar lighting system in optimum condition.
둘째, 태양광 라이팅 시스템용 컨트롤러에 아무런 이상이 없더라도 주기적으로 또는 필요에 따라 리셋을 함으로써, 시스템의 잠재적인 에러를 예방함으로써, 시스템의 반영구적 동작을 가능하게 한다. Second, even if there is no problem in the controller for the solar lighting system, by resetting periodically or as needed, potential errors of the system are prevented, thereby enabling semi-permanent operation of the system.
셋째, 시스템의 리셋과 관련하여 리셋 전의 데이터 저장 알고리즘과 리셋 회로 및 그 펌웨어 설계를 통해, 태양광 라이팅 시스템용 컨트롤러의 소프트웨어적 오류 발생의 확률을 줄일 수 있다. Third, in relation to system reset, the probability of software errors occurring in the controller for solar lighting system can be reduced through the data storage algorithm and reset circuit and firmware design prior to reset.
넷째, 컨트롤러 내의 Watchdog Timer를 이용하여 외부 또는 하드웨어적 오류가 발생하지 않더라도 별도의 리셋 알고리즘에 의한 회로를 구성하여 안정적인 동작이 가능한 시스템을 구현할 수 있다.Fourth, even if an external or hardware error does not occur by using the watchdog timer in the controller, a system capable of stable operation can be implemented by configuring a circuit by a separate reset algorithm.
전술한 본 발명의 요약뿐만 아니라 이어지는 본 발명의 바람직한 실시예들의 상세한 설명은 첨부된 도면들과 함께 읽혀질 때 더 잘 이해될 것이다. 본 개시의 바람직한 예시적 실시예에 따른 태양광 라이팅 시스템용 컨트롤러 및 태양광 라이팅 시스템의 리셋 방법을 설명하기 위한 목적으로, 바람직한 실시예들의 도면들이 도시된다. 그러나, 본 개시는 그러한 도면들에 도시된 정확한 장치들과 수단들에 한정되지 않는 것으로 이해되어야 한다.BRIEF DESCRIPTION OF THE DRAWINGS The foregoing summary of the invention as well as the following detailed description of preferred embodiments of the invention will be better understood when read in conjunction with the accompanying drawings. For the purpose of describing a controller for a solar lighting system and a reset method of the solar lighting system according to a preferred exemplary embodiment of the present disclosure, drawings of preferred embodiments are shown. It is to be understood, however, that the present disclosure is not limited to the precise arrangements and instrumentalities shown in such figures.
도 1은 본 발명의 일 측면에 따른 태양광 라이팅 시스템용 컨트롤러의 개략적 구성도이다.1 is a schematic configuration diagram of a controller for a solar lighting system according to an aspect of the present invention.
도 2는 본 발명의 일 실시예에 따른 컨트롤러의 리셋 제어부의 구성도이다.2 is a block diagram of a reset control unit of a controller according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 컨트롤러의 리셋 제어부의 구성도이다.3 is a block diagram of a reset control unit of a controller according to another embodiment of the present invention.
이어지는 상세한 설명에서 사용된 특정의 용어는 편의를 위한 것이지 본 발명의 범위를 제한하는 것은 아니다. "우", "좌", "상면" 및 "하면"의 용어들은 참조가 이루어진 도면들에서의 방향을 나타낸다. "내측으로" 및 "외측으로"의 용어들은 각각 지정된 장치, 시스템 및 그 부재들의 기하학적 중심을 향하거나 그로부터 멀어지는 방향을 나타낸다. "전방", "후방", "상방", "하방" 및 그 관련 용어들 및 어구들은 참조가 이루어진 도면에서의 위치들 및 방위들을 나타내며 제한적이어서는 아니 된다. 이러한 용어들은 위에서 열거된 단어들, 그 파생어 및 유사한 의미의 단어들을 포함하는 개념이다. Certain terminology used in the detailed description that follows is for convenience only and does not limit the scope of the present invention. The terms “right”, “left”, “top” and “bottom” indicate directions in the drawings to which reference is made. The terms "inwardly" and "outwardly" refer respectively to directions toward or away from the geometric center of the designated device, system, and members thereof. “Anterior”, “rear”, “above”, “below” and related terms and phrases indicate positions and orientations in the drawing to which reference is made and are not intended to be limiting. These terms are concepts including the words listed above, derivatives thereof, and words with similar meanings.
도 1은 본 발명의 일 측면에 따른 태양광 라이팅 시스템용 컨트롤러의 개략적인 구성도이다.1 is a schematic configuration diagram of a controller for a solar lighting system according to an aspect of the present invention.
도 1을 참조하면, 일 실시예에 따른 태양광 라이팅 시스템(100)은 태양전지 패널(10), 태양전지 패널(10)로부터 생성되는 전기 에너지를 저장할 수 있도록 태양전지 패널(10)에 전기적으로 연결되고 BMS(22)가 마련된 이차 전지(20), 및 이차 전지(20)로부터 전력을 공급받아 발광할 수 있도록 이차 전지(20)에 전기적으로 연결된 조명 디바이스(30)를 구비한다. Referring to FIG. 1 , the solar lighting system 100 according to an embodiment is electrically connected to the solar cell panel 10 so as to store electric energy generated from the solar cell panel 10 and the solar cell panel 10 . A secondary battery 20 connected and provided with a BMS 22 , and a lighting device 30 electrically connected to the secondary battery 20 to emit light by receiving power from the secondary battery 20 are provided.
일 실시예에서, 전술한 실시예들의 태양광 라이팅 시스템(100)을 위한 컨트롤러(40)는 태양전지 패널(10)과 이차 전지(20) 사이에 인터페이스되도록 구성된 충전부(42), 이차 전지(20)와 조명 디바이스(30) 사이에 인터페이스되도록 구성된 방전부(44), 외부 기기(50)와 무선통신이 가능하도록 구성된 무선 통신부(46), 충전부(42), 방전부(44) 및 무선 통신부(46)는 물론 컨트롤러(40)의 다른 모듈들을 제어하고 그들 사이의 정보를 처리하기 위한 메인 제어부(48), 및 무선 통신부(46)를 통해 외부 기기(50)로부터 입력되는 리셋 신호에 의해 메인 제어부(48) 및/또는 BMS(22)를 리셋할 수 있도록 구성된 리셋 제어부(60)를 구비한다. 또한, 메인 제어부(48)는 태양전지 패널(10)과 이차 전지(20) 사이의 인터페이스 정보 및/또는 이차 전지(20)와 조명 디바이스(30) 사이의 인터페이스 정보 및/또는 무선 통신부(46)의 정보를 처리 및 제어할 수 있도록 구성된다. In one embodiment, the controller 40 for the solar lighting system 100 of the above-described embodiments is a charging unit 42 configured to interface between the solar cell panel 10 and the secondary battery 20, the secondary battery 20 ) and a discharging unit 44 configured to interface between the lighting device 30, a wireless communication unit 46 configured to enable wireless communication with an external device 50, a charging unit 42, a discharging unit 44, and a wireless communication unit ( 46 as well as the main control unit 48 for controlling other modules of the controller 40 and processing information therebetween, and the main control unit by a reset signal input from the external device 50 through the wireless communication unit 46 (48) and/or a reset control unit (60) configured to reset the BMS (22). In addition, the main control unit 48 includes interface information between the solar cell panel 10 and the secondary battery 20 and/or interface information between the secondary battery 20 and the lighting device 30 and/or the wireless communication unit 46 . It is configured to process and control the information of
일 실시예에서, 태양전지 패널(10)은 주간에 태양을 이용하여 전력을 생산할 수 있게 구성되고, 현재 유통되고 있는 통상적인 태양 전지 모듈 또는 플렉스블 태양 전지 모듈로 제조될 수 있다. 태양전지 패널(10)의 일면에는 태양 전지들이 배치되고 타면에는 폴(pole)(미도시)의 패널 설치부(미도시)에 회동 또는 회전 가능하고, 선택적으로 패널 설치부로부터 분리되게 고정될 수 있는 핏팅부(미도시)를 구비한다.In one embodiment, the solar cell panel 10 is configured to produce power using the sun during the day, and may be manufactured from a conventional solar cell module or a flexible solar cell module currently in circulation. Solar cells are disposed on one surface of the solar cell panel 10 and can be rotated or rotatable to a panel installation part (not shown) of a pole (not shown) on the other surface, and optionally fixed to be separated from the panel installation part A fitting portion (not shown) is provided.
상기 태양전지 패널(10)은 라이팅 시스템(100)의 폴 상단에 경사지게 설치되는 것이 바람직하다. 태양전지 패널(10)은 광기전 효과(photovoltaic effect)를 이용하여, 주간에 태양으로부터 오는 빛을 전기 에너지로 변환시키기 위한 태양전지(solar cell) 디바이스이다. 태양전지 패널(10)은, 요구되는 라이팅의 조건 또는 환경에 따라 발전량과 전압 등이 결정될 수 있고, 예컨대, 310W(32V)의 태양전지 패널이 이용될 수 있다. It is preferable that the solar cell panel 10 is installed inclinedly on the top of the pole of the lighting system 100 . The solar cell panel 10 is a solar cell device for converting light coming from the sun into electrical energy during the daytime using a photovoltaic effect. The solar cell panel 10, the amount of power generation and voltage, etc. may be determined according to the required lighting conditions or environment, for example, a solar cell panel of 310W (32V) may be used.
일 실시예에서, 이차 전지(20)는, 전기적으로 서로 연결되고 적층된 다수의 파우치형 또는 원통형 셀들이 조립된 셀 조립체를 바인딩할 수 있는 소프트 팩, 소프트 팩이 수납될 수 있는 메인 박스 및 셀 조립체에 연결된 보호회로모듈(PCS)을 수납할 수 있고 메인 박스의 외벽면에 분리 가능하게 결합되는 서브 박스를 구비한다. 예컨대, 소프트 팩은 235(길이)*120(폭)*120(높이)의 사이즈, 0.53kWh의 에너지, 36Ah의 정격 용량, 14.8DVC의 공칭 전압, 대략 2.3~3kg의 무게를 가지도록 파우치형 리튬 이차 전지용 베어(bare) 셀들이 예를 들어, 3P4S 방식으로 전기적으로 연결된 셀 조립체를 예를 들어, 절연 테이프 등을 이용하여 물리적으로 바인딩함으로써 구성될 수 있다. 여기서, 베어 셀들은 다수의 양극판들과 다수의 음극판들이 세퍼레이터의 양측에 소정 간격 배열된 전극 조립체가 전해질과 함께 파우치 내부에 밀봉된 구성이다. 또한, 이차 전지(20)는 셀 조립체의 전극 단자들을 연결하기 위한 충/방전 회로를 포함할 수 있다.In an embodiment, the secondary battery 20 is a soft pack capable of binding a cell assembly in which a plurality of pouch-type or cylindrical cells electrically connected to each other and stacked are assembled, a main box in which the soft pack can be accommodated, and a cell. A sub box capable of accommodating a protection circuit module (PCS) connected to the assembly and detachably coupled to the outer wall surface of the main box is provided. For example, the soft pack has a size of 235 (length) * 120 (width) * 120 (height), an energy of 0.53 kWh, a rated capacity of 36 Ah, a nominal voltage of 14.8 DVC, and a pouch-type lithium to have a weight of approximately 2.3 to 3 kg. Bare cells for secondary batteries may be configured by, for example, physically binding a cell assembly electrically connected in a 3P4S method using, for example, an insulating tape or the like. Here, in the bare cells, an electrode assembly in which a plurality of positive plates and a plurality of negative plates are arranged at predetermined intervals on both sides of a separator is sealed inside a pouch together with an electrolyte. In addition, the secondary battery 20 may include a charge/discharge circuit for connecting the electrode terminals of the cell assembly.
일 실시예에서, 이차 전지(20)는 전술한 바와 같은 BMS(22)를 구비한다. BMS(22)는 인쇄회로기판에 연결되도록 설치되어 이차 전지(20)의 셀들의 과충전(overcharge), 과방전(overdischarge), 과전류(overcurrent), 및 단락(short-circuit)을 방지하도록 제어할 뿐만 아니라 각각의 셀의 충전이 균일하게 이루어지도록 셀들을 밸런싱하고, 또한 열전소자에 연결되도록 설치되어 셀들이 과열되지 않도록 제어한다. 이를 위해, BMS(22)는, 개별 셀의 과충전, 과방전, 과전류, 및 단락을 방지하기 위한 보호 회로부(protection circuit module, PCM), 각각의 셀을 균일하게 충전시키기 위한 셀 밸런싱부(cell balancer), 및 각각의 셀이 과열되지 않도록 하기 위한 방열 제어부를 포함한다. 일 실시예에서, BMS(22)는 PCM 기능, 셀 밸런싱 기능, 과전류 제어 기능을 함께 수행할 수 있도록 구성된 복합 IC 형태로 제작된다. 물론, 다른 실시예들에 따르면 전술한 PCM 기능, 셀 밸런싱 기능, 과전류 제어 기능을 수행하는 칩이 별도로 존재할 수도 있다. In one embodiment, the secondary battery 20 includes the BMS 22 as described above. BMS 22 is installed to be connected to the printed circuit board to control to prevent overcharge, overdischarge, overcurrent, and short-circuit of the cells of the secondary battery 20 as well as Instead, the cells are balanced so that the charging of each cell is uniformly performed, and the cells are installed to be connected to a thermoelectric element to control the cells not to overheat. To this end, the BMS 22 includes a protection circuit module (PCM) for preventing overcharge, overdischarge, overcurrent, and short circuit of individual cells, and a cell balancer for uniformly charging each cell. ), and a heat dissipation control unit for preventing each cell from overheating. In one embodiment, the BMS 22 is manufactured in the form of a complex IC configured to simultaneously perform a PCM function, a cell balancing function, and an overcurrent control function. Of course, according to other embodiments, a chip performing the above-described PCM function, cell balancing function, and overcurrent control function may exist separately.
일 실시예에서, 조명 디바이스(30)는, 이차 전지(20)에 전기적으로 연결되어 이차 전지(20)의 전력을 이용하여 야간에 주변을 조명할 수 있도록 구성되고, 예컨대, LED 칩들로 구성되는 LED 모듈부로 구성된 발광부, 및 이차 전지(20)와 컨트롤러(40)가 함께 밀봉 수납될 수 있는 밀봉 수납부를 구비하고, 폴의 일단에 설치되는 소위, '올-인-원(All-In-One)' 헤드를 포함한다. 대안적 실시예에 따르면, 태양광 라이팅 시스템(100)의 조명 디바이스(30)는 할로겐 램프 또는 수은등과 같이 광을 발산하는 모든 방식의 조명을 이용할 수 있음을 유의해야 한다. In one embodiment, the lighting device 30 is configured to be electrically connected to the secondary battery 20 to illuminate the surroundings at night using the power of the secondary battery 20 , for example, consisting of LED chips. A so-called 'All-in- One)' head. It should be noted that, according to an alternative embodiment, the lighting device 30 of the solar lighting system 100 may use any type of lighting that emits light, such as a halogen lamp or a mercury lamp.
다른 실시예들에서, 이차 전지(20)와 컨트롤러(40)는 태양광 라이팅 시스템(100)의 조명 디바이스(30)의 헤드 본체에 일체로 수납되지 않고, 폴과 별도로 마련된 단자함 및/또는 폴의 내부 공간에 설치될 수도 있다.In other embodiments, the secondary battery 20 and the controller 40 are not integrally accommodated in the head body of the lighting device 30 of the solar lighting system 100, but are provided separately from the pole and the terminal box and/or the pole. It can also be installed in the interior space.
일 실시예에서, 본 발명의 바람직한 실시예에 따른 태양광 라이팅 시스템(100)용 컨트롤러(40)는 소위, 3C 기술(스마트 충전 기술, DC/DC 디밍 컨버팅 기술, 스마트 컨트롤링 기술)을 채택함으로써, 이차 전지(20)에 내장된 BMS(22)의 기능과 성능을 보호 및 향상시키고, 시스템(100)의 효율 향상 및 이차 전지(20)의 수명 연장, 이차 전지(20)의 충전 성능을 향상하고, 과충전,과방전을 방지하고, 소위, 배터리 웨이크-업(wake-up) 기능을 구비하고, 태양전지 패널(10)의 발전 효율을 극대화시키고 조명 디바이스(30)를 저에너지 수준에서 관리할 수 있다. 한편, 컨트롤러(40)는 인터페이스된 GPS 모듈(41)/타이머 프로그램을 이용하여, 조명 디바이스(30)의 자동 점/소등, 다단계 디밍 등을 구현할 수 있고, 더군다나, 이러한 기능들은 예컨대, 앱(App)/웹(Web)을 이용하여 다양한 설정될 수 있다.In one embodiment, the controller 40 for the solar lighting system 100 according to the preferred embodiment of the present invention by adopting the so-called 3C technology (smart charging technology, DC/DC dimming converting technology, smart controlling technology) , to protect and improve the function and performance of the BMS 22 built into the secondary battery 20 , improve the efficiency of the system 100 and extend the life of the secondary battery 20 , and improve the charging performance of the secondary battery 20 . and to prevent overcharge and overdischarge, have a so-called battery wake-up function, maximize the power generation efficiency of the solar panel 10, and manage the lighting device 30 at a low energy level there is. On the other hand, the controller 40 can implement automatic on/off, multi-step dimming, etc. of the lighting device 30 using the interfaced GPS module 41 / timer program, and moreover, these functions are, for example, App (App) )/Web (Web) can be set in various ways.
상기 충전부(42)는 태양전지 패널(10)로부터 공급되는 직류 전류를 이차 전지(20)에 안정적이고 효율적으로 충전하기 위해 메인 제어부(48)에 의해 제어되고, 컨트롤러(40)의 입력단에 마련된 전력량 센서(72)를 통해 컨트롤러(40)로 공급되는 전력량을 감지한다. 충전부(42)는 만충전 상태에서도 계속 충전됨으로써 이차 전지(20)의 전압이 계속 상승되어, 예컨대, 42V 이상으로 과충전될 경우 이차 전지(20)의 양극에서 전해액이 분해하여 이차 전지(20)의 내압이 상승하고, 특히 고온일 경우에 이차 전지(20)가 발열 또는 발화될 가능성을 방지하는 기능을 가진다. 따라서, 충전부(42)는 일반적으로 정전류-정전압 형태의 충전을 통해 충전시 전압이 이차 전지(20)의 정격을 넘지 않도록 제어한다. 또한, 충전부(42)는 컨트롤러(40)의 에러 또는 고장 등과 같이, 이차 전지(20)의 최대 정격을 초과할 위험성이 있는 경우 이차 전지(20)의 최대 정격을 넘지 않도록 충전 전류를 차단한다. 이와 같은 충전부(42)의 과충전 보호 기능은 전술한 바와 같은 BMS(22)도 유사하게 구현할 수 있다. 따라서, 충전부(42)는 BMS(22)의 과충전 보호 기능을 백업하는 기능을 가진다.The charging unit 42 is controlled by the main control unit 48 in order to stably and efficiently charge the DC current supplied from the solar cell panel 10 to the secondary battery 20 , and the amount of power provided at the input terminal of the controller 40 . The amount of power supplied to the controller 40 is sensed through the sensor 72 . The charging unit 42 continues to be charged even in a fully charged state so that the voltage of the secondary battery 20 continues to rise. It has a function of preventing the possibility of the secondary battery 20 from being heated or ignited when the internal pressure rises and, in particular, at a high temperature. Accordingly, the charging unit 42 generally controls the voltage to not exceed the rating of the secondary battery 20 during charging through constant current-constant voltage type charging. In addition, when there is a risk of exceeding the maximum rating of the secondary battery 20 , such as an error or failure of the controller 40 , the charging unit 42 blocks the charging current so as not to exceed the maximum rating of the secondary battery 20 . The overcharge protection function of the charging unit 42 may be similarly implemented in the BMS 22 as described above. Accordingly, the charging unit 42 has a function of backing up the overcharge protection function of the BMS 22 .
일 실시예에서, 이차 전지(20)의 용량을 최대한 활용할 수 있도록 충전부(42)에 의해 수행되는 과충전 검출 전압은 정밀도가 매우 높아야 하고, 이차 전지(20)의 셀들 또는 배터리 모듈들이 직렬로 연결되는 경우 각각의 셀과 배터리 모듈의 전압을 검출한다. 충전부(42)는 예를 들어, ±25mV 정도의 정밀도를 가진 과충전 보호회로를 포함한다. 또한, 이차 전지(20)의 과충전이 검출되어 BMS(22) 또는 보호회로가 작동한 후 조명 디바이스(30)에 대한 방전은 충전차단 FET의 기생다이오드를 통하여 이루어진다. 또한, 충전부(42)는 과충전 검출 동작에서 펄스 충전에 대한 대응이나 노이즈에 의한 오작동 방지를 위하여 지연 시간이 필요하다. 충전부(42)는 이차 전지(20)의 전압을 지속적으로 감지하는 동안 이차 전지(20)의 전압이 기준치 이상이 되면 충전차단 FET의 게이트 단자에 오프(0ff) 신호를 발송하여 회로를 차단시킨다.In one embodiment, the overcharge detection voltage performed by the charging unit 42 to make the maximum use of the capacity of the secondary battery 20 must be very high precision, and the cells or battery modules of the secondary battery 20 are connected in series In this case, the voltage of each cell and battery module is detected. The charging unit 42 includes an overcharge protection circuit having a precision of, for example, ±25 mV. In addition, after overcharging of the secondary battery 20 is detected and the BMS 22 or the protection circuit is activated, the discharging to the lighting device 30 is made through the parasitic diode of the charge cutoff FET. In addition, in the overcharge detection operation, the charging unit 42 needs a delay time to respond to pulse charging or to prevent malfunction due to noise. When the voltage of the secondary battery 20 exceeds the reference value while continuously sensing the voltage of the secondary battery 20, the charging unit 42 sends an OFF signal to the gate terminal of the charging cut-off FET to block the circuit.
일 실시예에서, 방전부(44)는 조명 디바이스(30)의 입력단에 마련된 공급량 센서(74)를 통해 이차 전지(20)로부터 조명 디바이스(30)로 공급되는 전류 공급량을 감지함으로써, 기본적으로 조명 디바이스(30)의 전력 사용량을 체크하거나 관리할 수 있도록 메인 제어부(48)에 의해 제어된다. 예를 들어, 충전부(42)가 이차 전지(20)를 대략 41~43V의 범위까지 충전할 때, 방전부(44)는 대략 27∼30V 범위에서 이차 전지(20)의 방전을 종료시킨다. 이차 전지(20)가 과방전되면 음극 내의 리튬이 고갈된 후에도 방전이 계속 진행되고, 이때에는 음극에서 전자를 더 이상 공급할 수 없기 때문에 집전체인 구리(Cu) 포일(Foil)에서 전자가 공급되고 이와 동시에 구리 포일이 용해된다. 이 경우에도 이차 전지(20)는 내부 단락으로 인하여 발화의 위험성이 있음은 물론 이차 전지로서의 기능을 상실하게 된다. 따라서, 방전부(44)는 이차 전지(20)의 전압이 일정값 이하가 되면 방전 전류를 차단하도록 구성된다. 물론, 이차 전지(20)의 BMS(22)도 이러한 과방전 보호기능을 구비하기 때문에, 방전부(44)는 BMS(22)를 백업하는 기능을 가진다. 일 실시예에서, 방전부(44)는 이차 전지(20)의 전압을 지속적으로 감지하는 동안 이차 전지(20)의 전압이 기준값 이하가 되면 방전 차단 FET의 게이트 단자에 오프(0ff) 신호를 발송하여 회로를 차단시킨다.In one embodiment, the discharge unit 44 detects the amount of current supplied from the secondary battery 20 to the lighting device 30 through the supply amount sensor 74 provided at the input end of the lighting device 30, thereby basically lighting It is controlled by the main control unit 48 to check or manage the power usage of the device 30 . For example, when the charging unit 42 charges the secondary battery 20 to approximately 41 to 43 V, the discharging unit 44 terminates discharging of the secondary battery 20 in the approximately 27 to 30 V range. When the secondary battery 20 is overdischarged, discharging continues even after the lithium in the negative electrode is depleted. At the same time, the copper foil is melted. Even in this case, the secondary battery 20 has a risk of ignition due to an internal short circuit and loses its function as a secondary battery. Accordingly, the discharge unit 44 is configured to block the discharge current when the voltage of the secondary battery 20 is equal to or less than a predetermined value. Of course, since the BMS 22 of the secondary battery 20 also has such an overdischarge protection function, the discharge unit 44 has a function of backing up the BMS 22 . In one embodiment, the discharge unit 44 sends an off (0ff) signal to the gate terminal of the discharge blocking FET when the voltage of the secondary battery 20 becomes less than or equal to a reference value while continuously sensing the voltage of the secondary battery 20 . to break the circuit.
일 실시예에서, 무선 통신부(46)는 외부 기기(50)와 무선으로 통신이 가능하고 메인 제어부(48)에 의해 제어되도록 구성된다. 부가적으로, 무선 통신부(46)는 태양광 라이팅 시스템(100)의 작동(예, 점/소등, 디밍, 리셋 명령 수신, 스피커 또는 카메라의 작동 및 데이터 저장, 환경 오염 측정 및 데이터의 저장, 해충 감지 및 퇴지 운영 등)을 양방향 통신, 장거리 통신, 근거리 통신, 개별 원격 제어할 수 있도록 전술한 바와 같이 웹 또는 앱을 이용하여 컨트롤러(40)를 제어하기 위한 로직 또는 모듈들을 포함할 수 있다. In one embodiment, the wireless communication unit 46 is configured to be able to communicate wirelessly with the external device 50 and to be controlled by the main control unit 48 . Additionally, the wireless communication unit 46 operates the solar lighting system 100 (eg, on/off, dimming, receiving a reset command, operating a speaker or camera and storing data, measuring environmental pollution and storing data, pests). Logic or modules for controlling the controller 40 using the web or app as described above to enable two-way communication, long-distance communication, short-distance communication, and individual remote control.
일 실시예에서, 무선 통신부(46)는 태양광 라이팅 시스템(100)을 원격으로 관리 및 제어할 수 있고, 특히 후술하는 바와 같이, 외부 기기(50)로부터 리셋 신호를 전송받을 수 있다. 즉, 무선 통신부(46)는 원격지에 존재하는 태양광 라이팅 시스템(100)의 개별 구성요소들의 작동 상태, 고장 발생 및 시스템의 고유 식별 정보 및 그 위치를 중앙 컴퓨터(52), 휴대폰 또는 스마트 디바이스와 같은 사용자 단말기(54), 무전기 또는 리모콘과 같은 이동 단말기(56)로 전송할 수 있음은 물론, 그 반대로 사용자 또는 운영자로부터 시스템(100)의 운영 또는 관리와 관련된 명령들을 수신할 수 있다. 또한, 무선 통신부(46)는 태양광 라이팅 시스템(100)을 구성하는 태양전지 패널(10), 이차 전지(20), 조명 디바이스(30)의 개별 요소들의 작동 불량 등에 의해 태양광 라이팅 시스템(100)의 에러 발생에 따른 민원에 적극적이고 능동적으로 대처할 수 있다. 더욱이, 태양광 라이팅 시스템(100)의 동작은 야간에 이루어지므로, 주간에 태양광 라이팅 시스템(100)의 동작의 이상 유무를 확인하는 것이 용이하지 않은 현실적인 문제점을 상당 부분 해결할 수 있다. 무선 통신부(46)는 컨트롤러(40)의 본체의 내,외부에 설치될 수 있는 송수신용 안테나(45)를 구비한다. In an embodiment, the wireless communication unit 46 may remotely manage and control the solar lighting system 100 , and in particular, as will be described later, may receive a reset signal from the external device 50 . That is, the wireless communication unit 46 transmits the operating status of individual components of the solar lighting system 100 that exist in a remote place, the occurrence of a failure, unique identification information of the system, and the location thereof with the central computer 52, mobile phone or smart device. The same may be transmitted to the mobile terminal 56, such as a user terminal 54, a radio or a remote control, and vice versa, may receive commands related to the operation or management of the system 100 from a user or operator. In addition, the wireless communication unit 46 is a solar lighting system 100 due to malfunction of individual elements of the solar cell panel 10 , the secondary battery 20 , and the lighting device 30 constituting the solar lighting system 100 . ) can actively and actively respond to civil complaints caused by errors. Moreover, since the operation of the solar lighting system 100 is performed at night, it is possible to solve a substantial part of the practical problem that it is not easy to check whether there is an abnormality in the operation of the solar lighting system 100 during the daytime. The wireless communication unit 46 includes an antenna 45 for transmission and reception that can be installed inside and outside the main body of the controller 40 .
일 실시예에서, 무선 통신부(46)는 통신 네크워크로 작용하여 주위 환경에서 각종 정보를 얻는 센서, 서비스 분야와 형태에 맞게 정보를 가공하고 처리하는 서비스 인터페이스 기술 및 수집된 데이터 유출과 기기의 통제권을 지키기 위한 보안 기술과 함께 결합됨으로써, 네트워크에 연결된 기기가 사람의 개입 없이 서로 스마트하게 정보를 주고받고 처리할 수 있는 사물인터넷(IoT) 기능을 구현할 수 있다. In one embodiment, the wireless communication unit 46 acts as a communication network to obtain a variety of information from a sensor in the surrounding environment, a service interface technology for processing and processing information according to the service field and form, and the right to control the leakage of collected data and the device. Combined with security technology to protect it, it is possible to implement an Internet of Things (IoT) function that enables devices connected to the network to send and receive information smartly with each other without human intervention.
일 실시예에서, 무선 통신부(46)는, 대역폭이 넓어서 데이터 전송량이 많은 대신 전력소모가 많은 편이고 신호의 도달거리가 짧은 WiFi, 블루투스(Bluetooth), 근거리무선통신(NFC), 면허대역 내에서 사용되는 LTE-M, LTE 주파수를 이용한 저전력,광역(LPWA·Low-Power Wide-Area) 사물인터넷(IoT) 기술 중 하나로 저용량 데이터를 간헐적으로 전송하는 초저전력용 NB-IoT, 비면허대역 내에서 사용되는 시그폭스(SIGFOX)와 LTE-M보다 구조가 간단하고 LTE를 이용해 각종 사물들을 네트워크로 연결시킴으로써 기지국 장비와 단말기의 구조가 간단해질 수 있는 로라(LORA), 저전력 장거리 무선 통신으로 구성되는 소물인터넷(Internet of Small Things) 등의 요소가 될 수 있다. In one embodiment, the wireless communication unit 46 has a wide bandwidth, so it consumes a lot of power instead of a large amount of data transmission and has a short signal reach, WiFi, Bluetooth, short-range wireless communication (NFC), used within a licensed band NB-IoT for ultra-low power that intermittently transmits low-capacity data as one of the low-power, wide-area (LPWA) Internet of Things (IoT) technologies using LTE frequencies LORA, which has a simpler structure than SIGFOX and LTE-M, and can simplify the structure of base station equipment and terminals by connecting various things to a network using LTE Internet of Small Things).
전술한 바와 같이, 본 발명의 태양광 라이팅 시스템(100)의 구성요소들과 컨트롤러(40)를 사물인터넷으로 연결 및 구성되면, 센서가 부착된 시스템(100)의 각각의 구성요소가 LTE 망으로 연결될 수 있기 때문에 사용자는 언제 어디서나 구성요소들을 원격 제어할 수 있고, 상호통신으로 구성요소들 사이의 제어도 가능하다. 특히, 사물인터넷은 별도의 장비를 구축하지 않더라도 소프트웨어 업그레이드 만으로 구현할 수 있기 때문에 지그비(Zegbee)와 같은 기존의 IoT 네트워크에 비해 비용 부담이 적어진다.As described above, when the components of the solar lighting system 100 of the present invention and the controller 40 are connected and configured through the Internet of Things, each component of the system 100 to which the sensor is attached is connected to the LTE network. Because it can be connected, a user can remotely control components anytime, anywhere, and control between components is also possible through mutual communication. In particular, the Internet of Things (IoT) can be implemented only by upgrading software without building additional equipment, thus reducing the cost burden compared to existing IoT networks such as Zegbee.
일 실시예에서, 메인 제어부(48)는 시간에 따른 충전부(42)의 입력 전압 및 전류값들로부터 태양전지 패널(10)의 발전 전력량을 계산할 수 있다. 이차 전지(20)의 충전량은 시간에 따른 충전부(42)의 출력 전압 및 전류를 측정함으로써 계산될 수 있고, 이차 전지(20)의 방전량은 시간에 따른 DC/DC 드라이버(47)의 입력 전압 및 전류를 측정함으로써 계산될 수 있고, 이차 전지(20)의 잔량은 충전량에서 방전량을 뺌으로써 계산될 수 있다. 물론, 이러한 방법 이외에도 다른 방법들에 의해 그러한 데이터를 측정 또는 계산할 수 있고, 필요한 경우에는 그러한 데이터를 검출하기 위한 회로가 별도로 설계될 수도 있다. 이차 전지(20)의 온도, 조명 디바이스(30)의 발광부의 밝기, 소모 전력량, 전압 및 전류 등의 데이터도 유사한 방법으로 또는 다른 적절한 방법으로 측정 또는 계산될 수 있다. 이를 위해 컨트롤러(40)는 시스템(100)의 다양한 센서들과 인터페이스되는 측정/계산 모듈(49)을 구비한다.In an embodiment, the main control unit 48 may calculate the amount of power generated by the solar cell panel 10 from the input voltage and current values of the charging unit 42 according to time. The charge amount of the secondary battery 20 may be calculated by measuring the output voltage and current of the charging unit 42 over time, and the discharge amount of the secondary battery 20 is the input voltage of the DC/DC driver 47 over time and by measuring the current, and the remaining amount of the secondary battery 20 may be calculated by subtracting the amount of discharge from the amount of charge. Of course, in addition to these methods, such data may be measured or calculated by other methods, and if necessary, a circuit for detecting such data may be separately designed. Data such as the temperature of the secondary battery 20 , the brightness of the light emitting part of the lighting device 30 , power consumption, voltage and current, etc. may also be measured or calculated in a similar manner or by other suitable methods. To this end, the controller 40 has a measurement/calculation module 49 that interfaces with the various sensors of the system 100 .
일 실시예에서, 메인 제어부(48)는 DC/DC 드라이버(47)를 제어함으로써 이차 전지(20)의 잔량에 따라 조명 디바이스(30)의 발광부의 밝기를 제어하는 것이 바람직하다. 따라서, 불량한 기상 상황으로 인해 평소보다 태양전지 패널(10)에 의해 생성되는 전력의 충전량이 부족한 경우에도 야간에 조명 디바이스가 작동되지 않는 상황을 극복할 수 있다.In one embodiment, it is preferable that the main controller 48 controls the brightness of the light emitting part of the lighting device 30 according to the remaining amount of the secondary battery 20 by controlling the DC/DC driver 47 . Accordingly, it is possible to overcome a situation in which the lighting device is not operated at night even when the amount of charge of the electric power generated by the solar cell panel 10 is insufficient due to poor weather conditions.
일 실시예에서, 메인 제어부(48)는 무선 통신부(46)를 제어하여 시스템(100)과 관리 서버로 작동하는 관제 센터의 중앙 컴퓨터(52)가 연결되도록 함으로써, 중앙 컴퓨터(52)로부터 수신되는 다양한 제어 신호를 수신할 수 있고 반대로 시스템(100)의 각종 상태 정보를 중앙 컴퓨터(52)로 송신할 수 있도록 구성된다. In one embodiment, the main control unit 48 controls the wireless communication unit 46 so that the system 100 and the central computer 52 of the control center operating as a management server are connected, so that the It is configured to be able to receive various control signals and, conversely, transmit various status information of the system 100 to the central computer 52 .
일 실시예에서, 메인 제어부(48)는 조절된 DC 입력 전압에 의해 출력 전력을 조절할 수 있는 디밍용 전자식 안정기와 이러한 안정기의 출력 전력에 의해 조도가 조절되는 조명 디바이스의 점,소등 및 조도를 제어하는 무선디밍 제어부(미도시)를 더 포함한다.In one embodiment, the main control unit 48 controls the dimming electronic ballast capable of adjusting the output power by the regulated DC input voltage and the lighting device whose illuminance is controlled by the output power of such a ballast, turn off and control the illuminance. It further includes a wireless dimming control unit (not shown).
일 실시예에서, 컨트롤러(40)는 시스템(100) 내의 상태 정보들을 추출하기 위해 전술한 센서들을 포함하는 상태 정보 추출 모듈, 추출되거나 측정된 데이터들또는 외부 기기(50)로부터 전송되는 데이터를 저장하기 위한 메모리 모듈 또는 송,수신되는 데이터를 적정한 형태로 변환하기 위한 데이터 변환 모듈을 포함할 수 있다. 부가적으로 또는 대안적으로, 컨트롤러(40)는 블루투스 모듈, IoT 모듈, WiFi 모듈, 스피커 모듈, 카메라 모듈을 더 포함할 수 있다. 예를 들어, 컨트롤러(40)는 스피커 모듈을 통해 태양광 라이팅 시스템(100)의 폴에 설치된 스피커(미도시)에 연결되어 외부 기기 또는 자체 저장된 정보를 출력할 수 있도록 구성된다. 또한, 컨트롤러(40)는 카메라 모듈을 통해 태양광 라이팅 시스템(100)의 폴에 설치된 카메라(미도시)를 원격 조정하거나 카메라에 의해 녹화된 데이터를 저장하거나 외부로 전송할 수 있도록 구성된다. 대안적인 실시예에서, 카메라에 의해 촬영되는 영상은 실시간 혹은 필요할 때마다 웹/앱에서 확인할 수도 있다.In one embodiment, the controller 40 stores the state information extraction module including the above-described sensors to extract the state information within the system 100 , the extracted or measured data, or data transmitted from the external device 50 . It may include a memory module or a data conversion module for converting transmitted and received data into an appropriate form. Additionally or alternatively, the controller 40 may further include a Bluetooth module, an IoT module, a WiFi module, a speaker module, and a camera module. For example, the controller 40 is connected to a speaker (not shown) installed on the pole of the solar lighting system 100 through a speaker module and is configured to output external device or self-stored information. In addition, the controller 40 is configured to remotely control a camera (not shown) installed on the pole of the solar lighting system 100 through the camera module, or to store data recorded by the camera or to transmit it to the outside. In an alternative embodiment, the image captured by the camera may be viewed in real time or on the web/app whenever necessary.
일 실시예에서, 컨트롤러(40)의 메인 제어부(48)와 이차 전지(20)의 BMS(22)는 각각 마이컴(Micom)을 구비하고 있고, 시스템(100)이 불안정할 경우 컨트롤러(40)가 시스템(100)을 자체 리셋하여 시스템을 안정화시킬 수 있다. 본 발명의 바람직한 실시예에 따르면, 컨트롤러(40)는 태양광 라이팅 시스템(100)의 개별 구성요소들의 작동이 불안정하지 않더라도, 적절한 주기에 맞춰 또는 임의적으로 시스템(100)을 리셋할 수 있도록 구성된 리셋 제어부(60)를 포함한다. 리셋 제어부(60)는 시스템(100)을 반영구적으로 최적 상태로 유지함으로써 시스템(100)의 수명을 연장하고 에너지 효율을 증대시키기 위해, 외부 기기(50)에 의해 입력되는 리셋 신호에 의해 시스템(100)을 리셋할 수 있도록 구성된다.In one embodiment, the main control unit 48 of the controller 40 and the BMS 22 of the secondary battery 20 are each provided with a microcomputer (Micom), and when the system 100 is unstable, the controller 40 The system 100 may self-reset to stabilize the system. According to a preferred embodiment of the present invention, the controller 40 is a reset configured to be able to reset the system 100 at an appropriate period or arbitrarily, even if the operation of individual components of the solar lighting system 100 is not unstable. a control unit 60 . The reset control unit 60 maintains the system 100 in an optimal state semi-permanently to extend the life of the system 100 and increase energy efficiency. ) can be reset.
일 실시예에서, 리셋 제어부(60)는 태양전지 패널(10)의 작동에 의한 이차 전지(20)의 충전 종료 후 조명 디바이스(30)의 작동에 의한 이차 전지(20)의 방전 시작 전(예, 일몰 전후)의 미리결정된 시간 구간 내에서 일종의 휴지기 동안 작동하도록 구성된다. 이와 같이, 일몰 전후의 시간 동안 리셋 제어부(60)를 작동시키는 이유는 주간 및 야간에 태양전지 패널(10)과 이차 전지(20)이 적극적으로 작동되는 시간을 피함으로써, 태양광 라이팅 시스템(100)에 불필요한 간섭을 방지하고 그만큼 에너지 효율을 높이기 위한 것이다. 또한, 무선 통신부(46)를 통해 외부 기기(50)로부터 입력되는 리셋 신호는 미리결정된 주기(예, 매월, 매분기 또는 매년)에 의한 자동 방식으로 또는 사용자에 의해 임의적으로 결정되는 수동 방식으로 입력될 수 있다. In one embodiment, the reset control unit 60 before the start of discharging of the secondary battery 20 by the operation of the lighting device 30 after the charging of the secondary battery 20 by the operation of the solar cell panel 10 (for example) , before and after sunset) during a kind of rest period within a predetermined time interval. As such, the reason for operating the reset control unit 60 during the time before and after sunset is to avoid the time during which the solar cell panel 10 and the secondary battery 20 are actively operated during the day and at night, thereby making the solar lighting system 100 ) to prevent unnecessary interference and to increase energy efficiency. In addition, the reset signal input from the external device 50 through the wireless communication unit 46 is input in an automatic manner according to a predetermined cycle (eg, monthly, quarterly or annually) or in a manual method arbitrarily determined by the user. can be
일 실시예에서, 전술한 바와 같이, 리셋 제어부(60)는 자동 리셋 기능을 위하여 마이크로 컨트롤러 내부에 워치독 타이머(Watch Dog Timer)를 내장하여, 지정한 주기 이상이 경과 되면 리셋 펄스를 이용하여 리셋 동작을 시작하고 일정 시간 동안 리셋 상태를 유지하도록 구성된다. 리셋이 불가능할 경우를 위하여 마이크로 컨트롤러 외부에 리셋 신호를 제공하는 독립적 하드웨어인 리셋 IC를 추가하여 마이크로 컨트롤러의 동작 감시와 리셋 기능을 지원하도록 구성될 수 있다. 이와 같은 시스템의 자동 리셋 과정은 시스템 재실행 및 초기 실행 상태를 확인하고, 타이머의 시간 주기에 따라 출력 포트에 신호를 전송하여 리셋 IC에 주기적 신호를 전송하고, 워치독 동작 금지 명령을 주기적(예, 0.5sec)으로 실행한 후 일정 시간(예, 1.8sec) 동안 금지 명령이 실행되지 않으면 리셋을 실행하고 타이머 시간을 초기화한다. 이 때, 리셋 IC는 WDI 핀에서 신호를 감지하고, 일정 시간 동안 신호가 없는 경우에 리셋 신호를 전송한다. 컨트롤러는 리셋 IC의 리셋 신호를 받아 시스템을 재구동시킨다.In one embodiment, as described above, the reset control unit 60 embeds a watch dog timer in the microcontroller for an automatic reset function, and when a specified period or more elapses, a reset operation is performed using a reset pulse. is configured to start and remain in the reset state for a period of time. It can be configured to support the operation monitoring and reset function of the microcontroller by adding a reset IC that is independent hardware that provides a reset signal to the outside of the microcontroller in case reset is impossible. The automatic reset process of such a system checks the system re-execution and initial execution status, transmits a signal to the output port according to the time period of the timer to transmit a periodic signal to the reset IC, and periodically (e.g., a watchdog operation prohibition command) 0.5sec) and if the prohibition command is not executed for a certain period of time (eg 1.8sec), reset is executed and the timer time is initialized. At this time, the reset IC detects a signal from the WDI pin and transmits a reset signal when there is no signal for a certain period of time. The controller receives the reset signal from the reset IC to restart the system.
일 실시예에서, 도 2에 도시된 바와 같이, 리셋 제어부(60)는 전압이 인가되는 전원 입력 노드(VCC_ON), 클럭을 입력받는 클럭 입력 노드(CLK_IN), 및 리셋 신호를 발생시키는 리셋 출력 노드(RESET)를 가진 소프트웨어 리셋 회로(62)를 포함한다. 소프트웨어 리셋 회로(62)는 리셋 출력 노드(RESET)를 통해 리셋 신호를 제공받는 회로들, 예를 들어, 충전부(42) 및/또는 BMS(22)와 연결된다.In an embodiment, as shown in FIG. 2 , the reset controller 60 includes a power input node VCC_ON to which a voltage is applied, a clock input node CLK_IN to receive a clock, and a reset output node for generating a reset signal. and a software reset circuit 62 with (RESET). The software reset circuit 62 is connected to circuits receiving a reset signal through the reset output node RESET, for example, the charging unit 42 and/or the BMS 22 .
다른 실시예에서, 도 3에 도시된 바와 같이, 리셋 제어부(60)는 R-C 회로에 의한 하드웨어 리셋 회로(64)를 포함한다. 하드웨어 리셋 회로(64)는 R-C 회로의 캐패시터 전압을 출력 노드로 제공한다. 출력 노드 신호는 출력 처리 회로인 인버터 회로를 거쳐 리셋 신호에 의하여 초기화될 필요가 있는 컨트롤러(40) 및/또는 BMS(22)에 전달된다. In another embodiment, as shown in Fig. 3, the reset control unit 60 includes a hardware reset circuit 64 by means of an R-C circuit. A hardware reset circuit 64 provides the capacitor voltage of the R-C circuit as an output node. The output node signal is transmitted to the controller 40 and/or the BMS 22 which needs to be initialized by a reset signal via an inverter circuit which is an output processing circuit.
일 실시예에서, 리셋 제어부(60)는 태양전지 패널(10)에 의해 생성되는 전력으로 구동될 수 있도록 구성된다. 이를 위해, 도 1에 도시된 바와 같이, 리셋 제어부(60)는 태양전지 패널(10)과 리셋 제어부(60) 사이에 마련되고, 태양전지 패널(10)로부터 생성되는 전압을 리셋 제어부(60)를 구동시킬 수 있는 전압으로 조정하는 레귤레이터(66)를 더 구비한다. 본 실시예에서, 태양전지 패널(10)로부터 이차 전지(20)로 전력이 충전되거나, 이차 전지(20)에 충전된 전력이 조명 디바이스(30)로 방전되는 경우에 이차 전지(20)의 충방전 동작은 메인 제어부(48)에 의해 제어되므로, 이차 전지(20)에 잉여 전력이 있는 경우에 레귤레이터(66)의 동작은 메인 제어부(48)에 의해 슬립 모드로 전환된다. 슬립 모드란 동작이 완전히 오프되지 않고 저전력을 소모하는 대기 상태를 의미한다. 따라서, 메인 제어부(48)의 동작이 중단된 경우, 레귤레이터(66)는 슬립에서 깨어나서 메인 제어부(48)를 회생시킬 수 있다. In one embodiment, the reset control unit 60 is configured to be driven by power generated by the solar cell panel 10 . To this end, as shown in FIG. 1 , the reset control unit 60 is provided between the solar cell panel 10 and the reset control unit 60 , and sets the voltage generated from the solar cell panel 10 to the reset control unit 60 . It further includes a regulator 66 for adjusting the voltage to be driven. In this embodiment, when electric power is charged from the solar cell panel 10 to the secondary battery 20 , or when electric power charged in the secondary battery 20 is discharged to the lighting device 30 , the secondary battery 20 is charged. Since the discharging operation is controlled by the main controller 48 , the operation of the regulator 66 is switched to the sleep mode by the main controller 48 when there is surplus power in the secondary battery 20 . The sleep mode refers to a standby state that consumes low power without being completely turned off. Accordingly, when the operation of the main controller 48 is stopped, the regulator 66 may wake up from the sleep and regenerate the main controller 48 .
보다 구체적으로, 시스템(100)의 작동 중에, 이차 전지(20)의 전압이 임계전압 이하로 떨어지면 이차 전지(20)를 보호하기 위해 메인 제어부(310)는 BMS(22)의 동작을 오프시킨다. 즉, 이차 전지(20)의 전압이 임계전압 이하일 경우 출력이 완전히 차단되므로 컨트롤러(40)로 인가되는 전원이 0V일 수 있다. 컨트롤러(40)의 동작이 오프된 경우, 레귤레이터(66)는 태양전지 패널(10)로부터 생성된 전력의 전압을 미리결정된 전압(예, 컨트롤러(40)를 회생시킬 수 있는 전압)으로 조정할 수 있다. More specifically, when the voltage of the secondary battery 20 falls below the threshold voltage during the operation of the system 100 , the main controller 310 turns off the operation of the BMS 22 in order to protect the secondary battery 20 . That is, when the voltage of the secondary battery 20 is less than the threshold voltage, the output is completely cut off, so the power applied to the controller 40 may be 0V. When the operation of the controller 40 is turned off, the regulator 66 may adjust the voltage of the electric power generated from the solar cell panel 10 to a predetermined voltage (eg, a voltage capable of regenerating the controller 40 ). .
전술한 상세한 설명 및 도면들은 본 발명의 바람직한 실시예들을 나타내는 한편, 첨부된 청구범위에서 정의된 바와 같이 본 발명의 기술적 사상 및 권리 범위를 벗어나지 않는 한 다양한 부가물, 변형물, 조합들 및/또는 대체물들이 만들어 질 수 있음을 이해해야 한다. 특히, 본 발명은 다른 요소들, 물질들, 성분들을 이용하여 본 발명의 사상 또는 필수적 특징들로부터 벗어나지 않는 범위 내에서 다른 특정한 형태, 구조, 배열, 비율들로 구현될 수 있음을 당업자는 이해할 것이다. 본 발명의 원칙을 벗어나지 않는 한 특정의 환경 및 작동 조건들에 특히 적합하도록 개조된 구조, 배열, 비율, 물질, 성분의 많은 변형과 함께 본 발명이 사용될 수 있음을 당업자는 이해할 것이다. 또한, 본 명세서에서 설명된 특징들은 단독적으로 사용될 수도 있고 다른 특징들과 조합하여 사용될 수도 있다. 예를 들어, 하나의 실시예와 관련하여 설명된 특징들은 다른 실시예에서 설명된 특징들과 함께 및/또는 상호 교체되어 사용될 수 있다. 따라서, 현재 개시된 실시예들은 모든 면에서 제한적이 아닌 예시적이고 설명적인 것으로 간주되어야 하며, 발명의 권리범위는 첨부된 청구범위에 의해 표시되며, 전술한 상세한 설명에 한정되어서는 아니된다.While the foregoing detailed description and drawings represent preferred embodiments of the present invention, various additions, modifications, combinations and/or It should be understood that substitutes can be made. In particular, it will be understood by those skilled in the art that the present invention may be embodied in other specific forms, structures, arrangements, and proportions using other elements, materials, and components without departing from the spirit or essential characteristics of the present invention. . It will be understood by those skilled in the art that the present invention may be used with many modifications of structure, arrangement, proportions, materials, or components adapted particularly to suit particular environmental and operating conditions without departing from the principles of the present invention. Also, the features described herein may be used alone or in combination with other features. For example, features described in connection with one embodiment may be used with and/or interchangeably with features described in another embodiment. Accordingly, the presently disclosed embodiments are to be regarded in all respects as illustrative and illustrative rather than restrictive, and the scope of the invention is indicated by the appended claims and not limited to the foregoing detailed description.
첨부된 청구범위의 넓은 범위를 벗어나지 않는 한 본 발명의 다양한 변형들 및 변경들이 가능함을 당업자는 이해할 것이다. 이러한 것들의 일부는 예시적으로 위에서 논의되었으며 다른 일부들은 당업자에게 명백할 것이다.It will be understood by those skilled in the art that various modifications and variations of the present invention are possible without departing from the broad scope of the appended claims. Some of these have been discussed above by way of example and others will be apparent to those skilled in the art.
본 발명은 태양전지 패널을 이용하여 생성된 전력을 이차 전지에 저장하고 저장된 이차 전지의 전력을 조명 디바이스의 발광을 위해 구성된 모든 컨트롤러 및 컨트롤러를 이용한 디바이스에 이용될 수 있다.The present invention can be used in any controller configured to store electric power generated by using a solar cell panel in a secondary battery and use the stored electric power of the secondary battery to emit light of a lighting device and a device using the controller.

Claims (17)

  1. 태양전지 패널; 상기 태양전지 패널로부터 생성되는 전기 에너지를 저장할 수 있도록 상기 태양전지 패널에 전기적으로 연결되고 BMS가 마련된 이차 전지; 및 상기 이차 전지로부터 전력을 공급받아 발광할 수 있도록 상기 이차 전지에 전기적으로 연결된 조명 디바이스를 포함하는 태양광 라이팅 시스템을 위한 컨트롤러로서,solar panel; a secondary battery electrically connected to the solar panel and provided with a BMS to store electrical energy generated from the solar panel; and a lighting device electrically connected to the secondary battery to receive power from the secondary battery to emit light,
    상기 태양전지 패널과 상기 이차 전지 사이에 인터페이스되도록 구성된 충전부;a charging unit configured to interface between the solar cell panel and the secondary battery;
    상기 이차 전지와 상기 조명 디바이스 사이에 인터페이스되도록 구성된 방전부;a discharge unit configured to interface between the secondary battery and the lighting device;
    외부 기기와 무선통신이 가능하도록 구성된 무선 통신부;a wireless communication unit configured to enable wireless communication with an external device;
    상기 태양전지 패널과 상기 이차 전지 사이의 인터페이스 정보 및/또는 상기 이차 전지와 상기 조명 디바이스 사이의 인터페이스 정보 및/또는 상기 무선 통신부의 정보를 처리 및 제어할 수 있도록 구성된 메인 제어부; 및 a main control unit configured to process and control interface information between the solar panel and the secondary battery and/or interface information between the secondary battery and the lighting device and/or information from the wireless communication unit; and
    상기 무선 통신부를 통해 상기 외부 기기로부터 입력되는 리셋 신호에 의해 상기 메인 제어부 및/또는 상기 이차 전지의 BMS를 리셋할 수 있도록 구성된 리셋 제어부를 구비하는, 태양광 라이팅 시스템용 컨트롤러.A controller for a solar lighting system comprising a reset control unit configured to reset the BMS of the main control unit and/or the secondary battery by a reset signal input from the external device through the wireless communication unit.
  2. 청구항 1에서, In claim 1,
    상기 리셋 제어부는 전압이 인가되는 전원 입력 노드, 클럭을 입력받는 클럭 입력 노드, 및 리셋 신호를 발생시키는 리셋 출력 노드를 가진 소프트웨어 리셋 회로를 포함하는, 태양광 라이팅 시스템용 컨트롤러.The reset control unit includes a software reset circuit having a power input node to which a voltage is applied, a clock input node receiving a clock, and a reset output node generating a reset signal, the solar lighting system controller.
  3. 청구항 1에서, In claim 1,
    상기 리셋 제어부는 R-C 회로에 의한 하드웨어 리셋 회로를 포함하는, 태양광 라이팅 시스템용 컨트롤러.The reset control unit includes a hardware reset circuit by the R-C circuit, a solar lighting system controller.
  4. 청구항 1에서, In claim 1,
    상기 무선 통신부는 IoT 기반 무선 통신 모듈 또는 근거리 무선 통신 모듈을 포함하는, 태양광 라이팅 시스템용 컨트롤러.The wireless communication unit includes an IoT-based wireless communication module or a short-range wireless communication module, a solar lighting system controller.
  5. 청구항 1에서, In claim 1,
    상기 메인 제어부는, 센싱 모듈, WiFi 모듈, GPS 모듈, 스피커 모듈 또는 카메라 모듈을 더 구비하는, 태양광 라이팅 시스템용 컨트롤러.The main control unit, a sensing module, a WiFi module, a GPS module, a speaker module or a camera module further comprising a, solar lighting system controller.
  6. 청구항 1에서, In claim 1,
    상기 이차 전지와 상기 컨트롤러는 상기 조명 디바이스의 라이팅 헤드의 밀봉 수납부에 밀봉 수납되는, 태양광 라이팅 시스템용 컨트롤러.The secondary battery and the controller are hermetically housed in a sealed accommodation portion of a lighting head of the lighting device, a solar lighting system controller.
  7. 청구항 1에서, In claim 1,
    상기 리셋 제어부는 상기 태양전지 패널의 작동에 의한 상기 이차 전지의 충전 종료 후 상기 조명 디바이스의 작동에 의한 상기 이차 전지의 방전 시작 전의 미리결정된 시간 구간 내에 작동하도록 구성된, 태양광 라이팅 시스템용 컨트롤러.The reset control unit is configured to operate within a predetermined time period after the end of charging of the secondary battery by the operation of the solar panel and before the start of discharging of the secondary battery by the operation of the lighting device.
  8. 청구항 1에서, In claim 1,
    상기 무선 통신부를 통해 상기 외부 기기로부터 입력되는 상기 리셋 신호는 미리결정된 주기에 의한 자동 방식으로 또는 사용자에 의해 임의적으로 결정되는 수동 방식으로 입력되는, 태양광 라이팅 시스템용 컨트롤러.The reset signal input from the external device through the wireless communication unit is input in an automatic manner according to a predetermined period or in a manual manner arbitrarily determined by the user, a solar lighting system controller.
  9. 청구항 1에서, In claim 1,
    상기 리셋 제어부는 상기 태양전지 패널에 의해 생성되는 전력에 의해 구동될 수 있도록 구성된, 태양광 라이팅 시스템용 컨트롤러.The reset control unit is configured to be driven by power generated by the solar panel, a controller for a solar lighting system.
  10. 청구항 9에서, In claim 9,
    상기 리셋 제어부는 상기 태양전지 패널과 상기 리셋 제어부 사이에 마련되고, 상기 태양전지 패널로부터 생성되는 전압을 미리결정된 전압으로 조정할 수 있는 레귤레이터를 더 구비하는, 태양광 라이팅 시스템용 컨트롤러.The reset control unit is provided between the solar panel and the reset control unit, and further comprising a regulator capable of adjusting the voltage generated from the solar panel to a predetermined voltage, a solar lighting system controller.
  11. 태양전지 패널; 상기 태양전지 패널로부터 생성되는 전기 에너지를 저장할 수 있도록 상기 태양전지 패널에 전기적으로 연결되고 BMS가 마련된 이차 전지; 이차 전지로부터 전력을 공급받아 발광할 수 있도록 상기 이차 전지에 전기적으로 연결된 조명 디바이스; 및 상기 태양전지 패널과 상기 이차 전지 사이의 인터페이스 정보 및/또는 상기 이차 전지와 상기 조명 디바이스 사이의 인터페이스 정보 및/또는 상기 무선 통신부의 정보를 처리 및 제어할 수 있도록 구성된 컨트롤러를 구비하는 태양광 라이팅 시스템의 리셋 방법으로서,solar panel; a secondary battery electrically connected to the solar cell panel and provided with a BMS to store electric energy generated from the solar cell panel; a lighting device electrically connected to the secondary battery to receive power from the secondary battery to emit light; and a controller configured to process and control interface information between the solar panel and the secondary battery and/or interface information between the secondary battery and the lighting device and/or information from the wireless communication unit A method for resetting a system, comprising:
    상기 컨트롤러의 무선 통신부를 통해 외부 기기로부터 입력되는 리셋 신호에 의해 상기 메인 제어부 및/또는 상기 이차 전지의 BMS를 리셋할 수 있도록 구성된 리셋 제어부를 작동시키는 단계를 포함하는, 태양광 라이팅 시스템의 리셋 방법.A method of resetting a solar lighting system, comprising operating a reset control unit configured to reset the BMS of the main control unit and/or the secondary battery by a reset signal input from an external device through the wireless communication unit of the controller .
  12. 청구항 11에서,In claim 11,
    상기 리셋 제어부를 작동시키는 단계는 상기 태양전지 패널의 작동에 의한 상기 이차 전지의 충전 종료 후 상기 조명 디바이스의 작동에 의한 상기 이차 전지의 방전 시작 전의 미리결정된 시간 구간 내에 수행되는, 태양광 라이팅 시스템의 리셋 방법.The step of operating the reset control unit is performed within a predetermined time period after the end of charging of the secondary battery by the operation of the solar panel and before the start of discharging of the secondary battery by the operation of the lighting device, the solar lighting system reset method.
  13. 청구항 11에서, In claim 11,
    상기 리셋 제어부는 상기 리셋 제어부는 상기 태양전지 패널에 의해 생성되는 전력으로 구동될 수 있도록 구성된, 태양광 라이팅 시스템의 리셋 방법.The reset control unit is configured to be driven by the power generated by the solar cell panel, the reset control unit, the reset method of the solar lighting system.
  14. 청구항 13에서, In claim 13,
    상기 리셋 제어부는 상기 태양전지 패널과 상기 리셋 제어부 사이에 마련되고, 상기 태양전지 패널로부터 생성되는 전압을 상기 리셋 제어부를 구동시킬 수 있는 전압으로 조정하는 레귤레이터에 의해 작동되는, 태양광 라이팅 시스템의 리셋 방법.The reset control unit is provided between the solar panel and the reset control unit, and is operated by a regulator that adjusts the voltage generated from the solar panel to a voltage capable of driving the reset control unit, the reset of the solar lighting system method.
  15. 청구항 11에서, In claim 11,
    상기 리셋 제어부를 작동시키는 단계는, 미리결정된 주기에 의해 자동 방식으로 또는 사용자에 의해 임의적으로 결정되는 수동 방식으로 수행되는, 태양광 라이팅 시스템의 리셋 방법.The step of activating the reset control unit is performed in an automatic manner by a predetermined period or in a manual manner arbitrarily determined by the user, the reset method of the solar lighting system.
  16. 청구항 11에서, In claim 11,
    상기 리셋 제어부를 작동시키는 단계는, 전압이 인가되는 전원 입력 노드, 클럭을 입력받는 클럭 입력 노드, 및 리셋 신호를 발생시키는 리셋 출력 노드를 가진 소프트웨어 리셋 회로를 통해 수행되는, 태양광 라이팅 시스템의 리셋 방법.The step of activating the reset control unit is performed through a software reset circuit having a power input node to which a voltage is applied, a clock input node receiving a clock, and a reset output node generating a reset signal. Reset of the solar lighting system method.
  17. 청구항 11에서, In claim 11,
    상기 리셋 제어부를 작동시키는 단계는, R-C 회로에 의한 하드웨어 리셋 회로를 통해 수행되는, 태양광 라이팅 시스템의 리셋 방법.The step of operating the reset control unit, the reset method of the solar lighting system is performed through a hardware reset circuit by the R-C circuit.
PCT/KR2020/011691 2020-08-28 2020-09-01 Controller for solar lighting system and method for resetting solar lighting system WO2022045422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0109608 2020-08-28
KR1020200109608A KR102406740B1 (en) 2020-08-28 2020-08-28 Controller for solar lighting system and method for resestting thereof

Publications (1)

Publication Number Publication Date
WO2022045422A1 true WO2022045422A1 (en) 2022-03-03

Family

ID=80355269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011691 WO2022045422A1 (en) 2020-08-28 2020-09-01 Controller for solar lighting system and method for resetting solar lighting system

Country Status (2)

Country Link
KR (1) KR102406740B1 (en)
WO (1) WO2022045422A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980060992U (en) * 1997-03-20 1998-11-05 이종수 Control device of street light
JP2007059115A (en) * 2005-08-23 2007-03-08 Matsushita Electric Works Ltd Emergency lighting automatic inspection system
KR101516193B1 (en) * 2015-01-08 2015-05-04 주식회사 미지에너텍 Apparatus for controlling solar charging and method therefor
KR20180017449A (en) * 2016-08-09 2018-02-21 김정규 Display off the street lights and street light management system that predicts the replacement time by displaying the number of faults
KR102124386B1 (en) * 2019-10-16 2020-06-19 주식회사 삼영이엔지 Smart Lighting System with Solar Module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101035653B1 (en) 2008-12-30 2011-05-19 (주)유비엔씨 street light dimming control system using Ubiquitous Sensor network based of solar-cell.
KR20140105584A (en) * 2009-10-15 2014-09-01 가부시키가이샤 엘이테크 Microcomputer and method of operation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980060992U (en) * 1997-03-20 1998-11-05 이종수 Control device of street light
JP2007059115A (en) * 2005-08-23 2007-03-08 Matsushita Electric Works Ltd Emergency lighting automatic inspection system
KR101516193B1 (en) * 2015-01-08 2015-05-04 주식회사 미지에너텍 Apparatus for controlling solar charging and method therefor
KR20180017449A (en) * 2016-08-09 2018-02-21 김정규 Display off the street lights and street light management system that predicts the replacement time by displaying the number of faults
KR102124386B1 (en) * 2019-10-16 2020-06-19 주식회사 삼영이엔지 Smart Lighting System with Solar Module

Also Published As

Publication number Publication date
KR20220028515A (en) 2022-03-08
KR102406740B1 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
US8742762B2 (en) Accumulator control device and method and system for auxiliary electrical power supply
US9034511B2 (en) Power storage apparatus, connection apparatus, power storage system, electronic device, motor-driven vehicle, and electric power system
WO2012020902A1 (en) Secondary battery management apparatus
KR20080080352A (en) Lighting system control device charging system and method
EP3598408A1 (en) Sensor device and sensor network system
JP4771548B2 (en) Wireless communication terminal and transmission control program for extending life of secondary battery
ES2555883B1 (en) Indicator of faults in a circuit for use in an energy monitoring network and associated procedure
WO2015186919A1 (en) Smart grid system, for black box, using photovoltaic power generation
WO2019088430A1 (en) Battery pack having fastening recognition function
KR20210058206A (en) Battery system and method of allocating CAN ID
WO2022045422A1 (en) Controller for solar lighting system and method for resetting solar lighting system
US10349480B2 (en) Hybrid green-energy street light apparatus
KR102382196B1 (en) a ship including a battery
CA3219737A1 (en) Energy storage system, primary energy-storage-apparatus, and auxiliary energy-storage-apparatus
CN208536909U (en) A kind of low-power consumption temperature-humidity monitoring equipment
CN103683396A (en) Self-adaptive battery equalization charge device and method with turnover protection function
KR20070074719A (en) Contact-less charger having separated charging circuit part and coil part
CN114301119A (en) Wake-up circuit, battery management system, battery pack and electric device
KR102433850B1 (en) System and method for recognition of BMS
US20100207586A1 (en) Self-discharge circuit for secondary battery, and secondary battery including the same
JP7158916B2 (en) power system
JP6303062B1 (en) Sensor device
CN220896363U (en) Power distribution equipment and power distribution system
CN210891127U (en) Portable energy storage lamp with multiple charging modes
CN211579682U (en) Battery management system for fault detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951654

Country of ref document: EP

Kind code of ref document: A1