WO2022045340A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
WO2022045340A1
WO2022045340A1 PCT/JP2021/031814 JP2021031814W WO2022045340A1 WO 2022045340 A1 WO2022045340 A1 WO 2022045340A1 JP 2021031814 W JP2021031814 W JP 2021031814W WO 2022045340 A1 WO2022045340 A1 WO 2022045340A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
electric motor
rotor
motor
conductive member
Prior art date
Application number
PCT/JP2021/031814
Other languages
French (fr)
Japanese (ja)
Inventor
チャイリー カンパナート
パンウォラポット アーティット
慎悟 鈴木
智則 小嶋
洋一 田邉
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Publication of WO2022045340A1 publication Critical patent/WO2022045340A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/40Structural association with grounding devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields

Definitions

  • the present invention relates to an electric motor including two bearing houses and a conductive member that conducts the bearing houses to each other.
  • an inner rotor type motor in which a cylindrical rotor having a permanent magnet is arranged coaxially with the stator on the inner diameter side of a cylindrical stator that generates a rotating magnetic field is known.
  • This electric motor is used, for example, for rotationally driving a blower fan mounted on an air conditioner.
  • the thickness and shape of the insulating layer are determined by the mold forming the rotor core, and when adjusting the capacitance, the mold is changed and the rotor core is used. Cutting etc. is required. Therefore, there is a problem that the capacitance cannot be easily adjusted after the mold of the rotor core is completed.
  • an object of the present invention is to provide an electric motor capable of easily adjusting the capacitance between the stator side and the rotor side of the electric motor to suppress the occurrence of electrolytic corrosion.
  • One aspect of the motor of the present invention includes a rotor, a shaft arranged along the rotation axis of the rotor and fixed to the rotor, a first bearing arranged on one end side of the shaft, and the above.
  • a second bearing arranged on the other end side of the shaft, a stator core arranged on the outer peripheral side of the rotor, a resin outer shell covering the stator core, and outer rings provided by each of the first bearing and the second bearing. It is provided with a conductive member for electrically connecting the bearings.
  • a conductive member that covers at least a part of the conductive member is attached to the surface of the resin outer shell.
  • the capacitance between the stator side and the rotor side of the motor can be easily adjusted to suppress the occurrence of electrolytic corrosion.
  • ⁇ Overall configuration of motor> 1 to 6 are diagrams illustrating the configuration of the electric motor 1 in the present embodiment.
  • the electric motor 1 is, for example, a brushless DC motor.
  • the electric motor 1 is used, for example, to rotationally drive a blower fan mounted on an outdoor unit of an air conditioner.
  • the motor 1 in the present embodiment includes a stator (stator) 2, a rotor (rotor) 3, a motor outer shell (resin outer shell) 10, a bracket 41, and a conduction member 5.
  • a stator stator 2
  • a rotor rotor 3
  • a motor outer shell motor outer shell
  • a conduction member 5 conduction member 5.
  • an inner rotor type permanent magnet motor 1 in which a cylindrical rotor 3 having a permanent magnet portion 31 is rotatably arranged inside a cylindrical stator 2 that generates a rotating magnetic field is taken as an example. explain.
  • the rotor 3 is rotatably arranged with a predetermined gap on the inner peripheral side of the stator core 21 of the stator 2.
  • the rotor 3 is a surface magnet type in which a permanent magnet 31 is arranged in an annular shape on an outer peripheral surface facing the stator core 21.
  • the permanent magnet 31 is fixed around the shaft 32 via the outer peripheral side iron core 32, the insulating member 33, and the inner peripheral side iron core 35.
  • the shaft 32 is supported by a first bearing 33 and a second bearing 34.
  • each of the bearing accommodating portion 42 (bracket 41) described later in which the first bearing 33 is accommodated and the second bearing accommodating portion 43 described later in which the second bearing 34 is accommodated are housed in the resin motor outer shell 10.
  • the rotor 3 is rotatably supported.
  • the permanent magnet 31 is formed in an annular shape by a plurality of (for example, 8 or 10) permanent magnet pieces 311 so that the N pole and the S pole appear alternately at equal intervals in the circumferential direction.
  • a plastic magnet formed in an annular shape by solidifying the magnet powder with a resin may be used.
  • the outer peripheral side iron core 32 is formed in an annular shape and is located on the inner diameter side of the permanent magnet 31.
  • the outer peripheral side protrusion is formed so as to extend from one end to the other end of the outer peripheral side iron core 32 in the central axis direction.
  • the inner peripheral side iron core 35 is formed in an annular shape and is located on the inner diameter side of the outer peripheral side iron core 32. Further, the center of the inner peripheral side iron core 35 is provided with a through hole penetrating in the direction of the central axis.
  • the shaft 32 is fixed to a through hole provided in the inner peripheral side iron core 35 by press fitting or caulking.
  • the inner peripheral side iron core 35 may be provided with a plurality of through holes (not shown) for lightening the weight between the through hole and the outer peripheral surface of the inner peripheral side iron core 35. .. These plurality of through holes are arranged at equal intervals in the circumferential direction so that the shape of the inner peripheral side iron core 35 in which the through holes are formed becomes a spoke shape when viewed from the central axis direction.
  • the insulating member 33 is made of a dielectric resin such as PBT (polybutylene terephthalate) or PET (polyethylene terephthalate), and is located between the outer peripheral side iron core 32 and the inner peripheral side iron core 35.
  • the insulating member 33 is integrally molded with the outer peripheral side iron core 32 and the inner peripheral side iron core 35 by insert molding in which a resin is filled between the outer peripheral side iron core 32 and the inner peripheral side iron core 35.
  • the capacitance between the outer peripheral side iron core 32 and the inner peripheral side iron core 35 depends on the thickness (diameter length) of the insulating member 33.
  • the electric motor 1 in which the capacitance on the rotor 3 side is adjusted by the thickness of the insulating member 33 is the inner ring 334 and 344 side by matching the capacitance on the stator 2 side and the capacitance on the rotor 3 side.
  • the potential difference between the outer ring 332 and the outer ring 332 and 342 is adjusted to be small, thereby preventing electrolytic corrosion of the bearing.
  • the rotor core of the rotor 3 has a structure in which two cylindrical cores, an inner peripheral side core 32 and an outer peripheral side iron core 35, are connected by an insulating member 33, but the structure of the rotor core is Is not limited to this.
  • the rotor core may not be provided with the insulating member 33, and may be formed from one cylindrical core.
  • the stator 2 is wound around a stator core (stator core) 21 having a cylindrical yoke portion (not shown) and a plurality of teeth portions (not shown) extending from the yoke portion to the inner diameter side, and a teeth portion via an insulator. It has a winding (not shown).
  • the stator 2 is covered with a motor outer shell 10 (resin outer shell) made of resin except for the inner peripheral surface of the stator core 21 by resin integral molding (see FIG. 2). That is, the motor outer shell 10 covers the stator 2 provided with the stator core 21 and the winding, and accommodates the rotor 3 inside.
  • the stator 2 is arranged on the outer peripheral side of the rotor 3 (outside in the radial direction of the permanent magnet motor 1). Further, the stator core 21 of the stator 2 is arranged so that the teeth portion of the stator core 21 faces the permanent magnet portion 31 of the rotor 3 in the radial direction. In other words, the stator 2 is arranged so that the annular permanent magnet portion 31 included in the rotor 3 faces the stator core 21 of the stator 2 in the radial direction.
  • the motor outer shell 10 as the main body may have any shape, but for example, the central axis of the permanent magnet motor 1, that is, one end side (hereinafter, the rotation axis C) of the rotation axis of the rotor 3 in the axial direction (shaft 32). It is formed in a bottomed cylindrical shape having an opening O on the output side).
  • the motor outer shell 10 includes an opening O and an end surface portion (bottom surface) 13 formed at an end portion on the opposite side of the opening O (the counter-output side of the shaft 32).
  • the motor outer shell 10 is formed of, for example, a BMC (Bulk Molding Compound: unsaturated polyester resin) resin.
  • the motor outer shell 10 does not need to be entirely formed of an insulating material such as resin, and a part of the motor outer shell 10 may be formed of a metal such as a conductive material. Further, in this embodiment, the case where the appearance of the motor outer shell 10 is columnar is illustrated, but the appearance of the motor outer shell 10 may be a square pillar or a hexagonal pillar.
  • the rotor 3 is rotatably arranged on the inner peripheral side of the stator core 21 of the stator 2 with a predetermined gap between the stator core 21 and the stator core 21.
  • the permanent magnet portions 31 arranged in an annular shape are arranged on the outer side (outer peripheral side) in the radial direction of the rotor 3 so as to face the stator core 21.
  • the rotor 3 is fixed around the shaft 32.
  • the shaft 32 is rotatably supported (held) by a first bearing 33 and a second bearing 34 (bearings, bearings) fixed to the outer peripheral surface of the shaft 32. Further, the rotor 3 rotates by accommodating (holding) the first bearing 33 in the first bearing accommodating portion 42 described later and accommodating (holding) the second bearing 34 in the second bearing accommodating portion 43 described later. It is supported freely.
  • the first bearing accommodating portion 42 and the second bearing accommodating portion 43 are formed of, for example, a magnetic material of chromium nickel-based stainless steel.
  • the inner ring 334 side of the first bearing 33 is fixed to one end side (counter-output side) of the shaft 32.
  • the inner ring 344 side of the second bearing 34 is fixed to the other end side (output side) of the shaft 32.
  • the first bearing 33 and the second bearing 34 (a pair of bearings) cooperate to rotatably support the shaft 32 and the rotor 3 connected to the shaft 32.
  • first bearing 33 and the second bearing 34 for example, a ball bearing composed of an outer ring 332, 342, an inner ring 334, 344, a cage 346, a ball 338, 348, and a shield 360 is used (FIGS. 1, 4, and 6). reference).
  • the bracket 41 includes a second bearing accommodating portion 43 accommodating the second bearing 34, and an end face portion 44 covering the opening O.
  • the bracket 41 is arranged at one end in the direction of the rotation axis C, that is, on the output side of the shaft 32 in the motor outer shell 10 of the permanent magnet motor 1.
  • the end face 44 of the bracket 41 and the second bearing accommodating portion 43 are integrally molded (see FIG. 6).
  • the bracket 41 is formed, for example, by pressing a metal plate.
  • the bracket 41 is attached to the end of the motor outer shell 10 on the output side by crimping, screwing, or the like as a lid that covers the opening O of the motor outer shell 10.
  • the opening O of the motor outer shell 10 may be opened toward the counter-output side.
  • the bracket 41 is arranged not on the output side of the shaft 32 but on the opposite output side of the shaft 32.
  • the end face portion 44 of the bracket 41 is formed in a substantially disk shape in which the outer shape in the radial direction extends in the radial direction to the outer peripheral surface of the motor outer shell 10. Further, the end face portion 44 forms the outer shell of the permanent magnet motor 1 together with the outer shell 10 of the motor.
  • a second bearing accommodating portion (bearing house portion) 43 for accommodating the second bearing 34 is arranged on the inner side of the permanent magnet motor 1. (See FIGS. 3 (A) and 6).
  • the second bearing 34 is arranged on the counter-output side of the permanent magnet motor 1 when viewed from the second bearing accommodating portion 43.
  • the second bearing accommodating portion 43 is formed in a substantially bottomed cylindrical shape by, for example, pressing.
  • a first bearing accommodating portion (bearing house portion) 42 for accommodating the first bearing 33 is arranged on the inner side of the permanent magnet motor 1 in the central portion of the counter-output side end portion of the motor outer shell 10 (FIG. 3 (B) and 6).
  • the first bearing 33 is arranged on the output side of the permanent magnet motor 1 when viewed from the first bearing accommodating portion 42.
  • the first bearing accommodating portion 42 is formed in a substantially bottomed cylindrical shape, similarly to the second bearing accommodating portion 43.
  • the first bearing accommodating portion 42 is arranged inside (inner diameter side) of the annular permanent magnet portion 31 in the radial direction of the rotor 3.
  • a connection portion 45 connected to the first bearing accommodating portion 42 is provided on the inner diameter side of the end face portion 13 of the resin motor outer shell 10 which is a non-magnetic material (see FIG. 6).
  • the first bearing accommodating portion 42 has a tubular portion 421 that holds the outer ring 332 side of the first bearing 33 from the radial direction and a rotor from one end of the tubular portion 421 in the rotation axis C direction.
  • An annular flange portion 422 extending radially outward (outer peripheral side) in No. 3 and a crown portion 423 extending radially inward (inner peripheral side) from the other end of the tubular portion 421 in the rotation axis C direction.
  • the crown portion 423 covers the other end side of the first bearing 33 in the rotation axis C direction.
  • the outer peripheral edge of the annular flange portion 422 is located on the inner side (inner peripheral side) of the rotor 3 in the radial direction with respect to the permanent magnet portion 31.
  • the first bearing accommodating portion 42 is formed so as not to overlap the permanent magnet portion 31 when viewed from the rotation axis C direction of the rotor 3.
  • the first bearing accommodating portion 42 is arranged inside (inner diameter side) in the radial direction of the rotor 3 with respect to the permanent magnet portion 31 when viewed from the rotation axis C direction. Further, the outer peripheral edge portion (edge portion on the outer diameter side) of the flange portion 422 of the first bearing accommodating portion 42 is covered with a resin which is a non-magnetic material. That is, in the outer shell 10, the outer peripheral edge portion of the flange portion 422 of the first bearing accommodating portion 42 is covered with the resin connecting portion 45.
  • the first bearing accommodating portion 42 is arranged on the inner diameter side of the permanent magnet portion 31 in the radial direction of the rotor 3. Further, the outer peripheral edge portion of the flange portion 422 included in the first bearing accommodating portion 42 is covered with the end face portion 13 (connecting portion 45) of the motor outer shell 10 made of resin, which is a non-magnetic material. As a result, the leakage flux flowing from the permanent magnet 31 to the first bearing accommodating portion 42 can be suppressed.
  • the second bearing accommodating portion 43 is formed in the same shape as the first bearing accommodating portion 42, and has a tubular portion 431 that holds the outer ring 342 side of the second bearing 34 from the radial direction, and a rotating shaft C of the tubular portion 431. It has a crown 433 that extends radially inward from the other end in the direction.
  • the bracket 41 includes a cover main body 414 attached along the upper end surface of the stator 2 and a fitting portion 415 integrally formed with the cover main body 414. These cover body 414 and fitting portion 415 correspond to the above-mentioned end face portion 44.
  • the entire cover body 414 is formed in a disk shape as a whole.
  • the fitting portion 415 is formed as an annular protrusion arranged on the outer peripheral edge portion of the cover main body 414.
  • the fitting portion 415 is fitted to the output side end of the motor outer shell 10 (the upper end surface of the motor outer shell 10 in FIG. 6) from the rotation axis C direction.
  • the motor outer shell 10 and the bracket 41 are axially aligned, and the second bearing 34 is housed in the second bearing accommodating portion 43 provided in the bracket 41.
  • a notch groove 108 for arranging the conductive member 5 is formed on the outer peripheral surface and the end surface of the motor outer shell 10 (see FIGS. 3 and 5).
  • the notch groove 108 formed in the end surface 13 of the motor outer shell 10 extends from the vicinity of the center in the radial direction of the permanent magnet motor 1 to the outer edge portion.
  • the notch groove 108 formed on the outer peripheral surface 14 of the motor outer shell 10 is formed so as to extend along the rotation axis direction of the permanent magnet motor 1 so as to be continuous from the notch groove 108 formed on the end surface 13.
  • ⁇ Conduction member> When the motor 1 is driven by a PWM type inverter that performs high frequency switching, the neutral point potential of the winding does not become zero, and a voltage called a common mode voltage is generated. Due to this common mode voltage, the stray capacitance inside the motor 1 causes a potential difference (shaft voltage) between the inner rings 334 and 344 of the first bearing 33 and the second bearing 34 and the outer rings 332 and 342, respectively. ..
  • Electrolytic corrosion is a phenomenon in which a bearing is damaged by a discharge (electric spark) generated when the axial voltage between the inner rings 334 and 344 of the first bearing 33 and the second bearing 34 and the outer rings 332 and 342 is high.
  • electrolytic corrosion occurs in a bearing, scratches on the rolling surface of the bearing cause abnormal noise when the bearing rotates, or the rotation efficiency of the motor is lowered.
  • a conduction member that conducts the first bearing accommodating portion 42 in which each of the two bearings is accommodated and the second bearing accommodating portion 43. It is equipped with 5.
  • the conductive member 5 is formed by processing, for example, a conductive material (for example, SUS304 of stainless steel) into a band shape or a wire shape.
  • the conductive member 5 is formed by bending a steel plate having a thickness of about 0.3 mm, which is punched out in a strip shape, into an L-shape or a U-shape along the outer surfaces of the motor outer shell 10 and the bracket 41 (. See FIGS. 3 and 6).
  • the conductive member 5 has a spring characteristic in consideration of attachment to the motor 1.
  • the conduction member 5 has the first bearing 33 and the second bearing 33 by conducting the first bearing accommodating portion 42 in which the first bearing 33 is accommodated and the second bearing accommodating portion 43 in which the second bearing 34 is accommodated.
  • the potentials of the outer rings 332 and 342 of the bearing 34 can be set to the same potential, and the occurrence of electrolytic corrosion can be suppressed by making the potential difference between the inner and outer rings of each bearing relatively small.
  • the conduction member 5 includes a connection end portion connected to the bearing accommodating portions 42 and 43, an end face side arrangement portion arranged radially extending to the end surface 13 of the outer shell of the motor 1, and an outer peripheral surface 14 of the outer shell of the motor 1. Is provided with an outer peripheral surface side arrangement portion arranged along the rotation axis C direction.
  • the conductive member 5 is formed of one strip-shaped member is illustrated, but a plurality of conductive members may be connected to form the conductive member 5.
  • the conductive member 5 As shown in FIGS. It is arranged so as to extend to the inside of the 415. By arranging the conductive member 5 in the notch groove 108, the conductive member 5 does not project to the surface of the outer shell of the motor 1 and the conductive member 5 can be prevented from falling off from the motor 1.
  • connection ends at both ends of the conduction member 5 are bent along the tubular connection portion 45 of the resin outer shell, the tubular portion 421 of the bearing house portion 42, and the fitting portion 415 of the bracket 41. For example, it is press-fitted and fixed. As a result, both connecting ends of the conductive member 5 are fixed in contact with each of the flange portion 422 and the fitting portion 415 of the bearing house portion 42, so that the first bearing 33 and the second bearing 34 are brought into contact with each other. It is conducted.
  • the means for fixing both ends of the conductive member 5 to the bearing house portion is not limited to the above-mentioned means.
  • the connection end portion of the conductive member 5 may be fixed to the bearing house portions 42, 43 by a caulking member (not shown).
  • the capacitance (stator capacitance) Cs on the stator 2 side is between the stator 2 and the bracket 41, and the rotor 3 side is between the rotor 3 and the shaft 32.
  • Cb2 is present.
  • the capacitances Cb1 and Cb2 between the inner ring and the outer ring of each bearing are considered to be smaller than the stator capacitance Cs and the rotor capacitance Cr in consideration of size, mass, material and the like.
  • FIG. 8 is a non-grounded bridge type equivalent circuit diagram of the motor 1 with respect to these capacitances.
  • the ground capacitance of the stator (stator) 2 is C1
  • the ground capacitance of the rotor (rotor) 3 is C2
  • the pulse voltage synchronized with the PWM frequency in the high frequency switching of the motor 1 is Vp
  • the shaft voltage between the inner ring and the inner ring is
  • C1 and C2 have relatively small values and can be approximated to C1 ⁇ C2. Therefore, the condition for minimizing the shaft voltage
  • is Cr Cs.
  • the capacitance of Cs can be easily increased and the capacitance of Cs can be brought closer to the capacitance of Cr. ..
  • can be reduced to suppress the occurrence of electrolytic corrosion in the bearing.
  • a conductive sheet (conductive member) 6 is attached to the outer peripheral surface 14 (surface) of the motor outer shell 10 so as to cover at least a part of the conductive member 5. At least a part of the conductive sheet 6 faces the stator core 21 in the radial direction via the resin motor outer shell 10. In the present embodiment, the conductive sheet 6 is adhered to the motor outer shell 10 in a state of being in contact with the conductive member 5 (see FIGS. 5, 14 and the like).
  • the seat 6 and the stator core 21 function as a capacitor (capacitance), and the capacitance Cs on the stator 2 side can be increased. That is, when the conductive sheet 6 faces the stator core 21 of the conductor with the resin outer shell (motor outer shell) 10 of the insulator in between, charges are accumulated between the two conductors of the sheet 6 and the stator core 21. ..
  • the stator capacitance Cs depends on the presence or absence of the sheet 6. It is known that there is almost no change in. For example, when the conductive sheet 6 attached to the outer peripheral surface 14 of the motor outer shell 10 is arranged 1 cm away from the conductive member 5 in the circumferential direction of the motor, the stator capacitance Cs does not increase due to the sheet 6. It is presumed that this is because when the conductive sheet 6 does not cover the conductive member 5 at all, the conductive sheet 6 is in a state of being electrically floated, so that the conductive sheet 6 does not function as a capacitor. Will be done.
  • the size of the stator capacitance Cs that increases when the conductive sheet 6 covers at least a part of the conductive member 5 is the size of the area of the region overlapping the stator core 21 of the sheet 6 in the radial direction. It is estimated that it is roughly proportional to the static electricity. Therefore, in the present embodiment, the seat 6 is arranged in the region where the stator core 21 is projected in the outer diameter direction on the surface of the motor outer shell 10 (see FIG. 7). As a result, the capacitance Cs on the stator 2 side can be appropriately adjusted so that the sheet 6 contributes to the increase in the stator capacitance Cs without waste.
  • the sheet 6 is formed so that the angle ⁇ in the circumferential direction formed by the sheet 6 attached on the outer peripheral surface 14 of the motor outer shell 10 around the rotation axis C is, for example, about 30 °. (See Figures 5 and 7 etc.).
  • This angle ⁇ can be arbitrarily changed according to the desired capacitance Cs.
  • the dimensions of the seat 6 in the rotation axis C direction can be arbitrarily changed.
  • the sheet 6 has a rectangular shape and is arranged so that the long sides intersect the axis direction of the rotation axis C.
  • the long sides of the sheet 6 are arranged orthogonal to the axial direction of the rotation axis C.
  • the shape of the sheet 6 can be arbitrarily changed such as a rhombus, a circle, and a square.
  • the conductive sheet 6 is formed by depositing a metal such as aluminum on the front surface of a thin plate (sheet) made of PET material and providing an adhesive surface on the back surface.
  • the sheet 6 is formed by adhering a metal to a thin resin plate.
  • the adhesive surface of the conductive sheet 6 is formed of a conductive adhesive.
  • the adhesive surface of the conductive sheet 6 may be formed of an insulating material, and the conductive portion (metal or the like) of the sheet 6 and the stator core 21 are sandwiched between the insulating material (resin outer shell, adhesive surface). By being close to each other, it functions as a capacitor (capacitance).
  • the sheet 6 may be formed of a sheet metal having a thickness of about 0.2 mm and may be fastened to the motor outer shell 10 with screws or the like.
  • a rated name plate 7 may be attached to the outer peripheral surface 14 of the motor outer shell 10 separately from the seat 6 (see FIGS. 3, 5, and 7).
  • the rating plate 7 is a name plate (label) on which values (rated values) such as specifications, performance, and usage limits under specified conditions are described for equipment, devices, parts, and the like.
  • the rated name plate 7 may be made of the same material as the sheet 6. As a result, the material used as the rated name plate 7 can be diverted to the sheet 6, or the material used as the sheet 6 can be diverted to the rated name plate 7, and the manufacturing cost can be reduced.
  • the rated name plate 7 may be used as the sheet 6 as another embodiment in which the rated name plate 7 is formed of the same material as the sheet 6. That is, the rated name plate 7 made of a conductive material may be attached to the position of the sheet 6 in FIG. 7. As a result, since the rated name plate 7 functions as the seat 6 of the present invention, it is not necessary to separately prepare the seat 6, and the manufacturing cost of the permanent magnet motor 1 can be reduced.
  • FIG. 9 shows the output waveform of the shaft voltage in the motor (comparative example) in the state where the conductive sheet 6 is not attached
  • FIG. 10 shows the conductive sheet 6 attached to the electric motor in the comparative example. It is an output waveform of the shaft voltage in the motor 1 of an Example.
  • the sheet 6 is a rectangular thin plate having a width of 3.0 cm, a depth (height) of 2.0 cm, and a thickness of about 0.05 mm.
  • the driving conditions of the motor were such that the applied voltage was DC380V and the rotation speed was 1,520 rotations / min.
  • the maximum value of the shaft voltage on the + side is 2.34V and the maximum value on the-side is -1.68V in the comparative example (without sheet 6), whereas the maximum value on the-side is -1.68V, whereas the maximum value on the-side is -1.68V. Yes), the maximum value on the + side of the shaft voltage is 1.48V, and the maximum value on the-side is -0.77V. That is, it can be seen that by attaching the conductive sheet 6 to the motor 1, the maximum value of the shaft voltage can be reduced to about half as compared with the case where the conductive sheet 6 is not attached.
  • FIG. 11 is a graph showing the stator capacitance Cs with respect to the area change of the conductive sheet 6. As shown in this figure, the stator capacitance Cs is linear with respect to changes in the area ACS of the conductive sheet 6.
  • stator capacitance Cs is [Equation 1]
  • Cs C 0 + k ⁇ A CS / d
  • C 0 is the stator capacitance when there is no conductive sheet 6
  • k is a coefficient determined by the shape of the motor such as the bracket 41
  • is the resin outer shell 10 existing between the sheet 6 and the stator core 21.
  • the dielectric constant, ACS is the area of the conductive sheet 6
  • d is the distance between the opposing sheet 6 and the stator core 21 via the resin outer shell 10. That is, the stator capacitance Cs can be easily adjusted by changing the area ACS of the conductive sheet 6.
  • FIG. 12 is a perspective view showing a part of the electric motor 1 without the conductive sheet 6 according to the present invention.
  • the resin outer shell 10 is transmitted and displayed.
  • the stator capacitance Cs may be further adjusted by changing the width W of the conductive member 5.
  • Table 1 and FIG. 13 show the stator capacitance Cs with respect to the change in the width W of the conductive member 5.
  • stator capacitance Cs increases approximately linearly. That is, the stator capacitance Cs can also be increased (+4.75pF) by increasing the width W of the conductive member 5 (for example, changing from 5.0 mm to 10 mm).
  • FIG. 14 is a partial side perspective view showing the electric motor 1 provided with the conductive sheet 6 according to the present invention. That is, No. 1 in Table 1.
  • the motor 1 of the embodiment has a conductive sheet 6 attached to the motor of 1 (comparative example).
  • Table 2 and FIG. 15 show the stator capacitance Cs with respect to the change in the area ACS of the rectangular conductive sheet 6.
  • the case where the area ACS of the seat 6 is changed by changing the height H of the seat 6 is illustrated.
  • Table 2 instead of the width T (mm) which is the length dimension, the angle ⁇ (°) formed by the sheet 6 attached on the outer peripheral surface 14 of the motor outer shell 10 around the rotation axis C (FIG. 7).
  • 14 is the angle formed by the two line segments connecting both ends of the sheet 6 in the circumferential direction and the rotation axis C) as a representative value.
  • r 46 (mm).
  • the motor 1 (No. 7 to No. 9 in Table 2) of the embodiment provided with the conductive sheet 6 includes the conductive sheet 6.
  • the stator capacitance Cs can be made larger than that of the motor of the comparative example (No. 1 in Table 1). Further, it can be seen that the amount of increase in the stator capacitance Cs due to the provision of the conductive sheet 6 is substantially linear with the amount of increase in the area ACS of the conductive sheet 6. Therefore, in the electric motor 1 of the embodiment, the stator capacitance Cs can be easily adjusted by changing the area ACS of the conductive sheet 6.
  • the area ACS of the seat 6 is changed by changing the height H of the seat 6 (the length of the seat 6 in the rotation axis C direction of the motor 1), but the conductive seat.
  • the area ACS of the seat 6 may be changed by changing the width T (the length of the seat 6 in the circumferential direction of the motor 1) of 6.
  • a conductive sheet that covers at least a part of the conductive member is attached to the outer peripheral surface 14 (surface) of the outer peripheral surface of the motor. Therefore, when the conductive sheet and the stator core face each other via the resin outer shell, the conductive sheet functions as a capacitor and adjusts the capacitance (increases the capacitance Cs on the stator side). can.
  • the capacitance on the stator side can be easily adjusted by changing the area of the conductive sheet. As a result, the balance between the capacitance on the stator side and the capacitance on the rotor side can be easily adjusted, and the shaft voltage can be reduced to suppress the occurrence of electrolytic corrosion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

[Problem] To provide an electric motor that easily adjusts the electrostatic capacitance between the stator and rotor sides of the electric motor and suppresses the occurrence of electrolytic corrosion. [Solution] One embodiment of this electric motor comprises: a rotor; a shaft positioned along the axis of rotation of the rotor, the rotor being secured to the shaft; a first bearing positioned on one end side of the shaft; a second bearing positioned on the other end side of the shaft; a stator core positioned on the outer circumferential side of the rotor; a resin outer shell that covers the stator core; and an electrical continuity member for electrically connecting the respective outer rings of the first and second bearings with each other. An electroconductive member that covers at least a portion of the electrical continuity member is attached to the surface of the resin outer shell.

Description

電動機Electric motor
 本発明は、2つのベアリングハウスと、これらのベアリングハウス同士を導通させる導通部材とを備えた電動機に関する。 The present invention relates to an electric motor including two bearing houses and a conductive member that conducts the bearing houses to each other.
 従来、電動機として、回転磁界を発生させる円筒状の固定子の内径側に、永久磁石を有する円柱状の回転子を固定子と同軸的に配置したインナーロータ型の電動機が知られている。この電動機は、例えば、空気調和機に搭載する送風ファンの回転駆動に用いられる。 Conventionally, as an electric motor, an inner rotor type motor in which a cylindrical rotor having a permanent magnet is arranged coaxially with the stator on the inner diameter side of a cylindrical stator that generates a rotating magnetic field is known. This electric motor is used, for example, for rotationally driving a blower fan mounted on an air conditioner.
 この電動機は、高周波スイッチングを行うPWM方式のインバータで駆動する場合に、軸受の内輪と外輪の間に電位差(軸電圧)を生じる。この軸電圧が軸受内部の油膜の絶縁破壊電圧に達すると、軸受内部に電流が流れて軸受に電食を発生させる。
 この電食の発生を抑制する従来技術として、電動機のステータ側の静電容量とロータ側の静電容量とが概ね等しくなるよう調整することで、軸電圧を小さくして電食の発生を抑制したものが知られている(特許文献1)。
 特許文献1では、ロータコアを内側コアと外側コアとに分割し、それらの間に誘電体(絶縁体)層を設けることで、静電容量が調整される。
When this motor is driven by a PWM type inverter that performs high frequency switching, a potential difference (shaft voltage) is generated between the inner ring and the outer ring of the bearing. When this shaft voltage reaches the breakdown voltage of the oil film inside the bearing, a current flows inside the bearing and causes electrolytic corrosion in the bearing.
As a conventional technique for suppressing the generation of electrolytic corrosion, the axial voltage is reduced and the generation of electrolytic corrosion is suppressed by adjusting the capacitance on the stator side of the motor to be approximately equal to the capacitance on the rotor side. Is known (Patent Document 1).
In Patent Document 1, the capacitance is adjusted by dividing the rotor core into an inner core and an outer core and providing a dielectric (insulator) layer between them.
特開2014-124082号公報Japanese Unexamined Patent Publication No. 2014-124082
 ここで、ロータコアを分割して間に誘電体を挟む構造では、ロータコアを形成する金型によって絶縁層の厚さや形状が決まってしまい、静電容量を調整する場合には金型の変更、ロータコアの切削等が必要となる。そのため、ロータコアの金型が完成した後では、静電容量を容易に調整することができないという問題があった。 Here, in a structure in which the rotor core is divided and a dielectric is sandwiched between them, the thickness and shape of the insulating layer are determined by the mold forming the rotor core, and when adjusting the capacitance, the mold is changed and the rotor core is used. Cutting etc. is required. Therefore, there is a problem that the capacitance cannot be easily adjusted after the mold of the rotor core is completed.
 そこで本発明は、電動機のステータ側とロータ側との間の静電容量を容易に調整して電食の発生を抑制することが可能な電動機を提供することを目的とする。 Therefore, an object of the present invention is to provide an electric motor capable of easily adjusting the capacitance between the stator side and the rotor side of the electric motor to suppress the occurrence of electrolytic corrosion.
 本発明の電動機の一態様は、回転子と、上記回転子の回転軸に沿って配置されて上記回転子が固定されたシャフトと、上記シャフトの一端側に配置された第1軸受と、上記シャフトの他端側に配置された第2軸受と、上記回転子の外周側に配置されたステータコアと、上記ステータコアを覆う樹脂外郭と、上記第1軸受および上記第2軸受のそれぞれが備える外輪同士を電気的に接続する導通部材と、を備える。上記樹脂外郭の表面には、前記導通部材の少なくとも一部を覆う導電性部材が取り付けられる。 One aspect of the motor of the present invention includes a rotor, a shaft arranged along the rotation axis of the rotor and fixed to the rotor, a first bearing arranged on one end side of the shaft, and the above. A second bearing arranged on the other end side of the shaft, a stator core arranged on the outer peripheral side of the rotor, a resin outer shell covering the stator core, and outer rings provided by each of the first bearing and the second bearing. It is provided with a conductive member for electrically connecting the bearings. A conductive member that covers at least a part of the conductive member is attached to the surface of the resin outer shell.
 本発明によれば、電動機のステータ側とロータ側との間の静電容量を容易に調整して電食の発生を抑制することができる。 According to the present invention, the capacitance between the stator side and the rotor side of the motor can be easily adjusted to suppress the occurrence of electrolytic corrosion.
本発明に係る電動機の回転子の斜視図である。It is a perspective view of the rotor of the electric motor which concerns on this invention. 本発明に係る電動機の固定子の斜視図である。It is a perspective view of the stator of the motor which concerns on this invention. 本発明に係る導電性のシートなしの電動機を示す上面および下面斜視図である。It is a top and bottom perspective view which shows the electric motor without a conductive sheet which concerns on this invention. 本発明に係る電動機の第2軸受の正面図および部品展開図である。It is a front view and the component development view of the 2nd bearing of the electric motor which concerns on this invention. 本発明に係る電動機を示す側面斜視図である。It is a side perspective view which shows the electric motor which concerns on this invention. 本発明に係る電動機および静電容量の結合を示す横断面図である。It is a cross-sectional view which shows the coupling of the electric motor and the capacitance which concerns on this invention. 本発明に係る電動機を示す下面図である。It is a bottom view which shows the electric motor which concerns on this invention. 静電容量に関しての本発明に係る電動機の非接地ブリッジ型等価回路図である。It is a non-grounded bridge type equivalent circuit diagram of the electric motor which concerns on the present invention with respect to a capacitance. 導電性のシートなしの本発明に係る電動機における軸電圧の出力波形である。It is an output waveform of the shaft voltage in the motor which concerns on this invention without a conductive sheet. 本発明に係る電動機に導電性のシートを貼り付けたときの軸電圧の出力波形である。It is an output waveform of the shaft voltage when the conductive sheet is attached to the motor which concerns on this invention. 本発明に係る導電性のシートの面積変化に対するステータ静電容量を示したグラフである。It is a graph which showed the stator capacitance with respect to the area change of the conductive sheet which concerns on this invention. 本発明に係る導電性のシートなしの電動機を示す部分側面斜視図である。It is a partial side perspective view which shows the electric motor without a conductive sheet which concerns on this invention. 本発明に係る導通部材の幅の変化に対するステータ静電容量を示したグラフである。It is a graph which showed the stator capacitance with respect to the change of the width of the conduction member which concerns on this invention. 本発明に係る導電性のシートありの電動機を示す部分側面斜視図である。It is a partial side perspective view which shows the electric motor with a conductive sheet which concerns on this invention. 本発明に係る導通部材および導電性のシートの面積変化に対するステータ静電容量を示したグラフである。It is a graph which showed the stator capacitance with respect to the area change of the conductive member and the conductive sheet which concerns on this invention.
 次に、図面を参照して、本発明の一実施形態について説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、現実のものとは異なり得ることに留意すべきである。したがって、具体的な構成部品については以下の説明を参酌して判断すべきものである。 Next, an embodiment of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic and may differ from the actual ones. Therefore, specific components should be judged in consideration of the following explanations.
 また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Further, the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the shape, structure, arrangement, etc. of components. It is not specific to the following. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims described in the claims.
 以下に、本発明の一実施形態に係る電動機について説明する。 The electric motor according to the embodiment of the present invention will be described below.
<電動機の全体構成>
 図1~6は、本実施形態における電動機1の構成を説明する図である。これらの図に示すように、この電動機1は、例えば、ブラシレスDCモータである。この電動機1は、図示しないが、例えば空気調和機の室外機に搭載される送風ファンを回転駆動するために用いられる。
<Overall configuration of motor>
1 to 6 are diagrams illustrating the configuration of the electric motor 1 in the present embodiment. As shown in these figures, the electric motor 1 is, for example, a brushless DC motor. Although not shown, the electric motor 1 is used, for example, to rotationally drive a blower fan mounted on an outdoor unit of an air conditioner.
 本実施形態における電動機1は、図6に示すように、固定子(ステータ)2と、回転子(ロータ)3と、モータ外郭(樹脂外郭)10と、ブラケット41と、導通部材5と、を備えている。
 以下では、回転磁界を発生する円筒状の固定子2の径方向の内側に、永久磁石部31を有する円柱状の回転子3を回転可能に配置したインナーロータ型の永久磁石電動機1を例に説明する。
As shown in FIG. 6, the motor 1 in the present embodiment includes a stator (stator) 2, a rotor (rotor) 3, a motor outer shell (resin outer shell) 10, a bracket 41, and a conduction member 5. I have.
In the following, an inner rotor type permanent magnet motor 1 in which a cylindrical rotor 3 having a permanent magnet portion 31 is rotatably arranged inside a cylindrical stator 2 that generates a rotating magnetic field is taken as an example. explain.
<固定子と回転子とモータ外郭>
 回転子3は、図6に示すように、固定子2の固定子鉄心21の内周側に所定の空隙(ギャップ)を持って回転自在に配置されている。この回転子3は、固定子鉄心21に対向する外周面に環状に永久磁石31を配置した表面磁石型である。
 永久磁石31は、図1および6に示すように、外周側鉄心32、絶縁部材33および内周側鉄心35を介してシャフト32の周りに固定されている。このシャフト32は、第1軸受33および第2軸受34によって支持されている。そして、第1軸受33が収容される後述の軸受収容部42(ブラケット41)、および、第2軸受34が収容される後述の第2軸受収容部43のそれぞれが、樹脂製のモータ外郭10に固定されることで、回転子3が回転自在に支持されている。
<Stator, rotor and motor outer shell>
As shown in FIG. 6, the rotor 3 is rotatably arranged with a predetermined gap on the inner peripheral side of the stator core 21 of the stator 2. The rotor 3 is a surface magnet type in which a permanent magnet 31 is arranged in an annular shape on an outer peripheral surface facing the stator core 21.
As shown in FIGS. 1 and 6, the permanent magnet 31 is fixed around the shaft 32 via the outer peripheral side iron core 32, the insulating member 33, and the inner peripheral side iron core 35. The shaft 32 is supported by a first bearing 33 and a second bearing 34. Then, each of the bearing accommodating portion 42 (bracket 41) described later in which the first bearing 33 is accommodated and the second bearing accommodating portion 43 described later in which the second bearing 34 is accommodated are housed in the resin motor outer shell 10. By being fixed, the rotor 3 is rotatably supported.
 永久磁石31は、N極とS極が周方向に等間隔に交互に現れるように、複数(例えば8または10個)の永久磁石片311で環状に形成されている。なお、永久磁石31は、磁石粉末を樹脂で固めることで環状に形成されたプラスチックマグネットを用いてもよい。 The permanent magnet 31 is formed in an annular shape by a plurality of (for example, 8 or 10) permanent magnet pieces 311 so that the N pole and the S pole appear alternately at equal intervals in the circumferential direction. As the permanent magnet 31, a plastic magnet formed in an annular shape by solidifying the magnet powder with a resin may be used.
 外周側鉄心32は、環状に形成されており、永久磁石31の内径側に位置している。外周側鉄心32には、永久磁石31の位置決めをするために、外周側鉄心32の外周面から外径側に突出する複数(例えば円周方向に10個)の外周側突起(図示せず)を備えている。例えば、外周側突起は、中心軸方向において、外周側鉄心32の一端から他端まで延びるように形成される。 The outer peripheral side iron core 32 is formed in an annular shape and is located on the inner diameter side of the permanent magnet 31. On the outer peripheral side iron core 32, in order to position the permanent magnet 31, a plurality of (for example, 10 pieces in the circumferential direction) outer peripheral side protrusions (for example, 10 pieces in the circumferential direction) protruding from the outer peripheral surface of the outer peripheral side iron core 32 toward the outer diameter side (not shown). It is equipped with. For example, the outer peripheral side protrusion is formed so as to extend from one end to the other end of the outer peripheral side iron core 32 in the central axis direction.
 内周側鉄心35は、環状に形成されており、外周側鉄心32の内径側に位置している。また、内周側鉄心35の中心には、中心軸方向に貫通する貫通穴を備えている。シャフト32は、内周側鉄心35が備える貫通穴に圧入やカシメなどによって固着されている。
 なお、内周側鉄心35は、この貫通穴と内周側鉄心35の外周面との間に、重量を軽くするための肉抜き用の複数の貫通穴(図示せず)を備えてもよい。これらの複数の貫通穴は、中心軸方向から見て、貫通穴が形成された内周側鉄心35の形状がスポーク状になるように、円周方向に等間隔に配置される。
The inner peripheral side iron core 35 is formed in an annular shape and is located on the inner diameter side of the outer peripheral side iron core 32. Further, the center of the inner peripheral side iron core 35 is provided with a through hole penetrating in the direction of the central axis. The shaft 32 is fixed to a through hole provided in the inner peripheral side iron core 35 by press fitting or caulking.
The inner peripheral side iron core 35 may be provided with a plurality of through holes (not shown) for lightening the weight between the through hole and the outer peripheral surface of the inner peripheral side iron core 35. .. These plurality of through holes are arranged at equal intervals in the circumferential direction so that the shape of the inner peripheral side iron core 35 in which the through holes are formed becomes a spoke shape when viewed from the central axis direction.
 絶縁部材33は、PBT(ポリブチレンテレフタレート)やPET(ポリエチレンテレフタレート)などの誘電体の樹脂で形成されており、外周側鉄心32と内周側鉄心35の間に位置している。絶縁部材33は、外周側鉄心32と内周側鉄心35の間に樹脂が充填されるインサート成形により、外周側鉄心32と内周側鉄心35と一体に成形されている。
 この絶縁部材33を設けることで、外周側鉄心32と内周側鉄心35の間の静電容量(固定子2の巻線とシャフト32の間の静電容量の一部)をより小さくできる。このとき、外周側鉄心32と内周側鉄心35の間の静電容量は、絶縁部材33の厚み(径方向の長さ)に依存している。回転子3側の静電容量が絶縁部材33の厚みによって調整されている電動機1は、固定子2側の静電容量と回転子3側の静電容量を合わせることで、内輪334、344側と外輪332、342側との間の電位差が小さくなるように調整されており、これによって軸受の電食を防止している。
 なお、本実施例では、回転子3の回転子鉄心は、内周側鉄心32と外周側鉄心35の2つの円筒状の鉄心を絶縁部材33で連結する構造としたが、回転子鉄心の構造はこれに限定されない。例えば、回転子鉄心は、絶縁部材33を備えずともよく、1つの円筒状の鉄心から形成されていてもよい。
The insulating member 33 is made of a dielectric resin such as PBT (polybutylene terephthalate) or PET (polyethylene terephthalate), and is located between the outer peripheral side iron core 32 and the inner peripheral side iron core 35. The insulating member 33 is integrally molded with the outer peripheral side iron core 32 and the inner peripheral side iron core 35 by insert molding in which a resin is filled between the outer peripheral side iron core 32 and the inner peripheral side iron core 35.
By providing the insulating member 33, the capacitance between the outer peripheral side iron core 32 and the inner peripheral side iron core 35 (a part of the capacitance between the winding of the stator 2 and the shaft 32) can be made smaller. At this time, the capacitance between the outer peripheral side iron core 32 and the inner peripheral side iron core 35 depends on the thickness (diameter length) of the insulating member 33. The electric motor 1 in which the capacitance on the rotor 3 side is adjusted by the thickness of the insulating member 33 is the inner ring 334 and 344 side by matching the capacitance on the stator 2 side and the capacitance on the rotor 3 side. The potential difference between the outer ring 332 and the outer ring 332 and 342 is adjusted to be small, thereby preventing electrolytic corrosion of the bearing.
In this embodiment, the rotor core of the rotor 3 has a structure in which two cylindrical cores, an inner peripheral side core 32 and an outer peripheral side iron core 35, are connected by an insulating member 33, but the structure of the rotor core is Is not limited to this. For example, the rotor core may not be provided with the insulating member 33, and may be formed from one cylindrical core.
 固定子2は、図示しない円筒形状のヨーク部と同ヨーク部から内径側に延びる図示しない複数のティース部を有した固定子鉄心(ステータコア)21と、インシュレータを介してティース部に巻回された図示しない巻線とを備えている。この固定子2は、樹脂一体成形によって、固定子鉄心21の内周面を除いて、樹脂で形成されたモータ外郭10(樹脂外郭)で覆われている(図2参照)。
 すなわち、モータ外郭10は、固定子鉄心21と巻線とを備えた固定子2を覆っており、回転子3を内部に収容する。固定子2は、回転子3の外周側(永久磁石電動機1の径方向における外側)に配置される。また、固定子2の固定子鉄心21は、同固定子鉄心21の有するティース部が回転子3の永久磁石部31と径方向で対向するように配置されている。換言すれば、固定子2は、回転子3の備える環状の永久磁石部31が固定子2の固定子鉄心21に径方向で対向するように配置されている。
The stator 2 is wound around a stator core (stator core) 21 having a cylindrical yoke portion (not shown) and a plurality of teeth portions (not shown) extending from the yoke portion to the inner diameter side, and a teeth portion via an insulator. It has a winding (not shown). The stator 2 is covered with a motor outer shell 10 (resin outer shell) made of resin except for the inner peripheral surface of the stator core 21 by resin integral molding (see FIG. 2).
That is, the motor outer shell 10 covers the stator 2 provided with the stator core 21 and the winding, and accommodates the rotor 3 inside. The stator 2 is arranged on the outer peripheral side of the rotor 3 (outside in the radial direction of the permanent magnet motor 1). Further, the stator core 21 of the stator 2 is arranged so that the teeth portion of the stator core 21 faces the permanent magnet portion 31 of the rotor 3 in the radial direction. In other words, the stator 2 is arranged so that the annular permanent magnet portion 31 included in the rotor 3 faces the stator core 21 of the stator 2 in the radial direction.
 本体部としてのモータ外郭10は、任意の形状でよいが、例えば、永久磁石電動機1の中心軸、つまり回転子3の回転軸(以下、回転軸C)の軸線方向の一端側(シャフト32の出力側)に開口部Oを有する有底円筒状に形成される。本実施例では、モータ外郭10は、開口部Oと、開口部Oとは反対側(シャフト32の反出力側)の端部に形成された端面部(底面)13とを備える。
 モータ外郭10は、例えばBMC(Bulk Molding Compound:不飽和ポリエステル樹脂)樹脂で形成される。なお、モータ外郭10は、全体が樹脂等の絶縁性材料から形成される必要はなく、一部が導電性材料の金属で形成されてもよい。また、本実施例ではモータ外郭10の外観が円柱状である場合を例示したが、モータ外郭10の外観が四角柱状や六角柱状であってもよい。
The motor outer shell 10 as the main body may have any shape, but for example, the central axis of the permanent magnet motor 1, that is, one end side (hereinafter, the rotation axis C) of the rotation axis of the rotor 3 in the axial direction (shaft 32). It is formed in a bottomed cylindrical shape having an opening O on the output side). In this embodiment, the motor outer shell 10 includes an opening O and an end surface portion (bottom surface) 13 formed at an end portion on the opposite side of the opening O (the counter-output side of the shaft 32).
The motor outer shell 10 is formed of, for example, a BMC (Bulk Molding Compound: unsaturated polyester resin) resin. The motor outer shell 10 does not need to be entirely formed of an insulating material such as resin, and a part of the motor outer shell 10 may be formed of a metal such as a conductive material. Further, in this embodiment, the case where the appearance of the motor outer shell 10 is columnar is illustrated, but the appearance of the motor outer shell 10 may be a square pillar or a hexagonal pillar.
 回転子3は、固定子2の固定子鉄心21の内周側に、固定子鉄心21と所定の空隙(ギャップ)を持って回転自在に配置されている。図1および6に示すように、環状に配置された永久磁石部31は、固定子鉄心21に対向するように、回転子3における径方向の外側(外周側)に配置されている。 The rotor 3 is rotatably arranged on the inner peripheral side of the stator core 21 of the stator 2 with a predetermined gap between the stator core 21 and the stator core 21. As shown in FIGS. 1 and 6, the permanent magnet portions 31 arranged in an annular shape are arranged on the outer side (outer peripheral side) in the radial direction of the rotor 3 so as to face the stator core 21.
 回転子3は、シャフト32の周りに固定されている。シャフト32は、同シャフト32の外周面に固定された第1軸受33および第2軸受34(ベアリング、軸受)によって回転自在に支持(保持)されている。
 また、第1軸受33が後述する第1軸受収容部42に収容(保持)され、第2軸受34が後述する第2軸受収容部43に収容(保持)されることで、回転子3が回転自在に支持されている。第1軸受収容部42および第2軸受収容部43は、例えばクロムニッケル系ステンレス鋼の磁性体で形成されている。
The rotor 3 is fixed around the shaft 32. The shaft 32 is rotatably supported (held) by a first bearing 33 and a second bearing 34 (bearings, bearings) fixed to the outer peripheral surface of the shaft 32.
Further, the rotor 3 rotates by accommodating (holding) the first bearing 33 in the first bearing accommodating portion 42 described later and accommodating (holding) the second bearing 34 in the second bearing accommodating portion 43 described later. It is supported freely. The first bearing accommodating portion 42 and the second bearing accommodating portion 43 are formed of, for example, a magnetic material of chromium nickel-based stainless steel.
<軸受とブラケットとベアリングハウス部>
 図6に示すように、第1軸受33は、同第1軸受33の内輪334側がシャフト32の一端側(反出力側)に固定されている。第2軸受34は、同第2軸受34の内輪344側がシャフト32の他端側(出力側)に固定されている。第1軸受33と第2軸受34(一対のベアリング)は協働して、シャフト32およびシャフト32に連結される回転子3を回転自在に支持している。
<Bearing, bracket and bearing house>
As shown in FIG. 6, in the first bearing 33, the inner ring 334 side of the first bearing 33 is fixed to one end side (counter-output side) of the shaft 32. In the second bearing 34, the inner ring 344 side of the second bearing 34 is fixed to the other end side (output side) of the shaft 32. The first bearing 33 and the second bearing 34 (a pair of bearings) cooperate to rotatably support the shaft 32 and the rotor 3 connected to the shaft 32.
 第1軸受33および第2軸受34は、例えば、外輪332、342、内輪334、344、保持器346、ボール338、348、シールド360から構成されるボールベアリングが用いられる(図1、4、6参照)。 As the first bearing 33 and the second bearing 34, for example, a ball bearing composed of an outer ring 332, 342, an inner ring 334, 344, a cage 346, a ball 338, 348, and a shield 360 is used (FIGS. 1, 4, and 6). reference).
 ブラケット41は、第2軸受34を収容する第2軸受収容部43と、開口部Oを覆う端面部44とを備える。ブラケット41は、永久磁石電動機1のモータ外郭10において、回転軸Cの方向の一端、すなわちシャフト32の出力側に配置される。ブラケット41の端面44および第2軸受収容部43は、一体的に成形されている(図6参照)。ブラケット41は、例えば、金属板をプレス加工することで形成される。
 このブラケット41は、モータ外郭10の開口部Oを覆う蓋として、モータ外郭10の出力側の端部に圧着、ねじ止めなどされて取り付けられる。なお、モータ外郭10の開口部Oは、反出力側に向けて開口するようにしてもよい。この場合、ブラケット41は、シャフト32の出力側でなく、シャフト32の反出力側に配置される。
The bracket 41 includes a second bearing accommodating portion 43 accommodating the second bearing 34, and an end face portion 44 covering the opening O. The bracket 41 is arranged at one end in the direction of the rotation axis C, that is, on the output side of the shaft 32 in the motor outer shell 10 of the permanent magnet motor 1. The end face 44 of the bracket 41 and the second bearing accommodating portion 43 are integrally molded (see FIG. 6). The bracket 41 is formed, for example, by pressing a metal plate.
The bracket 41 is attached to the end of the motor outer shell 10 on the output side by crimping, screwing, or the like as a lid that covers the opening O of the motor outer shell 10. The opening O of the motor outer shell 10 may be opened toward the counter-output side. In this case, the bracket 41 is arranged not on the output side of the shaft 32 but on the opposite output side of the shaft 32.
 ブラケット41の端面部44は、径方向の外形がモータ外郭10の外周面まで径方向に広がる、概ね円板形状に形成されている。また、端面部44は、モータ外郭10とともに、永久磁石電動機1の外郭を形成している。 The end face portion 44 of the bracket 41 is formed in a substantially disk shape in which the outer shape in the radial direction extends in the radial direction to the outer peripheral surface of the motor outer shell 10. Further, the end face portion 44 forms the outer shell of the permanent magnet motor 1 together with the outer shell 10 of the motor.
 また、円板状のブラケット41の中央部に、永久磁石電動機1の内部側に第2軸受34を収容するための第2軸受収容部(ベアリングハウス部)43が配置される。(図3(A)および6参照)。第2軸受34は、第2軸受収容部43から見て、永久磁石電動機1の反出力側に配置されている。第2軸受収容部43は、例えばプレス加工によって概ね有底円筒状に形成されている。 Further, in the central portion of the disk-shaped bracket 41, a second bearing accommodating portion (bearing house portion) 43 for accommodating the second bearing 34 is arranged on the inner side of the permanent magnet motor 1. (See FIGS. 3 (A) and 6). The second bearing 34 is arranged on the counter-output side of the permanent magnet motor 1 when viewed from the second bearing accommodating portion 43. The second bearing accommodating portion 43 is formed in a substantially bottomed cylindrical shape by, for example, pressing.
 モータ外郭10の反出力側端部の中央部には、永久磁石電動機1の内部側に第1軸受33を収容するための第1軸受収容部(ベアリングハウス部)42が配置されている(図3(B)および6参照)。第1軸受33は、第1軸受収容部42から見て、永久磁石電動機1における出力側に配置されている。この第1軸受収容部42は、第2軸受収容部43と同様に、概ね有底円筒状に形成されている。
 第1軸受収容部42は、回転子3の径方向において、環状の永久磁石部31よりも内側(内径側)に配置されている。非磁性体である樹脂製のモータ外郭10の端面部13の内径側には、第1軸受収容部42に接続される接続部45を有する(図6参照)。
A first bearing accommodating portion (bearing house portion) 42 for accommodating the first bearing 33 is arranged on the inner side of the permanent magnet motor 1 in the central portion of the counter-output side end portion of the motor outer shell 10 (FIG. 3 (B) and 6). The first bearing 33 is arranged on the output side of the permanent magnet motor 1 when viewed from the first bearing accommodating portion 42. The first bearing accommodating portion 42 is formed in a substantially bottomed cylindrical shape, similarly to the second bearing accommodating portion 43.
The first bearing accommodating portion 42 is arranged inside (inner diameter side) of the annular permanent magnet portion 31 in the radial direction of the rotor 3. A connection portion 45 connected to the first bearing accommodating portion 42 is provided on the inner diameter side of the end face portion 13 of the resin motor outer shell 10 which is a non-magnetic material (see FIG. 6).
 図6に示すように、第1軸受収容部42は、第1軸受33の外輪332側を径方向から保持する筒状部421と、筒状部421の回転軸C方向の一端部から回転子3における径方向の外側(外周側)に延びる円環状のフランジ部422と、筒状部421の回転軸C方向の他端部から径方向の内側(内周側)へと延びる冠部423と、を有する。
 冠部423は、第1軸受33の回転軸C方向の他端側を覆う。円環状のフランジ部422の外周縁は、永久磁石部31よりも回転子3の径方向における内側(内周側)に位置している。換言すると、第1軸受収容部42は、回転子3の回転軸C方向から見て、永久磁石部31と重ならないように形成されている。
As shown in FIG. 6, the first bearing accommodating portion 42 has a tubular portion 421 that holds the outer ring 332 side of the first bearing 33 from the radial direction and a rotor from one end of the tubular portion 421 in the rotation axis C direction. An annular flange portion 422 extending radially outward (outer peripheral side) in No. 3 and a crown portion 423 extending radially inward (inner peripheral side) from the other end of the tubular portion 421 in the rotation axis C direction. , Have.
The crown portion 423 covers the other end side of the first bearing 33 in the rotation axis C direction. The outer peripheral edge of the annular flange portion 422 is located on the inner side (inner peripheral side) of the rotor 3 in the radial direction with respect to the permanent magnet portion 31. In other words, the first bearing accommodating portion 42 is formed so as not to overlap the permanent magnet portion 31 when viewed from the rotation axis C direction of the rotor 3.
 第1軸受収容部42は、回転軸C方向から見て、永久磁石部31よりも回転子3における径方向の内側(内径側)に配置されている。また、第1軸受収容部42のフランジ部422の外周縁部(外径側の縁部)は、非磁性体である樹脂によって覆われている。
 すなわち、外郭10において、第1軸受収容部42のフランジ部422の外周縁部は、樹脂製の接続部45によって覆われている。
The first bearing accommodating portion 42 is arranged inside (inner diameter side) in the radial direction of the rotor 3 with respect to the permanent magnet portion 31 when viewed from the rotation axis C direction. Further, the outer peripheral edge portion (edge portion on the outer diameter side) of the flange portion 422 of the first bearing accommodating portion 42 is covered with a resin which is a non-magnetic material.
That is, in the outer shell 10, the outer peripheral edge portion of the flange portion 422 of the first bearing accommodating portion 42 is covered with the resin connecting portion 45.
 第1軸受収容部42は、回転子3の径方向で永久磁石部31よりも内径側に配置されている。また、第1軸受収容部42が備えるフランジ部422の外周縁部が、非磁性体である樹脂製のモータ外郭10の端面部13(接続部45)によって覆われている。これにより、永久磁石31から第1軸受収容部42へと流れる漏れ磁束を抑制することができる。
 第2軸受収容部43は、第1軸受収容部42と同様の形状に形成され、第2軸受34の外輪342側を径方向から保持する筒状部431と、筒状部431の回転軸C方向の他端部から径方向の内側へと延びる冠部433と、を有する。
The first bearing accommodating portion 42 is arranged on the inner diameter side of the permanent magnet portion 31 in the radial direction of the rotor 3. Further, the outer peripheral edge portion of the flange portion 422 included in the first bearing accommodating portion 42 is covered with the end face portion 13 (connecting portion 45) of the motor outer shell 10 made of resin, which is a non-magnetic material. As a result, the leakage flux flowing from the permanent magnet 31 to the first bearing accommodating portion 42 can be suppressed.
The second bearing accommodating portion 43 is formed in the same shape as the first bearing accommodating portion 42, and has a tubular portion 431 that holds the outer ring 342 side of the second bearing 34 from the radial direction, and a rotating shaft C of the tubular portion 431. It has a crown 433 that extends radially inward from the other end in the direction.
 ブラケット41は、固定子2の上端面に沿って取り付けられるカバー本体414と、カバー本体414と一体的に形成された嵌合部415とを備えている。これらのカバー本体414および嵌合部415は、上記の端面部44に相当する。
 カバー本体414は、全体が概ね円板形状に形成されている。嵌合部415は、図6に示すように、カバー本体414の外周縁部に配置された円環形状の突起として形成されている。嵌合部415がモータ外郭10の出力側の端部(図6におけるモータ外郭10の上端面)に回転軸C方向から嵌合されることで、図3(A)および5に示すように、モータ外郭10とブラケット41とが軸合わせされるとともに、第2軸受34がブラケット41に設けられた第2軸受収容部43に収容される。
The bracket 41 includes a cover main body 414 attached along the upper end surface of the stator 2 and a fitting portion 415 integrally formed with the cover main body 414. These cover body 414 and fitting portion 415 correspond to the above-mentioned end face portion 44.
The entire cover body 414 is formed in a disk shape as a whole. As shown in FIG. 6, the fitting portion 415 is formed as an annular protrusion arranged on the outer peripheral edge portion of the cover main body 414. As shown in FIGS. 3 (A) and 5, the fitting portion 415 is fitted to the output side end of the motor outer shell 10 (the upper end surface of the motor outer shell 10 in FIG. 6) from the rotation axis C direction. The motor outer shell 10 and the bracket 41 are axially aligned, and the second bearing 34 is housed in the second bearing accommodating portion 43 provided in the bracket 41.
 モータ外郭10の外周面および端面には、導通部材5を配置するための切り込み溝部108が形成されている(図3、5参照)。モータ外郭10の端面13に形成された切り込み溝部108は、永久磁石電動機1の径方向における中心付近から外縁部まで延びて形成されている。モータ外郭10の外周面14に形成された切り込み溝部108は、端面13に形成された切り込み溝部108から連続するように、永久磁石電動機1の回転軸方向に沿って延びて形成されている。 A notch groove 108 for arranging the conductive member 5 is formed on the outer peripheral surface and the end surface of the motor outer shell 10 (see FIGS. 3 and 5). The notch groove 108 formed in the end surface 13 of the motor outer shell 10 extends from the vicinity of the center in the radial direction of the permanent magnet motor 1 to the outer edge portion. The notch groove 108 formed on the outer peripheral surface 14 of the motor outer shell 10 is formed so as to extend along the rotation axis direction of the permanent magnet motor 1 so as to be continuous from the notch groove 108 formed on the end surface 13.
<導通部材>
 電動機1は、高周波スイッチングを行うPWM方式のインバータで駆動される場合に、巻線の中性点電位が零にならず、コモンモード電圧と呼ばれる電圧が発生する。このコモンモード電圧に起因して、電動機1の内部の浮遊容量によって、第1軸受33および第2軸受34の各々の内輪334、344と外輪332、342との間に電位差(軸電圧)を生じる。
<Conduction member>
When the motor 1 is driven by a PWM type inverter that performs high frequency switching, the neutral point potential of the winding does not become zero, and a voltage called a common mode voltage is generated. Due to this common mode voltage, the stray capacitance inside the motor 1 causes a potential difference (shaft voltage) between the inner rings 334 and 344 of the first bearing 33 and the second bearing 34 and the outer rings 332 and 342, respectively. ..
 この軸電圧が軸受の内部にある油膜の絶縁破壊電圧に達すると、軸受の内部に電流が流れて軸受に電食を発生させる。電食は、第1軸受33および第2軸受34の内輪334、344と外輪332、342との間の軸電圧が高いときに生じる放電(電気火花)によって、軸受が損傷する現象である。軸受に電食が発生すると、軸受の転走面に生じた傷によって軸受の回転時に異音が生じたり、電動機の回転効率の低下を招いたりしてしまう。
 本実施例の電動機1は、この軸受での電食の発生を抑制するために、2つの軸受のそれぞれが収容される第1軸受収容部42と第2軸受収容部43とを導通させる導通部材5を備えている。
When this shaft voltage reaches the breakdown voltage of the oil film inside the bearing, a current flows inside the bearing and causes electrolytic corrosion in the bearing. Electrolytic corrosion is a phenomenon in which a bearing is damaged by a discharge (electric spark) generated when the axial voltage between the inner rings 334 and 344 of the first bearing 33 and the second bearing 34 and the outer rings 332 and 342 is high. When electrolytic corrosion occurs in a bearing, scratches on the rolling surface of the bearing cause abnormal noise when the bearing rotates, or the rotation efficiency of the motor is lowered.
In the motor 1 of the present embodiment, in order to suppress the occurrence of electrolytic corrosion in this bearing, a conduction member that conducts the first bearing accommodating portion 42 in which each of the two bearings is accommodated and the second bearing accommodating portion 43. It is equipped with 5.
 導通部材5は、例えば、導電性の材料(例えばステンレス鋼のSUS304)を帯状やワイヤ状に加工して形成される。本実施例では、導通部材5は、帯状に打ち抜いた厚さ0.3mm程度の鋼板を、モータ外郭10及びブラケット41の外面に沿うようにL字状やU字状に折り曲げて形成される(図3、6参照)。導通部材5は、電動機1への取り付けを考慮したばね特性を有する。
 導通部材5は、第1軸受33が収容される第1軸受収容部42と、第2軸受34が収容される第2軸受収容部43と、を導通させることにより、第1軸受33と第2軸受34の各々の外輪332、342の電位を同電位とすることができ、各軸受の内外輪間の電位差を相対的に小さくすることで電食の発生を抑制できる。
The conductive member 5 is formed by processing, for example, a conductive material (for example, SUS304 of stainless steel) into a band shape or a wire shape. In this embodiment, the conductive member 5 is formed by bending a steel plate having a thickness of about 0.3 mm, which is punched out in a strip shape, into an L-shape or a U-shape along the outer surfaces of the motor outer shell 10 and the bracket 41 (. See FIGS. 3 and 6). The conductive member 5 has a spring characteristic in consideration of attachment to the motor 1.
The conduction member 5 has the first bearing 33 and the second bearing 33 by conducting the first bearing accommodating portion 42 in which the first bearing 33 is accommodated and the second bearing accommodating portion 43 in which the second bearing 34 is accommodated. The potentials of the outer rings 332 and 342 of the bearing 34 can be set to the same potential, and the occurrence of electrolytic corrosion can be suppressed by making the potential difference between the inner and outer rings of each bearing relatively small.
 導通部材5は、軸受収容部42、43に接続される接続端部と、電動機1の外郭の端面13に径方向に延びて配置される端面側配置部と、電動機1の外郭の外周面14に回転軸C方向に沿って配置される外周面側配置部とを備える。なお、本実施例では導通部材5が1本の帯状の部材から形成されている場合を例示したが、複数の導電性の部材を接続して導通部材5を形成してもよい。 The conduction member 5 includes a connection end portion connected to the bearing accommodating portions 42 and 43, an end face side arrangement portion arranged radially extending to the end surface 13 of the outer shell of the motor 1, and an outer peripheral surface 14 of the outer shell of the motor 1. Is provided with an outer peripheral surface side arrangement portion arranged along the rotation axis C direction. In this embodiment, the case where the conductive member 5 is formed of one strip-shaped member is illustrated, but a plurality of conductive members may be connected to form the conductive member 5.
 導通部材5は、図3、6に示すように、電動機1の外面に、第1軸受収容部42のフランジ部422の位置から、モータ外郭10の切り込み溝部108を経て、ブラケット41の嵌合部415の内部まで延びて配置される。
 導通部材5が切り込み溝部108に配置されることにより、導通部材5が電動機1の外郭の表面に突出せず、電動機1から導通部材5が脱落するのを防止できる。
As shown in FIGS. It is arranged so as to extend to the inside of the 415.
By arranging the conductive member 5 in the notch groove 108, the conductive member 5 does not project to the surface of the outer shell of the motor 1 and the conductive member 5 can be prevented from falling off from the motor 1.
 この導通部材5の両端である接続端部は、樹脂外郭の筒状の接続部45、ベアリングハウス部42の筒状部421、およびブラケット41の嵌合部415に沿うように折り曲げられたうえで、例えば圧入して固定される。
 これにより、導通部材5の両接続端部がベアリングハウス部42のフランジ部422および嵌合部415のそれぞれに当接した状態で固定されることにより、第1軸受33と第2軸受34とが導通される。
The connection ends at both ends of the conduction member 5 are bent along the tubular connection portion 45 of the resin outer shell, the tubular portion 421 of the bearing house portion 42, and the fitting portion 415 of the bracket 41. For example, it is press-fitted and fixed.
As a result, both connecting ends of the conductive member 5 are fixed in contact with each of the flange portion 422 and the fitting portion 415 of the bearing house portion 42, so that the first bearing 33 and the second bearing 34 are brought into contact with each other. It is conducted.
 なお、導通部材5の両端部をベアリングハウス部に固定する手段は、上述の手段に限定されない。例えば、導通部材5の接続端部は、図示しないカシメ部材によってベアリングハウス部42、43に対して固定されてもよい。 The means for fixing both ends of the conductive member 5 to the bearing house portion is not limited to the above-mentioned means. For example, the connection end portion of the conductive member 5 may be fixed to the bearing house portions 42, 43 by a caulking member (not shown).
 図6に示されているように、固定子2とブラケット41との間に固定子2側の静電容量(ステータ静電容量)Cs、回転子3とシャフト32との間に回転子3側の静電容量(ロータ静電容量)Cr、第1軸受33の内輪334と外輪332との間に静電容量Cb1、および、第2軸受34の内輪344と外輪342との間に静電容量Cb2が存在する。各軸受の内輪と外輪との間の静電容量Cb1およびCb2は、サイズ、質量、材質などを考慮すると、ステータ静電容量Csおよびロータ静電容量Crに比べて微小容量であると考えられる。 As shown in FIG. 6, the capacitance (stator capacitance) Cs on the stator 2 side is between the stator 2 and the bracket 41, and the rotor 3 side is between the rotor 3 and the shaft 32. Capacitance (rotor capacitance) Cr, capacitance Cb1 between the inner ring 334 and the outer ring 332 of the first bearing 33, and capacitance between the inner ring 344 and the outer ring 342 of the second bearing 34. Cb2 is present. The capacitances Cb1 and Cb2 between the inner ring and the outer ring of each bearing are considered to be smaller than the stator capacitance Cs and the rotor capacitance Cr in consideration of size, mass, material and the like.
 図8は、これらの静電容量に関する電動機1の非接地ブリッジ型等価回路図である。
 ここで、固定子(ステータ)2の対地静電容量をC1、回転子(ロータ)3の対地静電容量をC2、電動機1の高周波スイッチングにおけるPWM周波数に同期したパルス電圧をVp、軸受の外輪と内輪との間の軸電圧を|Vs-Vr|とする。
 このとき、軸電圧|Vs-Vr|が最小となる条件は、Cs・C2=Cr・C1である。また、PWM周波数ωでの固定子2および回転子3の対地インピーダンスをそれぞれ、Z1=(1/ωC1)、Z2=(1/ωC2)とすると、対地インピーダンスは、非常に大きな値をとるので、C1およびC2は相対的に小さな値になり、C1≒C2に近似できる。したがって、軸電圧|Vs-Vr|を最小化する条件は、Cr=Csである。本実施形態では、回転子3側の静電容量(ロータ静電容量Cr)が固定子2側の静電容量(ステータ静電容量Cs)よりも大きい状態の永久磁石電動機1、すなわちCr>Csである状態の永久磁石電動機1に、後述する導電性のシート(導電性部材)6を取り付けることで、Csの静電容量を容易に増やして、CsをCrの静電容量に近づけることができる。これにより、軸電圧|Vs-Vr|を小さくして、軸受での電食の発生を抑制することができる。
FIG. 8 is a non-grounded bridge type equivalent circuit diagram of the motor 1 with respect to these capacitances.
Here, the ground capacitance of the stator (stator) 2 is C1, the ground capacitance of the rotor (rotor) 3 is C2, the pulse voltage synchronized with the PWM frequency in the high frequency switching of the motor 1 is Vp, and the outer ring of the bearing. The shaft voltage between the inner ring and the inner ring is | Vs-Vr |.
At this time, the condition for minimizing the shaft voltage | Vs-Vr | is Cs · C2 = Cr · C1. Further, if the ground impedances of the stator 2 and the rotor 3 at the PWM frequency ω are Z1 = (1 / ωC1) and Z2 = (1 / ωC2), respectively, the ground impedance takes a very large value. C1 and C2 have relatively small values and can be approximated to C1≈C2. Therefore, the condition for minimizing the shaft voltage | Vs-Vr | is Cr = Cs. In the present embodiment, the permanent magnet motor 1 in a state where the capacitance on the rotor 3 side (rotor capacitance Cr) is larger than the capacitance on the stator 2 side (stator capacitance Cs), that is, Cr> Cs. By attaching the conductive sheet (conductive member) 6 described later to the permanent magnet motor 1 in this state, the capacitance of Cs can be easily increased and the capacitance of Cs can be brought closer to the capacitance of Cr. .. As a result, the shaft voltage | Vs-Vr | can be reduced to suppress the occurrence of electrolytic corrosion in the bearing.
 モータ外郭10の外周面14(表面)には、導通部材5の少なくとも一部を覆うように導電性のシート(導電性部材)6が取り付けられる。この導電性のシート6は、同シート6の少なくとも一部が、樹脂製のモータ外郭10を介してステータコア21と径方向で対向している。本実施形態では、導電性のシート6が導通部材5に接触した状態でモータ外郭10に接着されている(図5、14等参照)。 A conductive sheet (conductive member) 6 is attached to the outer peripheral surface 14 (surface) of the motor outer shell 10 so as to cover at least a part of the conductive member 5. At least a part of the conductive sheet 6 faces the stator core 21 in the radial direction via the resin motor outer shell 10. In the present embodiment, the conductive sheet 6 is adhered to the motor outer shell 10 in a state of being in contact with the conductive member 5 (see FIGS. 5, 14 and the like).
 これにより、シート6とステータコア21とがキャパシタ(静電容量)として機能し、固定子2側の静電容量Csを増大させることができる。すなわち、導電性のシート6が、絶縁体の樹脂外郭(モータ外郭)10を間に介して、導体のステータコア21と対向することにより、シート6とステータコア21という2つの導体間に電荷が蓄積する。 As a result, the seat 6 and the stator core 21 function as a capacitor (capacitance), and the capacitance Cs on the stator 2 side can be increased. That is, when the conductive sheet 6 faces the stator core 21 of the conductor with the resin outer shell (motor outer shell) 10 of the insulator in between, charges are accumulated between the two conductors of the sheet 6 and the stator core 21. ..
 なお、導電性のシート6が導通部材5を全く覆わない場合(導電性のシート6が導通部材5と電動機の径方向で重ならない場合)は、シート6の有無の違いによるステータ静電容量Csの変化は殆ど無いことが分かっている。例えば、モータ外郭10の外周面14に取り付けられる導電性のシート6を、電動機の周方向で導通部材5から1cm離して配置すると、シート6によるステータ静電容量Csの増大は生じなかった。これは、導電性のシート6が導通部材5を全く覆わない場合、導電性のシート6が電気的に浮いた状態となるため、導電性のシート6がキャパシタとして機能しなくなるからであると推定される。 When the conductive sheet 6 does not cover the conductive member 5 at all (when the conductive sheet 6 does not overlap with the conductive member 5 in the radial direction of the motor), the stator capacitance Cs depends on the presence or absence of the sheet 6. It is known that there is almost no change in. For example, when the conductive sheet 6 attached to the outer peripheral surface 14 of the motor outer shell 10 is arranged 1 cm away from the conductive member 5 in the circumferential direction of the motor, the stator capacitance Cs does not increase due to the sheet 6. It is presumed that this is because when the conductive sheet 6 does not cover the conductive member 5 at all, the conductive sheet 6 is in a state of being electrically floated, so that the conductive sheet 6 does not function as a capacitor. Will be done.
 詳しくは後述するが、導電性のシート6が導通部材5の少なくとも一部を覆うことにより増大するステータ静電容量Csの大きさは、径方向においてシート6のステータコア21と重なる領域の面積の大きさに概ね比例していると推定される。そこで、本実施形態では、シート6は、モータ外郭10の表面においてステータコア21を外径方向に投影した領域内に配置されるようにした(図7参照)。これにより、シート6を無駄なくステータ静電容量Csの増大に寄与するようにして固定子2側の静電容量Csを適切に調整することができる。
 本実施形態では、シート6は、モータ外郭10の外周面14上に貼り付けられたシート6が回転軸Cまわりで成す周方向の角度θが、例えば30°程度となる長さに形成されている(図5、7等参照)。この角度θは、所望の静電容量Csに応じて任意に変更できる。例えば、シート6は、モータ外郭1の周方向において全周にわたって(θ=360°となるように)延びてもよい。シート6の回転軸C方向の寸法も同様に任意に変更可能である。
As will be described in detail later, the size of the stator capacitance Cs that increases when the conductive sheet 6 covers at least a part of the conductive member 5 is the size of the area of the region overlapping the stator core 21 of the sheet 6 in the radial direction. It is estimated that it is roughly proportional to the static electricity. Therefore, in the present embodiment, the seat 6 is arranged in the region where the stator core 21 is projected in the outer diameter direction on the surface of the motor outer shell 10 (see FIG. 7). As a result, the capacitance Cs on the stator 2 side can be appropriately adjusted so that the sheet 6 contributes to the increase in the stator capacitance Cs without waste.
In the present embodiment, the sheet 6 is formed so that the angle θ in the circumferential direction formed by the sheet 6 attached on the outer peripheral surface 14 of the motor outer shell 10 around the rotation axis C is, for example, about 30 °. (See Figures 5 and 7 etc.). This angle θ can be arbitrarily changed according to the desired capacitance Cs. For example, the seat 6 may extend over the entire circumference (so that θ = 360 °) in the circumferential direction of the motor outer shell 1. Similarly, the dimensions of the seat 6 in the rotation axis C direction can be arbitrarily changed.
 図5に示されているように、シート6は長方形状であり、長辺が前記回転軸Cの軸方向に交差するように配置される。本実施例では、シート6の長辺が回転軸Cの軸方向に直交して配置されている。これにより、電動機1が回転軸C方向に小型である場合でも、導電性のシート6の面積を大きくとることができ、固定子2側の静電容量Csをより大きくすることができる。当然ながら、シート6の形状は、ひし形、円状、正方形状など任意に変更可能である。
 本実施形態では、導電性のシート6は、図示しないが、PET素材の薄板(シート)の表面にアルミ等の金属を蒸着し、裏面に接着面を設けて形成される。言い換えれば、シート6は、樹脂製の薄板に金属を付着させて形成される。接着面を有する薄板を用いることにより、シート6を安価に形成するとともに接着により容易にモータ外郭10の曲面状の外周面14に取り付けることができる。本実施例では、導電性のシート6の接着面は、導電性の接着剤で形成されている。なお、導電性のシート6の接着面は絶縁材で形成されていてもよく、シート6の導電部(金属等)とステータコア21とが、間に絶縁材(樹脂外郭、接着面)を介して互いに近接することで、キャパシタ(静電容量)として機能する。
 あるいは他の実施形態として、シート6は、厚み0.2mm程度の板金で形成され、ねじ等でモータ外郭10に留められてもよい。
As shown in FIG. 5, the sheet 6 has a rectangular shape and is arranged so that the long sides intersect the axis direction of the rotation axis C. In this embodiment, the long sides of the sheet 6 are arranged orthogonal to the axial direction of the rotation axis C. As a result, even when the motor 1 is small in the rotation axis C direction, the area of the conductive sheet 6 can be increased, and the capacitance Cs on the stator 2 side can be further increased. As a matter of course, the shape of the sheet 6 can be arbitrarily changed such as a rhombus, a circle, and a square.
In the present embodiment, although not shown, the conductive sheet 6 is formed by depositing a metal such as aluminum on the front surface of a thin plate (sheet) made of PET material and providing an adhesive surface on the back surface. In other words, the sheet 6 is formed by adhering a metal to a thin resin plate. By using a thin plate having an adhesive surface, the sheet 6 can be formed inexpensively and can be easily attached to the curved outer peripheral surface 14 of the motor outer shell 10 by adhesion. In this embodiment, the adhesive surface of the conductive sheet 6 is formed of a conductive adhesive. The adhesive surface of the conductive sheet 6 may be formed of an insulating material, and the conductive portion (metal or the like) of the sheet 6 and the stator core 21 are sandwiched between the insulating material (resin outer shell, adhesive surface). By being close to each other, it functions as a capacitor (capacitance).
Alternatively, as another embodiment, the sheet 6 may be formed of a sheet metal having a thickness of about 0.2 mm and may be fastened to the motor outer shell 10 with screws or the like.
 さらに、モータ外郭10の外周面14には、シート6とは別に、定格銘板7が張り付けられていてもよい(図3、5、7参照)。定格銘板7は、機器や装置、部品などについて、指定された条件における仕様、性能、使用限度などの値(定格値)を記載した銘板(ラベル)である。
 なお、定格銘板7は、シート6と同じ材料で形成されてよい。これにより、定格銘板7として使用していた材料をシート6に転用でき、あるいはシート6として使用していた材料を定格銘板7として転用でき、製造コストを削減することができる。
Further, a rated name plate 7 may be attached to the outer peripheral surface 14 of the motor outer shell 10 separately from the seat 6 (see FIGS. 3, 5, and 7). The rating plate 7 is a name plate (label) on which values (rated values) such as specifications, performance, and usage limits under specified conditions are described for equipment, devices, parts, and the like.
The rated name plate 7 may be made of the same material as the sheet 6. As a result, the material used as the rated name plate 7 can be diverted to the sheet 6, or the material used as the sheet 6 can be diverted to the rated name plate 7, and the manufacturing cost can be reduced.
 また、本発明では、定格銘板7をシート6と同じ材料で形成する他の実施形態として、定格銘板7をシート6として用いてもよい。すなわち、導電性の材料で形成された定格銘板7を図7におけるシート6の位置に貼るようにしてもよい。これにより、定格銘板7が本発明のシート6として機能するため、シート6を別途用意する必要がなく、永久磁石電動機1の製造コストを削減することができる。 Further, in the present invention, the rated name plate 7 may be used as the sheet 6 as another embodiment in which the rated name plate 7 is formed of the same material as the sheet 6. That is, the rated name plate 7 made of a conductive material may be attached to the position of the sheet 6 in FIG. 7. As a result, since the rated name plate 7 functions as the seat 6 of the present invention, it is not necessary to separately prepare the seat 6, and the manufacturing cost of the permanent magnet motor 1 can be reduced.
 図9は、導電性のシート6が貼り付けられていない状態の電動機(比較例)における軸電圧の出力波形であり、図10は、比較例の電動機に導電性のシート6を貼り付けた、実施例の電動機1における軸電圧の出力波形である。シート6は、幅3.0cm、奥行(高さ)2.0cm、厚さ0.05mm程度の長方形状の薄板である。電動機の駆動条件は、いずれの場合においても、印加電圧をDC380V、回転速度を1,520回転/minとした。
 これら2つの図を比較すると、比較例(シート6なし)における軸電圧は+側の最大値が2.34V、-側の最大値が-1.68Vであるのに対し、実施例(シート6あり)における軸電圧の+側の最大値は1.48V、-側の最大値は-0.77Vとなっている。すなわち、電動機1に導電性のシート6を貼り付けることによって、導電性のシート6を貼り付けない場合に比べて、軸電圧の最大値を半分程度に小さくできていることが分かる。
FIG. 9 shows the output waveform of the shaft voltage in the motor (comparative example) in the state where the conductive sheet 6 is not attached, and FIG. 10 shows the conductive sheet 6 attached to the electric motor in the comparative example. It is an output waveform of the shaft voltage in the motor 1 of an Example. The sheet 6 is a rectangular thin plate having a width of 3.0 cm, a depth (height) of 2.0 cm, and a thickness of about 0.05 mm. In any case, the driving conditions of the motor were such that the applied voltage was DC380V and the rotation speed was 1,520 rotations / min.
Comparing these two figures, the maximum value of the shaft voltage on the + side is 2.34V and the maximum value on the-side is -1.68V in the comparative example (without sheet 6), whereas the maximum value on the-side is -1.68V, whereas the maximum value on the-side is -1.68V. Yes), the maximum value on the + side of the shaft voltage is 1.48V, and the maximum value on the-side is -0.77V. That is, it can be seen that by attaching the conductive sheet 6 to the motor 1, the maximum value of the shaft voltage can be reduced to about half as compared with the case where the conductive sheet 6 is not attached.
 図11は、導電性のシート6の面積変化に対するステータ静電容量Csを示したグラフである。
 この図に示されているように、ステータ静電容量Csは、導電性のシート6の面積ACSの変化に対して線形である。
FIG. 11 is a graph showing the stator capacitance Cs with respect to the area change of the conductive sheet 6.
As shown in this figure, the stator capacitance Cs is linear with respect to changes in the area ACS of the conductive sheet 6.
 具体的には、ステータ静電容量Csは、
[式1]
   Cs=C+kεACS/d
という関係式で表せる。
 ここで、Cは導電性のシート6が無い場合におけるステータ静電容量であり、kはブラケット41などのモータ形状で決まる係数、εはシート6とステータコア21の間に存在する樹脂外郭10の誘電率、ACSは導電性のシート6の面積、dは樹脂外郭10を介して対向するシート6とステータコア21間の距離である。
 すなわち、導電性のシート6の面積ACSを変化させることにより、ステータ静電容量Csを容易に調整することができる。
Specifically, the stator capacitance Cs is
[Equation 1]
Cs = C 0 + kεA CS / d
Can be expressed by the relational expression.
Here, C 0 is the stator capacitance when there is no conductive sheet 6, k is a coefficient determined by the shape of the motor such as the bracket 41, and ε is the resin outer shell 10 existing between the sheet 6 and the stator core 21. The dielectric constant, ACS is the area of the conductive sheet 6, and d is the distance between the opposing sheet 6 and the stator core 21 via the resin outer shell 10.
That is, the stator capacitance Cs can be easily adjusted by changing the area ACS of the conductive sheet 6.
 図12は、本発明に係る導電性のシート6なしの電動機1の一部を示す斜視図である。なお、図12においては、樹脂外郭10を透過して表示している。
 本発明の他の実施形態として、導電性のシート6の他に、導通部材5の幅Wを変化させることによって、ステータ静電容量Csを更に調整してもよい。
 この導通部材5の幅Wの変化に対するステータ静電容量Csを表1および図13に示す。
FIG. 12 is a perspective view showing a part of the electric motor 1 without the conductive sheet 6 according to the present invention. In FIG. 12, the resin outer shell 10 is transmitted and displayed.
As another embodiment of the present invention, in addition to the conductive sheet 6, the stator capacitance Cs may be further adjusted by changing the width W of the conductive member 5.
Table 1 and FIG. 13 show the stator capacitance Cs with respect to the change in the width W of the conductive member 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1および図13に示されているように、導通部材5の幅Wを5.0mmから10mmまで1mmずつ増加させると、ステータ静電容量Csはおおよそ線形に増加していくことが分かる。すなわち、導通部材5の幅Wを太く(例えば5.0mmから10mmに変更)することによっても、ステータ静電容量Csを増加(+4.75pF)させることができる。 As shown in Table 1 and FIG. 13, it can be seen that when the width W of the conductive member 5 is increased by 1 mm from 5.0 mm to 10 mm, the stator capacitance Cs increases approximately linearly. That is, the stator capacitance Cs can also be increased (+4.75pF) by increasing the width W of the conductive member 5 (for example, changing from 5.0 mm to 10 mm).
 図14は、本発明に係る導電性のシート6を備えた電動機1を示す部分側面斜視図である。すなわち、表1におけるNo.1(比較例)の電動機に、導電性のシート6を貼り付けたものが、実施例の電動機1である。
 この長方形状の導電性のシート6の面積ACSの変化に対するステータ静電容量Csを、表2および図15に示す。シート6の面積ACSは、シート6の高さ(電動機1の回転軸C方向におけるシート6の長さ)をH、シート6の幅(電動機1の周方向におけるシート6の長さ)をTとしたとき、ACS=T×H(mm)で求められている。本実施例では、シート6の高さHを変化させることによりシート6の面積ACSを変化させた場合を例示する。なお、表2では、長さ寸法である幅T(mm)の代わりに、モータ外郭10の外周面14上に貼り付けられたシート6が回転軸Cまわりで成す角度θ(°)(図7、14においてシート6の周方向の両端部と回転軸Cとを結んだ2つの線分が成す角度)を代表値として示す。このとき、幅T(mm)は、回転軸Cからモータ外郭10の外周面14までの距離を半径r(mm)としたとき、円周率をπとして、T=π×r×θ/180で求めることができる。本実施例では、r=46(mm)としている。
FIG. 14 is a partial side perspective view showing the electric motor 1 provided with the conductive sheet 6 according to the present invention. That is, No. 1 in Table 1. The motor 1 of the embodiment has a conductive sheet 6 attached to the motor of 1 (comparative example).
Table 2 and FIG. 15 show the stator capacitance Cs with respect to the change in the area ACS of the rectangular conductive sheet 6. The area ACS of the seat 6 is H for the height of the seat 6 (the length of the seat 6 in the rotation axis C direction of the motor 1) and T for the width of the seat 6 (the length of the seat 6 in the circumferential direction of the motor 1). Then, it is obtained by A CS = T × H (mm 2 ). In this embodiment, the case where the area ACS of the seat 6 is changed by changing the height H of the seat 6 is illustrated. In Table 2, instead of the width T (mm) which is the length dimension, the angle θ (°) formed by the sheet 6 attached on the outer peripheral surface 14 of the motor outer shell 10 around the rotation axis C (FIG. 7). , 14 is the angle formed by the two line segments connecting both ends of the sheet 6 in the circumferential direction and the rotation axis C) as a representative value. At this time, the width T (mm) is T = π × r × θ / 180, where π is the circumference ratio when the distance from the rotation axis C to the outer peripheral surface 14 of the motor outer shell 10 is the radius r (mm). Can be found at. In this embodiment, r = 46 (mm).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2および図15に示すように、No.7~No.9においては、導電性のシート6の幅Tを一定(角度θ=40°)とする一方、高さHを段階的に変化させることで、シート6の面積ACSの変化に伴うステータ静電容量Csの変化が計測されている。導電性のシート6の面積ACSの減少に伴い、ステータ静電容量Csも段階的に下がっていることが分かる。
 また、表1および表2より、導電性のシート6を備える実施例のNo.7~No.9のいずれの場合においても、導電性のシート6を備えない比較例であるNo.1よりも、ステータ静電容量Csが増加(+6.10~+10.46pF)していることが分かる。
As shown in Table 2 and FIG. 15, No. 7-No. In 9, the width T of the conductive sheet 6 is constant (angle θ = 40 °), while the height H is changed stepwise, so that the stator capacitance accompanying the change in the area ACS of the sheet 6 The change in capacitance Cs is measured. It can be seen that as the area ACS of the conductive sheet 6 decreases, the stator capacitance Cs also gradually decreases.
Further, from Tables 1 and 2, No. 1 of the example provided with the conductive sheet 6 is provided. 7-No. In any case of No. 9, which is a comparative example not provided with the conductive sheet 6, No. It can be seen that the stator capacitance Cs is increased (+6.10 to + 10.46pF) more than 1.
 すなわち、表1~2および図14に示されているように、導電性のシート6を備える実施例の電動機1(表2のNo.7~No.9)は、導電性のシート6を備えない比較例(表1のNo.1)の電動機よりも、ステータ静電容量Csを大きくすることができる。また、導電性のシート6を備えることによるステータ静電容量Csの増加量は、導電性のシート6の面積ACSの増加量に対して概ね線形であることが分かる。よって、実施例の電動機1は、導電性のシート6の面積ACSを変更することで容易にステータ静電容量Csを調整することができる。
 なお、本実施例では、シート6の高さH(電動機1の回転軸C方向におけるシート6の長さ)を変化させることによりシート6の面積ACSを変化させているが、導電性のシート6の幅T(電動機1の周方向におけるシート6の長さ)を変化させることでシート6の面積ACSを変化させるようにしてもよい。
That is, as shown in Tables 1 and 2 and FIG. 14, the motor 1 (No. 7 to No. 9 in Table 2) of the embodiment provided with the conductive sheet 6 includes the conductive sheet 6. The stator capacitance Cs can be made larger than that of the motor of the comparative example (No. 1 in Table 1). Further, it can be seen that the amount of increase in the stator capacitance Cs due to the provision of the conductive sheet 6 is substantially linear with the amount of increase in the area ACS of the conductive sheet 6. Therefore, in the electric motor 1 of the embodiment, the stator capacitance Cs can be easily adjusted by changing the area ACS of the conductive sheet 6.
In this embodiment, the area ACS of the seat 6 is changed by changing the height H of the seat 6 (the length of the seat 6 in the rotation axis C direction of the motor 1), but the conductive seat. The area ACS of the seat 6 may be changed by changing the width T (the length of the seat 6 in the circumferential direction of the motor 1) of 6.
 上述したように、本実施形態では、モータ外郭の外周面14(表面)に、導通部材の少なくとも一部を覆う導電性のシート(導電性部材)が取り付けられている。そのため、導電性のシートとステータコアとが樹脂外郭を介して対向することで、導電性のシートがキャパシタとして機能し、静電容量を調整する(ステータ側の静電容量Csを増加させる)ことができる。特に、静電容量の増加量は、導電性のシートの面積に比例するため、導電性のシートの面積を変更することで容易にステータ側の静電容量を調整できる。
 これにより、ステータ側の静電容量とロータ側の静電容量との間のバランスを容易に調整することができ、軸電圧を低減して電食の発生を抑制することができる。
As described above, in the present embodiment, a conductive sheet (conductive member) that covers at least a part of the conductive member is attached to the outer peripheral surface 14 (surface) of the outer peripheral surface of the motor. Therefore, when the conductive sheet and the stator core face each other via the resin outer shell, the conductive sheet functions as a capacitor and adjusts the capacitance (increases the capacitance Cs on the stator side). can. In particular, since the amount of increase in capacitance is proportional to the area of the conductive sheet, the capacitance on the stator side can be easily adjusted by changing the area of the conductive sheet.
As a result, the balance between the capacitance on the stator side and the capacitance on the rotor side can be easily adjusted, and the shaft voltage can be reduced to suppress the occurrence of electrolytic corrosion.
  1…電動機
 10…モータ外郭(樹脂外郭)
 13…端面部
105…切り込み溝部
  2…固定子
 21…ステータコア
  3…回転子
 32…シャフト
 33…第1軸受
 34…第2軸受
 41…ブラケット
 44…端面部
  5…導通部材
  6…導電性のシート(導電性部材)
  7…定格銘板
  C…回転軸
1 ... Motor 10 ... Motor outer shell (resin outer shell)
13 ... End face 105 ... Notch groove 2 ... Stator 21 ... Stator core 3 ... Rotor 32 ... Shaft 33 ... First bearing 34 ... Second bearing 41 ... Bracket 44 ... End face 5 ... Conductive member 6 ... Conductive sheet ( Conductive member)
7 ... Rated name plate C ... Rotating shaft

Claims (8)

  1.  回転子と、
     前記回転子の回転軸に沿って配置されて前記回転子が固定されたシャフトと、
     前記シャフトの一端側に配置された第1軸受と、
     前記シャフトの他端側に配置された第2軸受と、
     前記回転子の外周側に配置されたステータコアと、
     前記ステータコアを覆う樹脂外郭と、
     前記第1軸受および前記第2軸受のそれぞれが備える外輪同士を電気的に接続する導通部材と、を備える電動機であって、
     前記樹脂外郭の表面には、前記導通部材の少なくとも一部を覆う導電性部材が取り付けられる
     電動機。
    Rotor and
    A shaft that is arranged along the axis of rotation of the rotor and to which the rotor is fixed,
    The first bearing arranged on one end side of the shaft and
    The second bearing arranged on the other end side of the shaft and
    The stator core arranged on the outer peripheral side of the rotor and
    The resin outer shell that covers the stator core and
    An electric motor including a conduction member for electrically connecting the outer rings of each of the first bearing and the second bearing.
    An electric motor to which a conductive member covering at least a part of the conductive member is attached to the surface of the resin outer shell.
  2.  請求項1に記載の電動機であって、
     前記導電性部材は、同導電性部材の少なくとも一部が、前記樹脂外郭を介して前記ステータコアと径方向で対向する
     電動機。
    The electric motor according to claim 1.
    The conductive member is an electric motor in which at least a part of the conductive member faces the stator core in the radial direction via the resin outer shell.
  3.  請求項1または2に記載の電動機であって、
     前記導電性部材は、前記導通部材に接触している
     電動機。
    The electric motor according to claim 1 or 2.
    The conductive member is a motor that is in contact with the conductive member.
  4.  請求項1~3のいずれか1項に記載の電動機であって、
     前記導電性部材は、樹脂製の薄板に金属を付着させて形成される
     電動機。
    The electric motor according to any one of claims 1 to 3.
    The conductive member is an electric motor formed by adhering metal to a thin resin plate.
  5.  請求項1~4のいずれか1項に記載の電動機であって、
     前記導電性部材は、接着面を有する
     電動機。
    The electric motor according to any one of claims 1 to 4.
    The conductive member is an electric motor having an adhesive surface.
  6.  請求項1~5のいずれか1項に記載の電動機であって、
     前記導電性部材は、前記樹脂外郭の表面において前記ステータコアを外径方向に投影した領域内に配置される
     電動機。
    The motor according to any one of claims 1 to 5.
    The conductive member is an electric motor arranged in a region where the stator core is projected in the outer diameter direction on the surface of the resin outer shell.
  7.  請求項1~6のいずれか1項に記載の電動機であって、
     前記導電性部材は、長方形状であり、長辺が前記回転軸の軸方向に交差するように配置される
     電動機。
    The electric motor according to any one of claims 1 to 6.
    The conductive member is a rectangular electric motor, and the long sides of the conductive member are arranged so as to intersect in the axial direction of the rotation axis.
  8.  請求項1~7のいずれか1項に記載の電動機であって、
     前記樹脂外郭の表面には、定格銘板が取り付けられ、
     前記定格銘板は、前記導電性部材と同じ材料で形成される
     電動機。
    The motor according to any one of claims 1 to 7.
    A rated name plate is attached to the surface of the resin outer shell.
    The rated name plate is an electric motor made of the same material as the conductive member.
PCT/JP2021/031814 2020-08-31 2021-08-31 Electric motor WO2022045340A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-146439 2020-08-31
JP2020146439A JP6984704B1 (en) 2020-08-31 2020-08-31 Electric motor

Publications (1)

Publication Number Publication Date
WO2022045340A1 true WO2022045340A1 (en) 2022-03-03

Family

ID=79193342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031814 WO2022045340A1 (en) 2020-08-31 2021-08-31 Electric motor

Country Status (2)

Country Link
JP (1) JP6984704B1 (en)
WO (1) WO2022045340A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116839A (en) * 2005-10-20 2007-05-10 Nidec Shibaura Corp Motor
JP2012210064A (en) * 2011-03-30 2012-10-25 Fujitsu General Ltd Molded motor
JP2014107998A (en) * 2012-11-29 2014-06-09 Panasonic Corp Motor
JP2015126583A (en) * 2013-12-26 2015-07-06 日本電産テクノモータ株式会社 Inner rotor type motor
CN112366878A (en) * 2019-07-26 2021-02-12 广东威灵电机制造有限公司 Brushless motor and electrical equipment
CN112366897A (en) * 2019-07-26 2021-02-12 广东威灵电机制造有限公司 Brushless motor and electrical equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116839A (en) * 2005-10-20 2007-05-10 Nidec Shibaura Corp Motor
JP2012210064A (en) * 2011-03-30 2012-10-25 Fujitsu General Ltd Molded motor
JP2014107998A (en) * 2012-11-29 2014-06-09 Panasonic Corp Motor
JP2015126583A (en) * 2013-12-26 2015-07-06 日本電産テクノモータ株式会社 Inner rotor type motor
CN112366878A (en) * 2019-07-26 2021-02-12 广东威灵电机制造有限公司 Brushless motor and electrical equipment
CN112366897A (en) * 2019-07-26 2021-02-12 广东威灵电机制造有限公司 Brushless motor and electrical equipment

Also Published As

Publication number Publication date
JP2022041317A (en) 2022-03-11
JP6984704B1 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
JP6208333B2 (en) Axial gap type rotating electrical machine
JP5965228B2 (en) Axial gap type rotating electrical machine
JP6667084B2 (en) Surface magnet type motor
WO2017145274A1 (en) Axial gap type rotating electric machine
EP3148057B1 (en) Electric motor
JP2008043124A (en) Magnet generator
CN109314423B (en) Permanent magnet motor
US20220393542A1 (en) Motor and Electric Appliance
EP3148056A1 (en) Electric motor
WO2022045340A1 (en) Electric motor
JP2016208644A (en) Rotating electric machine with brush
GB2281819A (en) Locating and securing commutator segments
WO2003043164A1 (en) Dynamo-electric machine
US10498280B1 (en) Electric motor with shielded phase windings
KR20140145996A (en) Electric motor
WO2021157170A1 (en) Axial cap-type rotary electric machine
JP6834294B2 (en) Permanent magnet motor
JP7415751B2 (en) Electric motor
JP7415774B2 (en) Electric motor
WO2021255960A1 (en) Axial-gap rotating electric machine
JP7386516B2 (en) Coreless rotating electrical machines and toroidal coils used therein
JP2021164268A (en) Permanent magnet motor
WO2021072285A1 (en) Rotary transformer
JP2021005969A (en) motor
JP2018074693A (en) Stator of rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861761

Country of ref document: EP

Kind code of ref document: A1