WO2022045250A1 - Mobile body - Google Patents

Mobile body Download PDF

Info

Publication number
WO2022045250A1
WO2022045250A1 PCT/JP2021/031371 JP2021031371W WO2022045250A1 WO 2022045250 A1 WO2022045250 A1 WO 2022045250A1 JP 2021031371 W JP2021031371 W JP 2021031371W WO 2022045250 A1 WO2022045250 A1 WO 2022045250A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
dock
container
gravity
center
Prior art date
Application number
PCT/JP2021/031371
Other languages
French (fr)
Japanese (ja)
Inventor
賢哉 金田
Original Assignee
本郷飛行機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本郷飛行機株式会社 filed Critical 本郷飛行機株式会社
Publication of WO2022045250A1 publication Critical patent/WO2022045250A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/02Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking
    • B63B43/04Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability
    • B63B43/06Improving safety of vessels, e.g. damage control, not otherwise provided for reducing risk of capsizing or sinking by improving stability using ballast tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth

Definitions

  • the present invention relates to a moving body.
  • Patent Document 1 In recent years, underwater drones that can move underwater have been developed (see, for example, Patent Document 1).
  • the present invention has been made in view of such a situation, and an object thereof is to improve the stability of a moving body moving underwater or on the water, to operate safely, and to enable cargo transportation.
  • the moving body of one aspect of the present invention is In a mobile body that moves on or under water to carry a predetermined item.
  • the stability of the water drone can be improved, safe operation, and cargo transportation can be performed.
  • FIG. 3 is a block diagram showing a hardware configuration related to information processing of various control units related to movement control in the drone of FIG. 1.
  • FIG. 3 is a functional block diagram showing an example of a functional configuration for realizing various processes executed by the drone of FIG. 1. It is a figure which shows the example of the appearance of the drone of FIG. It is a figure which shows the example of the installation of the support member 6 which guides and supports the drone of FIG. It is sectional drawing of the line AA about the drone of FIG. It is sectional drawing of the line AA about the drone of FIG. It is a figure which shows the example of the cross-sectional view similar to FIG.
  • an information processing system including a small moving body for water (hereinafter referred to as “drone”) 1 that can move on or under water will be described with reference to the drawings.
  • the same reference numerals are given to the same elements, and duplicate explanations are omitted.
  • the overall image of the communication and control device of the drone 1 will be described, and then the control of the drone 1 on or under water will be described.
  • FIG. 1 is an image diagram showing an outline of control between the drone 1 and the operator terminal 2 of the present embodiment.
  • the drone 1 acquires position information from the GPS (Global Positioning System) satellite G.
  • the drone 1 together transmits this position information and information obtained from various sensors mounted on the drone 1 to the operator terminal 2.
  • the information obtained from the various sensors is, for example, information on the posture of the drone 1, information on the rotational movement, and the like.
  • the operator terminal 2 is composed of a smartphone or the like, and is a terminal used by the operator U to operate the drone 1.
  • the server 3 is a device composed of a personal computer or the like and used to acquire various information from the drone 1 and execute various processes.
  • the drone 1, the operator terminal 2, and the server 3 are each connected to each other via a predetermined network N such as the Internet.
  • the network N includes not only the Internet and mobile carrier networks, but also short-range wireless communications such as NFC ((Near Field Communication) registered trademark) and Bluetooth (registered trademark). Specifically, for example, the following examples are assumed as the usage mode of such a network N. That is, when the drone 1 moves in the area where the radio wave of the operator terminal 2 reaches, the drone 1 and the operator terminal 2 can directly communicate with each other in real time. On the other hand, when the drone 1 moves outside the area where the radio wave of the operator terminal 2 reaches, it cannot directly communicate with the drone 1 and the operator terminal 2, so that it is indirect. Communicates. Specifically, the operator terminal 2 acquires the position information, movement information, etc.
  • NFC Near Field Communication
  • Bluetooth registered trademark
  • the server 3 exchanges information with the drone 1 via the drone 1 and the wireless device W having a predetermined wireless communication standard. Further, the server 3 not only operates according to the instruction of the operator terminal 2 as described above, but also exchanges information regarding the destination instruction and control to the drone 1 based on the information exchanged with the drone 1. Can also be done.
  • FIG. 2 is a block diagram showing a hardware configuration related to information processing of various control units related to movement control in the drone of FIG.
  • the CPU 11, ROM 12 and RAM 13 are connected to each other via the bus 14.
  • An input / output interface 15 is also connected to the bus 14.
  • An output unit 16, an input unit 17, a storage unit 18, a communication unit 19, and a drive 20 are connected to the input / output interface 15.
  • the output unit 16 is composed of a display, a speaker, and the like, and outputs various information as images and sounds.
  • the input unit 17 is composed of a keyboard, a mouse, and the like, and inputs various information.
  • the storage unit 18 is composed of a hard disk, a DRAM (Dynamic Random Access Memory), or the like, and stores various data.
  • the communication unit 19 communicates with another device (such as the operator terminal 2 in the example of FIG. 1) via the network N including the Internet.
  • a removable media 31 made of a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is appropriately mounted on the drive 20.
  • the program read from the removable media 31 by the drive 20 is installed in the storage unit 18 as needed. Further, the removable media 31 can also store various data stored in the storage unit 18 in the same manner as the storage unit 18.
  • the operator terminal 2 and the server 3 in FIG. 1 have basically the same configuration as the hardware configuration shown in FIG.
  • the communication unit 19 is supposed to perform communication via the network N including the Internet, but the present invention is not particularly limited to this. Specifically, for example, it is possible to receive sound waves and radio waves emitted by other devices, and acquire signal strength and data carried on the signal. That is, the above-mentioned communication is not limited to transmitting and receiving information to each other, but can unilaterally transmit and receive sound waves, radio waves, and the like. Furthermore, when the drone 1 is in the dock or near the land, the communication unit 19 can perform communication not only by wireless communication by sound waves or radio waves but also by connection by a fixed line.
  • FIG. 3 is a functional block diagram showing an example of a functional configuration for realizing various processes executed by the drone 1 of FIG.
  • the drone 1 is a mobile body including a drive unit 41, a movement control unit 42, a center of gravity management unit 43, a center of gravity control unit 44, a position estimation unit 45, and a communication unit 19. ..
  • the "moving body” in the present invention is any object that moves in space by a driving unit, and the drone 1 in the present embodiment is a “moving body” that moves on or under water by being driven by a driving unit 41 as a driving means. Is an example.
  • the drive unit 41 is driven using the supplied energy.
  • the drone 1 can move in space by driving the drive unit 41 or the like.
  • a motor driven by electric energy and an engine driven by chemical energy such as gasoline are both examples of the drive unit 41.
  • the movement control unit 42 controls the movement of the drone 1.
  • the drone 1 changes the output of the drive unit 41 and moves according to the direction of the wings and the like driven by the drive unit 41. Thereby, for example, the distance to the building can be changed as described later.
  • the movement control unit 42 may control the movement according to the signal related to the control by the operator terminal 2 or the server 3 received by the communication unit 19, or the movement is controlled by the autonomous control unit (not shown) possessed by the drone 1. You may go.
  • the center of gravity management unit 43 manages the center of gravity of the container or the like, which is the luggage loaded by the drone 1, although the details will be described later.
  • the drone 1 can detect and manage the center of gravity of the container, change the center of gravity of the container in cooperation with the center of gravity control unit 44 described later, and control the center of gravity so that the drone 1 becomes stable.
  • the center of gravity control unit 44 controls the center of gravity of the container or the like, which is the load loaded by the drone 1, although the details will be described later. Specifically, for example, by moving or rotating the container, the position of the center of gravity of the container can be moved to a predetermined position of the drone 1.
  • the position estimation unit 45 estimates the self-position, which is the self-position of the drone 1, although the details will be described later. Specifically, for example, the current position can be estimated based on a signal from a GPS satellite, or the current position can be estimated based on a signal from a transmission device described later.
  • the axis X is taken in the direction of movement by passing through the center of the drone 1 and exerting a main driving force. That is, although the details will be described later, the drone 1 is provided with a propeller that exerts a main driving force on one side of the shaft X.
  • the side with the propeller is called “rear of drone 1" or “axis X is in the negative direction”, and the opposite is called “in front of drone 1" or "axis X is in the positive direction”.
  • the axis Z is taken in the direction opposite to the gravity acting on the drone 1 which passes through the center of the drone 1 and is suspended on the water surface. That is, for example, when there is a drone 1 that is horizontally suspended on water and loaded with cargo, the direction in which gravity acts is called “the lower side of the drone 1" or “the direction in which the axis Z is negative", and the opposite is called “. It is called “upper side of drone 1" or "axis Z is in the positive direction”.
  • the axis Y is defined so that the three-dimensional Cartesian coordinate system using the axis X, the axis Y, and the axis Z becomes a right-handed system through the intersection of the axis X and the axis Z.
  • the direction of the definition of the structure and the axis of the drone 1 in the description of the present embodiment is merely an example. That is, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
  • FIG. 4 is a diagram showing an example of the appearance of the drone 1 of FIG. Specifically, it is a figure which showed the drone 1 so that the axis Z is from the positive direction and the axis X is from the positive direction to the left.
  • the drone 1 in the example of FIG. 4 is a moving body that floats and moves on the water.
  • the drone 1 is loaded with a container 5 which is cargo, and the axis X moves in the positive direction by controlling the drive unit 41A, which is an example of the drive unit 41, by the movement control unit 42.
  • the drone 1 in the example of FIG. 4 includes two drive units 41B, which is an example of the drive unit 41.
  • the drone 1 is provided with two drive units 41B (hereinafter, appropriately referred to as "side thrusters") in a direction in which the driving force is exerted in the direction of the axis Z.
  • side thrusters two drive units 41B (hereinafter, appropriately referred to as "side thrusters") in a direction in which the driving force is exerted in the direction of the axis Z.
  • the side thrusters may be attached to both the front and rear of the hull. That is, although not shown, the drone 1 can further include a side thruster that exerts a driving force in the direction of the axis Z at a position where the axis X is in the negative direction. As a result, the drone 1 controls the surface formed by the axis X and the axis Y of the drone 1 so as to have an arbitrary angle when the drone 1 moves in the direction of the axis Z without moving forward or backward by the drive unit 41A. be able to. It may also be attached in the left-right direction.
  • the drone 1 can be provided with a side thruster that exerts a driving force in the direction of the axis Y. As a result, the drone 1 can move in the direction of the axis Y and change the direction without moving forward or backward by the drive unit 41A. As described above, an example of the appearance of the drone 1 that can move on or under water in the present embodiment has been described with reference to FIG.
  • the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
  • the mobile body capable of achieving such an effect is not limited to the drone 1 using the drive unit 41 of FIG. 4, and the following mobile body can be adopted. That is, for example, by attaching a side thruster (for example, the drive unit 41B in FIG. 4) in the vertical direction (for example, the direction of the axis Z in FIG. 4), a moving body capable of moving without advancing can be adopted. As a result, the moving body provided with the side thrusters (for example, the drone 1 in FIG. 4) can control the driving force in the direction of the axis Z, and can improve the stability.
  • a side thruster for example, the drive unit 41B in FIG. 4
  • the vertical direction for example, the direction of the axis Z in FIG. 4
  • a moving body attached both front and rear of the hull (for example, near the end in the direction of the axis X in FIG. 4) can be adopted.
  • the moving body provided with the side thrusters in the front and rear of the hull can control the direction of the axis Z of the moving body and control the angle, and can improve the stability.
  • a moving body having side thrusters attached in the left-right direction (for example, the direction of the axis Y in FIG. 4) can be adopted.
  • the moving body provided with the side thrusters in the left-right direction can move in the direction of the axis Y and change the direction without moving in the direction of the axis X, which can improve the stability.
  • the above-mentioned side thruster is provided in the front part of the hull, in the front-rear direction, or in the left-right direction, but the present invention is not particularly limited to this. That is, for example, it is not limited to the direction of the axis X, the axis Y, or the axis Z, and may be provided in a direction other than any of the axes.
  • a mechanism for changing the direction in which the side thruster is installed may be provided so that the driving force can be exerted in any direction.
  • the quay Q in FIG. 4 includes a plurality of support members 6.
  • the support member 6 can guide and support the drone 1.
  • the support member 6 in the example of FIG. 4 can be safely guided to the back even if it comes into contact with it by using a roller with a spring. That is, by adopting a roller structure with a spring, the support member 6 can absorb an impact or the like due to the elasticity of the spring even if the drone 1 comes into contact with the support member 6. Further, since the quay Q includes a plurality of support members 6, the plurality of support members 6 can be brought into contact with the drone 1 one after another. As a result, the drone 1 can be guided along the quay Q.
  • the support member 6 can be supported from the left, right, top and bottom. That is, the support member 6 can be guided or supported from any direction of left, right, up and down, depending on the shape of the drone 1. Specifically, for example, in the example of FIG. 4, the quay Q and the support member 6 guide and support the movement of the drone 1 on the planes indicated by the axes X and Y, but the drone 1 is not particularly limited thereto. That is, the quay Q and the support member 6 can be supported from the left and right sides of the drone 1 by providing the axis Y in the positive direction and the axis Y in the negative direction with respect to the drone 1.
  • the drone 1 can be supported from below by providing the support member 6 in the direction in which the axis Z is negative, that is, on the bottom surface of the water in which the drone 1 floats. Further, although the details will be described later, for the drone 1 that can move in the water, the drone 1 is supported from above by providing the support member 6 on the upper portion of the drone 1, that is, the axis Z in the positive direction. Can be done. As a result, the support member 6 can support the drone 1 from the left, right, top and bottom.
  • the support member 6 can also be linked with the control. That is, the support member 6 can be interlocked according to the control of the drone 1. Specifically, for example, the support member 6 may move according to the control of the drone 1. That is, for example, when the drone 1 is controlled to turn, the support member 6 may move in conjunction with each other to assist the turning of the drone 1.
  • the support member 6 can emit sound waves or the like to indicate the location of the wall like GPS. That is, the support member 6 can transmit a sound wave or the like carrying position information and time information on which the support member 6 is present.
  • the drone 1 receives the position and time information of the support member 6 from each of the two support members 6, and the position estimation unit 45 of FIG. 3 receives the position and time information of the support member 6 from each of the support members 6. Distance can be estimated.
  • the support member 6 can indicate the location of the wall so that the line connecting each of the support members 6 corresponds to the quay Q, for example.
  • FIG. 5 is a diagram showing an example of installation of a support member 6 that guides and supports the drone 1 of FIG.
  • the support member 6 can be installed so as not to be damaged even if the weight of the luggage is lightened. That is, the support member 6 that guides or supports the drone 1 should be installed so that the drone 1 is not damaged regardless of the weight of the entire drone 1 when the drone 1 is loaded with or not loaded with the container 5. Can be done. Specifically, for example, by providing the support member 6 as shown in FIG. 5, the drone 1 can be installed so as not to be damaged. That is, for example, by guiding or supporting the drone 1 by a plurality of support members 6, the weight applied to each of the plurality of support members 6 can be dispersed so that the drone 1 is not damaged.
  • the support member 6 has a roller structure with a spring so that even if the drone 1 comes into contact with the support member 6, the impact or the like is absorbed by the elasticity of the spring, or a plurality of support members 6 are used.
  • the drone 1 can be evenly contacted with respect to the above. As a result, the drone 1 can be installed so as not to be damaged regardless of the weight of the drone 1.
  • an example of the support member 6 that guides and supports the drone 1 in the present embodiment has been described with reference to FIG.
  • the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
  • the moving body and the supporting member capable of exerting such an effect are not limited to the drone 1 and the supporting member 6 of FIGS. 4 and 5, and the following moving body and the supporting means can be adopted. That is, for example, using a roller with a spring (for example, the support member 6 of FIGS. 4 and 5), even if the drone 1 of FIG. 4 comes into contact (for example, with respect to the direction in which the drone 1 is advanced), it is safe.
  • a moving body or supporting means that guides to the back can be adopted.
  • the support means having a roller structure with a spring can improve the stability of the moving body and allow the moving body to operate safely.
  • a moving body or a supporting means that is linked to the control (of the drone 1) (for example, the control by the movement control unit 42 in FIG. 3) can be adopted.
  • the support means linked with the control of the moving body can improve the stability of the moving body and allow the moving body to operate safely.
  • the support means is provided with a support means by emitting a sound wave or the like and causing the distance between the moving body and the support means to be estimated based on the time information or the like placed on the sound wave or the like.
  • a moving body or supporting means indicating the location of the can be adopted.
  • a support means that can indicate the location of the wall, such as GPS can make the moving body improve stability and operate safely.
  • the supporting means is a moving body installed so that the moving body (for example, the drone 1 in FIG. 5) is not damaged even if the weight of the luggage (for example, the container 5 in which the drone 1 in FIG. 5 is loaded) becomes lighter.
  • support means can be adopted.
  • the above-mentioned support means is made of a roller with a spring, but is not particularly limited thereto. That is, for example, any supporting means that can absorb the impact in the expansion / contraction direction of the supporting means by the elastic body and reduce the friction by the rotating body is sufficient.
  • any support means having a structure capable of alleviating impact and friction is sufficient so that the moving body that comes into contact with or collides with the support means is not damaged.
  • FIG. 6 is a cross-sectional view taken along the line AA for the drone 1 of FIG.
  • FIG. 6A is a diagram of an example in which the container center of gravity GC of the container 5 loaded on the drone 1 is not in the center of the drone 1.
  • FIG. 6B is a diagram of an example in which the container center of gravity GC of the container 5 loaded on the drone 1 is controlled to be the center of the drone 1.
  • FIGS. 6A and 6B When it is not necessary to distinguish between FIGS. 6A and 6B, they are collectively referred to as “FIG. 6”.
  • the drone 1 loads the container 5 via the roller 51, the container pedestal 52, and the pedestal roller 53.
  • the drone 1 is provided with a roller fitting portion 54, and the shape corresponding to the fitting portion (not shown) of the pedestal roller 53 prevents the pedestal roller 53 from slipping and rubbing against the drone 1.
  • the dolly or container has a roller that can be moved. That is, the container 5 can be moved by the roller 51. Specifically, for example, the roller 51 can reduce the friction between the container 5 and the container pedestal 52 by rotating. As a result, the container 5 can be moved with respect to the container pedestal 52. However, the roller 51 may be prevented from rotating by a mechanism (not shown). Thereby, the container 5 can be fixed to the container pedestal 52.
  • the dolly can be tilted to adjust around the center of gravity to prevent the hull from tilting. That is, in order to prevent the hull of the drone 1 from tilting when the center of gravity management unit 43 of FIG. 3 detects that the center of gravity GC of the container 5, which is the center of gravity of the container 5, is deviated from the center of the drone 1, FIG.
  • the center of gravity control unit 44 of the above By controlling the center of gravity control unit 44 of the above to tilt the container pedestal 52, the center of gravity of the container GC can be adjusted to the center of the drone 1.
  • the axis Y of the container center of gravity GC is deviated in the positive direction with respect to the center of the drone 1 in the direction of the axis Y.
  • the gravity with respect to the container 5 is illustrated as an arrow indicating "gravity" as being applied to the center of gravity GC of the container.
  • gravity on the container 5 acts to capsize the drone 1, thus creating a risk that the drone 1 may capsize.
  • the pedestal roller 53 can rotate the container pedestal 52 with respect to the drone 1 by rotating. That is, the container 5 can be rotated and fixed with respect to the drone 1.
  • the container 5 and the container pedestal 52 are positioned at an angle with respect to the drone 1.
  • the position of the center of gravity GC of the container with respect to the container 5 has not changed.
  • the rotated container center of gravity GC coincides with the center of the drone 1. That is, the arrow indicating "gravity" as the gravity with respect to the container 5 is applied to the center of gravity GC of the container is located at the center of the drone 1.
  • gravity on the container 5 does not act to capsize the drone 1 and does not pose a risk that the drone 1 can capsize.
  • the drone 1 can reduce the risk of capsizing as compared with the case where the container 5 is simply installed.
  • the above-mentioned power may be attached to the hull or the dock. That is, the method for rotating the container 5 described above is not limited to the one using the pedestal roller 53, and for example, the container 5 may be rotated with respect to the drone 1 by providing a roller or power on the drone 1 side. Specifically, for example, in the case of FIG. 6B, the container pedestal 52 can be rotated with respect to the drone 1 by rotating the pedestal roller 53, which is performed by the power for rotating the pedestal roller 53. On the other hand, although not shown, the container pedestal 52 does not have a pedestal roller 53, but has a mechanism capable of rotating an arbitrary container pedestal 52 on the drone 1, and is powered by the drone 1 side, that is, the hull side.
  • the container 5 and the container pedestal 52 may be rotated.
  • the drone 1 can rotate the container 5 even when it is not moored at the dock. That is, even when the position of the center of gravity GC of the container changes and the risk of capsizing occurs due to the contents of the container 5 shifting or the like other than when the dock is moored, the risk can be reduced by rotating the container 5.
  • the pedestal roller 53 and the drone 1 that is, the hull side may not be provided with power, and the container 5 and the container pedestal 52 may be rotated by the power provided by the dock in which the drone 1 is anchored. That is, the dock may include an arm or the like, rotate the container 5 and the container pedestal 52, and lock the pedestal roller 53 to fix the container center of gravity GC to the center of the drone 1.
  • the structure of the drone 1 can be simplified.
  • the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
  • the moving body capable of exhibiting such an effect is not limited to the drone 1 using the center of gravity control unit 44 of FIG. 6, and the following moving body can be adopted. That is, for example, when a moving body (for example, the drone 1 in FIG. 6) loads a load (for example, the container 5 in FIG. 6), it is placed on a trolley (for example, the container pedestal 52 in FIG. 6) or a container (for example, the container 5 in FIG. 6). A roller (for example, the roller 51 in FIG. 6) is attached and can be moved.
  • the moving body having a roller attached to the trolley or the container and can be moved can load and unload the cargo and can carry the cargo.
  • the center of gravity for example, the container center of gravity GC in FIG. 6
  • the hull is tilted (for example, the center of gravity management means (for example, the center of gravity management unit 43 in FIG. 3)).
  • the trolley can be tilted and adjusted around the center of gravity (for example, adjusted by the center of gravity control unit 44 in FIG. 3).
  • the moving body that can tilt the dolly and adjust it around the center of gravity can carry the cargo while improving the stability.
  • the above-mentioned power may be attached to the hull or the dock.
  • the moving body when the dock is provided with the center of gravity control means can carry cargo while improving the stability, and further simplify the structure of the moving body. That is, this moving body is In a mobile body (eg, drone 1 in FIG. 6) that moves on or under water to carry a predetermined article (eg, container 5 in FIG. 6).
  • a means for moving the center of gravity for example, the center of gravity control unit 44 in FIG. 3 and the container pedestal 52 and the pedestal roller 53 in FIG. 6) for moving the center of gravity of the article (for example, the container center of gravity GC in FIG. 6).
  • a moving body including a center of gravity fixing means for example, the pedestal roller 53 and the roller fitting portion 54 in FIG. 6) for fixing the center of gravity of the article is sufficient.
  • the center of gravity of the drone 1 can be changed at least in the direction of the axis Z by pumping water or air into or out of a predetermined tank of the drone 1.
  • the drone 1 includes a ballast tank 55.
  • Water and air can be pumped in and out of the ballast tank 55.
  • the weight of the drone 1 can be increased or decreased.
  • the waterline can be raised with respect to the drone 1 (the axis Z of the drone 1 is submerged in the negative direction).
  • the center of gravity of the drone 1 can be lowered with respect to the water surface, and the stability can be improved.
  • the drone 1 is provided with the ballast tank 55 in the direction in which the axis Z is negative with respect to the container 5. That is, by loading water, the center of gravity of the drone 1 including the container 5 can be lowered.
  • the center of gravity of the drone 1 itself can be moved in the direction in which the axis Z is negative. Further, by injecting air into the ballast tank 55, water can be discharged and the weight of the drone 1 can be reduced. As a result, a heavier container 5 can be loaded as compared with the case where water is put inside the ballast tank 55.
  • FIG. 7 is a diagram showing an example of a cross-sectional view similar to that of FIG. 6 in a drone that can move underwater among the drones 1 of FIG.
  • the drone 1 in the example of FIG. 7 has a cylindrical structure. That is, the drone 1 has a structure in which water does not enter the inside of the drone 1 or the container 5 when it moves underwater.
  • the drone 1 in the example of FIG. 7 includes ballast tanks 55A and 55B. When it is not necessary to distinguish the ballast tanks 55A and 55B individually, they are collectively referred to as "ballast tank 55".
  • the weight of the drone 1 can be increased by pumping water into the ballast tank 55. Further, the weight of the drone 1 can be reduced by discharging water from the ballast tank 55 by a pump, compressed air, or the like. As a result, the drone 1 can dive and ascend.
  • the drone 1 in the underwater machine, it can be adjusted so that it is below the center. That is, the drone 1 includes ballast tanks 55A and 55B as ballast tanks 55. As a result, the ballast tanks 55A and 55B can each move water and air in and out. That is, the drone 1 can change the weights of the ballast tanks 55A and 55B, respectively. Therefore, the drone 1 can change the entire center of gravity of the drone 1 including the container 5 and the ballast tanks 55A and 55B in the direction of the axis Z.
  • the dock can be adjusted in cooperation with the weight of the luggage. That is, when the container 5 is loaded on the drone 1 in the dock, the position of the container 5 in the dock and the position of the drone 1 in the axis Z direction can be adjusted by using the ballast tank 55. Specifically, for example, when the container 5 is loaded in the drone 1 of FIGS. 6 and 7 which is anchored in the dock, water is filled in the ballast tank 55 of the drone 1 in which the container 5 is not loaded.
  • the drone 1 can be moved in the negative direction of the axis Z. That is, the position of the drone 1 can be lowered. In this state, the container 5 is loaded. In this case, the weight with respect to the container 5 gradually changes from the state of being docked to the state of being applied to the drone 1. As a result, the drone 1 gradually sinks. At this time, by gradually pumping out the water in the ballast tank 55, the weight of the drone 1 can be reduced, the drone 1 can be prevented from sinking, and the container 5 can be loaded in a stable state. As described above, an example of loading the container 5 in the present embodiment has been described with reference to FIGS. 6 and 7.
  • the drone 1 can have the effects of improving stability, safe operation, and carrying cargo. ..
  • the moving body capable of achieving such an effect is not limited to the drone 1 using the ballast tank 55 and the center of gravity control unit 44 of FIGS. 6 and 7, and the following moving bodies can be adopted. .. That is, for example, in order to manage the center of gravity of the moving body (for example, the drone 1 of FIGS. 6 and 7) (for example, the container center of gravity GC of FIGS. 6 and 7) (for example, by the center of gravity management unit 43 of FIG. 3), water or air.
  • the moving body that can be adjusted so that the center of gravity is below the waterline can improve stability, operate safely, and carry cargo.
  • the total weight and buoyancy of the drone 1 of FIGS. 6 and 7 can be adjusted in cooperation with the luggage weight (for example, the weight of the container 5 of FIGS. 6 and 7).
  • the moving body which can adjust the weight and buoyancy of the entire moving body in cooperation with the weight of the luggage, can improve the stability, operate safely, and carry the cargo.
  • the ballast tank 55 described above is assumed to be at the position shown in FIGS. 6 and 7, but is not particularly limited thereto. That is, for example, a ballast tank capable of changing the center of gravity of the moving body is sufficient. Furthermore, the ballast tank may have a structure in the direction of the axis X. As a result, the center of gravity can be changed so as to change the elevation angle of the moving body.
  • FIG. 8 is a diagram showing an example of fixing the drone 1 when the drone 1 of FIG. 1 enters the dock.
  • FIG. 8A is a diagram showing a state before the drone 1 is fixed when the drone 1 enters the dock.
  • FIG. 8B is a diagram showing a state after the drone 1 is fixed when the drone 1 enters the dock.
  • FIGS. 8A and 8B they are collectively referred to as “FIG. 8”.
  • the drone 1 is trying to connect to a dock in which the axis X is in the positive direction from the direction in which the axis X is in the negative direction.
  • the drone 1 is an underwater drone that can move underwater.
  • the drone 1 in the example of FIG. 8 is loaded with a container 5 and includes a hatch 61 and a fixed portion 62.
  • the dock 7 in the example of FIG. 8 is provided with a waterproof wall 72 that separates the Di in the dock and the dock chamber Do with respect to the dock wall 71 that is the wall of the dock 7.
  • the dock 7 includes a support machine 73, a connection ring portion 74, a lock ring 75, and a cam 76.
  • the dock 7 further includes a support member 6.
  • the dock connection area Dc is formed by the waterproof wall 72, the connection ring portion 74, the lock ring 75, and the hatch 61 of the drone 1 in addition to the Di in the dock and the dock room Do. It is formed.
  • the entrance is closed to block waves from the outer port. That is, although not shown, when the drone 1 enters the dock 7, the inside of the dock and the outer port can be separated by the partition wall of the dock provided with the axis X in the negative direction. As a result, it is possible to block waves and the like from the outer port to the dock room Do.
  • the self-position of the drone 1 can be stabilized with respect to the dock D by grasping an arbitrary position of the drone 1 by the support machine 73 provided in the dock 7.
  • the support machine 73 in the example of FIG. 8 includes a mechanism capable of grasping the drone 1 and a mechanism for moving the support machine 73 to an arbitrary position.
  • the hatch 61 of the drone 1 can be grasped and the drone 1 can be supported in a predetermined position of the dock 7.
  • the drone 1 can easily control the position with respect to the dock 7.
  • the drone 1 can be moved to a predetermined position of the dock 7.
  • the drone 1 is fixed by the support member 6 having a roller structure with a spring, the lock ring 75 is pressed against the fixing portion 62 of the drone 1, and the lock ring 75 is fixed by the cam 76, so that the dock connection area around the hatch 61 is connected.
  • the Dc can be sealed.
  • the connection ring portion 74 has a cylindrical shape. As a result, it can be connected to the drone 1 which is a cylindrical underwater drone.
  • the connecting ring portion includes a lock ring 75, and the cam 76 is movable with respect to the lock ring 75. For example, in the example of FIG.
  • the cam 76 includes a mechanism that rotates with respect to the lock ring 75. This allows the cam 76 to rotate and reposition with respect to the lock ring 75, as shown in FIGS. 8A and 8B. By this cam mechanism, the lock ring 75 and the cam 76 can be fitted and fixed to the fixing portion 62 of the drone 1.
  • connection ring portion 74 is made of rubber or the like and can cope with shaking of the hull to some extent. That is, by using an elastic material such as rubber for the connection ring portion 74, each portion of the dock D including the connection ring portion 74 and each portion of the drone 1 including the fixing portion 62 when the drone 1 shakes. Can be prevented from being overloaded.
  • the ring when the drone 1 is connected to the dock 7, by pulling the cam toward the ring side, the ring can be brought into close contact with the hull and airtightness can be maintained. That is, when the lock ring 75 and the cam 76 are fitted and fixed to the fixing portion 62 of the drone 1, the lock ring 75 is moved by moving the cam 76 to the lock ring 75 side, that is, in the positive direction of the axis X. It can be brought into close contact with the fixed portion 62 of the drone 1. As a result, the dock connection area Dc can be made airtight.
  • the support member 6 that supports the drone 1 can be devised to support a position of an aggregate (not shown) in the structure of the drone 1.
  • the support member provided in the dock 7 is provided. 6 can arrange the support member 6 so as to contact and support the aggregate of the drone 1 at a certain position.
  • FIG. 9 is a diagram showing an example in which the drone 1 of FIG. 1 is connected to the dock 7 and the container 5 is lowered.
  • FIG. 9A is a diagram showing an example in which the hatch 61 of the drone 1 connected to the dock 7 is removed.
  • FIG. 9B is a diagram showing an example in which the dolly 77 is connected and the container 5 is lowered.
  • the water in the dock connection region Dc outside the hatch 61 which has become airtight as described above, can be drained by a pump or the like, the water can be drained from the dock connection region Dc, and the hatch 61 can be removed.
  • the inside of the drone 1, the dock connection area Dc, and the Di in the dock can be made into the atmosphere.
  • the waterproof wall 72 can be released. As a result, the drone 1, the dock connection area Dc, and the Di in the dock are connected, and the container 5 can be lowered.
  • the mechanism to receive the luggage from the dock side closer and pull out the luggage It also supplies power and fuel at the same time. That is, it is possible to bring the mechanism for receiving the luggage such as the trolley 77 closer from the Di in the dock and withdraw the luggage such as the container 5 from the drone 1. Further, the dock 7 can supply power and fuel to the drone 1 at the same time as pulling out the luggage. As a result, power and fuel can be supplied in parallel with the loading and unloading of the container 5.
  • the weight of the hull changes significantly when unloading. Therefore, make adjustments by filling the ballast inside the ship with water or reducing the amount of water in the dock room. That is, when the container 5 is dropped from the drone 1, the weight of the container 5 changes from the state of being applied to the drone 1 to the state of being applied to the dock 7, so that the drone 1 tends to surface. Therefore, by putting water in the ballast tank 55 provided in the drone 1 described above, it is possible to increase the weight of the drone 1 and prevent it from ascending. Further, since the dock chamber Do is separated from the outer port by the partition wall of the dock provided with the axis X in the negative direction, the water in the dock chamber Do can be discharged.
  • the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
  • the moving body capable of exerting such an effect is not limited to the dock 7 and the drone 1 of FIGS. 8 and 9, and the following docks and moving bodies can be adopted. That is, for example, when the hull (for example, the drone 1 in FIG. 8 or FIG. 9) enters the dock (for example, the dock 7 in FIG. 8 or FIG. 9), the entrance (for example, the axis X in FIG. 8 or FIG. 9 is in the negative direction). It is possible to adopt a dock that blocks a certain barrier) and blocks waves from the outer port.
  • the mobile body connected to the dock that blocks waves from the outer port can improve the stability and load and unload cargo.
  • a dock that grips (a moving body) with a support machine on the dock side (for example, the support machine 73 in FIG. 8) can be adopted. This allows the (moving body) to stabilize its self-position and facilitate control, and the moving body can load and unload cargo with improved stability.
  • a dock made of rubber or the like (for example, the connection ring portion 74 of FIGS. 8 and 9) can be used to cope with the shaking of the hull to some extent. As a result, even when the moving body shakes or the moving body moves due to a change in weight, cargo can be stably loaded and unloaded.
  • the hull is fixed by a roller (for example, the support member 6 in FIG. 9), the lock ring (for example, the lock ring 75 in FIG. 9) is pressed against the hull, and the cam (for example, the cam 76 in FIG. 9) is pressed (for example, in FIG. 9).
  • a dock that seals the periphery of the hatch (for example, the hatch 61 in FIG. 9) can be adopted. This allows the moving object to load and unload cargo with improved stability. Further, for example, a drainage facility can be adopted in the dock because some water or the like leaks into the inside of the dock. This allows the moving object to load and unload cargo without being threatened by water leaks.
  • a dock devised to hold down a strong bone in the drone 1 can be adopted.
  • the roller of the supporting member is supported by a weak spring, and a dock that allows some vibration of the moving body can be adopted.
  • FIG. 10 is a diagram showing the dock 7 containing the drone 1 of FIG. 8 from another direction.
  • FIG. 10A is a diagram showing a dock 7 containing a drone 1.
  • FIG. 10B is a diagram showing an example in which water in the dock chamber Do of the dock 7 containing the drone 1 is discharged.
  • FIG. 10C is a diagram showing an example in which the dock chamber Do of the dock 7 containing the drone 1 is filled with water again.
  • FIGS. 10A to 10C individually, they are collectively referred to as "FIG. 10".
  • the drone 1 is in the dock room Do of the dock 7.
  • the dock 7 is installed below the sea level of the upper Du of the dock. Further, the dock 7 is provided with a valve 81 between the dock 7 and the upper Du of the dock. Further, the dock 7 includes a spare water tank 83 via a valve 82. Further, looking at FIG. 10A, since the drone 1 moves underwater and enters the dock 7, the dock chamber Do is filled with water.
  • the amount of water in the dock can be adjusted immediately by preparing a spare water tank below the dock when maintaining the balance of the ship or for maintenance. That is, the drone 1 may be out of balance due to buoyancy, or the water in the dock room Do may be drained for maintenance and inspection of the drone 1.
  • the drone 1 may be out of balance due to buoyancy, or the water in the dock room Do may be drained for maintenance and inspection of the drone 1.
  • it when simply draining water with a pump or the like, it takes time depending on the size of the dock chamber Do and the drainage capacity of the pump, and a pump with high drainage capacity is prepared for a short time. It costs such as. Therefore, by providing the dock 7 with a reserve water tank 83 underneath, the amount of water in the dock chamber Do can be adjusted immediately by draining the water inside the dock chamber Do to the reserve water tank 83.
  • the dock 7 is provided with a valve 82 between the dock 7 and the empty reserve water tank 83 provided below.
  • the valve 82 By opening the valve 82, the water inside the dock chamber Do flows into the reserve water tank 83. As a result, water is drained from the dock room Do.
  • the water pressure will be matched with the sea side again, and the water in the reserve tank will be pumped back to the sea. That is, when the maintenance and inspection of the drone 1 is completed and the vehicle departs from the outer port, seawater is supplied to the dock room Do. As a result, the dock room Do is filled with seawater, and the water pressure can be matched with that of the outer port. In this state, the port can be departed by opening the partition wall separating the outside world and the dock room Do.
  • the ups and downs can be adjusted in the same way. That is, in the case of a water drone in which the drone 1 floats and moves on the water, although not shown, the above-mentioned dock upper Du does not exist, but in the dock 7 having a partition wall with an outer port, the drone 1 enters the dock. Close the partition with the outer port in this state. When it is desired to drain the water in the dock room Do, seawater can be drained to the reserve water tank 83 provided in the lower part. As described above, an example of adjusting the water level of the dock 7 containing the drone 1 in the present embodiment has been described with reference to FIG.
  • the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
  • the moving body capable of exerting such an effect is not limited to the dock 7 and the drone 1 in FIG. 10, and the following docks and moving bodies can be adopted. That is, for example, when maintaining the balance of the ship (for example, the drone 1 in FIG. 10) or by preparing a spare water tank (for example, the spare water tank 83 in FIG. 10) below the dock for maintenance, the amount of water in the dock can be quickly increased. You can use a dock to adjust. As a result, the water in the dock can be drained without using a pump or the like, and maintenance and inspection of the moving body can be performed immediately.
  • a dock when the moving body departs from the port, a dock can be adopted in which the water pressure is matched with the sea side (for example, the upper Du of the dock in FIG. 10) again, and the water in the reserve tank is later returned to the sea by a pump.
  • water can be supplied to the dock without using a pump or the like, and the moving body can leave the port immediately.
  • a dock for adjusting ups and downs can be adopted in the same manner. Thereby, for example, not only the moving body that can move in the water shown in FIG. 10 but also the moving body that can move on the water can be quickly drained to perform maintenance and inspection work.
  • the above-mentioned dock 7 has one path and one valve to the reserve water tank 83 and the dock upper Du, but is not particularly limited thereto. That is, for example, the dock 7 and the reserve water tank 83 may be connected by a plurality of valves and paths. As a result, drainage can be performed by one route and air can be supplied by the other route, and the speed of drainage can be improved.
  • FIG. 11 is a diagram showing an example in which the drone 1 of FIG. 1 raises the GPS receiving device for acquiring its own position to the sea surface.
  • the drone 1-1 which is a surface drone that floats and moves on the sea, can acquire a self-position by receiving a signal from the GPS satellite G while navigating on the surface of the water.
  • the drone 1-2 which is an underwater drone that moves in the sea, is blocked by the seawater and cannot directly receive the signal from the GPS satellite G.
  • the receiver with the tie can be raised to the sea surface when acquiring GPS. That is, when the drone 1-2 moving underwater receives the signal from the GPS satellite G, the drone 1 can connect the GPS receiving device 91 with the signal line 92 and raise it to the sea surface. As a result, the drone 1-2 receives the signal from the GPS satellite G via the GPS receiver 91 and the signal line 92, and the position estimation unit 45 in FIG. 3 is based on the acquired signal from the GPS satellite G. The self-position can be estimated. Further, at this time, it is possible to transmit sound waves or the like from the GPS device or the hull to confirm that there are no other ships or obstacles at the sea surface or a place up to the sea surface and safely transport the GPS to the sea surface.
  • the GPS receiving device 91 when the GPS receiving device 91 is raised to the sea surface, the GPS receiving device 91 may come into contact with a ship moving on the sea such as a drone 1-1. In order to avoid this, the GPS receiving device 91 can transmit sound waves or the like to check whether there are other ships or obstacles on the sea surface or at a place up to the sea surface. Specifically, for example, looking at FIG. 11, the sound wave transmitting unit (not shown) included in the GPS receiving device 91 transmits sound waves toward the sea surface. Sound waves are reflected when there are other vessels or obstacles on or above sea level. The sound wave receiver (not shown) provided in the GPS receiver 91 receives the reflected sound wave, and the distance to the sea surface, the engine sound of another ship, etc.
  • the drone 1-2 can be used by another ship or an obstacle. Can identify the existence of. As a result, the drone 1-2 can avoid other ships and obstacles, raise the GPS receiver 91 to the sea surface, receive the signal of the GPS satellite G, and acquire its own position. As described above, an example of the case where the drone 1 acquires its own position in the present embodiment has been described with reference to FIG.
  • the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
  • the moving body capable of exerting such an effect is not limited to the drone 1 in FIG. 11, and the following docks and moving bodies can be adopted. That is, for example, when acquiring GPS for acquiring the self-position of a mobile body (for example, drone 1 in FIG. 11), a receiver with a string (for example, signal line 92 in FIG. 11) (for example, GPS reception in FIG. 11) A moving body that raises the device 91) to the sea surface can be adopted. As a result, the moving body can acquire its own position, and can operate safely and carry cargo. Further, for example, a GPS device (for example, the GPS receiving device 91 in FIG.
  • the drone 1 in FIG. 11 or a hull (for example, the drone 1 in FIG. 11) emits a sound wave or the like to the sea surface or a place up to the sea surface to another ship (for example, the drone 1 in FIG. 11).
  • -1) It is possible to adopt a moving object that safely transports GPS to the surface of the sea after confirming that there are no obstacles. As a result, the safety when raising the GPS receiving means necessary for acquiring the self-position to the sea surface is improved, and safe operation and cargo transportation can be performed.
  • the above-mentioned device for raising to the sea is a GPS receiving device 91, but the device is not particularly limited to this.
  • the GPS receiving device not only the GPS receiving device, but also a device that a moving object raises to the sea, specifically, an image pickup device that captures an image of the state of the sea, a periscope, or the like, also transmits sound waves or the like as described above. By doing so, it is possible to confirm that there are no other vessels or obstacles on the surface of the sea or in the place up to the surface of the sea.
  • FIG. 12 is a diagram showing an example in which the drone 1 of FIG. 1 moves in response to a signal from a signal transmission / reception device installed on a quay or the seabed.
  • a signal transmission / reception device 101 in the signal transmission / reception device 101, a plurality of signal transmission / reception devices 101A are installed on the quay Q in the sea. Further, the signal transmission / reception device 101B is installed on the seabed. When it is not necessary to distinguish between the signal transmission / reception device 101A and the signal transmission / reception device 101B, they are collectively referred to as "signal transmission / reception device 101".
  • the signal transmission / reception device 101 installed on the quay Q in the sea or the seabed transmits a signal such as a sound wave from the signal transmission / reception unit 111.
  • the signal transmitted by the signal transmission / reception device 101 is received by the drone 1 navigating near the signal transmission / reception device 101.
  • the drone 1 provided with the position estimation unit 45 of FIG. 3 can analyze the signal of the signal transmission / reception device 101 and perform self-position estimation to estimate the self-position of the drone 1.
  • the distance can be measured from the arrival time on a ship. That is, the signal transmission / reception device 101 transmits time information corresponding to the time at the time of transmission as a signal, similarly to the GPS satellite G.
  • the drone 1 that has received the signal can estimate the distance from the signal transmission / reception device 101 that has transmitted the signal by calculating the arrival time from the transmission time and the reception time. As a result, the drone 1 can maintain a distance from the quay Q and the seabed where the signal transmission / reception device 101 is installed by providing a predetermined distance from the signal transmission / reception device 101.
  • the distance can be estimated from the strength of the received signal. That is, the signal such as the sound wave transmitted by the signal transmission / reception device 101 becomes wider or attenuated as the distance from the transmitted position increases, so that the signal strength decreases.
  • the drone 1 can share, for example, the strength transmitted by the signal transmission / reception device 101 in advance.
  • the drone 1 can estimate the distance between the drone 1 and the signal transmission / reception device 101 from the amount at which the received signal is weakened from the transmitted intensity and the received intensity. As a result, the distance of the signal transmitted by the signal transmission / reception device 101 can be estimated regardless of the data carried on the signal such as time information.
  • the drone 1 can estimate an accurate self-position. Specifically, for example, when the drone 1 can estimate the distance from one signal transmission / reception device 101, it can be seen that the self-position of the drone 1 is on a concentric circle separated by the distance estimated from the signal transmission / reception device 101. .. If the distances from each of the two signal transmission / reception devices 101 can be estimated, the self-position of the drone 1 is the position of the intersection (up to two) of the concentric circles centered on each of the signal transmission / reception devices 101. It turns out that there is.
  • the self-position of the drone 1 is determined to be one point. As described above, by combining a plurality of signal transmission / reception devices 101, the drone 1 can estimate an accurate self-position. Furthermore, by further combining a plurality of signal transmission / reception devices 101, the accuracy of estimating the self-position of the drone 1 can be improved.
  • the drone 1 can be provided with the signal transmitting / receiving device 101, and the quay Q can be provided with the signal receiving device.
  • the signal transmission / reception device 101 included in the drone 1 transmits a signal carrying information indicating the current time.
  • a plurality of signal receiving devices installed on the quay Q receive the signal. Similar to the above, the signal receiving device can estimate the distance between the drone 1 and the signal receiving device from the transmission time and the reception time of the signal.
  • the position of the drone 1 can be estimated by being able to estimate each of the distances between the drone 1 and each of the plurality of signal receiving devices. As a result, the position of the drone 1 can be estimated from the quay Q side, that is, the ground side.
  • the position may be estimated from a plurality of ground stations and transmitted to the ship by using the signal from the ship. That is, as described above, when the drone 1 is positioned based on the signals received by the plurality of ground signal receiving devices based on the signal transmitted by the signal transmitting / receiving device 101 included in the drone 1, it is estimated on the ground side.
  • the position of the drone 1 can be transmitted to the drone 1 by wireless communication such as radio waves. As a result, the drone 1 can acquire the self-position estimated on the ground side without loading the device for estimating the self-position.
  • the self-position may be estimated using the distance from the water surface. That is, as described above, the more information about each distance, such as the distance between the drone 1 and the signal transmission / reception device 101, the better the accuracy. Therefore, for example, even when the signal can be received from only one of the signal transmission / reception devices 101 to the quay Q, the signal from the other drone 1 whose self-position is accurately determined can be received. , Can be combined with your own movement status. Further, when estimating the self-position of the drone 1 which is an underwater drone capable of moving underwater, the self-position may be estimated using the distance from the water surface.
  • the self-position may be estimated by inertial navigation using information such as ocean current. That is, when there is no device such as a signal transmission / reception device 101 in the vicinity of the drone 1, the drone 1 performs inertial navigation based on information on the direction and speed of the ocean current and information on the acceleration sensor provided in the drone 1. May be good. As a result, the drone 1 can estimate its own position even when the signal transmission / reception device 101 is in a poor area or cannot receive a signal. As described above, an example of the signal transmission / reception device for preventing the drone 1 from colliding with the quay or the seabed in the present implementation system has been described with reference to FIG.
  • the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
  • the mobile body capable of exerting such an effect is not limited to the signal transmission / reception device 101 and the drone 1 of FIG. 12, and the following docks and mobile bodies can be adopted. That is, for example, a device that emits sound waves or the like (for example, the signal transmission / reception device 101 in FIG. 12) is installed on the quay or the seabed under the sea, and by emitting a signal, the transport aircraft (for example, the drone 1 in FIG.
  • a signal transmission / reception means or a moving body that conveys a danger (that is, it is approaching the seabed) or estimates the self-position of the transport aircraft (for example, by the position estimation unit 45 in FIG. 3).
  • the moving body can estimate its own position, and can operate safely and carry cargo.
  • a signal transmission / reception means or a mobile body that estimates the distance (for example, the signal transmission / reception device 101 of FIG. 12 and the drone 1) depending on the strength of the received signal can be adopted.
  • the moving body can estimate the distance to the quay where the signal transmitting / receiving means is installed and the seabed, and can operate safely and carry cargo.
  • a signal transmission / reception means or a mobile body that combines a plurality of signal transmission / reception means can be adopted.
  • the moving body can estimate its own position more accurately, and can operate safely and carry cargo.
  • a signal transmitting / receiving means or a mobile body that transfers data from a ship (for example, the drone 1 in FIG. 12) to the ground can be adopted.
  • a ship for example, the drone 1 in FIG. 12
  • appropriate control can be performed for the moving body by wireless communication or the like, and safe operation and cargo transportation can be performed.
  • a signal transmission / reception means or a mobile body that estimates a position from a plurality of ground stations (for example, a plurality of signal transmission / reception devices 101 in FIG. 12) and transmits the position to the ship by using a signal from the ship. ..
  • the moving body can acquire the self-position estimated on the ground side without loading the device for estimating the self-position, and can safely operate and transport the cargo.
  • even one ground station can adopt a signal transmission / reception means or a mobile body that can be combined with the movement of a ship or estimate its own position by using a distance from the water surface or the like.
  • the mobile body can estimate its own position based on the distance to other mobile bodies even when the distance to a place where there are few signal transmission / reception means can be used for estimation, and safe operation and cargo can be estimated. Can be transported. Further, for example, even if there is no ground station, it is possible to adopt a signal transmission / reception means or a mobile body that estimates its own position by inertial navigation using information such as ocean currents. As a result, the moving body can estimate its own position even when there is no signal transmitting / receiving means, and can operate safely and carry cargo.
  • the present invention and other embodiments have been described above, the present invention and other embodiments are not limited to the above-described embodiments, and modifications, improvements, etc. within the range in which the object can be achieved are described in the present invention. It is included.
  • the drone is adopted as an example of the moving body, but the drone is not limited to the drone, and any moving body can be adopted.
  • the functional block diagram shown in FIG. 3 is merely an example and is not particularly limited.
  • one functional block may be configured by a single hardware or a combination of a single software.
  • the programs constituting the software are installed in a computer or the like from a network or a recording medium.
  • the computer may be a computer embedded in dedicated hardware. Further, the computer may be a computer capable of executing various functions by installing various programs, for example, a general-purpose smartphone or a personal computer in addition to a server.
  • the recording medium containing such a program is not only composed of removable media, which is distributed separately from the main body of the device to provide the program to each user, but also is preliminarily incorporated in the main body of the device to each user. It is composed of the provided recording media and the like.
  • the steps for describing a program recorded on a recording medium are not only processed in chronological order but also in parallel or individually, even if they are not necessarily processed in chronological order. It also includes the processing to be executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention addresses the problem of providing a mobile body and a control method and the like therefor, which enable an improvement in the stability of a mobile body that moves in or on water, and which enable safe operation and transport of cargo. In the present invention, a drone 1 moves on or in water and transports a container 5 which is a prescribed article. The drone comprises: rollers 51 and cart rollers 53 which are a center of gravity moving means for moving the container center of gravity GC of the article; and a roller engagement part 54 which is a center of gravity fixing means for fixing the center of gravity of the article. In addition, the drone 1 is provided with a ballast tank 55 that can discharge or take in water or air using a pump. Due the forgoing, the abovementioned problem is solved.

Description

移動体Mobile
 本発明は、移動体に関する。 The present invention relates to a moving body.
 近年、水中を移動可能な水中ドローンの開発が行われている(例えば特許文献1参照)。 In recent years, underwater drones that can move underwater have been developed (see, for example, Patent Document 1).
特開2018-90017号公報Japanese Unexamined Patent Publication No. 2018-90017
 一方で、水中や水上を移動する移動体である水用ドローンにより、貨物を運搬するニーズがある。しかし、水用ドローンを用いて貨物を運搬することは、単にコンテナ船をスケールするだけでは対応が難しい。 On the other hand, there is a need to carry cargo by means of a water drone, which is a moving body that moves underwater or on water. However, transporting cargo using a water drone is difficult to handle simply by scaling the container ship.
 本発明は、このような状況に鑑みてなされたものであり、水中や水上を移動する移動体の安定性の向上や安全な運行、貨物の運搬を可能とすることを目的とする。 The present invention has been made in view of such a situation, and an object thereof is to improve the stability of a moving body moving underwater or on the water, to operate safely, and to enable cargo transportation.
 上記目的を達成するため、本発明の一態様の移動体は、
 水上又は水中を移動して所定の物品を運搬する移動体において、
 前記物品の重心を移動させる重心移動手段と、
 前記物品の前記重心を固定させる重心固定手段と、
 を備える。
In order to achieve the above object, the moving body of one aspect of the present invention is
In a mobile body that moves on or under water to carry a predetermined item.
A means for moving the center of gravity of the article and a means for moving the center of gravity of the article,
A center of gravity fixing means for fixing the center of gravity of the article,
To prepare for.
 本発明によれば、水用ドローンの安定性の向上や安全な運行、貨物の運搬ができるようになる。 According to the present invention, the stability of the water drone can be improved, safe operation, and cargo transportation can be performed.
本発明に係る実施形態のドローンと操縦者端末との間における制御の概要を示すイメージ図である。It is an image diagram which shows the outline of the control between the drone and the operator terminal of the embodiment which concerns on this invention. 図1のドローンにおける、移動制御に係る各種制御部の情報処理に係るハードウェア構成を示すブロック図である。FIG. 3 is a block diagram showing a hardware configuration related to information processing of various control units related to movement control in the drone of FIG. 1. 図1のドローンが実行する、各種処理を実現するための機能的構成の一例を示す機能ブロック図である。FIG. 3 is a functional block diagram showing an example of a functional configuration for realizing various processes executed by the drone of FIG. 1. 図1のドローンの外観の例を示す図である。It is a figure which shows the example of the appearance of the drone of FIG. 図1のドローンをガイド及び支持する支持部材6の設置の例を示す図である。It is a figure which shows the example of the installation of the support member 6 which guides and supports the drone of FIG. 図4のドローンについてのA―A線の断面図である。It is sectional drawing of the line AA about the drone of FIG. 図4のドローンについてのA―A線の断面図である。It is sectional drawing of the line AA about the drone of FIG. 図1のドローンのうち、水中を移動可能なドローンにおける図6と同様の断面図の例を示す図である。It is a figure which shows the example of the cross-sectional view similar to FIG. 6 in the drone which can move underwater among the drone of FIG. 図1のドローンが、ドックに入った際のドローンの固定の例を示す図である。It is a figure which shows the example of the fixed drone when the drone of FIG. 1 enters the dock. 図1のドローンが、ドックに入った際のドローンの固定の例を示す図である。It is a figure which shows the example of the fixed drone when the drone of FIG. 1 enters the dock. 図1のドローンがドックと接続され、コンテナを下す例を示す図である。It is a figure which shows the example which the drone of FIG. 1 is connected to a dock and lowers a container. 図1のドローンがドックと接続され、コンテナを下す例を示す図である。It is a figure which shows the example which the drone of FIG. 1 is connected to a dock and lowers a container. 図8のドローンが入ったドックを他の方向から示す図である。It is a figure which shows the dock containing the drone of FIG. 8 from the other direction. 図8のドローンが入ったドックを他の方向から示す図である。It is a figure which shows the dock containing the drone of FIG. 8 from the other direction. 図8のドローンが入ったドックを他の方向から示す図である。It is a figure which shows the dock containing the drone of FIG. 8 from the other direction. 図1のドローンが自己の位置を取得するためのGPS受信装置を海面にあげる例を示す図である。It is a figure which shows the example which raises the GPS receiver for acquiring the position of the drone of FIG. 1 to the sea surface. 図1のドローンが岸壁や海底に設置された発信装置からの信号を受けて移動する例を示す図である。It is a figure which shows the example which the drone of FIG. 1 moves by receiving the signal from the transmission device installed on the quay and the seabed.
 以下、本発明に係る実施形態に関し、水上又は水中を移動可能な水用小型移動体(以下「ドローン」と呼ぶ)1を含む情報処理システムについて、図面を用いて説明する。図中、同じ要素に対しては同じ参照符号を付して、重複する説明を省略する。なお、最初にドローン1の通信及び制御装置の全体的なイメージの説明を行い、次に、水上又は水中におけるドローン1の制御について説明する。 Hereinafter, with respect to the embodiment according to the present invention, an information processing system including a small moving body for water (hereinafter referred to as “drone”) 1 that can move on or under water will be described with reference to the drawings. In the figure, the same reference numerals are given to the same elements, and duplicate explanations are omitted. First, the overall image of the communication and control device of the drone 1 will be described, and then the control of the drone 1 on or under water will be described.
 以下、図面を参照して、本発明の実施形態について説明する。
 図1は、本実施形態のドローン1と操縦者端末2との間における制御の概要を示すイメージ図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an image diagram showing an outline of control between the drone 1 and the operator terminal 2 of the present embodiment.
 図1に示すように、ドローン1は、GPS(Global Positioning System)衛星Gから位置情報を取得する。
 ドローン1は、この位置情報と、ドローン1に搭載された各種センサから得られる情報と、を合わせて操縦者端末2に送信する。なお、各種センサから得られる情報とは、具体的に例えば、ドローン1の姿勢に関する情報や回転運動に関する情報等である。操縦者端末2は、スマートフォン等で構成され、操縦者Uがドローン1を操縦するために用いる端末である。
 サーバ3は、パーソナルコンピュータ等で構成され、ドローン1から各種情報を取得して、様々な処理を実行するために用いられる装置である。
 なお、ドローン1と、操縦者端末2と、サーバ3との夫々とはインターネット等の所定のネットワークNを介して相互に接続される。ネットワークNとは、インターネットや携帯キャリア網等は勿論、NFC((Near Field Communication)登録商標)やBlue tooth(登録商標)等の近距離無線通信等も含まれる。
 具体的に例えば、このようなネットワークNの利用態様として、以下のような例が想定される。
 即ち、ドローン1が、操縦者端末2の電波が到達するエリア内を移動する際は、ドローン1と操縦者端末2とは、リアルタイムで直接通信を行うことができる。これに対して、ドローン1が、操縦者端末2の電波が到達するエリア外を移動する際は、ドローン1と操縦者端末2との間で直接的な通信を行うことができないため、間接的な通信を行う。具体的には、操縦者端末2は、インターネットや携帯キャリア網等のネットワークNを介して、サーバ3からドローン1の位置情報や移動情報等を取得し、これら情報を参考にしながら、ドローン1の移動を制御するための情報を送信する。この場合において、サーバ3は、ドローン1と所定の無線通信規格の無線装置Wを介してドローン1と情報の授受を行う。
 また、サーバ3は、上述のように操縦者端末2の指示により動作するのみならず、ドローン1と授受した情報等に基づいて、ドローン1に対して目的地の指示や制御に関する情報の授受等を行うこともできる。
As shown in FIG. 1, the drone 1 acquires position information from the GPS (Global Positioning System) satellite G.
The drone 1 together transmits this position information and information obtained from various sensors mounted on the drone 1 to the operator terminal 2. The information obtained from the various sensors is, for example, information on the posture of the drone 1, information on the rotational movement, and the like. The operator terminal 2 is composed of a smartphone or the like, and is a terminal used by the operator U to operate the drone 1.
The server 3 is a device composed of a personal computer or the like and used to acquire various information from the drone 1 and execute various processes.
The drone 1, the operator terminal 2, and the server 3 are each connected to each other via a predetermined network N such as the Internet. The network N includes not only the Internet and mobile carrier networks, but also short-range wireless communications such as NFC ((Near Field Communication) registered trademark) and Bluetooth (registered trademark).
Specifically, for example, the following examples are assumed as the usage mode of such a network N.
That is, when the drone 1 moves in the area where the radio wave of the operator terminal 2 reaches, the drone 1 and the operator terminal 2 can directly communicate with each other in real time. On the other hand, when the drone 1 moves outside the area where the radio wave of the operator terminal 2 reaches, it cannot directly communicate with the drone 1 and the operator terminal 2, so that it is indirect. Communicates. Specifically, the operator terminal 2 acquires the position information, movement information, etc. of the drone 1 from the server 3 via the network N such as the Internet or the mobile carrier network, and while referring to these information, the drone 1 Send information to control movement. In this case, the server 3 exchanges information with the drone 1 via the drone 1 and the wireless device W having a predetermined wireless communication standard.
Further, the server 3 not only operates according to the instruction of the operator terminal 2 as described above, but also exchanges information regarding the destination instruction and control to the drone 1 based on the information exchanged with the drone 1. Can also be done.
 また、ドローン1は、本実施形態におけるドローンの制御等に係る情報処理のため、以下に示すようなハードウェア構成を有する。
 図2は、図1のドローンにおける、移動制御に係る各種制御部の情報処理に係るハードウェア構成を示すブロック図である。
Further, the drone 1 has the following hardware configuration for information processing related to the control of the drone in the present embodiment.
FIG. 2 is a block diagram showing a hardware configuration related to information processing of various control units related to movement control in the drone of FIG.
 CPU11、ROM12及びRAM13は、バス14を介して相互に接続されている。このバス14にはまた、入出力インターフェース15も接続されている。入出力インターフェース15には、出力部16、入力部17、記憶部18、通信部19及びドライブ20が接続されている。 The CPU 11, ROM 12 and RAM 13 are connected to each other via the bus 14. An input / output interface 15 is also connected to the bus 14. An output unit 16, an input unit 17, a storage unit 18, a communication unit 19, and a drive 20 are connected to the input / output interface 15.
 出力部16は、ディスプレイやスピーカ等で構成され、各種情報を画像や音声として出力する。
 入力部17は、キーボードやマウス等で構成され、各種情報を入力する。
The output unit 16 is composed of a display, a speaker, and the like, and outputs various information as images and sounds.
The input unit 17 is composed of a keyboard, a mouse, and the like, and inputs various information.
 記憶部18は、ハードディスクやDRAM(Dynamic Random Access Memory)等で構成され、各種データを記憶する。
 通信部19は、インターネットを含むネットワークNを介して他の装置(図1の例では操縦者端末2等)との間で通信を行う。
The storage unit 18 is composed of a hard disk, a DRAM (Dynamic Random Access Memory), or the like, and stores various data.
The communication unit 19 communicates with another device (such as the operator terminal 2 in the example of FIG. 1) via the network N including the Internet.
 ドライブ20には、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリ等よりなる、リムーバブルメディア31が適宜装着される。ドライブ20によってリムーバブルメディア31から読み出されたプログラムは、必要に応じて記憶部18にインストールされる。
 また、リムーバブルメディア31は、記憶部18に記憶されている各種データも、記憶部18と同様に記憶することができる。
A removable media 31 made of a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is appropriately mounted on the drive 20. The program read from the removable media 31 by the drive 20 is installed in the storage unit 18 as needed.
Further, the removable media 31 can also store various data stored in the storage unit 18 in the same manner as the storage unit 18.
 なお、図示はしないが、図1の操縦者端末2及びサーバ3は図2に示すハードウェア構成と基本的に同様の構成を有する。
 また、通信部19は、インターネットを含むネットワークNを介して通信を行うとしたが、特にこれに限定されない。具体的には例えば、他の装置の発する音波や電波を受信し、信号の強度や、信号に載せられたデータを取得することができる。即ち、上述の通信は、相互に情報を送受信することに限らず、音波や電波等の一方的な送信及び受信をすることができる。更に言えば、ドローン1がドックに入っている場合や陸地に近い場合等において、通信部19は音波や電波による無線通信に限らず、固定回線による接続により通信を行うことができる。
Although not shown, the operator terminal 2 and the server 3 in FIG. 1 have basically the same configuration as the hardware configuration shown in FIG.
Further, the communication unit 19 is supposed to perform communication via the network N including the Internet, but the present invention is not particularly limited to this. Specifically, for example, it is possible to receive sound waves and radio waves emitted by other devices, and acquire signal strength and data carried on the signal. That is, the above-mentioned communication is not limited to transmitting and receiving information to each other, but can unilaterally transmit and receive sound waves, radio waves, and the like. Furthermore, when the drone 1 is in the dock or near the land, the communication unit 19 can perform communication not only by wireless communication by sound waves or radio waves but also by connection by a fixed line.
 図3は、図1のドローン1が実行する、各種処理を実現するための機能的構成の一例を示す機能ブロック図である。 FIG. 3 is a functional block diagram showing an example of a functional configuration for realizing various processes executed by the drone 1 of FIG.
 図3に示すように、ドローン1は、駆動部41と、移動制御部42と、重心管理部43と、重心制御部44と、位置推定部45と、通信部19とを備える移動体である。
 本発明における「移動体」とは、駆動部により空間を移動するあらゆる物体あり、本実施形態におけるドローン1は、駆動手段としての駆動部41が駆動することにより水上又は水中を移動する「移動体」の一例である。
As shown in FIG. 3, the drone 1 is a mobile body including a drive unit 41, a movement control unit 42, a center of gravity management unit 43, a center of gravity control unit 44, a position estimation unit 45, and a communication unit 19. ..
The "moving body" in the present invention is any object that moves in space by a driving unit, and the drone 1 in the present embodiment is a "moving body" that moves on or under water by being driven by a driving unit 41 as a driving means. Is an example.
 駆動部41は、供給されるエネルギーを用いて駆動する。駆動部41が駆動すること等により、ドローン1は空間を移動することができる。電気エネルギーを用いて駆動するモータや、ガソリン等の化学エネルギーを用いて駆動するエンジンは、いずれも駆動部41の一例である。 The drive unit 41 is driven using the supplied energy. The drone 1 can move in space by driving the drive unit 41 or the like. A motor driven by electric energy and an engine driven by chemical energy such as gasoline are both examples of the drive unit 41.
 移動制御部42は、ドローン1の移動の制御を実行する。これにより、ドローン1は、駆動部41の出力を変化させ、駆動部41により駆動される羽等の向きに応じた移動をする。これにより例えば、後述するように建造物との距離を変化させることができる。
 移動制御部42は、通信部19で受信した操縦者端末2やサーバ3による操縦に係る信号に従って移動の制御を行ってもよいし、ドローン1の有する図示せぬ自律制御部により移動の制御を行ってもよい。
The movement control unit 42 controls the movement of the drone 1. As a result, the drone 1 changes the output of the drive unit 41 and moves according to the direction of the wings and the like driven by the drive unit 41. Thereby, for example, the distance to the building can be changed as described later.
The movement control unit 42 may control the movement according to the signal related to the control by the operator terminal 2 or the server 3 received by the communication unit 19, or the movement is controlled by the autonomous control unit (not shown) possessed by the drone 1. You may go.
 重心管理部43は、詳細は後述するが、ドローン1が積む荷物であるコンテナ等の重心を管理する。これにより、ドローン1は、コンテナの重心を検知・管理し、後述する重心制御部44と連携してコンテナの重心を変化させ、ドローン1が安定するよう、重心の制御することができる。 The center of gravity management unit 43 manages the center of gravity of the container or the like, which is the luggage loaded by the drone 1, although the details will be described later. As a result, the drone 1 can detect and manage the center of gravity of the container, change the center of gravity of the container in cooperation with the center of gravity control unit 44 described later, and control the center of gravity so that the drone 1 becomes stable.
 重心制御部44は、詳細は後述するが、ドローン1が積む荷物であるコンテナ等の重心を制御する。具体的には例えば、コンテナを移動や回転することにより、コンテナの重心の位置をドローン1の所定の位置に移動することができる。 The center of gravity control unit 44 controls the center of gravity of the container or the like, which is the load loaded by the drone 1, although the details will be described later. Specifically, for example, by moving or rotating the container, the position of the center of gravity of the container can be moved to a predetermined position of the drone 1.
 位置推定部45は、詳細は後述するが、ドローン1の自身の位置である、自己位置を推定する。具体的には例えば、GPS衛星からの信号に基づいて現在位置を推定したり、後述する発信装置からの信号に基づいて現在位置を推定したりすることができる。 The position estimation unit 45 estimates the self-position, which is the self-position of the drone 1, although the details will be described later. Specifically, for example, the current position can be estimated based on a signal from a GPS satellite, or the current position can be estimated based on a signal from a transmission device described later.
 以下、図4を用いて、本実施形態における、水上又は水中を移動可能なドローン1の外観の例を説明する。 Hereinafter, an example of the appearance of the drone 1 that can move on or under water in the present embodiment will be described with reference to FIG.
 なお、以下の説明では、特に断りのない限り、次のように定義する方向を用いるものとする。
 即ち、以下、前述の水上又は水中を移動可能なドローン1において、ドローン1の中心を通り、主たる駆動力を発揮することで移動する方向に軸Xをとる。即ち、詳細は後述するが、ドローン1は軸Xの片側に、主たる駆動力を発揮するプロペラを備える。プロペラがある側を、「ドローン1の後方」又は「軸Xが負の方向」と呼び、その逆を、「ドローン1の前方」又は「軸Xが正の方向」と呼ぶ。
 また、ドローン1の中心を通り、水面に浮遊させたドローン1に対して重力が働くのと逆の方向に軸Zをとる。即ち、例えば、水上に水平に浮遊させ貨物を積んだドローン1がある場合において、重力が働く方向を「ドローン1の下側」又は「軸Zが負の方向」と呼び、その逆を、「ドローン1の上側」又は「軸Zが正の方向」と呼ぶ。
 また、軸Xと軸Zとの交点を通り、軸Xと軸Yと軸Zとを用いた3次元直交座標系が右手系となるように、軸Yを定義する。
 ただし、本実施形態の説明におけるドローン1の構造及び軸の定義の方向は例示にすぎない。即ち、上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
In the following description, unless otherwise specified, the following directions are used.
That is, hereinafter, in the above-mentioned drone 1 that can move on or under water, the axis X is taken in the direction of movement by passing through the center of the drone 1 and exerting a main driving force. That is, although the details will be described later, the drone 1 is provided with a propeller that exerts a main driving force on one side of the shaft X. The side with the propeller is called "rear of drone 1" or "axis X is in the negative direction", and the opposite is called "in front of drone 1" or "axis X is in the positive direction".
Further, the axis Z is taken in the direction opposite to the gravity acting on the drone 1 which passes through the center of the drone 1 and is suspended on the water surface. That is, for example, when there is a drone 1 that is horizontally suspended on water and loaded with cargo, the direction in which gravity acts is called "the lower side of the drone 1" or "the direction in which the axis Z is negative", and the opposite is called ". It is called "upper side of drone 1" or "axis Z is in the positive direction".
Further, the axis Y is defined so that the three-dimensional Cartesian coordinate system using the axis X, the axis Y, and the axis Z becomes a right-handed system through the intersection of the axis X and the axis Z.
However, the direction of the definition of the structure and the axis of the drone 1 in the description of the present embodiment is merely an example. That is, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the range in which the object of the present invention can be achieved are included in the present invention.
 図4は、図1のドローン1の外観の例を示す図である。具体的には、ドローン1を、軸Zが正の方向から、軸Xが正の方向が左向きとなるよう示した図である。
 図4の例のドローン1は、水上を浮遊して移動する移動体である。ドローン1は、貨物であるコンテナ5を積載し、駆動部41の例である駆動部41Aを移動制御部42により制御することにより軸Xが正の方向に移動する。
FIG. 4 is a diagram showing an example of the appearance of the drone 1 of FIG. Specifically, it is a figure which showed the drone 1 so that the axis Z is from the positive direction and the axis X is from the positive direction to the left.
The drone 1 in the example of FIG. 4 is a moving body that floats and moves on the water. The drone 1 is loaded with a container 5 which is cargo, and the axis X moves in the positive direction by controlling the drive unit 41A, which is an example of the drive unit 41, by the movement control unit 42.
 サイドスラスタを上下方向に付ける事で、前進を伴わない移動ができる。即ち、図4の例のドローン1は、駆動部41の例である2つの駆動部41Bを備える。ドローン1は、2つの駆動部41B(以下、「サイドスラスタ」と適宜呼ぶ)を、軸Zの方向に駆動力を発揮する向きに備える。これにより、サイドスラスタを駆動することにより、軸Zが正の方向又は軸Zが負の方向に駆動力を発揮することができる。これにより、ドローン1は、駆動部41Aによる前進又は後退を伴わずに軸Zの方向に駆動力を発揮することができる。即ち、ドローン1の軸Yを中心とした回転等の姿勢の制御を行うことができる。
 また、サイドスラスタは、船体前後ともに付けても良い。即ち、図示はしないが、ドローン1は、軸Xが負の方向の位置に、軸Zの方向に駆動力を発揮するサイドスラスタを更に備えることができる。これにより、ドローン1は、駆動部41Aによる前進又は後退を伴わずに軸Zの方向に移動を行う場合において、ドローン1の軸Xと軸Yが成す面を任意の角度となるように制御することができる。
 また、左右方向にも付けて良い。即ち、図示はしないが、ドローン1は、軸Yの方向に駆動力を発揮するサイドスラスタを備えることができる。これにより、ドローン1は、駆動部41Aによる前進又は後退を伴わずに軸Yの方向を移動や、方位の変更を行うことができる。
 以上、図4を用いて、本実施形態における、水上又は水中を移動可能なドローン1の外観の例を説明した。
By attaching the side thrusters in the vertical direction, it is possible to move without moving forward. That is, the drone 1 in the example of FIG. 4 includes two drive units 41B, which is an example of the drive unit 41. The drone 1 is provided with two drive units 41B (hereinafter, appropriately referred to as "side thrusters") in a direction in which the driving force is exerted in the direction of the axis Z. Thereby, by driving the side thruster, the driving force can be exerted in the positive direction of the axis Z or the negative direction of the axis Z. As a result, the drone 1 can exert a driving force in the direction of the axis Z without moving forward or backward by the driving unit 41A. That is, it is possible to control the posture such as rotation of the drone 1 around the axis Y.
Further, the side thrusters may be attached to both the front and rear of the hull. That is, although not shown, the drone 1 can further include a side thruster that exerts a driving force in the direction of the axis Z at a position where the axis X is in the negative direction. As a result, the drone 1 controls the surface formed by the axis X and the axis Y of the drone 1 so as to have an arbitrary angle when the drone 1 moves in the direction of the axis Z without moving forward or backward by the drive unit 41A. be able to.
It may also be attached in the left-right direction. That is, although not shown, the drone 1 can be provided with a side thruster that exerts a driving force in the direction of the axis Y. As a result, the drone 1 can move in the direction of the axis Y and change the direction without moving forward or backward by the drive unit 41A.
As described above, an example of the appearance of the drone 1 that can move on or under water in the present embodiment has been described with reference to FIG.
 このような図4の駆動部41を用いた場合、ドローン1は、安定性の向上や安全な運行、貨物の運搬ができるという効果を奏することができる。
 このような効果を奏することが可能な移動体は、図4の駆動部41を用いたドローン1に限定されず、次のような移動体を採用することができる。
 即ち、例えば、サイドスラスタ(例えば図4の駆動部41B)を上下方向(例えば図4の軸Zの方向)に付ける事で、前進を伴わない移動ができる移動体を採用できる。これにより、サイドスラスタを備えた移動体(例えば図4のドローン1)は、軸Zの方向に駆動力を制御することができ、安定性を向上させることができる。
 また例えば、サイドスラスタは、船体前後(例えば図4の軸Xの方向の端部の近く)ともに付けた移動体を採用できる。これにより、船体前後にサイドスラスタを備えた移動体は、移動体の軸Zの方向の制御や、角度の制御を行うことができ、安定性を向上させることができる。
 また例えば、サイドスラスタを、左右方向(例えば図4の軸Yの方向)にも付けた移動体を採用できる。これにより、左右方向にサイドスラスタを備えた移動体は、軸Xの方向の移動を伴わずに、軸Yの方向の移動や、方位の変更を行うことができ、安定性を向上させることができる。
 また例えば、上述のサイドスラスタは、船体の前部や前後や左右方向の何れかに備えるものとしたがが、特にこれに限定されない。即ち例えば、軸Xや軸Yや軸Zの方向に限らず、何れの軸でもない方向に備えてもよい。更に言えば、図示はしないがサイドスラスタの設置されている方向を変化させる機構を備え、任意の方向に駆動力を発揮できるようにしてもよい。
When the drive unit 41 of FIG. 4 is used, the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
The mobile body capable of achieving such an effect is not limited to the drone 1 using the drive unit 41 of FIG. 4, and the following mobile body can be adopted.
That is, for example, by attaching a side thruster (for example, the drive unit 41B in FIG. 4) in the vertical direction (for example, the direction of the axis Z in FIG. 4), a moving body capable of moving without advancing can be adopted. As a result, the moving body provided with the side thrusters (for example, the drone 1 in FIG. 4) can control the driving force in the direction of the axis Z, and can improve the stability.
Further, for example, as the side thruster, a moving body attached both front and rear of the hull (for example, near the end in the direction of the axis X in FIG. 4) can be adopted. As a result, the moving body provided with the side thrusters in the front and rear of the hull can control the direction of the axis Z of the moving body and control the angle, and can improve the stability.
Further, for example, a moving body having side thrusters attached in the left-right direction (for example, the direction of the axis Y in FIG. 4) can be adopted. As a result, the moving body provided with the side thrusters in the left-right direction can move in the direction of the axis Y and change the direction without moving in the direction of the axis X, which can improve the stability. can.
Further, for example, the above-mentioned side thruster is provided in the front part of the hull, in the front-rear direction, or in the left-right direction, but the present invention is not particularly limited to this. That is, for example, it is not limited to the direction of the axis X, the axis Y, or the axis Z, and may be provided in a direction other than any of the axes. Furthermore, although not shown, a mechanism for changing the direction in which the side thruster is installed may be provided so that the driving force can be exerted in any direction.
 以下、図4を用いて、本実施形態における、ドローン1をガイド及び支持する支持部材6の例を説明する。
 図4の岸壁Qは、複数の支持部材6を備える。支持部材6は、ドローン1をガイド及び支持することができる。
Hereinafter, an example of the support member 6 that guides and supports the drone 1 in the present embodiment will be described with reference to FIG.
The quay Q in FIG. 4 includes a plurality of support members 6. The support member 6 can guide and support the drone 1.
 図4の例の支持部材6は、バネ付きのローラをつかって、接触しても安全に奥にガイドすることができる。即ち、支持部材6は、ばね付きのローラ構造とすることにより、ドローン1が接触してもばねの弾性により衝撃等を吸収することができる。また、岸壁Qが複数の支持部材6を備えることにより、複数の支持部材6が次々にドローン1と接触させることができる。これにより、ドローン1を岸壁Qに沿ってガイドすることができる。 The support member 6 in the example of FIG. 4 can be safely guided to the back even if it comes into contact with it by using a roller with a spring. That is, by adopting a roller structure with a spring, the support member 6 can absorb an impact or the like due to the elasticity of the spring even if the drone 1 comes into contact with the support member 6. Further, since the quay Q includes a plurality of support members 6, the plurality of support members 6 can be brought into contact with the drone 1 one after another. As a result, the drone 1 can be guided along the quay Q.
 また、左右上下から支えることができる。即ち、支持部材6は、ドローン1の形状に応じて、左右上下の任意の方向からガイドや支持することができる。具体的には例えば、図4の例では岸壁Q及び支持部材6は、ドローン1が軸Xと軸Yで示す面における移動をガイドや支持するが、これに特に限定されない。即ち、岸壁Q及び支持部材6はドローン1に対して軸Yが正の方向及び軸Yが負の方向に備えることにより、ドローン1の左右から支えることができる。また、図示はしないが、軸Zが負の方向、即ちドローン1が浮遊する水の底面に支持部材6を備えることにより、ドローン1を下から支えることができる。また、詳細は後述するが、水中を移動することができるドローン1に対しては、ドローン1の上部、即ち軸Zが正の方向に支持部材6を備えることにより、ドローン1を上から支えることができる。これにより、支持部材6は、ドローン1を左右上下から支えることができる。 Also, it can be supported from the left, right, top and bottom. That is, the support member 6 can be guided or supported from any direction of left, right, up and down, depending on the shape of the drone 1. Specifically, for example, in the example of FIG. 4, the quay Q and the support member 6 guide and support the movement of the drone 1 on the planes indicated by the axes X and Y, but the drone 1 is not particularly limited thereto. That is, the quay Q and the support member 6 can be supported from the left and right sides of the drone 1 by providing the axis Y in the positive direction and the axis Y in the negative direction with respect to the drone 1. Further, although not shown, the drone 1 can be supported from below by providing the support member 6 in the direction in which the axis Z is negative, that is, on the bottom surface of the water in which the drone 1 floats. Further, although the details will be described later, for the drone 1 that can move in the water, the drone 1 is supported from above by providing the support member 6 on the upper portion of the drone 1, that is, the axis Z in the positive direction. Can be done. As a result, the support member 6 can support the drone 1 from the left, right, top and bottom.
 支持部材6は、制御とも連動することができる。即ち、ドローン1の制御に応じて、支持部材6を連動することができる。具体的には例えば、支持部材6は、ドローン1の制御に応じて移動してよい。即ち例えば、ドローン1が旋回する制御をする場合において、支持部材6は連動してドローン1の旋回を補助するように動いてもよい。 The support member 6 can also be linked with the control. That is, the support member 6 can be interlocked according to the control of the drone 1. Specifically, for example, the support member 6 may move according to the control of the drone 1. That is, for example, when the drone 1 is controlled to turn, the support member 6 may move in conjunction with each other to assist the turning of the drone 1.
 支持部材6は、音波等を出して、GPSのように壁の場所を示すことができる。即ち、支持部材6は、支持部材6の存在する位置情報や時刻情報を載せた音波等を発信するできる。具体的には例えば、ドローン1は、2つの支持部材6の夫々から、支持部材6の位置及び時刻情報の夫々を受信することにより、図3の位置推定部45は、支持部材6の夫々との距離を推定することができる。これにより、支持部材6は、例えば支持部材6の夫々を結んだ線が岸壁Qと対応するよう、壁の場所を示すことができる。 The support member 6 can emit sound waves or the like to indicate the location of the wall like GPS. That is, the support member 6 can transmit a sound wave or the like carrying position information and time information on which the support member 6 is present. Specifically, for example, the drone 1 receives the position and time information of the support member 6 from each of the two support members 6, and the position estimation unit 45 of FIG. 3 receives the position and time information of the support member 6 from each of the support members 6. Distance can be estimated. Thereby, the support member 6 can indicate the location of the wall so that the line connecting each of the support members 6 corresponds to the quay Q, for example.
 以下、図5を用いて、ドローン1をガイド及び支持する支持部材6について説明する。
 図5は、図1のドローン1をガイド及び支持する支持部材6の設置の例を示す図である。
Hereinafter, the support member 6 that guides and supports the drone 1 will be described with reference to FIG.
FIG. 5 is a diagram showing an example of installation of a support member 6 that guides and supports the drone 1 of FIG.
 支持部材6は、荷物の重量が軽くなっても、破損しないよう設置することができる。即ち、ドローン1をガイド又は支持する支持部材6は、ドローン1がコンテナ5を積載している又は積載していない場合において、ドローン1全体の重量によらず、ドローン1が破損しないよう設置することができる。具体的には例えば、図5に示すように支持部材6を備えることにより、ドローン1が破損しないよう設置することができる。即ち例えば、複数の支持部材6によりドローン1をガイドや支持することで、複数の支持部材6の夫々にかかる重量を分散することにより、ドローン1が破損しないようにすることができる。また例えば、前述したように、支持部材6はばね付きのローラ構造とすることにより、支持部材6にドローン1が接触してもばねの弾性により衝撃等を吸収することや、複数の支持部材6に対してドローン1が均等に接するようにするができる。これにより、ドローン1の重量によらず、ドローン1が破損しないよう設置することができる。
 以上、図5を用いて、本実施形態における、ドローン1をガイド及び支持する支持部材6の例を説明した。
The support member 6 can be installed so as not to be damaged even if the weight of the luggage is lightened. That is, the support member 6 that guides or supports the drone 1 should be installed so that the drone 1 is not damaged regardless of the weight of the entire drone 1 when the drone 1 is loaded with or not loaded with the container 5. Can be done. Specifically, for example, by providing the support member 6 as shown in FIG. 5, the drone 1 can be installed so as not to be damaged. That is, for example, by guiding or supporting the drone 1 by a plurality of support members 6, the weight applied to each of the plurality of support members 6 can be dispersed so that the drone 1 is not damaged. Further, for example, as described above, the support member 6 has a roller structure with a spring so that even if the drone 1 comes into contact with the support member 6, the impact or the like is absorbed by the elasticity of the spring, or a plurality of support members 6 are used. The drone 1 can be evenly contacted with respect to the above. As a result, the drone 1 can be installed so as not to be damaged regardless of the weight of the drone 1.
As described above, an example of the support member 6 that guides and supports the drone 1 in the present embodiment has been described with reference to FIG.
 このような図4及び図5の支持部材6を用いた場合、ドローン1は、安定性の向上や安全な運行、貨物の運搬ができるという効果を奏することができる。
 このような効果を奏することが可能な移動体及び支持部材は、図4及び図5のドローン1や支持部材6に限定されず、次のような移動体や支持手段を採用することができる。
 即ち、例えば、バネ付きのローラ(例えば図4及び図5の支持部材6)をつかって、(例えば図4のドローン1が)接触しても(ドローン1を進行させる方向に対して)安全に奥にガイドする移動体や支持手段を採用できる。これにより、バネ付きのローラ構造を有する支持手段は、移動体に安定性の向上や安全な運行をさせることができるようになる。
 また例えば、(ドローン1の)制御(例えば図3の移動制御部42による制御)とも連動する移動体や支持手段を採用できる。これにより、移動体の制御と連動した支持手段は、移動体に安定性の向上や安全な運行をさせることができるようになる。
 また例えば、支持手段は、音波等を出して、GPSのように(音波等に載せた時刻情報等に基づいて移動体と支持手段との距離を推定させることにより、支持手段を備えた)壁の場所を示す移動体や支持手段を採用できる。これにより、GPSのように壁の場所を示すことができる支持手段は、移動体に安定性の向上や安全な運行をさせることができるようになる。
 また例えば、支持手段は、荷物(例えば図5のドローン1が積んでいるコンテナ5)の重量が軽くなっても、(移動体(例えば図5のドローン1)が)破損しないよう設置する移動体や支持手段を採用できる。これにより、荷物の重量が軽くなっても移動体に貨物の運搬をさせることができるようになる。
 また例えば、上述の支持手段は、バネ付きのローラからなるものとしたが、特にこれに限定されない。即ち例えば、弾性体により、支持手段の伸縮方向の衝撃を吸収でき、回転体により摩擦を減らすことができる支持手段であれば足る。更に言えば、支持手段に対して接触や衝突した移動体が破損しないよう、衝撃や摩擦を緩和することができる構成をとる支持手段であれば足る。
When such support members 6 of FIGS. 4 and 5 are used, the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
The moving body and the supporting member capable of exerting such an effect are not limited to the drone 1 and the supporting member 6 of FIGS. 4 and 5, and the following moving body and the supporting means can be adopted.
That is, for example, using a roller with a spring (for example, the support member 6 of FIGS. 4 and 5), even if the drone 1 of FIG. 4 comes into contact (for example, with respect to the direction in which the drone 1 is advanced), it is safe. A moving body or supporting means that guides to the back can be adopted. As a result, the support means having a roller structure with a spring can improve the stability of the moving body and allow the moving body to operate safely.
Further, for example, a moving body or a supporting means that is linked to the control (of the drone 1) (for example, the control by the movement control unit 42 in FIG. 3) can be adopted. As a result, the support means linked with the control of the moving body can improve the stability of the moving body and allow the moving body to operate safely.
Further, for example, the support means is provided with a support means by emitting a sound wave or the like and causing the distance between the moving body and the support means to be estimated based on the time information or the like placed on the sound wave or the like. A moving body or supporting means indicating the location of the can be adopted. As a result, a support means that can indicate the location of the wall, such as GPS, can make the moving body improve stability and operate safely.
Further, for example, the supporting means is a moving body installed so that the moving body (for example, the drone 1 in FIG. 5) is not damaged even if the weight of the luggage (for example, the container 5 in which the drone 1 in FIG. 5 is loaded) becomes lighter. And support means can be adopted. As a result, even if the weight of the cargo is reduced, the moving body can be made to carry the cargo.
Further, for example, the above-mentioned support means is made of a roller with a spring, but is not particularly limited thereto. That is, for example, any supporting means that can absorb the impact in the expansion / contraction direction of the supporting means by the elastic body and reduce the friction by the rotating body is sufficient. Furthermore, any support means having a structure capable of alleviating impact and friction is sufficient so that the moving body that comes into contact with or collides with the support means is not damaged.
 以下、図6を用いて、本実施形態における、ドローン1のコンテナ5の積載の例を説明する。
 図6は、図4のドローン1についてのA―A線の断面図である。
 図6Aは、ドローン1に積まれたコンテナ5のコンテナ重心GCがドローン1の中心にない場合の例の図である。
 図6Bは、ドローン1に積まれたコンテナ5のコンテナ重心GCがドローン1の中心になるよう制御した例の図である。
 なお、図6A及び図6Bを個々に区別する必要がない場合、まとめて「図6」と呼ぶ。
Hereinafter, an example of loading the container 5 of the drone 1 in the present embodiment will be described with reference to FIG.
FIG. 6 is a cross-sectional view taken along the line AA for the drone 1 of FIG.
FIG. 6A is a diagram of an example in which the container center of gravity GC of the container 5 loaded on the drone 1 is not in the center of the drone 1.
FIG. 6B is a diagram of an example in which the container center of gravity GC of the container 5 loaded on the drone 1 is controlled to be the center of the drone 1.
When it is not necessary to distinguish between FIGS. 6A and 6B, they are collectively referred to as “FIG. 6”.
 図6Aを見ると、ドローン1は、コンテナ5を、ローラ51とコンテナ台座52と台座ローラ53とを介して積載している。ここで、ドローン1は、ローラ勘合部54を備え、台座ローラ53の図示せぬ勘合部に対応した形状により、台座ローラ53がドローン1に対して滑り摩擦とならない。 Looking at FIG. 6A, the drone 1 loads the container 5 via the roller 51, the container pedestal 52, and the pedestal roller 53. Here, the drone 1 is provided with a roller fitting portion 54, and the shape corresponding to the fitting portion (not shown) of the pedestal roller 53 prevents the pedestal roller 53 from slipping and rubbing against the drone 1.
 また、台車またはコンテナにローラが付いていて、移動させることができる。即ち、コンテナ5は、ローラ51により、移動させることができる。具体的には例えば、ローラ51は、回転することにより、コンテナ5とコンテナ台座52との摩擦を軽減することができる。これにより、コンテナ5をコンテナ台座52に対して、移動することができる。ただし、ローラ51は、図示せぬ機構により回転しないようにできてよい。これにより、コンテナ5をコンテナ台座52に対して固定することができる。 Also, the dolly or container has a roller that can be moved. That is, the container 5 can be moved by the roller 51. Specifically, for example, the roller 51 can reduce the friction between the container 5 and the container pedestal 52 by rotating. As a result, the container 5 can be moved with respect to the container pedestal 52. However, the roller 51 may be prevented from rotating by a mechanism (not shown). Thereby, the container 5 can be fixed to the container pedestal 52.
 また、重心がずれている場合、船体が傾くのを防ぐため台車を傾けて重心を中心に調整できる。即ち、図3の重心管理部43が、コンテナ5の重心であるコンテナ重心GCが、ドローン1の中心からずれていることを検知した場合において、ドローン1の船体が傾くのを防ぐため、図3の重心制御部44がコンテナ台座52を傾ける制御を行うことにより、コンテナ重心GCをドローン1の中心に調整することができる。具体的には例えば、図6Aにおいて、コンテナ重心GCは、ドローン1の軸Yの方向の中心に対して、軸Yが正の方向にずれている。ここで、コンテナ5に対する重力を、コンテナ重心GCにかかるものとして「重力」と示した矢印として図示している。この場合、コンテナ5に対する重力は、ドローン1を転覆させるように作用するため、ドローン1が転覆し得るリスクを生ずる。このような場合において、台座ローラ53は、回転することにより、コンテナ台座52をドローン1に対して回転することができる。即ち、コンテナ5をドローン1に対して回転し、固定することができる。 Also, if the center of gravity is off, the dolly can be tilted to adjust around the center of gravity to prevent the hull from tilting. That is, in order to prevent the hull of the drone 1 from tilting when the center of gravity management unit 43 of FIG. 3 detects that the center of gravity GC of the container 5, which is the center of gravity of the container 5, is deviated from the center of the drone 1, FIG. By controlling the center of gravity control unit 44 of the above to tilt the container pedestal 52, the center of gravity of the container GC can be adjusted to the center of the drone 1. Specifically, for example, in FIG. 6A, the axis Y of the container center of gravity GC is deviated in the positive direction with respect to the center of the drone 1 in the direction of the axis Y. Here, the gravity with respect to the container 5 is illustrated as an arrow indicating "gravity" as being applied to the center of gravity GC of the container. In this case, gravity on the container 5 acts to capsize the drone 1, thus creating a risk that the drone 1 may capsize. In such a case, the pedestal roller 53 can rotate the container pedestal 52 with respect to the drone 1 by rotating. That is, the container 5 can be rotated and fixed with respect to the drone 1.
 図6Bを見ると、コンテナ5及びコンテナ台座52は、ドローン1に対して傾いて位置している。ここで、図6Aと図6Bとにおいて、コンテナ5に対するコンテナ重心GCの位置は変わっていない。図6Bにおいて、回転したコンテナ重心GCは、ドローン1の中心と一致している。即ち、コンテナ5に対する重力を、コンテナ重心GCにかかるものとして「重力」と示した矢印は、ドローン1の中心に位置している。この場合、コンテナ5に対する重力は、ドローン1を転覆させるように作用せず、ドローン1が転覆し得るリスクを生じない。これにより、ドローン1は、単にコンテナ5を設置した場合と比較して、転覆のリスクを低減することができる。 Looking at FIG. 6B, the container 5 and the container pedestal 52 are positioned at an angle with respect to the drone 1. Here, in FIGS. 6A and 6B, the position of the center of gravity GC of the container with respect to the container 5 has not changed. In FIG. 6B, the rotated container center of gravity GC coincides with the center of the drone 1. That is, the arrow indicating "gravity" as the gravity with respect to the container 5 is applied to the center of gravity GC of the container is located at the center of the drone 1. In this case, gravity on the container 5 does not act to capsize the drone 1 and does not pose a risk that the drone 1 can capsize. As a result, the drone 1 can reduce the risk of capsizing as compared with the case where the container 5 is simply installed.
 また、上述の動力は船体に付けてもドックに付けても良い。即ち、上述のコンテナ5を回転させる方法は台座ローラ53を用いるものに限らず、例えば、ドローン1側にローラや動力を備えることにより、コンテナ5をドローン1に対して回転してもよい。
 具体的には例えば、図6Bの場合、台座ローラ53が回転することによりコンテナ台座52をドローン1に対して回転することができるが、これは、台座ローラ53を回転させる動力によって行われる。これに対して、図示はしないが、コンテナ台座52は台座ローラ53を備えず、ドローン1に任意のコンテナ台座52を回転することができる機構を備え、ドローン1側、即ち船体側の動力により、コンテナ5及びコンテナ台座52を回転してよい。これにより、ドローン1はドックに停泊していない場合においても、コンテナ5を回転することができる。即ち、ドックの停泊中以外において、コンテナ5の中身がずれる等してコンテナ重心GCの位置が変わり転覆のリスクが発生した場合においても、コンテナ5を回転することでリスクを低減することができる。
 更には例えば、図示はしないが、台座ローラ53及びドローン1、即ち船体側には動力を備えず、ドローン1が停泊するドックが備える動力により、コンテナ5及びコンテナ台座52を回転してよい。即ち、ドックがアーム等を備え、コンテナ5及びコンテナ台座52を回転し、台座ローラ53をロックすることにより、コンテナ重心GCをドローン1の中心に固定してよい。これにより、ドローン1の構造を簡略化することができる。
Further, the above-mentioned power may be attached to the hull or the dock. That is, the method for rotating the container 5 described above is not limited to the one using the pedestal roller 53, and for example, the container 5 may be rotated with respect to the drone 1 by providing a roller or power on the drone 1 side.
Specifically, for example, in the case of FIG. 6B, the container pedestal 52 can be rotated with respect to the drone 1 by rotating the pedestal roller 53, which is performed by the power for rotating the pedestal roller 53. On the other hand, although not shown, the container pedestal 52 does not have a pedestal roller 53, but has a mechanism capable of rotating an arbitrary container pedestal 52 on the drone 1, and is powered by the drone 1 side, that is, the hull side. The container 5 and the container pedestal 52 may be rotated. As a result, the drone 1 can rotate the container 5 even when it is not moored at the dock. That is, even when the position of the center of gravity GC of the container changes and the risk of capsizing occurs due to the contents of the container 5 shifting or the like other than when the dock is moored, the risk can be reduced by rotating the container 5.
Further, for example, although not shown, the pedestal roller 53 and the drone 1, that is, the hull side may not be provided with power, and the container 5 and the container pedestal 52 may be rotated by the power provided by the dock in which the drone 1 is anchored. That is, the dock may include an arm or the like, rotate the container 5 and the container pedestal 52, and lock the pedestal roller 53 to fix the container center of gravity GC to the center of the drone 1. Thereby, the structure of the drone 1 can be simplified.
 このような図3の重心制御部44及び図6のコンテナ台座52等を用いた場合、ドローン1は、安定性の向上や安全な運行、貨物の運搬ができるという効果を奏することができる。
 このような効果を奏することが可能な移動体は、図6の重心制御部44を用いたドローン1に限定されず、次のような移動体を採用することができる。
 即ち、例えば、移動体(例えば図6のドローン1)が荷物(例えば図6のコンテナ5)を積む場合において、台車(例えば図6のコンテナ台座52)またはコンテナ(例えば図6のコンテナ5)にローラ(例えば図6のローラ51)が付いていて、移動させることができる。これにより、台車又はコンテナにローラが付いていて移動させることができる移動体は、荷物の積み下ろしをすることができ、貨物の運搬をすることができる。
 また例えば、重心(例えば図6のコンテナ重心GC)が(例えば図6Aのドローン1の中心位置から)ずれている場合、(重心管理手段(例えば図3の重心管理部43)は)船体が傾くのを防ぐため台車を傾けて重心を中心に調整(例えば図3の重心制御部44により調整)できる。これにより、台車を傾けて重心を中心に調整できる移動体は、安定性を向上させた上で、貨物の運搬ができる。
 また例えば、上述の動力(例えば図3の重心制御部44)は船体に付けてもドックに付けても良い。これにより、ドックに重心制御手段を付けた場合の移動体は、安定性を向上させた上で、貨物の運搬ができ、更に移動体の構造を簡略化することができる。
 即ち、この移動体は、
 水上又は水中を移動して所定の物品(例えば図6のコンテナ5)を運搬する移動体(例えば図6のドローン1)において、
 前記物品の重心(例えば図6のコンテナ重心GC)を移動させる重心移動手段(例えば図3の重心制御部44や図6のコンテナ台座52及び台座ローラ53)と、
 前記物品の前記重心を固定させる重心固定手段(例えば図6の台座ローラ53とローラ勘合部54)と、を備える移動体であれば足る。
When the center of gravity control unit 44 of FIG. 3 and the container pedestal 52 of FIG. 6 are used, the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
The moving body capable of exhibiting such an effect is not limited to the drone 1 using the center of gravity control unit 44 of FIG. 6, and the following moving body can be adopted.
That is, for example, when a moving body (for example, the drone 1 in FIG. 6) loads a load (for example, the container 5 in FIG. 6), it is placed on a trolley (for example, the container pedestal 52 in FIG. 6) or a container (for example, the container 5 in FIG. 6). A roller (for example, the roller 51 in FIG. 6) is attached and can be moved. As a result, the moving body having a roller attached to the trolley or the container and can be moved can load and unload the cargo and can carry the cargo.
Further, for example, when the center of gravity (for example, the container center of gravity GC in FIG. 6) is deviated (for example, from the center position of the drone 1 in FIG. 6A), the hull is tilted (for example, the center of gravity management means (for example, the center of gravity management unit 43 in FIG. 3)). The trolley can be tilted and adjusted around the center of gravity (for example, adjusted by the center of gravity control unit 44 in FIG. 3). As a result, the moving body that can tilt the dolly and adjust it around the center of gravity can carry the cargo while improving the stability.
Further, for example, the above-mentioned power (for example, the center of gravity control unit 44 in FIG. 3) may be attached to the hull or the dock. As a result, the moving body when the dock is provided with the center of gravity control means can carry cargo while improving the stability, and further simplify the structure of the moving body.
That is, this moving body is
In a mobile body (eg, drone 1 in FIG. 6) that moves on or under water to carry a predetermined article (eg, container 5 in FIG. 6).
A means for moving the center of gravity (for example, the center of gravity control unit 44 in FIG. 3 and the container pedestal 52 and the pedestal roller 53 in FIG. 6) for moving the center of gravity of the article (for example, the container center of gravity GC in FIG. 6).
A moving body including a center of gravity fixing means (for example, the pedestal roller 53 and the roller fitting portion 54 in FIG. 6) for fixing the center of gravity of the article is sufficient.
 以下、図6及び図7を用いて、バラストタンクを用いたドローン1の重心を管理する方法について説明する。
 ドローン1の重心を管理するため、水や空気をポンプで出し入れすることで、重心が喫水線以下になるように調整することができる。即ち、コンテナ重心GC及びドローン1の重心が、軸Zが正の方向にあるほど、ドローン1の転覆のリスクが高くなる。このリスクを低減するため、ドローン1の所定のタンクに水や空気をポンプで出し入れすることにより、ドローン1の重心を少なくとも軸Zの方向に変化させることができる。具体的には例えば、図6Aを見ると、ドローン1はバラストタンク55を備える。バラストタンク55には、水や空気をポンプで出し入れすることができる。これにより、ドローン1の重量を増減することができる。これにより、ドローン1の重量を増加することにより、ドローン1に対して喫水線を上げる(ドローン1を軸Zが負の方向に沈める)ことができる。これにより、ドローン1の重心は水面に対して低くすることができ、安定性を向上することができる。また、図6Aの例では、ドローン1は、バラストタンク55をコンテナ5に対して軸Zが負の方向に備える。即ち、水を積むことにより、コンテナ5を含めたドローン1の重心を下げることができる。これにより、ドローン1の重心自体を、軸Zが負の方向に移動させることができる。また、バラストタンク55には、空気を入れることにより、水を排出することができ、ドローン1の重量を減少させることができる。これにより、バラストタンク55の内部に水を入れている場合と比較して、重量の重いコンテナ5を積むことができる。
Hereinafter, a method of managing the center of gravity of the drone 1 using the ballast tank will be described with reference to FIGS. 6 and 7.
In order to manage the center of gravity of the drone 1, it is possible to adjust the center of gravity to be below the waterline by pumping water and air in and out. That is, the more the center of gravity of the container GC and the center of gravity of the drone 1 are in the positive direction of the axis Z, the higher the risk of capsizing of the drone 1. In order to reduce this risk, the center of gravity of the drone 1 can be changed at least in the direction of the axis Z by pumping water or air into or out of a predetermined tank of the drone 1. Specifically, for example, looking at FIG. 6A, the drone 1 includes a ballast tank 55. Water and air can be pumped in and out of the ballast tank 55. Thereby, the weight of the drone 1 can be increased or decreased. As a result, by increasing the weight of the drone 1, the waterline can be raised with respect to the drone 1 (the axis Z of the drone 1 is submerged in the negative direction). As a result, the center of gravity of the drone 1 can be lowered with respect to the water surface, and the stability can be improved. Further, in the example of FIG. 6A, the drone 1 is provided with the ballast tank 55 in the direction in which the axis Z is negative with respect to the container 5. That is, by loading water, the center of gravity of the drone 1 including the container 5 can be lowered. As a result, the center of gravity of the drone 1 itself can be moved in the direction in which the axis Z is negative. Further, by injecting air into the ballast tank 55, water can be discharged and the weight of the drone 1 can be reduced. As a result, a heavier container 5 can be loaded as compared with the case where water is put inside the ballast tank 55.
 以下、図7を用いて、本実施形態における、水中を移動できるドローン1の例を示す。
 図7は、図1のドローン1のうち、水中を移動可能なドローンにおける図6と同様の断面図の例を示す図である。
 図7の例のドローン1は、円筒状の構造を備える。即ち、ドローン1は、水中を移動した場合において、ドローン1の内部やコンテナ5に水が入らない構造となっている。
 また、図7の例のドローン1は、バラストタンク55A及び55Bを備える。なお、バラストタンク55A及び55Bを個々に区別する必要がない場合、まとめて「バラストタンク55」と呼ぶ。水中を移動可能なドローン1を水中に沈める場合、ドローン1の体積と周囲の水の密度等により決まる浮力に対し、ドローン1の重量を重くする必要がある。このような場合において、バラストタンク55に水をポンプで入れることにより、ドローン1の重量を重くすることができる。また、バラストタンク55から、ポンプや圧縮空気等により水を出すことにより、ドローン1の重量を軽くすることができる。これにより、ドローン1は潜航や浮上をすることができる。
Hereinafter, with reference to FIG. 7, an example of the drone 1 that can move in water in the present embodiment is shown.
FIG. 7 is a diagram showing an example of a cross-sectional view similar to that of FIG. 6 in a drone that can move underwater among the drones 1 of FIG.
The drone 1 in the example of FIG. 7 has a cylindrical structure. That is, the drone 1 has a structure in which water does not enter the inside of the drone 1 or the container 5 when it moves underwater.
Further, the drone 1 in the example of FIG. 7 includes ballast tanks 55A and 55B. When it is not necessary to distinguish the ballast tanks 55A and 55B individually, they are collectively referred to as "ballast tank 55". When submerging a drone 1 that can move in water, it is necessary to make the weight of the drone 1 heavier than the buoyancy determined by the volume of the drone 1 and the density of the surrounding water. In such a case, the weight of the drone 1 can be increased by pumping water into the ballast tank 55. Further, the weight of the drone 1 can be reduced by discharging water from the ballast tank 55 by a pump, compressed air, or the like. As a result, the drone 1 can dive and ascend.
 また、水中機では中心以下になるよう調整することができる。即ち、ドローン1は、バラストタンク55として、バラストタンク55A及び55Bを備える。これにより、バラストタンク55A及び55Bの夫々は、水や空気を夫々出し入れすることができる。即ち、ドローン1は、バラストタンク55A及び55Bの夫々の重量を、夫々変化させることができる。従って、ドローン1は、コンテナ5及びバラストタンク55A及び55Bを含んだドローン1の全体の重心を、軸Zの方向に変化させることができる。これにより、ドローン1の軸Zの方向の向きが逆転しないよう、即ちドローン1が横転しないよう、ドローン1に対して軸Zが負の方向にドローン1の重心が来るよう、制御することができる。
 また、ドックでは荷物重量と連携して、調整することができる。即ち、ドックにおいてドローン1にコンテナ5を積載する場合において、バラストタンク55を用いることにより、ドックにおけるコンテナ5の位置とドローン1との軸Z方向の位置を調整することができる。具体的には例えば、ドックに停泊した状態である図6及び図7のドローン1に、コンテナ5を積載する場合において、コンテナ5を積載していないドローン1のバラストタンク55に水を入れておくことにより、ドローン1を軸Zが負の方向に移動するようにすることができる。即ち、ドローン1の位置を低くすることができる。この状態において、コンテナ5を積載する。この場合、コンテナ5に対する重量が、徐々にドックにかかった状態からドローン1にかかった状態に変化する。これにより、ドローン1は徐々に沈んでいく。この際、徐々にバラストタンク55の水をポンプにより出すことで、ドローン1の重量を減らし、ドローン1が沈むのを防ぎ、安定した状態でコンテナ5を積載することができる。
 以上、図6及び図7を用いて、本実施形態における、コンテナ5の積載の例を説明した。
Also, in the underwater machine, it can be adjusted so that it is below the center. That is, the drone 1 includes ballast tanks 55A and 55B as ballast tanks 55. As a result, the ballast tanks 55A and 55B can each move water and air in and out. That is, the drone 1 can change the weights of the ballast tanks 55A and 55B, respectively. Therefore, the drone 1 can change the entire center of gravity of the drone 1 including the container 5 and the ballast tanks 55A and 55B in the direction of the axis Z. Thereby, it is possible to control so that the direction of the axis Z of the drone 1 does not reverse, that is, the drone 1 does not roll over, and the center of gravity of the drone 1 comes in the direction in which the axis Z is negative with respect to the drone 1. ..
In addition, the dock can be adjusted in cooperation with the weight of the luggage. That is, when the container 5 is loaded on the drone 1 in the dock, the position of the container 5 in the dock and the position of the drone 1 in the axis Z direction can be adjusted by using the ballast tank 55. Specifically, for example, when the container 5 is loaded in the drone 1 of FIGS. 6 and 7 which is anchored in the dock, water is filled in the ballast tank 55 of the drone 1 in which the container 5 is not loaded. Thereby, the drone 1 can be moved in the negative direction of the axis Z. That is, the position of the drone 1 can be lowered. In this state, the container 5 is loaded. In this case, the weight with respect to the container 5 gradually changes from the state of being docked to the state of being applied to the drone 1. As a result, the drone 1 gradually sinks. At this time, by gradually pumping out the water in the ballast tank 55, the weight of the drone 1 can be reduced, the drone 1 can be prevented from sinking, and the container 5 can be loaded in a stable state.
As described above, an example of loading the container 5 in the present embodiment has been described with reference to FIGS. 6 and 7.
 このような図6や図7のバラストタンク55や図3の重心制御部44を用いた場合、ドローン1は、安定性の向上や安全な運行、貨物の運搬ができるという効果を奏することができる。
 このような効果を奏することが可能な移動体は、図6及び図7のバラストタンク55や重心制御部44を用いたドローン1に限定されず、次のような移動体を採用することができる。
 即ち、例えば、移動体(例えば図6や図7のドローン1)の重心(例えば図6や図7のコンテナ重心GC)を(例えば図3の重心管理部43により)管理するため、水や空気を(例えば図6や図7のバラストタンク55に)ポンプで出し入れすることで、重心が喫水線以下になるように調整することができる。これにより、重心が喫水線以下になるように調整することができる移動体は、安定性の向上や安全な運行、貨物の運搬ができる。
 また例えば、ドックでは荷物重量(例えば図6や図7のコンテナ5の重量)と連携して、(例えば図6や図7のドローン1の全体の重量や浮力を)調整することができる。これにより、荷物重量と連携して移動体全体の重量や浮力を調整することができる移動体は、安定性の向上や安全な運行、貨物の運搬ができる。
 また例えば、上述のバラストタンク55は、図6や図7に示した位置にあるものとしたが、特にこれに限定されない。即ち例えば、移動体の重心を変化させることが可能なバラストタンクであれば足る。更に言えば、バラストタンクは軸Xの方向に構造を持ってよい。これにより、移動体の仰角を変化させるよう、重心を変化させることができる。
When the ballast tank 55 of FIGS. 6 and 7 and the center of gravity control unit 44 of FIG. 3 are used, the drone 1 can have the effects of improving stability, safe operation, and carrying cargo. ..
The moving body capable of achieving such an effect is not limited to the drone 1 using the ballast tank 55 and the center of gravity control unit 44 of FIGS. 6 and 7, and the following moving bodies can be adopted. ..
That is, for example, in order to manage the center of gravity of the moving body (for example, the drone 1 of FIGS. 6 and 7) (for example, the container center of gravity GC of FIGS. 6 and 7) (for example, by the center of gravity management unit 43 of FIG. 3), water or air. Can be adjusted so that the center of gravity is below the waterline by pumping in and out (for example, to the ballast tank 55 of FIGS. 6 and 7). As a result, the moving body that can be adjusted so that the center of gravity is below the waterline can improve stability, operate safely, and carry cargo.
Further, for example, in the dock, the total weight and buoyancy of the drone 1 of FIGS. 6 and 7 can be adjusted in cooperation with the luggage weight (for example, the weight of the container 5 of FIGS. 6 and 7). As a result, the moving body, which can adjust the weight and buoyancy of the entire moving body in cooperation with the weight of the luggage, can improve the stability, operate safely, and carry the cargo.
Further, for example, the ballast tank 55 described above is assumed to be at the position shown in FIGS. 6 and 7, but is not particularly limited thereto. That is, for example, a ballast tank capable of changing the center of gravity of the moving body is sufficient. Furthermore, the ballast tank may have a structure in the direction of the axis X. As a result, the center of gravity can be changed so as to change the elevation angle of the moving body.
 以下、図8及び図9を用いて、本実施形態における、ドローン1のドックとの接続及びコンテナ5の積み下ろしの方法の例を説明する。
 図8は、図1のドローン1が、ドックに入った際のドローン1の固定の例を示す図である。
 図8Aは、ドローン1がドックに入った際のドローン1の固定前の様子を示す図である。
 図8Bは、ドローン1がドックに入った際のドローン1の固定後の様子を示す図である。
 なお、図8A及び図8Bを個々に区別する必要がない場合、まとめて「図8」と呼ぶ。
 図8において、ドローン1は、軸Xが負の方向から、軸Xが正の方向にあるドックに対して接続しようとしている。図8の例においては、ドローン1は、水中を移動可能な水中ドローンである。
Hereinafter, an example of the method of connecting the drone 1 to the dock and loading and unloading the container 5 in the present embodiment will be described with reference to FIGS. 8 and 9.
FIG. 8 is a diagram showing an example of fixing the drone 1 when the drone 1 of FIG. 1 enters the dock.
FIG. 8A is a diagram showing a state before the drone 1 is fixed when the drone 1 enters the dock.
FIG. 8B is a diagram showing a state after the drone 1 is fixed when the drone 1 enters the dock.
When it is not necessary to distinguish between FIGS. 8A and 8B, they are collectively referred to as “FIG. 8”.
In FIG. 8, the drone 1 is trying to connect to a dock in which the axis X is in the positive direction from the direction in which the axis X is in the negative direction. In the example of FIG. 8, the drone 1 is an underwater drone that can move underwater.
 図8を見ると、図8の例のドローン1は、コンテナ5を積載し、ハッチ61と、固定部62とを備える。また、図8の例のドック7は、ドック7の壁であるドック壁71に対して、ドック内Diとドック室Doとを隔てる防水壁72を備える。更に、ドック7は、支持機73と接続リング部74とロックリング75とカム76を備える。更に、図8Bを見ると、ドック7は更に支持部材6を備える。また、ドック7とドローン1とが接続した場合において、ドック内Diとドック室Doに加え、防水壁72と接続リング部74とロックリング75とドローン1のハッチ61とにより、ドック接続領域Dcが形成される。 Looking at FIG. 8, the drone 1 in the example of FIG. 8 is loaded with a container 5 and includes a hatch 61 and a fixed portion 62. Further, the dock 7 in the example of FIG. 8 is provided with a waterproof wall 72 that separates the Di in the dock and the dock chamber Do with respect to the dock wall 71 that is the wall of the dock 7. Further, the dock 7 includes a support machine 73, a connection ring portion 74, a lock ring 75, and a cam 76. Further, looking at FIG. 8B, the dock 7 further includes a support member 6. Further, when the dock 7 and the drone 1 are connected, the dock connection area Dc is formed by the waterproof wall 72, the connection ring portion 74, the lock ring 75, and the hatch 61 of the drone 1 in addition to the Di in the dock and the dock room Do. It is formed.
 まず、船体がドックに入った時点で入り口を塞ぎ、外港からの波などを遮断する。即ち、図示はしないが、ドローン1がドック7に入った場合において、軸Xが負の方向に備えるドックの隔壁により、ドックの内部と外港とを隔てることができる。これにより、ドック室Doに対して外港からの波等を遮断することができる。 First, when the hull enters the dock, the entrance is closed to block waves from the outer port. That is, although not shown, when the drone 1 enters the dock 7, the inside of the dock and the outer port can be separated by the partition wall of the dock provided with the axis X in the negative direction. As a result, it is possible to block waves and the like from the outer port to the dock room Do.
 また、ドック側の支持機でつかむことで、自己位置が安定し、制御はしやすくすることができる。即ち、図8Aを見ると、ドック7が備える支持機73により、ドローン1の任意の位置をつかむことにより、ドローン1の自己位置はドックDに対して安定することができる。具体的には例えば、図8の例の支持機73は、ドローン1をつかむことができる機構と支持機73を任意の位置に動かす機構とを備える。これにより、ドローン1のハッチ61をつかみ、ドローン1をドック7の所定の位置に支持することができる。これにより、ドローン1はドック7に対する位置の制御を容易に行うことができる。
 上述の例の方法により、ドローン1はドック7の所定の位置に移動することができる。
In addition, by grasping with the support machine on the dock side, the self-position can be stabilized and control can be facilitated. That is, looking at FIG. 8A, the self-position of the drone 1 can be stabilized with respect to the dock D by grasping an arbitrary position of the drone 1 by the support machine 73 provided in the dock 7. Specifically, for example, the support machine 73 in the example of FIG. 8 includes a mechanism capable of grasping the drone 1 and a mechanism for moving the support machine 73 to an arbitrary position. As a result, the hatch 61 of the drone 1 can be grasped and the drone 1 can be supported in a predetermined position of the dock 7. As a result, the drone 1 can easily control the position with respect to the dock 7.
By the method of the above example, the drone 1 can be moved to a predetermined position of the dock 7.
 次に、ローラで船体を固定し、ロックリングを船体に押し当てカムを固定することで、ハッチ周辺を密閉する。即ち、ばね付きのローラ構造を備える支持部材6によりドローン1を固定し、ロックリング75をドローン1の固定部62に押し当て、カム76により固定することで、ハッチ61の周辺であるドック接続領域Dcを密閉することができる。具体的には例えば、接続リング部74は、円筒形の形状を備える。これにより、円筒形である水中ドローンであるドローン1と接続することができる。接続リング部は、ロックリング75を備え、カム76はロックリング75に対して可動である。例えば、図8の例では、カム76は、ロックリング75に対して回転する機構を備える。これにより、図8A及び図8Bに示すように、カム76は、ロックリング75に対して回転して位置を変えることができる。このカム機構により、ロックリング75及びカム76は、ドローン1の固定部62と勘合し、固定することができる。 Next, fix the hull with rollers, press the lock ring against the hull and fix the cam, and seal the area around the hatch. That is, the drone 1 is fixed by the support member 6 having a roller structure with a spring, the lock ring 75 is pressed against the fixing portion 62 of the drone 1, and the lock ring 75 is fixed by the cam 76, so that the dock connection area around the hatch 61 is connected. The Dc can be sealed. Specifically, for example, the connection ring portion 74 has a cylindrical shape. As a result, it can be connected to the drone 1 which is a cylindrical underwater drone. The connecting ring portion includes a lock ring 75, and the cam 76 is movable with respect to the lock ring 75. For example, in the example of FIG. 8, the cam 76 includes a mechanism that rotates with respect to the lock ring 75. This allows the cam 76 to rotate and reposition with respect to the lock ring 75, as shown in FIGS. 8A and 8B. By this cam mechanism, the lock ring 75 and the cam 76 can be fitted and fixed to the fixing portion 62 of the drone 1.
 また、接続リング部74は、ゴム等で作り船体が揺れてもある程度対応することができる。即ち、接続リング部74は、ゴム等の弾性を持った素材とすることにより、ドローン1が揺れた場合に接続リング部74を含むドックDの各部分や固定部62を含むドローン1の各部分に負荷がかからないようにすることができる。 In addition, the connection ring portion 74 is made of rubber or the like and can cope with shaking of the hull to some extent. That is, by using an elastic material such as rubber for the connection ring portion 74, each portion of the dock D including the connection ring portion 74 and each portion of the drone 1 including the fixing portion 62 when the drone 1 shakes. Can be prevented from being overloaded.
 また、ドローン1をドック7に接続する場合、カムをリング側に引き寄せることで、リングを船体と密着させ気密を維持することができる。即ち、ロックリング75及びカム76は、ドローン1の固定部62と勘合して固定する場合において、カム76を、ロックリング75側、即ち軸Xが正の方向に動かすことにより、ロックリング75をドローン1の固定部62と密着させることができる。これにより、ドック接続領域Dcを気密にすることができる。 Also, when the drone 1 is connected to the dock 7, by pulling the cam toward the ring side, the ring can be brought into close contact with the hull and airtightness can be maintained. That is, when the lock ring 75 and the cam 76 are fitted and fixed to the fixing portion 62 of the drone 1, the lock ring 75 is moved by moving the cam 76 to the lock ring 75 side, that is, in the positive direction of the axis X. It can be brought into close contact with the fixed portion 62 of the drone 1. As a result, the dock connection area Dc can be made airtight.
 また、多少漏れても排水設備があれば問題ない。即ち、上述のドック接続領域Dcの気密が完全でない場合において、即ちドック室Doからドック接続領域Dcへの多少の水の流入がある場合において、ドック接続領域Dcやドック内Diに備える図示せぬポンプ等の排水設備により排水することで、多少の水の流入を問題ない状態とすることができる。 Also, even if there is some leakage, there is no problem if there is a drainage facility. That is, when the above-mentioned dock connection area Dc is not completely airtight, that is, when there is some inflow of water from the dock chamber Do to the dock connection area Dc, the dock connection area Dc and the Di in the dock are not shown. By draining water with a drainage facility such as a pump, it is possible to make some water inflow into a state where there is no problem.
 また、強度の強い骨を押さえるよう工夫することができる。即ち、ドローン1を支持する支持部材6は、ドローン1の構造のうち、図示せぬ骨材がある位置を支持するよう工夫することができる。具体的には例えば、ドローン1の外壁が図示せぬ骨材及び骨材と骨材とに渡した板から構成される場合において、ドローン1をドック7に接続する場合、ドック7が備える支持部材6は、ドローン1の骨材がある位置に接触し、支持するように支持部材6を配置することができる。 Also, it can be devised to hold down strong bones. That is, the support member 6 that supports the drone 1 can be devised to support a position of an aggregate (not shown) in the structure of the drone 1. Specifically, for example, when the outer wall of the drone 1 is composed of an aggregate (not shown) and a plate passed between the aggregate and the aggregate, when the drone 1 is connected to the dock 7, the support member provided in the dock 7 is provided. 6 can arrange the support member 6 so as to contact and support the aggregate of the drone 1 at a certain position.
 また、四方から完全固定すると壊れるので、弱いバネで支え、多少の振動を許容するようにすることができる。即ち、ばね付きのローラ構造を備える支持部材6に強いばね定数を持つばねを採用した場合において、ドローン1の左右上下から支持部材6により完全に固定した場合、例えばコンテナ5を積み下ろす際のドローン1の揺れにより、支持部材6やドローン1の支持部材6と接する位置に圧力がかかり、破損する可能性がある。そこで、支持部材6に前述の場合と比較して弱いばね定数を持つばねを採用することにより、ドローン1等の多少の振動を支持部材6により吸収できる。これにより、ドローン1に多少の振動が発生しても許容できる運用ができる。 Also, since it will break if it is completely fixed from all sides, it can be supported by a weak spring to allow some vibration. That is, when a spring having a strong spring constant is adopted for the support member 6 having a roller structure with a spring, when the drone 1 is completely fixed by the support member 6 from the left, right, top and bottom, for example, the drone when loading and unloading the container 5. Due to the shaking of 1, pressure is applied to the position in contact with the support member 6 and the support member 6 of the drone 1, and there is a possibility of damage. Therefore, by adopting a spring having a weaker spring constant as the support member 6 as compared with the above-mentioned case, some vibration of the drone 1 or the like can be absorbed by the support member 6. As a result, even if some vibration is generated in the drone 1, the operation can be tolerated.
 図9は、図1のドローン1がドック7と接続され、コンテナ5を下す例を示す図である。
 図9Aは、ドック7と接続されたドローン1のハッチ61を外した例を示した図である。
 図9Bは、台車77を接続し、コンテナ5を下した例を示した図である。
FIG. 9 is a diagram showing an example in which the drone 1 of FIG. 1 is connected to the dock 7 and the container 5 is lowered.
FIG. 9A is a diagram showing an example in which the hatch 61 of the drone 1 connected to the dock 7 is removed.
FIG. 9B is a diagram showing an example in which the dolly 77 is connected and the container 5 is lowered.
 次に、ハッチ外側の水を排水し、ハッチを外す。ドック側の防水壁も解放する。即ち、上述の通り気密となった、ハッチ61の外側であるドック接続領域Dcの水をポンプ等により排水し、ドック接続領域Dcから水を抜き、ハッチ61を外すことができる。これにより、ドローン1の内部及びドック接続領域Dc及びドック内Diを大気とすることができる。また、防水壁72を解放することができる。これにより、ドローン1と、ドック接続領域Dcとドック内Diとが接続され、コンテナ5を下ろすことができる。 Next, drain the water outside the hatch and remove the hatch. Also release the waterproof wall on the dock side. That is, the water in the dock connection region Dc outside the hatch 61, which has become airtight as described above, can be drained by a pump or the like, the water can be drained from the dock connection region Dc, and the hatch 61 can be removed. As a result, the inside of the drone 1, the dock connection area Dc, and the Di in the dock can be made into the atmosphere. In addition, the waterproof wall 72 can be released. As a result, the drone 1, the dock connection area Dc, and the Di in the dock are connected, and the container 5 can be lowered.
 次に、ドック側から荷物を受け取る機構を近づけて荷物を引き出す。電源や燃料の供給等も同時に行う。即ち、ドック内Diから、例えば台車77等の荷物を受け取る機構を近づけ、ドローン1からコンテナ5等の荷物を引き出すことができる。また、ドック7は、荷物を引き出すと同時に、ドローン1に対して電源や燃料を供給することができる。これにより、コンテナ5の積み下ろしと同時並行して電源や燃料を供給することができる。 Next, bring the mechanism to receive the luggage from the dock side closer and pull out the luggage. It also supplies power and fuel at the same time. That is, it is possible to bring the mechanism for receiving the luggage such as the trolley 77 closer from the Di in the dock and withdraw the luggage such as the container 5 from the drone 1. Further, the dock 7 can supply power and fuel to the drone 1 at the same time as pulling out the luggage. As a result, power and fuel can be supplied in parallel with the loading and unloading of the container 5.
 また、荷下ろし時には船体の重量は大きく変化する。そのため、船体内のバラストに水を入れたり、ドック室の水を減らすなどして、調整を行う。即ち、ドローン1からコンテナ5を下す場合、コンテナ5の重量は、ドローン1にかかる状態からドック7にかかる状態に変化するため、ドローン1は浮上しようする。そのため、前述したドローン1が備えるバラストタンク55に水をいれることにより、ドローン1の重量を増やすことで浮上を防ぐことができる。また、ドック室Doは、軸Xが負の方向に備えるドックの隔壁により外港と隔てられているため、ドック室Doの水を排出することができる。これにより、ドローン1に働く浮力を減少させ、ドローン1が浮上することを防ぐことができる。
 以上、図8及び図9を用いて、本実施形態における、ドローン1のドック7との接続及びコンテナ5の積み下ろしの方法の例を説明した。
In addition, the weight of the hull changes significantly when unloading. Therefore, make adjustments by filling the ballast inside the ship with water or reducing the amount of water in the dock room. That is, when the container 5 is dropped from the drone 1, the weight of the container 5 changes from the state of being applied to the drone 1 to the state of being applied to the dock 7, so that the drone 1 tends to surface. Therefore, by putting water in the ballast tank 55 provided in the drone 1 described above, it is possible to increase the weight of the drone 1 and prevent it from ascending. Further, since the dock chamber Do is separated from the outer port by the partition wall of the dock provided with the axis X in the negative direction, the water in the dock chamber Do can be discharged. As a result, the buoyancy acting on the drone 1 can be reduced, and the drone 1 can be prevented from surfacing.
As described above, an example of the method of connecting the drone 1 to the dock 7 and loading and unloading the container 5 in the present embodiment has been described with reference to FIGS. 8 and 9.
 このような図8や図9のドック7やドローン1を用いた場合、ドローン1は、安定性の向上や安全な運行、貨物の運搬ができるという効果を奏することができる。
 このような効果を奏することが可能な移動体は、図8及び図9のドック7やドローン1に限定されず、次のようなドックや移動体を採用することができる。
 即ち、例えば、船体(例えば図8や図9のドローン1)がドック(例えば図8や図9のドック7)に入った時点で入り口(例えば図8や図9の軸Xが負の方向にある障壁)を塞ぎ、外港からの波などを遮断するドックを採用できる。これにより、外港からの波などを遮断するドックと接続した移動体は、安定性を向上して貨物の積み下ろしができる。
 また例えば、ドック側の支持機(例えば図8の支持機73)で(移動体を)つかむドックを採用することができる。これにより、(移動体は)自己位置が安定し、制御をしやすくすることができ、移動体は、安定性を向上した上で貨物の積み下ろしができる。
 また例えば、(例えば図8や図9の接続リング部74は)ゴム等で作り船体が揺れてもある程度対応することができるドックを採用できる。これにより、移動体が揺れた場合や重量が変化することで移動体が移動した場合においても、安定して貨物の積み下ろしができる。
 また例えば、ローラ(例えば図9の支持部材6)で船体を固定し、ロックリング(例えば図9のロックリング75)を船体に押し当てカム(例えば図9のカム76)を(例えば図9の固定部62と勘合して)固定することで、ハッチ(例えば図9のハッチ61)周辺を密閉するドックを採用できる。これにより、移動体は、安定性を向上した上で貨物の積み下ろしができる。
 また例えば、ドックの内部に、多少水等が漏れて流入した場合のため、ドック内に排水設備を採用することができる。これにより、移動体は漏水に脅かされずに、貨物の積み下ろしができる。
 また例えば、移動体を支持手段により支持する場合において、ドローン1の内、強度の強い骨を押さえるよう工夫したドックを採用することができる。これにより、ドローン1の安定性を向上する場合において、ドローン1の構造的に強度が弱い位置に負荷をかけないことができる。
 また例えば、移動体を支持手段により、四方から完全固定すると壊れるので、支持部材のローラは弱いバネで支え、移動体の多少の振動を許容するドックを採用することができる。これにより、ドローン1の安定性を向上しつつ、ドローン1の不意の多少の揺れ等による損傷を防ぐことができる。
When the dock 7 and the drone 1 of FIGS. 8 and 9 are used, the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
The moving body capable of exerting such an effect is not limited to the dock 7 and the drone 1 of FIGS. 8 and 9, and the following docks and moving bodies can be adopted.
That is, for example, when the hull (for example, the drone 1 in FIG. 8 or FIG. 9) enters the dock (for example, the dock 7 in FIG. 8 or FIG. 9), the entrance (for example, the axis X in FIG. 8 or FIG. 9 is in the negative direction). It is possible to adopt a dock that blocks a certain barrier) and blocks waves from the outer port. As a result, the mobile body connected to the dock that blocks waves from the outer port can improve the stability and load and unload cargo.
Further, for example, a dock that grips (a moving body) with a support machine on the dock side (for example, the support machine 73 in FIG. 8) can be adopted. This allows the (moving body) to stabilize its self-position and facilitate control, and the moving body can load and unload cargo with improved stability.
Further, for example, a dock made of rubber or the like (for example, the connection ring portion 74 of FIGS. 8 and 9) can be used to cope with the shaking of the hull to some extent. As a result, even when the moving body shakes or the moving body moves due to a change in weight, cargo can be stably loaded and unloaded.
Further, for example, the hull is fixed by a roller (for example, the support member 6 in FIG. 9), the lock ring (for example, the lock ring 75 in FIG. 9) is pressed against the hull, and the cam (for example, the cam 76 in FIG. 9) is pressed (for example, in FIG. 9). By fixing (fitting with the fixing portion 62), a dock that seals the periphery of the hatch (for example, the hatch 61 in FIG. 9) can be adopted. This allows the moving object to load and unload cargo with improved stability.
Further, for example, a drainage facility can be adopted in the dock because some water or the like leaks into the inside of the dock. This allows the moving object to load and unload cargo without being threatened by water leaks.
Further, for example, when the moving body is supported by the supporting means, a dock devised to hold down a strong bone in the drone 1 can be adopted. As a result, when improving the stability of the drone 1, it is possible not to apply a load to a position where the strength of the drone 1 is structurally weak.
Further, for example, since the moving body is broken when it is completely fixed from all sides by the supporting means, the roller of the supporting member is supported by a weak spring, and a dock that allows some vibration of the moving body can be adopted. As a result, it is possible to improve the stability of the drone 1 and prevent damage to the drone 1 due to unexpected slight shaking or the like.
 以下、図10を用いて、本実施形態における、ドローン1が入ったドック7の水位の調整の例を説明する。
 図10は、図8のドローン1が入ったドック7を他の方向から示す図である。
 図10Aは、ドローン1が入ったドック7を示す図である。
 図10Bは、ドローン1が入ったドック7のドック室Doの水を排出した例を示す図である。
 図10Cは、ドローン1が入ったドック7のドック室Doに再び水を満たす例を示した図である。
 なお、図10A乃至図10Cを個々に区別する必要がない場合、まとめて「図10」と呼ぶ。
Hereinafter, an example of adjusting the water level of the dock 7 containing the drone 1 in the present embodiment will be described with reference to FIG. 10.
FIG. 10 is a diagram showing the dock 7 containing the drone 1 of FIG. 8 from another direction.
FIG. 10A is a diagram showing a dock 7 containing a drone 1.
FIG. 10B is a diagram showing an example in which water in the dock chamber Do of the dock 7 containing the drone 1 is discharged.
FIG. 10C is a diagram showing an example in which the dock chamber Do of the dock 7 containing the drone 1 is filled with water again.
When it is not necessary to distinguish FIGS. 10A to 10C individually, they are collectively referred to as "FIG. 10".
 図10において、ドローン1は、ドック7のドック室Doに入っている。本実施形態の例において、ドローン1は水中を移動可能な水中ドローンであるので、ドック7は、ドック上部Duの海面より下に設置されている。更に、ドック7は、ドック上部Duとの間にバルブ81を備える。また、ドック7は、バルブ82を介して予備水槽83を備える。
 また、図10Aを見ると、ドローン1が水中を移動しドック7に入るため、ドック室Doは、水で満たされている。
In FIG. 10, the drone 1 is in the dock room Do of the dock 7. In the example of the present embodiment, since the drone 1 is an underwater drone that can move underwater, the dock 7 is installed below the sea level of the upper Du of the dock. Further, the dock 7 is provided with a valve 81 between the dock 7 and the upper Du of the dock. Further, the dock 7 includes a spare water tank 83 via a valve 82.
Further, looking at FIG. 10A, since the drone 1 moves underwater and enters the dock 7, the dock chamber Do is filled with water.
 ここで、船のバランスを保つ場合や保守のためにドックより下に予備水槽を用意することで早急にドック内の水量を調整することが出来る。即ち、ドローン1が浮力によりバランスを欠きうる場合や、ドローン1の保守点検等のため、ドック室Doの水を排水する場合がある。このような場合において、単に水をポンプ等により排水する場合、ドック室Doの大きさと、ポンプの排水能力とに依存する時間がかかり、短時間ですませるためには排水能力の高いポンプを用意するなどのコストがかかる。そこで、ドック7は下に予備水槽83を備えることにより、ドック室Do内部の水を予備水槽83に排水することで早急にドック室Do内の水量を調整することができる。具体的には例えば、ドック7は下に備えた空の予備水槽83との間にバルブ82を備える。この場合において、図10Bを見ると、バルブ82を開けることにより、ドック室Do内部の水は予備水槽83に流れ込む。これにより、ドック室Doから水が排水される。 Here, the amount of water in the dock can be adjusted immediately by preparing a spare water tank below the dock when maintaining the balance of the ship or for maintenance. That is, the drone 1 may be out of balance due to buoyancy, or the water in the dock room Do may be drained for maintenance and inspection of the drone 1. In such a case, when simply draining water with a pump or the like, it takes time depending on the size of the dock chamber Do and the drainage capacity of the pump, and a pump with high drainage capacity is prepared for a short time. It costs such as. Therefore, by providing the dock 7 with a reserve water tank 83 underneath, the amount of water in the dock chamber Do can be adjusted immediately by draining the water inside the dock chamber Do to the reserve water tank 83. Specifically, for example, the dock 7 is provided with a valve 82 between the dock 7 and the empty reserve water tank 83 provided below. In this case, looking at FIG. 10B, by opening the valve 82, the water inside the dock chamber Do flows into the reserve water tank 83. As a result, water is drained from the dock room Do.
 また、出港時には再び海側と水圧を一致させ、予備水槽の水は追ってポンプで海に戻す。即ち、ドローン1の保守点検等がすみ、外港に出港する場合には、ドック室Doに海水を供給する。これにより、ドック室Doは海水で満たされ、外港と水圧を一致させることができる。この状態において、外界とドック室Doとを隔てる隔壁を開けることにより、出港することができる。 Also, at the time of departure, the water pressure will be matched with the sea side again, and the water in the reserve tank will be pumped back to the sea. That is, when the maintenance and inspection of the drone 1 is completed and the vehicle departs from the outer port, seawater is supplied to the dock room Do. As a result, the dock room Do is filled with seawater, and the water pressure can be matched with that of the outer port. In this state, the port can be departed by opening the partition wall separating the outside world and the dock room Do.
 また、水上機でも、同様の方法で、浮き沈みを調整は可能である。即ち、ドローン1が水上を浮遊して移動する水上ドローンの場合、図示はしないが、上述のドック上部Duは存在しないが、外港との隔壁を備えたドック7は、ドローン1がドックに入った状態において外港との隔壁を閉じる。ドック室Doの水を排水したい場合、下部に備える予備水槽83に海水を排水することができる。
 以上、図10を用いて、本実施形態における、ドローン1が入ったドック7の水位の調整の例を説明した。
Also, with a seaplane, the ups and downs can be adjusted in the same way. That is, in the case of a water drone in which the drone 1 floats and moves on the water, although not shown, the above-mentioned dock upper Du does not exist, but in the dock 7 having a partition wall with an outer port, the drone 1 enters the dock. Close the partition with the outer port in this state. When it is desired to drain the water in the dock room Do, seawater can be drained to the reserve water tank 83 provided in the lower part.
As described above, an example of adjusting the water level of the dock 7 containing the drone 1 in the present embodiment has been described with reference to FIG.
 このような図10のドック7やドローン1を用いた場合、ドローン1は、安定性の向上や安全な運行、貨物の運搬ができるという効果を奏することができる。
 このような効果を奏することが可能な移動体は、図10のドック7やドローン1に限定されず、次のようなドックや移動体を採用することができる。
 即ち、例えば、船(例えば図10のドローン1)のバランスを保つ場合や保守のためにドックより下に予備水槽(例えば図10の予備水槽83)を用意することで早急にドック内の水量を調整するドックを採用できる。これにより、ポンプ等を使わずにドック内の水を排水し、早急に移動体の保守点検等を行うことができる。
 また例えば、移動体の出港時には再び海側(例えば図10のドック上部Du)と水圧を一致させ、予備水槽の水は追ってポンプで海に戻すドックを採用できる。これにより、ポンプ等を使わずドック内に水を供給し、早急に移動体の出港をすることができる。
 また例えば、水上機でも、同様の方法で、浮き沈みを調整するドックを採用できる。これにより、例えば図10の水中を移動可能な移動体に限らず、水上を移動可能な移動体においても早急に水を抜いて保守点検等の作業を行うことができる。
 また例えば、上述のドック7は、予備水槽83やドック上部Duとの経路及びバルブが1つであるものとしたが、特にこれに限定されない。即ち例えば、ドック7と予備水槽83とは複数のバルブ及び経路により、接続されていてもよい。これにより、一方の経路により排水を行い、もう一方の経路により空気を供給することができ、排水の速度を向上させることができる。
When the dock 7 and the drone 1 of FIG. 10 are used, the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
The moving body capable of exerting such an effect is not limited to the dock 7 and the drone 1 in FIG. 10, and the following docks and moving bodies can be adopted.
That is, for example, when maintaining the balance of the ship (for example, the drone 1 in FIG. 10) or by preparing a spare water tank (for example, the spare water tank 83 in FIG. 10) below the dock for maintenance, the amount of water in the dock can be quickly increased. You can use a dock to adjust. As a result, the water in the dock can be drained without using a pump or the like, and maintenance and inspection of the moving body can be performed immediately.
Further, for example, when the moving body departs from the port, a dock can be adopted in which the water pressure is matched with the sea side (for example, the upper Du of the dock in FIG. 10) again, and the water in the reserve tank is later returned to the sea by a pump. As a result, water can be supplied to the dock without using a pump or the like, and the moving body can leave the port immediately.
Further, for example, in a seaplane, a dock for adjusting ups and downs can be adopted in the same manner. Thereby, for example, not only the moving body that can move in the water shown in FIG. 10 but also the moving body that can move on the water can be quickly drained to perform maintenance and inspection work.
Further, for example, the above-mentioned dock 7 has one path and one valve to the reserve water tank 83 and the dock upper Du, but is not particularly limited thereto. That is, for example, the dock 7 and the reserve water tank 83 may be connected by a plurality of valves and paths. As a result, drainage can be performed by one route and air can be supplied by the other route, and the speed of drainage can be improved.
 以下、図11を用いて、本実施形態における、ドローン1が自己の位置を取得する場合の例を説明する。
 図11は、図1のドローン1が自己の位置を取得するためのGPS受信装置を海面にあげる例を示す図である。
 図11において、海上を浮遊して移動する水上ドローンであるドローン1-1は、水面を航行中、GPS衛星Gからの信号を受信して自己位置の取得をすることができる。一方、海中を移動する水中ドローンであるドローン1-2は、海水に阻まれ、直接GPS衛星Gからの信号を受信することができない。
Hereinafter, an example in which the drone 1 acquires its own position in the present embodiment will be described with reference to FIG. 11.
FIG. 11 is a diagram showing an example in which the drone 1 of FIG. 1 raises the GPS receiving device for acquiring its own position to the sea surface.
In FIG. 11, the drone 1-1, which is a surface drone that floats and moves on the sea, can acquire a self-position by receiving a signal from the GPS satellite G while navigating on the surface of the water. On the other hand, the drone 1-2, which is an underwater drone that moves in the sea, is blocked by the seawater and cannot directly receive the signal from the GPS satellite G.
 ここで、自己位置の取得のために、GPSを取得する時に、紐付きの受信機を海面に上げることができる。即ち、水中を移動するドローン1-2がGPS衛星Gからの信号を受信する際において、ドローン1はGPS受信装置91を信号線92で接続して海面にあげることができる。これにより、ドローン1-2はGPS受信装置91及び信号線92を介して、GPS衛星Gからの信号を受信し、図3の位置推定部45は、取得したGPS衛星Gからの信号に基づいて自己位置を推定することができる。
 また、このときに、GPS装置もしくは船体から音波等を発信して、海面または海面までの場所に他の船舶や障害物がないか確認して安全に海面までGPSを輸送することができる。即ち、GPS受信装置91を海面にあげる場合において、例えばドローン1-1等の海上を移動する船などにGPS受信装置91が接触する可能性がある。これを回避するため、GPS受信装置91は、音波等を発信して、海面又は海面までの場所にほかの船舶や障害物がないかを確認することができる。具体的には例えば、図11を見ると、GPS受信装置91が備える図示せぬ音波発信部は海面に向けて音波を発信している。海面又は海面までの場所にほかの船舶や障害物がある場合、音波が反射する。GPS受信装置91が備える図示せぬ音波受信部は反射した音波を受信し、海面との距離や他の船舶のエンジン音等を受信することにより、ドローン1-2は、ほかの船舶や障害物の存在を識別することができる。これにより、ドローン1-2は、ほかの船舶や障害物を回避してGPS受信装置91を海面まで上げ、GPS衛星Gの信号を受信し、自己位置を取得することができる。
 以上、図11を用いて、本実施形態における、ドローン1が自己の位置を取得する場合の例を説明した。
Here, in order to acquire the self-position, the receiver with the tie can be raised to the sea surface when acquiring GPS. That is, when the drone 1-2 moving underwater receives the signal from the GPS satellite G, the drone 1 can connect the GPS receiving device 91 with the signal line 92 and raise it to the sea surface. As a result, the drone 1-2 receives the signal from the GPS satellite G via the GPS receiver 91 and the signal line 92, and the position estimation unit 45 in FIG. 3 is based on the acquired signal from the GPS satellite G. The self-position can be estimated.
Further, at this time, it is possible to transmit sound waves or the like from the GPS device or the hull to confirm that there are no other ships or obstacles at the sea surface or a place up to the sea surface and safely transport the GPS to the sea surface. That is, when the GPS receiving device 91 is raised to the sea surface, the GPS receiving device 91 may come into contact with a ship moving on the sea such as a drone 1-1. In order to avoid this, the GPS receiving device 91 can transmit sound waves or the like to check whether there are other ships or obstacles on the sea surface or at a place up to the sea surface. Specifically, for example, looking at FIG. 11, the sound wave transmitting unit (not shown) included in the GPS receiving device 91 transmits sound waves toward the sea surface. Sound waves are reflected when there are other vessels or obstacles on or above sea level. The sound wave receiver (not shown) provided in the GPS receiver 91 receives the reflected sound wave, and the distance to the sea surface, the engine sound of another ship, etc. are received, so that the drone 1-2 can be used by another ship or an obstacle. Can identify the existence of. As a result, the drone 1-2 can avoid other ships and obstacles, raise the GPS receiver 91 to the sea surface, receive the signal of the GPS satellite G, and acquire its own position.
As described above, an example of the case where the drone 1 acquires its own position in the present embodiment has been described with reference to FIG.
 このような図11のドローン1を用いた場合、ドローン1は、安定性の向上や安全な運行、貨物の運搬ができるという効果を奏することができる。
 このような効果を奏することが可能な移動体は、図11のドローン1に限定されず、次のようなドックや移動体を採用することができる。
 即ち、例えば、移動体(例えば図11のドローン1)の自己位置の取得のために、GPSを取得する時に、紐(例えば図11の信号線92)付きの受信機(例えば図11のGPS受信装置91)を海面に上げる移動体を採用できる。これにより、移動体は自己位置を取得でき、安全な運行、貨物の運搬ができる。
 また例えば、GPS装置(例えば図11のGPS受信装置91)もしくは船体(例えば図11のドローン1)から音波等を発信して、海面または海面までの場所に他の船舶(例えば図11のドローン1-1)や障害物がないか確認して安全に海面までGPSを輸送する移動体を採用できる。これにより、自己位置を取得する際に必要なGPS受信手段を海面に上げる際の安全性が向上し、安全な運行、貨物の運搬ができる。
 また例えば、上述の海上に上げる装置はGPS受信装置91としたが、特にこれに限定されない。即ち、GPS受信装置に限らず、移動体が海上に上げる装置、具体的には例えば海上の様子を撮像する撮像装置や、潜望鏡等を海上に上げる場合においても、上述のように音波等を発信することにより、海面または海面までの場所に他の船舶や障害物がないか確認することができる。
When such a drone 1 of FIG. 11 is used, the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
The moving body capable of exerting such an effect is not limited to the drone 1 in FIG. 11, and the following docks and moving bodies can be adopted.
That is, for example, when acquiring GPS for acquiring the self-position of a mobile body (for example, drone 1 in FIG. 11), a receiver with a string (for example, signal line 92 in FIG. 11) (for example, GPS reception in FIG. 11) A moving body that raises the device 91) to the sea surface can be adopted. As a result, the moving body can acquire its own position, and can operate safely and carry cargo.
Further, for example, a GPS device (for example, the GPS receiving device 91 in FIG. 11) or a hull (for example, the drone 1 in FIG. 11) emits a sound wave or the like to the sea surface or a place up to the sea surface to another ship (for example, the drone 1 in FIG. 11). -1) It is possible to adopt a moving object that safely transports GPS to the surface of the sea after confirming that there are no obstacles. As a result, the safety when raising the GPS receiving means necessary for acquiring the self-position to the sea surface is improved, and safe operation and cargo transportation can be performed.
Further, for example, the above-mentioned device for raising to the sea is a GPS receiving device 91, but the device is not particularly limited to this. That is, not only the GPS receiving device, but also a device that a moving object raises to the sea, specifically, an image pickup device that captures an image of the state of the sea, a periscope, or the like, also transmits sound waves or the like as described above. By doing so, it is possible to confirm that there are no other vessels or obstacles on the surface of the sea or in the place up to the surface of the sea.
 以下、図12を用いて、本実施系における、ドローン1が岸壁や海底と衝突することを防ぐ電波発信装置の例を説明する。
 図12は、図1のドローン1が岸壁や海底に設置された信号送受装置からの信号を受けて移動する例を示す図である。
 図12において、信号送受装置101は、複数の信号送受装置101Aが海中の岸壁Qに設置されている。また、信号送受装置101Bが海底に設置されている。なお、信号送受装置101A及び信号送受装置101Bを個々に区別する必要がない場合、まとめて「信号送受装置101」と呼ぶ。
Hereinafter, an example of a radio wave transmitting device for preventing the drone 1 from colliding with a quay or the seabed in this implementation system will be described with reference to FIG. 12.
FIG. 12 is a diagram showing an example in which the drone 1 of FIG. 1 moves in response to a signal from a signal transmission / reception device installed on a quay or the seabed.
In FIG. 12, in the signal transmission / reception device 101, a plurality of signal transmission / reception devices 101A are installed on the quay Q in the sea. Further, the signal transmission / reception device 101B is installed on the seabed. When it is not necessary to distinguish between the signal transmission / reception device 101A and the signal transmission / reception device 101B, they are collectively referred to as "signal transmission / reception device 101".
 海中の岸壁か海底に音波等を出す装置を設置し、信号を出すことにより、輸送機に危険を伝えたり、輸送機の自己位置推定を支援することができる。即ち、海中の岸壁Qや海底に設置された信号送受装置101は、信号送受部111から、音波等の信号を発信する。信号送受装置101の発信した信号は、信号送受装置101の近くを航行するドローン1が受信する。図3の位置推定部45を備えるドローン1は、信号送受装置101の信号を解析し、ドローン1の自己の位置を推定する自己位置推定をすることができる。
 具体的には、この装置からは、GPS同等に時間同期で時間情報を送ることで、船舶での到達時間から距離が測ることができる。即ち、信号送受装置101は、GPS衛星Gと同様に、信号として発信時の時刻に対応した時間情報を送信する。信号を受信したドローン1は、発信した時刻と受信した時刻とから到達時間を計算することにより、信号を発信した信号送受装置101との距離を推定できる。これにより、ドローン1は、信号送受装置101と所定の距離を設けることにより、信号送受装置101が設置された岸壁Qや海底と距離を保つことができる。
By installing a device that emits sound waves or the like on the quay or the seabed under the sea and outputting a signal, it is possible to convey the danger to the transport aircraft and support the self-position estimation of the transport aircraft. That is, the signal transmission / reception device 101 installed on the quay Q in the sea or the seabed transmits a signal such as a sound wave from the signal transmission / reception unit 111. The signal transmitted by the signal transmission / reception device 101 is received by the drone 1 navigating near the signal transmission / reception device 101. The drone 1 provided with the position estimation unit 45 of FIG. 3 can analyze the signal of the signal transmission / reception device 101 and perform self-position estimation to estimate the self-position of the drone 1.
Specifically, by sending time information from this device in time synchronization equivalent to GPS, the distance can be measured from the arrival time on a ship. That is, the signal transmission / reception device 101 transmits time information corresponding to the time at the time of transmission as a signal, similarly to the GPS satellite G. The drone 1 that has received the signal can estimate the distance from the signal transmission / reception device 101 that has transmitted the signal by calculating the arrival time from the transmission time and the reception time. As a result, the drone 1 can maintain a distance from the quay Q and the seabed where the signal transmission / reception device 101 is installed by providing a predetermined distance from the signal transmission / reception device 101.
 また、受信した信号の強さにより、距離を推定することも出来る。即ち、信号送受装置101が発信した音波等の信号は、発信した位置より離れるほど、信号が広がることや減衰することにより、信号の強さが低下する。ドローン1は、例えば事前に信号送受装置101が発信する強度を共有することができる。ドローン1は、発信された強度と受信した強度とから、受信した信号が弱くなった量から、ドローン1と信号送受装置101との距離を推定することができる。これにより、信号送受装置101が発信する信号は、時刻情報などの信号に載せたデータに依らずに距離を推定することができる。 Also, the distance can be estimated from the strength of the received signal. That is, the signal such as the sound wave transmitted by the signal transmission / reception device 101 becomes wider or attenuated as the distance from the transmitted position increases, so that the signal strength decreases. The drone 1 can share, for example, the strength transmitted by the signal transmission / reception device 101 in advance. The drone 1 can estimate the distance between the drone 1 and the signal transmission / reception device 101 from the amount at which the received signal is weakened from the transmitted intensity and the received intensity. As a result, the distance of the signal transmitted by the signal transmission / reception device 101 can be estimated regardless of the data carried on the signal such as time information.
 また、複数を組み合わせると正確に場所が分かる。即ち、複数の信号送受装置101を組み合わせることにより、ドローン1は、正確な自己位置が推定できる。具体的には例えば、ドローン1が1つの信号送受装置101からの距離を推定出来た場合、ドローン1の自己位置は、信号送受装置101から推定された距離だけ離れた同心円上であることがわかる。また、2つの信号送受装置101の夫々からの距離の夫々を推定出来た場合、ドローン1の自己位置は信号送受装置101の夫々を中心とする同心円の夫々の交点(最大2つ)の位置であることがわかる。3つの信号送受装置101の夫々からの距離の夫々を推定できた場合、ドローン1の自己位置は1点に決まる。上述のように、複数の信号送受装置101を組み合わせることにより、ドローン1は、正確な自己位置が推定できる。さらに言えば、さらに複数の信号送受装置101を組み合わせることにより、ドローン1の自己位置の推定の精度は向上することができる。 Also, if you combine multiple items, you can know the exact location. That is, by combining a plurality of signal transmission / reception devices 101, the drone 1 can estimate an accurate self-position. Specifically, for example, when the drone 1 can estimate the distance from one signal transmission / reception device 101, it can be seen that the self-position of the drone 1 is on a concentric circle separated by the distance estimated from the signal transmission / reception device 101. .. If the distances from each of the two signal transmission / reception devices 101 can be estimated, the self-position of the drone 1 is the position of the intersection (up to two) of the concentric circles centered on each of the signal transmission / reception devices 101. It turns out that there is. If the distances from each of the three signal transmission / reception devices 101 can be estimated, the self-position of the drone 1 is determined to be one point. As described above, by combining a plurality of signal transmission / reception devices 101, the drone 1 can estimate an accurate self-position. Furthermore, by further combining a plurality of signal transmission / reception devices 101, the accuracy of estimating the self-position of the drone 1 can be improved.
 また、逆に船舶から地上にデータ転送することもできる。即ち、ドローン1が信号送受装置101を備え、岸壁Qに信号受信装置を備えることができる。具体的には例えば、ドローン1が備える信号送受装置101が現在時刻を示す情報を載せた信号を発信する。次に、岸壁Qに設置された複数の信号受信装置が信号を受信する。信号受信装置は、上述と同様に、信号の発信時刻と受信時刻とから、ドローン1と信号受信装置との距離を推定することができる。ドローン1と複数の信号受信装置の夫々との距離の夫々を推定できることにより、ドローン1の位置を、推定することができる。これにより、岸壁Q側、即ち地上側からドローン1の位置を推定することができる。 On the contrary, data can be transferred from the ship to the ground. That is, the drone 1 can be provided with the signal transmitting / receiving device 101, and the quay Q can be provided with the signal receiving device. Specifically, for example, the signal transmission / reception device 101 included in the drone 1 transmits a signal carrying information indicating the current time. Next, a plurality of signal receiving devices installed on the quay Q receive the signal. Similar to the above, the signal receiving device can estimate the distance between the drone 1 and the signal receiving device from the transmission time and the reception time of the signal. The position of the drone 1 can be estimated by being able to estimate each of the distances between the drone 1 and each of the plurality of signal receiving devices. As a result, the position of the drone 1 can be estimated from the quay Q side, that is, the ground side.
 また、船舶からの信号を使って、複数の地上局から位置推定をして船舶に伝達しても良い。即ち、上述のように、ドローン1が備える信号送受装置101が発信する信号に基づいて、複数の地上の信号受信装置が受信した信号に基づいてドローン1の位置をする場合において、地上側で推定したドローン1の位置を、ドローン1に電波等の無線通信により、伝達することができる。これにより、ドローン1は自己位置の推定に係る装置を積載せずとも、ドローン1は地上側で推定された自己位置を取得することができる。 Alternatively, the position may be estimated from a plurality of ground stations and transmitted to the ship by using the signal from the ship. That is, as described above, when the drone 1 is positioned based on the signals received by the plurality of ground signal receiving devices based on the signal transmitted by the signal transmitting / receiving device 101 included in the drone 1, it is estimated on the ground side. The position of the drone 1 can be transmitted to the drone 1 by wireless communication such as radio waves. As a result, the drone 1 can acquire the self-position estimated on the ground side without loading the device for estimating the self-position.
 また、1つの地上局でも船舶の移動と組み合わせたり、水面からの距離とかを使って自己位置を推定しても良い。即ち、上述の通り、ドローン1と信号送受装置101との距離など、それぞれの距離の情報は多ければ多いほど、精度が向上する。従って、例えば岸壁Qに対して信号送受装置101のうち1つからしか信号を受信できない場合にであっても、他の自己位置が精度よく決まっている他のドローン1からの信号を受信したり、自身の移動状況と組み合わせたりすることができる。また、水中を移動できる水中ドローンであるドローン1の自己位置の推定を行う場合、水面からの距離を使って自己位置推定をしてもよい。 Also, even one ground station may be combined with the movement of a ship, or the self-position may be estimated using the distance from the water surface. That is, as described above, the more information about each distance, such as the distance between the drone 1 and the signal transmission / reception device 101, the better the accuracy. Therefore, for example, even when the signal can be received from only one of the signal transmission / reception devices 101 to the quay Q, the signal from the other drone 1 whose self-position is accurately determined can be received. , Can be combined with your own movement status. Further, when estimating the self-position of the drone 1 which is an underwater drone capable of moving underwater, the self-position may be estimated using the distance from the water surface.
 また、地上局がなくても、海流などの情報を使って、慣性航法で自己位置を推定しても良い。即ち、ドローン1の近辺に信号送受装置101等の装置がない場合、ドローン1は、海流の流れの向きや速度の情報や、ドローン1が備える加速度センサ等の情報に基づいて慣性航法をおこなってもよい。これにより、ドローン1は信号送受装置101が乏しい領域または信号が受信できない場合であっても、自己位置の推定をすることができる。
 以上、図12を用いて、本実施系における、ドローン1が岸壁や海底と衝突することを防ぐ信号送受装置の例を説明した。
Moreover, even if there is no ground station, the self-position may be estimated by inertial navigation using information such as ocean current. That is, when there is no device such as a signal transmission / reception device 101 in the vicinity of the drone 1, the drone 1 performs inertial navigation based on information on the direction and speed of the ocean current and information on the acceleration sensor provided in the drone 1. May be good. As a result, the drone 1 can estimate its own position even when the signal transmission / reception device 101 is in a poor area or cannot receive a signal.
As described above, an example of the signal transmission / reception device for preventing the drone 1 from colliding with the quay or the seabed in the present implementation system has been described with reference to FIG.
 このような図12の信号送受装置101やドローン1を用いた場合、ドローン1は、安定性の向上や安全な運行、貨物の運搬ができるという効果を奏することができる。
 このような効果を奏することが可能な移動体は、図12の信号送受装置101やドローン1に限定されず、次のようなドックや移動体を採用することができる。
 即ち、例えば、海中の岸壁か海底に音波等を出す装置(例えば図12の信号送受装置101)を設置し、信号を出すことにより、輸送機(例えば図12のドローン1)に(例えば岸壁や海底へ接近しているという)危険を伝えたり、(例えば図3の位置推定部45による)輸送機の自己位置推定をする信号送受手段や移動体を採用することができる。これにより、移動体は自己位置の推定ができ、安全な運行、貨物の運搬ができる。
 また例えば、受信した信号の強さにより、(例えば図12の信号送受装置101とドローン1との)距離を推定する信号送受手段や移動体を採用することができる。これにより、移動体は信号送受手段が設置された岸壁や海底との距離の推定ができ、安全な運行、貨物の運搬ができる。
 また例えば、複数の信号送受手段を組み合わせる、信号送受手段や移動体を採用することができる。これにより、移動体はより正確な自己位置の推定ができ、安全な運行、貨物の運搬ができる。
 また例えば、逆に船舶(例えば図12のドローン1)から地上にデータ転送する、信号送受手段や移動体を採用することができる。これにより、地上側から移動体の位置を推定することで、移動体に対する無線通信等による適切な制御を行うことができ、安全な運行、貨物の運搬ができる。
 また例えば、船舶からの信号を使って、複数の地上局(例えば図12の複数の信号送受装置101)から位置推定をして船舶に伝達する、信号送受手段や移動体を採用することができる。これにより、移動体は自己位置の推定に係る装置を積載せずとも、地上側で推定された自己位置を取得することができ、安全な運行、貨物の運搬ができる。
 また例えば、1つの地上局でも船舶の移動と組み合わせたり、水面からの距離等を使って自己位置を推定する、信号送受手段や移動体を採用することができる。これにより、移動体は、信号送受手段が少ない個所との距離しか推定に使えない場合においても、他の移動体との距離に基づいて自己位置の推定を行うことができ、安全な運行、貨物の運搬ができる。
 また例えば、地上局がなくても、海流などの情報を使って、慣性航法で自己位置を推定する、信号送受手段や移動体を採用することができる。これにより、移動体は、信号送受手段が無い場合においても、自己位置の推定を行うことができ、安全な運行、貨物の運搬ができる。
When the signal transmission / reception device 101 and the drone 1 of FIG. 12 are used, the drone 1 can have the effects of improving stability, safe operation, and carrying cargo.
The mobile body capable of exerting such an effect is not limited to the signal transmission / reception device 101 and the drone 1 of FIG. 12, and the following docks and mobile bodies can be adopted.
That is, for example, a device that emits sound waves or the like (for example, the signal transmission / reception device 101 in FIG. 12) is installed on the quay or the seabed under the sea, and by emitting a signal, the transport aircraft (for example, the drone 1 in FIG. It is possible to employ a signal transmission / reception means or a moving body that conveys a danger (that is, it is approaching the seabed) or estimates the self-position of the transport aircraft (for example, by the position estimation unit 45 in FIG. 3). As a result, the moving body can estimate its own position, and can operate safely and carry cargo.
Further, for example, a signal transmission / reception means or a mobile body that estimates the distance (for example, the signal transmission / reception device 101 of FIG. 12 and the drone 1) depending on the strength of the received signal can be adopted. As a result, the moving body can estimate the distance to the quay where the signal transmitting / receiving means is installed and the seabed, and can operate safely and carry cargo.
Further, for example, a signal transmission / reception means or a mobile body that combines a plurality of signal transmission / reception means can be adopted. As a result, the moving body can estimate its own position more accurately, and can operate safely and carry cargo.
Further, for example, on the contrary, a signal transmitting / receiving means or a mobile body that transfers data from a ship (for example, the drone 1 in FIG. 12) to the ground can be adopted. As a result, by estimating the position of the moving body from the ground side, appropriate control can be performed for the moving body by wireless communication or the like, and safe operation and cargo transportation can be performed.
Further, for example, it is possible to adopt a signal transmission / reception means or a mobile body that estimates a position from a plurality of ground stations (for example, a plurality of signal transmission / reception devices 101 in FIG. 12) and transmits the position to the ship by using a signal from the ship. .. As a result, the moving body can acquire the self-position estimated on the ground side without loading the device for estimating the self-position, and can safely operate and transport the cargo.
Further, for example, even one ground station can adopt a signal transmission / reception means or a mobile body that can be combined with the movement of a ship or estimate its own position by using a distance from the water surface or the like. As a result, the mobile body can estimate its own position based on the distance to other mobile bodies even when the distance to a place where there are few signal transmission / reception means can be used for estimation, and safe operation and cargo can be estimated. Can be transported.
Further, for example, even if there is no ground station, it is possible to adopt a signal transmission / reception means or a mobile body that estimates its own position by inertial navigation using information such as ocean currents. As a result, the moving body can estimate its own position even when there is no signal transmitting / receiving means, and can operate safely and carry cargo.
 以上、本発明及び他の実施形態について説明したが、本発明及び他の実施形態は、上述の実施形態に限定されるものではなく、目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、上述した実施形態では、移動体の一例としてドローンが採用されているが、ドローンに限定されず、あらゆる移動体を採用することができる。例えば、水上または水中を移動するドローンに限らず、水上を移動する船舶や水中を移動する潜水艦等は、いずれも移動体の一例である。
 また、図3に示す機能ブロック図は、例示に過ぎず、特に限定されない。即ち、上述した一連の処理を全体として実行出来る機能がドローン1等に備えられていれば足り、この機能を実現するためにどのような機能ブロックを用いるのかは、特に図3の例に限定されない。
 また、1つの機能ブロックは、ハードウェア単体で構成してもよいし、ソフトウェア単体との組み合わせで構成してもよい。
Although the present invention and other embodiments have been described above, the present invention and other embodiments are not limited to the above-described embodiments, and modifications, improvements, etc. within the range in which the object can be achieved are described in the present invention. It is included.
For example, in the above-described embodiment, the drone is adopted as an example of the moving body, but the drone is not limited to the drone, and any moving body can be adopted. For example, not only a drone that moves on the water or underwater, but also a ship that moves on the water, a submarine that moves underwater, and the like are all examples of moving objects.
Further, the functional block diagram shown in FIG. 3 is merely an example and is not particularly limited. That is, it suffices if the drone 1 or the like is provided with a function capable of executing the above-mentioned series of processes as a whole, and what kind of functional block is used to realize this function is not particularly limited to the example of FIG. ..
Further, one functional block may be configured by a single hardware or a combination of a single software.
 各機能ブロックの処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータ等にネットワークや記録媒体からインストールされる。
 コンピュータは、専用のハードウェアに組み込まれているコンピュータであってもよい。また、コンピュータは、各種のプログラムをインストールすることで、各種の機能を実行することが可能なコンピュータ、例えばサーバの他汎用のスマートフォンやパーソナルコンピュータであってもよい。
When the processing of each functional block is executed by software, the programs constituting the software are installed in a computer or the like from a network or a recording medium.
The computer may be a computer embedded in dedicated hardware. Further, the computer may be a computer capable of executing various functions by installing various programs, for example, a general-purpose smartphone or a personal computer in addition to a server.
 このようなプログラムを含む記録媒体は、各ユーザにプログラムを提供するために装置本体とは別に配布される、リムーバブルメディアにより構成されるだけではなく、装置本体に予め組み込まれた状態で各ユーザに提供される記録媒体等で構成される。 The recording medium containing such a program is not only composed of removable media, which is distributed separately from the main body of the device to provide the program to each user, but also is preliminarily incorporated in the main body of the device to each user. It is composed of the provided recording media and the like.
 なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に添って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的或いは個別に実行される処理をも含むものである。 In this specification, the steps for describing a program recorded on a recording medium are not only processed in chronological order but also in parallel or individually, even if they are not necessarily processed in chronological order. It also includes the processing to be executed.
 1・・・ドローン、2・・・操縦者端末、3・・・サーバ、41・・・駆動部、42・・・移動制御部、43・・・重心管理部、44・・・重心制御部、45・・・位置推定部、5・・・コンテナ、Q・・・岸壁、6・・・支持部材、GC・・・コンテナ重心、51・・・ローラ、52・・・コンテナ台座、53・・・台座ローラ、54・・・ローラ勘合部、55・・・バラストタンク、61・・・ハッチ、62・・・固定部、7・・・ドック、Di・・・ドック内、Do・・・ドック室、Dc・・・ドック接続領域、71・・・ドック壁、72・・・防水壁、73・・・支持機、74・・・接続リング部、75・・・ロックリング、76・・・カム、77・・・台車、81・・・バルブ、82・・・バルブ、Du・・・ドック上部、83・・・予備水槽、91・・・GPS受信装置、92・・・信号線、101・・・信号送受装置 1 ... Drone, 2 ... Operator terminal, 3 ... Server, 41 ... Drive unit, 42 ... Movement control unit, 43 ... Center of gravity management unit, 44 ... Center of gravity control unit , 45 ... position estimation unit, 5 ... container, Q ... quay, 6 ... support member, GC ... container center of gravity, 51 ... roller, 52 ... container pedestal, 53.・ ・ Pedestal roller, 54 ・ ・ ・ Roller fitting part, 55 ・ ・ ・ Ballast tank, 61 ・ ・ ・ Hatch, 62 ・ ・ ・ Fixed part, 7 ・ ・ ・ Dock, Di ・ ・ ・ Dock inside, Do ・ ・ ・Dock room, Dc ... Dock connection area, 71 ... Dock wall, 72 ... Waterproof wall, 73 ... Support machine, 74 ... Connection ring part, 75 ... Lock ring, 76 ... -Cam, 77 ... trolley, 81 ... valve, 82 ... valve, Du ... dock upper part, 83 ... reserve water tank, 91 ... GPS receiver, 92 ... signal line, 101 ... Signal transmission / reception device

Claims (1)

  1.  水上又は水中を移動して所定の物品を運搬する移動体において、
     前記物品の重心を移動させる重心移動手段と、
     前記物品の前記重心を固定させる重心固定手段と、
     を備える移動体。
    In a mobile body that moves on or under water to carry a predetermined item.
    A means for moving the center of gravity of the article and a means for moving the center of gravity of the article,
    A center of gravity fixing means for fixing the center of gravity of the article,
    A mobile body equipped with.
PCT/JP2021/031371 2020-08-26 2021-08-26 Mobile body WO2022045250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020142716A JP2022038292A (en) 2020-08-26 2020-08-26 Movable body
JP2020-142716 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022045250A1 true WO2022045250A1 (en) 2022-03-03

Family

ID=80353410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031371 WO2022045250A1 (en) 2020-08-26 2021-08-26 Mobile body

Country Status (2)

Country Link
JP (1) JP2022038292A (en)
WO (1) WO2022045250A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139376A (en) * 1990-06-08 1993-06-08 France Etat Covertible submarine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139376A (en) * 1990-06-08 1993-06-08 France Etat Covertible submarine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ULRICH GABLER: "Naval ship research and development center submarine construction (unterseeebootsbau) ", DEFENSE AND KNOWLEDGE PUBLISHING COMPANY, 1 August 1972 (1972-08-01), pages 53 - 62, XP055903310 *

Also Published As

Publication number Publication date
JP2022038292A (en) 2022-03-10

Similar Documents

Publication Publication Date Title
EP3271240B1 (en) Communications among water environment mobile robots
US11465718B2 (en) Multiple autonomous underwater vehicle (AUV) system
US10322783B2 (en) Seismic autonomous underwater vehicle
CN105228893B (en) Autonomous sea-going ship
US10604218B2 (en) Manoeuvring device and method therof
EP2931599B1 (en) Self-burying autonomous underwater vehicle and method for marine seismic surveys
US20130083624A1 (en) Autonomous underwater vehicle for marine seismic surveys
US20150336645A1 (en) Autonomous underwater vehicle marine seismic surveys
KR101208168B1 (en) Auto system and method for bring a vessel alongside the pier
EP4276008A2 (en) An autonomous data acquisition system
US10822065B2 (en) Systems and method for buoyancy control of remotely operated underwater vehicle and payload
NO20191097A1 (en) Intermediate docking station for underwater vehicles
WO2022045250A1 (en) Mobile body
US10625841B2 (en) Passive, automatic wing control mechanism for vessel
KR102449289B1 (en) Vessel for ballast water free using battery
KR20170037986A (en) Submarine vehicle, method for picking up a load from the seabed and a method for setting down a load on the seabed
JP2007320737A (en) Control device for cargo work crane
WO2004063002A1 (en) Self-propelled platform for watercraft
KR101070550B1 (en) Mooring gear for floating quay wall
JP7300151B2 (en) Acoustic communication method and acoustic communication system by attitude control of floating body
JP7193265B2 (en) Conveying system and method
KR101166716B1 (en) Mobile Harbor System and Cargo Handling Method Using the System
KR101166714B1 (en) Mobile Harbor System and Cargo Handling Method Using the System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861672

Country of ref document: EP

Kind code of ref document: A1