WO2022044910A1 - Gas generator - Google Patents

Gas generator Download PDF

Info

Publication number
WO2022044910A1
WO2022044910A1 PCT/JP2021/030159 JP2021030159W WO2022044910A1 WO 2022044910 A1 WO2022044910 A1 WO 2022044910A1 JP 2021030159 W JP2021030159 W JP 2021030159W WO 2022044910 A1 WO2022044910 A1 WO 2022044910A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas generator
wall portion
case body
casing
hole
Prior art date
Application number
PCT/JP2021/030159
Other languages
French (fr)
Japanese (ja)
Inventor
一重 高柳
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2022044910A1 publication Critical patent/WO2022044910A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/268Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous release of stored pressurised gas
    • B60R21/272Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous release of stored pressurised gas with means for increasing the pressure of the gas just before or during liberation, e.g. hybrid inflators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/268Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous release of stored pressurised gas
    • B60R21/274Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous release of stored pressurised gas characterised by means to rupture or open the fluid source

Definitions

  • the present invention relates to a gas generator configured so that compressed gas sealed in a tank chamber provided inside a housing is ejected to the outside when an igniter is operated.
  • the gas generator built into the airbag device which is an occupant protection device for automobiles, ignites the igniter by energization from a control unit separately provided in the vehicle when the vehicle collides, and as a result, a large amount of gas is instantly ignited. It is a device that is configured to expel gas outwards, thereby inflating and deploying the airbag.
  • the gas generator is roughly classified into a pyro type gas generator, a stored type gas generator, and a hybrid type gas generator based on the gas release mechanism.
  • the gas generator In the pyro-type gas generator, the gas generator is housed inside the housing, and the gas generator is ignited and burned by the operation of the igniter, which generates a large amount of gas to the outside. It is what is released.
  • a stored gas generator is one in which compressed gas is sealed inside the housing, and the rupture plate that seals the compressed gas is ruptured by the operation of the igniter, which releases the compressed gas to the outside. Is.
  • the compressed gas is sealed inside the housing, and the heating agent is further housed inside the housing.
  • the burst plate that seals the compressed gas is ruptured by the operation of the igniter.
  • the heating agent is ignited and burned by the operation of the igniter, and the energy loss that may occur due to the adiabatic expansion of the compressed gas is compensated by the heat generated by the combustion of the heating agent, while the compressed gas is generated. It is configured to be released to the outside.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-182506
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2016-68658
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2009-51236
  • the stored gas generator disclosed in Patent Document 1 and the hybrid gas generator disclosed in Patent Document 2 have a structure generally called a reverse flow structure, and are filled with compressed gas.
  • a communication hole is provided in the partition portion that separates the tank chamber and the ignition chamber in which the igniter is housed, and a gas outlet is provided in the housing of the portion that defines the ignition chamber.
  • the above-mentioned rupture disc is used in the stored type gas generator and the hybrid type gas generator having the reverse flow structure.
  • the gas outlet is provided so as to close the communication hole, and the gas outlet is only closed by a sealing member that airtightly seals the ignition chamber from the outside.
  • the hybrid type gas generator disclosed in Patent Document 3 has a structure generally called a blowdown structure, and partitions a tank chamber in which compressed gas is sealed and an ignition chamber in which an igniter is housed.
  • a communication hole is provided in the partition portion, and a gas outlet is provided in the housing of the portion defining the tank chamber.
  • both the communication hole and the gas outlet are provided so as to face the tank chamber. Therefore, the above-mentioned rupture disc has these communication holes and the gas outlet, respectively.
  • a pair is provided so as to be individually closed.
  • the rupture plate that closes the communication hole provided in the partition portion is formed in the partition portion by resistance welding. It is fixed. In this resistance welding, Joule heat is generated by electrical resistance by applying an electric current to the partition part while the ruptured plate is in contact with the partition part in a pressurized state, and these are locally melted and joined. Is.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2000-227199
  • a gas injection port is provided in advance in a portion of the peripheral wall of the cylindrical member constituting the housing that defines the tank chamber, and the gas is provided through the gas injection port. Is sent into the tank chamber, and then the sealing pin is welded to the cylindrical member so that the gas injection port is closed by the sealing pin.
  • Patent Documents 1 to 3 the uneven shape is provided around the portion provided with the communication hole of the partition portion so that the contact area between the partition portion and the rupture disc becomes a predetermined size. It is devised to.
  • the compressed gas is formed in a predetermined portion of the housing. It is necessary to provide a structural part used only for encapsulation (that is, a gas injection port provided on the peripheral wall of the above-mentioned cylindrical member, a sealing pin for closing the gas injection part, a welded part thereof, etc.), and a gas generator. There is a problem that the configuration of the gas itself is complicated, the number of parts is increased, the assembly work is complicated, and the manufacturing cost is increased as a result.
  • a structural part used only for encapsulation that is, a gas injection port provided on the peripheral wall of the above-mentioned cylindrical member, a sealing pin for closing the gas injection part, a welded part thereof, etc.
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is to make it possible to manufacture a stored type gas generator and a hybrid type gas generator more easily and inexpensively.
  • the gas generator based on the present invention includes an igniter and a housing.
  • the housing has an ignition chamber facing the igniter and a tank chamber filled with compressed gas, and is provided with a gas ejection port that opens during operation.
  • the housing has a holder to which the igniter is assembled, a first casing that defines the ignition chamber together with the holder, and a second casing that defines the tank chamber together with the first casing.
  • the first casing has a bottom including a cylindrical first peripheral wall portion in which one end in the axial direction is configured as a first open end, and a bottom wall portion that closes the other end in the axial direction of the first peripheral wall portion. It has a first case body made of a single tubular member.
  • the second casing has a second case body including at least a cylindrical second peripheral wall portion having one end in the axial direction as a second open end.
  • the first open end is closed by the holder, and the second open end is closed by the bottom wall portion.
  • the bottom wall portion is provided with a through hole leading to the ignition chamber and the tank chamber, so that a rupture member capable of opening due to the operation of the igniter closes the through hole. It is provided on the bottom wall portion.
  • the ruptured member has a cylindrical fixing portion that is inserted into the through hole and fixed by welding an outer peripheral surface to the wall surface of the bottom wall portion of a portion that defines the through hole, and a fixing portion. It is composed of a single bottomed cylindrical member including a plate-shaped rupture portion that closes one end in the axial direction of the above.
  • the rupture member has a shape that can be inserted into the through hole from the ignition chamber side.
  • the through hole may have a tapered shape in which the inner diameter decreases from the ignition chamber side to the tank chamber side.
  • the gas generator may have a tapered shape.
  • the fixing portion may have a tapered shape in which the outer diameter decreases from the ignition chamber side to the tank chamber side corresponding to the tapered shape of the through hole.
  • a stopper portion that regulates the movement of the ruptured member toward the tank chamber side by abutting on the main surface of the bottom wall portion on the ignition chamber side. , May be provided on the rupture member.
  • the ruptured portion is located at the end of the fixed portion on the tank chamber side.
  • the outer surface of the annular corner portion connecting the fixed portion and the ruptured portion may be formed of a curved surface.
  • the ignition chamber may be filled with an exothermic agent that generates high-temperature heat by burning.
  • the second case body is composed of a tubular member having the other end in the axial direction of the second peripheral wall portion as the third open end.
  • the second casing may further have a nozzle body provided with the gas ejection port while closing the third open end.
  • the second case body is composed of a single bottomed cylindrical member including a closed portion that closes the other end of the second peripheral wall portion in the axial direction.
  • the gas outlet may be provided on the first peripheral wall portion.
  • FIG. 3 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber shown in FIG. It is an enlarged view of the vicinity of the nozzle assembly shown in FIG. It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator shown in FIG. It is a flow chart which shows the manufacturing method of the hybrid type gas generator which concerns on Embodiment 1.
  • FIG. FIG. 5 is a schematic cross-sectional view showing a process of assembling the second casing and assembling the second casing to the first casing in the manufacturing flow shown in FIG. FIG.
  • FIG. 5 is a schematic cross-sectional view showing a step of positioning the first casing with respect to the head portion of the compressed gas filling device in the manufacturing flow shown in FIG. It is a schematic cross-sectional view which shows the evacuation process in the manufacturing flow shown in FIG. It is a schematic cross-sectional view which shows the gas filling process in the manufacturing flow shown in FIG.
  • FIG. 5 is a schematic cross-sectional view showing a process of assembling the ruptured member to the first casing in the manufacturing flow shown in FIG.
  • FIG. 5 is a schematic cross-sectional view showing a process of assembling the igniter assembly to the first casing in the manufacturing flow shown in FIG.
  • FIG. 1 It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on 1st modification based on Embodiment 1.
  • FIG. 2 It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on the 2nd modification based on Embodiment 1.
  • FIG. 2 It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on 3rd modification based on Embodiment 1.
  • FIG. 1 It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on 4th modification based on Embodiment 1.
  • FIG. It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on 5th modification based on Embodiment 1.
  • FIG. It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on the 6th modification based on Embodiment 1.
  • FIG. It is a schematic sectional drawing of the stored type gas generator which concerns on Embodiment 2.
  • FIG. 18 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber shown in FIG. 18 and the vicinity of the closed portion of the second casing. It is a schematic sectional view of the hybrid type gas generator which concerns on related form 1.
  • FIG. FIG. 20 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber shown in FIG. It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the sealing part assembly in the hybrid type gas generator shown in FIG. It is a flow chart which shows the manufacturing method of the hybrid type gas generator which concerns on related form 1.
  • FIG. 3 is a schematic cross-sectional view showing a step of positioning the first casing with respect to the head portion of the compressed gas filling device in the manufacturing flow shown in FIG. 23.
  • FIG. 28 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber shown in FIG. 28 and the vicinity of the closed portion of the second casing.
  • FIG. 1 is a schematic cross-sectional view of the hybrid gas generator according to the first embodiment.
  • FIG. 2 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber of the hybrid gas generator shown in FIG. 1, and
  • FIG. 3 is an enlarged view of the vicinity of the nozzle assembly.
  • the hybrid gas generator 1A has a long substantially columnar outer shape as a whole.
  • the hybrid gas generator 1A includes a first casing 10, a second casing 20, an igniter assembly 30, a nozzle assembly 40, a burst member 50, an exothermic agent 60, and a compressed gas not shown in the figure. Mainly equipped with.
  • the housing of the hybrid gas generator 1A is composed of a holder 31 included in the igniter assembly 30, a first casing 10, and a second casing 20.
  • the first casing 10 is composed of the first case body 11
  • the second casing 20 is composed of the second case body 21 and the nozzle body 41 included in the nozzle assembly 40. ..
  • the space inside the housing is divided into an ignition chamber S1 mainly defined by the holder 31 and the first case body 11 and a tank chamber S2 mainly defined by the first case body 11, the second case body 21 and the nozzle body 41. It is partitioned.
  • the ignition chamber S1 is filled with the exothermic agent 60
  • the tank chamber S2 is filled with the compressed gas.
  • the first case body 11 is composed of a single bottomed cylindrical member including the first peripheral wall portion 11a and the bottom wall portion 11b.
  • the first peripheral wall portion 11a has a cylindrical shape, and one end in the axial direction thereof is configured as the first open end 11a1.
  • the bottom wall portion 11b has a disk-like shape with a through hole 11b1 provided in the center, and closes the other end of the first peripheral wall portion 11a in the axial direction.
  • the through hole 11b1 is provided in the bottom wall portion 11b so as to communicate with both the ignition chamber S1 and the tank chamber S2.
  • the through hole 11b1 is used as a gas injection port when the compressed gas is filled in the tank chamber S2, and is closed by the rupture member 50 after the compression gas is injected.
  • the through hole 11b1 is also a portion where a communication hole for communicating the ignition chamber S1 and the tank chamber S2 is formed during the operation of the hybrid gas generator 1A.
  • the first case body 11 functions as a pressure bulkhead and is composed of a metal member such as stainless steel or steel.
  • a metal member such as stainless steel or steel.
  • chromium, manganese, molybdenum, niobium, nickel, etc. are added so as to have excellent corrosion resistance. It is preferably made of raw steel.
  • the second case body 21 is composed of a single cylindrical member including the second peripheral wall portion 21a.
  • the second peripheral wall portion 21a has a cylindrical shape, one end in the axial direction thereof is configured as the second open end 21a1, and the other end in the axial direction thereof is configured as the third open end 21a2. There is.
  • the second case body 21 is fixed to the first case body 11. More specifically, in the second case body 21, the second open end 21a1 of the second peripheral wall portion 21a is closed by the closed end (that is, the bottom wall portion 11b) of the first peripheral wall portion 11a of the first case body 11. It is press-fitted by being externally inserted into the axial end portion of the first peripheral wall portion 11a), and is fixed by being joined by being joined at or near the contact portion between the first case body 11 and the second case body 21.
  • electron beam welding, laser welding, resistance welding, friction welding and the like can be suitably used for joining the first case body 11 and the second case body 21.
  • the second open end 21a1 of the second case body 21 is blocked by the bottom wall portion 11b of the first case body 11. Further, as a result, the first case body 11 and the second case body 21 are positioned coaxially, and the housing of the hybrid gas generator 1A as a whole is formed by the first peripheral wall portion 11a and the second peripheral wall portion 21a.
  • the peripheral wall of is constructed.
  • the second case body 21 functions as a pressure bulkhead and is composed of a metal member such as stainless steel or steel.
  • a steel material to which chromium, manganese, molybdenum, niobium, nickel, etc. are added so as to have excellent corrosion resistance It is preferable that it is composed of.
  • the method of fixing the second case body 21 to the first case body 11 is not limited to the above-mentioned fixing method using press fitting and welding, and other fixing methods may be used.
  • the igniter assembly 30 has a holder 31, an igniter 32, and a resin molding portion 33.
  • the igniter assembly 30 is formed by fixing the holder 31 and the igniter 32 by using the resin molding portion 33, and is configured as a pre-integrated part.
  • the holder 31 is made of a member having a substantially cylindrical outer shape, and has a penetrating portion 31a extending along the axial direction.
  • the penetrating portion 31a is a portion where the igniter 32 is housed and the resin molding portion 33 is provided.
  • the holder 31 functions as a pressure bulkhead and is composed of a metal member such as stainless steel or steel.
  • the igniter 32 is for generating a flame, and is made of a pyrotechnic product generally called a squib.
  • the igniter 32 has an ignition unit 32a and a pair of terminal pins 32b.
  • the ignition unit 32a includes an igniting agent that ignites and burns during operation to generate a flame, and a resistor (bridge wire) for igniting the igniting agent.
  • the pair of terminal pins 32b are connected to the ignition unit 32a in order to ignite the ignition charge.
  • the ignition portion 32a includes a cup-shaped squib cup and an embolus that closes the open end of the squib cup and through which a pair of terminal pins 32b is inserted and held.
  • the above-mentioned resistor is attached so as to connect the tips of the pair of terminal pins 32b inserted in the squib cup, and the igniter is placed in the squib cup so as to surround or approach the resistor. It has a loaded configuration.
  • nichrome wire or the like is generally used as the resistor, and ZPP (zirconium / potassium perchlorate), ZWPP (zirconium / tungsten / potassium perchlorate), lead styphnate or the like is generally used as the igniter.
  • ZPP zirconium / potassium perchlorate
  • ZWPP zirconium / tungsten / potassium perchlorate
  • lead styphnate or the like is generally used as the igniter.
  • the above-mentioned squib cup and embolus are generally made of metal or plastic.
  • a predetermined amount of current flows through the resistor via the terminal pin 32b.
  • Joule heat is generated in the resistor and the igniter starts combustion.
  • the hot flame generated by the combustion explodes the squib cup containing the igniter.
  • the time from when a current flows through the resistor until the igniter 32 operates is generally 2 [ms] or less when a nichrome wire is used for the resistor.
  • the resin molding portion 33 is composed of a resin portion formed by injection molding (more specifically, so-called insert molding), and is fixed to both the holder 31 and the igniter 32.
  • the resin molding portion 33 is formed by using a mold during injection molding to pour a fluid resin material between them so as to fill the space between the holder 31 and the igniter 32 and solidify the resin molding portion 33. can do.
  • the penetrating portion 31a of the holder 31 is in a state of being embedded by the igniter 32 and the resin molding portion 33, and the sealing property in the portion can be ensured by the resin molding portion 33.
  • thermocurable resin typified by epoxy resin or the like
  • polybutylene terephthalate resin polyethylene terephthalate resin
  • polyamide resin for example, nylon 6 or nylon 66
  • polypropylene sulfide resin polypropylene oxide resin or the like.
  • thermoplastic resin it is also possible to use a thermoplastic resin.
  • the resin molding portion 33 is provided with a recess 33a that is exposed to the outside.
  • a pair of terminal pins 32b of the igniter 32 are arranged inside the recess 33a.
  • a female connector portion including the recess 33a and the pair of terminal pins 32b is provided on the end surface on one end side in the axial direction of the peripheral wall of the housing in which the igniter assembly 30 is located.
  • the female connector portion is a part for receiving a male connector (not shown) of a harness for connecting the igniter 32 and the control unit (not shown).
  • the female connector portion is exposed toward the outside of the housing, and by inserting the male connector described above into the female connector portion, electrical conduction between the core wire of the harness and the terminal pin 32b is realized. Will be.
  • the method of fixing the igniter 32 to the holder 31 is not limited to the fixing method using the resin molding portion 33 described above, and other fixing methods may be used.
  • the igniter assembly 30 is fixed to the first case body 11. More specifically, the igniter assembly 30 is press-fitted by inserting and removing the holder 31 of the igniter assembly 30 into the first open end 11a1 of the first case body 11, and the first case body 11 is inserted. They are fixed by being joined at or near the contact portion between the holder 31 and the holder 31.
  • electron beam welding, laser welding, resistance welding, friction welding and the like can be suitably used for joining the first case body 11 and the holder 31.
  • the first open end 11a1 of the first case body 11 is closed by the holder 31 (more strictly, the igniter assembly 30), and the ignition of the igniter 32 assembled to the holder 31 is ignited.
  • the portion 32a faces the ignition chamber S1.
  • the first case body 11 and the holder 31 are positioned coaxially, and the holder 31 constitutes one end of the peripheral wall of the housing of the hybrid gas generator 1A in the axial direction. ..
  • the method of fixing the igniter assembly 30 to the first case body 11 is not limited to the above-mentioned fixing method using press fitting and welding, and other fixing methods may be used.
  • the nozzle assembly 40 has a nozzle body 41 and a rupture plate 42.
  • the nozzle assembly 40 is configured as a pre-integrated component by joining the burst plate 42 to the nozzle body 41.
  • the nozzle body 41 has a disk-shaped base portion 41a having a through hole in the center and a cylindrical nozzle portion 41b having one end closed.
  • the nozzle portion 41b projects from the center of the base portion 41a along the axial direction, and is positioned so as to extend toward the outside of the housing.
  • the nozzle body 41 functions as a pressure bulkhead and is composed of a metal member such as stainless steel or steel.
  • a metal member such as stainless steel or steel.
  • a steel material to which chromium, manganese, molybdenum, niobium, nickel, etc. are added so as to have excellent corrosion resistance It is preferable that it is composed of.
  • the nozzle body 41 has a hollow flow path portion 41c inside.
  • the flow path portion 41c is composed of a through hole provided in the base portion 41a and a hollow portion provided in the nozzle portion 41b, whereby the flow path portion 41c opens toward the tank chamber S2. It has an opening at one end. The opening provided on the tank chamber S2 side of the flow path portion 41c is closed by the rupture plate 42.
  • a plurality of gas outlets 41d are provided on the peripheral wall of the nozzle portion 41b, and the plurality of gas outlets 41d all communicate with the flow path portion 41c.
  • the plurality of gas outlets 41d are portions for ejecting gas to the outside by opening during operation of the hybrid gas generator 1A, and are closed by the rupture plate 42 via the flow path portion 41c. ing.
  • the rupture plate 42 has a circular thin plate-like outer shape, and is fixed to the base portion 41a of the nozzle body 41 so as to close the opening provided on the tank chamber S2 side of the flow path portion 41c as described above. ing.
  • the rupture plate 42 can be ruptured due to the operation of the igniter 32 and the rupture portion 52 of the rupture member 50 described later, and is preferably made of a metal member.
  • the rupture plate 42 is made of a thin wall such as SUS316 (JIS standard symbol) or Inconel (registered trademark) from the viewpoint of corrosion resistance. It is desirable that it is composed of a member made of a nickel alloy formed from a metal plate.
  • a thin metal plate having heat resistance and corrosion resistance for example, a thickness of about 200 [ ⁇ m] is preferably used, and Ni: 10 [% by weight] and Cr: 23 [weight%].
  • a thin plate made of Inconel 625) is particularly preferably used.
  • the rupture plate 42 is fixed by being joined to the nozzle body 41 by, for example, electron beam welding, laser welding, resistance welding, or the like.
  • the nozzle assembly 40 is fixed to the second case body 21. More specifically, the nozzle assembly 40 is press-fitted by inserting the nozzle body 41 of the nozzle assembly 40 into the third open end 21a2 of the second case body 21, and also with the second case body 21. These are fixed by being joined at or near the contact portion of the nozzle body 41.
  • electron beam welding, laser welding, resistance welding, friction welding and the like can be suitably used for joining the second case body 21 and the nozzle body 41.
  • the third open end 21a2 of the second case body 21 is closed by the nozzle body 41 (more strictly, the nozzle assembly 40), and the rupture plate 42 assembled to the nozzle body 41 is formed. , Facing the tank chamber S2. Further, as a result, the second case body 21 and the nozzle body 41 are positioned coaxially, and the nozzle body 41 constitutes the other end of the peripheral wall of the housing of the hybrid gas generator 1A in the axial direction. It will be.
  • the method of fixing the nozzle assembly 40 to the second case body 21 is not limited to the above-mentioned fixing method using press fitting and welding, and other fixing methods may be used.
  • the space inside the housing is divided into two spaces in the axial direction by the bottom wall portion 11b of the first case body 11.
  • the ignition chamber S1 which is one of the spaces, is defined by the first peripheral wall portion 11a and the bottom wall portion 11b of the first case body 11 and the holder 31 (more strictly, the igniter assembly 30).
  • the tank chamber S2, which is the other space, is the bottom wall portion 11b of the first case body 11, the second peripheral wall portion 21a of the second case body 21, and the nozzle body 41 (more strictly, the nozzle assembly 40). ) And will be stipulated by.
  • the bottom wall portion 11b of the first case body 11 also functions as a pressure bulkhead, and the ignition chamber S1 and the tank It will function as a partition that separates the room S2.
  • the bottom wall portion 11b of the first case body 11 that functions as the partition portion is provided with a through hole 11b1 as described above, and a rupture member 50 is provided so as to close the through hole 11b1. , The details will be described later.
  • the exothermic agent 60 is housed in the ignition chamber S1 defined by the first case body 11 and the igniter assembly 30.
  • the exothermic agent 60 is composed of an agent that generates high-temperature heat by burning.
  • the heating agent 60 heats the compressed gas to compensate for the energy loss that may occur due to the adiabatic expansion of the compressed gas due to the rupture of the rupture member 50 and the rupture plate 42 during the operation of the hybrid gas generator 1A.
  • a composition composed of a metal powder / oxidizing agent typified by, for example, B / KNO 3 , B / NaNO 3 , Sr (NO 3 ) 2 , etc., or a composition obtained by adding guanidine nitrate or nitroguanidine to the composition.
  • Titanium hydride / potassium perchlorate composition B / 5-aminotetrazole / potassium nitrate composition, ammonium perchlorate / potassium perchlorate / nitroguanidine composition, Sr (NO 3 ) 2 / A composition composed of nitroguanidine or the like is used.
  • the exothermic agent 60 a powdery one, one molded into a predetermined shape by a binder, or the like can be used.
  • the shape of the exothermic agent 60 formed by the binder include various shapes such as a granular shape, a columnar shape, a sheet shape, a spherical shape, a single-hole cylindrical shape, a porous cylindrical shape, and a tablet shape.
  • the compressed gas is housed in the tank chamber S2 defined by the first case body 11, the second case body 21, and the nozzle assembly 40. ..
  • the compressed gas When the hybrid gas generator 1A is in operation, the compressed gas is released to the outside when the burst plate 42 is cleaved, so that the airbag provided adjacent to the hybrid gas generator 1A is provided. It expands and expands.
  • various inert gases and the like can be used, and for example, helium gas, argon gas, neon gas, nitrogen gas, carbon dioxide gas, oxygen gas and the like can be used.
  • FIG. 4 is a schematic diagram showing an assembly structure of a ruptured member with respect to the first casing in the hybrid gas generator shown in FIG. 1.
  • (A) shows the state before assembling
  • (B) shows the state after assembling.
  • the rupture member 50 is composed of a single member having a bottomed substantially cylindrical shape including a fixing portion 51 and a rupture portion 52.
  • the fixed portion 51 has a substantially cylindrical shape, and a hollow portion 51a is provided inside the fixed portion 51.
  • the ruptured portion 52 has a circular thin plate shape. One end of the fixed portion 51 in the axial direction is open, and the other end is closed by the ruptured portion 52.
  • the rupture member 50 is capable of rupturing the rupture portion 52 due to the operation of the igniter 32, and is preferably made of a metal member.
  • the rupture member 50 is made of a thin wall such as SUS316 (JIS standard symbol) or Inconel (registered trademark) from the viewpoint of corrosion resistance. It is desirable that it is composed of a member made of a nickel alloy formed from a metal plate.
  • a press-molded product formed by pressing a thin metal plate having heat resistance and corrosion resistance (for example, a thickness of about 200 [ ⁇ m]) is preferably used, and Ni : 10 [% by weight], Cr: 23 [% by weight], Mn: 6 [% by weight], Mo: 2 [% by weight], C: 0.01 [% by weight], N: 0.5 [% by weight] , Stainless steel made of other component ratios and press-molded products made of Inconel alloy (Inconel 625) are particularly preferably used.
  • the rupture member 50 is fixed to the first case body 11 in a state of being inserted into the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11. More specifically, as shown in FIG. 4, the rupture member 50 is inserted so that the outer peripheral surface of the fixing portion 51 abuts on the wall surface of the bottom wall portion 11b of the portion defining the through hole 11b1 in this state. By performing resistance welding, it is fixed to the first case body 11. As a result, the outer peripheral surface of the fixing portion 51 is joined to the wall surface of the bottom wall portion 11b.
  • the rupture member 50 is assembled by being inserted into the through hole 11b1 from the first open end 11a1 side of the first peripheral wall portion 11a as described later, the rupture member 50 is assembled by the first open end 11a1. It has a shape that can be inserted into the through hole 11b1 from the side (that is, from the ignition chamber S1 side).
  • the through hole 11b1 provided in the bottom wall portion 11b has a tapered shape in which the inner diameter decreases from the ignition chamber S1 side toward the tank chamber S2 side, and bursts.
  • the fixing portion 51 of the member 50 has a tapered shape in which the outer diameter decreases from the ignition chamber S1 side toward the tank chamber S2 side corresponding to the tapered shape of the through hole 11b1 described above.
  • the rupture member 50 is positioned and arranged with high accuracy with respect to the bottom wall portion 11b when the rupture member 50 is assembled to the bottom wall portion 11b.
  • the outer peripheral surface of the fixed portion 51 and the above-mentioned wall surface of the bottom wall portion 11b can be brought into close contact with each other, and as a result, the contact area thereof can be made a predetermined size. Therefore, by performing resistance welding in this state, the ruptured member 50 can be reliably and stably fixed to the bottom wall portion 11b.
  • the ruptured portion 52 is located at the end of the fixed portion 51 on the tank chamber S2 side.
  • the rupture member 50 is arranged so that the outer surface of the rupture portion 52 faces the tank chamber S2. Therefore, from the viewpoint of improving the pressure resistance performance of the rupture member 50, it is preferable that the outer surface of the annular corner portion 53 connecting the fixing portion 51 and the rupture portion 52 is formed of a curved surface.
  • the igniter 32 operates by receiving the energization from the above-mentioned control unit.
  • the igniter filled in the igniter 32a is ignited by being heated by the resistor, and the igniter burns to explode the igniter 32a.
  • the exothermic agent 60 housed in the ignition chamber S1 is ignited by the igniter 32 and burned.
  • Combustion of the igniter and the exothermic agent 60 causes the pressure and temperature of the ignition chamber S1 to rise, which causes the rupture portion 52 of the rupture member 50 to rupture.
  • the ignition chamber S1 and the tank chamber S2 With the opening of the ruptured portion 52, the ignition chamber S1 and the tank chamber S2 are in a state of communicating with each other through the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11.
  • the fixing portion 51 of the rupture member 50 remains without burning, more strictly speaking, the ignition chamber S1 and the tank chamber S2 pass through the hollow portion 51a located inside the fixing portion 51. Will communicate.
  • the compressed gas contained in the tank chamber S2 reaches the plurality of gas outlets 41d via the flow path portion 41c, and then is ejected from the plurality of gas outlets 41d to the outside. Become.
  • the gas ejected from the plurality of gas outlets 41d to the outside of the hybrid gas generator 1A is introduced into an airbag provided adjacent to the hybrid gas generator 1A, and the airbag is introduced. Inflate and unfold.
  • the bottom wall portion 11b of the first case body 11 as a partition portion for partitioning the ignition chamber S1 and the tank chamber S2 is formed with the bottom wall.
  • the rupture member 50 is composed of a bottomed substantially cylindrical member, and the rupture member 50 is resistance welded while being inserted into the through hole 11b1 provided in the bottom wall portion 11b. This is because it was decided to join.
  • the hybrid type gas generator 1A it is possible to reduce the weight while ensuring the withstand voltage performance of the housing. This point will be described in detail below.
  • the ignition chamber formed inside the housing is arranged so that the igniter faces and is filled with an exothermic agent. Therefore, since the internal pressure of the ignition chamber rises significantly during operation, high withstand voltage performance is required for the housing of the portion that defines the ignition chamber. Further, the tank chamber formed inside the housing is filled with compressed gas. Therefore, the housing of the part that defines the tank chamber is also required to have a considerable pressure resistance.
  • the housing of the part that defines the ignition chamber and the tank chamber is made of a material having high mechanical strength, and the thickness thereof is sufficiently thick. It is necessary and, as a result, causes an increase in the weight of the hybrid gas generator.
  • the withstand voltage performance required for the housing of the portion defining the ignition chamber is higher than the withstand voltage performance required for the housing of the portion defining the tank chamber. Therefore, if the thickness of the housing of the portion defining the tank chamber can be made thinner than the thickness of the housing of the portion defining the ignition chamber, the weight can be reduced accordingly.
  • the peripheral wall of the portion defining the ignition chamber S1 and the partition portion are used among the portion constituting the peripheral wall of the housing and the portion constituting the partition portion. Is configured by the first case body 11 made of a single member having a bottomed cylinder, and the peripheral wall of the portion defining the remaining tank chamber S2 is formed by the second case body 21.
  • the thickness of the second peripheral wall portion 21a of the second case body 21 is increased while the thickness of the first peripheral wall portion 11a and the bottom wall portion 11b of the first case body 11 is relatively increased. It becomes possible to easily make the housing relatively thin, and it is possible to reduce the weight of the housing while suppressing an increase in the number of parts.
  • the second peripheral wall portion of the second case body 21 The 21a is not provided with an opening, and the bottom wall portion 11b of the first case body 11 is not provided with an opening other than the through hole 11b1 closed by the rupture member 50.
  • Such a characteristic configuration is caused by the fact that the hybrid gas generator 1A according to the present embodiment is manufactured according to the method for manufacturing the hybrid gas generator according to the present embodiment described below.
  • the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is used as a gas injection port, and the compressed gas is used. This is because the through hole 11b1 is closed by the rupture member 50 after the injection.
  • FIG. 5 is a flow chart showing a manufacturing method of the hybrid gas generator according to the present embodiment
  • FIGS. 6 to 11 are schematic cross-sectional views in a part of the steps shown in FIG. ..
  • step ST11 when manufacturing the hybrid gas generator 1A according to the present embodiment, first, in step ST11, the igniter assembly 30 and the nozzle assembly 40 are manufactured, respectively.
  • the igniter assembly 30 as an integral part is manufactured, and the rupture plate 42 is attached to the nozzle body 41 by, for example, resistance welding.
  • the nozzle assembly 40 as an integral part is manufactured.
  • step ST12 the second casing 20 is assembled and the second casing 20 is assembled to the first casing 10.
  • the base portion 41a of the nozzle body 41 of the nozzle assembly 40 is inserted into the third open end 21a2 of the second peripheral wall portion 21a of the second case body 21.
  • the nozzle body 41 is welded to the second case body 21 by, for example, laser welding, so that the nozzle assembly 40 is assembled to the second case body 21.
  • the second casing 20 is assembled.
  • the second case body 21 is the second with respect to the closed end of the first peripheral wall portion 11a of the first case body 11 (that is, the axial end portion of the first peripheral wall portion 11a closed by the bottom wall portion 11b).
  • the second open end 21a1 of the two peripheral wall portions 21a is press-fitted by being externally inserted, and then the second case body 21 is welded to the first case body 11 by, for example, laser welding, so that the second case body 21 is formed. It is assembled to the first case body 11.
  • the second casing 20 is assembled to the first casing 10.
  • step ST13 the first casing 10 is positioned with respect to the head portion 110 of the compressed gas filling device 100.
  • the compressed gas filling device 100 is configured by combining a gas filling device and a welding device, and has a block-shaped head portion 110.
  • the head portion 110 includes a gas filling head 111 and a welding head 112, and the welding head 112 is slidably incorporated in the gas filling head 111.
  • a ventilation passage 111a that is selectively switched to a gas supply source and a negative pressure source (not shown) is provided, and one end of the ventilation passage 111a is a gas filling head 111. It is open on the main surface 111b.
  • the welding head 112 has a substantially columnar outer shape, and is slidably held by the gas filling head 111 as described above. Inside the welding head 112, a suction path 112a connected to a negative pressure source (not shown) is provided, and one end of the suction path 112a is open at the main surface 112b of the welding head 112.
  • the main surface 111b of the gas filling head 111 and the main surface 112b of the welding head 112 are arranged so as to be parallel to each other, and the main surface 112b of the welding head 112 is driven by driving the welding head 112. , Can be moved so as to protrude from the main surface 111b of the gas filling head 111.
  • One end of the ventilation path 111a opened on the main surface 111b of the gas filling head 111 is arranged so as to surround the welding head 112.
  • the welding head 112 holds the rupture member 50 in advance. More specifically, the rupture member 50 is in a state in which the open end of the fixing portion 51 on the side where the rupture portion 52 is not located is previously addressed to the main surface 112b of the welding head 112, and in this state, the above-mentioned negative pressure is applied. A negative pressure is generated in the suction path 112a by driving the source, and the welding is held by the welding head 112 (in the figure, the suction direction by the negative pressure source is schematically indicated by an arrow A. ing).
  • step ST12 the first open end 11a1 of the first peripheral wall portion 11a of the first case body 11 to which the second casing 20 is assembled is pressed against the main surface 111b of the gas filling head 111. By doing so, the first casing 10 is positioned with respect to the head portion 110 of the compressed gas filling device 100.
  • the end surface of the first peripheral wall portion 11a of the first case body 11 on the first open end 11a1 side is brought into contact with the main surface 111b of the gas filling head 111, so that the through hole 11b1 as a gas injection port is provided.
  • a closed space is formed by the bottom wall portion 11b of the first case body 11, the first peripheral wall portion 11a of the first case body 11, and the main surface 111b of the gas filling head 111 (see FIG. 8). ).
  • the rupture member 50 is described above by covering the end portion of the welding head 112 holding the rupture member 50 with the first open end 11a1 of the first peripheral wall portion 11a of the first case body 11. It is held by the welding head 112 inside the closed space (see FIG. 8).
  • a sealing member made of packing or the like is provided on the main surface 111b of the gas filling head 111 at the portion where the end surface on the first open end 11a1 side of the first peripheral wall portion 11a of the first case body 11 is pressed, the above-mentioned description will be made. It is also possible to improve the airtightness between the closed space and the external space.
  • step ST14 evacuation is performed in step ST14.
  • This evacuation is performed by using the above-mentioned gas filling device equipped with the gas filling head 111.
  • the air passage 111a provided in the gas filling head 111 is connected to the above-mentioned negative pressure source and the negative pressure source is driven to drive the above-mentioned closed space and the above-mentioned closed space.
  • the air in the tank chamber S2 communicating with the closed space through the through hole 11b1 is sucked, and the sucked air is exhausted to the outside through the ventilation passage 111a (in the figure, the negative pressure source is used).
  • the suction direction is schematically indicated by arrow B).
  • the evacuation is carried out until the pressure in the tank chamber S2 reaches a predetermined degree of vacuum.
  • step ST15 gas filling is performed by continuing to use the above-mentioned gas filling device equipped with the gas filling head 111.
  • the ventilation path 111a provided in the gas filling head 111 is switched and connected from the above-mentioned negative pressure source to the above-mentioned gas supply source, and the gas supply source is driven.
  • gas is sent into the closed space described above and the tank chamber S2 communicating with the closed space through the through hole 11b1, and the sent gas is compressed, so that the tank chamber S2 is filled with the compressed gas.
  • the supply direction of the gas sent by the gas supply source is schematically indicated by an arrow C).
  • the gas filling is carried out until the pressure in the tank chamber S2 reaches a predetermined high pressure state (for example, about 30 [MPa] to 90 [MPa]).
  • the one end of the ventilation path 111a opened in the main surface 111b of the gas filling head 111 functions as a gas outlet 111a1 for delivering gas, and the gas delivered from the gas outlet 111a1 is described above.
  • the gas is sent to the tank chamber S2 from the through hole 11b1 as the gas injection port.
  • step ST16 the rupture member 50 is assembled to the first casing 10.
  • the assembly of the rupture member 50 is performed by using the above-mentioned welding device provided with the welding head 112.
  • the rupture member 50 held by the welding head 112 in the closed space described above in advance. Is moved by driving the welding head 112, whereby the rupture member 50 is inserted into the through hole 11b1 as a gas injection port.
  • the rupture member 50 is positioned so that the outer peripheral surface of the fixing portion 51 of the rupture member 50 is in close contact with the wall surface of the bottom wall portion 11b of the portion defining the through hole 11b1.
  • the through hole 11b1 as the gas injection port provided in the bottom wall portion 11b is closed by the rupture member 50, and accordingly, the tank chamber S2 filled with the compressed gas becomes the rupture member 50. Will be sealed by. As a result, the compressed gas is sealed in the tank chamber S2.
  • step ST17 the exothermic agent 60 is filled in step ST17, and then the igniter assembly 30 is assembled to the first casing 10 in step ST18.
  • the first peripheral wall portion 11a is placed in the space inside the first peripheral wall portion 11a of the first case body 11 separated from the head portion 110 of the compressed gas filling device 100.
  • a predetermined amount of the heating agent 60 is charged from the first open end 11a1 side, and then the holder 31 of the igniter assembly 30 is inserted into the first open end 11a1 to be press-fitted, and then the holder.
  • the igniter assembly 30 is assembled to the first case body 11 by welding the 31 to the first case body 11 by, for example, laser welding. As a result, the exothermic agent 60 is filled and the igniter assembly 30 is assembled to the first casing 10.
  • the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is provided. Is used as a gas injection port, and the through hole 11b1 is closed by the rupture member 50 after the injection of the compressed gas. Therefore, by adopting the manufacturing method, it is not necessary to provide a structural portion used only for filling the compressed gas in the housing, and it is possible to realize simplification of the configuration of the gas generator itself and simplification of the assembly work.
  • the end surface of the first peripheral wall portion 11a of the first case body 11 on the first open end 11a1 side is the head portion 110 of the compressed gas filling device 100. Since the structure is pressed against the above-mentioned closed space, the volume of the closed space can be significantly reduced. Therefore, the vacuum degree of the tank chamber S2 can be lowered to a predetermined vacuum degree in a short time at the time of evacuation, and also to a predetermined high pressure state in a short time at the time of gas filling. The pressure in the tank chamber S2 can be increased. Therefore, the time required for manufacturing can be shortened, which leads to a reduction in manufacturing cost.
  • the compressed gas filling device 100 provided with the small head portion 110 having the configuration as described above can be used, the compressed gas can be filled in the housing.
  • the manufacturing equipment can be significantly downsized as compared with the conventional compressed gas filling device.
  • the volume of the closed space described above is significantly narrowed. , This variation in calorific value can be suppressed. Therefore, it is possible to suppress the variation in the filling amount of the compressed gas among the manufactured products, and it is possible to manufacture a hybrid type gas generator capable of obtaining a desired gas output with a higher yield.
  • the housing of the portion pressed against the head portion 110 of the compressed gas filling device 100 (that is, the first peripheral wall portion 11a of the first case body 11). Since the shape of the first open end 11a1 side end surface of the housing is planar, the curved peripheral wall of the housing (that is, the first peripheral wall portion 11a of the first case body 11 or the second peripheral wall portion 21a of the second case body 21) is formed. ), It becomes easier to secure the airtightness of the closed space described above as compared with the case where the gas injection port is provided, and the high-pressure gas can be more easily filled.
  • the through hole 11b1 provided in the bottom wall portion 11b of the first casing 10 after the second casing 20 is assembled is a gas. Since it is used as an inlet, the compressed gas filling section that defines the tank chamber and the detonation section that defines the ignition chamber in which the combustion agent is housed and the igniter assembly is assembled are separate. After manufacturing as a unit, it is not necessary to combine these, and it becomes possible to manufacture a hybrid gas generator extremely easily.
  • FIG. 12 is a schematic view showing an assembly structure of a ruptured member with respect to the first casing in the hybrid type gas generator according to the first modification based on the above-described first embodiment.
  • (A) shows the state before assembling
  • (B) shows the state after assembling.
  • FIG. 12 a structure for assembling the ruptured member 50 to the first casing 10 in the hybrid gas generator 1A1 according to the first modification will be described.
  • the hybrid gas generator 1A1 according to the first modification differs only in the shape of the burst member 50 when compared with the hybrid gas generator 1A according to the first embodiment described above. ing.
  • the rupture member 50 has a substantially cylindrical fixing portion 51 having a tapered shape whose outer diameter decreases toward the tank chamber S2 side from the ignition chamber S1 side, and an end of the fixing portion 51 on the tank chamber S2 side. It has a circular thin plate-shaped ruptured portion 52 that closes the portion, and the fixed portion 51 is further provided with a flange-shaped stopper portion 51b that extends outward in the radial direction.
  • the stopper portion 51b is located at an open end (that is, an end portion on the ignition chamber S1 side) located on the side opposite to the axial end portion on the side where the burst portion 52 of the fixed portion 51 is provided. It has an outer diameter larger than the inner diameter of the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11.
  • the rupture member 50 is fixed to the first case body 11 in a state of being inserted into the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11. More specifically, the rupture member 50 is inserted so that the outer peripheral surface of the fixing portion 51 abuts on the wall surface of the bottom wall portion 11b of the portion defining the through hole 11b1, and resistance welding is performed in this state. , Is fixed to the first case body 11. As a result, the outer peripheral surface of the fixing portion 51 is joined to the wall surface of the bottom wall portion 11b.
  • the outer peripheral surface of the fixed portion 51 and the above-mentioned wall surface of the bottom wall portion 11b can be brought into close contact with each other, and the contact area thereof can be made a predetermined size. Therefore, by adopting this configuration, the ruptured member 50 can be reliably and stably fixed to the bottom wall portion 11b.
  • the rupture member 50 is inserted into the through hole 11b1 described above.
  • the stopper portion 51b comes into contact with the main surface of the bottom wall portion 11b on the ignition chamber S1 side.
  • the contact of the stopper portion 51b with the bottom wall portion 11b restricts the movement of the ruptured member 50 toward the tank chamber S2 side.
  • the ruptured member 50 when the ruptured member 50 having the above configuration is used, the ruptured member 50 can be positioned more reliably by using the stopper portion 51b. Therefore, by adopting the configuration as in the first modification, when assembling the ruptured member 50 to the first casing 10, the outer peripheral surface of the fixing portion 51 and the bottom wall portion 11b of the portion defining the through hole 11b1 are used. The contact area with the wall surface can be more reliably maintained at a predetermined size, and the ruptured member 50 can be more reliably and more stably fixed to the bottom wall portion 11b.
  • (2nd to 4th modification) 13 to 15 are schematic views showing an assembly structure of a ruptured member with respect to the first casing in the hybrid type gas generator according to the second to fourth modifications based on the above-described first embodiment, respectively.
  • (A) shows the state before assembling
  • (B) shows the state after assembling.
  • FIGS. 13 to 15 a structure for assembling the ruptured member 50 to the first casing 10 in the hybrid type gas generators 1A2 to 1A4 according to the second to fourth modifications will be described.
  • the hybrid gas generators 1A2 to 1A4 according to the second to fourth modifications are any of the hybrid gas generators 1A according to the first embodiment described above. However, only the shape of the rupture member 50 is different.
  • the burst member 50 has a substantially cylindrical shape having a tapered shape whose outer diameter decreases from the ignition chamber S1 side toward the tank chamber S2 side. 51, and a circular thin plate-shaped ruptured portion 52 that closes the end of the fixed portion 51 on the tank chamber S2 side, of which the circular thin plate-shaped ruptured portion 52 is the tank chamber S2. It has a curved shape that bulges toward the side.
  • the burst member 50 has a substantially cylindrical shape having a tapered shape whose outer diameter decreases from the ignition chamber S1 side toward the tank chamber S2 side. 51, and a circular thin plate-shaped ruptured portion 52 that closes the end of the fixed portion 51 on the tank chamber S2 side, of which the circular thin plate-shaped ruptured portion 52 is the tank chamber S2. It has a curved shape that bulges toward the side opposite to the side (that is, the ignition chamber S1 side).
  • the burst member 50 has a substantially cylindrical shape having a tapered shape whose outer diameter decreases from the ignition chamber S1 side toward the tank chamber S2 side. 51, and a circular thin plate-shaped ruptured portion 52 that closes the end portion of the fixed portion 51 on the tank chamber S2 side, and has an annular shape connecting the fixed portion 51 and the ruptured portion 52.
  • the outer surface of the corner portion 53 is composed of a bent surface.
  • the outer peripheral surface of the fixing portion 51 and the above-mentioned wall surface of the bottom wall portion 11b can be brought into close contact with each other, and the contact area thereof is predetermined. Can be as large as. Therefore, by adopting this configuration, the ruptured member 50 can be reliably and stably fixed to the bottom wall portion 11b.
  • FIGS. 16 and 17 are schematic views showing an assembly structure of a ruptured member with respect to the first casing in the hybrid type gas generator according to the fifth and sixth modifications based on the above-described first embodiment, respectively.
  • (A) shows the state before assembling
  • (B) shows the state after assembling.
  • FIGS. 16 and 17 a structure for assembling the ruptured member 50 to the first casing 10 in the hybrid gas generators 1A5 and 1A6 according to the fifth and sixth modifications will be described.
  • the hybrid gas generators 1A5 and 1A6 according to the fifth and sixth modifications are compared with the hybrid gas generator 1A according to the first embodiment described above. However, only the shape of the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 and the shape of the rupture member 50 are different.
  • the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is from the ignition chamber S1 side to the tank chamber S2 side. It has a columnar shape with a constant inner diameter.
  • the ruptured member 50 has a cylindrical fixing portion 51 whose outer diameter is constant from the ignition chamber S1 side to the tank chamber S2 side corresponding to the inner diameter of the through hole 11b1, and the tank chamber S2 of the fixing portion 51. It has a circular thin plate-shaped rupture portion 52 that closes the side end portion.
  • the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is from the ignition chamber S1 side to the tank chamber S2 side. It has a columnar shape with a constant inner diameter.
  • the rupture member 50 has a cylindrical fixing portion 51 whose outer diameter is constant from the ignition chamber S1 side to the tank chamber S2 side corresponding to the inner diameter of the through hole 11b1, and the ignition chamber S1 of the fixing portion 51. It has a circular thin plate-shaped rupture portion 52 that closes the side end portion.
  • the directions of the rupture members 50 inserted into the through holes 11b1 are opposite to each other. It has a common configuration except that it has a common structure.
  • the outer peripheral surface of the fixing portion 51 and the above-mentioned wall surface of the bottom wall portion 11b can be brought into close contact with each other, and the contact area thereof is predetermined. Can be as large as. Therefore, by adopting this configuration, the ruptured member 50 can be reliably and stably fixed to the bottom wall portion 11b.
  • FIG. 18 is a schematic cross-sectional view of the stored gas generator according to the second embodiment.
  • FIG. 19 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber of the stored gas generator shown in FIG. 18 and the vicinity of the closed portion of the second casing.
  • the stored type gas generator 1B has a configuration similar to that of the hybrid type gas generator 1A according to the above-described first embodiment, and the hybrid type gas generator is generated.
  • the configuration of the housing of the portion mainly defining the tank chamber S2 is different, and in addition to this, the nozzle assembly 40 and the heating agent 60 (both refer to FIG. 1 etc.) are provided.
  • the configurations are different in that they are not, the positions where the plurality of gas outlets are formed, and the configurations in the vicinity of the plurality of gas outlets are different.
  • the stored type gas generator 1B has a long substantially columnar outer shape as a whole, and has a first casing 10, a second casing 20, an igniter assembly 30, and a burst member 50. And a compressed gas that does not appear in the figure.
  • the housing of the stored type gas generator 1B is composed of a holder 31 included in the igniter assembly 30, a first casing 10, and a second casing 20.
  • the first casing 10 is composed of the first case body 11
  • the second casing 20 is composed of the second case body 21.
  • the space inside the housing is divided into an ignition chamber S1 mainly defined by the holder 31 and the first case body 11 and a tank chamber S2 mainly defined by the first case body 11 and the second case body 21. ..
  • the tank chamber S2 is filled with compressed gas in the same manner as the hybrid gas generator 1A according to the first embodiment described above, while the ignition chamber S1 is the hybrid gas generator 1A.
  • the exothermic agent 60 is not filled.
  • the first case body 11 and the igniter assembly 30 have the same configurations as those in the hybrid gas generator 1A according to the first embodiment described above.
  • the second case body 21 is composed of a single bottomed cylindrical member including the second peripheral wall portion 21a and the closing portion 21b.
  • the second peripheral wall portion 21a has a cylindrical shape, and one end in the axial direction thereof is configured as the second open end 21a1.
  • the closed portion 21b has a curved plate-like shape, and closes the other end of the second peripheral wall portion 21a in the axial direction.
  • the first open end 11a1 of the first case body 11 is closed by the holder 31 (more strictly, the igniter assembly 30), and the second open end 21a1 of the second case body 21 is the first case body. It is closed by the bottom wall portion 11b of 11.
  • the bottom wall portion 11b of the first case body 11 is provided with a through hole 11b1 so as to communicate with both the ignition chamber S1 and the tank chamber S2.
  • a rupture member 50 made of a single bottomed substantially cylindrical member including a substantially cylindrical fixing portion 51 and a circular thin plate-shaped rupture portion 52 is inserted into the through hole 11b1 and ruptures in this state.
  • the member 50 is fixed to the first case body 11.
  • the configuration of the rupture member 50 and the structure of the rupture member 50 attached to the first case body 11 are the same as those in the hybrid gas generator 1A according to the first embodiment described above.
  • a plurality of gas outlets 11c are provided on the first peripheral wall portion 11a of the first case body 11 so as to face the ignition chamber S1.
  • the plurality of gas outlets 11c are portions for ejecting gas to the outside when the stored type gas generator 1B is in operation.
  • a metal sealing tape 12 is attached to the inner peripheral surface of the first peripheral wall portion 11a of the first case body 11 so as to close the plurality of gas outlets 11c.
  • the sealing tape 12 an aluminum foil or the like having an adhesive member coated on one side thereof can be preferably used, and the airtightness of the ignition chamber S1 is ensured by the sealing tape 12.
  • the igniter 32 operates by receiving electricity from the control unit.
  • the igniter filled in the igniter 32a is ignited by being heated by the resistor, and the igniter burns to explode the igniter 32a.
  • the compressed gas flows into the ignition chamber S1 through the through hole 11b1 and then flows out from the plurality of gas outlets 11c to the outside. It will spurt out toward you.
  • the gas ejected from the plurality of gas outlets 11c to the outside of the stored gas generator 1B is introduced into an airbag provided adjacent to the stored gas generator 1B, and the airbag is introduced. Inflate and unfold.
  • FIG. 20 is a schematic cross-sectional view of the hybrid gas generator according to the related embodiment 1.
  • FIG. 21 is an enlarged view of the vicinity of the ignition assembly and the ignition chamber of the hybrid gas generator shown in FIG. 20.
  • 22 is a schematic view showing an assembly structure of the sealing portion assembly to the first casing in the hybrid gas generator shown in FIG. 20, and FIGS. 22A and 22B are before assembly, respectively. It shows the state and the state after assembly.
  • FIGS. 20 to 22 the configuration of the hybrid gas generator 1C according to the present related embodiment and the assembly structure of the sealing portion assembly 70 with respect to the first casing 10 will be described.
  • the hybrid gas generator 1C according to this related embodiment has a so-called blow-down structure.
  • the hybrid type gas generator 1C according to the present related embodiment has a configuration similar to that of the hybrid type gas generator 1A according to the above-described first embodiment, and the hybrid type gas generator is concerned.
  • the configuration of the member for closing the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is different.
  • the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is a bottomed substantially cylinder inserted into the through hole 11b1.
  • the ruptured member 50 see FIG. 1 and the like
  • the sealing portion assembly 70 it is closed by the sealing portion assembly 70.
  • the sealing portion assembly 70 has a plug 71 and a rupture plate 72 as a rupture member.
  • the sealing portion assembly 70 is configured as a pre-integrated part by joining the rupture plate 72 to the plug 71.
  • the plug 71 has a hollow substantially columnar shape.
  • the plug 71 is provided with a communication hole 71a extending along the axial direction, and the communication hole 71a reaches each of the pair of axial end faces of the plug 71.
  • the rupture plate 72 has a circular thin plate shape.
  • An annular protrusion 71b is provided on the axial end surface of the plug 71 on the tank chamber S2 side so as to surround the communication hole 71a.
  • the annular protrusion 71b is a portion for assembling the rupture plate 72 to the plug 71 by resistance welding, and by providing the annular protrusion 71b, the contact area between the stopper 71 and the rupture plate 72 is predetermined. Therefore, the rupture plate 72 can be securely and stably fixed to the plug 71 during resistance welding.
  • the rupture plate 72 By joining the rupture plate 72 to the plug 71 in this way, the communication hole 71a provided in the plug 71 is closed by the rupture plate 72 at the axial end surface of the plug 71 on the tank chamber S2 side. become.
  • the method of fixing the rupture plate 72 to the plug 71 is not limited to the above-mentioned fixing method using resistance welding, and other fixing methods may be used.
  • the rupture plate 72 can be ruptured due to the operation of the igniter 32, and is preferably made of a metal member.
  • the rupture plate 72 is made of a thin wall such as SUS316 (JIS standard symbol) or Inconel (registered trademark) from the viewpoint of corrosion resistance. It is desirable that it is composed of a member made of a nickel alloy formed from a metal plate.
  • a thin metal plate having heat resistance and corrosion resistance for example, a thickness of about 200 [ ⁇ m] is preferably used, and Ni: 10 [% by weight] and Cr: 23 [weight%].
  • a thin plate made of Inconel 625) is particularly preferably used.
  • the stopper 71 functions as a pressure bulkhead together with the bottom wall portion 11b of the first case body 11, and is composed of a metal member such as stainless steel or steel.
  • a steel material to which chromium, manganese, molybdenum, niobium, nickel, etc. are added so as to have excellent corrosion resistance It is preferable that it is composed of.
  • the plug body 71 is fixed to the first case body 11 in a state of being inserted into the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11. More specifically, as shown in FIG. 22, the plug 71 is inserted so that its outer peripheral surface abuts on the wall surface of the bottom wall portion 11b of the portion defining the through hole 11b1, and resistance welding is performed in this state. By doing so, it is fixed to the first case body 11. As a result, the outer peripheral surface of the plug 71 is joined to the wall surface of the bottom wall portion 11b.
  • the plug 71 is assembled by being inserted into the through hole 11b1 from the first open end 11a1 side of the first peripheral wall portion 11a as described later, the plug 71 is assembled by inserting the plug 71 into the first open end 11a1. It has a shape that can be inserted into the through hole 11b1 from the side (that is, from the ignition chamber S1 side).
  • the plug 71 is positioned with high accuracy with respect to the bottom wall portion 11b when assembling the sealing portion assembly 70 to the bottom wall portion 11b.
  • the outer peripheral surface of the plug 71 and the above-mentioned wall surface of the bottom wall portion 11b can be brought into close contact with each other, and as a result, the contact area can be made a predetermined size. can. Therefore, by performing resistance welding in this state, the sealing portion assembly 70 can be reliably and stably fixed to the bottom wall portion 11b.
  • Combustion of the igniter and the exothermic agent 60 causes the pressure and temperature of the ignition chamber S1 to rise, which causes the rupture plate 72 to crack. With the opening of the rupture plate 72, the ignition chamber S1 and the tank chamber S2 are in a state of communicating with each other through the communication hole 71a provided in the plug 71.
  • the compressed gas contained in the tank chamber S2 reaches the plurality of gas outlets 41d via the flow path portion 41c, and then is ejected from the plurality of gas outlets 41d to the outside. Become.
  • the gas ejected from the plurality of gas outlets 41d to the outside of the hybrid gas generator 1C is introduced into an airbag provided adjacent to the hybrid gas generator 1C, and the airbag is introduced. Inflate and unfold.
  • the thickness of the second peripheral wall portion 21a of the second case body 21 is increased while the thickness of the first peripheral wall portion 11a and the bottom wall portion 11b of the first case body 11 is relatively increased. It becomes possible to easily make the housing relatively thin, and it is possible to reduce the weight of the housing while suppressing an increase in the number of parts.
  • the second peripheral wall portion 21a of the second case body 21 Is not provided with an opening, and the bottom wall portion 11b of the first case body 11 is not provided with an opening other than the through hole 11b1 closed by the sealing portion assembly 70.
  • Such a characteristic configuration is due to the fact that the hybrid type gas generator 1C according to the present related embodiment is manufactured according to the manufacturing method of the hybrid type gas generator according to the present related embodiment described below.
  • the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is used as a gas injection port, and after the compressed gas is injected. This is because the through hole 11b1 is closed by the sealing portion assembly 70.
  • FIG. 23 is a flow chart showing a method of manufacturing a hybrid gas generator according to the present related embodiment
  • FIGS. 24 and 25 are schematic cross-sectional views of some of the steps shown in FIG. 23.
  • step ST21 when manufacturing the hybrid type gas generator 1C according to the present related embodiment, first, in step ST21, the igniter assembly 30, the nozzle assembly 40, and the sealing portion assembly 70 are manufactured, respectively. Will be done. Of these, the production of the igniter assembly 30 and the nozzle assembly 40 is the same as step ST11 described in the above-described first embodiment.
  • the sealing portion assembly 70 is manufactured by joining the rupture plate 72 to the plug 71 by resistance welding, whereby the sealing portion assembly 70 is manufactured as an integral part.
  • step ST22 the second casing 20 is assembled and the second casing 20 is assembled to the first casing 10.
  • the step ST22 is the same as the step ST12 described in the first embodiment described above.
  • step ST23 the first casing 10 is positioned with respect to the head portion 110 of the compressed gas filling device 100.
  • the step ST23 is basically the same as the step ST13 described in the above-described first embodiment, but as shown in FIG. 24, the welding head 112 of the compressed gas filling device 100 has a pre-sealed portion assembly 70. Holds.
  • the end surface of the first peripheral wall portion 11a of the first case body 11 on the first open end 11a1 side is brought into contact with the main surface 111b of the gas filling head 111, so that the first peripheral wall portion 11a of the compressed gas filling device 100 is brought into contact with the head portion 110. 1
  • the sealing portion assembly 70 is held by the welding head 112 inside the closed space formed by the first case body 11 and the gas filling head 111. It becomes a state.
  • step ST24 and step ST25 evacuation and gas filling are sequentially performed in step ST24 and step ST25. These steps ST24 and ST25 are the same as those of step ST14 and step ST15 described in the above-described first embodiment.
  • step ST26 the sealing portion assembly 70 is assembled to the first casing 10.
  • the plug 71 in a state of being in close contact with the bottom wall portion 11b is attached to the bottom. It is welded to the wall portion 11b. As a result, the outer peripheral surface of the plug 71 is joined to the wall surface of the bottom wall portion 11b, and the sealing portion assembly 70 is fixed to the first casing 10.
  • the through hole 11b1 as the gas injection port provided in the bottom wall portion 11b is closed by the sealing portion assembly 70, and accordingly, the tank chamber S2 filled with the compressed gas is said to be concerned. It will be sealed by the sealing part assembly 70. As a result, the compressed gas is sealed in the tank chamber S2.
  • the burst plate 72 is cleaved, so that the ignition chamber S1 and the tank chamber S2 communicate with each other through the communication hole 71a provided in the plug 71. Therefore, in the above-mentioned step ST26, it can be said that the tank chamber S2 filled with the compressed gas is sealed by the rupture plate 72 in the sealing portion assembly 70.
  • the hybrid gas generator 1C1 according to the seventh modification is the plug 71 of the sealing portion assembly 70 when compared with the hybrid gas generator 1C according to the related form 1 described above. Only the shape of is different.
  • the sealing portion assembly 70 has a tapered plug 71 whose outer diameter decreases toward the tank chamber S2 side from the ignition chamber S1 side, and the plug 71 has a radial direction.
  • a flange-shaped stopper portion 71c extending outward is further provided.
  • the stopper portion 71c is located at the axial end portion (that is, the end portion on the ignition chamber S1 side) located on the side opposite to the axial end portion on the side where the burst plate 72 of the plug body 71 is provided. It has an outer diameter larger than that of the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11.
  • the stopper portion 71c is bottomed. It comes into contact with the main surface of the wall portion 11b on the ignition chamber S1 side. The contact of the stopper portion 71c with the bottom wall portion 11b restricts the movement of the sealing portion assembly 70 toward the tank chamber S2 side.
  • the sealing portion assembly 70 having the above configuration when used, the positioning of the sealing portion assembly 70 can be performed more reliably by using the stopper portion 71c. Therefore, by adopting the configuration as in the seventh modification, when assembling the sealing portion assembly 70 to the first casing 10, the outer peripheral surface of the plug 71 and the bottom of the portion defining the through hole 11b1 are used. The contact area of the wall portion 11b with the wall surface can be more reliably maintained at a predetermined size, and the sealing portion assembly 70 can be more reliably and more stably fixed to the bottom wall portion 11b. ..
  • FIG. 27 is a schematic view showing an assembly structure of a sealing portion assembly with respect to the first casing in the hybrid type gas generator according to the eighth modification based on the above-mentioned related form 1.
  • (A) shows the state before assembling
  • (B) shows the state after assembling.
  • the assembly structure of the sealing portion assembly 70 with respect to the first casing 10 in the hybrid type gas generator 1C2 according to the eighth modification will be described.
  • the hybrid gas generator 1C2 according to the eighth modification is the bottom wall portion 11b of the first case body 11 when compared with the hybrid gas generator 1C according to the related form 1 described above. Only the shape of the through hole 11b1 provided in the above and the shape of the plug 71 of the sealing portion assembly 70 are different.
  • the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 has a columnar shape having a constant inner diameter from the ignition chamber S1 side to the tank chamber S2 side.
  • the outer diameter of the plug 71 of the sealing portion assembly 70 is constant from the ignition chamber S1 side to the tank chamber S2 side corresponding to the inner diameter of the through hole 11b1.
  • the sealing portion assembly 70 can be reliably and stably fixed to the bottom wall portion 11b.
  • FIG. 28 is a schematic cross-sectional view of the stored type gas generator according to the related form 2.
  • FIG. 29 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber of the stored gas generator shown in FIG. 28 and the vicinity of the closed portion of the second casing.
  • the stored gas generator 1D according to the related embodiment has a configuration similar to that of the hybrid gas generator 1C according to the related embodiment 1 described above, and the hybrid gas generator 1C has a configuration similar to that of the hybrid gas generator 1C.
  • the configuration of the housing of the portion mainly defining the tank chamber S2 is different, and in addition to this, the nozzle assembly 40 and the heating agent 60 (both refer to FIG. 20 and the like) are provided.
  • the configurations are different in that there are no points, the positions where the plurality of gas outlets are formed, and the configurations in the vicinity of the plurality of gas outlets are different.
  • the stored type gas generator 1D has a long substantially columnar outer shape as a whole, and has a first casing 10, a second casing 20, an igniter assembly 30, and a sealing portion. It mainly comprises an assembly 70 and a compressed gas that does not appear in the figure.
  • the housing of the stored type gas generator 1D is composed of a holder 31 included in the igniter assembly 30, a first casing 10, and a second casing 20.
  • the first casing 10 is composed of the first case body 11
  • the second casing 20 is composed of the second case body 21.
  • the space inside the housing is divided into an ignition chamber S1 mainly defined by the holder 31 and the first case body 11 and a tank chamber S2 mainly defined by the first case body 11 and the second case body 21. ..
  • the tank chamber S2 is filled with compressed gas in the same manner as the hybrid gas generator 1C according to the related embodiment 1 described above, whereas the ignition chamber S1 is different from the hybrid gas generator 1C. , The exothermic agent 60 is not filled.
  • the first case body 11 and the igniter assembly 30 have the same configurations as those in the hybrid gas generator 1C according to the above-mentioned related form 1.
  • the second case body 21 is composed of a single bottomed cylindrical member including the second peripheral wall portion 21a and the closing portion 21b.
  • the second peripheral wall portion 21a has a cylindrical shape, and one end in the axial direction thereof is configured as the second open end 21a1.
  • the closed portion 21b has a curved plate-like shape, and closes the other end of the second peripheral wall portion 21a in the axial direction.
  • the first open end 11a1 of the first case body 11 is closed by the holder 31 (more strictly, the igniter assembly 30), and the second open end 21a1 of the second case body 21 is the first case body. It is closed by the bottom wall portion 11b of 11.
  • the bottom wall portion 11b of the first case body 11 is provided with a through hole 11b1 so as to communicate with both the ignition chamber S1 and the tank chamber S2.
  • a sealing portion assembly 70 having a hollow substantially cylindrical plug 71 and a circular thin plate-shaped rupture plate 72 is inserted into the through hole 11b1, and in this state, the sealing portion assembly 70 is the first. It is fixed to the case body 11.
  • the configuration of the sealing portion assembly 70 and the structure for assembling the sealing portion assembly 70 to the first case body 11 are the same as those in the hybrid type gas generator 1C according to the above-mentioned related form 1. ..
  • a plurality of gas outlets 11c are provided on the first peripheral wall portion 11a of the first case body 11 so as to face the ignition chamber S1.
  • the plurality of gas outlets 11c are portions for ejecting gas to the outside when the stored type gas generator 1D is in operation.
  • a metal sealing tape 12 is attached to the inner peripheral surface of the first peripheral wall portion 11a of the first case body 11 so as to close the plurality of gas outlets 11c.
  • the sealing tape 12 an aluminum foil or the like having an adhesive member coated on one side thereof can be preferably used, and the airtightness of the ignition chamber S1 is ensured by the sealing tape 12.
  • the igniter 32 operates by receiving electricity from the control unit.
  • the igniter filled in the igniter 32a is ignited by being heated by the resistor, and the igniter burns to explode the igniter 32a.
  • the compressed gas flows into the ignition chamber S1 through the through hole 11b1 and then flows out from the plurality of gas outlets 11c to the outside. It will spurt out toward you.
  • the gas ejected from the plurality of gas outlets 11c to the outside of the stored gas generator 1D is introduced into an airbag provided adjacent to the stored gas generator 1D, and the airbag is introduced. Inflate and unfold.
  • the gas generator includes an igniter and a housing.
  • the housing has an ignition chamber facing the igniter and a tank chamber filled with compressed gas, and is provided with a gas ejection port that opens during operation.
  • the housing has a holder to which the igniter is assembled, a first casing that defines the ignition chamber together with the holder, and a second casing that defines the tank chamber together with the first casing.
  • the first casing has a bottom including a cylindrical first peripheral wall portion in which one end in the axial direction is configured as a first open end, and a bottom wall portion that closes the other end in the axial direction of the first peripheral wall portion. It has a first case body made of a single tubular member.
  • the second casing has a second case body including at least a cylindrical second peripheral wall portion having one end in the axial direction as a second open end.
  • the first open end is closed by the holder, and the second open end is closed by the bottom wall portion.
  • the bottom wall portion is provided with a through hole leading to the ignition chamber and the tank chamber, and a plug for closing the through hole.
  • the plug body is provided with a communication hole for communicating the ignition chamber and the tank chamber, and a rupture member capable of opening due to the operation of the igniter closes the communication hole. It is provided in the plug body as described above. The plug is inserted into the through hole and fixed by welding the outer peripheral surface to the wall surface of the bottom wall portion of the portion defining the through hole.
  • the plug body provided with the rupture member has a shape that can be inserted into the through hole from the ignition chamber side.
  • the through hole may have a tapered shape in which the inner diameter becomes smaller from the ignition chamber side to the tank chamber side.
  • the gas generator may have a tapered shape.
  • the plug may have a tapered shape in which the outer diameter decreases from the ignition chamber side to the tank chamber side corresponding to the tapered shape of the through hole.
  • a stopper portion that regulates the movement of the plug body toward the tank chamber side by abutting on the main surface of the bottom wall portion on the ignition chamber side. , May be provided on the stopper.
  • the rupture member is fixed by being welded to the portion of the plug body facing the tank chamber.
  • the ignition chamber may be filled with an exothermic agent that generates high-temperature heat by burning.
  • the second case body is composed of a tubular member having the other end in the axial direction of the second peripheral wall portion as the third open end.
  • the second casing may further have a nozzle body provided with the gas ejection port while closing the third open end.
  • the second case body is composed of a single bottomed cylindrical member including a closed portion that closes the other end of the second peripheral wall portion in the axial direction.
  • the gas outlet may be provided on the first peripheral wall portion.
  • first and second embodiments of the present invention the first and second embodiments, and modifications thereof, the ruptured member and the sealing portion assembly to be assembled to the bottom wall portion of the first case body as the partition portion are used.
  • a case where a part of the case is provided so as to protrude toward the tank chamber side has been described as an example, but these are inserted and arranged in the through holes so as to be flush with the bottom wall portion of the first case body. Or they may be retracted from the opening surface of the through hole so that they are located inside the through hole.
  • the ventilation passage provided in the gas filling head of the compressed gas filling device serves as a gas supply source and a negative pressure source.
  • a ventilation path independently connected to the gas supply source and the negative pressure source is provided in the gas filling head to provide gas.
  • the supply source and the negative pressure source may be configured to be driven at different timings.
  • the first and second embodiments, and modifications thereof the case where the present invention is applied to a cylinder type gas generator incorporated in a side airbag device is exemplified.
  • the subject of the present invention is not limited to this, and a cylinder type gas generator incorporated in a curtain airbag device, a knee airbag device, a seat cushion airbag device, etc., and a cylinder type gas It can be applied to a so-called T-shaped gas generator or the like having a long outer shape as well as a generator.
  • Plug body 71a communication hole, 71b annular protrusion, 71c stopper part, 72 rupture plate, 100 compressed gas filling device, 110 head part, 111 gas filling head, 111a ventilation path, 111a1 gas outlet, 111b main surface, 112 welding Head, 112a suction path, 112b main surface, S1 ignition chamber, S2 tank chamber.

Abstract

This gas generator (1A) comprises an igniter (32), and a housing including a holder (31) that defines an ignition chamber (S1) and a tank chamber (S2), a first casing (10), and a second casing (20). The first casing (10) has a first case body (11) including a first peripheral wall part (11a) and a bottom wall part (11b), and the second casing (20) has a second case body (21) including a second peripheral wall part (21a). A first open end (11a1) of the first peripheral wall part (11a) is occluded by the holder (31), and a second open end (21a1) of the second peripheral wall part (21a) is occluded by the bottom wall part (11b). The bottom wall part (11b) is provided with a through hole (11b1) and a rupturable member (50) that closes the same. The rupturable member (50) is configured from a single member including a cylindrical fixed part (51) that is inserted into the through hole (11b1) and welded to a wall surface thereof, and a plate-shaped rupturable part (52) that occludes one end in the axial direction of the fixed part (51).

Description

ガス発生器Gas generator
 本発明は、ハウジングの内部に設けられたタンク室に封入された圧縮ガスが、点火器が作動することで外部に向けて噴出するように構成されたガス発生器に関する。 The present invention relates to a gas generator configured so that compressed gas sealed in a tank chamber provided inside a housing is ejected to the outside when an igniter is operated.
 自動車等の乗員保護装置であるエアバッグ装置に組み込まれるガス発生器は、車両等衝突時に車両に別途設けられたコントロールユニットからの通電によって点火器が着火し、これに起因して瞬時に多量のガスが外部に向けて放出されるように構成されたものであり、これによってエアバッグを膨張および展開させる機器である。当該ガス発生器は、そのガスの放出メカニズムに基づき、パイロ型ガス発生器と、ストアード型ガス発生器と、ハイブリッド型ガス発生器とに大別される。 The gas generator built into the airbag device, which is an occupant protection device for automobiles, ignites the igniter by energization from a control unit separately provided in the vehicle when the vehicle collides, and as a result, a large amount of gas is instantly ignited. It is a device that is configured to expel gas outwards, thereby inflating and deploying the airbag. The gas generator is roughly classified into a pyro type gas generator, a stored type gas generator, and a hybrid type gas generator based on the gas release mechanism.
 パイロ型ガス発生器は、ガス発生剤がハウジングの内部に収容されてなるものであり、ガス発生剤が点火器の作動によって着火されて燃焼し、これによって多量のガスが発生させられて外部に放出されるものである。 In the pyro-type gas generator, the gas generator is housed inside the housing, and the gas generator is ignited and burned by the operation of the igniter, which generates a large amount of gas to the outside. It is what is released.
 ストアード型ガス発生器は、圧縮ガスがハウジングの内部に封入されてなるものであり、圧縮ガスを封止する破裂板が点火器の作動によって開裂し、これによって圧縮ガスが外部に放出されるものである。 A stored gas generator is one in which compressed gas is sealed inside the housing, and the rupture plate that seals the compressed gas is ruptured by the operation of the igniter, which releases the compressed gas to the outside. Is.
 ハイブリッド型ガス発生器は、圧縮ガスがハウジングの内部に封入されるとともに、さらに発熱剤がハウジングの内部に収容されてなるものであり、圧縮ガスを封止する破裂板が点火器の作動によって開裂するとともに、発熱剤が点火器の作動によって着火されて燃焼し、これにより圧縮ガスが断熱膨張することで発生し得るエネルギーロスを当該発熱剤が燃焼することで生じる熱によって補いつつ、圧縮ガスが外部に放出されるように構成されたものである。 In the hybrid gas generator, the compressed gas is sealed inside the housing, and the heating agent is further housed inside the housing. The burst plate that seals the compressed gas is ruptured by the operation of the igniter. At the same time, the heating agent is ignited and burned by the operation of the igniter, and the energy loss that may occur due to the adiabatic expansion of the compressed gas is compensated by the heat generated by the combustion of the heating agent, while the compressed gas is generated. It is configured to be released to the outside.
 ここで、上述した各種のガス発生器のうち、ストアード型ガス発生器の具体的な構造が開示された文献としては、たとえば特開2003-182506号公報(特許文献1)等があり、ハイブリッド型ガス発生器の具体的な構造が開示された文献としては、たとえば特開2016-68658号公報(特許文献2)や特開2009-51236号公報(特許文献3)等がある。 Here, among the various gas generators described above, for example, Japanese Patent Application Laid-Open No. 2003-182506 (Patent Document 1) is a document in which the specific structure of the stored type gas generator is disclosed, and is a hybrid type. Documents in which the specific structure of the gas generator is disclosed include, for example, Japanese Patent Application Laid-Open No. 2016-68658 (Patent Document 2) and Japanese Patent Application Laid-Open No. 2009-51236 (Patent Document 3).
 このうち、上記特許文献1に開示のストアード型ガス発生器および上記特許文献2に開示のハイブリッド型ガス発生器は、一般にリバースフロー構造と称される構造のものであり、圧縮ガスが封入されたタンク室と点火器が収容された点火室とを仕切る仕切り部に連通孔が設けられるとともに、点火室を規定する部分のハウジングにガス噴出口が設けられてなるものである。当該リバースフロー構造のストアード型ガス発生器およびハイブリッド型ガス発生器においては、連通孔およびガス噴出口のうちの連通孔のみがタンク室に面するように設けられているため、上述した破裂板は、この連通孔を閉鎖するように設けられ、ガス噴出口は、点火室を外部から気密に封止する封止部材によって閉鎖されるのみである。 Of these, the stored gas generator disclosed in Patent Document 1 and the hybrid gas generator disclosed in Patent Document 2 have a structure generally called a reverse flow structure, and are filled with compressed gas. A communication hole is provided in the partition portion that separates the tank chamber and the ignition chamber in which the igniter is housed, and a gas outlet is provided in the housing of the portion that defines the ignition chamber. In the stored type gas generator and the hybrid type gas generator having the reverse flow structure, since only the communication hole of the communication hole and the gas outlet is provided so as to face the tank chamber, the above-mentioned rupture disc is used. The gas outlet is provided so as to close the communication hole, and the gas outlet is only closed by a sealing member that airtightly seals the ignition chamber from the outside.
 一方、上記特許文献3に開示のハイブリッド型ガス発生器は、一般にブローダウン構造と称される構造のものであり、圧縮ガスが封入されたタンク室と点火器が収容された点火室とを仕切る仕切り部に連通孔が設けられるとともに、タンク室を規定する部分のハウジングにガス噴出口が設けられてなるものである。当該ブローダウン構造のハイブリッド型ガス発生器においては、連通孔およびガス噴出口がいずれもタンク室に面するように設けられているため、上述した破裂板は、これら連通孔およびガス噴出口をそれぞれ個別に閉鎖するように一対設けられる。 On the other hand, the hybrid type gas generator disclosed in Patent Document 3 has a structure generally called a blowdown structure, and partitions a tank chamber in which compressed gas is sealed and an ignition chamber in which an igniter is housed. A communication hole is provided in the partition portion, and a gas outlet is provided in the housing of the portion defining the tank chamber. In the hybrid type gas generator having the blow-down structure, both the communication hole and the gas outlet are provided so as to face the tank chamber. Therefore, the above-mentioned rupture disc has these communication holes and the gas outlet, respectively. A pair is provided so as to be individually closed.
 ここで、上記特許文献1ないし3に開示されたストアード型ガス発生器およびハイブリッド型ガス発生器においては、仕切り部に設けられた連通孔を閉塞する破裂板が、いずれも抵抗溶接によって仕切り部に固定されている。この抵抗溶接は、仕切り部に対して破裂板を加圧した状態で接触させつつこれらに電流を印加することにより、電気抵抗によるジュール熱を発生させてこれらを局所的に溶融させて接合するものである。 Here, in the stored type gas generator and the hybrid type gas generator disclosed in Patent Documents 1 to 3, the rupture plate that closes the communication hole provided in the partition portion is formed in the partition portion by resistance welding. It is fixed. In this resistance welding, Joule heat is generated by electrical resistance by applying an electric current to the partition part while the ruptured plate is in contact with the partition part in a pressurized state, and these are locally melted and joined. Is.
 なお、上述したストアード型ガス発生器およびハイブリッド型ガス発生器においては、ハウジングに設けられたタンク室に圧縮ガスを封入することが必要になる。この圧縮ガスの封入方法としては、たとえば特開2000-227199号公報(特許文献4)に開示の方法が知られている。 In the above-mentioned stored type gas generator and hybrid type gas generator, it is necessary to fill the tank chamber provided in the housing with compressed gas. As a method for encapsulating the compressed gas, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2000-227199 (Patent Document 4) is known.
 当該特許文献4に開示の圧縮ガスの封入方法は、ハウジングを構成する円筒状部材の周壁のうちのタンク室を規定する部分に予めガス注入口を設けておき、当該ガス注入口を介してガスをタンク室に送り込んだ後に、当該ガス注入口が封止ピンによって閉鎖されるように当該封止ピンを円筒状部材に溶接するものである。 In the method of filling the compressed gas disclosed in Patent Document 4, a gas injection port is provided in advance in a portion of the peripheral wall of the cylindrical member constituting the housing that defines the tank chamber, and the gas is provided through the gas injection port. Is sent into the tank chamber, and then the sealing pin is welded to the cylindrical member so that the gas injection port is closed by the sealing pin.
特開2003-182506号公報Japanese Patent Application Laid-Open No. 2003-182506 特開2016-68658号公報Japanese Unexamined Patent Publication No. 2016-68658 特開2009-51236号公報Japanese Unexamined Patent Publication No. 2009-51236 特開2000-227199号公報Japanese Unexamined Patent Publication No. 2000-227199
 上述したように、仕切り部に対して破裂板を抵抗溶接によって接合するためには、これらを確実に接触させつつもその接触面積が必要以上に大きくならないようにすることが重要である。そのため、上記特許文献1ないし3においては、仕切り部の連通孔が設けられた部分の周囲に凹凸形状を付与することとし、これによって仕切り部と破裂板との接触面積が所定の大きさとなるように工夫されている。 As mentioned above, in order to join the ruptured plates to the partition by resistance welding, it is important to make sure that they are in contact with each other but not to make the contact area larger than necessary. Therefore, in Patent Documents 1 to 3, the uneven shape is provided around the portion provided with the communication hole of the partition portion so that the contact area between the partition portion and the rupture disc becomes a predetermined size. It is devised to.
 しかしながら、仕切り部にこのような凹凸形状を付与するためには、仕切り部の製作に際してたとえば切削加工等の追加の加工を施すことが必要になってしまい、製造コストの増大を招いてしまう。したがって、ストアード型ガス発生器およびハイブリッド型ガス発生器をより安価に製造する観点からは、この仕切り部に対する破裂板の組付構造を改良することが必要である。 However, in order to give such an uneven shape to the partition portion, it is necessary to perform additional processing such as cutting when manufacturing the partition portion, which leads to an increase in manufacturing cost. Therefore, from the viewpoint of manufacturing the stored gas generator and the hybrid gas generator at a lower cost, it is necessary to improve the structure for assembling the rupture plate to the partition portion.
 一方で、上記特許文献4に開示される如くの圧縮ガスの封入方法を採用してストアード型ガス発生器およびハイブリッド型ガス発生器を製造することとした場合には、ハウジングの所定部位に圧縮ガスの封入にのみ用いる構造部(すなわち、上述した円筒状部材の周壁に設けられたガス注入口および当該ガス注入部を閉鎖する封止ピンならびにその溶接部等)を設ける必要があり、ガス発生器自体の構成の複雑化、部品点数の増加、組立作業の煩雑化等を招来し、結果として製造コストが増大してしまう問題があった。 On the other hand, when it is decided to manufacture a stored type gas generator and a hybrid type gas generator by adopting the method of filling the compressed gas as disclosed in Patent Document 4, the compressed gas is formed in a predetermined portion of the housing. It is necessary to provide a structural part used only for encapsulation (that is, a gas injection port provided on the peripheral wall of the above-mentioned cylindrical member, a sealing pin for closing the gas injection part, a welded part thereof, etc.), and a gas generator. There is a problem that the configuration of the gas itself is complicated, the number of parts is increased, the assembly work is complicated, and the manufacturing cost is increased as a result.
 したがって、本発明は、上述した問題に鑑みてなされたものであり、ストアード型ガス発生器およびハイブリッド型ガス発生器をより容易にかつ安価に製造可能にすることを目的とする。 Therefore, the present invention has been made in view of the above-mentioned problems, and an object thereof is to make it possible to manufacture a stored type gas generator and a hybrid type gas generator more easily and inexpensively.
 本発明に基づくガス発生器は、点火器と、ハウジングとを備えている。上記ハウジングは、上記点火器に面する点火室および圧縮ガスが封入されたタンク室を内部に有するとともに、動作時において開口するガス噴出口が設けられてなるものである。上記ハウジングは、上記点火器が組付けられたホルダと、上記ホルダと共に上記点火室を規定する第1ケーシングと、上記第1ケーシングと共に上記タンク室を規定する第2ケーシングとを有している。上記第1ケーシングは、軸方向の一端が第1開放端として構成された筒状の第1周壁部と、上記第1周壁部の軸方向の他端を閉塞する底壁部とを含む有底筒状の単一の部材からなる第1ケース体を有している。上記第2ケーシングは、軸方向の一端が第2開放端として構成された筒状の第2周壁部を少なくとも含む第2ケース体を有している。上記第1開放端は、上記ホルダによって閉塞されており、上記第2開放端は、上記底壁部によって閉塞されている。上記底壁部には、上記点火室と上記タンク室とに通じる貫通孔が設けられており、上記点火器の作動に起因して開裂が可能な破裂部材が、上記貫通孔を閉鎖するように上記底壁部に設けられている。上記破裂部材は、上記貫通孔に挿入されるとともに上記貫通孔を規定する部分の上記底壁部の壁面にその外周面が溶接されることで固定された筒状の固定部と、上記固定部の軸方向の一端を閉塞する板状の破裂部とを含む有底筒状の単一の部材にて構成されている。 The gas generator based on the present invention includes an igniter and a housing. The housing has an ignition chamber facing the igniter and a tank chamber filled with compressed gas, and is provided with a gas ejection port that opens during operation. The housing has a holder to which the igniter is assembled, a first casing that defines the ignition chamber together with the holder, and a second casing that defines the tank chamber together with the first casing. The first casing has a bottom including a cylindrical first peripheral wall portion in which one end in the axial direction is configured as a first open end, and a bottom wall portion that closes the other end in the axial direction of the first peripheral wall portion. It has a first case body made of a single tubular member. The second casing has a second case body including at least a cylindrical second peripheral wall portion having one end in the axial direction as a second open end. The first open end is closed by the holder, and the second open end is closed by the bottom wall portion. The bottom wall portion is provided with a through hole leading to the ignition chamber and the tank chamber, so that a rupture member capable of opening due to the operation of the igniter closes the through hole. It is provided on the bottom wall portion. The ruptured member has a cylindrical fixing portion that is inserted into the through hole and fixed by welding an outer peripheral surface to the wall surface of the bottom wall portion of a portion that defines the through hole, and a fixing portion. It is composed of a single bottomed cylindrical member including a plate-shaped rupture portion that closes one end in the axial direction of the above.
 上記本発明に基づくガス発生器にあっては、上記破裂部材が、上記点火室側から上記貫通孔に差し込み可能な形状を有していることが好ましい。 In the gas generator based on the present invention, it is preferable that the rupture member has a shape that can be inserted into the through hole from the ignition chamber side.
 上記本発明に基づくガス発生器にあっては、上記貫通孔が、上記点火室側から上記タンク室側に向かうにつれて内径が小さくなる先細り形状を有していてもよく、その場合には、上記固定部が、上記貫通孔の先細り形状に対応して上記点火室側から上記タンク室側に向かうにつれて外径が小さくなる先細り形状を有していてもよい。 In the gas generator based on the present invention, the through hole may have a tapered shape in which the inner diameter decreases from the ignition chamber side to the tank chamber side. In that case, the gas generator may have a tapered shape. The fixing portion may have a tapered shape in which the outer diameter decreases from the ignition chamber side to the tank chamber side corresponding to the tapered shape of the through hole.
 上記本発明に基づくガス発生器にあっては、上記底壁部の上記点火室側の主面に当接することによって上記破裂部材が上記タンク室側に向けて移動することを規制するストッパ部が、上記破裂部材に設けられていてもよい。 In the gas generator based on the present invention, there is a stopper portion that regulates the movement of the ruptured member toward the tank chamber side by abutting on the main surface of the bottom wall portion on the ignition chamber side. , May be provided on the rupture member.
 上記本発明に基づくガス発生器にあっては、上記破裂部が、上記固定部の上記タンク室側の端部に位置していることが好ましい。 In the gas generator based on the present invention, it is preferable that the ruptured portion is located at the end of the fixed portion on the tank chamber side.
 上記本発明に基づくガス発生器にあっては、上記固定部と上記破裂部とを接続する環状形状のコーナー部の外側表面が、湾曲面にて構成されていてもよい。 In the gas generator based on the present invention, the outer surface of the annular corner portion connecting the fixed portion and the ruptured portion may be formed of a curved surface.
 上記本発明に基づくガス発生器にあっては、燃焼することで高温の熱を発生させる発熱剤が、上記点火室に充填されていてもよい。 In the gas generator based on the present invention, the ignition chamber may be filled with an exothermic agent that generates high-temperature heat by burning.
 上記本発明に基づくガス発生器にあっては、上記第2ケース体が、上記第2周壁部の軸方向の他端が第3開放端として構成された筒状の部材にて構成されていてもよく、その場合には、上記第2ケーシングが、上記第3開放端を閉塞するとともに上記ガス噴出口が設けられたノズル体をさらに有していてもよい。 In the gas generator based on the present invention, the second case body is composed of a tubular member having the other end in the axial direction of the second peripheral wall portion as the third open end. In that case, the second casing may further have a nozzle body provided with the gas ejection port while closing the third open end.
 上記本発明に基づくガス発生器にあっては、上記第2ケース体が、上記第2周壁部の軸方向の他端を閉塞する閉塞部を含む有底筒状の単一の部材にて構成されていてもよく、その場合には、上記ガス噴出口が、上記第1周壁部に設けられていてもよい。 In the gas generator based on the present invention, the second case body is composed of a single bottomed cylindrical member including a closed portion that closes the other end of the second peripheral wall portion in the axial direction. In that case, the gas outlet may be provided on the first peripheral wall portion.
 本発明によれば、ストアード型ガス発生器およびハイブリッド型ガス発生器をより容易にかつ安価に製造することが可能になる。 According to the present invention, it becomes possible to manufacture a stored type gas generator and a hybrid type gas generator more easily and inexpensively.
実施の形態1に係るハイブリッド型ガス発生器の模式断面図である。It is a schematic sectional drawing of the hybrid type gas generator which concerns on Embodiment 1. FIG. 図1に示す点火器組立体および点火室の近傍の拡大図である。FIG. 3 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber shown in FIG. 図1に示すノズル組立体の近傍の拡大図である。It is an enlarged view of the vicinity of the nozzle assembly shown in FIG. 図1に示すハイブリッド型ガス発生器における破裂部材の第1ケーシングに対する組付構造を示す模式図である。It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator shown in FIG. 実施の形態1に係るハイブリッド型ガス発生器の製造方法を示すフロー図である。It is a flow chart which shows the manufacturing method of the hybrid type gas generator which concerns on Embodiment 1. FIG. 図5に示す製造フローにおける第2ケーシングの組立ておよび第1ケーシングへの第2ケーシングの組付け工程を示す模式断面図である。FIG. 5 is a schematic cross-sectional view showing a process of assembling the second casing and assembling the second casing to the first casing in the manufacturing flow shown in FIG. 図5に示す製造フローにおける圧縮ガス封入装置のヘッド部に対する第1ケーシングの位置決め工程を示す模式断面図である。FIG. 5 is a schematic cross-sectional view showing a step of positioning the first casing with respect to the head portion of the compressed gas filling device in the manufacturing flow shown in FIG. 図5に示す製造フローにおける真空引き工程を示す模式断面図である。It is a schematic cross-sectional view which shows the evacuation process in the manufacturing flow shown in FIG. 図5に示す製造フローにおけるガス充填工程を示す模式断面図である。It is a schematic cross-sectional view which shows the gas filling process in the manufacturing flow shown in FIG. 図5に示す製造フローにおける第1ケーシングに対する破裂部材の組付け工程を示す模式断面図である。FIG. 5 is a schematic cross-sectional view showing a process of assembling the ruptured member to the first casing in the manufacturing flow shown in FIG. 図5に示す製造フローにおける第1ケーシングへの点火器組立体の組付け工程を示す模式断面図である。FIG. 5 is a schematic cross-sectional view showing a process of assembling the igniter assembly to the first casing in the manufacturing flow shown in FIG. 実施の形態1に基づいた第1変形例に係るハイブリッド型ガス発生器における破裂部材の第1ケーシングに対する組付構造を示す模式図である。It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on 1st modification based on Embodiment 1. FIG. 実施の形態1に基づいた第2変形例に係るハイブリッド型ガス発生器における破裂部材の第1ケーシングに対する組付構造を示す模式図である。It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on the 2nd modification based on Embodiment 1. FIG. 実施の形態1に基づいた第3変形例に係るハイブリッド型ガス発生器における破裂部材の第1ケーシングに対する組付構造を示す模式図である。It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on 3rd modification based on Embodiment 1. FIG. 実施の形態1に基づいた第4変形例に係るハイブリッド型ガス発生器における破裂部材の第1ケーシングに対する組付構造を示す模式図である。It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on 4th modification based on Embodiment 1. FIG. 実施の形態1に基づいた第5変形例に係るハイブリッド型ガス発生器における破裂部材の第1ケーシングに対する組付構造を示す模式図である。It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on 5th modification based on Embodiment 1. FIG. 実施の形態1に基づいた第6変形例に係るハイブリッド型ガス発生器における破裂部材の第1ケーシングに対する組付構造を示す模式図である。It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the burst member in the hybrid type gas generator which concerns on the 6th modification based on Embodiment 1. FIG. 実施の形態2に係るストアード型ガス発生器の模式断面図である。It is a schematic sectional drawing of the stored type gas generator which concerns on Embodiment 2. FIG. 図18に示す点火器組立体および点火室の近傍ならびに第2ケーシングの閉塞部の近傍の拡大図である。FIG. 18 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber shown in FIG. 18 and the vicinity of the closed portion of the second casing. 関連形態1に係るハイブリッド型ガス発生器の模式断面図である。It is a schematic sectional view of the hybrid type gas generator which concerns on related form 1. FIG. 図20に示す点火器組立体および点火室の近傍の拡大図である。FIG. 20 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber shown in FIG. 図20に示すハイブリッド型ガス発生器における封止部組立体の第1ケーシングに対する組付構造を示す模式図である。It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the sealing part assembly in the hybrid type gas generator shown in FIG. 関連形態1に係るハイブリッド型ガス発生器の製造方法を示すフロー図である。It is a flow chart which shows the manufacturing method of the hybrid type gas generator which concerns on related form 1. 図23に示す製造フローにおける圧縮ガス封入装置のヘッド部に対する第1ケーシングの位置決め工程を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing a step of positioning the first casing with respect to the head portion of the compressed gas filling device in the manufacturing flow shown in FIG. 23. 図23に示す製造フローにおける第1ケーシングに対する封止部組立体の組付け工程を示す模式断面図である。It is a schematic cross-sectional view which shows the assembly process of the sealing part assembly with respect to the 1st casing in the manufacturing flow shown in FIG. 関連形態1に基づいた第7変形例に係るハイブリッド型ガス発生器における封止部組立体の第1ケーシングに対する組付構造を示す模式図である。It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the sealing part assembly in the hybrid type gas generator which concerns on the 7th modification based on the related form 1. 関連形態1に基づいた第8変形例に係るハイブリッド型ガス発生器における封止部組立体の第1ケーシングに対する組付構造を示す模式図である。It is a schematic diagram which shows the assembly structure with respect to the 1st casing of the sealing part assembly in the hybrid type gas generator which concerns on 8th modification based on the related form 1. 関連形態2に係るストアード型ガス発生器の模式断面図である。It is a schematic sectional view of the stored type gas generator which concerns on related form 2. FIG. 図28に示す点火器組立体および点火室の近傍ならびに第2ケーシングの閉塞部の近傍の拡大図である。FIG. 28 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber shown in FIG. 28 and the vicinity of the closed portion of the second casing.
 以下、本発明の実施の形態について、図を参照して詳細に説明する。以下に示す実施の形態は、サイドエアバッグ装置に組み込まれるシリンダ型ガス発生器としてのハイブリッド型ガス発生器またはストアード型ガス発生器に本発明を適用した場合を例示するものである。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The embodiments shown below exemplify a case where the present invention is applied to a hybrid type gas generator or a stored type gas generator as a cylinder type gas generator incorporated in a side airbag device. In the embodiments shown below, the same or common parts are designated by the same reference numerals in the drawings, and the description thereof will not be repeated.
 (実施の形態1)
 図1は、実施の形態1に係るハイブリッド型ガス発生器の模式断面図である。図2は、図1に示すハイブリッド型ガス発生器の点火器組立体および点火室の近傍の拡大図であり、図3は、ノズル組立体の近傍の拡大図である。まず、これら図1ないし図3を参照して、本実施の形態に係るハイブリッド型ガス発生器1Aの構成について説明する。なお、本実施の形態に係るハイブリッド型ガス発生器1Aは、いわゆるブローダウン構造を有するものである。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of the hybrid gas generator according to the first embodiment. FIG. 2 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber of the hybrid gas generator shown in FIG. 1, and FIG. 3 is an enlarged view of the vicinity of the nozzle assembly. First, the configuration of the hybrid gas generator 1A according to the present embodiment will be described with reference to FIGS. 1 to 3. The hybrid gas generator 1A according to the present embodiment has a so-called blow-down structure.
 図1に示すように、ハイブリッド型ガス発生器1Aは、全体として長尺略円柱状の外形を有している。ハイブリッド型ガス発生器1Aは、第1ケーシング10と、第2ケーシング20と、点火器組立体30と、ノズル組立体40と、破裂部材50と、発熱剤60と、図には現れない圧縮ガスとを主として備えている。 As shown in FIG. 1, the hybrid gas generator 1A has a long substantially columnar outer shape as a whole. The hybrid gas generator 1A includes a first casing 10, a second casing 20, an igniter assembly 30, a nozzle assembly 40, a burst member 50, an exothermic agent 60, and a compressed gas not shown in the figure. Mainly equipped with.
 ハイブリッド型ガス発生器1Aのハウジングは、点火器組立体30に含まれるホルダ31と、第1ケーシング10と、第2ケーシング20とによって構成されている。このうち、第1ケーシング10は、第1ケース体11にて構成されており、第2ケーシング20は、第2ケース体21と、ノズル組立体40に含まれるノズル体41とによって構成されている。 The housing of the hybrid gas generator 1A is composed of a holder 31 included in the igniter assembly 30, a first casing 10, and a second casing 20. Of these, the first casing 10 is composed of the first case body 11, and the second casing 20 is composed of the second case body 21 and the nozzle body 41 included in the nozzle assembly 40. ..
 ハウジングの内部の空間は、ホルダ31および第1ケース体11によって主として規定された点火室S1と、第1ケース体11、第2ケース体21およびノズル体41によって主として規定されたタンク室S2とに区画されている。点火室S1には、発熱剤60が充填されており、タンク室S2には、圧縮ガスが封入されている。 The space inside the housing is divided into an ignition chamber S1 mainly defined by the holder 31 and the first case body 11 and a tank chamber S2 mainly defined by the first case body 11, the second case body 21 and the nozzle body 41. It is partitioned. The ignition chamber S1 is filled with the exothermic agent 60, and the tank chamber S2 is filled with the compressed gas.
 図1および図2に示すように、第1ケース体11は、第1周壁部11aおよび底壁部11bを含む有底円筒状の単一の部材からなる。第1周壁部11aは、円筒状の形状を有しており、その軸方向の一端が第1開放端11a1として構成されている。底壁部11bは、中央に貫通孔11b1が設けられた円盤状の形状を有しており、第1周壁部11aの軸方向の他端を閉塞している。 As shown in FIGS. 1 and 2, the first case body 11 is composed of a single bottomed cylindrical member including the first peripheral wall portion 11a and the bottom wall portion 11b. The first peripheral wall portion 11a has a cylindrical shape, and one end in the axial direction thereof is configured as the first open end 11a1. The bottom wall portion 11b has a disk-like shape with a through hole 11b1 provided in the center, and closes the other end of the first peripheral wall portion 11a in the axial direction.
 貫通孔11b1は、点火室S1およびタンク室S2の双方に通じるように底壁部11bに設けられている。当該貫通孔11b1は、タンク室S2に圧縮ガスを封入する際にガス注入口として用いられるものであり、圧縮ガスの注入後においては、破裂部材50によって閉鎖される。なお、貫通孔11b1は、ハイブリッド型ガス発生器1Aの動作時において点火室S1とタンク室S2とを連通させる連通孔が形成される部位でもある。 The through hole 11b1 is provided in the bottom wall portion 11b so as to communicate with both the ignition chamber S1 and the tank chamber S2. The through hole 11b1 is used as a gas injection port when the compressed gas is filled in the tank chamber S2, and is closed by the rupture member 50 after the compression gas is injected. The through hole 11b1 is also a portion where a communication hole for communicating the ignition chamber S1 and the tank chamber S2 is formed during the operation of the hybrid gas generator 1A.
 第1ケース体11は、圧力隔壁として機能するものであり、たとえばステンレス鋼や鉄鋼等の金属製の部材にて構成される。ここで、第1ケース体11の一部分は、長期間にわたって圧縮ガスに晒されることになるため、耐腐食性に優れたものとなるように、クロムやマンガン、モリブデン、ニオブ、ニッケル等が添加された鋼材にて構成されていることが好ましい。 The first case body 11 functions as a pressure bulkhead and is composed of a metal member such as stainless steel or steel. Here, since a part of the first case body 11 is exposed to the compressed gas for a long period of time, chromium, manganese, molybdenum, niobium, nickel, etc. are added so as to have excellent corrosion resistance. It is preferably made of raw steel.
 図1ないし図3に示すように、第2ケース体21は、第2周壁部21aを含む円筒状の単一の部材からなる。第2周壁部21aは、円筒状の形状を有しており、その軸方向の一端が第2開放端21a1として構成されるとともに、その軸方向の他端が第3開放端21a2として構成されている。 As shown in FIGS. 1 to 3, the second case body 21 is composed of a single cylindrical member including the second peripheral wall portion 21a. The second peripheral wall portion 21a has a cylindrical shape, one end in the axial direction thereof is configured as the second open end 21a1, and the other end in the axial direction thereof is configured as the third open end 21a2. There is.
 第2ケース体21は、第1ケース体11に固定されている。より詳細には、第2ケース体21は、その第2周壁部21aの第2開放端21a1が第1ケース体11の第1周壁部11aの閉塞端(すなわち、底壁部11bによって閉塞された第1周壁部11aの軸方向端部)に外挿されることで圧入されるとともに、第1ケース体11と第2ケース体21との接触部またはその近傍においてこれらが接合されることで固定されている。ここで、第1ケース体11と第2ケース体21との接合には、電子ビーム溶接やレーザ溶接、抵抗溶接、摩擦圧接等が好適に利用できる。 The second case body 21 is fixed to the first case body 11. More specifically, in the second case body 21, the second open end 21a1 of the second peripheral wall portion 21a is closed by the closed end (that is, the bottom wall portion 11b) of the first peripheral wall portion 11a of the first case body 11. It is press-fitted by being externally inserted into the axial end portion of the first peripheral wall portion 11a), and is fixed by being joined by being joined at or near the contact portion between the first case body 11 and the second case body 21. ing. Here, electron beam welding, laser welding, resistance welding, friction welding and the like can be suitably used for joining the first case body 11 and the second case body 21.
 これにより、第2ケース体21の第2開放端21a1は、第1ケース体11の底壁部11bによって閉塞されることになる。また、これにより、第1ケース体11と第2ケース体21とが同軸上に位置することになり、第1周壁部11aと第2周壁部21aとによってハイブリッド型ガス発生器1A全体としてのハウジングの周壁が構成されることになる。 As a result, the second open end 21a1 of the second case body 21 is blocked by the bottom wall portion 11b of the first case body 11. Further, as a result, the first case body 11 and the second case body 21 are positioned coaxially, and the housing of the hybrid gas generator 1A as a whole is formed by the first peripheral wall portion 11a and the second peripheral wall portion 21a. The peripheral wall of is constructed.
 第2ケース体21は、圧力隔壁として機能するものであり、たとえばステンレス鋼や鉄鋼等の金属製の部材にて構成される。ここで、第2ケース体21は、長期間にわたって圧縮ガスに晒されることになるため、耐腐食性に優れたものとなるように、クロムやマンガン、モリブデン、ニオブ、ニッケル等が添加された鋼材にて構成されていることが好ましい。 The second case body 21 functions as a pressure bulkhead and is composed of a metal member such as stainless steel or steel. Here, since the second case body 21 is exposed to the compressed gas for a long period of time, a steel material to which chromium, manganese, molybdenum, niobium, nickel, etc. are added so as to have excellent corrosion resistance. It is preferable that it is composed of.
 なお、第2ケース体21の第1ケース体11への固定方法は、上述した圧入および溶接を利用した固定方法に限られず、他の固定方法を利用してもよい。 The method of fixing the second case body 21 to the first case body 11 is not limited to the above-mentioned fixing method using press fitting and welding, and other fixing methods may be used.
 図1および図2に示すように、点火器組立体30は、ホルダ31と、点火器32と、樹脂成形部33とを有している。点火器組立体30は、ホルダ31と点火器32とを樹脂成形部33を用いて固定してなるものであり、予め一体化された部品として構成されている。 As shown in FIGS. 1 and 2, the igniter assembly 30 has a holder 31, an igniter 32, and a resin molding portion 33. The igniter assembly 30 is formed by fixing the holder 31 and the igniter 32 by using the resin molding portion 33, and is configured as a pre-integrated part.
 ホルダ31は、外形が略円筒状の部材からなり、軸方向に沿って延びる貫通部31aを有している。貫通部31aは、点火器32が収容されるとともに樹脂成形部33が設けられる部位である。 The holder 31 is made of a member having a substantially cylindrical outer shape, and has a penetrating portion 31a extending along the axial direction. The penetrating portion 31a is a portion where the igniter 32 is housed and the resin molding portion 33 is provided.
 ホルダ31は、圧力隔壁として機能するものであり、たとえばステンレス鋼や鉄鋼等の金属製の部材にて構成される。 The holder 31 functions as a pressure bulkhead and is composed of a metal member such as stainless steel or steel.
 点火器32は、火炎を発生させるためのものであり、一般にスクイブと称される火工品からなる。点火器32は、点火部32aと、一対の端子ピン32bとを有している。点火部32aは、その内部に、作動時において着火して燃焼することで火炎を発生する点火薬と、この点火薬を着火させるための抵抗体(ブリッジワイヤ)とを含んでいる。一対の端子ピン32bは、点火薬を着火させるために点火部32aに接続されている。 The igniter 32 is for generating a flame, and is made of a pyrotechnic product generally called a squib. The igniter 32 has an ignition unit 32a and a pair of terminal pins 32b. The ignition unit 32a includes an igniting agent that ignites and burns during operation to generate a flame, and a resistor (bridge wire) for igniting the igniting agent. The pair of terminal pins 32b are connected to the ignition unit 32a in order to ignite the ignition charge.
 より詳細には、点火部32aは、カップ状に形成されたスクイブカップと、当該スクイブカップの開口端を閉塞し、一対の端子ピン32bが挿通されてこれを保持する塞栓とを含んでおり、スクイブカップ内に挿入された一対の端子ピン32bの先端を連結するように上述した抵抗体が取付けられ、この抵抗体を取り囲むようにまたはこの抵抗体に近接するようにスクイブカップ内に点火薬が装填された構成を有している。 More specifically, the ignition portion 32a includes a cup-shaped squib cup and an embolus that closes the open end of the squib cup and through which a pair of terminal pins 32b is inserted and held. The above-mentioned resistor is attached so as to connect the tips of the pair of terminal pins 32b inserted in the squib cup, and the igniter is placed in the squib cup so as to surround or approach the resistor. It has a loaded configuration.
 ここで、抵抗体としては一般にニクロム線等が利用され、点火薬としては一般にZPP(ジルコニウム・過塩素酸カリウム)、ZWPP(ジルコニウム・タングステン・過塩素酸カリウム)、鉛トリシネート等が利用される。なお、上述したスクイブカップおよび塞栓は、一般に金属製またはプラスチック製である。 Here, nichrome wire or the like is generally used as the resistor, and ZPP (zirconium / potassium perchlorate), ZWPP (zirconium / tungsten / potassium perchlorate), lead styphnate or the like is generally used as the igniter. The above-mentioned squib cup and embolus are generally made of metal or plastic.
 衝突を検知した際には、端子ピン32bを介して抵抗体に所定量の電流が流れる。抵抗体に所定量の電流が流れることにより、抵抗体においてジュール熱が発生し、点火薬が燃焼を開始する。燃焼により生じた高温の火炎は、点火薬を収納しているスクイブカップを破裂させる。抵抗体に電流が流れてから点火器32が作動するまでの時間は、抵抗体にニクロム線を利用した場合に一般に2[ms]以下である。 When a collision is detected, a predetermined amount of current flows through the resistor via the terminal pin 32b. When a predetermined amount of current flows through the resistor, Joule heat is generated in the resistor and the igniter starts combustion. The hot flame generated by the combustion explodes the squib cup containing the igniter. The time from when a current flows through the resistor until the igniter 32 operates is generally 2 [ms] or less when a nichrome wire is used for the resistor.
 樹脂成形部33は、射出成形(より特定的にはいわゆるインサート成形)によって形成された樹脂製の部位からなり、ホルダ31および点火器32の双方に固着している。この樹脂成形部33は、射出成形時において型を用いることにより、ホルダ31と点火器32の間の空間を充填するようにこれらの間に流動性樹脂材料を流し込んでこれを固化させることで形成することができる。これにより、ホルダ31の貫通部31aは、点火器32と樹脂成形部33とによって埋め込まれた状態となり、当該部分におけるシール性が樹脂成形部33によって確保できることになる。 The resin molding portion 33 is composed of a resin portion formed by injection molding (more specifically, so-called insert molding), and is fixed to both the holder 31 and the igniter 32. The resin molding portion 33 is formed by using a mold during injection molding to pour a fluid resin material between them so as to fill the space between the holder 31 and the igniter 32 and solidify the resin molding portion 33. can do. As a result, the penetrating portion 31a of the holder 31 is in a state of being embedded by the igniter 32 and the resin molding portion 33, and the sealing property in the portion can be ensured by the resin molding portion 33.
 射出成形によって形成される樹脂成形部33の原料としては、硬化後において耐熱性や耐久性、耐腐食性等に優れた樹脂材料が好適に選択されて使用される。その場合、エポキシ樹脂等に代表される熱硬化性樹脂に限られず、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリアミド樹脂(たとえばナイロン6やナイロン66等)、ポリプロピレンスルフィド樹脂、ポリプロピレンオキシド樹脂等に代表される熱可塑性樹脂を利用することも可能である。 As the raw material of the resin molding portion 33 formed by injection molding, a resin material having excellent heat resistance, durability, corrosion resistance, etc. after curing is preferably selected and used. In that case, it is not limited to the thermocurable resin typified by epoxy resin or the like, but is typified by polybutylene terephthalate resin, polyethylene terephthalate resin, polyamide resin (for example, nylon 6 or nylon 66), polypropylene sulfide resin, polypropylene oxide resin or the like. It is also possible to use a thermoplastic resin.
 樹脂成形部33には、外部に向けて露出する凹部33aが設けられている。凹部33aの内部には、点火器32の一対の端子ピン32bが配置されている。これにより、点火器組立体30が位置するハウジングの周壁の軸方向の一方端側の端面には、凹部33aおよび一対の端子ピン32bからなる雌型コネクタ部が設けられることになる。 The resin molding portion 33 is provided with a recess 33a that is exposed to the outside. A pair of terminal pins 32b of the igniter 32 are arranged inside the recess 33a. As a result, a female connector portion including the recess 33a and the pair of terminal pins 32b is provided on the end surface on one end side in the axial direction of the peripheral wall of the housing in which the igniter assembly 30 is located.
 当該雌型コネクタ部は、点火器32とコントロールユニット(不図示)とを結線するためのハーネスの雄型コネクタ(図示せず)を受け入れるための部位である。雌型コネクタ部は、ハウジングの外部に向けて露出しており、当該雌型コネクタ部に上述した雄型コネクタが挿し込まれることにより、ハーネスの芯線と端子ピン32bとの電気的導通が実現されることになる。 The female connector portion is a part for receiving a male connector (not shown) of a harness for connecting the igniter 32 and the control unit (not shown). The female connector portion is exposed toward the outside of the housing, and by inserting the male connector described above into the female connector portion, electrical conduction between the core wire of the harness and the terminal pin 32b is realized. Will be.
 なお、点火器32のホルダ31への固定方法は、上述した樹脂成形部33を用いた固定方法に限られず、他の固定方法を利用してもよい。 The method of fixing the igniter 32 to the holder 31 is not limited to the fixing method using the resin molding portion 33 described above, and other fixing methods may be used.
 点火器組立体30は、第1ケース体11に固定されている。より詳細には、点火器組立体30は、当該点火器組立体30が有するホルダ31が第1ケース体11の第1開放端11a1に外挿されることで圧入されるとともに、第1ケース体11とホルダ31との接触部またはその近傍においてこれらが接合されることで固定されている。ここで、第1ケース体11とホルダ31との接合には、電子ビーム溶接やレーザ溶接、抵抗溶接、摩擦圧接等が好適に利用できる。 The igniter assembly 30 is fixed to the first case body 11. More specifically, the igniter assembly 30 is press-fitted by inserting and removing the holder 31 of the igniter assembly 30 into the first open end 11a1 of the first case body 11, and the first case body 11 is inserted. They are fixed by being joined at or near the contact portion between the holder 31 and the holder 31. Here, electron beam welding, laser welding, resistance welding, friction welding and the like can be suitably used for joining the first case body 11 and the holder 31.
 これにより、第1ケース体11の第1開放端11a1は、ホルダ31(より厳密には、点火器組立体30)によって閉塞されることになり、ホルダ31に組付けられた点火器32の点火部32aが、点火室S1に面することになる。また、これにより、第1ケース体11とホルダ31とが同軸上に位置することになり、ホルダ31によってハイブリッド型ガス発生器1Aのハウジングの周壁の軸方向の一端部が構成されることになる。 As a result, the first open end 11a1 of the first case body 11 is closed by the holder 31 (more strictly, the igniter assembly 30), and the ignition of the igniter 32 assembled to the holder 31 is ignited. The portion 32a faces the ignition chamber S1. Further, as a result, the first case body 11 and the holder 31 are positioned coaxially, and the holder 31 constitutes one end of the peripheral wall of the housing of the hybrid gas generator 1A in the axial direction. ..
 なお、点火器組立体30の第1ケース体11への固定方法は、上述した圧入および溶接を利用した固定方法に限られず、他の固定方法を利用してもよい。 The method of fixing the igniter assembly 30 to the first case body 11 is not limited to the above-mentioned fixing method using press fitting and welding, and other fixing methods may be used.
 図1および図3に示すように、ノズル組立体40は、ノズル体41と、破裂板42とを有している。ノズル組立体40は、ノズル体41に破裂板42を接合することで予め一体化された部品として構成されている。 As shown in FIGS. 1 and 3, the nozzle assembly 40 has a nozzle body 41 and a rupture plate 42. The nozzle assembly 40 is configured as a pre-integrated component by joining the burst plate 42 to the nozzle body 41.
 ノズル体41は、中央に貫通孔が設けられた円盤状のベース部41aと、一端が閉塞された円筒状のノズル部41bとを有している。ノズル部41bは、ベース部41aの中央から軸方向に沿って突設されており、これによりハウジングの外部に向けて延びるように位置している。 The nozzle body 41 has a disk-shaped base portion 41a having a through hole in the center and a cylindrical nozzle portion 41b having one end closed. The nozzle portion 41b projects from the center of the base portion 41a along the axial direction, and is positioned so as to extend toward the outside of the housing.
 ノズル体41は、圧力隔壁として機能するものであり、たとえばステンレス鋼や鉄鋼等の金属製の部材にて構成される。ここで、ノズル体41の一部分は、長期間にわたって圧縮ガスに晒されることになるため、耐腐食性に優れたものとなるように、クロムやマンガン、モリブデン、ニオブ、ニッケル等が添加された鋼材にて構成されていることが好ましい。 The nozzle body 41 functions as a pressure bulkhead and is composed of a metal member such as stainless steel or steel. Here, since a part of the nozzle body 41 is exposed to the compressed gas for a long period of time, a steel material to which chromium, manganese, molybdenum, niobium, nickel, etc. are added so as to have excellent corrosion resistance. It is preferable that it is composed of.
 ノズル体41は、その内部に中空状の流路部41cを有している。当該流路部41cは、ベース部41aに設けられた貫通孔と、ノズル部41bに設けられた中空部とによって構成されており、これにより当該流路部41cは、タンク室S2に向けて開口する開口部をその一端に有している。この流路部41cのタンク室S2側に設けられた開口部は、破裂板42によって閉鎖されている。 The nozzle body 41 has a hollow flow path portion 41c inside. The flow path portion 41c is composed of a through hole provided in the base portion 41a and a hollow portion provided in the nozzle portion 41b, whereby the flow path portion 41c opens toward the tank chamber S2. It has an opening at one end. The opening provided on the tank chamber S2 side of the flow path portion 41c is closed by the rupture plate 42.
 ノズル部41bの周壁には、複数のガス噴出口41dが設けられており、当該複数のガス噴出口41dは、いずれも流路部41cに連通している。当該複数のガス噴出口41dは、ハイブリッド型ガス発生器1Aの動作時において開口することでガスを外部に向けて噴出するための部位であり、流路部41cを介して破裂板42によって閉鎖されている。 A plurality of gas outlets 41d are provided on the peripheral wall of the nozzle portion 41b, and the plurality of gas outlets 41d all communicate with the flow path portion 41c. The plurality of gas outlets 41d are portions for ejecting gas to the outside by opening during operation of the hybrid gas generator 1A, and are closed by the rupture plate 42 via the flow path portion 41c. ing.
 破裂板42は、円形薄板状の外形を有しており、上述したように流路部41cのタンク室S2側に設けられた開口部を閉鎖するようにノズル体41のベース部41aに固定されている。破裂板42は、点火器32の作動および後述する破裂部材50の破裂部52の開裂に起因して開裂が可能なものであり、好適には金属製の部材にて構成される。 The rupture plate 42 has a circular thin plate-like outer shape, and is fixed to the base portion 41a of the nozzle body 41 so as to close the opening provided on the tank chamber S2 side of the flow path portion 41c as described above. ing. The rupture plate 42 can be ruptured due to the operation of the igniter 32 and the rupture portion 52 of the rupture member 50 described later, and is preferably made of a metal member.
 ここで、破裂板42の一部分は、長期間にわたって圧縮ガスに晒されるものであるため、破裂板42は、耐腐食性の観点からSUS316(JIS規格記号)やインコネル(登録商標)等の薄肉の金属板から形成されたニッケル合金製の部材にて構成されていることが望ましい。たとえば、破裂板42としては、耐熱性および耐腐食性を有する金属製の薄板(たとえば厚みが200[μm]程度)が好適に用いられ、Ni:10[重量%]、Cr:23[重量%]、Mn:6[重量%]、Mo:2[重量%]、C:0.01[重量%]、N:0.5[重量%]、その他の成分割合からなるステンレス鋼やインコネル合金(インコネル625)からなる薄板が特に好適に用いられる。 Here, since a part of the rupture plate 42 is exposed to the compressed gas for a long period of time, the rupture plate 42 is made of a thin wall such as SUS316 (JIS standard symbol) or Inconel (registered trademark) from the viewpoint of corrosion resistance. It is desirable that it is composed of a member made of a nickel alloy formed from a metal plate. For example, as the rupture plate 42, a thin metal plate having heat resistance and corrosion resistance (for example, a thickness of about 200 [μm]) is preferably used, and Ni: 10 [% by weight] and Cr: 23 [weight%]. ], Mn: 6 [% by weight], Mo: 2 [% by weight], C: 0.01 [% by weight], N: 0.5 [% by weight], stainless steel or Inconel alloy consisting of other component ratios ( A thin plate made of Inconel 625) is particularly preferably used.
 破裂板42は、たとえば電子ビーム溶接やレーザ溶接、抵抗溶接等によってノズル体41に接合されることで固定される。 The rupture plate 42 is fixed by being joined to the nozzle body 41 by, for example, electron beam welding, laser welding, resistance welding, or the like.
 ノズル組立体40は、第2ケース体21に固定されている。より詳細には、ノズル組立体40は、当該ノズル組立体40が有するノズル体41が第2ケース体21の第3開放端21a2に内挿されることで圧入されるとともに、第2ケース体21とノズル体41の接触部またはその近傍においてこれらが接合されることで固定されている。ここで、第2ケース体21とノズル体41との接合には、電子ビーム溶接やレーザ溶接、抵抗溶接、摩擦圧接等が好適に利用できる。 The nozzle assembly 40 is fixed to the second case body 21. More specifically, the nozzle assembly 40 is press-fitted by inserting the nozzle body 41 of the nozzle assembly 40 into the third open end 21a2 of the second case body 21, and also with the second case body 21. These are fixed by being joined at or near the contact portion of the nozzle body 41. Here, electron beam welding, laser welding, resistance welding, friction welding and the like can be suitably used for joining the second case body 21 and the nozzle body 41.
 これにより、第2ケース体21の第3開放端21a2は、ノズル体41(より厳密には、ノズル組立体40)によって閉塞されることになり、ノズル体41に組付けられた破裂板42が、タンク室S2に面することになる。また、これにより、第2ケース体21とノズル体41とが同軸上に位置することになり、ノズル体41によってハイブリッド型ガス発生器1Aのハウジングの周壁の軸方向の他端部が構成されることになる。 As a result, the third open end 21a2 of the second case body 21 is closed by the nozzle body 41 (more strictly, the nozzle assembly 40), and the rupture plate 42 assembled to the nozzle body 41 is formed. , Facing the tank chamber S2. Further, as a result, the second case body 21 and the nozzle body 41 are positioned coaxially, and the nozzle body 41 constitutes the other end of the peripheral wall of the housing of the hybrid gas generator 1A in the axial direction. It will be.
 なお、ノズル組立体40の第2ケース体21への固定方法は、上述した圧入および溶接を利用した固定方法に限られず、他の固定方法を利用してもよい。 The method of fixing the nozzle assembly 40 to the second case body 21 is not limited to the above-mentioned fixing method using press fitting and welding, and other fixing methods may be used.
 上述した構成を有することにより、本実施の形態に係るハイブリッド型ガス発生器1Aにおいては、ハウジングの内部の空間が、第1ケース体11の底壁部11bによって軸方向に2つの空間に区画されることになる。そのため、その一方の空間である点火室S1が、第1ケース体11の第1周壁部11aおよび底壁部11bとホルダ31(より厳密には、点火器組立体30)とによって規定されることになり、その他方の空間であるタンク室S2が、第1ケース体11の底壁部11bと第2ケース体21の第2周壁部21aとノズル体41(より厳密には、ノズル組立体40)とによって規定されることになる。 By having the above-mentioned configuration, in the hybrid type gas generator 1A according to the present embodiment, the space inside the housing is divided into two spaces in the axial direction by the bottom wall portion 11b of the first case body 11. Will be. Therefore, the ignition chamber S1, which is one of the spaces, is defined by the first peripheral wall portion 11a and the bottom wall portion 11b of the first case body 11 and the holder 31 (more strictly, the igniter assembly 30). The tank chamber S2, which is the other space, is the bottom wall portion 11b of the first case body 11, the second peripheral wall portion 21a of the second case body 21, and the nozzle body 41 (more strictly, the nozzle assembly 40). ) And will be stipulated by.
 ここで、上述したように第1ケース体11は、圧力隔壁として機能するものであるため、当該第1ケース体11の底壁部11bも圧力隔壁として機能することになり、点火室S1とタンク室S2とを仕切る仕切り部としての機能を発揮することになる。なお、この仕切り部として機能する第1ケース体11の底壁部11bには、上述したように貫通孔11b1が設けられるとともに当該貫通孔11b1を閉鎖するように破裂部材50が設けられているが、その詳細については後述することとする。 Here, since the first case body 11 functions as a pressure bulkhead as described above, the bottom wall portion 11b of the first case body 11 also functions as a pressure bulkhead, and the ignition chamber S1 and the tank It will function as a partition that separates the room S2. The bottom wall portion 11b of the first case body 11 that functions as the partition portion is provided with a through hole 11b1 as described above, and a rupture member 50 is provided so as to close the through hole 11b1. , The details will be described later.
 図1および図2を参照して、上述したように、第1ケース体11および点火器組立体30によって規定された点火室S1には、発熱剤60が収容されている。 As described above with reference to FIGS. 1 and 2, the exothermic agent 60 is housed in the ignition chamber S1 defined by the first case body 11 and the igniter assembly 30.
 発熱剤60は、燃焼することによって高温の熱を発生させる薬剤からなる。発熱剤60は、ハイブリッド型ガス発生器1Aの動作時において、破裂部材50および破裂板42が開裂することにより、圧縮ガスが断熱膨張することで生じ得るエネルギーロスを補うための熱を当該圧縮ガスに供給するものであり、たとえばB/KNO3、B/NaNO3、Sr(NO32等に代表される金属粉/酸化剤からなる組成物やこれに硝酸グアニジンまたはニトログアニジンを加えた組成物、水素化チタン/過塩素酸カリウムからなる組成物、B/5-アミノテトラゾール/硝酸カリウムからなる組成物、過塩素酸アンモニウム/過塩素酸カリウム/ニトログアニジンからなる組成物、Sr(NO32/ニトログアニジンからなる組成物等が用いられる。 The exothermic agent 60 is composed of an agent that generates high-temperature heat by burning. The heating agent 60 heats the compressed gas to compensate for the energy loss that may occur due to the adiabatic expansion of the compressed gas due to the rupture of the rupture member 50 and the rupture plate 42 during the operation of the hybrid gas generator 1A. A composition composed of a metal powder / oxidizing agent typified by, for example, B / KNO 3 , B / NaNO 3 , Sr (NO 3 ) 2 , etc., or a composition obtained by adding guanidine nitrate or nitroguanidine to the composition. , Titanium hydride / potassium perchlorate composition, B / 5-aminotetrazole / potassium nitrate composition, ammonium perchlorate / potassium perchlorate / nitroguanidine composition, Sr (NO 3 ) 2 / A composition composed of nitroguanidine or the like is used.
 発熱剤60としては、粉状のものや、バインダによって所定の形状に成形されたもの等が利用できる。バインダによって成形された発熱剤60の形状としては、たとえば顆粒状、円柱状、シート状、球状、単孔円筒状、多孔円筒状、タブレット状など種々の形状が挙げられる。 As the exothermic agent 60, a powdery one, one molded into a predetermined shape by a binder, or the like can be used. Examples of the shape of the exothermic agent 60 formed by the binder include various shapes such as a granular shape, a columnar shape, a sheet shape, a spherical shape, a single-hole cylindrical shape, a porous cylindrical shape, and a tablet shape.
 一方、図1ないし図3を参照して、上述したように、第1ケース体11、第2ケース体21およびノズル組立体40によって規定されたタンク室S2には、圧縮ガスが収容されている。 On the other hand, with reference to FIGS. 1 to 3, as described above, the compressed gas is housed in the tank chamber S2 defined by the first case body 11, the second case body 21, and the nozzle assembly 40. ..
 圧縮ガスは、ハイブリッド型ガス発生器1Aの動作時において、破裂板42が開裂することにより、これが外部へと放出されることで当該ハイブリッド型ガス発生器1Aに隣接して設けられたエアバッグを膨張および展開させるものである。圧縮ガスとしては、各種の不活性ガス等が利用可能であり、たとえばヘリウムガス、アルゴンガス、ネオンガス、窒素ガス、炭酸ガス、酸素ガス等を利用することができる。 When the hybrid gas generator 1A is in operation, the compressed gas is released to the outside when the burst plate 42 is cleaved, so that the airbag provided adjacent to the hybrid gas generator 1A is provided. It expands and expands. As the compressed gas, various inert gases and the like can be used, and for example, helium gas, argon gas, neon gas, nitrogen gas, carbon dioxide gas, oxygen gas and the like can be used.
 図4は、図1に示すハイブリッド型ガス発生器における破裂部材の第1ケーシングに対する組付構造を示す模式図である。ここで、(A)は、組付け前の状態を示しており、(B)は、組付け後の状態を示している。次に、この図4ならびに前述の図2を参照して、本実施の形態に係るハイブリッド型ガス発生器1Aにおける破裂部材50の第1ケーシング10に対する組付構造について説明する。 FIG. 4 is a schematic diagram showing an assembly structure of a ruptured member with respect to the first casing in the hybrid gas generator shown in FIG. 1. Here, (A) shows the state before assembling, and (B) shows the state after assembling. Next, with reference to FIG. 4 and FIG. 2 described above, an assembly structure of the rupture member 50 with respect to the first casing 10 in the hybrid gas generator 1A according to the present embodiment will be described.
 図2および図4に示すように、破裂部材50は、固定部51および破裂部52を含む有底略円筒状の単一の部材からなる。固定部51は、略円筒状の形状を有しており、その内側に中空部51aが設けられている。破裂部52は、円形薄板状の形状を有している。固定部51の軸方向の一端は開放されており、他端は破裂部52によって閉塞されている。破裂部材50は、点火器32の作動に起因してその破裂部52が開裂可能なものであり、好適には金属製の部材にて構成される。 As shown in FIGS. 2 and 4, the rupture member 50 is composed of a single member having a bottomed substantially cylindrical shape including a fixing portion 51 and a rupture portion 52. The fixed portion 51 has a substantially cylindrical shape, and a hollow portion 51a is provided inside the fixed portion 51. The ruptured portion 52 has a circular thin plate shape. One end of the fixed portion 51 in the axial direction is open, and the other end is closed by the ruptured portion 52. The rupture member 50 is capable of rupturing the rupture portion 52 due to the operation of the igniter 32, and is preferably made of a metal member.
 ここで、破裂部材50の一部分は、長期間にわたって圧縮ガスに晒されるものであるため、破裂部材50は、耐腐食性の観点からSUS316(JIS規格記号)やインコネル(登録商標)等の薄肉の金属板から形成されたニッケル合金製の部材にて構成されていることが望ましい。たとえば、破裂部材50としては、耐熱性および耐腐食性を有する金属製の薄板(たとえば厚みが200[μm]程度)をプレス加工等することによって成形されたプレス成形品が好適に用いられ、Ni:10[重量%]、Cr:23[重量%]、Mn:6[重量%]、Mo:2[重量%]、C:0.01[重量%]、N:0.5[重量%]、その他の成分割合からなるステンレス鋼やインコネル合金(インコネル625)からなるプレス成形品が特に好適に用いられる。 Here, since a part of the rupture member 50 is exposed to the compressed gas for a long period of time, the rupture member 50 is made of a thin wall such as SUS316 (JIS standard symbol) or Inconel (registered trademark) from the viewpoint of corrosion resistance. It is desirable that it is composed of a member made of a nickel alloy formed from a metal plate. For example, as the rupture member 50, a press-molded product formed by pressing a thin metal plate having heat resistance and corrosion resistance (for example, a thickness of about 200 [μm]) is preferably used, and Ni : 10 [% by weight], Cr: 23 [% by weight], Mn: 6 [% by weight], Mo: 2 [% by weight], C: 0.01 [% by weight], N: 0.5 [% by weight] , Stainless steel made of other component ratios and press-molded products made of Inconel alloy (Inconel 625) are particularly preferably used.
 破裂部材50は、第1ケース体11の底壁部11bに設けられた貫通孔11b1に挿入された状態で当該第1ケース体11に固定されている。より詳細には、図4に示すように、破裂部材50は、その固定部51の外周面が貫通孔11b1を規定する部分の底壁部11bの壁面に当接するように挿入され、この状態において抵抗溶接が行なわれることにより、第1ケース体11に固定される。これにより、固定部51の外周面は、底壁部11bの上記壁面に接合されることになる。 The rupture member 50 is fixed to the first case body 11 in a state of being inserted into the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11. More specifically, as shown in FIG. 4, the rupture member 50 is inserted so that the outer peripheral surface of the fixing portion 51 abuts on the wall surface of the bottom wall portion 11b of the portion defining the through hole 11b1 in this state. By performing resistance welding, it is fixed to the first case body 11. As a result, the outer peripheral surface of the fixing portion 51 is joined to the wall surface of the bottom wall portion 11b.
 ここで、破裂部材50は、後述するように第1周壁部11aの第1開放端11a1側から貫通孔11b1に挿入されることで組付けられるため、破裂部材50は、当該第1開放端11a1側から(すなわち、点火室S1側から)貫通孔11b1に差し込み可能な形状を有している。 Here, since the rupture member 50 is assembled by being inserted into the through hole 11b1 from the first open end 11a1 side of the first peripheral wall portion 11a as described later, the rupture member 50 is assembled by the first open end 11a1. It has a shape that can be inserted into the through hole 11b1 from the side (that is, from the ignition chamber S1 side).
 具体的には、本実施の形態においては、底壁部11bに設けられた貫通孔11b1が、点火室S1側からタンク室S2側に向かうにつれて内径が小さくなる先細り形状を有しており、破裂部材50の固定部51が、貫通孔11b1の上述した先細り形状に対応して点火室S1側からタンク室S2側に向かうにつれて外径が小さくなる先細り形状を有している。 Specifically, in the present embodiment, the through hole 11b1 provided in the bottom wall portion 11b has a tapered shape in which the inner diameter decreases from the ignition chamber S1 side toward the tank chamber S2 side, and bursts. The fixing portion 51 of the member 50 has a tapered shape in which the outer diameter decreases from the ignition chamber S1 side toward the tank chamber S2 side corresponding to the tapered shape of the through hole 11b1 described above.
 このように貫通孔11b1および固定部51を先細り形状にすることにより、破裂部材50の底壁部11bへの組付けに際して、破裂部材50を底壁部11bに対して高精度に位置決めして配置することが可能になるとともに、固定部51の外周面と底壁部11bの上述した壁面とを密着させることが可能になり、結果としてその接触面積を所定の大きさにすることができる。したがって、この状態において抵抗溶接を行なうことにより、破裂部材50を底壁部11bに対して確実にかつ安定的に固定することが可能になる。 By forming the through hole 11b1 and the fixing portion 51 in a tapered shape in this way, the rupture member 50 is positioned and arranged with high accuracy with respect to the bottom wall portion 11b when the rupture member 50 is assembled to the bottom wall portion 11b. In addition, the outer peripheral surface of the fixed portion 51 and the above-mentioned wall surface of the bottom wall portion 11b can be brought into close contact with each other, and as a result, the contact area thereof can be made a predetermined size. Therefore, by performing resistance welding in this state, the ruptured member 50 can be reliably and stably fixed to the bottom wall portion 11b.
 ここで、本実施の形態においては、破裂部52は、固定部51のタンク室S2側の端部に位置している。これにより、破裂部材50は、その破裂部52の外側表面がタンク室S2に面するように配置されることになる。そのため、破裂部材50の耐圧性能を向上させる観点からは、固定部51と破裂部52とを接続する環状形状のコーナー部53の外側表面が、湾曲面にて構成されていることが好ましい。 Here, in the present embodiment, the ruptured portion 52 is located at the end of the fixed portion 51 on the tank chamber S2 side. As a result, the rupture member 50 is arranged so that the outer surface of the rupture portion 52 faces the tank chamber S2. Therefore, from the viewpoint of improving the pressure resistance performance of the rupture member 50, it is preferable that the outer surface of the annular corner portion 53 connecting the fixing portion 51 and the rupture portion 52 is formed of a curved surface.
 次に、上述した構成を有する本実施の形態に係るハイブリッド型ガス発生器1Aの動作について、前述の図1ないし図3を参照しつつ説明する。 Next, the operation of the hybrid gas generator 1A according to the present embodiment having the above-described configuration will be described with reference to FIGS. 1 to 3 described above.
 まず、上述したコントロールユニットからの通電を受けることにより、点火器32が作動する。点火器32が作動することにより、点火部32aに充填された点火薬が抵抗体によって加熱されることで着火され、当該点火薬が燃焼することで点火部32aが破裂する。これにより、点火室S1に収容された発熱剤60が点火器32によって着火されて燃焼する。 First, the igniter 32 operates by receiving the energization from the above-mentioned control unit. When the igniter 32 operates, the igniter filled in the igniter 32a is ignited by being heated by the resistor, and the igniter burns to explode the igniter 32a. As a result, the exothermic agent 60 housed in the ignition chamber S1 is ignited by the igniter 32 and burned.
 この点火薬および発熱剤60の燃焼によって点火室S1の圧力および温度が上昇することになり、これに伴って破裂部材50のうちの破裂部52に開裂が生じる。この破裂部52の開裂に伴い、点火室S1とタンク室S2とが第1ケース体11の底壁部11bに設けられた貫通孔11b1を介して連通した状態となる。なお、このとき、破裂部材50の固定部51は、焼失することなく残存するため、より厳密には、この固定部51の内側に位置する中空部51aを介して点火室S1とタンク室S2とが連通することになる。 Combustion of the igniter and the exothermic agent 60 causes the pressure and temperature of the ignition chamber S1 to rise, which causes the rupture portion 52 of the rupture member 50 to rupture. With the opening of the ruptured portion 52, the ignition chamber S1 and the tank chamber S2 are in a state of communicating with each other through the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11. At this time, since the fixing portion 51 of the rupture member 50 remains without burning, more strictly speaking, the ignition chamber S1 and the tank chamber S2 pass through the hollow portion 51a located inside the fixing portion 51. Will communicate.
 次に、点火室S1とタンク室S2とが連通したことに伴い、タンク室S2の圧力および温度も上昇することになり、これに伴って破裂板42のうちの流路部41cに面する部分に開裂が生じる。この破裂板42の開裂に伴い、タンク室S2と複数のガス噴出口41dとが流路部41cを介して連通した状態となる。 Next, as the ignition chamber S1 and the tank chamber S2 communicate with each other, the pressure and temperature of the tank chamber S2 also rise, and the portion of the rupture disc 42 facing the flow path portion 41c is accompanied by this. Cleavage occurs in. With the opening of the rupture plate 42, the tank chamber S2 and the plurality of gas outlets 41d are in a state of communicating with each other via the flow path portion 41c.
 これにより、タンク室S2に収容されていた圧縮ガスが、流路部41cを介して複数のガス噴出口41dへと至り、その後、当該複数のガス噴出口41dから外部に向けて噴出することになる。 As a result, the compressed gas contained in the tank chamber S2 reaches the plurality of gas outlets 41d via the flow path portion 41c, and then is ejected from the plurality of gas outlets 41d to the outside. Become.
 なお、複数のガス噴出口41dからハイブリッド型ガス発生器1Aの外部へと噴出されたガスは、当該ハイブリッド型ガス発生器1Aに隣接して設けられたエアバッグの内部に導入され、当該エアバッグを膨張および展開させる。 The gas ejected from the plurality of gas outlets 41d to the outside of the hybrid gas generator 1A is introduced into an airbag provided adjacent to the hybrid gas generator 1A, and the airbag is introduced. Inflate and unfold.
 以上において説明した本実施の形態に係るハイブリッド型ガス発生器1Aとすることにより、点火室S1とタンク室S2とを仕切る仕切り部としての第1ケース体11の底壁部11bに、当該底壁部11bに対する破裂部材50の接触面積を所定の大きさとするための凹凸形状を付与せずとも、これら底壁部11bと破裂部材50との接触面積を所定の大きさに維持しつつ抵抗溶接によってこれらを接合することが可能になる。これは、上述したように、破裂部材50を有底略円筒状の部材にて構成するとともに、当該破裂部材50を底壁部11bに設けた貫通孔11b1に挿入した状態で抵抗溶接することで接合することとしたためである。 By using the hybrid gas generator 1A according to the present embodiment described above, the bottom wall portion 11b of the first case body 11 as a partition portion for partitioning the ignition chamber S1 and the tank chamber S2 is formed with the bottom wall. By resistance welding while maintaining the contact area between the bottom wall portion 11b and the rupture member 50 at a predetermined size, even if the uneven shape for making the contact area of the rupture member 50 with respect to the portion 11b a predetermined size is not provided. It becomes possible to join these. As described above, the rupture member 50 is composed of a bottomed substantially cylindrical member, and the rupture member 50 is resistance welded while being inserted into the through hole 11b1 provided in the bottom wall portion 11b. This is because it was decided to join.
 そのため、従来必要であった上記凹凸形状を付与するためのたとえば切削加工等の追加の加工を施すことが不要になり、製造工程を簡素化できるとともに製造コストを削減することができる。したがって、上記構成のハイブリッド型ガス発生器1Aとすることにより、容易にかつ安価にその製造を行なうことが可能になる。 Therefore, it becomes unnecessary to perform additional processing such as cutting to impart the above-mentioned uneven shape, which was conventionally required, and the manufacturing process can be simplified and the manufacturing cost can be reduced. Therefore, by using the hybrid gas generator 1A having the above configuration, it becomes possible to easily and inexpensively manufacture the gas generator 1A.
 また、本実施の形態に係るハイブリッド型ガス発生器1Aとすることにより、ハウジングの耐圧性能を確保しつつ軽量化を図ることも可能になる。以下、この点について詳説する。 Further, by using the hybrid type gas generator 1A according to the present embodiment, it is possible to reduce the weight while ensuring the withstand voltage performance of the housing. This point will be described in detail below.
 ハイブリッド型ガス発生器においては、ハウジングの内部に形成された点火室に、点火器が面するように配置されるとともに、発熱剤が充填される。したがって、動作時において点火室の内圧は大幅に上昇するため、当該点火室を規定する部分のハウジングには、高い耐圧性能が要求される。また、ハウジングの内部に形成されたタンク室には、圧縮ガス封入される。したがって、タンク室を規定する部分のハウジングにも、相当程度の耐圧性能が要求される。 In the hybrid type gas generator, the ignition chamber formed inside the housing is arranged so that the igniter faces and is filled with an exothermic agent. Therefore, since the internal pressure of the ignition chamber rises significantly during operation, high withstand voltage performance is required for the housing of the portion that defines the ignition chamber. Further, the tank chamber formed inside the housing is filled with compressed gas. Therefore, the housing of the part that defines the tank chamber is also required to have a considerable pressure resistance.
 そのため、これら点火室およびタンク室を規定する部分のハウジングとしては、高い耐圧性能を確保するために、機械的強度が高い材料にて構成されるとともに、その厚みが十分に厚く構成されることが必要であり、結果としてハイブリッド型ガス発生器の重量の増加の原因となっている。 Therefore, in order to ensure high withstand voltage performance, the housing of the part that defines the ignition chamber and the tank chamber is made of a material having high mechanical strength, and the thickness thereof is sufficiently thick. It is necessary and, as a result, causes an increase in the weight of the hybrid gas generator.
 ここで、一般に、点火室を規定する部分のハウジングに要求される耐圧性能は、タンク室を規定する部分のハウジングに要求される耐圧性能よりも高い。そのため、タンク室を規定する部分のハウジングの厚みを点火室を規定する部分のハウジングの厚みよりも薄くすることができれば、その分だけ軽量化が図れることになる。 Here, in general, the withstand voltage performance required for the housing of the portion defining the ignition chamber is higher than the withstand voltage performance required for the housing of the portion defining the tank chamber. Therefore, if the thickness of the housing of the portion defining the tank chamber can be made thinner than the thickness of the housing of the portion defining the ignition chamber, the weight can be reduced accordingly.
 この点、本実施の形態に係るハイブリッド型ガス発生器1Aにおいては、ハウジングの周壁を構成する部分と仕切り部を構成する部分とのうち、点火室S1を規定する部分の周壁と、仕切り部とを、有底円筒状の単一の部材からなる第1ケース体11にて構成することとし、残るタンク室S2を規定する部分の周壁を、第2ケース体21にて構成することとしている。 In this regard, in the hybrid type gas generator 1A according to the present embodiment, among the portion constituting the peripheral wall of the housing and the portion constituting the partition portion, the peripheral wall of the portion defining the ignition chamber S1 and the partition portion are used. Is configured by the first case body 11 made of a single member having a bottomed cylinder, and the peripheral wall of the portion defining the remaining tank chamber S2 is formed by the second case body 21.
 したがって、当該構成を採用することにより、第1ケース体11の第1周壁部11aおよび底壁部11bの厚みを相対的に厚くしつつ、第2ケース体21の第2周壁部21aの厚みを相対的に薄くすることが容易に行なえることになり、部品点数の増加を抑制しつつ、ハウジングの軽量化が実現できることになる。 Therefore, by adopting this configuration, the thickness of the second peripheral wall portion 21a of the second case body 21 is increased while the thickness of the first peripheral wall portion 11a and the bottom wall portion 11b of the first case body 11 is relatively increased. It becomes possible to easily make the housing relatively thin, and it is possible to reduce the weight of the housing while suppressing an increase in the number of parts.
 また、本実施の形態に係るハイブリッド型ガス発生器1Aにあっては、圧縮ガスが封入されたタンク室S2を規定する部分のハウジングの壁部のうち、第2ケース体21の第2周壁部21aに開口が設けられておらず、また、第1ケース体11の底壁部11bに破裂部材50によって閉鎖された貫通孔11b1以外の開口が設けられていない。 Further, in the hybrid type gas generator 1A according to the present embodiment, among the wall portions of the housing of the portion defining the tank chamber S2 in which the compressed gas is sealed, the second peripheral wall portion of the second case body 21 The 21a is not provided with an opening, and the bottom wall portion 11b of the first case body 11 is not provided with an opening other than the through hole 11b1 closed by the rupture member 50.
 このような特徴的な構成は、本実施の形態に係るハイブリッド型ガス発生器1Aが、以下において説明する本実施の形態に係るハイブリッド型ガス発生器の製造方法に従って製造されていることに起因するものであり、要約すれば、圧縮ガスをタンク室S2に封入する際に、第1ケース体11の底壁部11bに設けられた貫通孔11b1がガス注入口として利用されるとともに、圧縮ガスの注入後において当該貫通孔11b1が破裂部材50によって閉鎖されることによる。 Such a characteristic configuration is caused by the fact that the hybrid gas generator 1A according to the present embodiment is manufactured according to the method for manufacturing the hybrid gas generator according to the present embodiment described below. In summary, when the compressed gas is sealed in the tank chamber S2, the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is used as a gas injection port, and the compressed gas is used. This is because the through hole 11b1 is closed by the rupture member 50 after the injection.
 以下、本実施の形態に係るハイブリッド型ガス発生器の製造方法を具体的に説明しつつ、上記の点についてより詳細に説明する。図5は、本実施の形態に係るハイブリッド型ガス発生器の製造方法を示すフロー図であり、図6ないし図11は、図5に示す工程のうちの一部の工程における模式断面図である。 Hereinafter, the above points will be described in more detail while specifically explaining the method for manufacturing the hybrid gas generator according to the present embodiment. FIG. 5 is a flow chart showing a manufacturing method of the hybrid gas generator according to the present embodiment, and FIGS. 6 to 11 are schematic cross-sectional views in a part of the steps shown in FIG. ..
 図5に示すように、本実施の形態に係るハイブリッド型ガス発生器1Aを製造するに際しては、まず、ステップST11において、点火器組立体30およびノズル組立体40がそれぞれ製作される。 As shown in FIG. 5, when manufacturing the hybrid gas generator 1A according to the present embodiment, first, in step ST11, the igniter assembly 30 and the nozzle assembly 40 are manufactured, respectively.
 具体的には、ホルダ31に点火器32を樹脂成形部33を用いて固定することにより、一体の部品としての点火器組立体30が製作され、ノズル体41に破裂板42がたとえば抵抗溶接等によって溶接されることにより、一体の部品としてのノズル組立体40が製作される。 Specifically, by fixing the igniter 32 to the holder 31 using the resin molding portion 33, the igniter assembly 30 as an integral part is manufactured, and the rupture plate 42 is attached to the nozzle body 41 by, for example, resistance welding. By welding with, the nozzle assembly 40 as an integral part is manufactured.
 次に、図5および図6に示すように、ステップST12において、第2ケーシング20の組立ておよび第1ケーシング10への第2ケーシング20の組付けが行なわれる。 Next, as shown in FIGS. 5 and 6, in step ST12, the second casing 20 is assembled and the second casing 20 is assembled to the first casing 10.
 具体的には、図6に示すように、第2ケース体21の第2周壁部21aの第3開放端21a2に対して、ノズル組立体40のノズル体41のベース部41aが内挿されることで圧入され、その後、ノズル体41が第2ケース体21にたとえばレーザ溶接等によって溶接されることにより、ノズル組立体40が第2ケース体21に組付けられる。これにより、第2ケーシング20の組立てが行なわれる。 Specifically, as shown in FIG. 6, the base portion 41a of the nozzle body 41 of the nozzle assembly 40 is inserted into the third open end 21a2 of the second peripheral wall portion 21a of the second case body 21. After that, the nozzle body 41 is welded to the second case body 21 by, for example, laser welding, so that the nozzle assembly 40 is assembled to the second case body 21. As a result, the second casing 20 is assembled.
 続いて、第1ケース体11の第1周壁部11aの閉塞端(すなわち、底壁部11bによって閉塞された第1周壁部11aの軸方向端部)に対して、第2ケース体21の第2周壁部21aの第2開放端21a1が外挿されることで圧入され、その後、第2ケース体21が第1ケース体11にたとえばレーザ溶接等によって溶接されることにより、第2ケース体21が第1ケース体11に組付けられる。これにより、第1ケーシング10への第2ケーシング20の組付けが行なわれる。 Subsequently, the second case body 21 is the second with respect to the closed end of the first peripheral wall portion 11a of the first case body 11 (that is, the axial end portion of the first peripheral wall portion 11a closed by the bottom wall portion 11b). The second open end 21a1 of the two peripheral wall portions 21a is press-fitted by being externally inserted, and then the second case body 21 is welded to the first case body 11 by, for example, laser welding, so that the second case body 21 is formed. It is assembled to the first case body 11. As a result, the second casing 20 is assembled to the first casing 10.
 次に、図5および図7に示すように、ステップST13において、圧縮ガス封入装置100のヘッド部110に対する第1ケーシング10の位置決めが行なわれる。 Next, as shown in FIGS. 5 and 7, in step ST13, the first casing 10 is positioned with respect to the head portion 110 of the compressed gas filling device 100.
 図7に示すように、圧縮ガス封入装置100は、ガス充填装置と溶接装置とが組み合わされて構成されたものであり、ブロック状のヘッド部110を有している。ヘッド部110は、ガス充填ヘッド111と、溶接ヘッド112とを含んでおり、溶接ヘッド112は、摺動可能にガス充填ヘッド111に組み込まれている。 As shown in FIG. 7, the compressed gas filling device 100 is configured by combining a gas filling device and a welding device, and has a block-shaped head portion 110. The head portion 110 includes a gas filling head 111 and a welding head 112, and the welding head 112 is slidably incorporated in the gas filling head 111.
 ガス充填ヘッド111の内部には、図示しないガス供給源および負圧源に選択的に切り替え可能に接続された通気路111aが設けられており、当該通気路111aの一端は、ガス充填ヘッド111の主表面111bにおいて開口している。 Inside the gas filling head 111, a ventilation passage 111a that is selectively switched to a gas supply source and a negative pressure source (not shown) is provided, and one end of the ventilation passage 111a is a gas filling head 111. It is open on the main surface 111b.
 一方、溶接ヘッド112は、略円柱状の外形を有しており、上述したようにガス充填ヘッド111によって摺動可能に保持されている。溶接ヘッド112の内部には、図示しない負圧源に接続された吸引路112aが設けられており、当該吸引路112aの一端は、溶接ヘッド112の主表面112bにおいて開口している。 On the other hand, the welding head 112 has a substantially columnar outer shape, and is slidably held by the gas filling head 111 as described above. Inside the welding head 112, a suction path 112a connected to a negative pressure source (not shown) is provided, and one end of the suction path 112a is open at the main surface 112b of the welding head 112.
 ここで、ガス充填ヘッド111の主表面111bと溶接ヘッド112の主表面112bとは、互いに平行なるように配置されており、溶接ヘッド112が駆動されることにより、溶接ヘッド112の主表面112bは、ガス充填ヘッド111の主表面111bから突出するように移動することができる。なお、ガス充填ヘッド111の主表面111bにおいて開口する通気路111aの一端は、溶接ヘッド112を取り囲むように配置されている。 Here, the main surface 111b of the gas filling head 111 and the main surface 112b of the welding head 112 are arranged so as to be parallel to each other, and the main surface 112b of the welding head 112 is driven by driving the welding head 112. , Can be moved so as to protrude from the main surface 111b of the gas filling head 111. One end of the ventilation path 111a opened on the main surface 111b of the gas filling head 111 is arranged so as to surround the welding head 112.
 溶接ヘッド112は、予め破裂部材50を保持している。より詳細には、破裂部材50は、その破裂部52が位置しない側の固定部51の開放端が予め溶接ヘッド112の主表面112bに宛がわれた状態とされ、この状態において上述した負圧源が駆動されることで吸引路112aに負圧が発生させられることにより、当該溶接ヘッド112によって保持されている(図中においては、当該負圧源による吸引方向を模式的に矢印Aで示している)。 The welding head 112 holds the rupture member 50 in advance. More specifically, the rupture member 50 is in a state in which the open end of the fixing portion 51 on the side where the rupture portion 52 is not located is previously addressed to the main surface 112b of the welding head 112, and in this state, the above-mentioned negative pressure is applied. A negative pressure is generated in the suction path 112a by driving the source, and the welding is held by the welding head 112 (in the figure, the suction direction by the negative pressure source is schematically indicated by an arrow A. ing).
 この状態において、ステップST12において第2ケーシング20が組付けられた第1ケース体11の第1周壁部11aの第1開放端11a1が、ガス充填ヘッド111の主表面111bに当接するように押し当てられることにより、圧縮ガス封入装置100のヘッド部110に対する第1ケーシング10の位置決めが行なわれる。 In this state, in step ST12, the first open end 11a1 of the first peripheral wall portion 11a of the first case body 11 to which the second casing 20 is assembled is pressed against the main surface 111b of the gas filling head 111. By doing so, the first casing 10 is positioned with respect to the head portion 110 of the compressed gas filling device 100.
 このとき、第1ケース体11の第1周壁部11aの第1開放端11a1側の端面がガス充填ヘッド111の主表面111bに当接させられることにより、ガス注入口としての貫通孔11b1が設けられた第1ケース体11の底壁部11bと、第1ケース体11の第1周壁部11aと、ガス充填ヘッド111の主表面111bとによって閉空間が形成されることになる(図8参照)。 At this time, the end surface of the first peripheral wall portion 11a of the first case body 11 on the first open end 11a1 side is brought into contact with the main surface 111b of the gas filling head 111, so that the through hole 11b1 as a gas injection port is provided. A closed space is formed by the bottom wall portion 11b of the first case body 11, the first peripheral wall portion 11a of the first case body 11, and the main surface 111b of the gas filling head 111 (see FIG. 8). ).
 また、このとき、第1ケース体11の第1周壁部11aの第1開放端11a1によって破裂部材50を保持した溶接ヘッド112の端部が覆われるようにすることにより、破裂部材50が上述した閉空間の内部において溶接ヘッド112によって保持された状態となる(図8参照)。 Further, at this time, the rupture member 50 is described above by covering the end portion of the welding head 112 holding the rupture member 50 with the first open end 11a1 of the first peripheral wall portion 11a of the first case body 11. It is held by the welding head 112 inside the closed space (see FIG. 8).
 なお、第1ケース体11の第1周壁部11aの第1開放端11a1側の端面が押し当てられる部分のガス充填ヘッド111の主表面111bにパッキン等からなるシール部材を設けておけば、上述した閉空間と外部の空間との気密性を向上させることもできる。 If a sealing member made of packing or the like is provided on the main surface 111b of the gas filling head 111 at the portion where the end surface on the first open end 11a1 side of the first peripheral wall portion 11a of the first case body 11 is pressed, the above-mentioned description will be made. It is also possible to improve the airtightness between the closed space and the external space.
 次に、図5および図8に示すように、ステップST14において、真空引きが行なわれる。この真空引きは、ガス充填ヘッド111を具備した上述のガス充填装置が用いられることで行なわれる。 Next, as shown in FIGS. 5 and 8, evacuation is performed in step ST14. This evacuation is performed by using the above-mentioned gas filling device equipped with the gas filling head 111.
 具体的には、図8に示すように、ガス充填ヘッド111に設けられた通気路111aが上述した負圧源に接続されるとともに当該負圧源が駆動されることにより、上述した閉空間および当該閉空間と貫通孔11b1を介して連通するタンク室S2内の空気が吸引され、吸引された空気は、通気路111aを介して外部に排気される(図中においては、当該負圧源による吸引方向を模式的に矢印Bで示している)。当該真空引きは、タンク室S2の圧力が所定の真空度に達するまで実施される。 Specifically, as shown in FIG. 8, the air passage 111a provided in the gas filling head 111 is connected to the above-mentioned negative pressure source and the negative pressure source is driven to drive the above-mentioned closed space and the above-mentioned closed space. The air in the tank chamber S2 communicating with the closed space through the through hole 11b1 is sucked, and the sucked air is exhausted to the outside through the ventilation passage 111a (in the figure, the negative pressure source is used). The suction direction is schematically indicated by arrow B). The evacuation is carried out until the pressure in the tank chamber S2 reaches a predetermined degree of vacuum.
 次に、図5および図9に示すように、ステップST15において、ガス充填が行なわれる。このガス充填は、ガス充填ヘッド111を具備した上述のガス充填装置が引き続き用いられることで行なわれる。 Next, as shown in FIGS. 5 and 9, gas filling is performed in step ST15. This gas filling is performed by continuing to use the above-mentioned gas filling device equipped with the gas filling head 111.
 具体的には、図9に示すように、ガス充填ヘッド111に設けられた通気路111aが、上述した負圧源から上述したガス供給源に切り替え接続されるとともに当該ガス供給源が駆動されることにより、上述した閉空間および当該閉空間と貫通孔11b1を介して連通するタンク室S2内にガスが送り込まれ、送り込まれたガスが圧縮されることにより、タンク室S2が圧縮ガスにて満たされる(図中においては、当該ガス供給源によって送り込まれるガスの供給方向を模式的に矢印Cで示している)。当該ガス充填は、タンク室S2の圧力が所定の高圧状態(たとえば、30[MPa]~90[MPa]程度)になるまで実施される。 Specifically, as shown in FIG. 9, the ventilation path 111a provided in the gas filling head 111 is switched and connected from the above-mentioned negative pressure source to the above-mentioned gas supply source, and the gas supply source is driven. As a result, gas is sent into the closed space described above and the tank chamber S2 communicating with the closed space through the through hole 11b1, and the sent gas is compressed, so that the tank chamber S2 is filled with the compressed gas. (In the figure, the supply direction of the gas sent by the gas supply source is schematically indicated by an arrow C). The gas filling is carried out until the pressure in the tank chamber S2 reaches a predetermined high pressure state (for example, about 30 [MPa] to 90 [MPa]).
 このとき、ガス充填ヘッド111の主表面111bにおいて開口する通気路111aの上記一端は、ガスを送り出すガス送出口111a1として機能することになり、当該ガス送出口111a1から送り出されたガスは、上述した閉空間を経由することでガス注入口としての貫通孔11b1からタンク室S2に送り込まれることになる。 At this time, the one end of the ventilation path 111a opened in the main surface 111b of the gas filling head 111 functions as a gas outlet 111a1 for delivering gas, and the gas delivered from the gas outlet 111a1 is described above. By passing through the closed space, the gas is sent to the tank chamber S2 from the through hole 11b1 as the gas injection port.
 次に、図5および図10に示すように、ステップST16において、第1ケーシング10への破裂部材50の組付けが行なわれる。この破裂部材50の組付けは、溶接ヘッド112を具備した上述の溶接装置が用いられることで行なわれる。 Next, as shown in FIGS. 5 and 10, in step ST16, the rupture member 50 is assembled to the first casing 10. The assembly of the rupture member 50 is performed by using the above-mentioned welding device provided with the welding head 112.
 具体的には、図10に示すように、ステップST15においてタンク室S2が圧縮ガスにて満たされた後の状態において、予め上述した閉空間の内部において溶接ヘッド112によって保持されていた破裂部材50が溶接ヘッド112が駆動されることで移動させられ、これにより破裂部材50がガス注入口としての貫通孔11b1に挿入される。その際、破裂部材50の固定部51の外周面が、当該貫通孔11b1を規定する部分の底壁部11bの壁面に密着するように破裂部材50が位置決めされる。 Specifically, as shown in FIG. 10, in the state after the tank chamber S2 is filled with the compressed gas in step ST15, the rupture member 50 held by the welding head 112 in the closed space described above in advance. Is moved by driving the welding head 112, whereby the rupture member 50 is inserted into the through hole 11b1 as a gas injection port. At that time, the rupture member 50 is positioned so that the outer peripheral surface of the fixing portion 51 of the rupture member 50 is in close contact with the wall surface of the bottom wall portion 11b of the portion defining the through hole 11b1.
 この状態において、溶接ヘッド112が稼働させられる(すなわち、抵抗溶接のための電流が当該溶接ヘッド112に印加される)ことにより、底壁部11bに密着した状態にある破裂部材50の固定部51が、当該底壁部11bに溶接される。これにより、固定部51の外周面が底壁部11bの上記壁面に接合されることになり、破裂部材50が第1ケーシング10に固定される。 In this state, when the welding head 112 is operated (that is, a current for resistance welding is applied to the welding head 112), the fixing portion 51 of the rupture member 50 in a state of being in close contact with the bottom wall portion 11b. Is welded to the bottom wall portion 11b. As a result, the outer peripheral surface of the fixing portion 51 is joined to the wall surface of the bottom wall portion 11b, and the rupture member 50 is fixed to the first casing 10.
 そのため、底壁部11bに設けられたガス注入口としての貫通孔11b1が破裂部材50によって閉鎖されることになり、これに伴い、圧縮ガスにて満たされたタンク室S2は、当該破裂部材50によって封止されることになる。これにより、圧縮ガスがタンク室S2に封入されることになる。なお、上述した溶接が完了した後には、ガス充填装置のガス供給源によるガスの供給および溶接装置の負圧源による破裂部材50の保持は、いずれも解除される。 Therefore, the through hole 11b1 as the gas injection port provided in the bottom wall portion 11b is closed by the rupture member 50, and accordingly, the tank chamber S2 filled with the compressed gas becomes the rupture member 50. Will be sealed by. As a result, the compressed gas is sealed in the tank chamber S2. After the above-mentioned welding is completed, the gas supply by the gas supply source of the gas filling device and the holding of the ruptured member 50 by the negative pressure source of the welding device are both released.
 次に、図5および図11に示すように、ステップST17において、発熱剤60が充填され、その後、ステップST18において、第1ケーシング10への点火器組立体30の組付が行なわれる。 Next, as shown in FIGS. 5 and 11, the exothermic agent 60 is filled in step ST17, and then the igniter assembly 30 is assembled to the first casing 10 in step ST18.
 具体的には、図11に示すように、圧縮ガス封入装置100のヘッド部110から離脱させられた第1ケース体11の第1周壁部11aの内側の空間に、当該第1周壁部11aの第1開放端11a1側から所定量の発熱剤60が投入され、その後、当該第1開放端11a1に対して、点火器組立体30のホルダ31が内挿されることで圧入され、さらにその後、ホルダ31が第1ケース体11にたとえばレーザ溶接等によって溶接されることにより、点火器組立体30が第1ケース体11に組付けられる。これにより、発熱剤60の充填および第1ケーシング10への点火器組立体30の組付けが行なわれる。 Specifically, as shown in FIG. 11, the first peripheral wall portion 11a is placed in the space inside the first peripheral wall portion 11a of the first case body 11 separated from the head portion 110 of the compressed gas filling device 100. A predetermined amount of the heating agent 60 is charged from the first open end 11a1 side, and then the holder 31 of the igniter assembly 30 is inserted into the first open end 11a1 to be press-fitted, and then the holder. The igniter assembly 30 is assembled to the first case body 11 by welding the 31 to the first case body 11 by, for example, laser welding. As a result, the exothermic agent 60 is filled and the igniter assembly 30 is assembled to the first casing 10.
 以上のステップST11~ST18を経ることにより、上述した本実施の形態に係るハイブリッド型ガス発生器1Aの製造が完了することになる。 By going through the above steps ST11 to ST18, the production of the hybrid gas generator 1A according to the above-described embodiment is completed.
 以上において説明した本実施の形態に係るハイブリッド型ガス発生器の製造方法においては、圧縮ガスをタンク室S2に封入する際に、第1ケース体11の底壁部11bに設けられた貫通孔11b1がガス注入口として利用されるとともに、圧縮ガスの注入後において当該貫通孔11b1が破裂部材50によって閉鎖されることとしている。そのため、当該製造方法を採用することにより、ハウジングに圧縮ガスの封入にのみ用いる構造部を設ける必要がなく、ガス発生器自体の構成の簡素化と組立作業の容易化とが実現できることになる。 In the method for manufacturing the hybrid gas generator according to the present embodiment described above, when the compressed gas is sealed in the tank chamber S2, the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is provided. Is used as a gas injection port, and the through hole 11b1 is closed by the rupture member 50 after the injection of the compressed gas. Therefore, by adopting the manufacturing method, it is not necessary to provide a structural portion used only for filling the compressed gas in the housing, and it is possible to realize simplification of the configuration of the gas generator itself and simplification of the assembly work.
 また、本実施の形態においては、ハイブリッド型ガス発生器1Aの製造時において、第1ケース体11の第1周壁部11aの第1開放端11a1側の端面が圧縮ガス封入装置100のヘッド部110に押し当てられる構成であるため、上述した閉空間の容積を大幅に狭小化することができる。そのため、真空引きの際に、短時間のうちに所定の真空度にまでタンク室S2の真空度を下げることができ、また、ガス充填の際に、短時間のうちに所定の高圧状態にまでタンク室S2の圧力を上げることができる。したがって、製造に要する時間を短縮することができ、製造コストの削減に繋がることにもなる。 Further, in the present embodiment, at the time of manufacturing the hybrid gas generator 1A, the end surface of the first peripheral wall portion 11a of the first case body 11 on the first open end 11a1 side is the head portion 110 of the compressed gas filling device 100. Since the structure is pressed against the above-mentioned closed space, the volume of the closed space can be significantly reduced. Therefore, the vacuum degree of the tank chamber S2 can be lowered to a predetermined vacuum degree in a short time at the time of evacuation, and also to a predetermined high pressure state in a short time at the time of gas filling. The pressure in the tank chamber S2 can be increased. Therefore, the time required for manufacturing can be shortened, which leads to a reduction in manufacturing cost.
 また、この点に関連し、本実施の形態においては、上述した如くの構成の小型のヘッド部110を備えた圧縮ガス封入装置100を用いてハウジングへの圧縮ガスの封入が可能になるため、従来の圧縮ガス封入装置に比べて製造設備を大幅に小型化することができるメリットも得られる。 Further, in relation to this point, in the present embodiment, since the compressed gas filling device 100 provided with the small head portion 110 having the configuration as described above can be used, the compressed gas can be filled in the housing. There is also an advantage that the manufacturing equipment can be significantly downsized as compared with the conventional compressed gas filling device.
 さらには、ガス充填の際には、ガスの圧縮に伴って熱が発生することになるが、上述したように、本実施の形態においては、上述した閉空間の容積が大幅に狭小化するため、この発熱量のばらつきを抑えることができる。したがって、製造した製品間において圧縮ガスの充填量にばらつきが発生することが抑制でき、所望のガス出力が得られるハイブリッド型ガス発生器をより歩留まりよく製造することができる。 Further, when filling the gas, heat is generated as the gas is compressed. However, as described above, in the present embodiment, the volume of the closed space described above is significantly narrowed. , This variation in calorific value can be suppressed. Therefore, it is possible to suppress the variation in the filling amount of the compressed gas among the manufactured products, and it is possible to manufacture a hybrid type gas generator capable of obtaining a desired gas output with a higher yield.
 また、本実施の形態においては、ハイブリッド型ガス発生器1Aの製造時において、圧縮ガス封入装置100のヘッド部110に押し当てられる部分のハウジング(すなわち、第1ケース体11の第1周壁部11aの第1開放端11a1側の端面)の形状が平面形状であるため、ハウジングの湾曲した周壁(すなわち、第1ケース体11の第1周壁部11aまたは第2ケース体21の第2周壁部21a)にガス注入口を設ける場合よりも、上述した閉空間の気密性の確保が容易となり、より容易に高圧ガスの封入が行なえることにもなる。 Further, in the present embodiment, at the time of manufacturing the hybrid gas generator 1A, the housing of the portion pressed against the head portion 110 of the compressed gas filling device 100 (that is, the first peripheral wall portion 11a of the first case body 11). Since the shape of the first open end 11a1 side end surface of the housing is planar, the curved peripheral wall of the housing (that is, the first peripheral wall portion 11a of the first case body 11 or the second peripheral wall portion 21a of the second case body 21) is formed. ), It becomes easier to secure the airtightness of the closed space described above as compared with the case where the gas injection port is provided, and the high-pressure gas can be more easily filled.
 加えて、本実施の形態においては、ハイブリッド型ガス発生器1Aの製造時において、第2ケーシング20が組付けられた後の第1ケーシング10の底壁部11bに設けられた貫通孔11b1がガス注入口として利用されるものであるため、タンク室を規定する圧縮ガス充填部と、燃焼剤が収容される点火室を規定するとともに点火器組立体が組付けられた起爆部とを、それぞれ別ユニットとして製作した後に、これらを組み合わせる必要がなく、極めて容易にハイブリッド型ガス発生器を製造することが可能になる。 In addition, in the present embodiment, at the time of manufacturing the hybrid type gas generator 1A, the through hole 11b1 provided in the bottom wall portion 11b of the first casing 10 after the second casing 20 is assembled is a gas. Since it is used as an inlet, the compressed gas filling section that defines the tank chamber and the detonation section that defines the ignition chamber in which the combustion agent is housed and the igniter assembly is assembled are separate. After manufacturing as a unit, it is not necessary to combine these, and it becomes possible to manufacture a hybrid gas generator extremely easily.
 (第1変形例)
 図12は、上述した実施の形態1に基づいた第1変形例に係るハイブリッド型ガス発生器における破裂部材の第1ケーシングに対する組付構造を示す模式図である。ここで、(A)は、組付け前の状態を示しており、(B)は、組付け後の状態を示している。以下、この図12を参照して、第1変形例に係るハイブリッド型ガス発生器1A1における破裂部材50の第1ケーシング10に対する組付構造について説明する。
(First modification)
FIG. 12 is a schematic view showing an assembly structure of a ruptured member with respect to the first casing in the hybrid type gas generator according to the first modification based on the above-described first embodiment. Here, (A) shows the state before assembling, and (B) shows the state after assembling. Hereinafter, with reference to FIG. 12, a structure for assembling the ruptured member 50 to the first casing 10 in the hybrid gas generator 1A1 according to the first modification will be described.
 図12に示すように、第1変形例に係るハイブリッド型ガス発生器1A1は、上述した実施の形態1に係るハイブリッド型ガス発生器1Aと比較した場合に、破裂部材50の形状のみが相違している。 As shown in FIG. 12, the hybrid gas generator 1A1 according to the first modification differs only in the shape of the burst member 50 when compared with the hybrid gas generator 1A according to the first embodiment described above. ing.
 具体的には、破裂部材50は、点火室S1側からタンク室S2側に向かうにつれて外径が小さくなる先細り形状の略円筒状の固定部51と、当該固定部51のタンク室S2側の端部を閉塞する円形薄板状の破裂部52とを有しており、このうちの固定部51に、径方向外側に向かって延びるフランジ状のストッパ部51bがさらに設けられている。ここで、ストッパ部51bは、固定部51の破裂部52が設けられた側の軸方向端部とは反対側に位置する開放端(すなわち点火室S1側の端部)に位置しており、第1ケース体11の底壁部11bに設けられた貫通孔11b1の内径よりも大きい外径を有している。 Specifically, the rupture member 50 has a substantially cylindrical fixing portion 51 having a tapered shape whose outer diameter decreases toward the tank chamber S2 side from the ignition chamber S1 side, and an end of the fixing portion 51 on the tank chamber S2 side. It has a circular thin plate-shaped ruptured portion 52 that closes the portion, and the fixed portion 51 is further provided with a flange-shaped stopper portion 51b that extends outward in the radial direction. Here, the stopper portion 51b is located at an open end (that is, an end portion on the ignition chamber S1 side) located on the side opposite to the axial end portion on the side where the burst portion 52 of the fixed portion 51 is provided. It has an outer diameter larger than the inner diameter of the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11.
 本第1変形例においても、破裂部材50は、第1ケース体11の底壁部11bに設けられた貫通孔11b1に挿入された状態で当該第1ケース体11に固定される。より詳細には、破裂部材50は、その固定部51の外周面が貫通孔11b1を規定する部分の底壁部11bの壁面に当接するように挿入され、この状態において抵抗溶接が行なわれることにより、第1ケース体11に固定される。これにより、固定部51の外周面は、底壁部11bの上記壁面に接合されることになる。 Also in the first modification, the rupture member 50 is fixed to the first case body 11 in a state of being inserted into the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11. More specifically, the rupture member 50 is inserted so that the outer peripheral surface of the fixing portion 51 abuts on the wall surface of the bottom wall portion 11b of the portion defining the through hole 11b1, and resistance welding is performed in this state. , Is fixed to the first case body 11. As a result, the outer peripheral surface of the fixing portion 51 is joined to the wall surface of the bottom wall portion 11b.
 このように構成した場合にも、固定部51の外周面と底壁部11bの上述した壁面とを密着させることが可能になり、またその接触面積を所定の大きさにすることができる。したがって、当該構成を採用することにより、破裂部材50を底壁部11bに対して確実にかつ安定的に固定することが可能になる。 Even with such a configuration, the outer peripheral surface of the fixed portion 51 and the above-mentioned wall surface of the bottom wall portion 11b can be brought into close contact with each other, and the contact area thereof can be made a predetermined size. Therefore, by adopting this configuration, the ruptured member 50 can be reliably and stably fixed to the bottom wall portion 11b.
 ここで、上述したように、破裂部材50の固定部51の開放端側の部分にフランジ状のストッパ部51bが設けられることにより、上述した貫通孔11b1への破裂部材50の挿入に際しては、当該ストッパ部51bが、底壁部11bの点火室S1側の主面に当接することになる。このストッパ部51bの底壁部11bへの当接により、破裂部材50のタンク室S2側に向けての移動が規制されることになる。 Here, as described above, by providing the flange-shaped stopper portion 51b at the portion on the open end side of the fixing portion 51 of the rupture member 50, the rupture member 50 is inserted into the through hole 11b1 described above. The stopper portion 51b comes into contact with the main surface of the bottom wall portion 11b on the ignition chamber S1 side. The contact of the stopper portion 51b with the bottom wall portion 11b restricts the movement of the ruptured member 50 toward the tank chamber S2 side.
 そのため、当該構成の破裂部材50とした場合には、破裂部材50の位置決めを当該ストッパ部51bを用いてより確実に行なうことができる。したがって、本第1変形例の如くの構成を採用することにより、第1ケーシング10への破裂部材50の組付けに際して、固定部51の外周面と貫通孔11b1を規定する部分の底壁部11bの壁面との接触面積をより確実に所定の大きさに維持できることになり、破裂部材50を底壁部11bに対してより確実にかつより安定的に固定することができる。 Therefore, when the ruptured member 50 having the above configuration is used, the ruptured member 50 can be positioned more reliably by using the stopper portion 51b. Therefore, by adopting the configuration as in the first modification, when assembling the ruptured member 50 to the first casing 10, the outer peripheral surface of the fixing portion 51 and the bottom wall portion 11b of the portion defining the through hole 11b1 are used. The contact area with the wall surface can be more reliably maintained at a predetermined size, and the ruptured member 50 can be more reliably and more stably fixed to the bottom wall portion 11b.
 (第2ないし第4変形例)
 図13ないし図15は、それぞれ上述した実施の形態1に基づいた第2ないし第4変形例に係るハイブリッド型ガス発生器における破裂部材の第1ケーシングに対する組付構造を示す模式図である。ここで、各図において、(A)は、組付け前の状態を示しており、(B)は、組付け後の状態を示している。以下、これら図13ないし図15を参照して、第2ないし第4変形例に係るハイブリッド型ガス発生器1A2~1A4における破裂部材50の第1ケーシング10に対する組付構造について説明する。
(2nd to 4th modification)
13 to 15 are schematic views showing an assembly structure of a ruptured member with respect to the first casing in the hybrid type gas generator according to the second to fourth modifications based on the above-described first embodiment, respectively. Here, in each figure, (A) shows the state before assembling, and (B) shows the state after assembling. Hereinafter, with reference to FIGS. 13 to 15, a structure for assembling the ruptured member 50 to the first casing 10 in the hybrid type gas generators 1A2 to 1A4 according to the second to fourth modifications will be described.
 図13ないし図15に示すように、第2ないし第4変形例に係るハイブリッド型ガス発生器1A2~1A4は、上述した実施の形態1に係るハイブリッド型ガス発生器1Aと比較した場合に、いずれも破裂部材50の形状のみが相違している。 As shown in FIGS. 13 to 15, the hybrid gas generators 1A2 to 1A4 according to the second to fourth modifications are any of the hybrid gas generators 1A according to the first embodiment described above. However, only the shape of the rupture member 50 is different.
 図13に示すように、第2変形例に係るハイブリッド型ガス発生器1A2においては、破裂部材50が、点火室S1側からタンク室S2側に向かうにつれて外径が小さくなる先細り形状の略円筒状の固定部51と、当該固定部51のタンク室S2側の端部を閉塞する円形薄板状の破裂部52とを有しており、このうちの円形薄板状の破裂部52が、タンク室S2側に向けて膨らんだ湾曲形状を有している。 As shown in FIG. 13, in the hybrid type gas generator 1A2 according to the second modification, the burst member 50 has a substantially cylindrical shape having a tapered shape whose outer diameter decreases from the ignition chamber S1 side toward the tank chamber S2 side. 51, and a circular thin plate-shaped ruptured portion 52 that closes the end of the fixed portion 51 on the tank chamber S2 side, of which the circular thin plate-shaped ruptured portion 52 is the tank chamber S2. It has a curved shape that bulges toward the side.
 図14に示すように、第3変形例に係るハイブリッド型ガス発生器1A3においては、破裂部材50が、点火室S1側からタンク室S2側に向かうにつれて外径が小さくなる先細り形状の略円筒状の固定部51と、当該固定部51のタンク室S2側の端部を閉塞する円形薄板状の破裂部52とを有しており、このうちの円形薄板状の破裂部52が、タンク室S2側とは反対側(すなわち点火室S1側)に向けて膨らんだ湾曲形状を有している。 As shown in FIG. 14, in the hybrid type gas generator 1A3 according to the third modification, the burst member 50 has a substantially cylindrical shape having a tapered shape whose outer diameter decreases from the ignition chamber S1 side toward the tank chamber S2 side. 51, and a circular thin plate-shaped ruptured portion 52 that closes the end of the fixed portion 51 on the tank chamber S2 side, of which the circular thin plate-shaped ruptured portion 52 is the tank chamber S2. It has a curved shape that bulges toward the side opposite to the side (that is, the ignition chamber S1 side).
 図15に示すように、第4変形例に係るハイブリッド型ガス発生器1A4においては、破裂部材50が、点火室S1側からタンク室S2側に向かうにつれて外径が小さくなる先細り形状の略円筒状の固定部51と、当該固定部51のタンク室S2側の端部を閉塞する円形薄板状の破裂部52とを有しており、これら固定部51と破裂部52とを接続する環状形状のコーナー部53の外側表面が、屈曲面にて構成されている。 As shown in FIG. 15, in the hybrid type gas generator 1A4 according to the fourth modification, the burst member 50 has a substantially cylindrical shape having a tapered shape whose outer diameter decreases from the ignition chamber S1 side toward the tank chamber S2 side. 51, and a circular thin plate-shaped ruptured portion 52 that closes the end portion of the fixed portion 51 on the tank chamber S2 side, and has an annular shape connecting the fixed portion 51 and the ruptured portion 52. The outer surface of the corner portion 53 is composed of a bent surface.
 これら第2ないし第4変形例の如くの構成を採用した場合にも、固定部51の外周面と底壁部11bの上述した壁面とを密着させることが可能になり、またその接触面積を所定の大きさにすることができる。したがって、当該構成を採用することにより、破裂部材50を底壁部11bに対して確実にかつ安定的に固定することが可能になる。 Even when the configuration as in these second to fourth modifications is adopted, the outer peripheral surface of the fixing portion 51 and the above-mentioned wall surface of the bottom wall portion 11b can be brought into close contact with each other, and the contact area thereof is predetermined. Can be as large as. Therefore, by adopting this configuration, the ruptured member 50 can be reliably and stably fixed to the bottom wall portion 11b.
 (第5および第6変形例)
 図16および図17は、それぞれ上述した実施の形態1に基づいた第5および第6変形例に係るハイブリッド型ガス発生器における破裂部材の第1ケーシングに対する組付構造を示す模式図である。ここで、各図において、(A)は、組付け前の状態を示しており、(B)は、組付け後の状態を示している。以下、これら図16および図17を参照して、第5および第6変形例に係るハイブリッド型ガス発生器1A5,1A6における破裂部材50の第1ケーシング10に対する組付構造について説明する。
(5th and 6th modified examples)
16 and 17 are schematic views showing an assembly structure of a ruptured member with respect to the first casing in the hybrid type gas generator according to the fifth and sixth modifications based on the above-described first embodiment, respectively. Here, in each figure, (A) shows the state before assembling, and (B) shows the state after assembling. Hereinafter, with reference to FIGS. 16 and 17, a structure for assembling the ruptured member 50 to the first casing 10 in the hybrid gas generators 1A5 and 1A6 according to the fifth and sixth modifications will be described.
 図16および図17に示すように、第5および第6変形例に係るハイブリッド型ガス発生器1A5,1A6は、上述した実施の形態1に係るハイブリッド型ガス発生器1Aと比較した場合に、いずれも第1ケース体11の底壁部11bに設けられた貫通孔11b1の形状および破裂部材50の形状のみが相違している。 As shown in FIGS. 16 and 17, the hybrid gas generators 1A5 and 1A6 according to the fifth and sixth modifications are compared with the hybrid gas generator 1A according to the first embodiment described above. However, only the shape of the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 and the shape of the rupture member 50 are different.
 図16に示すように、第5変形例に係るハイブリッド型ガス発生器1A5においては、第1ケース体11の底壁部11bに設けられた貫通孔11b1が、点火室S1側からタンク室S2側にかけてその内径が一定である円柱状の形状を有している。一方、破裂部材50は、点火室S1側からタンク室S2側にかけてその外径が上記貫通孔11b1の内径に対応して一定である円筒状の固定部51と、当該固定部51のタンク室S2側の端部を閉塞する円形薄板状の破裂部52とを有している。 As shown in FIG. 16, in the hybrid type gas generator 1A5 according to the fifth modification, the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is from the ignition chamber S1 side to the tank chamber S2 side. It has a columnar shape with a constant inner diameter. On the other hand, the ruptured member 50 has a cylindrical fixing portion 51 whose outer diameter is constant from the ignition chamber S1 side to the tank chamber S2 side corresponding to the inner diameter of the through hole 11b1, and the tank chamber S2 of the fixing portion 51. It has a circular thin plate-shaped rupture portion 52 that closes the side end portion.
 図17に示すように、第6変形例に係るハイブリッド型ガス発生器1A6においては、第1ケース体11の底壁部11bに設けられた貫通孔11b1は、点火室S1側からタンク室S2側にかけてその内径が一定である円柱状の形状を有している。一方、破裂部材50は、点火室S1側からタンク室S2側にかけてその外径が上記貫通孔11b1の内径に対応して一定である円筒状の固定部51と、当該固定部51の点火室S1側の端部を閉塞する円形薄板状の破裂部52とを有している。 As shown in FIG. 17, in the hybrid type gas generator 1A6 according to the sixth modification, the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is from the ignition chamber S1 side to the tank chamber S2 side. It has a columnar shape with a constant inner diameter. On the other hand, the rupture member 50 has a cylindrical fixing portion 51 whose outer diameter is constant from the ignition chamber S1 side to the tank chamber S2 side corresponding to the inner diameter of the through hole 11b1, and the ignition chamber S1 of the fixing portion 51. It has a circular thin plate-shaped rupture portion 52 that closes the side end portion.
 すなわち、第5変形例に係るハイブリッド型ガス発生器1A5と、第6変形例に係るハイブリッド型ガス発生器1A6とは、貫通孔11b1に挿入される破裂部材50の向きが互いに逆向きとされている以外の点において、共通の構成を有するものである。 That is, in the hybrid type gas generator 1A5 according to the fifth modification and the hybrid type gas generator 1A6 according to the sixth modification, the directions of the rupture members 50 inserted into the through holes 11b1 are opposite to each other. It has a common configuration except that it has a common structure.
 これら第5および第6変形例の如くの構成を採用した場合にも、固定部51の外周面と底壁部11bの上述した壁面とを密着させることが可能になり、またその接触面積を所定の大きさにすることができる。したがって、当該構成を採用することにより、破裂部材50を底壁部11bに対して確実にかつ安定的に固定することが可能になる。 Even when the configurations as in the fifth and sixth modifications are adopted, the outer peripheral surface of the fixing portion 51 and the above-mentioned wall surface of the bottom wall portion 11b can be brought into close contact with each other, and the contact area thereof is predetermined. Can be as large as. Therefore, by adopting this configuration, the ruptured member 50 can be reliably and stably fixed to the bottom wall portion 11b.
 (実施の形態2)
 図18は、実施の形態2に係るストアード型ガス発生器の模式断面図である。図19は、図18に示すストアード型ガス発生器の点火器組立体および点火室の近傍ならびに第2ケーシングの閉塞部の近傍の拡大図である。まず、これら図18および図19を参照して、本実施の形態に係るストアード型ガス発生器1Bの構成について説明する。なお、本実施の形態に係るストアード型ガス発生器1Bは、いわゆるリバースフロー構造を有するものである。
(Embodiment 2)
FIG. 18 is a schematic cross-sectional view of the stored gas generator according to the second embodiment. FIG. 19 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber of the stored gas generator shown in FIG. 18 and the vicinity of the closed portion of the second casing. First, the configuration of the stored gas generator 1B according to the present embodiment will be described with reference to FIGS. 18 and 19. The stored type gas generator 1B according to the present embodiment has a so-called reverse flow structure.
 図18に示すように、本実施の形態に係るストアード型ガス発生器1Bは、上述した実施の形態1に係るハイブリッド型ガス発生器1Aと近似の構成を有しており、当該ハイブリッド型ガス発生器1Aと比較した場合に、主としてタンク室S2を規定する部分のハウジングの構成が相違しており、またこれに加えて、ノズル組立体40および発熱剤60(いずれも図1等参照)を具備していない点、複数のガス噴出口の形成位置や複数のガス噴出口近傍の構成が相違している点等においてその構成が相違している。 As shown in FIG. 18, the stored type gas generator 1B according to the present embodiment has a configuration similar to that of the hybrid type gas generator 1A according to the above-described first embodiment, and the hybrid type gas generator is generated. When compared with the vessel 1A, the configuration of the housing of the portion mainly defining the tank chamber S2 is different, and in addition to this, the nozzle assembly 40 and the heating agent 60 (both refer to FIG. 1 etc.) are provided. The configurations are different in that they are not, the positions where the plurality of gas outlets are formed, and the configurations in the vicinity of the plurality of gas outlets are different.
 具体的には、ストアード型ガス発生器1Bは、全体として長尺略円柱状の外形を有しており、第1ケーシング10と、第2ケーシング20と、点火器組立体30と、破裂部材50と、図には現れない圧縮ガスとを主として備えている。 Specifically, the stored type gas generator 1B has a long substantially columnar outer shape as a whole, and has a first casing 10, a second casing 20, an igniter assembly 30, and a burst member 50. And a compressed gas that does not appear in the figure.
 ストアード型ガス発生器1Bのハウジングは、点火器組立体30に含まれるホルダ31と、第1ケーシング10と、第2ケーシング20とによって構成されている。このうち、第1ケーシング10は、第1ケース体11にて構成されており、第2ケーシング20は、第2ケース体21にて構成されている。 The housing of the stored type gas generator 1B is composed of a holder 31 included in the igniter assembly 30, a first casing 10, and a second casing 20. Of these, the first casing 10 is composed of the first case body 11, and the second casing 20 is composed of the second case body 21.
 ハウジングの内部の空間は、ホルダ31および第1ケース体11によって主として規定された点火室S1と、第1ケース体11および第2ケース体21によって主として規定されたタンク室S2とに区画されている。このうちのタンク室S2には、上述した実施の形態1に係るハイブリッド型ガス発生器1Aと同様に圧縮ガスが封入されている反面、点火室S1には、当該ハイブリッド型ガス発生器1Aとは異なり、発熱剤60は充填されていない。 The space inside the housing is divided into an ignition chamber S1 mainly defined by the holder 31 and the first case body 11 and a tank chamber S2 mainly defined by the first case body 11 and the second case body 21. .. Of these, the tank chamber S2 is filled with compressed gas in the same manner as the hybrid gas generator 1A according to the first embodiment described above, while the ignition chamber S1 is the hybrid gas generator 1A. Unlike, the exothermic agent 60 is not filled.
 図18および図19に示すように、第1ケース体11および点火器組立体30は、上述した実施の形態1に係るハイブリッド型ガス発生器1Aにおけるそれらと同様の構成を有している。一方、第2ケース体21は、第2周壁部21aおよび閉塞部21bを含む有底円筒状の単一の部材からなる。第2周壁部21aは、円筒状の形状を有しており、その軸方向の一端が第2開放端21a1として構成されている。閉塞部21bは、湾曲板状の形状を有しており、第2周壁部21aの軸方向の他端を閉塞している。 As shown in FIGS. 18 and 19, the first case body 11 and the igniter assembly 30 have the same configurations as those in the hybrid gas generator 1A according to the first embodiment described above. On the other hand, the second case body 21 is composed of a single bottomed cylindrical member including the second peripheral wall portion 21a and the closing portion 21b. The second peripheral wall portion 21a has a cylindrical shape, and one end in the axial direction thereof is configured as the second open end 21a1. The closed portion 21b has a curved plate-like shape, and closes the other end of the second peripheral wall portion 21a in the axial direction.
 第1ケース体11の第1開放端11a1は、ホルダ31(より厳密には、点火器組立体30)によって閉塞されており、第2ケース体21の第2開放端21a1は、第1ケース体11の底壁部11bによって閉塞されている。第1ケース体11の底壁部11bには、点火室S1およびタンク室S2の双方に通じるように貫通孔11b1が設けられている。 The first open end 11a1 of the first case body 11 is closed by the holder 31 (more strictly, the igniter assembly 30), and the second open end 21a1 of the second case body 21 is the first case body. It is closed by the bottom wall portion 11b of 11. The bottom wall portion 11b of the first case body 11 is provided with a through hole 11b1 so as to communicate with both the ignition chamber S1 and the tank chamber S2.
 当該貫通孔11b1には、略円筒状の固定部51と円形薄板状の破裂部52とを含む有底略円筒状の単一の部材からなる破裂部材50が挿入されており、この状態において破裂部材50が第1ケース体11に固定されている。なお、破裂部材50の構成ならびに当該破裂部材50の第1ケース体11への組付構造は、上述した実施の形態1に係るハイブリッド型ガス発生器1Aにおけるそれらと同様である。 A rupture member 50 made of a single bottomed substantially cylindrical member including a substantially cylindrical fixing portion 51 and a circular thin plate-shaped rupture portion 52 is inserted into the through hole 11b1 and ruptures in this state. The member 50 is fixed to the first case body 11. The configuration of the rupture member 50 and the structure of the rupture member 50 attached to the first case body 11 are the same as those in the hybrid gas generator 1A according to the first embodiment described above.
 第1ケース体11の第1周壁部11aには、点火室S1に面するように複数のガス噴出口11cが設けられている。当該複数のガス噴出口11cは、ストアード型ガス発生器1Bの動作時において、ガスを外部に向けて噴出するための部位である。 A plurality of gas outlets 11c are provided on the first peripheral wall portion 11a of the first case body 11 so as to face the ignition chamber S1. The plurality of gas outlets 11c are portions for ejecting gas to the outside when the stored type gas generator 1B is in operation.
 また、第1ケース体11の第1周壁部11aの内周面には、複数のガス噴出口11cを閉鎖するように金属製のシールテープ12が貼付されている。このシールテープ12としては、片面に粘着部材が塗布されたアルミニウム箔等が好適に利用でき、当該シールテープ12によって点火室S1の気密性が確保されている。 Further, a metal sealing tape 12 is attached to the inner peripheral surface of the first peripheral wall portion 11a of the first case body 11 so as to close the plurality of gas outlets 11c. As the sealing tape 12, an aluminum foil or the like having an adhesive member coated on one side thereof can be preferably used, and the airtightness of the ignition chamber S1 is ensured by the sealing tape 12.
 次に、上述した構成を有する本実施の形態に係るストアード型ガス発生器1Bの動作について、前述の図18および図19を参照して説明する。 Next, the operation of the stored gas generator 1B according to the present embodiment having the above-described configuration will be described with reference to FIGS. 18 and 19 described above.
 まず、コントロールユニットからの通電を受けることにより、点火器32が作動する。点火器32が作動することにより、点火部32aに充填された点火薬が抵抗体によって加熱されることで着火され、当該点火薬が燃焼することで点火部32aが破裂する。 First, the igniter 32 operates by receiving electricity from the control unit. When the igniter 32 operates, the igniter filled in the igniter 32a is ignited by being heated by the resistor, and the igniter burns to explode the igniter 32a.
 この点火薬の燃焼によって点火室S1の圧力および温度が上昇することになり、これに伴って破裂部材50のうちの破裂部52に開裂が生じる。この破裂部52の開裂に伴い、点火室S1とタンク室S2とが第1ケース体11の底壁部11bに設けられた貫通孔11b1を介して連通した状態となる。なお、このとき、破裂部材50の固定部51は、焼失することなく残存するため、より厳密には、この固定部51の内側に位置する中空部51aを介して点火室S1とタンク室S2とが連通することになる。 Combustion of this igniter causes the pressure and temperature of the ignition chamber S1 to rise, which causes the rupture portion 52 of the rupture member 50 to rupture. With the opening of the ruptured portion 52, the ignition chamber S1 and the tank chamber S2 are in a state of communicating with each other through the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11. At this time, since the fixing portion 51 of the rupture member 50 remains without burning, more strictly speaking, the ignition chamber S1 and the tank chamber S2 pass through the hollow portion 51a located inside the fixing portion 51. Will communicate.
 次に、点火室S1とタンク室S2とが貫通孔11b1を介して連通したことに伴い、圧縮ガスが貫通孔11b1を介して点火室S1に流れ込み、その後、複数のガス噴出口11cから外部に向けて噴出することになる。 Next, as the ignition chamber S1 and the tank chamber S2 communicate with each other through the through hole 11b1, the compressed gas flows into the ignition chamber S1 through the through hole 11b1 and then flows out from the plurality of gas outlets 11c to the outside. It will spurt out toward you.
 なお、複数のガス噴出口11cからストアード型ガス発生器1Bの外部へと噴出されたガスは、当該ストアード型ガス発生器1Bに隣接して設けられたエアバッグの内部に導入され、当該エアバッグを膨張および展開させる。 The gas ejected from the plurality of gas outlets 11c to the outside of the stored gas generator 1B is introduced into an airbag provided adjacent to the stored gas generator 1B, and the airbag is introduced. Inflate and unfold.
 以上において説明した本実施の形態に係るストアード型ガス発生器1Bとすることにより、上述した実施の形態1に係るハイブリッド型ガス発生器1Aとした場合と同様の効果を得ることができる。 By using the stored type gas generator 1B according to the present embodiment described above, the same effect as the case of using the hybrid type gas generator 1A according to the above-described first embodiment can be obtained.
 (関連形態1)
 図20は、関連形態1に係るハイブリッド型ガス発生器の模式断面図である。図21は、図20に示すハイブリッド型ガス発生器の点火器組立体および点火室の近傍の拡大図である。また、図22は、図20に示すハイブリッド型ガス発生器における封止部組立体の第1ケーシングに対する組付構造を示す模式図であり、(A)および(B)は、それぞれ組付け前の状態および組付け後の状態を示している。まず、これら図20ないし図22を参照して、本関連形態に係るハイブリッド型ガス発生器1Cの構成ならびに封止部組立体70の第1ケーシング10に対する組付構造について説明する。なお、本関連形態に係るハイブリッド型ガス発生器1Cは、いわゆるブローダウン構造を有するものである。
(Related form 1)
FIG. 20 is a schematic cross-sectional view of the hybrid gas generator according to the related embodiment 1. FIG. 21 is an enlarged view of the vicinity of the ignition assembly and the ignition chamber of the hybrid gas generator shown in FIG. 20. 22 is a schematic view showing an assembly structure of the sealing portion assembly to the first casing in the hybrid gas generator shown in FIG. 20, and FIGS. 22A and 22B are before assembly, respectively. It shows the state and the state after assembly. First, with reference to FIGS. 20 to 22, the configuration of the hybrid gas generator 1C according to the present related embodiment and the assembly structure of the sealing portion assembly 70 with respect to the first casing 10 will be described. The hybrid gas generator 1C according to this related embodiment has a so-called blow-down structure.
 図20に示すように、本関連形態に係るハイブリッド型ガス発生器1Cは、上述した実施の形態1に係るハイブリッド型ガス発生器1Aと近似の構成を有しており、当該ハイブリッド型ガス発生器1Aと比較した場合に、第1ケース体11の底壁部11bに設けられた貫通孔11b1を閉鎖する部材の構成のみ相違している。 As shown in FIG. 20, the hybrid type gas generator 1C according to the present related embodiment has a configuration similar to that of the hybrid type gas generator 1A according to the above-described first embodiment, and the hybrid type gas generator is concerned. When compared with 1A, only the configuration of the member for closing the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is different.
 すなわち、上述した実施の形態1に係るハイブリッド型ガス発生器1Aにおいては、第1ケース体11の底壁部11bに設けられた貫通孔11b1が、当該貫通孔11b1に挿入された有底略円筒状の破裂部材50によって閉鎖されていたが(図1等参照)、本関連形態に係るハイブリッド型ガス発生器1Cにおいては、これが封止部組立体70によって閉鎖されている。 That is, in the hybrid type gas generator 1A according to the first embodiment described above, the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is a bottomed substantially cylinder inserted into the through hole 11b1. Although it was closed by the ruptured member 50 (see FIG. 1 and the like), in the hybrid type gas generator 1C according to the present related embodiment, it is closed by the sealing portion assembly 70.
 図20ないし図22に示すように、封止部組立体70は、栓体71と、破裂部材としての破裂板72とを有している。封止部組立体70は、栓体71に破裂板72を接合することで予め一体化された部品として構成されている。 As shown in FIGS. 20 to 22, the sealing portion assembly 70 has a plug 71 and a rupture plate 72 as a rupture member. The sealing portion assembly 70 is configured as a pre-integrated part by joining the rupture plate 72 to the plug 71.
 栓体71は、中空略円柱状の形状を有している。栓体71には、軸方向に沿って延びる連通孔71aが設けられており、当該連通孔71aは、栓体71の一対の軸方向端面の各々に達している。一方、破裂板72は、円形薄板状の形状を有している。 The plug 71 has a hollow substantially columnar shape. The plug 71 is provided with a communication hole 71a extending along the axial direction, and the communication hole 71a reaches each of the pair of axial end faces of the plug 71. On the other hand, the rupture plate 72 has a circular thin plate shape.
 栓体71のタンク室S2側の軸方向端面には、連通孔71aを取り囲むように環状突部71bが設けられている。この環状突部71bは、破裂板72を抵抗溶接によって栓体71に組付けられるための部位であり、この環状突部71bを設けることにより、栓体71と破裂板72との接触面積が所定の大きさとなるため、抵抗溶接の際に破裂板72を栓体71に対して確実にかつ安定的に固定することができる。 An annular protrusion 71b is provided on the axial end surface of the plug 71 on the tank chamber S2 side so as to surround the communication hole 71a. The annular protrusion 71b is a portion for assembling the rupture plate 72 to the plug 71 by resistance welding, and by providing the annular protrusion 71b, the contact area between the stopper 71 and the rupture plate 72 is predetermined. Therefore, the rupture plate 72 can be securely and stably fixed to the plug 71 during resistance welding.
 このように破裂板72が栓体71に接合されることにより、栓体71に設けられた連通孔71aは、栓体71のタンク室S2側の軸方向端面において破裂板72によって閉鎖されることになる。 By joining the rupture plate 72 to the plug 71 in this way, the communication hole 71a provided in the plug 71 is closed by the rupture plate 72 at the axial end surface of the plug 71 on the tank chamber S2 side. become.
 なお、破裂板72の栓体71への固定方法は、上述した抵抗溶接を用いた固定方法に限られず、他の固定方法を利用してもよい。 The method of fixing the rupture plate 72 to the plug 71 is not limited to the above-mentioned fixing method using resistance welding, and other fixing methods may be used.
 破裂板72は、点火器32の作動に起因して開裂が可能なものであり、好適には金属製の部材にて構成される。 The rupture plate 72 can be ruptured due to the operation of the igniter 32, and is preferably made of a metal member.
 ここで、破裂板72の一部分は、長期間にわたって圧縮ガスに晒されるものであるため、破裂板72は、耐腐食性の観点からSUS316(JIS規格記号)やインコネル(登録商標)等の薄肉の金属板から形成されたニッケル合金製の部材にて構成されていることが望ましい。たとえば、破裂板72としては、耐熱性および耐腐食性を有する金属製の薄板(たとえば厚みが200[μm]程度)が好適に用いられ、Ni:10[重量%]、Cr:23[重量%]、Mn:6[重量%]、Mo:2[重量%]、C:0.01[重量%]、N:0.5[重量%]、その他の成分割合からなるステンレス鋼やインコネル合金(インコネル625)からなる薄板が特に好適に用いられる。 Here, since a part of the rupture plate 72 is exposed to the compressed gas for a long period of time, the rupture plate 72 is made of a thin wall such as SUS316 (JIS standard symbol) or Inconel (registered trademark) from the viewpoint of corrosion resistance. It is desirable that it is composed of a member made of a nickel alloy formed from a metal plate. For example, as the rupture plate 72, a thin metal plate having heat resistance and corrosion resistance (for example, a thickness of about 200 [μm]) is preferably used, and Ni: 10 [% by weight] and Cr: 23 [weight%]. ], Mn: 6 [% by weight], Mo: 2 [% by weight], C: 0.01 [% by weight], N: 0.5 [% by weight], stainless steel or Inconel alloy consisting of other component ratios ( A thin plate made of Inconel 625) is particularly preferably used.
 栓体71は、第1ケース体11の底壁部11bと共に圧力隔壁として機能するものであり、たとえばステンレス鋼や鉄鋼等の金属製の部材にて構成される。ここで、栓体71の一部分は、長期間にわたって圧縮ガスに晒されることになるため、耐腐食性に優れたものとなるように、クロムやマンガン、モリブデン、ニオブ、ニッケル等が添加された鋼材にて構成されていることが好ましい。 The stopper 71 functions as a pressure bulkhead together with the bottom wall portion 11b of the first case body 11, and is composed of a metal member such as stainless steel or steel. Here, since a part of the plug 71 is exposed to the compressed gas for a long period of time, a steel material to which chromium, manganese, molybdenum, niobium, nickel, etc. are added so as to have excellent corrosion resistance. It is preferable that it is composed of.
 栓体71は、第1ケース体11の底壁部11bに設けられた貫通孔11b1に挿入された状態で当該第1ケース体11に固定されている。より詳細には、図22に示すように、栓体71は、その外周面が貫通孔11b1を規定する部分の底壁部11bの壁面に当接するように挿入され、この状態において抵抗溶接が行なわれることにより、第1ケース体11に固定される。これにより、栓体71の外周面は、底壁部11bの上記壁面に接合されることになる。 The plug body 71 is fixed to the first case body 11 in a state of being inserted into the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11. More specifically, as shown in FIG. 22, the plug 71 is inserted so that its outer peripheral surface abuts on the wall surface of the bottom wall portion 11b of the portion defining the through hole 11b1, and resistance welding is performed in this state. By doing so, it is fixed to the first case body 11. As a result, the outer peripheral surface of the plug 71 is joined to the wall surface of the bottom wall portion 11b.
 ここで、栓体71は、後述するように第1周壁部11aの第1開放端11a1側から貫通孔11b1に挿入されることで組付けられるため、栓体71は、当該第1開放端11a1側から(すなわち、点火室S1側から)貫通孔11b1に差し込み可能な形状を有している。 Here, since the plug 71 is assembled by being inserted into the through hole 11b1 from the first open end 11a1 side of the first peripheral wall portion 11a as described later, the plug 71 is assembled by inserting the plug 71 into the first open end 11a1. It has a shape that can be inserted into the through hole 11b1 from the side (that is, from the ignition chamber S1 side).
 具体的には、本関連形態においては、底壁部11bに設けられた貫通孔11b1が、点火室S1側からタンク室S2側に向かうにつれて内径が小さくなる先細り形状を有しており、栓体71が、貫通孔11b1の上述した先細り形状に対応して点火室S1側からタンク室S2側に向かうにつれて外径が小さくなる先細り形状を有している。また、破裂板72は、貫通孔11b1の内径よりも小さい外径を有している。 Specifically, in the present related embodiment, the through hole 11b1 provided in the bottom wall portion 11b has a tapered shape in which the inner diameter decreases from the ignition chamber S1 side toward the tank chamber S2 side, and the plug body. The 71 has a tapered shape in which the outer diameter becomes smaller from the ignition chamber S1 side toward the tank chamber S2 side corresponding to the tapered shape of the through hole 11b1 described above. Further, the rupture plate 72 has an outer diameter smaller than the inner diameter of the through hole 11b1.
 このように貫通孔11b1および栓体71を先細り形状にすることにより、封止部組立体70の底壁部11bへの組付けに際して、栓体71を底壁部11bに対して高精度に位置決めして配置することが可能になるとともに、栓体71の外周面と底壁部11bの上述した壁面とを密着させることが可能になり、結果としてその接触面積を所定の大きさにすることができる。したがって、この状態において抵抗溶接を行なうことにより、封止部組立体70を底壁部11bに対して確実にかつ安定的に固定することが可能になる。 By forming the through hole 11b1 and the plug 71 in a tapered shape in this way, the plug 71 is positioned with high accuracy with respect to the bottom wall portion 11b when assembling the sealing portion assembly 70 to the bottom wall portion 11b. The outer peripheral surface of the plug 71 and the above-mentioned wall surface of the bottom wall portion 11b can be brought into close contact with each other, and as a result, the contact area can be made a predetermined size. can. Therefore, by performing resistance welding in this state, the sealing portion assembly 70 can be reliably and stably fixed to the bottom wall portion 11b.
 次に、上述した構成を有する本関連形態に係るハイブリッド型ガス発生器1Cの動作について、前述の図20および図21を参照しつつ説明する。 Next, the operation of the hybrid gas generator 1C according to the present related embodiment having the above-described configuration will be described with reference to FIGS. 20 and 21 described above.
 まず、上述したコントロールユニットからの通電を受けることにより、点火器32が作動する。点火器32が作動することにより、点火部32aに充填された点火薬が抵抗体によって加熱されることで着火され、当該点火薬が燃焼することで点火部32aが破裂する。これにより、点火室S1に収容された発熱剤60が点火器32によって着火されて燃焼する。 First, the igniter 32 operates by receiving the energization from the above-mentioned control unit. When the igniter 32 operates, the igniter filled in the igniter 32a is ignited by being heated by the resistor, and the igniter burns to explode the igniter 32a. As a result, the exothermic agent 60 housed in the ignition chamber S1 is ignited by the igniter 32 and burned.
 この点火薬および発熱剤60の燃焼によって点火室S1の圧力および温度が上昇することになり、これに伴って破裂板72に開裂が生じる。この破裂板72の開裂に伴い、点火室S1とタンク室S2とが栓体71に設けられた連通孔71aを介して連通した状態となる。 Combustion of the igniter and the exothermic agent 60 causes the pressure and temperature of the ignition chamber S1 to rise, which causes the rupture plate 72 to crack. With the opening of the rupture plate 72, the ignition chamber S1 and the tank chamber S2 are in a state of communicating with each other through the communication hole 71a provided in the plug 71.
 次に、点火室S1とタンク室S2とが連通したことに伴い、タンク室S2の圧力および温度も上昇することになり、これに伴って破裂板42のうちの流路部41cに面する部分に開裂が生じる。この破裂板42の開裂に伴い、タンク室S2と複数のガス噴出口41dとが流路部41cを介して連通した状態となる(図3参照)。 Next, as the ignition chamber S1 and the tank chamber S2 communicate with each other, the pressure and temperature of the tank chamber S2 also rise, and the portion of the rupture disc 42 facing the flow path portion 41c is accompanied by this. Cleavage occurs in. With the opening of the rupture plate 42, the tank chamber S2 and the plurality of gas outlets 41d are in a state of communicating with each other via the flow path portion 41c (see FIG. 3).
 これにより、タンク室S2に収容されていた圧縮ガスが、流路部41cを介して複数のガス噴出口41dへと至り、その後、当該複数のガス噴出口41dから外部に向けて噴出することになる。 As a result, the compressed gas contained in the tank chamber S2 reaches the plurality of gas outlets 41d via the flow path portion 41c, and then is ejected from the plurality of gas outlets 41d to the outside. Become.
 なお、複数のガス噴出口41dからハイブリッド型ガス発生器1Cの外部へと噴出されたガスは、当該ハイブリッド型ガス発生器1Cに隣接して設けられたエアバッグの内部に導入され、当該エアバッグを膨張および展開させる。 The gas ejected from the plurality of gas outlets 41d to the outside of the hybrid gas generator 1C is introduced into an airbag provided adjacent to the hybrid gas generator 1C, and the airbag is introduced. Inflate and unfold.
 以上において説明した本関連形態に係るハイブリッド型ガス発生器1Cとすることにより、ハウジングの耐圧性能を確保しつつ軽量化を図ることが可能になる。すなわち、上述した実施の形態1において説明したように、本関連形態に係るハイブリッド型ガス発生器1Cにおいても、ハウジングの周壁を構成する部分と仕切り部を構成する部分とのうち、点火室S1を規定する部分の周壁と、仕切り部とを、有底円筒状の単一の部材からなる第1ケース体11にて構成することとし、残るタンク室S2を規定する部分の周壁を、第2ケース体21にて構成することとしている。 By using the hybrid type gas generator 1C according to the present related form described above, it is possible to reduce the weight while ensuring the withstand voltage performance of the housing. That is, as described in the first embodiment described above, also in the hybrid type gas generator 1C according to the present related embodiment, the ignition chamber S1 is provided among the portion constituting the peripheral wall of the housing and the portion constituting the partition portion. The peripheral wall of the specified portion and the partition portion are configured by the first case body 11 composed of a single bottomed cylindrical member, and the peripheral wall of the portion defining the remaining tank chamber S2 is the second case. It is composed of the body 21.
 したがって、当該構成を採用することにより、第1ケース体11の第1周壁部11aおよび底壁部11bの厚みを相対的に厚くしつつ、第2ケース体21の第2周壁部21aの厚みを相対的に薄くすることが容易に行なえることになり、部品点数の増加を抑制しつつ、ハウジングの軽量化が実現できることになる。 Therefore, by adopting this configuration, the thickness of the second peripheral wall portion 21a of the second case body 21 is increased while the thickness of the first peripheral wall portion 11a and the bottom wall portion 11b of the first case body 11 is relatively increased. It becomes possible to easily make the housing relatively thin, and it is possible to reduce the weight of the housing while suppressing an increase in the number of parts.
 また、本関連形態に係るハイブリッド型ガス発生器1Cにあっては、圧縮ガスが封入されたタンク室S2を規定する部分のハウジングの壁部のうち、第2ケース体21の第2周壁部21aに開口が設けられておらず、また、第1ケース体11の底壁部11bに封止部組立体70によって閉鎖された貫通孔11b1以外の開口が設けられていない。 Further, in the hybrid type gas generator 1C according to the present related embodiment, among the wall portions of the housing of the portion defining the tank chamber S2 in which the compressed gas is sealed, the second peripheral wall portion 21a of the second case body 21 Is not provided with an opening, and the bottom wall portion 11b of the first case body 11 is not provided with an opening other than the through hole 11b1 closed by the sealing portion assembly 70.
 このような特徴的な構成は、本関連形態に係るハイブリッド型ガス発生器1Cが、以下において説明する本関連形態に係るハイブリッド型ガス発生器の製造方法に従って製造されていることに起因するものであり、要約すれば、圧縮ガスをタンク室S2に封入する際に、第1ケース体11の底壁部11bに設けられた貫通孔11b1がガス注入口として利用されるとともに、圧縮ガスの注入後において当該貫通孔11b1が封止部組立体70によって閉鎖されることによる。 Such a characteristic configuration is due to the fact that the hybrid type gas generator 1C according to the present related embodiment is manufactured according to the manufacturing method of the hybrid type gas generator according to the present related embodiment described below. In summary, when the compressed gas is sealed in the tank chamber S2, the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 is used as a gas injection port, and after the compressed gas is injected. This is because the through hole 11b1 is closed by the sealing portion assembly 70.
 以下、本関連形態に係るハイブリッド型ガス発生器の製造方法を具体的に説明しつつ、上記の点についてより詳細に説明する。図23は、本関連形態に係るハイブリッド型ガス発生器の製造方法を示すフロー図であり、図24および図25は、図23に示す工程のうちの一部の工程における模式断面図である。 Hereinafter, the above points will be described in more detail while specifically explaining the manufacturing method of the hybrid type gas generator according to this related embodiment. FIG. 23 is a flow chart showing a method of manufacturing a hybrid gas generator according to the present related embodiment, and FIGS. 24 and 25 are schematic cross-sectional views of some of the steps shown in FIG. 23.
 図23に示すように、本関連形態に係るハイブリッド型ガス発生器1Cを製造するに際しては、まず、ステップST21において、点火器組立体30、ノズル組立体40および封止部組立体70がそれぞれ製作される。このうち、点火器組立体30およびノズル組立体40の製作は、上述した実施の形態1において説明したステップST11と同様である。一方、封止部組立体70の製作は、栓体71に破裂板72が抵抗溶接によって接合されることによって行なわれ、これにより封止部組立体70が一体の部品として製作される。 As shown in FIG. 23, when manufacturing the hybrid type gas generator 1C according to the present related embodiment, first, in step ST21, the igniter assembly 30, the nozzle assembly 40, and the sealing portion assembly 70 are manufactured, respectively. Will be done. Of these, the production of the igniter assembly 30 and the nozzle assembly 40 is the same as step ST11 described in the above-described first embodiment. On the other hand, the sealing portion assembly 70 is manufactured by joining the rupture plate 72 to the plug 71 by resistance welding, whereby the sealing portion assembly 70 is manufactured as an integral part.
 次に、ステップST22において、第2ケーシング20の組立ておよび第1ケーシング10への第2ケーシング20の組付けが行なわれる。当該ステップST22は、上述した実施の形態1において説明したステップST12と同様である。 Next, in step ST22, the second casing 20 is assembled and the second casing 20 is assembled to the first casing 10. The step ST22 is the same as the step ST12 described in the first embodiment described above.
 次に、図23および図24に示すように、ステップST23において、圧縮ガス封入装置100のヘッド部110に対する第1ケーシング10の位置決めが行なわれる。当該ステップST23は、上述した実施の形態1において説明したステップST13と基本的に同様であるが、図24に示すように、圧縮ガス封入装置100の溶接ヘッド112は、予め封止部組立体70を保持している。 Next, as shown in FIGS. 23 and 24, in step ST23, the first casing 10 is positioned with respect to the head portion 110 of the compressed gas filling device 100. The step ST23 is basically the same as the step ST13 described in the above-described first embodiment, but as shown in FIG. 24, the welding head 112 of the compressed gas filling device 100 has a pre-sealed portion assembly 70. Holds.
 そのため、第1ケース体11の第1周壁部11aの第1開放端11a1側の端面がガス充填ヘッド111の主表面111bに当接させられることにより、圧縮ガス封入装置100のヘッド部110に対する第1ケーシング10の位置決めが行なわれた状態においては、封止部組立体70が、第1ケース体11とガス充填ヘッド111とによって形成される閉空間の内部において、上記溶接ヘッド112によって保持された状態となる。 Therefore, the end surface of the first peripheral wall portion 11a of the first case body 11 on the first open end 11a1 side is brought into contact with the main surface 111b of the gas filling head 111, so that the first peripheral wall portion 11a of the compressed gas filling device 100 is brought into contact with the head portion 110. 1 In the state where the casing 10 is positioned, the sealing portion assembly 70 is held by the welding head 112 inside the closed space formed by the first case body 11 and the gas filling head 111. It becomes a state.
 次に、図23に示すように、ステップST24およびステップST25において、真空引きおよびガス充填が順次行なわれる。これらステップST24およびステップST25は、上述した実施の形態1において説明したステップST14およびステップST15と同様である。 Next, as shown in FIG. 23, evacuation and gas filling are sequentially performed in step ST24 and step ST25. These steps ST24 and ST25 are the same as those of step ST14 and step ST15 described in the above-described first embodiment.
 次に、図23および図25に示すように、ステップST26において、第1ケーシング10への封止部組立体70の組付けが行なわれる。 Next, as shown in FIGS. 23 and 25, in step ST26, the sealing portion assembly 70 is assembled to the first casing 10.
 具体的には、図25に示すように、ステップST25においてタンク室S2が圧縮ガスにて満たされた後の状態において、予め上述した閉空間の内部において溶接ヘッド112によって保持されていた封止部組立体70が溶接ヘッド112が駆動されることで移動させられ、これにより封止部組立体70がガス注入口としての貫通孔11b1に挿入される。その際、栓体71の外周面が、当該貫通孔11b1を規定する部分の底壁部11bの壁面に密着するように封止部組立体70が位置決めされる。 Specifically, as shown in FIG. 25, in the state after the tank chamber S2 is filled with the compressed gas in step ST25, the sealing portion held by the welding head 112 in the closed space described above in advance. The assembly 70 is moved by driving the weld head 112, whereby the sealing assembly 70 is inserted into the through hole 11b1 as the gas injection port. At that time, the sealing portion assembly 70 is positioned so that the outer peripheral surface of the plug 71 is in close contact with the wall surface of the bottom wall portion 11b of the portion defining the through hole 11b1.
 この状態において、溶接ヘッド112が稼働させられる(すなわち、抵抗溶接のための電流が当該溶接ヘッド112に印加される)ことにより、底壁部11bに密着した状態にある栓体71が、当該底壁部11bに溶接される。これにより、栓体71の外周面が底壁部11bの上記壁面に接合されることになり、封止部組立体70が第1ケーシング10に固定される。 In this state, when the welding head 112 is operated (that is, a current for resistance welding is applied to the welding head 112), the plug 71 in a state of being in close contact with the bottom wall portion 11b is attached to the bottom. It is welded to the wall portion 11b. As a result, the outer peripheral surface of the plug 71 is joined to the wall surface of the bottom wall portion 11b, and the sealing portion assembly 70 is fixed to the first casing 10.
 そのため、底壁部11bに設けられたガス注入口としての貫通孔11b1が封止部組立体70によって閉鎖されることになり、これに伴い、圧縮ガスにて満たされたタンク室S2は、当該封止部組立体70によって封止されることになる。これにより、圧縮ガスがタンク室S2に封入されることになる。なお、上述したようにハイブリッド型ガス発生器1Cの動作時においては、破裂板72が開裂することにより、点火室S1とタンク室S2とが栓体71に設けられた連通孔71aを介して連通することになるため、上述したステップST26においては、圧縮ガスにて満たされたタンク室S2が、封止部組立体70のうちの破裂板72によって封止されると言うこともできる。 Therefore, the through hole 11b1 as the gas injection port provided in the bottom wall portion 11b is closed by the sealing portion assembly 70, and accordingly, the tank chamber S2 filled with the compressed gas is said to be concerned. It will be sealed by the sealing part assembly 70. As a result, the compressed gas is sealed in the tank chamber S2. As described above, when the hybrid gas generator 1C is in operation, the burst plate 72 is cleaved, so that the ignition chamber S1 and the tank chamber S2 communicate with each other through the communication hole 71a provided in the plug 71. Therefore, in the above-mentioned step ST26, it can be said that the tank chamber S2 filled with the compressed gas is sealed by the rupture plate 72 in the sealing portion assembly 70.
 次に、図23に示すように、ステップST27において、発熱剤60が充填され、その後、ステップST28において、第1ケーシング10への点火器組立体30の組付が行なわれる。これらステップST27およびステップST28は、上述した実施の形態1において説明したステップST17およびステップST18と同様である。 Next, as shown in FIG. 23, the exothermic agent 60 is filled in step ST27, and then the igniter assembly 30 is assembled to the first casing 10 in step ST28. These steps ST27 and ST28 are the same as those of step ST17 and step ST18 described in the above-described first embodiment.
 以上のステップST21~ST28を経ることにより、上述した本関連形態に係るハイブリッド型ガス発生器1Cの製造が完了することになる。 By going through the above steps ST21 to ST28, the production of the hybrid type gas generator 1C according to the above-mentioned related embodiment is completed.
 以上において説明した本関連形態に係るハイブリッド型ガス発生器の製造方法を採用することにより、上述した実施の形態1に係るハイブリッド型ガス発生器の製造方法を採用した場合と同様の効果を得ることができる。 By adopting the method for manufacturing the hybrid gas generator according to the present related embodiment described above, the same effect as when the method for manufacturing the hybrid gas generator according to the first embodiment described above is adopted can be obtained. Can be done.
 (第7変形例)
 図26は、上述した関連形態1に基づいた第7変形例に係るハイブリッド型ガス発生器における封止部組立体の第1ケーシングに対する組付構造を示す模式図である。ここで、(A)は、組付け前の状態を示しており、(B)は、組付け後の状態を示している。以下、この図26を参照して、第7変形例に係るハイブリッド型ガス発生器1C1における封止部組立体70の第1ケーシング10に対する組付構造について説明する。
(7th modification)
FIG. 26 is a schematic view showing an assembly structure of a sealing portion assembly with respect to the first casing in the hybrid type gas generator according to the seventh modification based on the above-mentioned related form 1. Here, (A) shows the state before assembling, and (B) shows the state after assembling. Hereinafter, with reference to FIG. 26, the assembly structure of the sealing portion assembly 70 with respect to the first casing 10 in the hybrid type gas generator 1C1 according to the seventh modification will be described.
 図26に示すように、第7変形例に係るハイブリッド型ガス発生器1C1は、上述した関連形態1に係るハイブリッド型ガス発生器1Cと比較した場合に、封止部組立体70の栓体71の形状のみが相違している。 As shown in FIG. 26, the hybrid gas generator 1C1 according to the seventh modification is the plug 71 of the sealing portion assembly 70 when compared with the hybrid gas generator 1C according to the related form 1 described above. Only the shape of is different.
 具体的には、封止部組立体70は、点火室S1側からタンク室S2側に向かうにつれて外径が小さくなる先細り形状の栓体71を有しており、この栓体71に、径方向外側に向かって延びるフランジ状のストッパ部71cがさらに設けられている。ここで、ストッパ部71cは、栓体71の破裂板72が設けられた側の軸方向端部とは反対側に位置する軸方向端部(すなわち点火室S1側の端部)に位置しており、第1ケース体11の底壁部11bに設けられた貫通孔11b1よりも大きい外径を有している。 Specifically, the sealing portion assembly 70 has a tapered plug 71 whose outer diameter decreases toward the tank chamber S2 side from the ignition chamber S1 side, and the plug 71 has a radial direction. A flange-shaped stopper portion 71c extending outward is further provided. Here, the stopper portion 71c is located at the axial end portion (that is, the end portion on the ignition chamber S1 side) located on the side opposite to the axial end portion on the side where the burst plate 72 of the plug body 71 is provided. It has an outer diameter larger than that of the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11.
 このように、栓体71の点火室S1側の部分にフランジ状のストッパ部71cが設けられることにより、貫通孔11b1への封止部組立体70の挿入に際しては、当該ストッパ部71cが、底壁部11bの点火室S1側の主面に当接することになる。このストッパ部71cの底壁部11bへの当接により、封止部組立体70のタンク室S2側に向けての移動が規制されることになる。 As described above, by providing the flange-shaped stopper portion 71c in the portion of the plug 71 on the ignition chamber S1 side, when the sealing portion assembly 70 is inserted into the through hole 11b1, the stopper portion 71c is bottomed. It comes into contact with the main surface of the wall portion 11b on the ignition chamber S1 side. The contact of the stopper portion 71c with the bottom wall portion 11b restricts the movement of the sealing portion assembly 70 toward the tank chamber S2 side.
 そのため、当該構成の封止部組立体70とした場合には、封止部組立体70の位置決めを当該ストッパ部71cを用いてより確実に行なうことができる。したがって、本第7変形例の如くの構成を採用することにより、第1ケーシング10への封止部組立体70の組付けに際して、栓体71の外周面と貫通孔11b1を規定する部分の底壁部11bの壁面との接触面積をより確実に所定の大きさに維持できることになり、封止部組立体70を底壁部11bに対してより確実にかつより安定的に固定することができる。 Therefore, when the sealing portion assembly 70 having the above configuration is used, the positioning of the sealing portion assembly 70 can be performed more reliably by using the stopper portion 71c. Therefore, by adopting the configuration as in the seventh modification, when assembling the sealing portion assembly 70 to the first casing 10, the outer peripheral surface of the plug 71 and the bottom of the portion defining the through hole 11b1 are used. The contact area of the wall portion 11b with the wall surface can be more reliably maintained at a predetermined size, and the sealing portion assembly 70 can be more reliably and more stably fixed to the bottom wall portion 11b. ..
 (第8変形例)
 図27は、上述した関連形態1に基づいた第8変形例に係るハイブリッド型ガス発生器における封止部組立体の第1ケーシングに対する組付構造を示す模式図である。ここで、(A)は、組付け前の状態を示しており、(B)は、組付け後の状態を示している。以下、この図27を参照して、第8変形例に係るハイブリッド型ガス発生器1C2における封止部組立体70の第1ケーシング10に対する組付構造について説明する。
(8th modification)
FIG. 27 is a schematic view showing an assembly structure of a sealing portion assembly with respect to the first casing in the hybrid type gas generator according to the eighth modification based on the above-mentioned related form 1. Here, (A) shows the state before assembling, and (B) shows the state after assembling. Hereinafter, with reference to FIG. 27, the assembly structure of the sealing portion assembly 70 with respect to the first casing 10 in the hybrid type gas generator 1C2 according to the eighth modification will be described.
 図28に示すように、第8変形例に係るハイブリッド型ガス発生器1C2は、上述した関連形態1に係るハイブリッド型ガス発生器1Cと比較した場合に、第1ケース体11の底壁部11bに設けられた貫通孔11b1の形状および封止部組立体70の栓体71の形状のみが相違している。 As shown in FIG. 28, the hybrid gas generator 1C2 according to the eighth modification is the bottom wall portion 11b of the first case body 11 when compared with the hybrid gas generator 1C according to the related form 1 described above. Only the shape of the through hole 11b1 provided in the above and the shape of the plug 71 of the sealing portion assembly 70 are different.
 具体的には、第1ケース体11の底壁部11bに設けられた貫通孔11b1は、点火室S1側からタンク室S2側にかけてその内径が一定である円柱状の形状を有している。一方、封止部組立体70の栓体71は、点火室S1側からタンク室S2側にかけてその外径が上記貫通孔11b1の内径に対応して一定である。 Specifically, the through hole 11b1 provided in the bottom wall portion 11b of the first case body 11 has a columnar shape having a constant inner diameter from the ignition chamber S1 side to the tank chamber S2 side. On the other hand, the outer diameter of the plug 71 of the sealing portion assembly 70 is constant from the ignition chamber S1 side to the tank chamber S2 side corresponding to the inner diameter of the through hole 11b1.
 このように構成した場合にも、栓体71の外周面と底壁部11bの上述した壁面とを密着させることが可能になり、またその接触面積を所定の大きさにすることができる。したがって、当該構成を採用することにより、封止部組立体70を底壁部11bに対して確実にかつ安定的に固定することが可能になる。 Even with such a configuration, the outer peripheral surface of the plug 71 and the above-mentioned wall surface of the bottom wall portion 11b can be brought into close contact with each other, and the contact area thereof can be made a predetermined size. Therefore, by adopting this configuration, the sealing portion assembly 70 can be reliably and stably fixed to the bottom wall portion 11b.
 (関連形態2)
 図28は、関連形態2に係るストアード型ガス発生器の模式断面図である。図29は、図28に示すストアード型ガス発生器の点火器組立体および点火室の近傍ならびに第2ケーシングの閉塞部の近傍の拡大図である。まず、これら図28および図29を参照して、本関連形態に係るストアード型ガス発生器1Dの構成について説明する。なお、本関連形態に係るストアード型ガス発生器1Dは、いわゆるリバースフロー構造を有するものである。
(Related form 2)
FIG. 28 is a schematic cross-sectional view of the stored type gas generator according to the related form 2. FIG. 29 is an enlarged view of the vicinity of the igniter assembly and the ignition chamber of the stored gas generator shown in FIG. 28 and the vicinity of the closed portion of the second casing. First, the configuration of the stored gas generator 1D according to the present related embodiment will be described with reference to FIGS. 28 and 29. The stored type gas generator 1D according to this related embodiment has a so-called reverse flow structure.
 図28に示すように、本関連形態に係るストアード型ガス発生器1Dは、上述した関連形態1に係るハイブリッド型ガス発生器1Cと近似の構成を有しており、当該ハイブリッド型ガス発生器1Cと比較した場合に、主としてタンク室S2を規定する部分のハウジングの構成が相違しており、またこれに加えて、ノズル組立体40および発熱剤60(いずれも図20等参照)を具備していない点、複数のガス噴出口の形成位置や複数のガス噴出口近傍の構成が相違している点等においてその構成が相違している。 As shown in FIG. 28, the stored gas generator 1D according to the related embodiment has a configuration similar to that of the hybrid gas generator 1C according to the related embodiment 1 described above, and the hybrid gas generator 1C has a configuration similar to that of the hybrid gas generator 1C. Compared with, the configuration of the housing of the portion mainly defining the tank chamber S2 is different, and in addition to this, the nozzle assembly 40 and the heating agent 60 (both refer to FIG. 20 and the like) are provided. The configurations are different in that there are no points, the positions where the plurality of gas outlets are formed, and the configurations in the vicinity of the plurality of gas outlets are different.
 具体的には、ストアード型ガス発生器1Dは、全体として長尺略円柱状の外形を有しており、第1ケーシング10と、第2ケーシング20と、点火器組立体30と、封止部組立体70と、図には現れない圧縮ガスとを主として備えている。 Specifically, the stored type gas generator 1D has a long substantially columnar outer shape as a whole, and has a first casing 10, a second casing 20, an igniter assembly 30, and a sealing portion. It mainly comprises an assembly 70 and a compressed gas that does not appear in the figure.
 ストアード型ガス発生器1Dのハウジングは、点火器組立体30に含まれるホルダ31と、第1ケーシング10と、第2ケーシング20とによって構成されている。このうち、第1ケーシング10は、第1ケース体11にて構成されており、第2ケーシング20は、第2ケース体21にて構成されている。 The housing of the stored type gas generator 1D is composed of a holder 31 included in the igniter assembly 30, a first casing 10, and a second casing 20. Of these, the first casing 10 is composed of the first case body 11, and the second casing 20 is composed of the second case body 21.
 ハウジングの内部の空間は、ホルダ31および第1ケース体11によって主として規定された点火室S1と、第1ケース体11および第2ケース体21によって主として規定されたタンク室S2とに区画されている。このうちのタンク室S2には、上述した関連形態1に係るハイブリッド型ガス発生器1Cと同様に圧縮ガスが封入されている反面、点火室S1には、当該ハイブリッド型ガス発生器1Cとは異なり、発熱剤60は充填されていない。 The space inside the housing is divided into an ignition chamber S1 mainly defined by the holder 31 and the first case body 11 and a tank chamber S2 mainly defined by the first case body 11 and the second case body 21. .. Of these, the tank chamber S2 is filled with compressed gas in the same manner as the hybrid gas generator 1C according to the related embodiment 1 described above, whereas the ignition chamber S1 is different from the hybrid gas generator 1C. , The exothermic agent 60 is not filled.
 図28および図29に示すように、第1ケース体11および点火器組立体30は、上述した関連形態1に係るハイブリッド型ガス発生器1Cにおけるそれらと同様の構成を有している。一方、第2ケース体21は、第2周壁部21aおよび閉塞部21bを含む有底円筒状の単一の部材からなる。第2周壁部21aは、円筒状の形状を有しており、その軸方向の一端が第2開放端21a1として構成されている。閉塞部21bは、湾曲板状の形状を有しており、第2周壁部21aの軸方向の他端を閉塞している。 As shown in FIGS. 28 and 29, the first case body 11 and the igniter assembly 30 have the same configurations as those in the hybrid gas generator 1C according to the above-mentioned related form 1. On the other hand, the second case body 21 is composed of a single bottomed cylindrical member including the second peripheral wall portion 21a and the closing portion 21b. The second peripheral wall portion 21a has a cylindrical shape, and one end in the axial direction thereof is configured as the second open end 21a1. The closed portion 21b has a curved plate-like shape, and closes the other end of the second peripheral wall portion 21a in the axial direction.
 第1ケース体11の第1開放端11a1は、ホルダ31(より厳密には、点火器組立体30)によって閉塞されており、第2ケース体21の第2開放端21a1は、第1ケース体11の底壁部11bによって閉塞されている。第1ケース体11の底壁部11bには、点火室S1およびタンク室S2の双方に通じるように貫通孔11b1が設けられている。 The first open end 11a1 of the first case body 11 is closed by the holder 31 (more strictly, the igniter assembly 30), and the second open end 21a1 of the second case body 21 is the first case body. It is closed by the bottom wall portion 11b of 11. The bottom wall portion 11b of the first case body 11 is provided with a through hole 11b1 so as to communicate with both the ignition chamber S1 and the tank chamber S2.
 当該貫通孔11b1には、中空略円柱状の栓体71と円形薄板状の破裂板72とを有する封止部組立体70が挿入されており、この状態において封止部組立体70が第1ケース体11に固定されている。なお、封止部組立体70の構成ならびに当該封止部組立体70の第1ケース体11への組付構造は、上述した関連形態1に係るハイブリッド型ガス発生器1Cにおけるそれらと同様である。 A sealing portion assembly 70 having a hollow substantially cylindrical plug 71 and a circular thin plate-shaped rupture plate 72 is inserted into the through hole 11b1, and in this state, the sealing portion assembly 70 is the first. It is fixed to the case body 11. The configuration of the sealing portion assembly 70 and the structure for assembling the sealing portion assembly 70 to the first case body 11 are the same as those in the hybrid type gas generator 1C according to the above-mentioned related form 1. ..
 第1ケース体11の第1周壁部11aには、点火室S1に面するように複数のガス噴出口11cが設けられている。当該複数のガス噴出口11cは、ストアード型ガス発生器1Dの動作時において、ガスを外部に向けて噴出するための部位である。 A plurality of gas outlets 11c are provided on the first peripheral wall portion 11a of the first case body 11 so as to face the ignition chamber S1. The plurality of gas outlets 11c are portions for ejecting gas to the outside when the stored type gas generator 1D is in operation.
 また、第1ケース体11の第1周壁部11aの内周面には、複数のガス噴出口11cを閉鎖するように金属製のシールテープ12が貼付されている。このシールテープ12としては、片面に粘着部材が塗布されたアルミニウム箔等が好適に利用でき、当該シールテープ12によって点火室S1の気密性が確保されている。 Further, a metal sealing tape 12 is attached to the inner peripheral surface of the first peripheral wall portion 11a of the first case body 11 so as to close the plurality of gas outlets 11c. As the sealing tape 12, an aluminum foil or the like having an adhesive member coated on one side thereof can be preferably used, and the airtightness of the ignition chamber S1 is ensured by the sealing tape 12.
 次に、上述した構成を有する本関連形態に係るストアード型ガス発生器1Dの動作について、前述の図28および図29を参照して説明する。 Next, the operation of the stored gas generator 1D according to the present related embodiment having the above-described configuration will be described with reference to FIGS. 28 and 29 described above.
 まず、コントロールユニットからの通電を受けることにより、点火器32が作動する。点火器32が作動することにより、点火部32aに充填された点火薬が抵抗体によって加熱されることで着火され、当該点火薬が燃焼することで点火部32aが破裂する。 First, the igniter 32 operates by receiving electricity from the control unit. When the igniter 32 operates, the igniter filled in the igniter 32a is ignited by being heated by the resistor, and the igniter burns to explode the igniter 32a.
 この点火薬の燃焼によって点火室S1の圧力および温度が上昇することになり、これに伴って破裂板72に開裂が生じる。この破裂板72の開裂に伴い、点火室S1とタンク室S2とが栓体71に設けられた連通孔71aを介して連通した状態となる。 Combustion of this igniter causes the pressure and temperature of the ignition chamber S1 to rise, which causes the rupture plate 72 to rupture. With the opening of the rupture plate 72, the ignition chamber S1 and the tank chamber S2 are in a state of communicating with each other through the communication hole 71a provided in the plug 71.
 次に、点火室S1とタンク室S2とが貫通孔11b1を介して連通したことに伴い、圧縮ガスが貫通孔11b1を介して点火室S1に流れ込み、その後、複数のガス噴出口11cから外部に向けて噴出することになる。 Next, as the ignition chamber S1 and the tank chamber S2 communicate with each other through the through hole 11b1, the compressed gas flows into the ignition chamber S1 through the through hole 11b1 and then flows out from the plurality of gas outlets 11c to the outside. It will spurt out toward you.
 なお、複数のガス噴出口11cからストアード型ガス発生器1Dの外部へと噴出されたガスは、当該ストアード型ガス発生器1Dに隣接して設けられたエアバッグの内部に導入され、当該エアバッグを膨張および展開させる。 The gas ejected from the plurality of gas outlets 11c to the outside of the stored gas generator 1D is introduced into an airbag provided adjacent to the stored gas generator 1D, and the airbag is introduced. Inflate and unfold.
 以上において説明した本関連形態に係るストアード型ガス発生器1Dとすることにより、上述した関連形態1に係るハイブリッド型ガス発生器1Cとした場合と同様の効果を得ることができる。 By using the stored type gas generator 1D according to the present related form described above, the same effect as the case of using the hybrid type gas generator 1C according to the above-mentioned related form 1 can be obtained.
 (関連形態1,2の小括)
 上述した関連形態1,2およびそれらの変形例に係るハイブリッド型ガス発生器およびストアード型ガス発生器における特徴的な構成を要約すると、以下のとおりとなる。
(Summary of related forms 1 and 2)
The characteristic configurations of the hybrid type gas generator and the stored type gas generator according to the above-mentioned related forms 1 and 2 and their modifications are summarized as follows.
 関連形態に係るガス発生器は、点火器と、ハウジングとを備えている。上記ハウジングは、上記点火器に面する点火室および圧縮ガスが封入されたタンク室を内部に有するとともに、動作時において開口するガス噴出口が設けられてなるものである。上記ハウジングは、上記点火器が組付けられたホルダと、上記ホルダと共に上記点火室を規定する第1ケーシングと、上記第1ケーシングと共に上記タンク室を規定する第2ケーシングとを有している。上記第1ケーシングは、軸方向の一端が第1開放端として構成された筒状の第1周壁部と、上記第1周壁部の軸方向の他端を閉塞する底壁部とを含む有底筒状の単一の部材からなる第1ケース体を有している。上記第2ケーシングは、軸方向の一端が第2開放端として構成された筒状の第2周壁部を少なくとも含む第2ケース体を有している。上記第1開放端は、上記ホルダによって閉塞されており、上記第2開放端は、上記底壁部によって閉塞されている。上記底壁部には、上記点火室と上記タンク室とに通じる貫通孔と、当該貫通孔を閉塞する栓体とが設けられている。上記栓体には、上記点火室と上記タンク室とを連通させるための連通孔が設けられており、上記点火器の作動に起因して開裂が可能な破裂部材が、上記連通孔を閉鎖するように上記栓体に設けられている。上記栓体は、上記貫通孔に挿入されるとともに上記貫通孔を規定する部分の上記底壁部の壁面にその外周面が溶接されることで固定されている。 The gas generator according to the related form includes an igniter and a housing. The housing has an ignition chamber facing the igniter and a tank chamber filled with compressed gas, and is provided with a gas ejection port that opens during operation. The housing has a holder to which the igniter is assembled, a first casing that defines the ignition chamber together with the holder, and a second casing that defines the tank chamber together with the first casing. The first casing has a bottom including a cylindrical first peripheral wall portion in which one end in the axial direction is configured as a first open end, and a bottom wall portion that closes the other end in the axial direction of the first peripheral wall portion. It has a first case body made of a single tubular member. The second casing has a second case body including at least a cylindrical second peripheral wall portion having one end in the axial direction as a second open end. The first open end is closed by the holder, and the second open end is closed by the bottom wall portion. The bottom wall portion is provided with a through hole leading to the ignition chamber and the tank chamber, and a plug for closing the through hole. The plug body is provided with a communication hole for communicating the ignition chamber and the tank chamber, and a rupture member capable of opening due to the operation of the igniter closes the communication hole. It is provided in the plug body as described above. The plug is inserted into the through hole and fixed by welding the outer peripheral surface to the wall surface of the bottom wall portion of the portion defining the through hole.
 上記関連形態に係るガス発生器にあっては、上記破裂部材が設けられた状態にある上記栓体が、上記点火室側から上記貫通孔に差し込み可能な形状を有していることが好ましい。 In the gas generator according to the related form, it is preferable that the plug body provided with the rupture member has a shape that can be inserted into the through hole from the ignition chamber side.
 上記関連形態に係るガス発生器にあっては、上記貫通孔が、上記点火室側から上記タンク室側に向かうにつれて内径が小さくなる先細り形状を有していてもよく、その場合には、上記栓体が、上記貫通孔の先細り形状に対応して上記点火室側から上記タンク室側に向かうにつれて外径が小さくなる先細り形状を有していてもよい。 In the gas generator according to the related form, the through hole may have a tapered shape in which the inner diameter becomes smaller from the ignition chamber side to the tank chamber side. In that case, the gas generator may have a tapered shape. The plug may have a tapered shape in which the outer diameter decreases from the ignition chamber side to the tank chamber side corresponding to the tapered shape of the through hole.
 上記関連形態に係るガス発生器にあっては、上記底壁部の上記点火室側の主面に当接することによって上記栓体が上記タンク室側に向けて移動することを規制するストッパ部が、上記栓体に設けられていてもよい。 In the gas generator according to the related form, there is a stopper portion that regulates the movement of the plug body toward the tank chamber side by abutting on the main surface of the bottom wall portion on the ignition chamber side. , May be provided on the stopper.
 上記関連形態に係るガス発生器にあっては、上記破裂部材が、上記栓体の上記タンク室に面する側の部分に溶接されることで固定されていることが好ましい。 In the gas generator according to the related form, it is preferable that the rupture member is fixed by being welded to the portion of the plug body facing the tank chamber.
 上記関連形態に係るガス発生器にあっては、燃焼することで高温の熱を発生させる発熱剤が、上記点火室に充填されていてもよい。 In the gas generator according to the above-mentioned related form, the ignition chamber may be filled with an exothermic agent that generates high-temperature heat by burning.
 上記関連形態に係るガス発生器にあっては、上記第2ケース体が、上記第2周壁部の軸方向の他端が第3開放端として構成された筒状の部材にて構成されていてもよく、その場合には、上記第2ケーシングが、上記第3開放端を閉塞するとともに上記ガス噴出口が設けられたノズル体をさらに有していてもよい。 In the gas generator according to the related embodiment, the second case body is composed of a tubular member having the other end in the axial direction of the second peripheral wall portion as the third open end. In that case, the second casing may further have a nozzle body provided with the gas ejection port while closing the third open end.
 上記関連形態に係るガス発生器にあっては、上記第2ケース体が、上記第2周壁部の軸方向の他端を閉塞する閉塞部を含む有底筒状の単一の部材にて構成されていてもよく、その場合には、上記ガス噴出口が、上記第1周壁部に設けられていてもよい。 In the gas generator according to the related embodiment, the second case body is composed of a single bottomed cylindrical member including a closed portion that closes the other end of the second peripheral wall portion in the axial direction. In that case, the gas outlet may be provided on the first peripheral wall portion.
 (その他の形態等)
 上述した本発明の実施の形態1,2および関連形態1,2ならびにそれらの変形例においては、仕切り部としての第1ケース体の底壁部に組付けられる破裂部材および封止部組立体を、いずれもその一部がタンク室側に突出するように設けた場合を例示して説明を行なったが、これらが第1ケース体の底壁部と面一となるように貫通孔に挿入配置されてもよいし、これらが貫通孔の内部に位置するように当該貫通孔の開口面から後退配置されてもよい。
(Other forms, etc.)
In the above-described first and second embodiments of the present invention, the first and second embodiments, and modifications thereof, the ruptured member and the sealing portion assembly to be assembled to the bottom wall portion of the first case body as the partition portion are used. In each case, a case where a part of the case is provided so as to protrude toward the tank chamber side has been described as an example, but these are inserted and arranged in the through holes so as to be flush with the bottom wall portion of the first case body. Or they may be retracted from the opening surface of the through hole so that they are located inside the through hole.
 また、上述した本発明の実施の形態1,2および関連形態1,2ならびにそれらの変形例においては、圧縮ガス封入装置のガス充填ヘッドに設けられた通気路がガス供給源および負圧源に選択的に切り替え可能に接続されるように構成された場合を例示して説明を行なったが、ガス供給源および負圧源にそれぞれ独立して接続された通気路をガス充填ヘッドに設け、ガス供給源および負圧源がそれぞれ異なるタイミングで駆動されるように構成することとしてもよい。 Further, in the above-described first and second embodiments of the present invention, the first and second embodiments, and variations thereof, the ventilation passage provided in the gas filling head of the compressed gas filling device serves as a gas supply source and a negative pressure source. Although the case where the gas is configured to be selectively and switchably connected has been described as an example, a ventilation path independently connected to the gas supply source and the negative pressure source is provided in the gas filling head to provide gas. The supply source and the negative pressure source may be configured to be driven at different timings.
 また、上述した本発明の実施の形態1,2および関連形態1,2ならびにそれらの変形例における特徴的な構成は、本発明の趣旨を逸脱しない限りにおいて相互に組み合わせることができる。 Further, the characteristic configurations in the above-described embodiments 1 and 2 and related embodiments 1 and 2 of the present invention and their variations can be combined with each other as long as the gist of the present invention is not deviated.
 さらには、上述した本発明の実施の形態1,2および関連形態1,2ならびにそれらの変形例においては、本発明をサイドエアバッグ装置に組み込まれるシリンダ型ガス発生器に適用した場合を例示して説明を行なったが、本発明の適用対象はこれに限られるものではなく、カーテンエアバッグ装置やニーエアバッグ装置、シートクッションエアバッグ装置等に組み込まれるシリンダ型ガス発生器や、シリンダ型ガス発生器と同様に長尺状の外形を有するいわゆるT字型ガス発生器等にもその適用が可能である。 Further, in the above-described first and second embodiments of the present invention, the first and second embodiments, and modifications thereof, the case where the present invention is applied to a cylinder type gas generator incorporated in a side airbag device is exemplified. However, the subject of the present invention is not limited to this, and a cylinder type gas generator incorporated in a curtain airbag device, a knee airbag device, a seat cushion airbag device, etc., and a cylinder type gas It can be applied to a so-called T-shaped gas generator or the like having a long outer shape as well as a generator.
 このように、今回開示した上記実施の形態および関連形態ならびにその変形例はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 As described above, the above-described embodiments and related embodiments disclosed this time and variations thereof are examples in all respects and are not limiting. The technical scope of the present invention is defined by the scope of claims and includes all modifications within the meaning and scope of the description of the claims and the equivalent.
 1A,1A1~1A6,1C,1C1,1C2 ハイブリッド型ガス発生器、1B,1D ストアード型ガス発生器、10 第1ケーシング、11 第1ケース体、11a 第1周壁部、11a1 第1開放端、11b 底壁部、11b1 貫通孔、11c ガス噴出口、12 シールテープ、20 第2ケーシング、21 第2ケース体、21a 第2周壁部、21a1 第2開放端、21a2 第3開放端、21b 閉塞部、30 点火器組立体、31 ホルダ、31a 貫通部、32 点火器、32a 点火部、32b 端子ピン、33 樹脂成形部、33a 凹部、40 ノズル組立体、41 ノズル体、41a ベース部、41b ノズル部、41c 流路部、41d ガス噴出口、42 破裂板、50 破裂部材、51 固定部、51a 中空部、51b ストッパ部、52 破裂部、53 コーナー部、60 発熱剤、70 封止部組立体、71 栓体、71a 連通孔、71b 環状突部、71c ストッパ部、72 破裂板、100 圧縮ガス封入装置、110 ヘッド部、111 ガス充填ヘッド、111a 通気路、111a1 ガス送出口、111b 主表面、112 溶接ヘッド、112a 吸引路、112b 主表面、S1 点火室、S2 タンク室。 1A, 1A1-1A6, 1C, 1C1,1C2 hybrid type gas generator, 1B, 1D stored type gas generator, 10 first casing, 11 first case body, 11a first peripheral wall part, 11a1 first open end, 11b Bottom wall part, 11b1 through hole, 11c gas outlet, 12 seal tape, 20 second casing, 21 second case body, 21a second peripheral wall part, 21a1 second open end, 21a2 third open end, 21b closed part, 30 igniter assembly, 31 holder, 31a penetration part, 32 igniter, 32a ignition part, 32b terminal pin, 33 resin molding part, 33a recess, 40 nozzle assembly, 41 nozzle body, 41a base part, 41b nozzle part, 41c flow path, 41d gas outlet, 42 rupture plate, 50 rupture member, 51 fixing part, 51a hollow part, 51b stopper part, 52 rupture part, 53 corner part, 60 heat generating agent, 70 sealing part assembly, 71. Plug body, 71a communication hole, 71b annular protrusion, 71c stopper part, 72 rupture plate, 100 compressed gas filling device, 110 head part, 111 gas filling head, 111a ventilation path, 111a1 gas outlet, 111b main surface, 112 welding Head, 112a suction path, 112b main surface, S1 ignition chamber, S2 tank chamber.

Claims (6)

  1.  点火器と、
     前記点火器に面する点火室および圧縮ガスが封入されたタンク室を内部に有するとともに、動作時において開口するガス噴出口が設けられてなるハウジングとを備え、
     前記ハウジングは、前記点火器が組付けられたホルダと、前記ホルダと共に前記点火室を規定する第1ケーシングと、前記第1ケーシングと共に前記タンク室を規定する第2ケーシングとを有し、
     前記第1ケーシングは、軸方向の一端が第1開放端として構成された筒状の第1周壁部と、前記第1周壁部の軸方向の他端を閉塞する底壁部とを含む有底筒状の単一の部材からなる第1ケース体を有し、
     前記第2ケーシングは、軸方向の一端が第2開放端として構成された筒状の第2周壁部を少なくとも含む第2ケース体を有し、
     前記第1開放端は、前記ホルダによって閉塞され、
     前記第2開放端は、前記底壁部によって閉塞され、
     前記底壁部には、前記点火室と前記タンク室とに通じる貫通孔が設けられ、
     前記点火器の作動に起因して開裂が可能な破裂部材が、前記貫通孔を閉鎖するように前記底壁部に設けられ、
     前記破裂部材が、前記貫通孔に挿入されるとともに前記貫通孔を規定する部分の前記底壁部の壁面にその外周面が溶接されることで固定された筒状の固定部と、前記固定部の軸方向の一端を閉塞する板状の破裂部とを含む有底筒状の単一の部材にて構成されている、ガス発生器。
    With an igniter,
    It has an ignition chamber facing the igniter and a tank chamber filled with compressed gas, and also has a housing provided with a gas outlet that opens during operation.
    The housing has a holder to which the igniter is assembled, a first casing that defines the ignition chamber together with the holder, and a second casing that defines the tank chamber together with the first casing.
    The first casing has a bottom including a cylindrical first peripheral wall portion in which one end in the axial direction is configured as a first open end, and a bottom wall portion that closes the other end in the axial direction of the first peripheral wall portion. It has a first case body consisting of a single tubular member,
    The second casing has a second case body including at least a cylindrical second peripheral wall portion having one end in the axial direction as a second open end.
    The first open end is closed by the holder and
    The second open end is closed by the bottom wall portion and is closed.
    The bottom wall portion is provided with a through hole leading to the ignition chamber and the tank chamber.
    A rupture member that can be cleaved due to the operation of the igniter is provided on the bottom wall portion so as to close the through hole.
    The ruptured member is inserted into the through hole, and the outer peripheral surface is welded to the wall surface of the bottom wall portion of the portion defining the through hole to fix the tubular fixing portion and the fixing portion. A gas generator composed of a single bottomed cylinder-shaped member including a plate-shaped rupture portion that closes one end in the axial direction of the gas generator.
  2.  前記破裂部材が、前記点火室側から前記貫通孔に差し込み可能な形状を有している、請求項1に記載のガス発生器。 The gas generator according to claim 1, wherein the ruptured member has a shape that can be inserted into the through hole from the ignition chamber side.
  3.  前記貫通孔が、前記点火室側から前記タンク室側に向かうにつれて内径が小さくなる先細り形状を有しており、
     前記固定部が、前記貫通孔の先細り形状に対応して前記点火室側から前記タンク室側に向かうにつれて外径が小さくなる先細り形状を有している、請求項2に記載のガス発生器。
    The through hole has a tapered shape in which the inner diameter decreases from the ignition chamber side toward the tank chamber side.
    The gas generator according to claim 2, wherein the fixing portion has a tapered shape in which the outer diameter decreases from the ignition chamber side to the tank chamber side corresponding to the tapered shape of the through hole.
  4.  前記底壁部の前記点火室側の主面に当接することによって前記破裂部材が前記タンク室側に向けて移動することを規制するストッパ部が、前記破裂部材に設けられている、請求項2または3に記載のガス発生器。 2. Or the gas generator according to 3.
  5.  前記破裂部が、前記固定部の前記タンク室側の端部に位置している、請求項1から4のいずれかに記載のガス発生器。 The gas generator according to any one of claims 1 to 4, wherein the ruptured portion is located at the end of the fixed portion on the tank chamber side.
  6.  前記固定部と前記破裂部とを接続する環状形状のコーナー部の外側表面が、湾曲面にて構成されている、請求項5に記載のガス発生器。 The gas generator according to claim 5, wherein the outer surface of the annular corner portion connecting the fixed portion and the ruptured portion is formed of a curved surface.
PCT/JP2021/030159 2020-08-28 2021-08-18 Gas generator WO2022044910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-144018 2020-08-28
JP2020144018A JP7462518B2 (en) 2020-08-28 2020-08-28 Gas generator

Publications (1)

Publication Number Publication Date
WO2022044910A1 true WO2022044910A1 (en) 2022-03-03

Family

ID=80354264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030159 WO2022044910A1 (en) 2020-08-28 2021-08-18 Gas generator

Country Status (2)

Country Link
JP (1) JP7462518B2 (en)
WO (1) WO2022044910A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257310A (en) * 1994-03-23 1995-10-09 Takata Kk Inflator for air bag device
JPH0911844A (en) * 1995-07-01 1997-01-14 Temic Bayern Chem Airbag Gmbh Gas generator
JP2000168480A (en) * 1998-12-11 2000-06-20 Samtec Kk Air bag device for vehicle
US6254128B1 (en) * 1996-12-21 2001-07-03 Dynamit Nobel Gmbh Explosivstoff-Und Systemtechnik Hybrid gas generator for airbag
JP2008213529A (en) * 2007-02-28 2008-09-18 Toyoda Gosei Co Ltd Inflater
JP2009006918A (en) * 2007-06-29 2009-01-15 Daicel Chem Ind Ltd Inflator
JP2009519168A (en) * 2005-12-13 2009-05-14 オートリブ ディベロップメント アクティエボラーグ Hybrid gas generator with metal charge
JP2013112252A (en) * 2011-11-30 2013-06-10 Nippon Kayaku Co Ltd Gas generator
JP2018024915A (en) * 2016-08-10 2018-02-15 豊田合成株式会社 Gas housing container for inflator and manufacturing method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257310A (en) * 1994-03-23 1995-10-09 Takata Kk Inflator for air bag device
JPH0911844A (en) * 1995-07-01 1997-01-14 Temic Bayern Chem Airbag Gmbh Gas generator
US6254128B1 (en) * 1996-12-21 2001-07-03 Dynamit Nobel Gmbh Explosivstoff-Und Systemtechnik Hybrid gas generator for airbag
JP2000168480A (en) * 1998-12-11 2000-06-20 Samtec Kk Air bag device for vehicle
JP2009519168A (en) * 2005-12-13 2009-05-14 オートリブ ディベロップメント アクティエボラーグ Hybrid gas generator with metal charge
JP2008213529A (en) * 2007-02-28 2008-09-18 Toyoda Gosei Co Ltd Inflater
JP2009006918A (en) * 2007-06-29 2009-01-15 Daicel Chem Ind Ltd Inflator
JP2013112252A (en) * 2011-11-30 2013-06-10 Nippon Kayaku Co Ltd Gas generator
JP2018024915A (en) * 2016-08-10 2018-02-15 豊田合成株式会社 Gas housing container for inflator and manufacturing method therefor

Also Published As

Publication number Publication date
JP7462518B2 (en) 2024-04-05
JP2022039146A (en) 2022-03-10

Similar Documents

Publication Publication Date Title
CN108367727B (en) Gas generator
JP6312545B2 (en) Gas generator
KR20010109133A (en) Hybrid generator with perforating pillar and two-tube body
US6979021B2 (en) Integral initiator assembly for use in inflator devices
EP2626256B1 (en) Gas generator, holder for gas generator, and method for manufacturing holder for gas generator
WO2016031656A1 (en) Gas generator
CN110799384A (en) Gas generator
JP2020157879A (en) Gas generator
JP2008296763A (en) Gas generator
WO2022044910A1 (en) Gas generator
JP2020203498A (en) Gas generator
JP2011518708A (en) Gas generator for automobile safety equipment
WO2018051814A1 (en) Gas generator filter and gas generator
JP6504991B2 (en) Gas generator
JP2015171847A (en) gas generator
US20060061077A1 (en) Radial discharge actuator device
JP7442266B2 (en) Gas generator manufacturing method and gas generator
WO2013080796A1 (en) Gas generator
JP2020019311A (en) Gas generator
JP2020006919A (en) Gas generator
JP7175165B2 (en) gas generator
JP7249237B2 (en) gas generator
JP7219194B2 (en) gas generator
JP2023113096A (en) Coil filter
JP2020179710A (en) Gas generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861338

Country of ref document: EP

Kind code of ref document: A1