WO2022044780A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2022044780A1
WO2022044780A1 PCT/JP2021/029362 JP2021029362W WO2022044780A1 WO 2022044780 A1 WO2022044780 A1 WO 2022044780A1 JP 2021029362 W JP2021029362 W JP 2021029362W WO 2022044780 A1 WO2022044780 A1 WO 2022044780A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power supply
state
switch
path
Prior art date
Application number
PCT/JP2021/029362
Other languages
French (fr)
Japanese (ja)
Inventor
哲生 森田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022044780A1 publication Critical patent/WO2022044780A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • This disclosure relates to a power supply system.
  • a power supply system that is applied to a vehicle and supplies electric power to various devices of this vehicle is known.
  • this power supply system when the vehicle is driven, an abnormality occurs in the system that supplies electric power to the electric load that performs the functions necessary for driving the vehicle, such as the electric brake device and the electric steering device, and the function is lost due to this. If you do, you will not be able to continue driving the vehicle.
  • a device having a first power source and a second power source as a power source for supplying electric power to an electric load is known so as not to lose its function even when an abnormality occurs while the vehicle is in operation.
  • a first power supply having a first load and a second load as an electric load for performing one function and including a first power supply connected to the first load is included.
  • Those having a system and a second system including a second power source connected to the second load are known.
  • an inter-system switch is provided in the connection path connecting each system, and the inter-system switch is opened when the controller determines that an abnormality has occurred in one system.
  • a configuration in which the second power supply of the second system is used as a storage battery can be considered.
  • the inter-system switch is opened due to an abnormality in the first system
  • power is supplied from the storage battery which is the second power source, but in a low temperature state or a high load state, for example, the first system is used.
  • the electric load will not operate properly at the start of power supply from the storage battery in the two systems.
  • the present disclosure has been made to solve the above problems, and an object thereof is to provide a power supply system capable of appropriately supplying electric power to an electric load in a power supply system having a plurality of power supply systems. ..
  • the first means for solving the above-mentioned problems is an electric load, a first system including a first power source connected to the electric load, and a second system including a second power source connected to the electric load.
  • a power supply system including an inter-system switch provided in a connection path connecting the first system and the second system to each other, wherein the first power supply is a power supply that enables driving of the electric load.
  • the second power supply includes a plurality of storage batteries that can be charged by the power supply voltage of the first power supply, and has an abnormality determination unit for determining that an abnormality has occurred in the first system and an abnormality determination unit.
  • the state control unit that opens the inter-system switch and the plurality of storage batteries are connected in parallel when charging the plurality of storage batteries, and the plurality of storage batteries are connected in parallel from the first power source.
  • the first control unit in the first state of supplying power to the storage batteries of the above and the plurality of storage batteries are connected in series, and the voltage is higher than the power supply voltage of the first power supply.
  • it includes a second control unit that is in a second state of supplying power to the electric load from the plurality of storage batteries at a voltage higher than the required voltage of the electric load.
  • a first system including a first power supply and a second system including a second power supply are provided. Therefore, redundant power supply by the first power supply and the second power supply becomes possible for the electric load. Further, an inter-system switch is provided in the connection path connecting the first and second systems to each other. Therefore, if it is determined that an abnormality has occurred in one of the systems, the switch between the systems is opened to operate the electric load by supplying power from the power supply of the other system in which the abnormality has not occurred. It is possible to continue.
  • the inter-system switch when the inter-system switch is opened due to the occurrence of an abnormality in the first system, power is supplied from a plurality of storage batteries in the second power supply in the second system, and at that time, for example, in a low temperature state. It is desirable to keep the storage battery voltage of the second power supply high, considering that it may be in a high load state.
  • the configuration of charging the storage battery voltage to a high voltage there is a concern that the power supply burden from the first power supply and the cost burden of the power supply system will increase.
  • a plurality of storage batteries when a plurality of storage batteries are charged, a plurality of storage batteries are connected in parallel, and when a plurality of storage batteries are discharged, a plurality of storage batteries are connected in series.
  • the plurality of storage batteries when the plurality of storage batteries are charged, the plurality of storage batteries are connected in parallel, so that the power supply burden for charging and the cost burden of the power supply system can be reduced.
  • a plurality of storage batteries are connected in series to have a voltage or an electric load higher than the power supply voltage of the first power supply.
  • the electric load Since the electric load is supplied with a voltage higher than the required voltage, the electric load can be operated properly even in a low temperature state or a high load state. As a result, it is possible to properly supply electric power to an electric load in a power supply system having a plurality of power supply systems.
  • the second means is provided between the connection point with the connection path in the second system and the second power source, and includes a discharge control unit that regulates the discharge of the plurality of storage batteries in a series state.
  • a discharge control unit is provided between the connection point with the connection path in the second system and the second power supply, and the discharge control unit regulates the discharge of a plurality of storage batteries in a series state.
  • the total voltage of the plurality of storage batteries becomes a voltage higher than the power supply voltage of the first power supply or a voltage higher than the required voltage of the electric load, and is in a fully charged state.
  • a charge determination unit for determining that the battery is charged is provided, and the discharge regulation unit regulates the discharge of the plurality of storage batteries in a series state when the charge determination unit determines that the charge is fully charged.
  • the discharge control unit regulates the discharge of multiple storage batteries in a series state and in a fully charged state.
  • the discharge control unit includes a battery switch that opens or closes a path between the connection point with the connection path and the second power supply in the second system
  • the state control unit includes the state control unit.
  • a battery switch is provided as a discharge control unit, and the inter-system switch and the battery switch are linked to open and close each based on the presence or absence of an abnormality in the first system.
  • the fifth means is a power supply system mounted on a vehicle, wherein the electric load is a load that performs at least one function necessary for driving in the vehicle, and also performs a driving support function of the vehicle.
  • the vehicle is capable of traveling in the first mode using the driving support function and traveling in the second mode without using the driving support function, and the first control unit is in the second mode.
  • the state control unit permits switching to the first mode when the discharge of the plurality of storage batteries is restricted by the discharge control unit.
  • a power supply system applied to a vehicle having a first load and a second load as a function necessary for driving and performing a driving support function, driving and driving in the first mode using the driving support function and driving. Some can switch between driving in the second mode without using the support function.
  • the first state is set in the second mode, and when a plurality of storage batteries are fully charged in the second mode and discharge is restricted, switching to the first mode is permitted. As a result, even if an abnormality occurs in the first system in the first mode in which the driving support function is used, it is possible to continue driving the electric load using a plurality of fully charged storage batteries, and the driving support function Can be used continuously.
  • the discharge control unit includes a charging unit that charges a plurality of storage batteries connected in parallel to a voltage lower than the power supply voltage of the first power source by supplying power from the first power source, and the discharge regulating unit has the second path. To regulate the discharge of the plurality of storage batteries in the second system.
  • the first path and the second path are provided in parallel with each other between the connection point with the connection path in the second system and the second power supply, and in the first path, the first path is provided by the charging unit.
  • Multiple storage batteries are charged at a voltage lower than the power supply voltage of the power supply.
  • the discharge regulating unit regulates the discharge of a plurality of storage batteries in the second system.
  • the seventh means the first path and the second path provided in parallel with each other between the connection point with the connection path and the second power supply in the second system, and the first path are provided.
  • An open / close switch for opening or closing the first path is provided, and the discharge regulating unit is provided in the second path to regulate the flow of current from the connection point to the plurality of storage batteries in the second path. It also includes a rectifying element that causes a predetermined voltage difference between the voltage of the plurality of storage batteries connected in series and the power supply voltage.
  • the first path and the second path are provided in parallel with each other between the connection point with the connection path in the second system and the second power supply, and the battery switch is closed in the first path.
  • the plurality of storage batteries are charged, and when the battery switch is opened, the charging of the plurality of storage batteries is stopped.
  • a rectifying element as a discharge regulating unit is provided in the second path, and the rectifying element regulates the flow of current from the connection point to the plurality of storage batteries in the second path, and a plurality of connected in series. A predetermined voltage difference is created between the voltage of the storage battery and the voltage of the power supply.
  • the state in which the voltage is higher than the power supply voltage of the first power supply is maintained.
  • the voltage on the electric load side in the second system drops, and the batteries are discharged from a plurality of storage batteries connected in series, enabling early power supply to the electric load. It has become.
  • the first control unit acquires the drive amount information indicating the drive amount of the electric load, and the second control unit has the drive amount indicated by the drive amount information more than a predetermined threshold value.
  • the second state is set.
  • the second state is set when the drive amount of the electric load is switched from the state smaller than the threshold value to the state larger than the threshold value.
  • the ninth means when the first control unit switches from a state in which the drive amount indicated by the drive amount information is smaller than the threshold value to a state in which the drive amount is larger than the threshold value, and then from a state in which the drive amount is larger than the threshold value to a state in which the drive amount is smaller than the threshold value. In addition, the second state is switched to the first state, and the plurality of storage batteries are charged.
  • the second state is switched to the first state. Changed to charge multiple storage batteries. Therefore, even when a plurality of storage batteries are temporarily discharged in the normal state of the first system, the plurality of storage batteries can be fully charged thereafter. Therefore, when an abnormality occurs in the first system, it is possible to continue driving the electric load by using a plurality of storage batteries in a fully charged state.
  • the first control unit acquires the driving amount information indicating the driving amount of the electric load, and when the driving amount indicated by the driving amount information is smaller than a predetermined specified value, the plurality of said.
  • the plurality of storage batteries are connected in parallel to charge the plurality of storage batteries individually, and when the drive amount indicated by the drive amount information is larger than the specified value, the plurality of storage batteries are connected in parallel to the plurality of storage batteries. Charge the storage battery at the same time.
  • the plurality of storage batteries include a first specific battery and a second specific battery provided between a predetermined first potential point and a second potential point, and the positive electrode of the first specific battery.
  • the terminal is connected to the first potential point by the first positive electrode side path and is connected to the second potential point by the first negative electrode side path, and the positive electrode terminal of the second specific battery is the second positive electrode.
  • a first changeover switch provided in the first negative electrode side path, which is connected to the first potential point by the side path and is connected to the second potential point by the second negative electrode side path, and the second changeover switch.
  • the second changeover switch provided in the positive electrode side path, the first connection point on the first specific battery side of the first negative electrode side path from the first changeover switch, and the second positive electrode side path.
  • the first control unit includes, in the first state, the third changeover switch provided in the conduction path between the second changeover switch and the second connection point on the second potential point side.
  • the first changeover switch and the second changeover switch are closed, the third changeover switch is opened, and the second control unit opens the first changeover switch and the second changeover switch in the second state.
  • the third changeover switch is closed, and the first control unit and the second control unit change the first changeover switch and the second changeover switch at the time of switching between the first state and the second state.
  • the opening and closing of each changeover switch is controlled so that at least one of the switches and the third changeover switch are not closed at the same time.
  • each changeover switch when switching between the first state and the second state, each changeover switch is opened and closed so that at least one of the first changeover switch and the second changeover switch and the third changeover switch are not closed at the same time. I tried to control it. Thereby, the short circuit of the first specific battery and the second specific battery can be suppressed, and the first state and the second state can be appropriately switched.
  • FIG. 1 is an overall configuration diagram of the power supply system of the first embodiment.
  • FIG. 2 is a flowchart showing the procedure of the control process of the first embodiment.
  • FIG. 3 is a time chart showing an example of the control process of the first embodiment.
  • FIG. 4 is an overall configuration diagram of the power supply system of the second embodiment.
  • FIG. 5 is a flowchart showing the procedure of the control process of the second embodiment.
  • FIG. 6 is an overall configuration diagram of the power supply system according to the third embodiment.
  • FIG. 7 is a flowchart showing the procedure of the control process of the third embodiment.
  • FIG. 8 is a flowchart showing the procedure of the control process of the fourth embodiment.
  • the power supply system 100 is a system that supplies electric power to a general load 30 and a specific load 32.
  • the power supply system 100 includes a high-pressure storage battery 10, a DCDC converter (hereinafter referred to as a converter) 12, a first storage battery 14, a second storage battery 16 as a first specific battery, and a third storage battery 18 as a second specific battery. It includes a first switch unit 20, a relay switch SMR (system main relay switch), and a control device 40.
  • the high-voltage storage battery 10 has a rated voltage (for example, several hundred volts) higher than that of the first to third storage batteries 14 to 18, and is, for example, a lithium ion storage battery.
  • the converter 12 is a voltage generation unit that converts the electric power supplied from the high-voltage storage battery 10 into the electric power of the power supply voltage VA and supplies it to the general load 30 and the specific load 32.
  • the power supply voltage VA is a voltage that enables driving of the general load 30 and the specific load 32.
  • the general load 30 is an electric load (hereinafter, simply a load) that is not used for operation control in a vehicle as a mobile body, and is, for example, an air conditioner, an audio device, a power window, or the like.
  • the specific load 32 is a load that performs at least one function used for driving control of the vehicle, for example, an electric power steering device 50 that controls the steering of the vehicle, an electric brake device 51 that applies a braking force to the wheels, and the like. It is a traveling control device 52 or the like that monitors the situation around the vehicle.
  • the specific load 32 corresponds to the "electrical load”.
  • the specific load 32 has a first load 34 and a second load 36 redundantly provided for each function so that all the functions are not lost even if an abnormality occurs.
  • the electric power steering device 50 has a first steering motor 50A and a second steering motor 50B.
  • the electric brake device 51 has a first brake device 51A and a second brake device 51B.
  • the travel control device 52 has a camera 52A and a laser radar 52B.
  • the first steering motor 50A, the first brake device 51A, and the camera 52A correspond to the first load 34
  • the second steering motor 50B, the second brake device 51B, and the laser radar 52B correspond to the second load 36. ..
  • the first load 34 and the second load 36 together realize one function, but each of them can realize a part of the function by itself.
  • the first steering motor 50A and the second steering motor 50B allow the vehicle to be freely steered, and each steering motor 50A is subject to certain restrictions such as steering speed and steering range. , 50B enables steering of the vehicle.
  • Each specific load 32 realizes a function of supporting control by the driver in manual operation. Further, each specific load 32 realizes a function required for automatic driving in automatic driving that automatically controls behavior such as running and stopping of the vehicle. Therefore, the specific load 32 can also be said to be a load that performs at least one function necessary for driving the vehicle.
  • the first load 34 is connected to the converter 12 via the path LA1 in the first system, and the first storage battery 14 and the general load 30 are connected to the path LA1 in the first system.
  • the first storage battery 14 is, for example, a lead storage battery.
  • the first system ES1 is configured by the converter 12, the first storage battery 14, the general load 30, and the first load 34 connected by the path LA1 in the first system.
  • the high-voltage storage battery 10 and the converter 12 correspond to the "first power source".
  • the second load 36 is connected to the second storage battery 16 and the third storage battery 18 via the path LA2 in the second system.
  • the second storage battery 16 and the third storage battery 18 are, for example, lithium ion storage batteries.
  • the second system ES2 is configured by the second storage battery 16, the third storage battery 18, and the second load 36 connected by the path LA2 in the second system.
  • the second storage battery 16 and the third storage battery 18 correspond to "a second power source and a plurality of storage batteries".
  • the first switch unit 20 is provided in the connection path LB that connects each system to each other. One end of the connection path LB is connected to the first intra-system path LA1 at the connection point PA, and the other end of the connection path LB is connected to the second intra-system path LA2 at the connection point PB.
  • the first switch unit 20 includes a first switching element (hereinafter, simply the first switch) SW1.
  • a first switching element hereinafter, simply MOSFET
  • an N-channel MOSFET hereinafter, simply MOSFET
  • the first switch SW1 corresponds to an "intersystem switch".
  • the first current detection unit 27 is provided in the path LA1 in the first system, and the second current detection unit 28 is provided in the connection path LB.
  • the first current detection unit 27 is provided in a portion of the path LA1 in the first system between the connection point PA and the first load 34, and detects the magnitude and direction of the current IA in the system flowing through the portion. do.
  • the second current detection unit 28 is provided in the portion of the connection path LB on the first system ES1 side of the first switch unit 20, and detects the magnitude and direction of the inter-system current IB flowing through the portion.
  • the relay switch SMR is provided in a portion between the connection point PB in the path LA2 in the second system and the second storage battery 16 and the third storage battery 18, and the portion is opened or closed. By opening and closing the relay switch SMR, the second storage battery 16 and the third storage battery 18 can be switched between energization and energization cutoff.
  • the relay switch SMR corresponds to the "discharge control unit, battery switch".
  • the second storage battery 16 and the third storage battery 18 are configured to be rechargeable by the power supply from the converter 12. Specifically, by closing the first switching element SW1 and the relay switch SMR, the second storage battery 16 and the third storage battery 18 are charged by the power supply voltage VA.
  • the control device 40 generates a first switching signal SC1 in order to switch the first switch SW1 based on the detection values of the first and second current detection units 27 and 28, and issues a command by the first switching signal SC1. Output to the first switch SW1. Further, the control device 40 generates a relay switching signal SR in order to switch the relay switch SMR, and outputs a command by the relay switching signal SR to the relay switch SMR. Further, the control device 40 generates a control signal SD in order to control the operation of the converter 12, and outputs a command by the control signal SD to the converter 12. The operation state and the operation stop state of the converter 12 are switched by the control signal SD.
  • control device 40 is connected to the notification unit 44, the IG switch 45, and the input unit 46, and controls these.
  • the notification unit 44 is a device that visually or audibly notifies the driver, and is, for example, a display or a speaker installed in a vehicle interior.
  • the IG switch 45 is a vehicle start switch.
  • the control device 40 monitors the opening or closing of the IG switch 45.
  • the input unit 46 is a device that accepts the operation of the driver, for example, a handle, a lever, a button, a pedal, and a voice input device.
  • the control device 40 manually drives and automatically drives the vehicle using the above-mentioned specific load 32.
  • the control device 40 includes a well-known microcomputer including a CPU, ROM, RAM, flash memory, and the like.
  • the CPU realizes various functions for manual operation and automatic operation by referring to the arithmetic program and control data in the ROM.
  • manual driving represents a state in which the vehicle is controlled by the operation of the driver.
  • automatic driving represents a state in which the vehicle is driven and controlled by the control content by the control device 40 regardless of the operation of the driver.
  • automatic driving refers to automatic driving of level 3 or higher among the automatic driving levels from level 0 to level 5 defined by the National Highway Traffic Safety Administration (NHTSA).
  • Level 3 is a level at which the control device 40 controls both steering wheel operation and acceleration / deceleration while observing the traveling environment.
  • control device 40 can implement driving support functions such as LKA (Lane Keeping Assist), LCA (Lane Change Assist), and PCS (Pre-Crash Safety) by using the specific load 32 described above.
  • the control device 40 can switch the driving mode of the vehicle between a first mode in which the driving support function is used and a second mode in which the driving support function is not used, and the vehicle can travel in each driving mode. ..
  • the control device 40 switches between the first mode and the second mode according to the driver switching instruction via the input unit 46.
  • the first mode includes a mode in which the driver manually drives the vehicle using the driving support function, and a mode in which the vehicle is automatically driven.
  • the second mode is a mode in which the driver manually drives the vehicle without using the driving support function.
  • the control device 40 determines whether or not an abnormality has occurred in the first system ES1 and the second system ES2, and if it is determined that no abnormality has occurred in any of the systems ES1 and ES2, Automatic driving and driving support of the vehicle are performed using the first load 34 and the second load 36.
  • the first and second loads 34 and 36 cooperate to carry out one function necessary for automatic driving and driving support.
  • the abnormality is a power failure abnormality such as a ground fault or a disconnection.
  • the first switch SW1 is opened to electrically insulate the first system ES1 and the second system ES2.
  • the loads 34 and 36 of the other system ES1 and ES2 in which the abnormality has not occurred can be driven.
  • the second storage battery 16 and the third storage battery 18 can be switched between a state in which they are connected in series and a state in which they are connected in parallel.
  • the positive electrode terminal of the second storage battery 16 is connected to the relay switch SMR by the first positive electrode side path LC1
  • the negative electrode terminal of the second storage battery 16 is connected to the ground by the first negative electrode side path LD1.
  • the positive electrode terminal of the third storage battery 18 is connected to the first positive electrode side path LC1 at the connection point PC by the second positive electrode side path LC2, and the negative electrode terminal of the second storage battery 16 is connected to the connection point by the second negative electrode side path LD2. In PD, it is connected to the first negative electrode side path LD1.
  • connection point PC corresponds to the "first potential point”
  • connection point PD corresponds to the "second potential point”.
  • the second switch unit 22 is provided on the second storage battery 16 and the third storage battery 18 side of the relay switch SMR.
  • the second switch unit 22 includes second to fourth switching elements (hereinafter, simply second to fourth switches) SW2 to SW4.
  • the second switch SW2 is provided in the first negative electrode side path LD1
  • the third switch SW3 is provided in the second positive electrode side path LC2.
  • the fourth switch SW4 is provided in the conduction path LE connecting the second positive electrode side path LC2 and the first negative electrode side path LD1.
  • One end of the conduction path LE is connected between the second storage battery 16 and the second switch SW2 of the first negative electrode side path LD1 at the connection point PE, and the other end of the conduction path LE is at the connection point PF. 2 Of the positive electrode side paths LC2, the third switch SW3 and the third storage battery 18 are connected to each other.
  • the connection point PE corresponds to the "first connection point”
  • the connection point PF corresponds to the "second connection point”.
  • MOSFETs are used as the second to fourth switches SW2 to SW4.
  • the control device 40 generates the second to fourth switching signals SC2 to SC4 in order to switch the second to fourth switches SW2 to SW4, and issues commands from the second to fourth switching signals SC2 to SC4 to the second to the second.
  • the second switch SW2 corresponds to the "first changeover switch”
  • the third switch SW3 corresponds to the "second changeover switch”
  • the fourth switch SW4 corresponds to the "third changeover switch”. do.
  • the control device 40 switches between a state in which the second storage battery 16 and the third storage battery 18 are connected in parallel and a state in which they are connected in series by the second to fourth switching signals SC2 to SC4. Specifically, the second and third switches SW2 and SW3 are closed, and the fourth switch SW4 is opened, so that the second storage battery 16 and the third storage battery 18 are connected in parallel. On the other hand, when the second and third switches SW2 and SW3 are opened and the fourth switch SW4 is opened, the second storage battery 16 and the third storage battery 18 are connected in series.
  • the second storage battery 16 and the third storage battery 18 are charged by the power supply from the converter 12, the second storage battery 16 and the third storage battery 18 are connected in parallel. Further, when the second storage battery 16 and the third storage battery 18 are discharged, the opening or closing of the second to fourth switches SW2 to SW4 is controlled so that the second storage battery 16 and the third storage battery 18 are connected in series. The control process is now executed.
  • the second storage battery 16 and the third storage battery 18 are charged, the second storage battery 16 and the third storage battery 18 are connected in parallel, and the second storage battery 16 and the third storage battery 18 are connected without boosting the power supply voltage VA. 18 is charged.
  • This makes it possible to reduce, for example, the power supply burden of the converter 12 in charging and the cost burden of the power supply system 100 by providing the boost converter in the second system ES2.
  • the second storage battery 16 and the third storage battery 18 are connected in series. Power is supplied to the loads 34 and 36 at a voltage higher than the power supply voltage VA. As a result, the second load 36 can be properly operated even in a low temperature state or a high load state.
  • FIG. 2 shows a flowchart of the control process of the present embodiment.
  • the control device 40 When the IG switch 45 is closed, the control device 40 repeatedly executes the control process at predetermined control cycles. At the beginning of closing the IG switch 45, the operation mode of the vehicle is set to the second mode, the first switch SW1 is closed, and the converter 12 is in the operating state.
  • step S10 it is determined whether or not the driving mode of the vehicle is the second mode. If affirmative determination is made in step S10, the remaining capacity SA of the second storage battery 16 and the third storage battery 18 is calculated in step S12.
  • the remaining capacity SA is, for example, the total value of SOC (State Of Charge) indicating the state of charge of each of the storage batteries 16 and 18.
  • SOC State Of Charge
  • the remaining capacity SA uses the current integrated value which is the time integrated value of the charge / discharge current of each of the storage batteries 16 and 18. Is calculated.
  • step S14 it is determined whether or not the remaining capacity SA calculated in step S12 is larger than the predetermined capacity threshold value Sth.
  • the capacity threshold Sth is a capacity at which the total voltage of the second storage battery 16 and the third storage battery 18 becomes a voltage higher than the power supply voltage VA by a predetermined value.
  • the remaining capacity SA is smaller than the capacity threshold Sth, the total voltage of the second storage battery 16 and the third storage battery 18 is not higher than a predetermined value than the power supply voltage VA, and the second storage battery 16 and the third storage battery 18 are fully charged. Not in a state. In this case, since the precondition for executing the first mode is not satisfied, a negative determination is made in step S14, and the process proceeds to steps S42 and S44.
  • step S14 the relay switch SMR is opened to stop the charging of the second storage battery 16 and the third storage battery 18.
  • the relay switch SMR is closed.
  • the process of step S14 corresponds to the "charge determination unit".
  • step S17 the second storage battery 16 and the third storage battery 18 are switched to the series connection by opening the second and third switches SW2 and SW3 and closing the fourth switch SW4.
  • the 4th switch SW4 is closed after opening the 2nd and 3rd switches SW2 and SW3, and at least one of the 2nd and 3rd switches SW2 and SW3 and the 4th switch SW4 are not closed at the same time. To do so.
  • the storage battery voltage VB of the second storage battery 16 and the third storage battery 18 is substantially doubled.
  • the relay switch SMR is opened prior to the series connection of the second storage battery 16 and the third storage battery 18, so that the discharge of the second storage battery 16 and the third storage battery 18 in the series connection is restricted. Will be done.
  • step S18 the operation mode of the vehicle is allowed to be switched from the second mode to the first mode, and the control process is terminated.
  • the switching to the first mode is performed, for example, when a switching instruction such as an instruction to use the driving support function or an instruction for automatic driving is input from the driver via the input unit 46.
  • step S10 it is determined in step S20 whether the driver is being notified.
  • the driver notification notifies the driver that an abnormality has occurred in either the first system ES1 or the second system ES2, informs the driver that the first mode is to be canceled, and switches to the second mode. Is to encourage.
  • step S20 If a negative determination is made in step S20, it is determined that an abnormality has occurred in either the first system ES1 or the second system ES2 in steps S22 and S24. Specifically, in step S22, it is determined whether or not an abnormality has occurred in the first system ES1. If a negative determination is made in step S22, it is determined in step S24 whether or not an abnormality has occurred in the second system ES2. In this embodiment, the process of step S22 corresponds to the "abnormality determination unit".
  • the occurrence of an abnormality can be determined by the magnitude of each of the currents IA and IB detected by the first and second current detection units 27 and 28. For example, when a ground fault occurs in the first system ES1, the magnitude of the in-system current IA detected by the first current detection unit 27 is equal to or larger than a predetermined current threshold value Is for determining the ground fault. Further, for example, when a ground fault occurs in the second system ES2, the magnitude of the inter-system current IB detected by the second current detection unit 28 becomes equal to or larger than the current threshold value Is. Therefore, it is possible to determine which system ES1 or ES2 the abnormality has occurred based on the magnitude of each of the currents IA and IB detected by the first and second current detection units 27 and 28.
  • step S24 If it is determined that no abnormality has occurred in any of the systems ES1 and ES2, a negative determination is made in step S24. In this case, the control process is terminated. As a result, the power supply from the converter 12 to the first and second loads 34 and 36 is continued, and the relay switch SMR is maintained in an open state. That is, when it is determined that no abnormality has occurred in any of the systems ES1 and ES2, and it is determined that the second storage battery 16 and the third storage battery 18 are in a fully charged state, the first switch SW1 is closed and the relay is relayed. The switch SMR is released. As a result, unnecessary discharge from the second storage battery 16 and the third storage battery 18 is suppressed.
  • step S26 the first switch SW1 is opened.
  • step S28 the relay switch SMR is closed to release the discharge suppression of the second storage battery 16 and the third storage battery 18.
  • the process of step S26 corresponds to the "state control unit”
  • the process of steps S26 and 28 corresponds to the "second control unit”.
  • step S30 a command to put the converter 12 into the operation stop state is output.
  • step S24 the first switch SW1 is opened in step S32. As a result, the power supply from the converter 12 in the first system ES1 to the first load 34 is continued.
  • step S36 the driver is notified via the notification unit 44 that the first mode is to be stopped, and the control process is terminated.
  • step S38 If an affirmative determination is made in step S20, it is determined in step S38 whether or not a switching instruction to the second mode has been input from the driver via the input unit 46. That is, it is determined whether or not there is a response from the driver in response to the notification. If a negative determination is made in step S38, the control process is terminated, and the vehicle runs in the first mode using the loads 34 and 36 on the system side where no abnormality has occurred.
  • step S38 the driving mode of the vehicle is switched from the first mode to the second mode in step S40, and the control process is terminated.
  • steps S42 and S44 that is, when the driving mode of the vehicle is the second mode, it is determined that an abnormality has occurred in either the first system ES1 or the second system ES2. Specifically, in step S42, it is determined whether or not an abnormality has occurred in the first system ES1. If a negative determination is made in step S42, it is determined in step S44 whether or not an abnormality has occurred in the second system ES2.
  • step S44 If it is determined that no abnormality has occurred in any of the systems ES1 and ES2, a negative determination is made in step S44.
  • step S45 the second storage battery 16 and the third storage battery 18 are switched to parallel connection by closing the second and third switches SW2 and SW3 and opening the fourth switch SW4.
  • the second and third switches SW2 and SW3 are closed after the fourth switch SW4 is opened, and at least one of the second and third switches SW2 and SW3 and the fourth switch SW4 are not closed at the same time. To do so.
  • step S46 the relay switch SMR is closed and the control process is terminated.
  • the processes of steps S45 and S46 correspond to the "first control unit".
  • the second storage battery 16 and the third storage battery 18 connected in parallel, power is supplied from the converter 12 to the second storage battery 16 and the third storage battery 18, and the second storage battery 16 and the third storage battery 18 are charged. It becomes the first state to be done. That is, when the driving mode of the vehicle is the second mode, the first state is set, and the process of step S14 described above is also performed in the first state.
  • step S42 if an affirmative determination is made in step S42, first, in step S47, the first switch SW1 is opened. In the following step S48, the second storage battery 16 and the third storage battery 18 are connected in series. As a result, a higher voltage can be discharged as compared with the case where the second storage battery 16 and the third storage battery 18 are connected in parallel. In the following step S50, a command to put the converter 12 into the operation stop state is output.
  • step S44 the first switch SW1 is opened in step S52.
  • step S54 the relay switch SMR is opened.
  • step S56 the driver is notified via the notification unit 44 that an abnormality has occurred in either the first system ES1 or the second system ES2, and the control process is terminated.
  • FIG. 3 shows an example of control processing.
  • FIG. 3 shows the transition between the load voltage VD and the storage battery voltage VB when a ground fault abnormality (hereinafter, simply ground fault) occurs in the first system ES1 while the vehicle is running in the first mode.
  • the load voltage VD indicates the voltage applied to the second load 36, specifically, the voltage of the connection point PB in the second system ES2.
  • the storage battery voltage VB indicates the voltage between the terminals of the second storage battery 16 and the third storage battery 18, and specifically, the connection point PC between the first positive electrode side path LC1 and the second positive electrode side path LC2 in the second system ES2. Indicates the voltage of. Therefore, the storage battery voltage VB when the second storage battery 16 and the third storage battery 18 are connected in series is twice the voltage of the storage battery voltage VB when the second storage battery 16 and the third storage battery 18 are connected in parallel. Become.
  • FIG. 3 shows the transition of the state of the IG switch 45
  • (B) shows the transition of the operation mode of the vehicle
  • (C) shows the transition of the open / closed state of the first switch SW1.
  • (D) shows the transition of the open / closed state of the relay switch SMR
  • (E) shows the transition of the open / closed state of the second and third switches SW2 and SW3,
  • (F) shows the transition of the open / closed state of the fourth switch SW4. Shows the transition of.
  • G shows the transition of the connection state of the second storage battery 16 and the third storage battery 18,
  • (H) shows the transition of the load voltage VD, and
  • (I) shows the transition of the storage battery voltage VB.
  • (J) shows the transition of the in-system current IA in the first system ES1.
  • the first to fourth switches SW1 to SW4 and the relay switch SMR are open, and the converter 12 operates. It has been switched to the stopped state. Therefore, during the opening period of the IG switch 45, the load voltage VD and the in-system current IA become zero.
  • the first switch SW1 When the IG switch 45 is closed at time t1, the first switch SW1 is closed and a command for switching the converter 12 to the operating state is output. As a result, the converter 12 is switched to the operating state, the load voltage VD rises to a predetermined operating voltage VM as the power supply voltage VA rises, and the vehicle can run in the second mode.
  • the operating voltage VM is a voltage within the drive voltage range of the first and second loads 34 and 36.
  • the second and third switches SW2 and SW3 are closed, and the relay switch SMR is closed.
  • the first state is set in which the converter 12 is charged by the power supply voltage VA.
  • the storage battery voltage VB rises to a predetermined boosted voltage VH (see FIG. 3 (I)).
  • the boosted voltage VH is a voltage at which the second storage battery 16 and the third storage battery 18 are in a fully charged state, and is a voltage lower than the operating voltage VM and higher than half of the operating voltage VM.
  • the relay switch SMR When the storage battery voltage VB rises to the boost voltage VH at time t2 and the second storage battery 16 and the third storage battery 18 are in a fully charged state, the relay switch SMR is released. Further, the second and third switches SW2 and SW3 are opened at time t3 after the relay switch SMR is opened. As a result, the second storage battery 16 and the third storage battery 18 are in a disconnected state in which all of the second to fourth switches SW2 to SW4 are open.
  • the fourth switch SW4 is closed at time t4 after the second and third switches SW2 and SW3 are opened.
  • the 4th switch SW4 is closed after the 2nd and 3rd switches SW2 and SW3 are opened, at least one of the 2nd and 3rd switches SW2 and SW3 and the 4th switch SW4 are erroneously closed at the same time. It is possible to prevent short-circuiting of at least one of the second storage battery 16 and the third storage battery 18.
  • the fourth switch SW4 when the fourth switch SW4 is closed, the second storage battery 16 and the third storage battery 18 are connected in series, and in the state of being connected in series, the discharge is regulated by the relay switch SMR.
  • the storage battery voltage VB becomes an additional voltage of 2 VH, which is the sum of the boosted voltages VH of the storage batteries 16 and 18.
  • the operation mode of the vehicle can be switched from the second mode to the first mode.
  • the driving mode of the vehicle is switched from the second mode to the first mode at time t4.
  • the first switch SW1 is closed.
  • a ground fault occurs in the first system ES1 at time t5.
  • the power supply voltage VA and the load voltage VD decrease.
  • the in-system current IA increases, and at the subsequent time t6, the in-system current IA becomes equal to or higher than the current threshold value Is. As a result, it is determined that a ground fault has occurred in the first system ES1. In this case, at time t6, the first switch SW1 is opened and the converter 12 is switched to the operation stop state. This reduces the in-system current IA.
  • the relay switch SMR is closed.
  • the load voltage VD rises due to the power supply from the second storage battery 16 and the third storage battery 18 to the second load 36.
  • the storage battery voltage VB rises to an added voltage of 2 VH higher than the boosted voltage VH, so that the load voltage VD rises to an added voltage of 2 VH. Therefore, a predetermined voltage difference ⁇ V can be secured between the load voltage VD and the threshold voltage Vth which is the lower limit of the drive voltage of the first and second loads 34 and 36.
  • the second load 36 can be properly operated even in a low temperature state or a high load state.
  • the second storage battery 16 and the third storage battery 18 are connected in series. Therefore, when a ground fault occurs in the first system ES1, power can be supplied to the second load 36 at an early stage.
  • the driving mode of the vehicle is switched from the first mode to the second mode at time t7.
  • the second storage battery 16 and the third storage battery 18 when the second storage battery 16 and the third storage battery 18 are charged, the second storage battery 16 and the third storage battery 18 are connected in parallel, and the second storage battery 16 and the third storage battery 18 are discharged.
  • the second storage battery 16 and the third storage battery 18 are connected in series.
  • the second storage battery 16 and the third storage battery 18 when the second storage battery 16 and the third storage battery 18 are charged, the second storage battery 16 and the third storage battery 18 are connected in parallel, so that the power supply burden for charging and the cost of the power supply system 100 are set. The burden can be reduced.
  • the second storage battery 16 and the third storage battery 18 when the power is supplied from the second storage battery 16 and the third storage battery 18 in the second system ES2 due to the occurrence of an abnormality in the first system ES1, the second storage battery 16 and the third storage battery 18 are connected in series.
  • the second load 36 can be properly operated even in a low temperature state or a high load state.
  • power can be appropriately supplied to the loads 34 and 36.
  • a second state in which the second storage battery 16 and the second storage battery 18 are connected in parallel when the first state in which the second storage battery 16 and the second storage battery 18 are connected in parallel and the second state in which the second storage battery 18 is connected in series can be switched.
  • At least one of the second storage battery 16 and the second storage battery 18 when at least one of the third switches SW2 and SW3 and the fourth switch SW4 for connecting the second storage battery 16 and the second storage battery 18 in series are closed at the same time. Is concerned that it will be short-circuited.
  • the present embodiment when switching between the first state and the second state, at least one of the second and third switches SW2 and SW3 and the fourth switch SW4 are not closed at the same time, so that the switches SW2 to SW4 are not closed at the same time. Changed to control the opening and closing of. As a result, it is possible to suppress a short circuit between the second storage battery 16 and the second storage battery 18 and appropriately switch between the first state and the second state.
  • a relay switch SMR is provided between the connection point PB in the second system ES2 and the second storage battery 16 and the third storage battery 18, and the second storage battery 16 and the second storage battery 16 in a series state are provided by the relay switch SMR.
  • the discharge of the third storage battery 18 is regulated. As a result, even if the second storage battery 16 and the third storage battery 18 are in a series state, the electric charge stored in the second storage battery 16 and the third storage battery 18 can be maintained. Further, by keeping the second storage battery 16 and the third storage battery 18 in series, electric power can be supplied from the second storage battery 16 and the third storage battery 18 to the loads 34 and 36 at an early stage as needed.
  • the relay switch SMR is configured to regulate the discharge of a plurality of storage batteries in a series state and a fully charged state.
  • the relay switch SMR is configured to regulate the discharge of a plurality of storage batteries in a series state and a fully charged state.
  • the first switch SW1 and the relay switch SMR are linked to open and close each of them based on the presence or absence of an abnormality in the first system ES1.
  • the discharges of the second storage battery 16 and the third storage battery 18 can be properly managed both when the first system ES1 is normal and when an abnormality occurs in the first system ES1.
  • the power supply system 100 is applied to a vehicle having a first load 34 and a second load 36 as a specific load 32 that is a function necessary for driving and implements a driving support function, and is a first method that uses the driving support function. It is possible to switch between driving in a mode and driving in a second mode that does not use the driving support function.
  • the second storage battery 16 and the third storage battery 18 are connected in parallel, and in the state of being connected in parallel, the first state is set to be charged by the power supply voltage VA of the converter 12. Then, when the second storage battery 16 and the third storage battery 18 are fully charged in the second mode and the discharge is restricted, the switching to the first mode is permitted.
  • the second load 36 can be driven by using the second storage battery 16 and the third storage battery 18 in the fully charged state. It can be continued, and the driving support function can be used continuously.
  • the relay switch SMR may not be provided in the second system ES2.
  • the control device 40 can control the charging / discharging of the second storage battery 16 and the third storage battery 18 by controlling the second to fourth switches SW2 to SW4 instead of the relay switch SMR.
  • the second and third switches SW2 and SW3 are opened, and the fourth switch SW4 is closed.
  • the second and third switches SW2 and SW3 are closed and the fourth switch SW4 is opened.
  • the second to fourth switches SW2 to SW4 are opened. This makes it possible to simplify the configuration of the power supply system 100.
  • This embodiment differs from the first embodiment in that a third switch unit 24 is provided in place of the relay switch SMR.
  • the first path LF1 and the second path LF2 provided in parallel with each other are provided between the connection point PB in the second system ES2 and the second storage battery 16 and the third storage battery 18.
  • a third switch unit 24 is provided in the first path LF1 and the second path LF2.
  • the first path LF1 is provided with a fifth switching element (hereinafter, simply the fifth switch) SW5.
  • the fifth switch SW5 opens or closes the first path LF1.
  • the fifth switch SW5 corresponds to an "open / close switch”.
  • the second path LF2 is provided with first to third diodes DA1 to DA3 and a sixth switching element (hereinafter, simply the sixth switch) SW6 connected in series.
  • the diodes DA1 to DA3 are arranged so that the cathode is on the connection point PB side and the anode is on the second storage battery 16 and the third storage battery 18 side, and the second storage battery 16 and the second storage battery 16 and the second diode are arranged from the connection point PB in the second path LF2. 3 Regulate the flow of current to the storage battery 18.
  • each diode DA1 to DA3 has a predetermined forward voltage drop amount (for example, 0.7V). Therefore, the storage battery voltage VB of the connection point PC located closer to the second storage battery 16 and the third storage battery 18 than the third switch unit 24, and the power supply voltage of the converter 12 applied to the connection point PB side of the third switch unit 24.
  • a voltage difference due to the total value of the forward voltage drops of the first to third diodes DA1 to DA3 (hereinafter, voltage difference due to the first to third diodes DA1 to DA3) is generated between the VA and the VA.
  • the sixth switch SW6 is provided on the second storage battery 16 and the third storage battery 18 side of the first to third diodes DA1 to DA3 in the second path LF2.
  • the first to third diodes DA1 to DA3 correspond to the "discharge control unit and rectifying element".
  • MOSFETs are used as the 5th and 6th switches SW5 and SW6.
  • a fifth diode DA5 is connected in parallel to the fifth switch SW5 as a parasitic diode
  • a sixth diode DA6 is connected in parallel to the sixth switch SW6 as a parasitic diode.
  • the diodes DA5 and DA6 are arranged so that the cathode is on the second storage battery 16 and the third storage battery 18 side and the anode is on the connection path LB side in each path LF1 and LF2. Therefore, in the second path LF2, the first to third diodes DA1 to DA3 and the sixth diode DA6 are provided so as to be in opposite directions.
  • the fifth diode DA5 regulates the flow of current from the second storage battery 16 and the third storage battery 18 to the connection point PB, and also regulates the current flow from the connection point PB to the second storage battery 16 and the third storage battery 18. It is provided to allow the flow of current to.
  • the third switch unit 24 is composed of the first to third diodes DA1 to DA3 and the fifth and sixth switches SW5 and SW6.
  • the control device 40 In the control process, the control device 40 generates the fifth and sixth switching signals SC5 and SC6 in order to switch the fifth and sixth switches SW5 and SW6, and commands the fifth and sixth switching signals SC5 and SC6. Is output to the 5th and 6th switches SW5 and SW6. In the control process, the control device 40 closes the fifth switch SW5 in the first state in which the second storage battery 16 and the third storage battery 18 are connected in parallel and is charged by the power supply voltage VA of the converter 12. The second storage battery 16 and the third storage battery 18 are charged via the one-path LF1.
  • the second storage battery 16 and the third storage battery 18 are discharged via the first to third diodes DA1 to DA3.
  • the voltage difference between the first to third diodes DA1 to DA3 applies to the second load 36.
  • the voltage to be applied drops.
  • the power consumption of the second storage battery 16 and the third storage battery 18 will increase due to the voltage difference between the first to third diodes DA1 to DA3. Therefore, in the present embodiment, in the control process, the fifth switch SW5 is closed after the abnormality occurs in the first system ES1.
  • FIG. 5 shows a flowchart of the control process of the present embodiment.
  • the same processing as that shown in FIG. 2 above is given the same step number for convenience, and the description thereof will be omitted.
  • step S14 if affirmative determination is made in step S14, the fifth switch SW5 is opened, charging of the second storage battery 16 and the third storage battery 18 is stopped in step S60, and the process proceeds to step S17.
  • the fifth and sixth switches SW5 and SW6 are closed.
  • step S62 determines whether or not the first switch SW1 is open. If a negative determination is made in step S62, the first switch SW1 is opened in step S64. As a result, the discharge of the second storage battery 16 and the third storage battery 18 is started via the first to third diodes DA1 to DA3. In the following step S66, the fifth switch SW5 is closed. As a result, the second storage battery 16 and the third storage battery 18 are discharged by the first path LF1 and the second path LF2. In the following step S68, a command to put the converter 12 into the operation stop state is output, and the control process is terminated.
  • step S62 determines whether the processes of steps S64 to S68 have already been performed. If an affirmative determination is made in step S62, that is, if the processes of steps S64 to S68 have already been performed, the sixth switch SW6 is released in step S70, and the process proceeds to step S36. As a result, the discharge of the second storage battery 16 and the third storage battery 18 via the first to third diodes DA1 to DA3 is stopped, and the second storage battery 16 and the third storage battery 18 are discharged by the second path LF2.
  • step S24 if an affirmative determination is made in step S24, that is, if it is determined that an abnormality has occurred in the second system ES2, the first switch SW1 is released in step S32. In the following step S72, the sixth switch SW6 is released, and the process proceeds to step S36. As a result, the discharge of the second storage battery 16 and the third storage battery 18 is stopped.
  • step S44 the first switch SW1 is opened in step S52.
  • step S74 the fifth and sixth switches SW5 and SW6 are opened, and the process proceeds to step S56.
  • step S44 the second storage battery 16 and the third storage battery 18 are connected in parallel in step S45.
  • step S74 the fifth and sixth switches SW5 and SW6 are closed to end the control process.
  • the first path LF1 and the second path LF2 are provided in parallel with each other between the connection point PB in the second system ES2 and the second storage battery 16 and the third storage battery 18.
  • the first path LF1 the second storage battery 16 and the third storage battery 18 are charged by closing the fifth switch SW5, and the second storage battery 16 and the third storage battery 18 are charged by opening the fifth switch SW5. Is stopped.
  • the first to third diodes DA1 to DA3 are provided in the second path LF2, and the second storage battery 16 and the third storage battery are provided from the connection point PB in the second path LF2 by the first to third diodes DA1 to DA3.
  • the flow of current to 18 is regulated.
  • the first to third diodes DA1 to DA3 are used to cause a voltage difference between the storage battery voltage VB and the power supply voltage VA of the second storage battery 16 and the third storage battery 18 connected in series.
  • the second storage battery 16 and the third storage battery 18 in the series state are maintained in a state where the voltage is higher than the power supply voltage VA.
  • the second storage battery 16 and the third storage battery 18 connected in series are discharged as the storage battery voltage VB drops in the second system ES2, and the second load 36 is performed. Early power supply to is possible.
  • the fifth switch SW5 is opened after an abnormality occurs in the first system ES1.
  • the load applied to the second load 36 due to the voltage difference between the first to third diodes DA1 to DA3 while enabling the early power supply to the second load 36 by the first to third diodes DA1 to DA3. It is possible to suppress a decrease in the voltage VD.
  • the load voltage VD may increase excessively.
  • the load voltage VD rises excessively, it is desired that the overvoltage be absorbed by the second storage battery 16 and the third storage battery 18.
  • the fifth diode DA5 connected in parallel to the fifth switch SW5 in the first path LF1 is provided.
  • the fifth diode DA5 regulates the flow of current from the second storage battery 16 and the third storage battery 18 to the connection point PB in the first path LF1, and the current from the connection point PB to the second storage battery 16 and the third storage battery 18. It is provided to allow the flow of. Therefore, when the load voltage VD rises excessively while the fifth switch SW5 is closed, the overvoltage can be absorbed by the second storage battery 16 and the third storage battery 18 via the fifth diode DA5.
  • the converter 26 is provided in the first path LF1.
  • the converter 12 is referred to as a first converter 12
  • the converter 26 is referred to as a second converter 26.
  • the second converter 26 charges the second storage battery 16 by converting the power into a voltage lower than the power supply voltage VA by supplying power from the first converter 12.
  • the second converter 26 corresponds to the "charging unit”.
  • the second path LF2 is provided with a seventh switching element (hereinafter, simply the seventh switch) SW7.
  • the seventh switch SW7 opens or closes the second path LF2.
  • a MOSFET is used as the seventh switch SW7.
  • a seventh diode DA7 is connected in parallel to the seventh switch SW7 as a parasitic diode.
  • the seventh diode DA7 is arranged so that the cathode is on the second storage battery 16 and the third storage battery 18 side and the anode is on the connection path LB side in the second path LF2.
  • the third switch unit 24 is configured by the second converter 26 and the seventh switch SW7.
  • the seventh switch SW7 corresponds to the "discharge control unit, battery switch".
  • the control device 40 In the control process, the control device 40 generates the 7th switching signal SC7 in order to switch the 7th switch SW7, and outputs a command from the 7th switching signal SC7 to the 7th switch SW7. Further, the control device 40 generates a control signal SD in order to control the operation of the second converter 26, and outputs a command by the control signal SD to the converter 26.
  • the control signal SD to the first converter 12 is referred to as a first control signal SD1
  • the control signal SD to the second converter 26 is referred to as a second control signal SD2.
  • the control device 40 opens the seventh switch SW7 in the first state in which the second storage battery 16 and the third storage battery 18 are connected in parallel and is charged by the power supply voltage VA of the converter 12.
  • the second storage battery 16 and the third storage battery 18 connected in parallel by the two converters 26 are constantly charged with a constant current or charged with a constant voltage.
  • charging by the second converter 26 is stopped, and the second storage battery 16 and the third storage battery 18 connected in series by the opened seventh switch SW7. Regulate discharge.
  • the seventh switch SW7 is closed, and the second storage battery 16 and the third storage battery 18 are discharged via the second path LF2.
  • FIG. 7 shows a flowchart of the control process of the present embodiment.
  • the same processing as that shown in FIG. 2 above is given the same step number for convenience, and the description thereof will be omitted.
  • step S14 if an affirmative determination is made in step S14, the operation of the second converter 26 is set to the stopped state in step S80, and the process proceeds to step S17.
  • the affirmative determination is made in step S14, the second converter 26 is in the operating state, and the seventh switch SW7 is open.
  • step S22 if an affirmative determination is made in step S22, that is, if it is determined that an abnormality has occurred in the first system ES1, the first switch SW1 is released in step S26.
  • step S82 the seventh switch SW7 is closed, and the process proceeds to step S30.
  • the second storage battery 16 and the third storage battery 18 are discharged via the seventh switch SW7.
  • step S42 If an affirmative determination is made in step S42, the first switch SW1 is opened in step S46. In the following step S48, the second storage battery 16 and the third storage battery 18 are connected in series. In the following step S84, the operation of the first converter 12 and the second converter 26 is stopped, and the process proceeds to step S56.
  • step S44 if an affirmative determination is made in step S44, the first switch SW1 is opened in step S52. In the following step S86, the seventh switch SW7 is released. In the following step S88, the operation of the second converter 26 is stopped, and the process proceeds to step S56. On the other hand, if a negative determination is made in step S44, the second storage battery 16 and the third storage battery 18 are connected in parallel in step S45. In the following step S89, the second converter 26 is put into an operating state, and the control process is terminated.
  • the first path LF1 and the second path LF2 are provided in parallel with each other between the connection point PB in the second system ES2 and the second storage battery 16 and the third storage battery 18.
  • the second converter 26 charges the second storage battery 16 and the third storage battery 18 at a voltage lower than the power supply voltage VA.
  • the discharge of the second storage battery 16 and the third storage battery 18 in the second system ES2 is regulated by the seventh switch SW7.
  • the present embodiment is different from the first embodiment in that in the control process, the second storage battery 16 and the third storage battery 18 are charged and discharged when the first and second systems ES1 and ES2 in the first mode are normal. Specifically, the control device 40 acquires the drive amount information in the loads 34 and 36, and charges and discharges the second storage battery 16 and the third storage battery 18 based on the drive amount TR indicated by the drive amount information.
  • a voltage drop occurs in the second load 36 due to the occurrence of a ground fault in the first system ES1.
  • an excessive voltage drop of the loads 34 and 36 may occur due to a change in the drive amount TR of the loads 34 and 36.
  • the voltage of the excessive loads 34 and 36 drops, it is desirable to increase the load voltage VD.
  • the control process when the drive amount TR is switched from a state smaller than a predetermined first drive amount threshold Tth1 to a state larger than the predetermined first drive amount threshold Tth1 when the first and second systems ES1 and ES2 in the first mode are normal.
  • the second state the second storage battery 16 and the third storage battery 18 are discharged while the second storage battery 16 and the third storage battery 18 are connected in series.
  • the drive amount TR is subsequently switched from a state larger than the first drive amount threshold Tth1 to a state smaller than the first drive amount threshold value Tth1
  • the second storage battery 16 and the third storage battery 18 are discharged when the first and second systems ES1 and ES2 are normal.
  • the second state is switched to the first state, and the second storage battery 16 and the third storage battery 18 are charged in a state where the second storage battery 16 and the third storage battery 18 are connected in parallel.
  • FIG. 8 shows a flowchart of the control process of the present embodiment.
  • the same processing as that shown in FIG. 2 above is given the same step number for convenience, and the description thereof will be omitted.
  • step S20 determines whether or not the relay switch SMR is closed in step S90 when the first and second systems ES1 and ES2 in the first mode are normal. ..
  • the relay switch SMR is closed. In this case, a negative determination is made in step S90, and the process proceeds to step S22.
  • the relay switch SMR is open.
  • an affirmative determination is made in step S90, and in step S92, the drive amount information in the loads 34 and 36 is acquired, and it is determined whether or not the drive amount TR indicated by the drive amount information is smaller than the first drive amount threshold Tth1.
  • the first drive amount threshold value Tth1 is a drive amount corresponding to the maximum value of electric power that can be stably supplied from the high-voltage storage battery 10 to the loads 34 and 36.
  • the acquired drive amount information is stored in a storage unit (not shown) of the control device 40.
  • step S92 When the second storage battery 16 and the third storage battery 18 are in the discharged state, the drive amount TR is larger than the first drive amount threshold Tth1. In this case, a negative determination is made in step S92, and the process proceeds to step S22. On the other hand, when the second storage battery 16 and the third storage battery 18 are in the charged state, the drive amount TR is smaller than the first drive amount threshold Tth1. In this case, an affirmative determination is made in step S92, and the remaining capacity SA of the second storage battery 16 and the third storage battery 18 is calculated in step S94. In the following step S96, it is determined whether or not the remaining capacity SA calculated in step S94 is larger than the capacity threshold value Sth.
  • step S96 When the second storage battery 16 and the third storage battery 18 are in a fully charged state, a positive determination is made in step S96. In this case, in step S98, the relay switch SMR is released and the process proceeds to step S22. On the other hand, when the second storage battery 16 and the third storage battery 18 are not in a fully charged state, a negative determination is made in step S96. In this case, in step S100, it is determined whether or not the drive amount TR is smaller than the second drive amount threshold value Tth2.
  • the second drive amount threshold Tth2 is a threshold for switching the charging method of the second storage battery 16 and the third storage battery 18, and is set to a drive amount smaller than the first drive amount threshold Tth1. In this embodiment, the second drive amount threshold value Tth2 corresponds to a “predetermined specified value”.
  • step S100 a charging method for simultaneously charging the second storage battery 16 and the third storage battery 18 is adopted in step S102, and the process proceeds to step S22.
  • the charging method of simultaneous charging the second storage battery 16 and the third storage battery 18 are charged at the same time by closing the second and third switches SW2 and SW3 at the same time with the fourth switch SW4 open.
  • step S104 a charging method for individually charging the second storage battery 16 and the third storage battery 18 is adopted in step S104, and the process proceeds to step S22.
  • the charging method for individually charging the second storage battery 16 and the third storage battery 18 are individually charged by alternately closing the second and third switches SW2 and SW3 with the fourth switch SW4 open.
  • step S22 if an affirmative determination is made in step S22, that is, if it is determined that an abnormality has occurred in the first system ES1, the first switch SW1 is released in step S26. In the following step S116, the second storage battery 16 and the third storage battery 18 are switched to the series connection, and the process proceeds to step S28. Further, if an affirmative determination is made in step S24, that is, if it is determined that an abnormality has occurred in the second system ES2, the first switch SW1 is opened in step S32. In the following step S118, the relay switch SMR is released and the process proceeds to step S36.
  • step S110 it is determined in step S110 whether or not the drive amount TR is larger than the first drive amount threshold Tth1.
  • the drive amount TR acquired in the previous control process is smaller than the first drive amount threshold Tth1, and the drive amount TR is smaller than the first drive amount threshold Tth1 in the current control process to be smaller than the first drive amount threshold Tth1.
  • an affirmative determination is made in step S110.
  • step S112 the second storage battery 16 and the third storage battery 18 are switched to the series connection.
  • step S114 the relay switch SMR is closed and the control process is terminated. As a result, the second storage battery 16 and the third storage battery 18 are discharged in the second state in which the second storage battery 16 and the third storage battery 18 are connected in series.
  • step S110 it is determined in step S116 whether or not the drive amount TR is smaller than the first drive amount threshold Tth1.
  • the drive amount TR acquired in the previous control process is larger than the first drive amount threshold Tth1, and the drive amount TR is larger than the first drive amount threshold Tth1 in the current control process to be larger than the first drive amount threshold Tth1.
  • an affirmative determination is made in step S116.
  • step S118 the second storage battery 16 and the third storage battery 18 are switched to parallel connection, and the control process is terminated.
  • the first state is set in which the converter 12 is charged by the power supply voltage VA. That is, the second storage battery 16 and the third storage battery 18 are switched from the second state to the first state.
  • step S116 a negative determination is made in step S116. In this case, the control process is terminated.
  • the second state is set when the drive amount TR of the loads 34 and 36 is switched from a state smaller than the first drive amount threshold Tth1 to a state larger than the first drive amount threshold Tth1. Therefore, even if the drive amount TR of the loads 34 and 36 temporarily increases in the normal state of the first and second systems ES1 and ES2, the power from the second storage battery 16 and the third storage battery 18 connected in series Supply is done. As a result, power can be supplied to the loads 34 and 36 at a voltage higher than the power supply voltage VA, and the loads 34 and 36 can be operated properly.
  • the drive amount TR of the loads 34 and 36 is from a state larger than the first drive amount threshold Tth1 to a smaller state.
  • the second state is switched to the first state, and the second storage battery 16 and the third storage battery 18 are charged. Therefore, even if the second storage battery 16 and the third storage battery 18 are temporarily discharged in the normal state of the first and second systems ES1 and ES2, the second storage battery 16 and the third storage battery 18 are subsequently fully charged. be able to. Therefore, it is possible to continue driving the second load 36 by using the second storage battery 16 and the third storage battery 18 that are fully charged when an abnormality occurs in the first system ES1.
  • the power supply to the loads 34 and 36 and the power supply to the second storage battery 16 and the third storage battery 18 are performed at the same time, so it is necessary to properly supply these powers.
  • the drive amount TR of the loads 34 and 36 is smaller than the second drive amount threshold Tth2
  • the second storage battery 16 and the third storage battery 18 are charged at the same time
  • the drive amount TR is the second drive.
  • the amount threshold value is larger than Tth2
  • the second storage battery 16 and the third storage battery 18 are individually charged.
  • the load related to the power supply of the converter 12 is adjusted, and the power supply to the loads 34 and 36 and the power supply to the second storage battery 16 and the third storage battery 18 are performed. Can be properly implemented.
  • Each load 34, 36 may be, for example, the following device.
  • each of the first and second loads 34 and 36 is, for example, a three-phase permanent magnet synchronous motor and a three-phase inverter device.
  • each of the first and second loads 34 and 36 is, for example, an ABS actuator that can independently adjust the brake hydraulic pressure during braking.
  • each of the first and second loads 34 and 36 is, for example, a millimeter wave radar.
  • the loads 34 and 36 do not necessarily have to be a combination having the same configuration, and may be a combination that realizes the same function with devices of different types. Further, the first and second loads 34 and 36 may not be different loads but may be the same load. That is, the first and second loads 34 and 36 may be the same load that receives power from both the first in-system path LA1 and the second in-system path LA2.
  • the first power supply is not limited to the converter, but may be an alternator. Further, the first power supply may not have a converter, and may have, for example, only the first storage battery 14.
  • the plurality of storage batteries included in the second power source are not limited to two, and may be three or more. In this case, when connecting a plurality of storage batteries in series in the second state, the number of storage batteries connected in series may be switched based on the driving amount of the electric load.
  • the voltage applied to the electric load from the plurality of storage batteries is not limited to a voltage higher than the power supply voltage of the first power supply.
  • the voltage may be set higher than this required voltage.
  • the rectifying element provided in the second path LF2 is not limited to the diode, but may be a thyristor.
  • the relay switch SMR may be closed after the first switch SW1 is opened.
  • the first switch SW1 may be opened after the relay switch SMR is closed.
  • the relay switch SMR is closed.
  • the charging of the second storage battery 16 and the third storage battery 18 may be controlled by the relay switch SMR.
  • the charging of the second storage battery 16 and the third storage battery 18 is controlled by controlling the duty ratio of the relay switch SMR.
  • the duty ratio means the ratio of the closing time of the relay switch SMR to the specified period of the relay switch SMR controlled to be opened and closed.
  • a resistance element is provided between the relay switch SMR in the path LA2 in the second system and the second storage battery 16 and the third storage battery 18, and the resistance element charges and discharges the second storage battery 16 and the third storage battery 18. May be controlled.
  • the power supply system 100 is applied to a vehicle capable of traveling by manual driving and automatic driving, but the present invention is not limited to this. It may be applied to a vehicle that can only be driven by automatic driving, such as a fully autonomous vehicle, or may be applied to a vehicle that can only be driven by manual driving.
  • the loads 34 and 36 of the other system ES1 and ES2 in which the abnormality has not occurred are applied. It may be used to stop the running of the vehicle by automatic driving, or to stop the vehicle after moving it to a safe place.

Abstract

The present invention has electrical loads (34, 36), a first system (ES1) that includes a first power supply (10, 12), a second system (ES2) that includes a second power supply (16, 18), and an inter-system switch (SW1) that is provided on a connection path (LB) that connects the first system and the second system. The first power supply outputs a power supply voltage. The second power supply includes a plurality of storage batteries (16, 18). The present invention comprises an abnormality determination unit that determines whether an abnormality has occurred at the first system, a state control unit that opens the inter-system switch when the abnormality determination unit has determined that an abnormality has occurred, a first control unit that, when the plurality of storage batteries are to be charged, produces a first state in which the plurality of storage batteries are connected in parallel and power is supplied from the first power supply to the plurality of storage batteries, and a second control unit that, when the plurality of storage batteries are to be discharged, produces a second state in which the plurality of storage batteries are connected in series and power is supplied from the plurality of storage batteries to the electrical loads at a voltage that is higher than the power supply voltage of the first power supply or a voltage that is higher than a required voltage for the electrical loads.

Description

電源システムPower system 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年8月25日に出願された日本出願番号2020-141761号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2020-141761 filed on August 25, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、電源システムに関する。 This disclosure relates to a power supply system.
 近年、例えば車両に適用され、この車両の各種装置に電力を供給する電源システムが知られている。この電源システムでは、車両の運転時に、例えば電動ブレーキ装置や電動ステアリング装置など、車両の運転に必要な機能を実施する電気負荷に電力を供給する系統で異常が発生し、これによりその機能が失われてしまうと、車両の運転を継続することができない。車両の運転中における異常発生時でも、その機能が失われないようにするために、電気負荷に電力を供給する電源として第1電源及び第2電源を有する装置が知られている。 In recent years, for example, a power supply system that is applied to a vehicle and supplies electric power to various devices of this vehicle is known. In this power supply system, when the vehicle is driven, an abnormality occurs in the system that supplies electric power to the electric load that performs the functions necessary for driving the vehicle, such as the electric brake device and the electric steering device, and the function is lost due to this. If you do, you will not be able to continue driving the vehicle. A device having a first power source and a second power source as a power source for supplying electric power to an electric load is known so as not to lose its function even when an abnormality occurs while the vehicle is in operation.
 この装置に適用される電源システムとして、例えば特許文献1では、1つの機能を実施する電気負荷として第1負荷及び第2負荷を有し、第1負荷に接続された第1電源を含む第1系統と、第2負荷に接続された第2電源を含む第2系統と、を有するものが知られている。この電源システムでは、各系統を接続する接続経路に系統間スイッチが設けられており、系統間スイッチは、コントローラにより一方の系統で異常が発生したと判定された場合に開放される。これにより、異常が発生していない他方の系統の電気負荷により車両の運転に必要な機能を確保し、車両の運転を継続することが可能となる。 As a power supply system applied to this apparatus, for example, in Patent Document 1, a first power supply having a first load and a second load as an electric load for performing one function and including a first power supply connected to the first load is included. Those having a system and a second system including a second power source connected to the second load are known. In this power supply system, an inter-system switch is provided in the connection path connecting each system, and the inter-system switch is opened when the controller determines that an abnormality has occurred in one system. As a result, it is possible to secure the functions necessary for driving the vehicle by the electric load of the other system in which the abnormality has not occurred, and to continue the driving of the vehicle.
特開2019-62727号公報Japanese Unexamined Patent Publication No. 2019-62727
 上記電源システムにおいて、第2系統の第2電源を蓄電池とする構成が考えられる。かかる構成において、例えば第1系統での異常発生に伴い系統間スイッチが開放された場合には、第2電源である蓄電池からの電力供給が行われるが、例えば低温状態や高負荷状態では、第2系統において蓄電池からの電力供給開始時において電気負荷が適正に作動しないことが懸念される。 In the above power supply system, a configuration in which the second power supply of the second system is used as a storage battery can be considered. In such a configuration, for example, when the inter-system switch is opened due to an abnormality in the first system, power is supplied from the storage battery which is the second power source, but in a low temperature state or a high load state, for example, the first system is used. There is a concern that the electric load will not operate properly at the start of power supply from the storage battery in the two systems.
 本開示は、上記課題を解決するためになされたものであり、その目的は、複数の電源系統を有する電源システムにおいて、電気負荷への電力供給を適正に実施できる電源システムを提供することにある。 The present disclosure has been made to solve the above problems, and an object thereof is to provide a power supply system capable of appropriately supplying electric power to an electric load in a power supply system having a plurality of power supply systems. ..
 上記課題を解決するための第1の手段は、電気負荷と、前記電気負荷に接続された第1電源を含む第1系統と、前記電気負荷に接続された第2電源を含む第2系統と、前記第1系統と前記第2系統とを互いに接続する接続経路に設けられた系統間スイッチと、を有する電源システムであって、前記第1電源は、前記電気負荷の駆動を可能にする電源電圧を出力し、前記第2電源は、前記第1電源の電源電圧により充電可能な複数の蓄電池を含み、前記第1系統で異常が発生したことを判定する異常判定部と、前記異常判定部により異常が発生したと判定された場合に前記系統間スイッチを開放する状態制御部と、前記複数の蓄電池を充電する場合に、前記複数の蓄電池を並列接続して、前記第1電源から前記複数の蓄電池に電力供給を行わせる第1状態とする第1制御部と、前記複数の蓄電池を放電する場合に、前記複数の蓄電池を直列接続して、前記第1電源の電源電圧よりも高い電圧又は前記電気負荷の要求電圧よりも高い電圧で前記複数の蓄電池から前記電気負荷に電力供給を行わせる第2状態とする第2制御部と、を備える。 The first means for solving the above-mentioned problems is an electric load, a first system including a first power source connected to the electric load, and a second system including a second power source connected to the electric load. A power supply system including an inter-system switch provided in a connection path connecting the first system and the second system to each other, wherein the first power supply is a power supply that enables driving of the electric load. The second power supply includes a plurality of storage batteries that can be charged by the power supply voltage of the first power supply, and has an abnormality determination unit for determining that an abnormality has occurred in the first system and an abnormality determination unit. When it is determined that an abnormality has occurred, the state control unit that opens the inter-system switch and the plurality of storage batteries are connected in parallel when charging the plurality of storage batteries, and the plurality of storage batteries are connected in parallel from the first power source. When the plurality of storage batteries are discharged, the first control unit in the first state of supplying power to the storage batteries of the above and the plurality of storage batteries are connected in series, and the voltage is higher than the power supply voltage of the first power supply. Alternatively, it includes a second control unit that is in a second state of supplying power to the electric load from the plurality of storage batteries at a voltage higher than the required voltage of the electric load.
 上記構成によれば、第1電源を含む第1系統と第2電源を含む第2系統とが設けられている。そのため、電気負荷に対して、第1電源及び第2電源による冗長的な電力供給が可能となる。また、第1,第2系統を互いに接続する接続経路に系統間スイッチが設けられている。そのため、いずれか一方の系統で異常が発生したと判定された場合には、系統間スイッチを開放することで、異常が発生していない他方の系統の電源からの電力供給により電気負荷の動作を継続することが可能となっている。 According to the above configuration, a first system including a first power supply and a second system including a second power supply are provided. Therefore, redundant power supply by the first power supply and the second power supply becomes possible for the electric load. Further, an inter-system switch is provided in the connection path connecting the first and second systems to each other. Therefore, if it is determined that an abnormality has occurred in one of the systems, the switch between the systems is opened to operate the electric load by supplying power from the power supply of the other system in which the abnormality has not occurred. It is possible to continue.
 ここで、例えば第1系統での異常発生に伴い系統間スイッチが開放された場合には、第2系統において第2電源における複数の蓄電池からの電力供給が行われ、その際に例えば低温状態であったり、高負荷状態であったりすることを考えると、第2電源の蓄電池電圧を高くしておくことが望ましい。ただし反面、その蓄電池電圧を高い電圧に充電する構成では、第1電源からの電力供給負担や電源システムのコスト負担が大きくなることが懸念される。 Here, for example, when the inter-system switch is opened due to the occurrence of an abnormality in the first system, power is supplied from a plurality of storage batteries in the second power supply in the second system, and at that time, for example, in a low temperature state. It is desirable to keep the storage battery voltage of the second power supply high, considering that it may be in a high load state. However, on the other hand, in the configuration of charging the storage battery voltage to a high voltage, there is a concern that the power supply burden from the first power supply and the cost burden of the power supply system will increase.
 この点、本手段の構成では、複数の蓄電池が充電される場合に、複数の蓄電池が並列接続され、複数の蓄電池が放電される場合に、複数の蓄電池が直列接続されるようにした。この場合、複数の蓄電池の充電が行われる際において、複数の蓄電池を並列接続する構成にしたため、充電のための電力供給負担や電源システムのコスト負担を軽減することができる。また、第1系統での異常発生に伴い第2系統で複数の蓄電池からの電力供給が行われる際において、複数の蓄電池を直列接続し、第1電源の電源電圧よりも高い電圧又は電気負荷の要求電圧よりも高い電圧で電気負荷に電力供給を行う構成にしたため、仮に低温状態や高負荷状態であっても、電気負荷を適正に作動させることができる。これにより、複数の電源系統を有する電源システムにおいて電気負荷への電力供給を適正に実施することができる。 In this respect, in the configuration of this means, when a plurality of storage batteries are charged, a plurality of storage batteries are connected in parallel, and when a plurality of storage batteries are discharged, a plurality of storage batteries are connected in series. In this case, when the plurality of storage batteries are charged, the plurality of storage batteries are connected in parallel, so that the power supply burden for charging and the cost burden of the power supply system can be reduced. Further, when power is supplied from a plurality of storage batteries in the second system due to an abnormality in the first system, a plurality of storage batteries are connected in series to have a voltage or an electric load higher than the power supply voltage of the first power supply. Since the electric load is supplied with a voltage higher than the required voltage, the electric load can be operated properly even in a low temperature state or a high load state. As a result, it is possible to properly supply electric power to an electric load in a power supply system having a plurality of power supply systems.
 第2の手段では、前記第2系統における前記接続経路との接続点と前記第2電源との間に設けられ、直列状態における前記複数の蓄電池の放電を規制する放電規制部を備える。 The second means is provided between the connection point with the connection path in the second system and the second power source, and includes a discharge control unit that regulates the discharge of the plurality of storage batteries in a series state.
 上記構成では、第2系統における接続経路との接続点と第2電源との間に放電規制部が設けられており、放電規制部により直列状態における複数の蓄電池の放電を規制するようにした。これにより、複数の蓄電池を直列状態にしても、それら各蓄電池に蓄えられた電荷を維持することができる。また、各蓄電池を直列状態としておくことで、必要に応じて早期に複数の蓄電池から電気負荷に電力供給を行うことができる。 In the above configuration, a discharge control unit is provided between the connection point with the connection path in the second system and the second power supply, and the discharge control unit regulates the discharge of a plurality of storage batteries in a series state. As a result, even if a plurality of storage batteries are placed in series, the electric charge stored in each of the storage batteries can be maintained. Further, by keeping each storage battery in series, it is possible to supply electric power from a plurality of storage batteries to an electric load at an early stage as needed.
 第3の手段では、前記第1状態において、前記複数の蓄電池の合計電圧が、前記第1電源の電源電圧よりも高い電圧又は前記電気負荷の要求電圧よりも高い電圧となる満充電状態になっていることを判定する充電判定部を備え、前記放電規制部は、前記充電判定部により前記満充電状態になっていると判定された場合に直列状態における前記複数の蓄電池の放電を規制する。 In the third means, in the first state, the total voltage of the plurality of storage batteries becomes a voltage higher than the power supply voltage of the first power supply or a voltage higher than the required voltage of the electric load, and is in a fully charged state. A charge determination unit for determining that the battery is charged is provided, and the discharge regulation unit regulates the discharge of the plurality of storage batteries in a series state when the charge determination unit determines that the charge is fully charged.
 上記構成では、放電規制部により直列状態、かつ満充電状態における複数の蓄電池の放電を規制するようにした。これにより、第1系統での異常発生時において、第1電源の電源電圧よりも高い電圧又は電気負荷の要求電圧よりも高い電圧の電力供給を早期に行うことができる。 In the above configuration, the discharge control unit regulates the discharge of multiple storage batteries in a series state and in a fully charged state. As a result, when an abnormality occurs in the first system, it is possible to supply power at a voltage higher than the power supply voltage of the first power supply or a voltage higher than the required voltage of the electric load at an early stage.
 第4の手段では、前記放電規制部は、前記第2系統における前記接続経路との接続点と前記第2電源との間の経路を開放又は閉鎖する電池用スイッチを含み、前記状態制御部は、前記異常判定部により異常が発生していないと判定された場合に、前記系統間スイッチを閉鎖するとともに、前記電池用スイッチを開放して前記複数の蓄電池の放電を規制し、前記異常判定部により異常が発生したと判定された場合に、前記系統間スイッチを開放するとともに、前記電池用スイッチを閉鎖して前記複数の蓄電池の放電規制を解除する。 In the fourth means, the discharge control unit includes a battery switch that opens or closes a path between the connection point with the connection path and the second power supply in the second system, and the state control unit includes the state control unit. When it is determined by the abnormality determination unit that no abnormality has occurred, the inter-system switch is closed and the battery switch is opened to regulate the discharge of the plurality of storage batteries, and the abnormality determination unit is used. When it is determined that an abnormality has occurred, the inter-system switch is opened and the battery switch is closed to release the discharge restriction of the plurality of storage batteries.
 上記構成では、放電規制部としての電池用スイッチを設け、第1系統での異常の有無に基づいて、系統間スイッチと電池用スイッチとを連携させて各々開閉させるようにした。これにより、第1系統の正常時、及び第1系統での異常発生時のいずれにおいても、第2電源の蓄電池の放電を適正に管理することができる。 In the above configuration, a battery switch is provided as a discharge control unit, and the inter-system switch and the battery switch are linked to open and close each based on the presence or absence of an abnormality in the first system. As a result, it is possible to properly manage the discharge of the storage battery of the second power source in both the normal state of the first system and the occurrence of an abnormality in the first system.
 第5の手段では、車両に搭載された電源システムであって、前記電気負荷は、前記車両において運転に必要な少なくとも1つの機能を実施する負荷であって、かつ前記車両の運転支援機能を実施する負荷であり、前記車両は、前記運転支援機能を用いる第1モードによる走行と、前記運転支援機能を用いない第2モードによる走行が可能であり、前記第1制御部は、前記第2モードにおいて前記第1状態とし、前記状態制御部は、前記放電規制部により前記複数の蓄電池の放電が規制された場合に、前記第1モードへの切り替えを許可する。 The fifth means is a power supply system mounted on a vehicle, wherein the electric load is a load that performs at least one function necessary for driving in the vehicle, and also performs a driving support function of the vehicle. The vehicle is capable of traveling in the first mode using the driving support function and traveling in the second mode without using the driving support function, and the first control unit is in the second mode. In the first state, the state control unit permits switching to the first mode when the discharge of the plurality of storage batteries is restricted by the discharge control unit.
 運転に必要な機能であって、かつ運転支援機能を実施する負荷として、第1負荷及び第2負荷を有する車両に適用される電源システムにおいて、運転支援機能を用いる第1モードによる走行と、運転支援機能を用いない第2モードによる走行とを切り替え可能なものがある。上記構成では、第2モードにおいて第1状態とするようにし、第2モードにおいて複数の蓄電池が満充電状態となり、放電が規制された場合に、第1モードへの切り替えを許可するようにした。これにより、運転支援機能を用いる第1モードにおいて、第1系統に異常が発生した場合でも、満充電状態とされた複数の蓄電池を用いて電気負荷の駆動を継続することができ、運転支援機能を継続して用いることができる。 In a power supply system applied to a vehicle having a first load and a second load as a function necessary for driving and performing a driving support function, driving and driving in the first mode using the driving support function and driving. Some can switch between driving in the second mode without using the support function. In the above configuration, the first state is set in the second mode, and when a plurality of storage batteries are fully charged in the second mode and discharge is restricted, switching to the first mode is permitted. As a result, even if an abnormality occurs in the first system in the first mode in which the driving support function is used, it is possible to continue driving the electric load using a plurality of fully charged storage batteries, and the driving support function Can be used continuously.
 第6の手段では、前記第2系統における前記接続経路との接続点と前記第2電源との間において互いに並列に設けられた第1経路及び第2経路と、前記第1経路に設けられ、前記第1電源からの電力供給により、並列接続された前記複数の蓄電池を当該第1電源の電源電圧よりも低い電圧に充電する充電部と、を備え、前記放電規制部は、前記第2経路に設けられ、前記第2系統での前記複数の蓄電池の放電を規制する。 In the sixth means, the first path and the second path provided in parallel with each other between the connection point with the connection path and the second power supply in the second system, and the first path are provided. The discharge control unit includes a charging unit that charges a plurality of storage batteries connected in parallel to a voltage lower than the power supply voltage of the first power source by supplying power from the first power source, and the discharge regulating unit has the second path. To regulate the discharge of the plurality of storage batteries in the second system.
 上記構成では、第2系統における接続経路との接続点と第2電源との間に、第1経路及び第2経路が互いに並列に設けられており、第1経路では、充電部により、第1電源の電源電圧よりも低い電圧で複数の蓄電池が充電される。また、第2経路では、放電規制部により第2系統での複数の蓄電池の放電が規制されるようになっている。充電部が第1電源の電源電圧よりも低い電圧で複数の蓄電池を充電することにより、複数の蓄電池の充電に係る電源システムの構成を簡略化することができ、電源システムのコスト負担を軽減することができる。 In the above configuration, the first path and the second path are provided in parallel with each other between the connection point with the connection path in the second system and the second power supply, and in the first path, the first path is provided by the charging unit. Multiple storage batteries are charged at a voltage lower than the power supply voltage of the power supply. Further, in the second path, the discharge regulating unit regulates the discharge of a plurality of storage batteries in the second system. By charging a plurality of storage batteries with a voltage lower than the power supply voltage of the first power supply, the charging unit can simplify the configuration of the power supply system related to the charging of the plurality of storage batteries and reduce the cost burden of the power supply system. be able to.
 第7の手段では、前記第2系統における前記接続経路との接続点と前記第2電源との間において互いに並列に設けられた第1経路及び第2経路と、前記第1経路に設けられ、当該第1経路を開放又は閉鎖する開閉スイッチと、を備え、前記放電規制部は、前記第2経路に設けられ、前記第2経路において前記接続点から前記複数の蓄電池への電流の流れを規制し、かつ直列接続された前記複数の蓄電池の電圧と前記電源電圧とに所定の電圧差を生じさせる整流素子を含む。 In the seventh means, the first path and the second path provided in parallel with each other between the connection point with the connection path and the second power supply in the second system, and the first path are provided. An open / close switch for opening or closing the first path is provided, and the discharge regulating unit is provided in the second path to regulate the flow of current from the connection point to the plurality of storage batteries in the second path. It also includes a rectifying element that causes a predetermined voltage difference between the voltage of the plurality of storage batteries connected in series and the power supply voltage.
 上記構成では、第2系統における接続経路との接続点と第2電源との間に、第1経路及び第2経路が互いに並列に設けられており、第1経路では、電池用スイッチが閉鎖されることにより複数の蓄電池が充電され、電池用スイッチが開放されることにより複数の蓄電池の充電が停止される。また、第2経路には、放電規制部としての整流素子が設けられ、その整流素子により、第2経路において接続点から複数の蓄電池への電流の流れを規制し、かつ直列接続された複数の蓄電池の電圧と電源電圧とに所定の電圧差を生じさせるようにした。これにより、直列状態の複数の蓄電池では、第1電源の電源電圧よりも高電圧となる状態が維持される。そして、第1系統での異常発生時には、第2系統において電気負荷側の電圧が低下することに伴い直列接続された複数の蓄電池からの放電が行われ、電気負荷への早期の電力供給が可能となっている。 In the above configuration, the first path and the second path are provided in parallel with each other between the connection point with the connection path in the second system and the second power supply, and the battery switch is closed in the first path. As a result, the plurality of storage batteries are charged, and when the battery switch is opened, the charging of the plurality of storage batteries is stopped. Further, a rectifying element as a discharge regulating unit is provided in the second path, and the rectifying element regulates the flow of current from the connection point to the plurality of storage batteries in the second path, and a plurality of connected in series. A predetermined voltage difference is created between the voltage of the storage battery and the voltage of the power supply. As a result, in the plurality of storage batteries in the series state, the state in which the voltage is higher than the power supply voltage of the first power supply is maintained. When an abnormality occurs in the first system, the voltage on the electric load side in the second system drops, and the batteries are discharged from a plurality of storage batteries connected in series, enabling early power supply to the electric load. It has become.
 第8の手段では、前記第1制御部は、前記電気負荷の駆動量を示す駆動量情報を取得し、前記第2制御部は、前記駆動量情報が示す前記駆動量が所定の閾値よりも小さい状態から大きい状態に切り替わった場合に前記第2状態とする。 In the eighth means, the first control unit acquires the drive amount information indicating the drive amount of the electric load, and the second control unit has the drive amount indicated by the drive amount information more than a predetermined threshold value. When the state is switched from the small state to the large state, the second state is set.
 第1系統における地絡の発生に伴い、電気負荷に電圧低下が生じる。また、それ以外に、電気負荷の駆動量の変化に起因して、過剰な電気負荷の電圧低下が生じることも考えられる。この点、上記構成では、電気負荷の駆動量が閾値よりも小さい状態から大きい状態に切り替わった場合に第2状態とするようにした。これにより、第1系統の正常時において、仮に電気負荷の駆動量が一時的に増加した場合でも、直列接続された複数の蓄電池からの電力供給が行われることにより電気負荷を適正に作動させることができる。 With the occurrence of a ground fault in the first system, a voltage drop occurs in the electrical load. In addition to that, it is also conceivable that an excessive voltage drop of the electric load occurs due to a change in the driving amount of the electric load. In this respect, in the above configuration, the second state is set when the drive amount of the electric load is switched from the state smaller than the threshold value to the state larger than the threshold value. As a result, even if the drive amount of the electric load temporarily increases in the normal state of the first system, the electric load is properly operated by supplying power from a plurality of storage batteries connected in series. Can be done.
 第9の手段では、前記第1制御部は、前記駆動量情報が示す前記駆動量が前記閾値よりも小さい状態から大きい状態に切り替わった後に、前記閾値よりも大きい状態から小さい状態に切り替わった場合に、前記第2状態から前記第1状態に切り替え、前記複数の蓄電池を充電する。 In the ninth means, when the first control unit switches from a state in which the drive amount indicated by the drive amount information is smaller than the threshold value to a state in which the drive amount is larger than the threshold value, and then from a state in which the drive amount is larger than the threshold value to a state in which the drive amount is smaller than the threshold value. In addition, the second state is switched to the first state, and the plurality of storage batteries are charged.
 上記構成では、第1系統の正常時において第2状態とされた場合において、電気負荷の駆動量が閾値よりも大きい状態から小さい状態に切り替わった場合に、第2状態から第1状態に切り替え、複数の蓄電池を充電するようにした。そのため、第1系統の正常時において複数の蓄電池を一時的に放電した場合でも、その後に複数の蓄電池を満充電状態とすることができる。したがって、第1系統での異常発生時において、満充電状態とされた複数の蓄電池を用いて電気負荷の駆動を継続することが可能となる。 In the above configuration, when the drive amount of the electric load is switched from the state larger than the threshold value to the state smaller than the threshold value in the case where the second state is set in the normal state of the first system, the second state is switched to the first state. Changed to charge multiple storage batteries. Therefore, even when a plurality of storage batteries are temporarily discharged in the normal state of the first system, the plurality of storage batteries can be fully charged thereafter. Therefore, when an abnormality occurs in the first system, it is possible to continue driving the electric load by using a plurality of storage batteries in a fully charged state.
 第10の手段では、前記第1制御部は、前記電気負荷の駆動量を示す駆動量情報を取得し、前記駆動量情報が示す前記駆動量が所定の規定値よりも小さい場合に、前記複数の蓄電池を並列接続して、前記複数の蓄電池を個別に充電し、前記駆動量情報が示す前記駆動量が前記規定値よりも大きい場合に、前記複数の蓄電池を並列接続して、前記複数の蓄電池を同時に充電する。 In the tenth means, the first control unit acquires the driving amount information indicating the driving amount of the electric load, and when the driving amount indicated by the driving amount information is smaller than a predetermined specified value, the plurality of said. The plurality of storage batteries are connected in parallel to charge the plurality of storage batteries individually, and when the drive amount indicated by the drive amount information is larger than the specified value, the plurality of storage batteries are connected in parallel to the plurality of storage batteries. Charge the storage battery at the same time.
 第1状態では、電気負荷への電力供給と複数の蓄電池への電力供給とが同時に行われるため、これらの電力供給を適正に実施する必要がある。この点、上記構成では、電気負荷の駆動量が規定値よりも小さい場合に、複数の蓄電池を同時に充電し、駆動量が規定値よりも大きい場合に、複数の蓄電池を個別に充電するようにした。駆動量により充電される蓄電池の数を調整することで、第1電源の電力供給に係る負担を調整し、電気負荷への電力供給と複数の蓄電池への電力供給とを適正に実施することができる。 In the first state, power supply to the electric load and power supply to a plurality of storage batteries are performed at the same time, so it is necessary to properly carry out these power supply. In this respect, in the above configuration, when the drive amount of the electric load is smaller than the specified value, a plurality of storage batteries are charged at the same time, and when the drive amount is larger than the specified value, the plurality of storage batteries are individually charged. did. By adjusting the number of storage batteries to be charged according to the amount of drive, it is possible to adjust the burden related to the power supply of the first power supply, and to properly supply power to the electric load and power to multiple storage batteries. can.
 第11の手段では、前記複数の蓄電池は、所定の第1電位点と第2電位点との間に設けられた第1特定電池と第2特定電池とを含み、前記第1特定電池の正極端子は、第1正極側経路により前記第1電位点に接続されるとともに、第1負極側経路により前記第2電位点に接続されており、前記第2特定電池の正極端子は、第2正極側経路により前記第1電位点に接続されるとともに、第2負極側経路により前記第2電位点に接続されており、前記第1負極側経路に設けられた第1切替スイッチと、前記第2正極側経路に設けられた第2切替スイッチと、前記第1負極側経路のうち前記第1切替スイッチよりも前記第1特定電池側の第1接続点と、前記第2正極側経路のうち前記第2切替スイッチよりも前記第2電位点側の第2接続点との間の導通経路に設けられた第3切替スイッチと、を備え、前記第1制御部は、前記第1状態において、前記第1切替スイッチ及び前記第2切替スイッチを閉鎖するとともに、前記第3切替スイッチを開放し、前記第2制御部は、前記第2状態において、前記第1切替スイッチ及び前記第2切替スイッチを開放するとともに、前記第3切替スイッチを閉鎖し、前記第1制御部及び前記第2制御部は、前記第1状態と前記第2状態との切り替え時において、前記第1切替スイッチ及び前記第2切替スイッチの少なくとも一方と前記第3切替スイッチとが同時に閉鎖されないように各切替スイッチの開閉を制御する。 In the eleventh means, the plurality of storage batteries include a first specific battery and a second specific battery provided between a predetermined first potential point and a second potential point, and the positive electrode of the first specific battery. The terminal is connected to the first potential point by the first positive electrode side path and is connected to the second potential point by the first negative electrode side path, and the positive electrode terminal of the second specific battery is the second positive electrode. A first changeover switch provided in the first negative electrode side path, which is connected to the first potential point by the side path and is connected to the second potential point by the second negative electrode side path, and the second changeover switch. The second changeover switch provided in the positive electrode side path, the first connection point on the first specific battery side of the first negative electrode side path from the first changeover switch, and the second positive electrode side path. The first control unit includes, in the first state, the third changeover switch provided in the conduction path between the second changeover switch and the second connection point on the second potential point side. The first changeover switch and the second changeover switch are closed, the third changeover switch is opened, and the second control unit opens the first changeover switch and the second changeover switch in the second state. At the same time, the third changeover switch is closed, and the first control unit and the second control unit change the first changeover switch and the second changeover switch at the time of switching between the first state and the second state. The opening and closing of each changeover switch is controlled so that at least one of the switches and the third changeover switch are not closed at the same time.
 複数の蓄電池に含まれる第1特定電池と第2特定電池とが並列接続された第1状態と直列接続された第2状態とが切り替えられる場合に、第1特定電池と第2特定電池とを並列接続する第1切替スイッチ及び第2切替スイッチの少なくとも一方と、第1特定電池と第2特定電池とを直列接続する第3切替スイッチとが同時に閉鎖されると、第1特定電池及び第2特定電池の少なくとも一方が短絡してしまうことが懸念される。この点、上記構成では、第1状態と第2状態との切り替え時において、第1切替スイッチ及び第2切替スイッチの少なくとも一方と第3切替スイッチとが同時に閉鎖されないように各切替スイッチの開閉を制御するようにした。これにより、第1特定電池及び第2特定電池の短絡を抑制して、第1状態と第2状態とを適正に切り替えることができる。 When the first state in which the first specific battery and the second specific battery included in the plurality of storage batteries are connected in parallel and the second state in which the second specific battery is connected in series are switched, the first specific battery and the second specific battery are switched. When at least one of the first changeover switch and the second changeover switch connected in parallel and the third changeover switch connecting the first specific battery and the second specific battery in series are closed at the same time, the first specific battery and the second changeover battery are closed. There is a concern that at least one of the specified batteries will be short-circuited. In this regard, in the above configuration, when switching between the first state and the second state, each changeover switch is opened and closed so that at least one of the first changeover switch and the second changeover switch and the third changeover switch are not closed at the same time. I tried to control it. Thereby, the short circuit of the first specific battery and the second specific battery can be suppressed, and the first state and the second state can be appropriately switched.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の電源システムの全体構成図であり、 図2は、第1実施形態の制御処理の手順を示すフローチャートであり、 図3は、第1実施形態の制御処理の一例を示すタイムチャートであり、 図4は、第2実施形態の電源システムの全体構成図であり、 図5は、第2実施形態の制御処理の手順を示すフローチャートであり、 図6は、第3実施形態の電源システムの全体構成図であり、 図7は、第3実施形態の制御処理の手順を示すフローチャートであり、 図8は、第4実施形態の制御処理の手順を示すフローチャートである。
The above objectives and other objectives, features and advantages of the present disclosure will be further clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is an overall configuration diagram of the power supply system of the first embodiment. FIG. 2 is a flowchart showing the procedure of the control process of the first embodiment. FIG. 3 is a time chart showing an example of the control process of the first embodiment. FIG. 4 is an overall configuration diagram of the power supply system of the second embodiment. FIG. 5 is a flowchart showing the procedure of the control process of the second embodiment. FIG. 6 is an overall configuration diagram of the power supply system according to the third embodiment. FIG. 7 is a flowchart showing the procedure of the control process of the third embodiment. FIG. 8 is a flowchart showing the procedure of the control process of the fourth embodiment.
 (第1実施形態)
 以下、本開示に係る電源システムを車載の電源システム100として具体化した実施形態について、図面を参照しつつ説明する。
(First Embodiment)
Hereinafter, an embodiment in which the power supply system according to the present disclosure is embodied as an in-vehicle power supply system 100 will be described with reference to the drawings.
 図1に示すように、電源システム100は、一般負荷30及び特定負荷32に電力を供給するシステムである。電源システム100は、高圧蓄電池10と、DCDCコンバータ(以下、コンバータ)12と、第1蓄電池14と、第1特定電池としての第2蓄電池16と、第2特定電池としての第3蓄電池18と、第1スイッチ部20と、リレースイッチSMR(システムメインリレースイッチ)と、制御装置40と、を備えている。 As shown in FIG. 1, the power supply system 100 is a system that supplies electric power to a general load 30 and a specific load 32. The power supply system 100 includes a high-pressure storage battery 10, a DCDC converter (hereinafter referred to as a converter) 12, a first storage battery 14, a second storage battery 16 as a first specific battery, and a third storage battery 18 as a second specific battery. It includes a first switch unit 20, a relay switch SMR (system main relay switch), and a control device 40.
 高圧蓄電池10は、第1~第3蓄電池14~18よりも高い定格電圧(例えば数百V)を有しており、例えばリチウムイオン蓄電池である。コンバータ12は、高圧蓄電池10から供給される電力を電源電圧VAの電力に変換して、一般負荷30及び特定負荷32に供給する電圧生成部である。本実施形態では、電源電圧VAは、一般負荷30及び特定負荷32の駆動を可能にする電圧である。 The high-voltage storage battery 10 has a rated voltage (for example, several hundred volts) higher than that of the first to third storage batteries 14 to 18, and is, for example, a lithium ion storage battery. The converter 12 is a voltage generation unit that converts the electric power supplied from the high-voltage storage battery 10 into the electric power of the power supply voltage VA and supplies it to the general load 30 and the specific load 32. In the present embodiment, the power supply voltage VA is a voltage that enables driving of the general load 30 and the specific load 32.
 一般負荷30は、移動体としての車両において運転制御に用いられない電気負荷(以下、単に負荷)であり、例えばエアコン、オーディオ装置、パワーウィンドウ等である。 The general load 30 is an electric load (hereinafter, simply a load) that is not used for operation control in a vehicle as a mobile body, and is, for example, an air conditioner, an audio device, a power window, or the like.
 一方、特定負荷32は、車両の運転制御に用いられる少なくとも1つの機能を実施する負荷であり、例えば車両の操舵を制御する電動パワーステアリング装置50、車輪に制動力を付与する電動ブレーキ装置51、車両周囲の状況を監視する走行制御装置52等である。なお、本実施形態において、特定負荷32が「電気負荷」に相当する。 On the other hand, the specific load 32 is a load that performs at least one function used for driving control of the vehicle, for example, an electric power steering device 50 that controls the steering of the vehicle, an electric brake device 51 that applies a braking force to the wheels, and the like. It is a traveling control device 52 or the like that monitors the situation around the vehicle. In this embodiment, the specific load 32 corresponds to the "electrical load".
 そのため、これらの特定負荷32に異常が発生し、その機能の全てが失われると、運転制御を行うことができない。そのため、特定負荷32では、異常が発生した場合でもその機能の全てが失われないようにするため、機能毎に冗長に設けられた第1負荷34と第2負荷36とを有している。具体的には、電動パワーステアリング装置50は、第1ステアリングモータ50Aと第2ステアリングモータ50Bとを有している。電動ブレーキ装置51は、第1ブレーキ装置51Aと第2ブレーキ装置51Bとを有している。走行制御装置52は、カメラ52Aとレーザレーダ52Bとを有している。第1ステアリングモータ50Aと第1ブレーキ装置51Aとカメラ52Aとが、第1負荷34に相当し、第2ステアリングモータ50Bと第2ブレーキ装置51Bとレーザレーダ52Bとが、第2負荷36に相当する。 Therefore, if an abnormality occurs in these specific loads 32 and all of their functions are lost, operation control cannot be performed. Therefore, the specific load 32 has a first load 34 and a second load 36 redundantly provided for each function so that all the functions are not lost even if an abnormality occurs. Specifically, the electric power steering device 50 has a first steering motor 50A and a second steering motor 50B. The electric brake device 51 has a first brake device 51A and a second brake device 51B. The travel control device 52 has a camera 52A and a laser radar 52B. The first steering motor 50A, the first brake device 51A, and the camera 52A correspond to the first load 34, and the second steering motor 50B, the second brake device 51B, and the laser radar 52B correspond to the second load 36. ..
 第1負荷34と第2負荷36とは、併せて1つの機能を実現するものであるが、それぞれ単独でもその機能の一部を実現可能なものである。例えば電動パワーステアリング装置50では、第1ステアリングモータ50Aと第2ステアリングモータ50Bとにより車両の自由な操舵が可能であり、操舵速度や操舵範囲等に一定の制限がある中で、各ステアリングモータ50A,50Bにより車両の操舵が可能である。 The first load 34 and the second load 36 together realize one function, but each of them can realize a part of the function by itself. For example, in the electric power steering device 50, the first steering motor 50A and the second steering motor 50B allow the vehicle to be freely steered, and each steering motor 50A is subject to certain restrictions such as steering speed and steering range. , 50B enables steering of the vehicle.
 各特定負荷32は、手動運転において、ドライバによる制御を支援する機能を実現する。また、各特定負荷32は、車両の走行や停止などの挙動を自動で制御する自動運転において、自動運転に必要な機能を実現する。そのため、特定負荷32は、車両の運転に必要な少なくとも1つの機能を実施する負荷ともいうことができる。 Each specific load 32 realizes a function of supporting control by the driver in manual operation. Further, each specific load 32 realizes a function required for automatic driving in automatic driving that automatically controls behavior such as running and stopping of the vehicle. Therefore, the specific load 32 can also be said to be a load that performs at least one function necessary for driving the vehicle.
 第1負荷34は、第1系統内経路LA1を介してコンバータ12に接続されており、この第1系統内経路LA1に第1蓄電池14及び一般負荷30が接続されている。第1蓄電池14は、例えば鉛蓄電池である。本実施形態では、第1系統内経路LA1により接続されたコンバータ12、第1蓄電池14、一般負荷30及び第1負荷34により、第1系統ES1が構成されている。なお、本実施形態において、高圧蓄電池10及びコンバータ12が「第1電源」に相当する。 The first load 34 is connected to the converter 12 via the path LA1 in the first system, and the first storage battery 14 and the general load 30 are connected to the path LA1 in the first system. The first storage battery 14 is, for example, a lead storage battery. In the present embodiment, the first system ES1 is configured by the converter 12, the first storage battery 14, the general load 30, and the first load 34 connected by the path LA1 in the first system. In this embodiment, the high-voltage storage battery 10 and the converter 12 correspond to the "first power source".
 また、第2負荷36は、第2系統内経路LA2を介して第2蓄電池16及び第3蓄電池18に接続されている。第2蓄電池16及び第3蓄電池18は、例えばリチウムイオン蓄電池である。本実施形態では、第2系統内経路LA2により接続された第2蓄電池16、第3蓄電池18、及び第2負荷36により、第2系統ES2が構成されている。なお、本実施形態において、第2蓄電池16及び第3蓄電池18が「第2電源、複数の蓄電池」に相当する。 Further, the second load 36 is connected to the second storage battery 16 and the third storage battery 18 via the path LA2 in the second system. The second storage battery 16 and the third storage battery 18 are, for example, lithium ion storage batteries. In the present embodiment, the second system ES2 is configured by the second storage battery 16, the third storage battery 18, and the second load 36 connected by the path LA2 in the second system. In this embodiment, the second storage battery 16 and the third storage battery 18 correspond to "a second power source and a plurality of storage batteries".
 第1スイッチ部20は、各系統を互いに接続する接続経路LBに設けられている。接続経路LBの一端は、接続点PAにおいて第1系統内経路LA1に接続されており、接続経路LBの他端は、接続点PBにおいて第2系統内経路LA2と接続されている。第1スイッチ部20は、第1スイッチング素子(以下、単に第1スイッチ)SW1を備えている。本実施形態では、第1スイッチSW1として、NチャネルMOSFET(以下、単にMOSFET)が用いられている。なお、本実施形態において、第1スイッチSW1が「系統間スイッチ」に相当する。 The first switch unit 20 is provided in the connection path LB that connects each system to each other. One end of the connection path LB is connected to the first intra-system path LA1 at the connection point PA, and the other end of the connection path LB is connected to the second intra-system path LA2 at the connection point PB. The first switch unit 20 includes a first switching element (hereinafter, simply the first switch) SW1. In this embodiment, an N-channel MOSFET (hereinafter, simply MOSFET) is used as the first switch SW1. In this embodiment, the first switch SW1 corresponds to an "intersystem switch".
 第1系統内経路LA1には、第1電流検出部27が設けられており、接続経路LBには、第2電流検出部28が設けられている。第1電流検出部27は、第1系統内経路LA1のうち接続点PAと第1負荷34との間の部分に設けられており、当該部分に流れる系統内電流IAの大きさ及び向きを検出する。第2電流検出部28は、接続経路LBのうち第1スイッチ部20よりも第1系統ES1側の部分に設けられており、当該部分に流れる系統間電流IBの大きさ及び向きを検出する。 The first current detection unit 27 is provided in the path LA1 in the first system, and the second current detection unit 28 is provided in the connection path LB. The first current detection unit 27 is provided in a portion of the path LA1 in the first system between the connection point PA and the first load 34, and detects the magnitude and direction of the current IA in the system flowing through the portion. do. The second current detection unit 28 is provided in the portion of the connection path LB on the first system ES1 side of the first switch unit 20, and detects the magnitude and direction of the inter-system current IB flowing through the portion.
 リレースイッチSMRは、第2系統内経路LA2における接続点PBと、第2蓄電池16及び第3蓄電池18との間の部分に設けられており、当該部分を開放又は閉鎖する。リレースイッチSMRの開閉により、第2蓄電池16及び第3蓄電池18の通電及び通電遮断が切り替え可能に構成されている。なお、本実施形態において、リレースイッチSMRが「放電規制部、電池用スイッチ」に相当する。 The relay switch SMR is provided in a portion between the connection point PB in the path LA2 in the second system and the second storage battery 16 and the third storage battery 18, and the portion is opened or closed. By opening and closing the relay switch SMR, the second storage battery 16 and the third storage battery 18 can be switched between energization and energization cutoff. In this embodiment, the relay switch SMR corresponds to the "discharge control unit, battery switch".
 そして、第2蓄電池16及び第3蓄電池18は、コンバータ12からの電力供給により充電可能に構成されている。具体的には、第1スイッチング素子SW1及びリレースイッチSMRを閉鎖することで、第2蓄電池16及び第3蓄電池18は、電源電圧VAにより充電される。 The second storage battery 16 and the third storage battery 18 are configured to be rechargeable by the power supply from the converter 12. Specifically, by closing the first switching element SW1 and the relay switch SMR, the second storage battery 16 and the third storage battery 18 are charged by the power supply voltage VA.
 制御装置40は、第1,第2電流検出部27,28の検出値に基づいて、第1スイッチSW1を切替操作すべく、第1切替信号SC1を生成し、第1切替信号SC1による指令を第1スイッチSW1に出力する。また、制御装置40は、リレースイッチSMRを切替操作すべく、リレー切替信号SRを生成し、リレー切替信号SRによる指令をリレースイッチSMRに出力する。さらに、制御装置40は、コンバータ12を動作制御すべく、制御信号SDを生成し、制御信号SDによる指令をコンバータ12に出力する。制御信号SDにより、コンバータ12の動作状態と動作停止状態とが切り替えられる。 The control device 40 generates a first switching signal SC1 in order to switch the first switch SW1 based on the detection values of the first and second current detection units 27 and 28, and issues a command by the first switching signal SC1. Output to the first switch SW1. Further, the control device 40 generates a relay switching signal SR in order to switch the relay switch SMR, and outputs a command by the relay switching signal SR to the relay switch SMR. Further, the control device 40 generates a control signal SD in order to control the operation of the converter 12, and outputs a command by the control signal SD to the converter 12. The operation state and the operation stop state of the converter 12 are switched by the control signal SD.
 また、制御装置40は、報知部44と、IGスイッチ45と、入力部46とに接続されており、これらを制御する。報知部44は、視覚または聴覚的にドライバに報知する装置であり、例えば車室内に設置されたディスプレイやスピーカである。IGスイッチ45は、車両の起動スイッチである。制御装置40は、IGスイッチ45の開放又は閉鎖を監視する。入力部46は、ドライバの操作を受け付ける装置であり、例えばハンドル、レバー、ボタン、ペダル、音声入力装置である。 Further, the control device 40 is connected to the notification unit 44, the IG switch 45, and the input unit 46, and controls these. The notification unit 44 is a device that visually or audibly notifies the driver, and is, for example, a display or a speaker installed in a vehicle interior. The IG switch 45 is a vehicle start switch. The control device 40 monitors the opening or closing of the IG switch 45. The input unit 46 is a device that accepts the operation of the driver, for example, a handle, a lever, a button, a pedal, and a voice input device.
 制御装置40は、上述した特定負荷32を用いて車両を手動運転及び自動運転する。制御装置40は、CPU、ROM、RAM、フラッシュメモリ等からなる周知のマイクロコンピュータを備えている。CPUは、ROM内の演算プログラムや制御データを参照して、手動運転及び自動運転するための種々の機能を実現する。 The control device 40 manually drives and automatically drives the vehicle using the above-mentioned specific load 32. The control device 40 includes a well-known microcomputer including a CPU, ROM, RAM, flash memory, and the like. The CPU realizes various functions for manual operation and automatic operation by referring to the arithmetic program and control data in the ROM.
 なお、手動運転とは、ドライバの操作によって車両を運転制御する状態を表す。また、自動運転とは、ドライバの操作によらず制御装置40による制御内容で車両を運転制御する状態を表す。具体的には、自動運転とは、米国運輸省道路交通安全局(NHTSA)によって定められたレベル0からレベル5までの自動運転レベルのうち、レベル3以上の自動運転のことをいう。レベル3は、制御装置40が、走行環境を観測しつつ、ハンドル操作と加減速との両方を制御するレベルである。 Note that manual driving represents a state in which the vehicle is controlled by the operation of the driver. Further, the automatic driving represents a state in which the vehicle is driven and controlled by the control content by the control device 40 regardless of the operation of the driver. Specifically, automatic driving refers to automatic driving of level 3 or higher among the automatic driving levels from level 0 to level 5 defined by the National Highway Traffic Safety Administration (NHTSA). Level 3 is a level at which the control device 40 controls both steering wheel operation and acceleration / deceleration while observing the traveling environment.
 また、制御装置40は、上述した特定負荷32を用いて、LKA(Lane Keeping Assist)、LCA(Lane Change Assist)、PCS(Pre-Crash Safety)等の運転支援機能を実施可能である。制御装置40は、車両の運転モードを、運転支援機能を用いる第1モードと、運転支援機能を用いない第2モードとに切り替え可能であり、車両は各運転モードによる走行が可能となっている。制御装置40は、入力部46を介したドライバの切替指示により、第1モードと第2モードとを切り替える。ここで、第1モードには、ドライバが運転支援機能を用いて車両を手動運転するモードとともに、車両を自動運転するモードが含まれる。第2モードは、ドライバが運転支援機能を用いずに車両を手動運転するモードである。 Further, the control device 40 can implement driving support functions such as LKA (Lane Keeping Assist), LCA (Lane Change Assist), and PCS (Pre-Crash Safety) by using the specific load 32 described above. The control device 40 can switch the driving mode of the vehicle between a first mode in which the driving support function is used and a second mode in which the driving support function is not used, and the vehicle can travel in each driving mode. .. The control device 40 switches between the first mode and the second mode according to the driver switching instruction via the input unit 46. Here, the first mode includes a mode in which the driver manually drives the vehicle using the driving support function, and a mode in which the vehicle is automatically driven. The second mode is a mode in which the driver manually drives the vehicle without using the driving support function.
 第1モードにおいて、制御装置40は、第1系統ES1及び第2系統ES2に異常が発生したか否かを判定し、いずれの系統ES1,ES2でも異常が発生していないと判定された場合、第1負荷34と第2負荷36とを用いて車両の自動運転及び運転支援が行われる。これにより、第1,第2負荷34,36は協働して自動運転及び運転支援に必要な1つの機能を実施する。本実施形態において、異常は、地絡や断線等の電源失陥異常である。 In the first mode, the control device 40 determines whether or not an abnormality has occurred in the first system ES1 and the second system ES2, and if it is determined that no abnormality has occurred in any of the systems ES1 and ES2, Automatic driving and driving support of the vehicle are performed using the first load 34 and the second load 36. As a result, the first and second loads 34 and 36 cooperate to carry out one function necessary for automatic driving and driving support. In the present embodiment, the abnormality is a power failure abnormality such as a ground fault or a disconnection.
 一方、いずれか一方の系統ES1,ES2で異常が発生したと判定された場合、第1スイッチSW1を開放し、第1系統ES1と第2系統ES2とを電気的に絶縁する。これにより、いずれか一方の系統ES1,ES2で異常が発生した場合でも、異常が発生していない他方の系統ES1,ES2の負荷34,36を駆動させることができる。 On the other hand, if it is determined that an abnormality has occurred in either of the systems ES1 and ES2, the first switch SW1 is opened to electrically insulate the first system ES1 and the second system ES2. As a result, even if an abnormality occurs in one of the systems ES1 and ES2, the loads 34 and 36 of the other system ES1 and ES2 in which the abnormality has not occurred can be driven.
 ところで、第1系統ES1での異常発生に伴い第1スイッチSW1が開放された場合には、第2系統ES2において、第2蓄電池16及び第3蓄電池18から第2負荷36への電力供給が行われる。しかし、電源システム100が低温状態や高負荷状態で使用されている場合には、第2蓄電池16及び第3蓄電池18の性能低下や第2系統内経路LA2における配線抵抗の増加により、第2蓄電池16及び第3蓄電池18の蓄電池電圧VBを高くしておくことが望ましい。ただし反面、その蓄電池電圧VBを高い電圧に充電する場合には、コンバータ12からの電力供給負担やコスト負担が大きくなることが懸念される。 By the way, when the first switch SW1 is opened due to the occurrence of an abnormality in the first system ES1, power is supplied from the second storage battery 16 and the third storage battery 18 to the second load 36 in the second system ES2. Will be. However, when the power supply system 100 is used in a low temperature state or a high load state, the performance of the second storage battery 16 and the third storage battery 18 deteriorates, and the wiring resistance in the path LA2 in the second system increases, so that the second storage battery It is desirable to keep the storage battery voltage VB of 16 and the third storage battery 18 high. However, on the other hand, when the storage battery voltage VB is charged to a high voltage, there is a concern that the power supply burden and the cost burden from the converter 12 will increase.
 本実施形態では、第2系統ES2において、第2蓄電池16及び第3蓄電池18が直列接続された状態と、並列接続された状態とに切り替えられるようにした。具体的には、第2蓄電池16の正極端子は、第1正極側経路LC1によりリレースイッチSMRに接続されており、第2蓄電池16の負極端子は、第1負極側経路LD1によりグランドに接続されている。第3蓄電池18の正極端子は、第2正極側経路LC2により接続点PCにおいて第1正極側経路LC1に接続されており、第2蓄電池16の負極端子は、第2負極側経路LD2により接続点PDにおいて第1負極側経路LD1に接続されている。つまり、第1,第2正極側経路LC1,LC2及び第1,第2負極側経路LD1,LD2により、第2蓄電池16及び第3蓄電池18は接続点PCと接続点PDとの間に並列接続されている。なお、本実施形態において、接続点PCが「第1電位点」に相当し、接続点PDが「第2電位点」に相当する。 In the present embodiment, in the second system ES2, the second storage battery 16 and the third storage battery 18 can be switched between a state in which they are connected in series and a state in which they are connected in parallel. Specifically, the positive electrode terminal of the second storage battery 16 is connected to the relay switch SMR by the first positive electrode side path LC1, and the negative electrode terminal of the second storage battery 16 is connected to the ground by the first negative electrode side path LD1. ing. The positive electrode terminal of the third storage battery 18 is connected to the first positive electrode side path LC1 at the connection point PC by the second positive electrode side path LC2, and the negative electrode terminal of the second storage battery 16 is connected to the connection point by the second negative electrode side path LD2. In PD, it is connected to the first negative electrode side path LD1. That is, the second storage battery 16 and the third storage battery 18 are connected in parallel between the connection point PC and the connection point PD by the first and second positive electrode side paths LC1 and LC2 and the first and second negative electrode side paths LD1 and LD2. Has been done. In the present embodiment, the connection point PC corresponds to the "first potential point", and the connection point PD corresponds to the "second potential point".
 また、第2系統内経路LA2においてリレースイッチSMRよりも第2蓄電池16及び第3蓄電池18側に、第2スイッチ部22を設けるようにした。第2スイッチ部22は、第2~第4スイッチング素子(以下、単に第2~第4スイッチ)SW2~SW4を備えている。第2スイッチSW2は、第1負極側経路LD1に設けられており、第3スイッチSW3は、第2正極側経路LC2に設けられている。 Further, in the path LA2 in the second system, the second switch unit 22 is provided on the second storage battery 16 and the third storage battery 18 side of the relay switch SMR. The second switch unit 22 includes second to fourth switching elements (hereinafter, simply second to fourth switches) SW2 to SW4. The second switch SW2 is provided in the first negative electrode side path LD1, and the third switch SW3 is provided in the second positive electrode side path LC2.
 第4スイッチSW4は、第2正極側経路LC2と第1負極側経路LD1とを接続する導通経路LEに設けられている。導通経路LEの一端は、接続点PEにおいて第1負極側経路LD1のうち第2蓄電池16と第2スイッチSW2との間に接続されており、導通経路LEの他端は、接続点PFにおいて第2正極側経路LC2のうち第3スイッチSW3と第3蓄電池18との間に接続されている。なお、本実施形態において、接続点PEが「第1接続点」に相当し、接続点PFが「第2接続点」に相当する。 The fourth switch SW4 is provided in the conduction path LE connecting the second positive electrode side path LC2 and the first negative electrode side path LD1. One end of the conduction path LE is connected between the second storage battery 16 and the second switch SW2 of the first negative electrode side path LD1 at the connection point PE, and the other end of the conduction path LE is at the connection point PF. 2 Of the positive electrode side paths LC2, the third switch SW3 and the third storage battery 18 are connected to each other. In the present embodiment, the connection point PE corresponds to the "first connection point", and the connection point PF corresponds to the "second connection point".
 本実施形態では、第2~第4スイッチSW2~SW4として、MOSFETが用いられている。制御装置40は、第2~第4スイッチSW2~SW4を切替操作すべく、第2~第4切替信号SC2~SC4を生成し、第2~第4切替信号SC2~SC4による指令を第2~第4スイッチSW2~SW4に出力する。なお、本実施形態において、第2スイッチSW2が「第1切替スイッチ」に相当し、第3スイッチSW3が「第2切替スイッチ」に相当し、第4スイッチSW4が「第3切替スイッチ」に相当する。 In this embodiment, MOSFETs are used as the second to fourth switches SW2 to SW4. The control device 40 generates the second to fourth switching signals SC2 to SC4 in order to switch the second to fourth switches SW2 to SW4, and issues commands from the second to fourth switching signals SC2 to SC4 to the second to the second. Output to the 4th switch SW2 to SW4. In the present embodiment, the second switch SW2 corresponds to the "first changeover switch", the third switch SW3 corresponds to the "second changeover switch", and the fourth switch SW4 corresponds to the "third changeover switch". do.
 制御装置40は、第2~第4切替信号SC2~SC4により、第2蓄電池16及び第3蓄電池18が並列接続された状態と、直列接続された状態とを切り替える。具体的には、第2,第3スイッチSW2,SW3が閉鎖され、第4スイッチSW4が開放されることにより、第2蓄電池16及び第3蓄電池18は並列接続される。一方、第2,第3スイッチSW2,SW3が開放され、第4スイッチSW4が開放されることにより、第2蓄電池16及び第3蓄電池18は直列接続される。 The control device 40 switches between a state in which the second storage battery 16 and the third storage battery 18 are connected in parallel and a state in which they are connected in series by the second to fourth switching signals SC2 to SC4. Specifically, the second and third switches SW2 and SW3 are closed, and the fourth switch SW4 is opened, so that the second storage battery 16 and the third storage battery 18 are connected in parallel. On the other hand, when the second and third switches SW2 and SW3 are opened and the fourth switch SW4 is opened, the second storage battery 16 and the third storage battery 18 are connected in series.
 そして、本実施形態では、コンバータ12からの電力供給により第2蓄電池16及び第3蓄電池18が充電される場合に、第2蓄電池16及び第3蓄電池18が並列接続されるようにした。また、第2蓄電池16及び第3蓄電池18が放電される場合に、第2蓄電池16及び第3蓄電池18が直列接続されるように第2~第4スイッチSW2~SW4の開放又は閉鎖を制御する制御処理を実施するようにした。 Then, in the present embodiment, when the second storage battery 16 and the third storage battery 18 are charged by the power supply from the converter 12, the second storage battery 16 and the third storage battery 18 are connected in parallel. Further, when the second storage battery 16 and the third storage battery 18 are discharged, the opening or closing of the second to fourth switches SW2 to SW4 is controlled so that the second storage battery 16 and the third storage battery 18 are connected in series. The control process is now executed.
 この場合、第2蓄電池16及び第3蓄電池18の充電が行われる際において、第2蓄電池16及び第3蓄電池18を並列接続し、電源電圧VAを昇圧することなく第2蓄電池16及び第3蓄電池18を充電する。これにより、例えば充電におけるコンバータ12の電力供給負担や、第2系統ES2に昇圧コンバータを設けることによる電源システム100のコスト負担を軽減することができる。また、第1系統ES1での異常発生に伴い第2系統ES2で第2蓄電池16及び第3蓄電池18からの電力供給が行われる際において、第2蓄電池16及び第3蓄電池18を直列接続することで電源電圧VAよりも高い電圧で負荷34,36に電力供給を行う。これにより、仮に低温状態や高負荷状態であっても、第2負荷36を適正に作動させることができる。 In this case, when the second storage battery 16 and the third storage battery 18 are charged, the second storage battery 16 and the third storage battery 18 are connected in parallel, and the second storage battery 16 and the third storage battery 18 are connected without boosting the power supply voltage VA. 18 is charged. This makes it possible to reduce, for example, the power supply burden of the converter 12 in charging and the cost burden of the power supply system 100 by providing the boost converter in the second system ES2. Further, when the power is supplied from the second storage battery 16 and the third storage battery 18 in the second system ES2 due to the occurrence of an abnormality in the first system ES1, the second storage battery 16 and the third storage battery 18 are connected in series. Power is supplied to the loads 34 and 36 at a voltage higher than the power supply voltage VA. As a result, the second load 36 can be properly operated even in a low temperature state or a high load state.
 図2に、本実施形態の制御処理のフローチャートを示す。制御装置40は、IGスイッチ45が閉鎖されると、所定の制御周期毎に制御処理を繰り返し実施する。なお、IGスイッチ45の閉鎖当初において、車両の運転モードは第2モードに設定されており、第1スイッチSW1は閉鎖されており、コンバータ12は動作状態とされている。 FIG. 2 shows a flowchart of the control process of the present embodiment. When the IG switch 45 is closed, the control device 40 repeatedly executes the control process at predetermined control cycles. At the beginning of closing the IG switch 45, the operation mode of the vehicle is set to the second mode, the first switch SW1 is closed, and the converter 12 is in the operating state.
 制御処理を開始すると、まずステップS10において、車両の運転モードが第2モードであるか否かを判定する。ステップS10で肯定判定すると、ステップS12において、第2蓄電池16及び第3蓄電池18の残存容量SAを算出する。残存容量SAは、例えば各蓄電池16,18の蓄電状態を示すSOC(State Of Charge)の合計値である。残存容量SAは、第2蓄電池16及び第3蓄電池18が通電状態(充電状態又は放電状態)である場合には、各蓄電池16,18の充放電電流の時間積分値である電流積算値を用いて算出される。 When the control process is started, first, in step S10, it is determined whether or not the driving mode of the vehicle is the second mode. If affirmative determination is made in step S10, the remaining capacity SA of the second storage battery 16 and the third storage battery 18 is calculated in step S12. The remaining capacity SA is, for example, the total value of SOC (State Of Charge) indicating the state of charge of each of the storage batteries 16 and 18. When the second storage battery 16 and the third storage battery 18 are in the energized state (charged state or discharged state), the remaining capacity SA uses the current integrated value which is the time integrated value of the charge / discharge current of each of the storage batteries 16 and 18. Is calculated.
 ステップS14では、ステップS12で算出した残存容量SAが、所定の容量閾値Sthよりも大きいか否かを判定する。ここで容量閾値Sthは、第2蓄電池16及び第3蓄電池18の合計電圧が電源電圧VAよりも所定値高い電圧となる容量である。残存容量SAが容量閾値Sthよりも小さい場合には、第2蓄電池16及び第3蓄電池18の合計電圧が電源電圧VAよりも所定値以上高くなく、第2蓄電池16及び第3蓄電池18が満充電状態となっていない。この場合、第1モード実施の前提条件が成立していないため、ステップS14で否定判定し、ステップS42,S44に進む。 In step S14, it is determined whether or not the remaining capacity SA calculated in step S12 is larger than the predetermined capacity threshold value Sth. Here, the capacity threshold Sth is a capacity at which the total voltage of the second storage battery 16 and the third storage battery 18 becomes a voltage higher than the power supply voltage VA by a predetermined value. When the remaining capacity SA is smaller than the capacity threshold Sth, the total voltage of the second storage battery 16 and the third storage battery 18 is not higher than a predetermined value than the power supply voltage VA, and the second storage battery 16 and the third storage battery 18 are fully charged. Not in a state. In this case, since the precondition for executing the first mode is not satisfied, a negative determination is made in step S14, and the process proceeds to steps S42 and S44.
 一方、残存容量SAが容量閾値Sthよりも大きい場合には、第2蓄電池16及び第3蓄電池18の合計電圧が電源電圧VAよりも所定値以上高く、第2蓄電池16及び第3蓄電池18が満充電状態となっている。この場合、第1モード実施の前提条件が成立しているため、ステップS14で肯定判定する。この場合、ステップS16において、リレースイッチSMRを開放し、第2蓄電池16及び第3蓄電池18の充電を停止する。なお、後述するように、ステップS14で肯定判定される際には、リレースイッチSMRは閉鎖されている。なお、本実施形態において、ステップS14の処理が「充電判定部」に相当する。 On the other hand, when the remaining capacity SA is larger than the capacity threshold Sth, the total voltage of the second storage battery 16 and the third storage battery 18 is higher than the power supply voltage VA by a predetermined value or more, and the second storage battery 16 and the third storage battery 18 are full. It is in a charged state. In this case, since the precondition for executing the first mode is satisfied, an affirmative determination is made in step S14. In this case, in step S16, the relay switch SMR is opened to stop the charging of the second storage battery 16 and the third storage battery 18. As will be described later, when the affirmative determination is made in step S14, the relay switch SMR is closed. In this embodiment, the process of step S14 corresponds to the "charge determination unit".
 続くステップS17では、第2,第3スイッチSW2,SW3を開放するとともに第4スイッチSW4を閉鎖することで、第2蓄電池16及び第3蓄電池18を直列接続に切り替える。直列接続への切り替えでは、第2,第3スイッチSW2,SW3を開放した後に第4スイッチSW4を閉鎖し、第2,第3スイッチSW2,SW3の少なくとも一方と第4スイッチSW4とが同時に閉鎖されないようにする。 In the following step S17, the second storage battery 16 and the third storage battery 18 are switched to the series connection by opening the second and third switches SW2 and SW3 and closing the fourth switch SW4. In switching to series connection, the 4th switch SW4 is closed after opening the 2nd and 3rd switches SW2 and SW3, and at least one of the 2nd and 3rd switches SW2 and SW3 and the 4th switch SW4 are not closed at the same time. To do so.
 第2蓄電池16及び第3蓄電池18が直列接続されることで、第2蓄電池16及び第3蓄電池18の蓄電池電圧VBは略2倍に上昇する。本実施形態では、第2蓄電池16及び第3蓄電池18が直列接続されるのに先立ってリレースイッチSMRが開放されていることで、直列接続における第2蓄電池16及び第3蓄電池18の放電が規制される。 By connecting the second storage battery 16 and the third storage battery 18 in series, the storage battery voltage VB of the second storage battery 16 and the third storage battery 18 is substantially doubled. In the present embodiment, the relay switch SMR is opened prior to the series connection of the second storage battery 16 and the third storage battery 18, so that the discharge of the second storage battery 16 and the third storage battery 18 in the series connection is restricted. Will be done.
 続くステップS18では、車両の運転モードを第2モードから第1モードへの切り替えを許可し、制御処理を終了する。なお、第1モードへの切り替えは、例えば入力部46を介してドライバから運転支援機能を用いる指示、又は自動運転の指示等の切替指示が入力された場合に実施される。 In the following step S18, the operation mode of the vehicle is allowed to be switched from the second mode to the first mode, and the control process is terminated. The switching to the first mode is performed, for example, when a switching instruction such as an instruction to use the driving support function or an instruction for automatic driving is input from the driver via the input unit 46.
 一方、ステップS10で否定判定すると、ステップS20において、ドライバ報知中であるかを判定する。ここで、ドライバ報知は、第1系統ES1及び第2系統ES2のいずれか一方で異常が発生したことをドライバに知らせるとともに、ドライバに第1モードを中止する旨を知らせ、第2モードへの切り替えを促すものである。 On the other hand, if a negative determination is made in step S10, it is determined in step S20 whether the driver is being notified. Here, the driver notification notifies the driver that an abnormality has occurred in either the first system ES1 or the second system ES2, informs the driver that the first mode is to be canceled, and switches to the second mode. Is to encourage.
 ステップS20で否定判定すると、ステップS22,S24において、第1系統ES1及び第2系統ES2のいずれか一方で異常が発生したことを判定する。具体的には、ステップS22において、第1系統ES1に異常が発生したか否かを判定する。ステップS22で否定判定すると、ステップS24において、第2系統ES2に異常が発生したか否かを判定する。なお、本実施形態において、ステップS22の処理が「異常判定部」に相当する。 If a negative determination is made in step S20, it is determined that an abnormality has occurred in either the first system ES1 or the second system ES2 in steps S22 and S24. Specifically, in step S22, it is determined whether or not an abnormality has occurred in the first system ES1. If a negative determination is made in step S22, it is determined in step S24 whether or not an abnormality has occurred in the second system ES2. In this embodiment, the process of step S22 corresponds to the "abnormality determination unit".
 なお、異常の発生は、第1,第2電流検出部27,28で検出される各電流IA,IBの大きさにより判定することができる。例えば第1系統ES1で地絡が発生した場合、第1電流検出部27で検出される系統内電流IAの大きさは、地絡判定のための所定の電流閾値Ith以上となる。また例えば第2系統ES2で地絡が発生した場合、第2電流検出部28で検出される系統間電流IBの大きさは、電流閾値Ith以上となる。したがって、第1,第2電流検出部27,28で検出される各電流IA,IBの大きさにより、どちらの系統ES1,ES2で異常が発生したかを判定することができる。 The occurrence of an abnormality can be determined by the magnitude of each of the currents IA and IB detected by the first and second current detection units 27 and 28. For example, when a ground fault occurs in the first system ES1, the magnitude of the in-system current IA detected by the first current detection unit 27 is equal to or larger than a predetermined current threshold value Is for determining the ground fault. Further, for example, when a ground fault occurs in the second system ES2, the magnitude of the inter-system current IB detected by the second current detection unit 28 becomes equal to or larger than the current threshold value Is. Therefore, it is possible to determine which system ES1 or ES2 the abnormality has occurred based on the magnitude of each of the currents IA and IB detected by the first and second current detection units 27 and 28.
 いずれの系統ES1,ES2でも異常が発生していないと判定された場合、ステップS24で否定判定する。この場合、制御処理を終了する。これにより、コンバータ12から第1,第2負荷34,36への電力供給が継続されるとともに、リレースイッチSMRが開放された状態に維持される。つまり、いずれの系統ES1,ES2でも異常が発生していないと判定され、かつ第2蓄電池16及び第3蓄電池18が満充電状態であると判定された場合、第1スイッチSW1が閉鎖され、リレースイッチSMRが開放される。その結果、第2蓄電池16及び第3蓄電池18からの不要な放電が抑制される。 If it is determined that no abnormality has occurred in any of the systems ES1 and ES2, a negative determination is made in step S24. In this case, the control process is terminated. As a result, the power supply from the converter 12 to the first and second loads 34 and 36 is continued, and the relay switch SMR is maintained in an open state. That is, when it is determined that no abnormality has occurred in any of the systems ES1 and ES2, and it is determined that the second storage battery 16 and the third storage battery 18 are in a fully charged state, the first switch SW1 is closed and the relay is relayed. The switch SMR is released. As a result, unnecessary discharge from the second storage battery 16 and the third storage battery 18 is suppressed.
 一方、いずれか一方の系統ES1,ES2で異常が発生したと判定された場合、異常が発生した系統側への電力供給を停止させるとともに、異常が発生していない系統の電気負荷への電力供給を継続させる処理を実施する。 On the other hand, when it is determined that an abnormality has occurred in either of the systems ES1 and ES2, the power supply to the system side where the abnormality has occurred is stopped and the power supply to the electric load of the system where the abnormality has not occurred. Carry out the process of continuing.
 具体的には、ステップS22で肯定判定すると、まずステップS26において、第1スイッチSW1を開放する。続くステップS28において、リレースイッチSMRを閉鎖し、第2蓄電池16及び第3蓄電池18の放電抑制を解除する。なお、本実施形態において、ステップS26の処理が「状態制御部」に相当し、ステップS26,28の処理が「第2制御部」に相当する。 Specifically, if an affirmative determination is made in step S22, first, in step S26, the first switch SW1 is opened. In the following step S28, the relay switch SMR is closed to release the discharge suppression of the second storage battery 16 and the third storage battery 18. In the present embodiment, the process of step S26 corresponds to the "state control unit", and the process of steps S26 and 28 corresponds to the "second control unit".
 これにより、第2蓄電池16及び第3蓄電池18が直列接続された状態で、第2蓄電池16及び第3蓄電池18から第2負荷36に電力供給が行われ、第2蓄電池16及び第3蓄電池18が放電される第2状態となる。この場合、第2蓄電池16及び第3蓄電池18が直列接続されているため、電源電圧VAよりも高い電圧で第2負荷36に電力供給が行われる。続くステップS30において、コンバータ12を動作停止状態とする指令を出力する。 As a result, with the second storage battery 16 and the third storage battery 18 connected in series, power is supplied from the second storage battery 16 and the third storage battery 18 to the second load 36, and the second storage battery 16 and the third storage battery 18 are supplied. Is in the second state of being discharged. In this case, since the second storage battery 16 and the third storage battery 18 are connected in series, power is supplied to the second load 36 at a voltage higher than the power supply voltage VA. In the following step S30, a command to put the converter 12 into the operation stop state is output.
 また、ステップS24で肯定判定すると、ステップS32において、第1スイッチSW1を開放する。その結果、第1系統ES1におけるコンバータ12から第1負荷34への電力供給が継続される。 Further, if an affirmative determination is made in step S24, the first switch SW1 is opened in step S32. As a result, the power supply from the converter 12 in the first system ES1 to the first load 34 is continued.
 その後、ステップS36において、報知部44を介して、ドライバに第1モードを中止する旨を報知し、制御処理を終了する。 After that, in step S36, the driver is notified via the notification unit 44 that the first mode is to be stopped, and the control process is terminated.
 ステップS20で肯定判定すると、ステップS38において、入力部46を介してドライバから第2モードへの切替指示が入力されたか否かを判定する。つまり、報知に応じたドライバの応答があったか否かを判定する。ステップS38で否定判定すると、制御処理を終了し、異常が発生していない系統側の負荷34,36を用いて、第1モードでの車両の走行が行われる。 If an affirmative determination is made in step S20, it is determined in step S38 whether or not a switching instruction to the second mode has been input from the driver via the input unit 46. That is, it is determined whether or not there is a response from the driver in response to the notification. If a negative determination is made in step S38, the control process is terminated, and the vehicle runs in the first mode using the loads 34 and 36 on the system side where no abnormality has occurred.
 一方、ステップS38で肯定判定すると、ステップS40において、車両の運転モードを第1モードから第2モードに切り替え、制御処理を終了する。 On the other hand, if an affirmative determination is made in step S38, the driving mode of the vehicle is switched from the first mode to the second mode in step S40, and the control process is terminated.
 ステップS42,S44では、つまり車両の運転モードが第2モードであると、第1系統ES1及び第2系統ES2のいずれか一方で異常が発生したことを判定する。具体的には、ステップS42において、第1系統ES1に異常が発生したか否かを判定する。ステップS42で否定判定すると、ステップS44において、第2系統ES2に異常が発生したか否かを判定する。 In steps S42 and S44, that is, when the driving mode of the vehicle is the second mode, it is determined that an abnormality has occurred in either the first system ES1 or the second system ES2. Specifically, in step S42, it is determined whether or not an abnormality has occurred in the first system ES1. If a negative determination is made in step S42, it is determined in step S44 whether or not an abnormality has occurred in the second system ES2.
 いずれの系統ES1,ES2でも異常が発生していないと判定された場合、ステップS44で否定判定する。この場合、ステップS45において、第2,第3スイッチSW2,SW3を閉鎖するとともに第4スイッチSW4を開放することで、第2蓄電池16及び第3蓄電池18を並列接続に切り替える。並列接続への切り替えでは、第4スイッチSW4を開放した後に第2,第3スイッチSW2,SW3を閉鎖し、第2,第3スイッチSW2,SW3の少なくとも一方と第4スイッチSW4とが同時に閉鎖されないようにする。 If it is determined that no abnormality has occurred in any of the systems ES1 and ES2, a negative determination is made in step S44. In this case, in step S45, the second storage battery 16 and the third storage battery 18 are switched to parallel connection by closing the second and third switches SW2 and SW3 and opening the fourth switch SW4. In switching to parallel connection, the second and third switches SW2 and SW3 are closed after the fourth switch SW4 is opened, and at least one of the second and third switches SW2 and SW3 and the fourth switch SW4 are not closed at the same time. To do so.
 続くステップS46において、リレースイッチSMRを閉鎖し、制御処理を終了する。なお、本実施形態において、ステップS45,S46の処理が「第1制御部」に相当する。 In the following step S46, the relay switch SMR is closed and the control process is terminated. In this embodiment, the processes of steps S45 and S46 correspond to the "first control unit".
 これにより、第2蓄電池16及び第3蓄電池18が並列接続された状態で、コンバータ12から第2蓄電池16及び第3蓄電池18に電力供給が行われ、第2蓄電池16及び第3蓄電池18が充電される第1状態となる。つまり、車両の運転モードが第2モードである場合に第1状態となり、前述のステップS14の処理も第1状態において実施される。 As a result, with the second storage battery 16 and the third storage battery 18 connected in parallel, power is supplied from the converter 12 to the second storage battery 16 and the third storage battery 18, and the second storage battery 16 and the third storage battery 18 are charged. It becomes the first state to be done. That is, when the driving mode of the vehicle is the second mode, the first state is set, and the process of step S14 described above is also performed in the first state.
 一方、いずれか一方の系統ES1,ES2で異常が発生したと判定された場合、異常が発生した系統側への電力供給を停止させるとともに、異常が発生していない系統の電気負荷への電力供給を継続させる処理を実施する。 On the other hand, when it is determined that an abnormality has occurred in either of the systems ES1 and ES2, the power supply to the system side where the abnormality has occurred is stopped and the power supply to the electric load of the system where the abnormality has not occurred. Carry out the process of continuing.
 具体的には、ステップS42で肯定判定すると、まずステップS47において、第1スイッチSW1を開放する。続くステップS48において、第2蓄電池16及び第3蓄電池18を直列接続する。これにより、第2蓄電池16及び第3蓄電池18が並列接続されている場合に比べて高い電圧を放電することができる。続くステップS50において、コンバータ12を動作停止状態とする指令を出力する。 Specifically, if an affirmative determination is made in step S42, first, in step S47, the first switch SW1 is opened. In the following step S48, the second storage battery 16 and the third storage battery 18 are connected in series. As a result, a higher voltage can be discharged as compared with the case where the second storage battery 16 and the third storage battery 18 are connected in parallel. In the following step S50, a command to put the converter 12 into the operation stop state is output.
 また、ステップS44で肯定判定すると、ステップS52において、第1スイッチSW1を開放する。続くステップS54において、リレースイッチSMRを開放する。 Further, if an affirmative determination is made in step S44, the first switch SW1 is opened in step S52. In the following step S54, the relay switch SMR is opened.
 その後、ステップS56において、報知部44を介してドライバに第1系統ES1及び第2系統ES2のいずれか一方で異常が発生した旨を報知し、制御処理を終了する。 After that, in step S56, the driver is notified via the notification unit 44 that an abnormality has occurred in either the first system ES1 or the second system ES2, and the control process is terminated.
 続いて、図3に、制御処理の一例を示す。図3は、第1モードでの車両の走行中に第1系統ES1で地絡異常(以下、単に地絡)が発生した場合における負荷電圧VDと蓄電池電圧VBとの推移を示す。ここで負荷電圧VDは、第2負荷36に印加される電圧を示し、具体的には第2系統ES2における接続点PBの電圧を示す。また、蓄電池電圧VBは、第2蓄電池16及び第3蓄電池18の端子間電圧を示し、具体的には第2系統ES2における第1正極側経路LC1と第2正極側経路LC2との接続点PCの電圧を示す。そのため、第2蓄電池16及び第3蓄電池18が直列接続されている場合の蓄電池電圧VBは、第2蓄電池16及び第3蓄電池18が並列接続されている場合の蓄電池電圧VBの2倍の電圧となる。 Subsequently, FIG. 3 shows an example of control processing. FIG. 3 shows the transition between the load voltage VD and the storage battery voltage VB when a ground fault abnormality (hereinafter, simply ground fault) occurs in the first system ES1 while the vehicle is running in the first mode. Here, the load voltage VD indicates the voltage applied to the second load 36, specifically, the voltage of the connection point PB in the second system ES2. Further, the storage battery voltage VB indicates the voltage between the terminals of the second storage battery 16 and the third storage battery 18, and specifically, the connection point PC between the first positive electrode side path LC1 and the second positive electrode side path LC2 in the second system ES2. Indicates the voltage of. Therefore, the storage battery voltage VB when the second storage battery 16 and the third storage battery 18 are connected in series is twice the voltage of the storage battery voltage VB when the second storage battery 16 and the third storage battery 18 are connected in parallel. Become.
 図3において、(A)は、IGスイッチ45の状態の推移を示し、(B)は、車両の運転モードの推移を示し、(C)は、第1スイッチSW1の開閉状態の推移を示し、(D)は、リレースイッチSMRの開閉状態の推移を示し、(E)は、第2,第3スイッチSW2,SW3の開閉状態の推移を示し、(F)は、第4スイッチSW4の開閉状態の推移を示す。また、(G)は、第2蓄電池16及び第3蓄電池18の接続状態の推移を示し、(H)は、負荷電圧VDの推移を示し、(I)は、蓄電池電圧VBの推移を示し、(J)は、第1系統ES1における系統内電流IAの推移を示す。 In FIG. 3, (A) shows the transition of the state of the IG switch 45, (B) shows the transition of the operation mode of the vehicle, and (C) shows the transition of the open / closed state of the first switch SW1. (D) shows the transition of the open / closed state of the relay switch SMR, (E) shows the transition of the open / closed state of the second and third switches SW2 and SW3, and (F) shows the transition of the open / closed state of the fourth switch SW4. Shows the transition of. Further, (G) shows the transition of the connection state of the second storage battery 16 and the third storage battery 18, (H) shows the transition of the load voltage VD, and (I) shows the transition of the storage battery voltage VB. (J) shows the transition of the in-system current IA in the first system ES1.
 図3に示すように、時刻t1までのIGスイッチ45の開期間、つまり電源システム100の休止状態において、第1~第4スイッチSW1~SW4及びリレースイッチSMRが開放されており、コンバータ12が動作停止状態に切り替えられている。そのため、IGスイッチ45の開期間では、負荷電圧VD及び系統内電流IAがゼロとなる。 As shown in FIG. 3, in the open period of the IG switch 45 until the time t1, that is, in the hibernation state of the power supply system 100, the first to fourth switches SW1 to SW4 and the relay switch SMR are open, and the converter 12 operates. It has been switched to the stopped state. Therefore, during the opening period of the IG switch 45, the load voltage VD and the in-system current IA become zero.
 時刻t1にIGスイッチ45が閉鎖されると、第1スイッチSW1が閉鎖されるとともに、コンバータ12を動作状態に切り替える指令が出力される。これにより、コンバータ12が動作状態に切り替えられ、電源電圧VAの上昇に伴い負荷電圧VDが所定の動作電圧VMまで上昇し、第2モードでの車両の走行が可能となる。ここで動作電圧VMは、第1,第2負荷34,36の駆動電圧範囲内の電圧である。 When the IG switch 45 is closed at time t1, the first switch SW1 is closed and a command for switching the converter 12 to the operating state is output. As a result, the converter 12 is switched to the operating state, the load voltage VD rises to a predetermined operating voltage VM as the power supply voltage VA rises, and the vehicle can run in the second mode. Here, the operating voltage VM is a voltage within the drive voltage range of the first and second loads 34 and 36.
 また、第2,第3スイッチSW2,SW3が閉鎖されるとともに、リレースイッチSMRが閉鎖される。これにより、第2蓄電池16及び第3蓄電池18が並列接続された状態で、コンバータ12の電源電圧VAにより充電される第1状態となる。そして、蓄電池電圧VBが所定の昇圧電圧VH(図3(I)参照)まで上昇する。ここで昇圧電圧VHは、第2蓄電池16及び第3蓄電池18が満充電状態となる電圧であり、動作電圧VMよりも低く動作電圧VMの半分よりも高い電圧である。 In addition, the second and third switches SW2 and SW3 are closed, and the relay switch SMR is closed. As a result, in a state where the second storage battery 16 and the third storage battery 18 are connected in parallel, the first state is set in which the converter 12 is charged by the power supply voltage VA. Then, the storage battery voltage VB rises to a predetermined boosted voltage VH (see FIG. 3 (I)). Here, the boosted voltage VH is a voltage at which the second storage battery 16 and the third storage battery 18 are in a fully charged state, and is a voltage lower than the operating voltage VM and higher than half of the operating voltage VM.
 時刻t2に蓄電池電圧VBが昇圧電圧VHまで上昇し、第2蓄電池16及び第3蓄電池18が満充電状態となると、リレースイッチSMRが開放される。また、リレースイッチSMR開放後の時刻t3に第2,第3スイッチSW2,SW3が開放される。これにより、第2蓄電池16及び第3蓄電池18は、第2~第4スイッチSW2~SW4の全てが開放された切断状態となる。 When the storage battery voltage VB rises to the boost voltage VH at time t2 and the second storage battery 16 and the third storage battery 18 are in a fully charged state, the relay switch SMR is released. Further, the second and third switches SW2 and SW3 are opened at time t3 after the relay switch SMR is opened. As a result, the second storage battery 16 and the third storage battery 18 are in a disconnected state in which all of the second to fourth switches SW2 to SW4 are open.
 そして、第2,第3スイッチSW2,SW3開放後の時刻t4に第4スイッチSW4が閉鎖される。第2,第3スイッチSW2,SW3開放後に第4スイッチSW4が閉鎖されることで、誤って第2,第3スイッチSW2,SW3の少なくとも一方と第4スイッチSW4とが同時に閉鎖された状態となり、第2蓄電池16及び第3蓄電池18の少なくとも一方が短絡することを抑制することができる。 Then, the fourth switch SW4 is closed at time t4 after the second and third switches SW2 and SW3 are opened. When the 4th switch SW4 is closed after the 2nd and 3rd switches SW2 and SW3 are opened, at least one of the 2nd and 3rd switches SW2 and SW3 and the 4th switch SW4 are erroneously closed at the same time. It is possible to prevent short-circuiting of at least one of the second storage battery 16 and the third storage battery 18.
 また、第4スイッチSW4が閉鎖されることで、第2蓄電池16及び第3蓄電池18が直列接続され、この直列接続された状態でリレースイッチSMRにより放電が規制された状態となる。これにより、蓄電池電圧VBは、各蓄電池16,18の昇圧電圧VHを加算した加算電圧2VHとなる。 Further, when the fourth switch SW4 is closed, the second storage battery 16 and the third storage battery 18 are connected in series, and in the state of being connected in series, the discharge is regulated by the relay switch SMR. As a result, the storage battery voltage VB becomes an additional voltage of 2 VH, which is the sum of the boosted voltages VH of the storage batteries 16 and 18.
 第2蓄電池16及び第3蓄電池18が直列接続され、リレースイッチSMRにより放電が規制されると、車両の運転モードが第2モードから第1モードへの切り替えが可能となる。図3では、時刻t4に車両の運転モードが第2モードから第1モードに切り替えられる。 When the second storage battery 16 and the third storage battery 18 are connected in series and the discharge is regulated by the relay switch SMR, the operation mode of the vehicle can be switched from the second mode to the first mode. In FIG. 3, the driving mode of the vehicle is switched from the second mode to the first mode at time t4.
 第1モードでの車両の走行中に、第1系統ES1及び第2系統ES2のいずれか一方で地絡が発生したことが判定される。いずれの系統ES1,ES2でも地絡が発生していないと判定された場合、第1スイッチSW1が閉鎖された状態に維持される。これにより、コンバータ12及び第1蓄電池14のそれぞれから第1,第2負荷34,36に電力供給が可能となる。コンバータ12からの電力供給により、長時間の自動運転時にも継続的な電力供給が可能となり、第1蓄電池14からの電力供給により、電圧変動の少ない電力供給が可能となる。その結果、時刻t4から時刻t5までの期間では、第1負荷34と第2負荷36とを用いた自動運転及び運転支援が行われる。 It is determined that a ground fault has occurred in either the first system ES1 or the second system ES2 while the vehicle is running in the first mode. When it is determined that no ground fault has occurred in any of the systems ES1 and ES2, the first switch SW1 is maintained in the closed state. As a result, electric power can be supplied from the converter 12 and the first storage battery 14 to the first and second loads 34 and 36, respectively. The power supply from the converter 12 enables continuous power supply even during long-term automatic operation, and the power supply from the first storage battery 14 enables power supply with less voltage fluctuation. As a result, in the period from time t4 to time t5, automatic operation and driving support using the first load 34 and the second load 36 are performed.
 いずれか一方の系統ES1,ES2で地絡が発生したと判定された場合、第1スイッチSW1が閉鎖される。図3では、時刻t5に第1系統ES1で地絡が発生する。これにより、電源電圧VA及び負荷電圧VDが低下する。 If it is determined that a ground fault has occurred in either of the systems ES1 and ES2, the first switch SW1 is closed. In FIG. 3, a ground fault occurs in the first system ES1 at time t5. As a result, the power supply voltage VA and the load voltage VD decrease.
 また、系統内電流IAが増加し、その後の時刻t6に、系統内電流IAが電流閾値Ith以上となる。これにより、第1系統ES1で地絡が発生したと判定される。この場合、時刻t6に、第1スイッチSW1が開放されるとともに、コンバータ12が動作停止状態に切り替えられる。これにより、系統内電流IAが減少する。 Further, the in-system current IA increases, and at the subsequent time t6, the in-system current IA becomes equal to or higher than the current threshold value Is. As a result, it is determined that a ground fault has occurred in the first system ES1. In this case, at time t6, the first switch SW1 is opened and the converter 12 is switched to the operation stop state. This reduces the in-system current IA.
 また、この時刻t6に、リレースイッチSMRが閉鎖される。これにより、第2蓄電池16及び第3蓄電池18から第2負荷36への電力供給により負荷電圧VDが上昇する。本実施形態では、第1系統ES1での地絡発生時において、蓄電池電圧VBが昇圧電圧VHよりも高い加算電圧2VHまで上昇しているため、負荷電圧VDが加算電圧2VHまで上昇する。そのため、負荷電圧VDと、第1,第2負荷34,36の駆動電圧の下限値である閾値電圧Vthとの間に、所定の電圧差ΔVを確保することができる。これにより、仮に低温状態や高負荷状態であっても、第2負荷36を適正に作動させることができる。 Also, at this time t6, the relay switch SMR is closed. As a result, the load voltage VD rises due to the power supply from the second storage battery 16 and the third storage battery 18 to the second load 36. In the present embodiment, when a ground fault occurs in the first system ES1, the storage battery voltage VB rises to an added voltage of 2 VH higher than the boosted voltage VH, so that the load voltage VD rises to an added voltage of 2 VH. Therefore, a predetermined voltage difference ΔV can be secured between the load voltage VD and the threshold voltage Vth which is the lower limit of the drive voltage of the first and second loads 34 and 36. As a result, the second load 36 can be properly operated even in a low temperature state or a high load state.
 また、本実施形態では、第1系統ES1での地絡発生時において、第2蓄電池16及び第3蓄電池18が直列接続された状態とされている。そのため、第1系統ES1での地絡発生時に、第2負荷36に電力供給を早期に行うことができる。 Further, in the present embodiment, when a ground fault occurs in the first system ES1, the second storage battery 16 and the third storage battery 18 are connected in series. Therefore, when a ground fault occurs in the first system ES1, power can be supplied to the second load 36 at an early stage.
 その後、入力部46を介してドライバから第2モードへの切替指示が入力されると、時刻t7に車両の運転モードが第1モードから第2モードに切り替えられる。 After that, when the driver inputs an instruction to switch to the second mode via the input unit 46, the driving mode of the vehicle is switched from the first mode to the second mode at time t7.
 以上詳述した本実施形態によれば、以下の効果が得られるようになる。 According to the present embodiment described in detail above, the following effects can be obtained.
 ・本実施形態では、第2蓄電池16及び第3蓄電池18が充電される場合に、第2蓄電池16及び第3蓄電池18が並列接続され、第2蓄電池16及び第3蓄電池18が放電される場合に、第2蓄電池16及び第3蓄電池18が直列接続されるようにした。この場合、第2蓄電池16及び第3蓄電池18の充電が行われる際において、第2蓄電池16及び第3蓄電池18を並列接続する構成にしたため、充電のための電力供給負担や電源システム100のコスト負担を軽減することができる。また、第1系統ES1での異常発生に伴い第2系統ES2で第2蓄電池16及び第3蓄電池18からの電力供給が行われる際において、第2蓄電池16及び第3蓄電池18を直列接続し、電源電圧VAよりも高い電圧で負荷34,36に電力供給を行う構成にしたため、仮に低温状態や高負荷状態であっても、第2負荷36を適正に作動させることができる。これにより、複数の系統ES1,ES2を有する電源システム100において負荷34,36への電力供給を適正に実施することができる。 In the present embodiment, when the second storage battery 16 and the third storage battery 18 are charged, the second storage battery 16 and the third storage battery 18 are connected in parallel, and the second storage battery 16 and the third storage battery 18 are discharged. The second storage battery 16 and the third storage battery 18 are connected in series. In this case, when the second storage battery 16 and the third storage battery 18 are charged, the second storage battery 16 and the third storage battery 18 are connected in parallel, so that the power supply burden for charging and the cost of the power supply system 100 are set. The burden can be reduced. Further, when the power is supplied from the second storage battery 16 and the third storage battery 18 in the second system ES2 due to the occurrence of an abnormality in the first system ES1, the second storage battery 16 and the third storage battery 18 are connected in series. Since the power is supplied to the loads 34 and 36 at a voltage higher than the power supply voltage VA, the second load 36 can be properly operated even in a low temperature state or a high load state. As a result, in the power supply system 100 having a plurality of systems ES1 and ES2, power can be appropriately supplied to the loads 34 and 36.
 ・第2蓄電池16と第2蓄電池18とが並列接続された第1状態と直列接続された第2状態とが切り替えられる場合に、第2蓄電池16と第2蓄電池18とを並列接続する第2,第3スイッチSW2,SW3の少なくとも一方と、第2蓄電池16と第2蓄電池18とを直列接続する第4スイッチSW4とが同時に閉鎖されると、第2蓄電池16及び第2蓄電池18の少なくとも一方が短絡してしまうことが懸念される。この点、本実施形態では、第1状態と第2状態との切り替え時において、第2,第3スイッチSW2,SW3の少なくとも一方と第4スイッチSW4とが同時に閉鎖されないように各スイッチSW2~SW4の開閉を制御するようにした。これにより、第2蓄電池16及び第2蓄電池18の短絡を抑制して、第1状態と第2状態とを適正に切り替えることができる。 A second state in which the second storage battery 16 and the second storage battery 18 are connected in parallel when the first state in which the second storage battery 16 and the second storage battery 18 are connected in parallel and the second state in which the second storage battery 18 is connected in series can be switched. , At least one of the second storage battery 16 and the second storage battery 18 when at least one of the third switches SW2 and SW3 and the fourth switch SW4 for connecting the second storage battery 16 and the second storage battery 18 in series are closed at the same time. Is concerned that it will be short-circuited. In this respect, in the present embodiment, when switching between the first state and the second state, at least one of the second and third switches SW2 and SW3 and the fourth switch SW4 are not closed at the same time, so that the switches SW2 to SW4 are not closed at the same time. Changed to control the opening and closing of. As a result, it is possible to suppress a short circuit between the second storage battery 16 and the second storage battery 18 and appropriately switch between the first state and the second state.
 ・本実施形態では、第2系統ES2における接続点PBと、第2蓄電池16及び第3蓄電池18との間にリレースイッチSMRが設けられており、リレースイッチSMRにより直列状態における第2蓄電池16及び第3蓄電池18の放電を規制するようにした。これにより、第2蓄電池16及び第3蓄電池18を直列状態にしても、第2蓄電池16及び第3蓄電池18に蓄えられた電荷を維持することができる。また、第2蓄電池16及び第3蓄電池18を直列状態としておくことで、必要に応じて早期に第2蓄電池16及び第3蓄電池18から負荷34,36に電力供給を行うことができる。 In the present embodiment, a relay switch SMR is provided between the connection point PB in the second system ES2 and the second storage battery 16 and the third storage battery 18, and the second storage battery 16 and the second storage battery 16 in a series state are provided by the relay switch SMR. The discharge of the third storage battery 18 is regulated. As a result, even if the second storage battery 16 and the third storage battery 18 are in a series state, the electric charge stored in the second storage battery 16 and the third storage battery 18 can be maintained. Further, by keeping the second storage battery 16 and the third storage battery 18 in series, electric power can be supplied from the second storage battery 16 and the third storage battery 18 to the loads 34 and 36 at an early stage as needed.
 ・特に本実施形態では、リレースイッチSMRにより直列状態、かつ満充電状態における複数の蓄電池の放電を規制する構成にした。これにより、第1系統ES1での異常発生時において、電源電圧VAよりも高い加算電圧2VHの電力供給を早期に行うことができる。 -In particular, in this embodiment, the relay switch SMR is configured to regulate the discharge of a plurality of storage batteries in a series state and a fully charged state. As a result, when an abnormality occurs in the first system ES1, it is possible to supply power with an additional voltage of 2 VH, which is higher than the power supply voltage VA, at an early stage.
 ・本実施形態では、第1系統ES1での異常の有無に基づいて、第1スイッチSW1とリレースイッチSMRとを連携させて各々開閉させるようにした。これにより、第1系統ES1の正常時、及び第1系統ES1での異常発生時のいずれにおいても、第2蓄電池16及び第3蓄電池18の放電を適正に管理することができる。 -In this embodiment, the first switch SW1 and the relay switch SMR are linked to open and close each of them based on the presence or absence of an abnormality in the first system ES1. As a result, the discharges of the second storage battery 16 and the third storage battery 18 can be properly managed both when the first system ES1 is normal and when an abnormality occurs in the first system ES1.
 ・電源システム100は、運転に必要な機能であって、かつ運転支援機能を実施する特定負荷32として、第1負荷34及び第2負荷36を有する車両に適用され、運転支援機能を用いる第1モードによる走行と、運転支援機能を用いない第2モードによる走行とを切り替え可能となっている。本実施形態では、第2モードにおいて、第2蓄電池16及び第3蓄電池18が並列接続され、並列接続された状態でコンバータ12の電源電圧VAにより充電される第1状態とするようにした。そして、第2モードにおいて第2蓄電池16及び第3蓄電池18が満充電状態となり、放電が規制された場合に、第1モードへの切り替えを許可するようにした。これにより、運転支援機能を用いる第1モードにおいて、第1系統ES1に異常が発生した場合でも、満充電状態とされた第2蓄電池16及び第3蓄電池18を用いて第2負荷36の駆動を継続することができ、運転支援機能を継続して用いることができる。 The power supply system 100 is applied to a vehicle having a first load 34 and a second load 36 as a specific load 32 that is a function necessary for driving and implements a driving support function, and is a first method that uses the driving support function. It is possible to switch between driving in a mode and driving in a second mode that does not use the driving support function. In the present embodiment, in the second mode, the second storage battery 16 and the third storage battery 18 are connected in parallel, and in the state of being connected in parallel, the first state is set to be charged by the power supply voltage VA of the converter 12. Then, when the second storage battery 16 and the third storage battery 18 are fully charged in the second mode and the discharge is restricted, the switching to the first mode is permitted. As a result, even if an abnormality occurs in the first system ES1 in the first mode in which the driving support function is used, the second load 36 can be driven by using the second storage battery 16 and the third storage battery 18 in the fully charged state. It can be continued, and the driving support function can be used continuously.
 (第1実施形態の変形例)
 第2系統ES2にリレースイッチSMRが設けられていなくてもよい。この場合、制御装置40は、リレースイッチSMRの代わりに第2~第4スイッチSW2~SW4を制御することで、第2蓄電池16及び第3蓄電池18の充放電を制御することができる。具体的には、第1状態で第2蓄電池16及び第3蓄電池18を充電させる場合には、第2,第3スイッチSW2,SW3を開放し、第4スイッチSW4を閉鎖する。また、第2状態で第2蓄電池16及び第3蓄電池18を放電させる場合には、第2,第3スイッチSW2,SW3を閉鎖し、第4スイッチSW4を開放する。そして、第2蓄電池16及び第3蓄電池18の充放電を停止させる場合には、第2~第4スイッチSW2~SW4を開放する。これにより、電源システム100の構成を簡略化することができる。
(Variation example of the first embodiment)
The relay switch SMR may not be provided in the second system ES2. In this case, the control device 40 can control the charging / discharging of the second storage battery 16 and the third storage battery 18 by controlling the second to fourth switches SW2 to SW4 instead of the relay switch SMR. Specifically, when charging the second storage battery 16 and the third storage battery 18 in the first state, the second and third switches SW2 and SW3 are opened, and the fourth switch SW4 is closed. When the second storage battery 16 and the third storage battery 18 are discharged in the second state, the second and third switches SW2 and SW3 are closed and the fourth switch SW4 is opened. Then, when stopping the charging / discharging of the second storage battery 16 and the third storage battery 18, the second to fourth switches SW2 to SW4 are opened. This makes it possible to simplify the configuration of the power supply system 100.
 (第2実施形態)
 以下、第2実施形態について、第1実施形態との相違点を中心に図4,図5を参照しつつ説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described with reference to FIGS. 4 and 5, focusing on the differences from the first embodiment.
 本実施形態では、リレースイッチSMRに代えて第3スイッチ部24が設けられる点で、第1実施形態と異なる。本実施形態では、第2系統ES2における接続点PBと、第2蓄電池16及び第3蓄電池18との間に、互いに並列に設けられた第1経路LF1及び第2経路LF2が設けられており、この第1経路LF1及び第2経路LF2に第3スイッチ部24が設けられている。 This embodiment differs from the first embodiment in that a third switch unit 24 is provided in place of the relay switch SMR. In the present embodiment, the first path LF1 and the second path LF2 provided in parallel with each other are provided between the connection point PB in the second system ES2 and the second storage battery 16 and the third storage battery 18. A third switch unit 24 is provided in the first path LF1 and the second path LF2.
 第1経路LF1には、第5スイッチング素子(以下、単に第5スイッチ)SW5が設けられている。第5スイッチSW5は、第1経路LF1を開放又は閉鎖する。なお、本実施形態において、第5スイッチSW5が「開閉スイッチ」に相当する。 The first path LF1 is provided with a fifth switching element (hereinafter, simply the fifth switch) SW5. The fifth switch SW5 opens or closes the first path LF1. In this embodiment, the fifth switch SW5 corresponds to an "open / close switch".
 第2経路LF2には、直列接続された第1~第3ダイオードDA1~DA3と第6スイッチング素子(以下、単に第6スイッチ)SW6とが設けられている。各ダイオードDA1~DA3は、カソードを接続点PB側、アノードを第2蓄電池16及び第3蓄電池18側となるように配置されており、第2経路LF2において接続点PBから第2蓄電池16及び第3蓄電池18への電流の流れを規制する。 The second path LF2 is provided with first to third diodes DA1 to DA3 and a sixth switching element (hereinafter, simply the sixth switch) SW6 connected in series. The diodes DA1 to DA3 are arranged so that the cathode is on the connection point PB side and the anode is on the second storage battery 16 and the third storage battery 18 side, and the second storage battery 16 and the second storage battery 16 and the second diode are arranged from the connection point PB in the second path LF2. 3 Regulate the flow of current to the storage battery 18.
 また、各ダイオードDA1~DA3は、所定の順方向電圧降下量(例えば0.7V)を有している。そのため、第3スイッチ部24よりも第2蓄電池16及び第3蓄電池18側に位置する接続点PCの蓄電池電圧VBと、第3スイッチ部24の接続点PB側に印加されるコンバータ12の電源電圧VAとの間に、第1~第3ダイオードDA1~DA3の順方向電圧降下量の合計値による電圧差(以下、第1~第3ダイオードDA1~DA3による電圧差)を生じさせている。第6スイッチSW6は、第2経路LF2において、第1~第3ダイオードDA1~DA3よりも第2蓄電池16及び第3蓄電池18側に設けられている。なお、本実施形態において、第1~第3ダイオードDA1~DA3が「放電規制部、整流素子」に相当する。 Further, each diode DA1 to DA3 has a predetermined forward voltage drop amount (for example, 0.7V). Therefore, the storage battery voltage VB of the connection point PC located closer to the second storage battery 16 and the third storage battery 18 than the third switch unit 24, and the power supply voltage of the converter 12 applied to the connection point PB side of the third switch unit 24. A voltage difference due to the total value of the forward voltage drops of the first to third diodes DA1 to DA3 (hereinafter, voltage difference due to the first to third diodes DA1 to DA3) is generated between the VA and the VA. The sixth switch SW6 is provided on the second storage battery 16 and the third storage battery 18 side of the first to third diodes DA1 to DA3 in the second path LF2. In this embodiment, the first to third diodes DA1 to DA3 correspond to the "discharge control unit and rectifying element".
 本実施形態では、第5,第6スイッチSW5,SW6として、MOSFETが用いられている。第5スイッチSW5には、寄生ダイオードとして第5ダイオードDA5が並列接続されており、第6スイッチSW6には、寄生ダイオードとして第6ダイオードDA6が並列接続されている。本実施形態では、各ダイオードDA5,DA6は、各経路LF1,LF2においてカソードを第2蓄電池16及び第3蓄電池18側、アノードを接続経路LB側となるように配置されている。そのため、第2経路LF2において、第1~第3ダイオードDA1~DA3と第6ダイオードDA6の向きが反対となるように設けられている。また、第1経路LF1において、第5ダイオードDA5は、第2蓄電池16及び第3蓄電池18から接続点PBへの電流の流れを規制し、かつ接続点PBから第2蓄電池16及び第3蓄電池18への電流の流れを許容するように設けられている。そして、第1~第3ダイオードDA1~DA3及び第5,第6スイッチSW5,SW6により第3スイッチ部24が構成されている。 In this embodiment, MOSFETs are used as the 5th and 6th switches SW5 and SW6. A fifth diode DA5 is connected in parallel to the fifth switch SW5 as a parasitic diode, and a sixth diode DA6 is connected in parallel to the sixth switch SW6 as a parasitic diode. In the present embodiment, the diodes DA5 and DA6 are arranged so that the cathode is on the second storage battery 16 and the third storage battery 18 side and the anode is on the connection path LB side in each path LF1 and LF2. Therefore, in the second path LF2, the first to third diodes DA1 to DA3 and the sixth diode DA6 are provided so as to be in opposite directions. Further, in the first path LF1, the fifth diode DA5 regulates the flow of current from the second storage battery 16 and the third storage battery 18 to the connection point PB, and also regulates the current flow from the connection point PB to the second storage battery 16 and the third storage battery 18. It is provided to allow the flow of current to. The third switch unit 24 is composed of the first to third diodes DA1 to DA3 and the fifth and sixth switches SW5 and SW6.
 制御装置40は、制御処理において、第5,第6スイッチSW5,SW6を切替操作すべく、第5,第6切替信号SC5,SC6を生成し、第5,第6切替信号SC5,SC6による指令を第5,第6スイッチSW5,SW6に出力する。制御装置40は、制御処理において、第2蓄電池16及び第3蓄電池18が並列接続された状態で、コンバータ12の電源電圧VAにより充電される第1状態では、第5スイッチSW5を閉鎖し、第1経路LF1を介して第2蓄電池16及び第3蓄電池18を充電する。そして、第2蓄電池16及び第3蓄電池18が満充電状態となると、第5スイッチSW5を開放し、第1~第3ダイオードDA1~DA3による電圧差で、直列接続された第2蓄電池16及び第3蓄電池18の放電を規制する。 In the control process, the control device 40 generates the fifth and sixth switching signals SC5 and SC6 in order to switch the fifth and sixth switches SW5 and SW6, and commands the fifth and sixth switching signals SC5 and SC6. Is output to the 5th and 6th switches SW5 and SW6. In the control process, the control device 40 closes the fifth switch SW5 in the first state in which the second storage battery 16 and the third storage battery 18 are connected in parallel and is charged by the power supply voltage VA of the converter 12. The second storage battery 16 and the third storage battery 18 are charged via the one-path LF1. Then, when the second storage battery 16 and the third storage battery 18 are in a fully charged state, the fifth switch SW5 is opened, and the second storage battery 16 and the second storage battery 16 connected in series by the voltage difference due to the first to third diodes DA1 to DA3. 3 Regulate the discharge of the storage battery 18.
 その後、第1系統ES1で異常が発生すると、第1~第3ダイオードDA1~DA3を介して第2蓄電池16及び第3蓄電池18が放電される。しかし、第1~第3ダイオードDA1~DA3を介した第2蓄電池16及び第3蓄電池18の放電が継続されると、第1~第3ダイオードDA1~DA3による電圧差により第2負荷36に印加される電圧が低下する。また、この第1~第3ダイオードDA1~DA3による電圧差により、第2蓄電池16及び第3蓄電池18の電力消費が増大することが懸念される。そこで、本実施形態では、制御処理において、第1系統ES1での異常発生後に第5スイッチSW5を閉鎖するようにした。 After that, when an abnormality occurs in the first system ES1, the second storage battery 16 and the third storage battery 18 are discharged via the first to third diodes DA1 to DA3. However, when the discharge of the second storage battery 16 and the third storage battery 18 via the first to third diodes DA1 to DA3 is continued, the voltage difference between the first to third diodes DA1 to DA3 applies to the second load 36. The voltage to be applied drops. Further, there is a concern that the power consumption of the second storage battery 16 and the third storage battery 18 will increase due to the voltage difference between the first to third diodes DA1 to DA3. Therefore, in the present embodiment, in the control process, the fifth switch SW5 is closed after the abnormality occurs in the first system ES1.
 図5に本実施形態の制御処理のフローチャートを示す。図5において、先の図2に示した処理と同一の処理については、便宜上、同一のステップ番号を付して説明を省略する。 FIG. 5 shows a flowchart of the control process of the present embodiment. In FIG. 5, the same processing as that shown in FIG. 2 above is given the same step number for convenience, and the description thereof will be omitted.
 本実施形態の制御処理では、ステップS14で肯定判定すると、ステップS60において、第5スイッチSW5を開放し、第2蓄電池16及び第3蓄電池18の充電を停止して、ステップS17に進む。なお、後述するように、ステップS14で肯定判定される際には、第5,第6スイッチSW5,SW6は閉鎖されている。 In the control process of the present embodiment, if affirmative determination is made in step S14, the fifth switch SW5 is opened, charging of the second storage battery 16 and the third storage battery 18 is stopped in step S60, and the process proceeds to step S17. As will be described later, when the affirmative determination is made in step S14, the fifth and sixth switches SW5 and SW6 are closed.
 また、ステップS22で肯定判定すると、つまり第1系統ES1で異常が発生したと判定すると、ステップS62において、第1スイッチSW1が開放されているか否かを判定する。ステップS62で否定判定すると、ステップS64において、第1スイッチSW1を開放する。これにより、第1~第3ダイオードDA1~DA3を介した第2蓄電池16及び第3蓄電池18の放電が開始される。続くステップS66において、第5スイッチSW5を閉鎖する。これにより、第1経路LF1と第2経路LF2とにより第2蓄電池16及び第3蓄電池18が放電される。続くステップS68において、コンバータ12を動作停止状態とする指令を出力し、制御処理を終了する。 Further, if an affirmative determination is made in step S22, that is, if it is determined that an abnormality has occurred in the first system ES1, it is determined in step S62 whether or not the first switch SW1 is open. If a negative determination is made in step S62, the first switch SW1 is opened in step S64. As a result, the discharge of the second storage battery 16 and the third storage battery 18 is started via the first to third diodes DA1 to DA3. In the following step S66, the fifth switch SW5 is closed. As a result, the second storage battery 16 and the third storage battery 18 are discharged by the first path LF1 and the second path LF2. In the following step S68, a command to put the converter 12 into the operation stop state is output, and the control process is terminated.
 また、ステップS62で肯定判定すると、つまり既にステップS64~S68の処理が実施されている場合には、ステップS70において、第6スイッチSW6を開放し、ステップS36に進む。これにより、第1~第3ダイオードDA1~DA3を介した第2蓄電池16及び第3蓄電池18の放電が停止され、第2経路LF2により第2蓄電池16及び第3蓄電池18が放電される。 Further, if an affirmative determination is made in step S62, that is, if the processes of steps S64 to S68 have already been performed, the sixth switch SW6 is released in step S70, and the process proceeds to step S36. As a result, the discharge of the second storage battery 16 and the third storage battery 18 via the first to third diodes DA1 to DA3 is stopped, and the second storage battery 16 and the third storage battery 18 are discharged by the second path LF2.
 一方、ステップS24で肯定判定すると、つまり第2系統ES2で異常が発生したと判定すると、ステップS32において、第1スイッチSW1を開放する。続くステップS72において、第6スイッチSW6を開放し、ステップS36に進む。これにより、第2蓄電池16及び第3蓄電池18の放電が停止される。 On the other hand, if an affirmative determination is made in step S24, that is, if it is determined that an abnormality has occurred in the second system ES2, the first switch SW1 is released in step S32. In the following step S72, the sixth switch SW6 is released, and the process proceeds to step S36. As a result, the discharge of the second storage battery 16 and the third storage battery 18 is stopped.
 また、ステップS44で肯定判定すると、ステップS52において、第1スイッチSW1を開放する。続くステップS74において、第5,第6スイッチSW5,SW6を開放し、ステップS56に進む。一方、ステップS44で否定判定すると、ステップS45において、第2蓄電池16及び第3蓄電池18を並列接続する。続くステップS74において、第5,第6スイッチSW5,SW6を閉鎖し、制御処理を終了する。 Further, if an affirmative determination is made in step S44, the first switch SW1 is opened in step S52. In the following step S74, the fifth and sixth switches SW5 and SW6 are opened, and the process proceeds to step S56. On the other hand, if a negative determination is made in step S44, the second storage battery 16 and the third storage battery 18 are connected in parallel in step S45. In the following step S74, the fifth and sixth switches SW5 and SW6 are closed to end the control process.
 以上詳述した本実施形態によれば、以下の効果が得られるようになる。 According to the present embodiment described in detail above, the following effects can be obtained.
 ・本実施形態では、第2系統ES2における接続点PBと第2蓄電池16及び第3蓄電池18との間に、第1経路LF1及び第2経路LF2が互いに並列に設けられている。第1経路LF1では、第5スイッチSW5が閉鎖されることにより第2蓄電池16及び第3蓄電池18が充電され、第5スイッチSW5が開放されることにより第2蓄電池16及び第3蓄電池18の充電が停止される。また、第2経路LF2には、第1~第3ダイオードDA1~DA3が設けられ、第1~第3ダイオードDA1~DA3により、第2経路LF2において接続点PBから第2蓄電池16及び第3蓄電池18への電流の流れが規制される。 -In the present embodiment, the first path LF1 and the second path LF2 are provided in parallel with each other between the connection point PB in the second system ES2 and the second storage battery 16 and the third storage battery 18. In the first path LF1, the second storage battery 16 and the third storage battery 18 are charged by closing the fifth switch SW5, and the second storage battery 16 and the third storage battery 18 are charged by opening the fifth switch SW5. Is stopped. Further, the first to third diodes DA1 to DA3 are provided in the second path LF2, and the second storage battery 16 and the third storage battery are provided from the connection point PB in the second path LF2 by the first to third diodes DA1 to DA3. The flow of current to 18 is regulated.
 そして、この第1~第3ダイオードDA1~DA3により、直列接続された第2蓄電池16及び第3蓄電池18の蓄電池電圧VBと電源電圧VAとに電圧差を生じさせるようにした。これにより、直列状態の第2蓄電池16及び第3蓄電池18では、電源電圧VAよりも高電圧となる状態が維持される。そして、第1系統ES1での異常発生時には、第2系統ES2において蓄電池電圧VBが低下することに伴い直列接続された第2蓄電池16及び第3蓄電池18からの放電が行われ、第2負荷36への早期の電力供給が可能となっている。 Then, the first to third diodes DA1 to DA3 are used to cause a voltage difference between the storage battery voltage VB and the power supply voltage VA of the second storage battery 16 and the third storage battery 18 connected in series. As a result, the second storage battery 16 and the third storage battery 18 in the series state are maintained in a state where the voltage is higher than the power supply voltage VA. Then, when an abnormality occurs in the first system ES1, the second storage battery 16 and the third storage battery 18 connected in series are discharged as the storage battery voltage VB drops in the second system ES2, and the second load 36 is performed. Early power supply to is possible.
 ・本実施形態では、第1系統ES1における異常発生後に、第5スイッチSW5が開放されるようにした。これにより、第1~第3ダイオードDA1~DA3による第2負荷36への早期の電力供給を可能としつつ、第1~第3ダイオードDA1~DA3による電圧差により第2負荷36に印加される負荷電圧VDが低下することを抑制することができる。 -In this embodiment, the fifth switch SW5 is opened after an abnormality occurs in the first system ES1. As a result, the load applied to the second load 36 due to the voltage difference between the first to third diodes DA1 to DA3 while enabling the early power supply to the second load 36 by the first to third diodes DA1 to DA3. It is possible to suppress a decrease in the voltage VD.
 ・例えば負荷34,36の駆動量が一時的に減少した場合に、負荷電圧VDが過剰に上昇することがある。負荷電圧VDが過剰に上昇した場合、その過電圧を第2蓄電池16及び第3蓄電池18に吸収させることが望まれる。本実施形態では、第1経路LF1において第5スイッチSW5に並列接続された第5ダイオードDA5が設けられている。第5ダイオードDA5は、第1経路LF1において第2蓄電池16及び第3蓄電池18から接続点PBへの電流の流れを規制し、かつ接続点PBから第2蓄電池16及び第3蓄電池18への電流の流れを許容するように設けられている。そのため、第5スイッチSW5が閉鎖されている状態において負荷電圧VDが過剰に上昇した場合に、第5ダイオードDA5を介して過電圧を第2蓄電池16及び第3蓄電池18により吸収させることができる。 -For example, when the drive amount of the loads 34 and 36 temporarily decreases, the load voltage VD may increase excessively. When the load voltage VD rises excessively, it is desired that the overvoltage be absorbed by the second storage battery 16 and the third storage battery 18. In the present embodiment, the fifth diode DA5 connected in parallel to the fifth switch SW5 in the first path LF1 is provided. The fifth diode DA5 regulates the flow of current from the second storage battery 16 and the third storage battery 18 to the connection point PB in the first path LF1, and the current from the connection point PB to the second storage battery 16 and the third storage battery 18. It is provided to allow the flow of. Therefore, when the load voltage VD rises excessively while the fifth switch SW5 is closed, the overvoltage can be absorbed by the second storage battery 16 and the third storage battery 18 via the fifth diode DA5.
 (第3実施形態)
 以下、第3実施形態について、第2実施形態との相違点を中心に図6,図7を参照しつつ説明する。
(Third Embodiment)
Hereinafter, the third embodiment will be described with reference to FIGS. 6 and 7, focusing on the differences from the second embodiment.
 本実施形態では、第3スイッチ部24の構成、第2実施形態と異なる。本実施形態では、第1経路LF1には、コンバータ26が設けられている。以下では、区別のため、コンバータ12を第1コンバータ12と呼び、コンバータ26を第2コンバータ26と呼ぶ。第2コンバータ26は、第1コンバータ12からの電力供給により、電源電圧VAよりも低い電圧に電力変換して第2蓄電池16を充電する。なお、本実施形態において、第2コンバータ26が「充電部」に相当する。 This embodiment is different from the configuration of the third switch unit 24 and the second embodiment. In the present embodiment, the converter 26 is provided in the first path LF1. Hereinafter, for the sake of distinction, the converter 12 is referred to as a first converter 12, and the converter 26 is referred to as a second converter 26. The second converter 26 charges the second storage battery 16 by converting the power into a voltage lower than the power supply voltage VA by supplying power from the first converter 12. In this embodiment, the second converter 26 corresponds to the "charging unit".
 第2経路LF2には、第7スイッチング素子(以下、単に第7スイッチ)SW7が設けられている。第7スイッチSW7は、第2経路LF2を開放又は閉鎖する。本実施形態では、第7スイッチSW7として、MOSFETが用いられている。第7スイッチSW7には、寄生ダイオードとして第7ダイオードDA7が並列接続されている。本実施形態では、第7ダイオードDA7は、第2経路LF2においてカソードを第2蓄電池16及び第3蓄電池18側、アノードを接続経路LB側となるように配置されている。そして、第2コンバータ26及び第7スイッチSW7により第3スイッチ部24が構成されている。なお、本実施形態において、第7スイッチSW7が「放電規制部,電池用スイッチ」に相当する。 The second path LF2 is provided with a seventh switching element (hereinafter, simply the seventh switch) SW7. The seventh switch SW7 opens or closes the second path LF2. In this embodiment, a MOSFET is used as the seventh switch SW7. A seventh diode DA7 is connected in parallel to the seventh switch SW7 as a parasitic diode. In the present embodiment, the seventh diode DA7 is arranged so that the cathode is on the second storage battery 16 and the third storage battery 18 side and the anode is on the connection path LB side in the second path LF2. The third switch unit 24 is configured by the second converter 26 and the seventh switch SW7. In this embodiment, the seventh switch SW7 corresponds to the "discharge control unit, battery switch".
 制御装置40は、制御処理において、第7スイッチSW7を切替操作すべく、第7切替信号SC7を生成し、第7切替信号SC7による指令を第7スイッチSW7に出力する。また、制御装置40は、第2コンバータ26を動作制御すべく、制御信号SDを生成し、制御信号SDによる指令をコンバータ26に出力する。以下では、区別のため、第1コンバータ12への制御信号SDを第1制御信号SD1と呼び、第2コンバータ26への制御信号SDを第2制御信号SD2と呼ぶ。 In the control process, the control device 40 generates the 7th switching signal SC7 in order to switch the 7th switch SW7, and outputs a command from the 7th switching signal SC7 to the 7th switch SW7. Further, the control device 40 generates a control signal SD in order to control the operation of the second converter 26, and outputs a command by the control signal SD to the converter 26. Hereinafter, for the sake of distinction, the control signal SD to the first converter 12 is referred to as a first control signal SD1, and the control signal SD to the second converter 26 is referred to as a second control signal SD2.
 制御装置40は、制御処理において、第2蓄電池16及び第3蓄電池18が並列接続された状態で、コンバータ12の電源電圧VAにより充電される第1状態では、第7スイッチSW7を開放し、第2コンバータ26により並列接続された第2蓄電池16及び第3蓄電池18を定電流充電又は定電圧充電する。そして、第2蓄電池16及び第3蓄電池18が満充電状態となると、第2コンバータ26による充電を停止し、開放された第7スイッチSW7により直列接続された第2蓄電池16及び第3蓄電池18の放電を規制する。その後、第1系統ES1で異常が発生すると、第7スイッチSW7を閉鎖し、第2経路LF2を介して第2蓄電池16及び第3蓄電池18を放電する。 In the control process, the control device 40 opens the seventh switch SW7 in the first state in which the second storage battery 16 and the third storage battery 18 are connected in parallel and is charged by the power supply voltage VA of the converter 12. The second storage battery 16 and the third storage battery 18 connected in parallel by the two converters 26 are constantly charged with a constant current or charged with a constant voltage. Then, when the second storage battery 16 and the third storage battery 18 are in a fully charged state, charging by the second converter 26 is stopped, and the second storage battery 16 and the third storage battery 18 connected in series by the opened seventh switch SW7. Regulate discharge. After that, when an abnormality occurs in the first system ES1, the seventh switch SW7 is closed, and the second storage battery 16 and the third storage battery 18 are discharged via the second path LF2.
 図7に本実施形態の制御処理のフローチャートを示す。図7において、先の図2に示した処理と同一の処理については、便宜上、同一のステップ番号を付して説明を省略する。 FIG. 7 shows a flowchart of the control process of the present embodiment. In FIG. 7, the same processing as that shown in FIG. 2 above is given the same step number for convenience, and the description thereof will be omitted.
 本実施形態の制御処理では、ステップS14で肯定判定すると、ステップS80において、第2コンバータ26を動作停止状態として、ステップS17に進む。なお、後述するように、ステップS14で肯定判定される際には、第2コンバータ26は動作状態とされており、第7スイッチSW7は開放されている。 In the control process of the present embodiment, if an affirmative determination is made in step S14, the operation of the second converter 26 is set to the stopped state in step S80, and the process proceeds to step S17. As will be described later, when the affirmative determination is made in step S14, the second converter 26 is in the operating state, and the seventh switch SW7 is open.
 また、ステップS22で肯定判定すると、つまり第1系統ES1で異常が発生したと判定すると、ステップS26において、第1スイッチSW1を開放する。続くステップS82において、第7スイッチSW7を閉鎖し、ステップS30に進む。これにより、第7スイッチSW7を介して第2蓄電池16及び第3蓄電池18が放電される。 Further, if an affirmative determination is made in step S22, that is, if it is determined that an abnormality has occurred in the first system ES1, the first switch SW1 is released in step S26. In the following step S82, the seventh switch SW7 is closed, and the process proceeds to step S30. As a result, the second storage battery 16 and the third storage battery 18 are discharged via the seventh switch SW7.
 また、ステップS42で肯定判定すると、ステップS46において、第1スイッチSW1を開放する。続くステップS48において、第2蓄電池16及び第3蓄電池18を直列接続する。続くステップS84において、第1コンバータ12及び第2コンバータ26を動作停止状態とし、ステップS56に進む。 Further, if an affirmative determination is made in step S42, the first switch SW1 is opened in step S46. In the following step S48, the second storage battery 16 and the third storage battery 18 are connected in series. In the following step S84, the operation of the first converter 12 and the second converter 26 is stopped, and the process proceeds to step S56.
 また、ステップS44で肯定判定すると、ステップS52において、第1スイッチSW1を開放する。続くステップS86において、第7スイッチSW7を開放する。続くステップS88において、第2コンバータ26を動作停止状態とし、ステップS56に進む。一方、ステップS44で否定判定すると、ステップS45において、第2蓄電池16及び第3蓄電池18を並列接続する。続くステップS89において、第2コンバータ26を動作状態とし、制御処理を終了する。 Further, if an affirmative determination is made in step S44, the first switch SW1 is opened in step S52. In the following step S86, the seventh switch SW7 is released. In the following step S88, the operation of the second converter 26 is stopped, and the process proceeds to step S56. On the other hand, if a negative determination is made in step S44, the second storage battery 16 and the third storage battery 18 are connected in parallel in step S45. In the following step S89, the second converter 26 is put into an operating state, and the control process is terminated.
 ・以上詳述した本実施形態によれば、第2系統ES2における接続点PBと第2蓄電池16及び第3蓄電池18との間に、第1経路LF1及び第2経路LF2が互いに並列に設けられており、第1経路LF1では、第2コンバータ26により、電源電圧VAよりも低い電圧で第2蓄電池16及び第3蓄電池18が充電される。また、第2経路LF2では、第7スイッチSW7により第2系統ES2での第2蓄電池16及び第3蓄電池18の放電が規制されるようになっている。第2コンバータ26が電源電圧VAよりも低い電圧で第2蓄電池16及び第3蓄電池18を充電することにより、第2蓄電池16及び第3蓄電池18の充電に係る電源システム100の構成を簡略化することができ、電源システム100のコスト負担を軽減することができる。 -According to the present embodiment described in detail above, the first path LF1 and the second path LF2 are provided in parallel with each other between the connection point PB in the second system ES2 and the second storage battery 16 and the third storage battery 18. In the first path LF1, the second converter 26 charges the second storage battery 16 and the third storage battery 18 at a voltage lower than the power supply voltage VA. Further, in the second path LF2, the discharge of the second storage battery 16 and the third storage battery 18 in the second system ES2 is regulated by the seventh switch SW7. By charging the second storage battery 16 and the third storage battery 18 with a voltage lower than the power supply voltage VA, the second converter 26 simplifies the configuration of the power supply system 100 related to the charging of the second storage battery 16 and the third storage battery 18. This makes it possible to reduce the cost burden of the power supply system 100.
 (第4実施形態)
 以下、第4実施形態について、第1実施形態との相違点を中心に図8を参照しつつ説明する。
(Fourth Embodiment)
Hereinafter, the fourth embodiment will be described with reference to FIG. 8, focusing on the differences from the first embodiment.
 本実施形態では、制御処理において、第1モードにおける第1,第2系統ES1,ES2の正常時に第2蓄電池16及び第3蓄電池18を充放電する点で、第1実施形態と異なる。具体的には、制御装置40は、負荷34,36における駆動量情報を取得し、この駆動量情報が示す駆動量TRに基づいて第2蓄電池16及び第3蓄電池18を充放電する。 The present embodiment is different from the first embodiment in that in the control process, the second storage battery 16 and the third storage battery 18 are charged and discharged when the first and second systems ES1 and ES2 in the first mode are normal. Specifically, the control device 40 acquires the drive amount information in the loads 34 and 36, and charges and discharges the second storage battery 16 and the third storage battery 18 based on the drive amount TR indicated by the drive amount information.
 電源システム100では、第1系統ES1における地絡の発生に伴い、第2負荷36に電圧低下が生じる。また、それ以外に、負荷34,36の駆動量TRの変化に起因して、過剰な負荷34,36の電圧低下が生じることも考えられる。過剰な負荷34,36の電圧低下が生じた場合には、負荷電圧VDを高くすることが望まれる。 In the power supply system 100, a voltage drop occurs in the second load 36 due to the occurrence of a ground fault in the first system ES1. In addition to that, it is also conceivable that an excessive voltage drop of the loads 34 and 36 may occur due to a change in the drive amount TR of the loads 34 and 36. When the voltage of the excessive loads 34 and 36 drops, it is desirable to increase the load voltage VD.
 そこで、本実施形態では、制御処理において、第1モードにおける第1,第2系統ES1,ES2の正常時に駆動量TRが所定の第1駆動量閾値Tth1よりも小さい状態から大きい状態に切り替わった場合に、第2蓄電池16及び第3蓄電池18が直列接続された状態で、第2蓄電池16及び第3蓄電池18が放電される第2状態とするようにした。また、その後に駆動量TRが第1駆動量閾値Tth1よりも大きい状態から小さい状態に切り替わった場合に、第1,第2系統ES1,ES2の正常時に第2蓄電池16及び第3蓄電池18を放電した場合には、第2状態から第1状態に切り替え、第2蓄電池16及び第3蓄電池18が並列接続された状態で、第2蓄電池16及び第3蓄電池18が充電されるようにした。 Therefore, in the present embodiment, in the control process, when the drive amount TR is switched from a state smaller than a predetermined first drive amount threshold Tth1 to a state larger than the predetermined first drive amount threshold Tth1 when the first and second systems ES1 and ES2 in the first mode are normal. In the second state, the second storage battery 16 and the third storage battery 18 are discharged while the second storage battery 16 and the third storage battery 18 are connected in series. Further, when the drive amount TR is subsequently switched from a state larger than the first drive amount threshold Tth1 to a state smaller than the first drive amount threshold value Tth1, the second storage battery 16 and the third storage battery 18 are discharged when the first and second systems ES1 and ES2 are normal. In that case, the second state is switched to the first state, and the second storage battery 16 and the third storage battery 18 are charged in a state where the second storage battery 16 and the third storage battery 18 are connected in parallel.
 図8に本実施形態の制御処理のフローチャートを示す。図8において、先の図2に示した処理と同一の処理については、便宜上、同一のステップ番号を付して説明を省略する。 FIG. 8 shows a flowchart of the control process of the present embodiment. In FIG. 8, the same processing as that shown in FIG. 2 above is given the same step number for convenience, and the description thereof will be omitted.
 本実施形態の制御処理では、ステップS20で否定判定すると、つまり第1モードにおける第1,第2系統ES1,ES2の正常時に、ステップS90において、リレースイッチSMRが閉鎖されているか否かを判定する。第2蓄電池16及び第3蓄電池18が充放電されていない場合には、リレースイッチSMRが閉鎖されている。この場合、ステップS90で否定判定し、ステップS22に進む。 In the control process of the present embodiment, if a negative determination is made in step S20, that is, it is determined whether or not the relay switch SMR is closed in step S90 when the first and second systems ES1 and ES2 in the first mode are normal. .. When the second storage battery 16 and the third storage battery 18 are not charged or discharged, the relay switch SMR is closed. In this case, a negative determination is made in step S90, and the process proceeds to step S22.
 一方、第2蓄電池16及び第3蓄電池18が充放電されている場合には、リレースイッチSMRが開放されている。この場合、ステップS90で肯定判定し、ステップS92において、負荷34,36における駆動量情報を取得し、この駆動量情報が示す駆動量TRが第1駆動量閾値Tth1よりも小さいか否かを判定する。ここで第1駆動量閾値Tth1は、高圧蓄電池10から負荷34,36に安定して供給可能な電力の最大値に対応する駆動量である。なお、取得された駆動量情報は、制御装置40の記憶部(図示を省略)に記憶される。 On the other hand, when the second storage battery 16 and the third storage battery 18 are charged and discharged, the relay switch SMR is open. In this case, an affirmative determination is made in step S90, and in step S92, the drive amount information in the loads 34 and 36 is acquired, and it is determined whether or not the drive amount TR indicated by the drive amount information is smaller than the first drive amount threshold Tth1. do. Here, the first drive amount threshold value Tth1 is a drive amount corresponding to the maximum value of electric power that can be stably supplied from the high-voltage storage battery 10 to the loads 34 and 36. The acquired drive amount information is stored in a storage unit (not shown) of the control device 40.
 第2蓄電池16及び第3蓄電池18が放電状態である場合には、駆動量TRが第1駆動量閾値Tth1よりも大きくなっている。この場合、ステップS92で否定判定し、ステップS22に進む。一方、第2蓄電池16及び第3蓄電池18が充電状態である場合には、駆動量TRが第1駆動量閾値Tth1よりも小さくなっている。この場合、ステップS92で肯定判定し、ステップS94において、第2蓄電池16及び第3蓄電池18の残存容量SAを算出する。続くステップS96では、ステップS94で算出した残存容量SAが容量閾値Sthよりも大きいか否かを判定する。 When the second storage battery 16 and the third storage battery 18 are in the discharged state, the drive amount TR is larger than the first drive amount threshold Tth1. In this case, a negative determination is made in step S92, and the process proceeds to step S22. On the other hand, when the second storage battery 16 and the third storage battery 18 are in the charged state, the drive amount TR is smaller than the first drive amount threshold Tth1. In this case, an affirmative determination is made in step S92, and the remaining capacity SA of the second storage battery 16 and the third storage battery 18 is calculated in step S94. In the following step S96, it is determined whether or not the remaining capacity SA calculated in step S94 is larger than the capacity threshold value Sth.
 第2蓄電池16及び第3蓄電池18が満充電状態となっている場合、ステップS96で肯定判定する。この場合、ステップS98において、リレースイッチSMRを開放し、ステップS22に進む。一方、第2蓄電池16及び第3蓄電池18が満充電状態となっていない場合、ステップS96で否定判定する。この場合、ステップS100において、駆動量TRが第2駆動量閾値Tth2よりも小さいか否かを判定する。ここで第2駆動量閾値Tth2は、第2蓄電池16及び第3蓄電池18の充電方式を切り替える閾値であり、第1駆動量閾値Tth1よりも小さい駆動量に設定されている。なお、本実施形態において、第2駆動量閾値Tth2が「所定の規定値」に相当する。 When the second storage battery 16 and the third storage battery 18 are in a fully charged state, a positive determination is made in step S96. In this case, in step S98, the relay switch SMR is released and the process proceeds to step S22. On the other hand, when the second storage battery 16 and the third storage battery 18 are not in a fully charged state, a negative determination is made in step S96. In this case, in step S100, it is determined whether or not the drive amount TR is smaller than the second drive amount threshold value Tth2. Here, the second drive amount threshold Tth2 is a threshold for switching the charging method of the second storage battery 16 and the third storage battery 18, and is set to a drive amount smaller than the first drive amount threshold Tth1. In this embodiment, the second drive amount threshold value Tth2 corresponds to a “predetermined specified value”.
 ステップS100で肯定判定すると、ステップS102において、第2蓄電池16及び第3蓄電池18を同時充電する充電方式を採用し、ステップS22に進む。同時充電する充電方式では、第4スイッチSW4を開放した状態で、第2,第3スイッチSW2,SW3を同時に閉鎖することにより、第2蓄電池16及び第3蓄電池18を同時に充電する。 If an affirmative determination is made in step S100, a charging method for simultaneously charging the second storage battery 16 and the third storage battery 18 is adopted in step S102, and the process proceeds to step S22. In the charging method of simultaneous charging, the second storage battery 16 and the third storage battery 18 are charged at the same time by closing the second and third switches SW2 and SW3 at the same time with the fourth switch SW4 open.
 一方、ステップS100で否定判定すると、ステップS104において、第2蓄電池16及び第3蓄電池18を個別充電する充電方式を採用し、ステップS22に進む。個別充電する充電方式では、第4スイッチSW4を開放した状態で、第2,第3スイッチSW2,SW3を交互に閉鎖することにより、第2蓄電池16及び第3蓄電池18を個別に充電する。 On the other hand, if a negative determination is made in step S100, a charging method for individually charging the second storage battery 16 and the third storage battery 18 is adopted in step S104, and the process proceeds to step S22. In the charging method for individually charging, the second storage battery 16 and the third storage battery 18 are individually charged by alternately closing the second and third switches SW2 and SW3 with the fourth switch SW4 open.
 また、ステップS22で肯定判定すると、つまり第1系統ES1で異常が発生したと判定すると、ステップS26において、第1スイッチSW1を開放する。続くステップS116において、第2蓄電池16及び第3蓄電池18を直列接続に切り替え、ステップS28に進む。また、ステップS24で肯定判定すると、つまり第2系統ES2で異常が発生したと判定すると、ステップS32において、第1スイッチSW1を開放する。続くステップS118において、リレースイッチSMRを開放し、ステップS36に進む。 Further, if an affirmative determination is made in step S22, that is, if it is determined that an abnormality has occurred in the first system ES1, the first switch SW1 is released in step S26. In the following step S116, the second storage battery 16 and the third storage battery 18 are switched to the series connection, and the process proceeds to step S28. Further, if an affirmative determination is made in step S24, that is, if it is determined that an abnormality has occurred in the second system ES2, the first switch SW1 is opened in step S32. In the following step S118, the relay switch SMR is released and the process proceeds to step S36.
 また、ステップS24で否定判定すると、ステップS110において、駆動量TRが第1駆動量閾値Tth1よりも大きくなったか否かを判定する。前回の制御処理において取得された駆動量TRが第1駆動量閾値Tth1よりも小さく、今回の制御処理において駆動量TRが第1駆動量閾値Tth1よりも小さい状態から第1駆動量閾値Tth1よりも大きい状態に切り替わった場合には、ステップS110で肯定判定する。この場合、ステップS112において、第2蓄電池16及び第3蓄電池18を直列接続に切り替える。続くステップS114では、リレースイッチSMRを閉鎖し、制御処理を終了する。これにより、第2蓄電池16及び第3蓄電池18が直列接続された状態で、第2蓄電池16及び第3蓄電池18が放電される第2状態となる。 Further, if a negative determination is made in step S24, it is determined in step S110 whether or not the drive amount TR is larger than the first drive amount threshold Tth1. The drive amount TR acquired in the previous control process is smaller than the first drive amount threshold Tth1, and the drive amount TR is smaller than the first drive amount threshold Tth1 in the current control process to be smaller than the first drive amount threshold Tth1. When the state is switched to the larger state, an affirmative determination is made in step S110. In this case, in step S112, the second storage battery 16 and the third storage battery 18 are switched to the series connection. In the following step S114, the relay switch SMR is closed and the control process is terminated. As a result, the second storage battery 16 and the third storage battery 18 are discharged in the second state in which the second storage battery 16 and the third storage battery 18 are connected in series.
 一方、ステップS110で否定判定すると、ステップS116において、駆動量TRが第1駆動量閾値Tth1よりも小さくなったか否かを判定する。前回の制御処理において取得された駆動量TRが第1駆動量閾値Tth1よりも大きく、今回の制御処理において駆動量TRが第1駆動量閾値Tth1よりも大きい状態から第1駆動量閾値Tth1よりも小さい状態に切り替わった場合には、ステップS116で肯定判定する。この場合、ステップS118において、第2蓄電池16及び第3蓄電池18を並列接続に切り替え、制御処理を終了する。これにより、第2蓄電池16及び第3蓄電池18が並列接続された状態で、コンバータ12の電源電圧VAにより充電される第1状態となる。つまり、第2蓄電池16及び第3蓄電池18が、第2状態から第1状態に切り替えられる。 On the other hand, if a negative determination is made in step S110, it is determined in step S116 whether or not the drive amount TR is smaller than the first drive amount threshold Tth1. The drive amount TR acquired in the previous control process is larger than the first drive amount threshold Tth1, and the drive amount TR is larger than the first drive amount threshold Tth1 in the current control process to be larger than the first drive amount threshold Tth1. When the state is switched to the smaller state, an affirmative determination is made in step S116. In this case, in step S118, the second storage battery 16 and the third storage battery 18 are switched to parallel connection, and the control process is terminated. As a result, in a state where the second storage battery 16 and the third storage battery 18 are connected in parallel, the first state is set in which the converter 12 is charged by the power supply voltage VA. That is, the second storage battery 16 and the third storage battery 18 are switched from the second state to the first state.
 一方、前回及び今回の制御処理において取得された駆動量TRがともに第1駆動量閾値Tth1よりも大きく、又はともに第1駆動量閾値Tth1よりも小さい場合には、ステップS116で否定判定する。この場合、制御処理を終了する。 On the other hand, if the drive amount TR acquired in the previous and current control processes is both larger than the first drive amount threshold Tth1 or both are smaller than the first drive amount threshold Tth1, a negative determination is made in step S116. In this case, the control process is terminated.
 以上詳述した本実施形態によれば、以下の効果が得られるようになる。 According to the present embodiment described in detail above, the following effects can be obtained.
 ・本実施形態では、負荷34,36の駆動量TRが第1駆動量閾値Tth1よりも小さい状態から大きい状態に切り替わった場合に第2状態とするようにした。そのため、第1,第2系統ES1,ES2の正常時において、仮に負荷34,36の駆動量TRが一時的に増加した場合でも、直列接続された第2蓄電池16及び第3蓄電池18からの電力供給が行われる。これにより、電源電圧VAよりも高い電圧で負荷34,36に電力供給を行うことができ、負荷34,36を適正に作動させることができる。 -In this embodiment, the second state is set when the drive amount TR of the loads 34 and 36 is switched from a state smaller than the first drive amount threshold Tth1 to a state larger than the first drive amount threshold Tth1. Therefore, even if the drive amount TR of the loads 34 and 36 temporarily increases in the normal state of the first and second systems ES1 and ES2, the power from the second storage battery 16 and the third storage battery 18 connected in series Supply is done. As a result, power can be supplied to the loads 34 and 36 at a voltage higher than the power supply voltage VA, and the loads 34 and 36 can be operated properly.
 ・本実施形態では、第1,第2系統ES1,ES2の正常時において第2状態とされた場合において、負荷34,36の駆動量TRが第1駆動量閾値Tth1よりも大きい状態から小さい状態に切り替わった場合に、第2状態から第1状態に切り替え、第2蓄電池16及び第3蓄電池18を充電するようにした。そのため、第1,第2系統ES1,ES2の正常時において第2蓄電池16及び第3蓄電池18を一時的に放電した場合でも、その後に第2蓄電池16及び第3蓄電池18を満充電状態とすることができる。したがって、第1系統ES1での異常発生時において満充電状態とされた第2蓄電池16及び第3蓄電池18を用いて第2負荷36の駆動を継続することが可能となる。 In the present embodiment, when the first and second systems ES1 and ES2 are in the second state in the normal state, the drive amount TR of the loads 34 and 36 is from a state larger than the first drive amount threshold Tth1 to a smaller state. When switched to, the second state is switched to the first state, and the second storage battery 16 and the third storage battery 18 are charged. Therefore, even if the second storage battery 16 and the third storage battery 18 are temporarily discharged in the normal state of the first and second systems ES1 and ES2, the second storage battery 16 and the third storage battery 18 are subsequently fully charged. be able to. Therefore, it is possible to continue driving the second load 36 by using the second storage battery 16 and the third storage battery 18 that are fully charged when an abnormality occurs in the first system ES1.
 ・第1状態では、負荷34,36への電力供給と第2蓄電池16及び第3蓄電池18への電力供給とが同時に行われるため、これらの電力供給を適正に実施する必要がある。この点、本実施形態では、負荷34,36の駆動量TRが第2駆動量閾値Tth2よりも小さい場合に、第2蓄電池16及び第3蓄電池18を同時に充電し、駆動量TRが第2駆動量閾値Tth2よりも大きい場合に、第2蓄電池16及び第3蓄電池18を個別に充電するようにした。駆動量TRにより充電される蓄電池の数を調整することで、コンバータ12の電力供給に係る負担を調整し、負荷34,36への電力供給と第2蓄電池16及び第3蓄電池18への電力供給とを適正に実施することができる。 -In the first state, the power supply to the loads 34 and 36 and the power supply to the second storage battery 16 and the third storage battery 18 are performed at the same time, so it is necessary to properly supply these powers. In this respect, in the present embodiment, when the drive amount TR of the loads 34 and 36 is smaller than the second drive amount threshold Tth2, the second storage battery 16 and the third storage battery 18 are charged at the same time, and the drive amount TR is the second drive. When the amount threshold value is larger than Tth2, the second storage battery 16 and the third storage battery 18 are individually charged. By adjusting the number of storage batteries charged by the drive amount TR, the load related to the power supply of the converter 12 is adjusted, and the power supply to the loads 34 and 36 and the power supply to the second storage battery 16 and the third storage battery 18 are performed. Can be properly implemented.
 (その他の実施形態)
 本開示は上記実施形態の記載内容に限定されず、次のように実施されてもよい。
(Other embodiments)
The present disclosure is not limited to the description of the above embodiment, and may be implemented as follows.
 ・各負荷34,36は、例えば以下の装置であってもよい。 -Each load 34, 36 may be, for example, the following device.
 車両に走行用動力を付与する走行用モータとその駆動回路であってもよい。この場合、第1,第2負荷34,36のそれぞれは、例えば3相の永久磁石同期モータと3相インバータ装置である。 It may be a traveling motor that imparts driving power to the vehicle and its drive circuit. In this case, each of the first and second loads 34 and 36 is, for example, a three-phase permanent magnet synchronous motor and a three-phase inverter device.
 制動時の車輪のロックを防止するアンチロックブレーキ装置であってもよい。この場合、第1,第2負荷34,36のそれぞれは、例えば制動時のブレーキ油圧を独立に調整できるABSアクチュエータである。 It may be an anti-lock braking device that prevents the wheels from locking during braking. In this case, each of the first and second loads 34 and 36 is, for example, an ABS actuator that can independently adjust the brake hydraulic pressure during braking.
 自車両の前を走行する前走車を検出し、前走車が検知された場合には前走車との車間距離を一定に維持し、前走車が検知されなくなった場合には自車両を予め設定された車速で走行させるクルーズコントロール装置であってもよい。この場合、第1,第2負荷34,36のそれぞれは、例えばミリ波レーダである。 The vehicle in front of the vehicle is detected, and if the vehicle in front is detected, the distance between the vehicle and the vehicle in front is kept constant. If the vehicle in front is not detected, the vehicle is in front of the vehicle. It may be a cruise control device for traveling at a preset vehicle speed. In this case, each of the first and second loads 34 and 36 is, for example, a millimeter wave radar.
 ・各負荷34,36は、必ずしも同じ構成の組合せである必要がなく、同等の機能を異なる形式の機器で実現する組合せであってもよい。また、第1,第2負荷34,36は、それぞれが異なる負荷ではなく、同一の負荷であってもよい。つまり、第1,第2負荷34,36が、第1系統内経路LA1及び第2系統内経路LA2の両方から電力供給を受ける同一の負荷であってもよい。 -The loads 34 and 36 do not necessarily have to be a combination having the same configuration, and may be a combination that realizes the same function with devices of different types. Further, the first and second loads 34 and 36 may not be different loads but may be the same load. That is, the first and second loads 34 and 36 may be the same load that receives power from both the first in-system path LA1 and the second in-system path LA2.
 ・第1電源は、コンバータに限られず、オルタネータであってもよい。また、第1電源は、コンバータを有していなくてもよく、例えば第1蓄電池14のみを有していてもよい。 -The first power supply is not limited to the converter, but may be an alternator. Further, the first power supply may not have a converter, and may have, for example, only the first storage battery 14.
 ・第2電源に含まれる複数の蓄電池は、2つに限られず、3つ以上であってもよい。この場合、第2状態において複数の蓄電池を直列接続する際に、電気負荷の駆動量に基づいて直列接続する蓄電池の数を切り替えるようにしてもよい。 -The plurality of storage batteries included in the second power source are not limited to two, and may be three or more. In this case, when connecting a plurality of storage batteries in series in the second state, the number of storage batteries connected in series may be switched based on the driving amount of the electric load.
 ・第2状態において、複数の蓄電池から電気負荷に印加される電圧は、第1電源の電源電圧よりも高い電圧に限られない。例えば電気負荷の駆動量に基づいて電気負荷の要求電圧が定められている場合には、この要求電圧よりも高い電圧に設定されていてもよい。 -In the second state, the voltage applied to the electric load from the plurality of storage batteries is not limited to a voltage higher than the power supply voltage of the first power supply. For example, when the required voltage of the electric load is determined based on the driving amount of the electric load, the voltage may be set higher than this required voltage.
 ・第2経路LF2に設けられる整流素子は、ダイオードに限られず、サイリスタであってもよい。 -The rectifying element provided in the second path LF2 is not limited to the diode, but may be a thyristor.
 ・上記第1実施形態では、第1スイッチSW1の開放とリレースイッチSMRの閉鎖とが同時に実施される例を示したが、これに限られない。例えば第1スイッチSW1の開放後にリレースイッチSMRを閉鎖してもよい。これにより、第1系統ES1での異常発生時における第2蓄電池16及び第3蓄電池18の第1系統ES1への放電を抑制することができる。またリレースイッチSMRの閉鎖後に第1スイッチSW1を開放してもよい。これにより、第1系統ES1での異常発生に伴う負荷電圧VDの低下を抑制することができる。 -In the above first embodiment, an example in which the opening of the first switch SW1 and the closing of the relay switch SMR are performed at the same time is shown, but the present invention is not limited to this. For example, the relay switch SMR may be closed after the first switch SW1 is opened. As a result, it is possible to suppress the discharge of the second storage battery 16 and the third storage battery 18 to the first system ES1 when an abnormality occurs in the first system ES1. Further, the first switch SW1 may be opened after the relay switch SMR is closed. As a result, it is possible to suppress a decrease in the load voltage VD due to the occurrence of an abnormality in the first system ES1.
 ・上記第1実施形態では、リレースイッチSMRにより第2蓄電池16及び第3蓄電池18の充電が制御されてもよい。具体的には、第1状態で第2蓄電池16及び第3蓄電池18を充電させる場合に、リレースイッチSMRのデューティ比を制御することで、第2蓄電池16及び第3蓄電池18の充電を制御してもよい。ここでデューティ比は、開閉制御されるリレースイッチSMRの規定周期に対するリレースイッチSMRの閉鎖時間の比率を意味する。また、第2系統内経路LA2におけるリレースイッチSMRと第2蓄電池16及び第3蓄電池18との間に抵抗素子が設けられており、この抵抗素子により第2蓄電池16及び第3蓄電池18の充放電が制御されてもよい。 -In the first embodiment, the charging of the second storage battery 16 and the third storage battery 18 may be controlled by the relay switch SMR. Specifically, when the second storage battery 16 and the third storage battery 18 are charged in the first state, the charging of the second storage battery 16 and the third storage battery 18 is controlled by controlling the duty ratio of the relay switch SMR. You may. Here, the duty ratio means the ratio of the closing time of the relay switch SMR to the specified period of the relay switch SMR controlled to be opened and closed. Further, a resistance element is provided between the relay switch SMR in the path LA2 in the second system and the second storage battery 16 and the third storage battery 18, and the resistance element charges and discharges the second storage battery 16 and the third storage battery 18. May be controlled.
 ・上記実施形態では、電源システム100が、手動運転及び自動運転による走行が可能な車両に適用される例を示したが、これに限られない。完全自動運転車など自動運転による走行のみが可能な車両に適用されてもよければ、手動運転による走行のみが可能な車両に適用されてもよい。 -In the above embodiment, an example is shown in which the power supply system 100 is applied to a vehicle capable of traveling by manual driving and automatic driving, but the present invention is not limited to this. It may be applied to a vehicle that can only be driven by automatic driving, such as a fully autonomous vehicle, or may be applied to a vehicle that can only be driven by manual driving.
 例えば自動運転による走行のみが可能な車両に適用された場合、いずれか一方の系統ES1,ES2での異常が発生したときには、異常が発生していない他方の系統ES1,ES2の負荷34,36を用いて、自動運転により車両の走行を停止させる、又は安全な場所に移動させた後に車両を停止させる処理が実施されてもよい。 For example, when applied to a vehicle capable of traveling only by automatic driving, when an abnormality occurs in one of the systems ES1 and ES2, the loads 34 and 36 of the other system ES1 and ES2 in which the abnormality has not occurred are applied. It may be used to stop the running of the vehicle by automatic driving, or to stop the vehicle after moving it to a safe place.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (11)

  1.  電気負荷(34,36)と、
     前記電気負荷に接続された第1電源(10,12)を含む第1系統(ES1)と、
     前記電気負荷に接続された第2電源(16,18)を含む第2系統(ES2)と、
     前記第1系統と前記第2系統とを互いに接続する接続経路(LB)に設けられた系統間スイッチ(SW1)と、を有する電源システム(100)であって、
     前記第1電源は、前記電気負荷の駆動を可能にする電源電圧を出力し、
     前記第2電源は、前記第1電源の電源電圧により充電可能な複数の蓄電池(16,18)を含み、
     前記第1系統で異常が発生したことを判定する異常判定部と、
     前記異常判定部により異常が発生したと判定された場合に前記系統間スイッチを開放する状態制御部と、
     前記複数の蓄電池を充電する場合に、前記複数の蓄電池を並列接続して、前記第1電源から前記複数の蓄電池に電力供給を行わせる第1状態とする第1制御部と、
     前記複数の蓄電池を放電する場合に、前記複数の蓄電池を直列接続して、前記第1電源の電源電圧よりも高い電圧又は前記電気負荷の要求電圧よりも高い電圧で前記複数の蓄電池から前記電気負荷に電力供給を行わせる第2状態とする第2制御部と、を備える電源システム。
    Electric load (34, 36) and
    The first system (ES1) including the first power supply (10, 12) connected to the electric load, and
    A second system (ES2) including a second power source (16, 18) connected to the electrical load, and
    A power supply system (100) having an inter-system switch (SW1) provided in a connection path (LB) that connects the first system and the second system to each other.
    The first power supply outputs a power supply voltage that enables driving of the electric load.
    The second power source includes a plurality of storage batteries (16, 18) that can be charged by the power source voltage of the first power source.
    An abnormality determination unit that determines that an abnormality has occurred in the first system,
    A state control unit that opens the inter-system switch when it is determined by the abnormality determination unit that an abnormality has occurred.
    When charging the plurality of storage batteries, a first control unit in which the plurality of storage batteries are connected in parallel and power is supplied from the first power source to the plurality of storage batteries is set as a first state.
    When discharging the plurality of storage batteries, the plurality of storage batteries are connected in series, and the electricity is supplied from the plurality of storage batteries at a voltage higher than the power supply voltage of the first power supply or a voltage higher than the required voltage of the electric load. A power supply system including a second control unit that is in a second state of supplying power to a load.
  2.  前記第2系統における前記接続経路との接続点(PB)と前記第2電源との間に設けられ、直列状態における前記複数の蓄電池の放電を規制する放電規制部(SMR,DA1~DA3,SW7)を備える請求項1に記載の電源システム。 Discharge control units (SMR, DA1 to DA3, SW7) provided between the connection point (PB) with the connection path in the second system and the second power source to regulate the discharge of the plurality of storage batteries in a series state. The power supply system according to claim 1.
  3.  前記第1状態において、前記複数の蓄電池の合計電圧が、前記第1電源の電源電圧よりも高い電圧又は前記電気負荷の要求電圧よりも高い電圧となる満充電状態になっていることを判定する充電判定部を備え、
     前記放電規制部は、前記充電判定部により前記満充電状態となっていると判定された場合に直列状態における前記複数の蓄電池の放電を規制する請求項2に記載の電源システム。
    In the first state, it is determined that the total voltage of the plurality of storage batteries is in a fully charged state, which is a voltage higher than the power supply voltage of the first power supply or a voltage higher than the required voltage of the electric load. Equipped with a charge judgment unit,
    The power supply system according to claim 2, wherein the discharge control unit regulates the discharge of the plurality of storage batteries in a series state when the charge determination unit determines that the fully charged state is reached.
  4.  前記放電規制部は、前記第2系統における前記接続経路との接続点(PB)と前記第2電源との間の経路を開放又は閉鎖する電池用スイッチ(SMR,SW7)を含み、
     前記状態制御部は、
     前記異常判定部により異常が発生していないと判定された場合に、前記系統間スイッチを閉鎖するとともに、前記電池用スイッチを開放して前記複数の蓄電池の放電を規制し、
     前記異常判定部により異常が発生したと判定された場合に、前記系統間スイッチを開放するとともに、前記電池用スイッチを閉鎖して前記複数の蓄電池の放電規制を解除する請求項2又は3に記載の電源システム。
    The discharge control unit includes a battery switch (SMR, SW7) that opens or closes a path between a connection point (PB) with the connection path and the second power supply in the second system.
    The state control unit
    When it is determined by the abnormality determination unit that no abnormality has occurred, the inter-system switch is closed and the battery switch is opened to regulate the discharge of the plurality of storage batteries.
    The second or third aspect of the present invention, wherein when the abnormality determination unit determines that an abnormality has occurred, the inter-system switch is opened and the battery switch is closed to release the discharge restriction of the plurality of storage batteries. Power system.
  5.  車両に搭載された電源システムであって、
     前記電気負荷は、前記車両において運転に必要な少なくとも1つの機能を実施する負荷であって、かつ前記車両の運転支援機能を実施する負荷であり、
     前記車両は、前記運転支援機能を用いる第1モードによる走行と、前記運転支援機能を用いない第2モードによる走行が可能であり、
     前記第1制御部は、前記第2モードにおいて前記第1状態とし、
     前記状態制御部は、前記放電規制部により前記複数の蓄電池の放電が規制された場合に、前記第1モードへの切り替えを許可する請求項2から4までのいずれか一項に記載の電源システム。
    It is a power supply system installed in a vehicle.
    The electric load is a load that performs at least one function necessary for driving in the vehicle, and is a load that performs a driving support function of the vehicle.
    The vehicle can travel in the first mode using the driving support function and in the second mode not using the driving support function.
    The first control unit is set to the first state in the second mode.
    The power supply system according to any one of claims 2 to 4, wherein the state control unit permits switching to the first mode when the discharge of the plurality of storage batteries is restricted by the discharge control unit. ..
  6.  前記第2系統における前記接続経路との接続点(PB)と前記第2電源との間において互いに並列に設けられた第1経路(LF1)及び第2経路(LF2)と、
     前記第1経路に設けられ、前記第1電源からの電力供給により、並列接続された前記複数の蓄電池を当該第1電源の電源電圧よりも低い電圧に充電する充電部(26)と、を備え、
     前記放電規制部は、前記第2経路に設けられ、前記第2系統での前記複数の蓄電池の放電を規制する請求項2から5までのいずれか一項に記載の電源システム。
    The first path (LF1) and the second path (LF2) provided in parallel between the connection point (PB) with the connection path and the second power supply in the second system,
    A charging unit (26) provided in the first path and charging the plurality of storage batteries connected in parallel to a voltage lower than the power supply voltage of the first power supply by supplying power from the first power supply is provided. ,
    The power supply system according to any one of claims 2 to 5, wherein the discharge control unit is provided in the second path and regulates discharge of the plurality of storage batteries in the second system.
  7.  前記第2系統における前記接続経路との接続点(PB)と前記第2電源との間において互いに並列に設けられた第1経路(LF1)及び第2経路(LF2)と、
     前記第1経路に設けられ、当該第1経路を開放又は閉鎖する開閉スイッチ(SW5)と、を備え、
     前記放電規制部は、前記第2経路に設けられ、前記第2経路において前記接続点から前記複数の蓄電池への電流の流れを規制し、かつ直列接続された前記複数の蓄電池の電圧と前記電源電圧とに所定の電圧差を生じさせる整流素子(DA1~DA3)を含む請求項2から5までのいずれか一項に記載の電源システム。
    The first path (LF1) and the second path (LF2) provided in parallel between the connection point (PB) with the connection path and the second power supply in the second system,
    An open / close switch (SW5) provided in the first path and which opens or closes the first path is provided.
    The discharge regulating unit is provided in the second path, regulates the flow of current from the connection point to the plurality of storage batteries in the second path, and regulates the voltage of the plurality of storage batteries connected in series and the power source. The power supply system according to any one of claims 2 to 5, further comprising a rectifying element (DA1 to DA3) that causes a predetermined voltage difference from the voltage.
  8.  前記第1制御部は、前記電気負荷の駆動量を示す駆動量情報を取得し、
     前記第2制御部は、前記駆動量情報が示す前記駆動量が所定の閾値よりも小さい状態から大きい状態に切り替わった場合に前記第2状態とする請求項1から6までのいずれか一項に記載の電源システム。
    The first control unit acquires the drive amount information indicating the drive amount of the electric load, and obtains the drive amount information.
    The second control unit corresponds to any one of claims 1 to 6 in which the second control unit is set to the second state when the drive amount indicated by the drive amount information is switched from a state smaller than a predetermined threshold value to a state larger than the predetermined threshold value. The power supply system described.
  9.  前記第1制御部は、前記駆動量情報が示す前記駆動量が前記閾値よりも小さい状態から大きい状態に切り替わった後に、前記閾値よりも大きい状態から小さい状態に切り替わった場合に、前記第2状態から前記第1状態に切り替え、前記複数の蓄電池を充電する請求項8に記載の電源システム。 The first control unit is the second state when the drive amount indicated by the drive amount information is switched from a state smaller than the threshold value to a state larger than the threshold value and then from a state larger than the threshold value to a state smaller than the threshold value. The power supply system according to claim 8, wherein the first state is switched to and the plurality of storage batteries are charged.
  10.  前記第1制御部は、
     前記電気負荷の駆動量を示す駆動量情報を取得し、
     前記駆動量情報が示す前記駆動量が所定の規定値よりも小さい場合に、前記複数の蓄電池を並列接続して、前記複数の蓄電池を同時に充電し、
     前記駆動量情報が示す前記駆動量が前記規定値よりも大きい場合に、前記複数の蓄電池を並列接続して、前記複数の蓄電池を個別に充電する請求項1から9までのいずれか一項に記載の電源システム。
    The first control unit is
    The drive amount information indicating the drive amount of the electric load is acquired, and the drive amount information is acquired.
    When the drive amount indicated by the drive amount information is smaller than a predetermined specified value, the plurality of storage batteries are connected in parallel to charge the plurality of storage batteries at the same time.
    According to any one of claims 1 to 9, when the drive amount indicated by the drive amount information is larger than the specified value, the plurality of storage batteries are connected in parallel and the plurality of storage batteries are individually charged. The power supply system described.
  11.  前記複数の蓄電池は、所定の第1電位点(PC)と第2電位点(PD)との間に設けられた第1特定電池(16)と第2特定電池(18)とを含み、
     前記第1特定電池の正極端子は、第1正極側経路(LC1)により前記第1電位点に接続されるとともに、第1負極側経路(LD1)により前記第2電位点に接続されており、
     前記第2特定電池の正極端子は、第2正極側経路(LC2)により前記第1電位点に接続されるとともに、第2負極側経路(LD2)により前記第2電位点に接続されており、
     前記第1負極側経路に設けられた第1切替スイッチ(SW2)と、
     前記第2正極側経路に設けられた第2切替スイッチ(SW3)と、
     前記第1負極側経路のうち前記第1切替スイッチよりも前記第1特定電池側の第1接続点(PE)と、前記第2正極側経路のうち前記第2切替スイッチよりも前記第2電位点側の第2接続点(PF)との間の導通経路(LE)に設けられた第3切替スイッチ(SW4)と、を備え、
     前記第1制御部は、前記第1状態において、前記第1切替スイッチ及び前記第2切替スイッチを閉鎖するとともに、前記第3切替スイッチを開放し、
     前記第2制御部は、前記第2状態において、前記第1切替スイッチ及び前記第2切替スイッチを開放するとともに、前記第3切替スイッチを閉鎖し、
     前記第1制御部及び前記第2制御部は、前記第1状態と前記第2状態との切り替え時において、前記第1切替スイッチ及び前記第2切替スイッチの少なくとも一方と前記第3切替スイッチとが同時に閉鎖されないように各切替スイッチの開閉を制御する請求項1から請求項10までのいずれか一項に記載の電源システム。
    The plurality of storage batteries include a first specific battery (16) and a second specific battery (18) provided between a predetermined first potential point (PC) and a second potential point (PD).
    The positive electrode terminal of the first specific battery is connected to the first potential point by the first positive electrode side path (LC1) and is connected to the second potential point by the first negative electrode side path (LD1).
    The positive electrode terminal of the second specified battery is connected to the first potential point by the second positive electrode side path (LC2) and is connected to the second potential point by the second negative electrode side path (LD2).
    The first changeover switch (SW2) provided in the first negative electrode side path and
    The second changeover switch (SW3) provided in the second positive electrode side path and
    Of the first negative electrode side path, the first connection point (PE) on the first specific battery side of the first changeover switch, and the second potential of the second positive electrode side path of the second changeover switch. A third changeover switch (SW4) provided in the conduction path (LE) between the second connection point (PF) on the point side is provided.
    In the first state, the first control unit closes the first changeover switch and the second changeover switch, and opens the third changeover switch.
    In the second state, the second control unit opens the first changeover switch and the second changeover switch, and closes the third changeover switch.
    In the first control unit and the second control unit, at the time of switching between the first state and the second state, at least one of the first changeover switch and the second changeover switch and the third changeover switch are used. The power supply system according to any one of claims 1 to 10, which controls the opening and closing of each changeover switch so as not to be closed at the same time.
PCT/JP2021/029362 2020-08-25 2021-08-06 Power supply system WO2022044780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020141761A JP7342819B2 (en) 2020-08-25 2020-08-25 power system
JP2020-141761 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022044780A1 true WO2022044780A1 (en) 2022-03-03

Family

ID=80353164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029362 WO2022044780A1 (en) 2020-08-25 2021-08-06 Power supply system

Country Status (2)

Country Link
JP (1) JP7342819B2 (en)
WO (1) WO2022044780A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248935A (en) * 1988-03-28 1989-10-04 Toshiba Corp Battery backup device
JP2002142375A (en) * 2000-10-30 2002-05-17 Nippon Telegr & Teleph Corp <Ntt> Power storage system and control method therefor
WO2018123391A1 (en) * 2016-12-28 2018-07-05 本田技研工業株式会社 Electric circuit and diagnosis method
JP2018182864A (en) * 2017-04-10 2018-11-15 株式会社デンソー Power control device and power control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01248935A (en) * 1988-03-28 1989-10-04 Toshiba Corp Battery backup device
JP2002142375A (en) * 2000-10-30 2002-05-17 Nippon Telegr & Teleph Corp <Ntt> Power storage system and control method therefor
WO2018123391A1 (en) * 2016-12-28 2018-07-05 本田技研工業株式会社 Electric circuit and diagnosis method
JP2018182864A (en) * 2017-04-10 2018-11-15 株式会社デンソー Power control device and power control method

Also Published As

Publication number Publication date
JP2022037563A (en) 2022-03-09
JP7342819B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
US10710469B2 (en) Automotive dual voltage battery charging system
WO2021230129A1 (en) Power supply system
US20230104265A1 (en) Power system
US20230075428A1 (en) Control apparatus and power supply system
US11949260B2 (en) Power supply system
US11505144B2 (en) Power supply system
WO2022044780A1 (en) Power supply system
WO2021075408A1 (en) Power supply system
JP7276291B2 (en) power system
WO2022091738A1 (en) Power supply system
WO2022131006A1 (en) Power supply system
JP2023007922A (en) Power supply system
WO2023085130A1 (en) Power supply monitoring device and control system
JP7392629B2 (en) power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861208

Country of ref document: EP

Kind code of ref document: A1