WO2022044775A1 - Power storage device and life determination method - Google Patents

Power storage device and life determination method Download PDF

Info

Publication number
WO2022044775A1
WO2022044775A1 PCT/JP2021/029327 JP2021029327W WO2022044775A1 WO 2022044775 A1 WO2022044775 A1 WO 2022044775A1 JP 2021029327 W JP2021029327 W JP 2021029327W WO 2022044775 A1 WO2022044775 A1 WO 2022044775A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
inspection data
power storage
life
battery
Prior art date
Application number
PCT/JP2021/029327
Other languages
French (fr)
Japanese (ja)
Inventor
速人 田和
大助 小西
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2022044775A1 publication Critical patent/WO2022044775A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for determining the life of a storage cell.
  • Patent Document 1 has the following description regarding the charge / discharge life determination control device for the secondary battery.
  • Charging / discharging is detected by detecting the terminal voltage of the battery unit with a voltmeter, the charging / discharging number is stored in the charge / discharge count detection storage unit, and the charge / discharge count is displayed on the alarm display unit.
  • the charge / discharge count comparison control circuit compares the detected charge / discharge count with the preset charge / discharge life count, and when the difference becomes zero, the alarm display unit issues a warning and the battery main circuit cutoff operation circuit.
  • the battery main circuit cutoff switch is opened to cut off the discharge path of the battery unit.
  • the problem is to determine the life of the storage cell without using the information on the frequency of use (charge / discharge frequency) of the storage cell.
  • the power storage device includes a power storage cell, an input unit for inputting inspection data regarding the life of the power storage cell measured using an inspection device, a storage unit for storing the input inspection data as an inspection history, and a control unit.
  • the control unit includes the input current inspection data and the past inspection data stored as the inspection history in the storage unit. Based on the above, the life of the storage cell is determined.
  • the above technology can be applied to the method of determining the life of the storage cell.
  • the life of the storage cell can be determined without knowing the frequency of use of the storage cell.
  • FIG. 1 An exploded perspective view of the battery Plan view of secondary battery cell Cross section of secondary battery cell Battery schematic Diagram showing aircraft and airport Circuit diagram of battery and inspection device Circuit diagram of battery and inspection device Circuit diagram of battery and inspection device Discharge capacity inspection sequence The figure which shows the inspection history of the discharge capacity C The figure which shows the life curve of a secondary battery cell
  • the power storage device includes a power storage cell, an input unit for inputting inspection data regarding the life of the power storage cell measured using an inspection device, a storage unit for storing the input inspection data as an inspection history, and a control unit.
  • the control unit includes the input current inspection data and the past inspection data stored as the inspection history in the storage unit. Based on the above, the life of the storage cell is determined.
  • the life of the storage cell is determined based on the current inspection data and the past inspection data stored as the inspection history in the storage unit. Since the life of the storage cell is determined from the accumulated inspection data, the life of the storage cell can be determined even if the usage status and frequency of use of the storage cell during the inspection are not known.
  • the inspection data is stored in the inspection device, only the inspection result performed by the inspection device can be reflected in the life judgment, so that there is a problem in the life judgment accuracy. This is especially noticeable when the inspection cycle is long or when there are multiple inspection instruments used for inspection.
  • the inspection data can be accumulated in the storage unit and reflected in the life determination. Therefore, it is possible to store a large amount of inspection data as compared with the case where the inspection data is stored in the inspection device, so that the life of the power storage device can be determined with high accuracy.
  • the storage unit stores a plurality of inspection data measured at a plurality of maintenance sites as an inspection history
  • the control unit stores the current inspection data input to the input unit and the inspection history in the storage unit.
  • the life of the power storage cell may be determined based on a plurality of inspection data measured at a plurality of stored maintenance sites.
  • the control unit may obtain a life curve showing the time transition of the inspection data based on the current inspection data and the past inspection data, and determine the life of the storage cell from the obtained life curve. In this configuration, it is possible to predict the change over time of the inspection data from the life curve and determine the replacement time of the storage cell.
  • the control unit may update the life curve of the storage cell based on the current inspection data and the inspection data performed in the past each time the inspection data of the storage cell is input.
  • the number of inspections of the storage cell increases, the number of data increases and the accuracy of the life curve increases. Therefore, the life of the storage cell can be determined with high accuracy.
  • the input unit is a communication unit capable of communicating with the inspection device, and may receive the inspection data from the inspection device by communication. With this configuration, it is not necessary for the operator to input the inspection data into the power storage device, so that the burden on the operator can be reduced.
  • the battery 50 includes an assembled battery 60, a circuit board unit 65, and an accommodating body 71.
  • the housing body 71 includes a main body 73 made of a synthetic resin material and a lid body 74.
  • the main body 73 has a bottomed tubular shape.
  • the main body 73 includes a bottom surface portion 75 and four side surface portions 76.
  • An upper opening 77 is formed at the upper end portion by the four side surface portions 76.
  • the accommodating body 71 accommodates the assembled battery 60 and the circuit board unit 65.
  • the assembled battery 60 has 12 secondary battery cells 62.
  • the 12 secondary battery cells 62 are connected in 3 parallels and 4 in series.
  • the circuit board unit 65 is arranged above the assembled battery 60.
  • three secondary battery cells 62 connected in parallel are represented by one battery symbol.
  • the secondary battery cell 62 is an example of a “storage cell”.
  • the lid 74 closes the upper opening 77 of the main body 73.
  • An outer peripheral wall 78 is provided around the lid 74.
  • the lid body 74 has a protrusion 79 having a substantially T-shape in a plan view.
  • the external terminal 51 of the positive electrode is fixed to one corner, and the external terminal 52 of the negative electrode is fixed to the other corner.
  • the battery 50 supplies electric power to the loads connected to the positive and negative external terminals 51 and 52.
  • the secondary battery cell 62 contains an electrode body 83 together with a non-aqueous electrolyte in a rectangular parallelepiped case 82.
  • the secondary battery cell 62 is, for example, a lithium ion secondary battery.
  • the case 82 has a case body 84 and a lid 85 that closes an opening above the case body 84.
  • the electrode body 83 is porous between the negative electrode element in which the active material is applied to the base material made of copper foil and the positive electrode element in which the active material is applied to the base material made of aluminum foil.
  • a separator made of a resin film is arranged.
  • the positive electrode terminal 87 is connected to the positive electrode element via the positive electrode current collector 86, and the negative electrode terminal 89 is connected to the negative electrode element via the negative electrode current collector 88.
  • the positive electrode current collector 86 and the negative electrode current collector 88 include a flat plate-shaped pedestal portion 90 and leg portions 91 extending from the pedestal portion 90. A through hole is formed in the pedestal portion 90.
  • the leg 91 is connected to a positive electrode element or a negative electrode element.
  • the positive electrode terminal 87 and the negative electrode terminal 89 include a terminal main body portion 92 and a shaft portion 93 protruding downward from the center portion of the lower surface thereof.
  • the terminal body portion 92 and the shaft portion 93 of the positive electrode terminal 87 are integrally molded of aluminum (single material).
  • the terminal body portion 92 is made of aluminum and the shaft portion 93 is made of copper, and these are assembled.
  • the terminal body 92 of the positive electrode terminal 87 and the negative electrode terminal 89 is arranged at both ends of the lid 85 via a gasket 94 made of an insulating material, and is exposed to the outside from the gasket 94.
  • the lid 85 has a pressure release valve 95. As shown in FIG. 2, the pressure release valve 95 is located between the positive electrode terminal 87 and the negative electrode terminal 89. When the internal pressure of the case 82 exceeds the limit value, the pressure release valve 95 is opened to reduce the internal pressure of the case 82.
  • the electrical configuration of the battery 50 will be described with reference to FIG.
  • the battery 50 includes an assembled battery 60, a shutoff device 53, and a management device 100.
  • the assembled battery 60 is composed of a plurality of secondary battery cells 62 connected in series.
  • the secondary battery cell 62 may be a lithium ion secondary battery cell.
  • the secondary battery cell 62 is an example of the "storage cell" of the present invention.
  • the positive electrode of the assembled battery 60 is connected to the external terminal 51 of the positive electrode by the power line 55P.
  • the negative electrode of the assembled battery 60 is connected to the external terminal 52 of the negative electrode by the power line 55N.
  • the battery 50 supplies electric power to the load R connected to the external terminals 51 and 52. When a charger is connected to the external terminals 51 and 52, it can be charged from the charger.
  • the cutoff device 53 is located on the positive electrode of the assembled battery 60 and is provided on the power line 55P of the positive electrode.
  • the cutoff device 53 can be configured by a relay, an FET, or the like.
  • the cutoff device 53 is arranged on the circuit board unit 65 and is housed in the housing body 71.
  • the shutoff device 53 is normally controlled to the CLOSE state (normally close). If there is an abnormality in the battery 50, the battery 50 can be protected by cutting off the current using the cutoff device 53.
  • the management device 100 includes a control unit 111 including a CPU and the like, a storage unit 113, and a communication unit 115.
  • the management device 100 manages the battery 50.
  • the management items of the battery 50 by the management device 100 include management of the charging state such as SOC and management of the usage state of the battery 50.
  • the control of the usage state is whether the battery 50 is used within an appropriate usage range with respect to voltage, voltage, and temperature.
  • the management device 100 manages the life T of the assembled battery 60.
  • the storage unit 113 stores data used for managing the battery 50.
  • the data includes data for determining the life T of the assembled battery 60 and a program for executing an inspection sequence for determining the life T.
  • the program can be stored in a recording medium such as a CD-ROM and transferred.
  • the program can also be delivered using a telecommunication line.
  • the battery 50 can be mounted on a moving body such as an aircraft 10 or a ship and used as a power source for equipment mounted on the aircraft 10 or a ship.
  • Mobile objects may be inspected for the equipment on board on a regular basis. For example, in the case of an aircraft, as shown in FIG. 5, the equipment is inspected by removing it from the aircraft 10 at the maintenance site MT of the airport AP.
  • the maintenance site MT is provided at multiple airport APs, and equipment inspection may be performed at multiple airport APs, not limited to a specific maintenance site MT. Inspection of the equipment includes inspection of the battery 50.
  • the discharge capacity C [Ah] is the amount of electricity discharged by the assembled battery 60 from the full charge to the discharge end voltage.
  • the discharge end voltage is the minimum value of the discharge voltage at which discharge can be safely performed.
  • Each maintenance site MT of each airport AP is equipped with an inspection device 150 having the same structure, and the discharge capacity C [Ah] of the assembled battery 60 can be measured at any maintenance site MT.
  • the discharge capacity C [Ah] decreases as the assembled battery 60 deteriorates, it has a correlation with the life of the assembled battery 60.
  • the discharge capacity C [Ah] is an example of inspection data regarding the life of the assembled battery 60.
  • the inspector 150 includes a pair of connection terminals 151 and 152, a current sensor 160, a charging circuit 170, a discharge circuit 180, and a control device 200.
  • the charging circuit 170 includes a first switch 171 and a charger 173.
  • the first switch 171 and the charger 173 are connected in series.
  • the discharge circuit 180 includes a second switch 181 and a discharge resistance 183.
  • the second switch 181 and the discharge resistor 1833 are connected in series.
  • the charging circuit 170 and the discharging circuit 180 are connected in parallel.
  • One connection point P1 of the charging circuit 170 and the discharging circuit 180 is connected to the positive electrode connection terminal 151 via the power line 155P, and the other connection point P2 is connected to the negative electrode connection terminal 152 via the power line 155N. It is connected to the.
  • the current sensor 160 is located at the power line 155P of the positive electrode and measures the current flowing through the power line 155P.
  • the current sensor 160 is not limited to the power line 155P of the positive electrode, but may be arranged in the power line 155N of the negative electrode.
  • the battery 50 can be connected to the inspection device 150.
  • the charging circuit 170 of the inspection device 150 can be connected to the battery 50 by switching the first switch 171 on and the second switch 181 off (see FIG. 7).
  • the discharge circuit 180 of the inspection device 150 can be connected to the battery 50 by switching the first switch 171 off and the second switch 181 on. reference).
  • the control device 200 is connected to the positive electrode connection terminal 151 via the signal line L1, and the voltage V of the positive electrode connection terminal 151 (the terminal voltage of the positive electrode of the battery 50) is taken in. It is also connected to the current sensor 160 via the signal line L2, and the measured value Ib of the current sensor 160 is taken in.
  • the control device 200 has a communication unit 215 and can communicate with the battery 50. Communication with the battery 50 is not limited to the specific inspection device 150 installed in the specific maintenance site M, but can be performed by the inspection device 150 installed in any maintenance site M.
  • the battery 50 and the inspection device 150 shown in FIG. 6 are connected to each other by a communication line L3 for communication, but the communication between the battery 50 and the inspection device 150 may be wireless communication.
  • the battery 50 removed from the aircraft 10 is connected to the inspection device 150 installed in the maintenance site MT of the airport AP. Specifically, the external terminals 51 and 52 of the battery 50 and the connection terminals 151 and 152 of the inspection device 150 are connected, and further, the communication unit 115 of the battery 50 and the communication unit 215 of the inspection device 150 are connected by the communication line L3. ..
  • the communication line L3 is connected using a detachable connector.
  • the control device 200 of the inspection device 150 can detect that the battery 20 is connected to the inspection device 150 by connecting the communication line L3.
  • the connection of the battery 50 is not limited to the connection of the communication line L3, and can be determined by the terminal voltage V of the connection terminal 151.
  • control device 200 When the control device 200 detects the connection of the battery 50, it executes the discharge capacity inspection sequence shown in FIG. In the state before the inspection sequence is executed, both the first switch 171 and the second switch 181 are controlled to be off.
  • the control device 200 starts the inspection sequence, first, the first switch 171 is switched on and the second switch 181 is switched off, and the charging circuit 170 is connected to the battery 50 (see FIG. 7).
  • control device 200 passes a charging current Ia from the charging circuit 170 to the assembled battery 60 to charge the assembled battery 60 until it is fully charged (S10).
  • the detection of full charge can be determined from the voltage V of the connection terminal 151, the magnitude of the charge current Ia, and the like.
  • control device 200 When the control device 200 detects that the assembled battery 60 is fully charged, the control device 200 switches the first switch 171 off and the second switch 181 on, thereby connecting the discharge circuit 180 to the battery 50 (see FIG. 8).
  • a discharge current Ib flows from the fully charged assembled battery 60 to the discharge circuit 180, and the assembled battery 60 is discharged.
  • the discharge current Ib of the assembled battery 60 is measured by the current sensor 160, and the data is taken into the control device 200.
  • the control device 200 monitors the voltage V of the connection terminal 151 during the discharge of the assembled battery 60, and when the voltage V of the connection terminal 151, that is, the terminal voltage V of the battery 50 drops to a predetermined discharge end voltage, the second switch.
  • the 181 is switched from on to off to stop the discharge. As a result, the assembled battery 60 can be discharged to the discharge end voltage (S20).
  • the control device 200 can measure the discharge capacity C [Ah] of the assembled battery 60 by integrating the discharge current Ib from the start of discharge with full charge to the discharge end voltage.
  • the control device 200 transmits the data together with the measurement date and time and the maintenance site information to the battery 50 via the communication line L3 (S30).
  • the battery 50 When the battery 50 receives the measurement result of the discharge capacity C [Ah] from the inspection device 150, the battery 50 receives the current discharge capacity C [Ah] and the past discharge capacity C [Ah] stored in the storage unit 113 as the inspection history. ], The life of the assembled battery 60 is determined (S40).
  • FIG. 10 is an example of the inspection history of the discharge capacity C stored in the storage unit 113 of the battery 50.
  • the inspection history can be composed of items such as the measurement date and time, the maintenance site, and the measured value of the discharge capacity C.
  • the inspection has been executed twice in the past, and three data of discharge capacities C0 to C2 are stored in the storage unit 113 as the inspection history.
  • C0 is the initial value of the discharge capacity
  • C1 is the discharge capacity measured at the maintenance site M1 at the time of the first inspection
  • C2 is the discharge capacity measured at the maintenance site M2 at the time of the second inspection.
  • the control unit 111 has a discharge capacity C [from the past discharge capacities C0 to C2 stored in the storage unit 113 and the current discharge capacity C3 measured in the current (third) inspection.
  • the life curve LT showing the time transition of [Ah] is obtained.
  • the life curve LT may be a curve or a straight line as long as it approximates the time transition of the discharge capacity C [Ah].
  • the control unit 111 calculates the life T of the assembled battery 60 from the calculated life curve LT.
  • the life T is a period until the discharge capacity C drops from the current value C3 to the threshold value Cx.
  • the threshold value Cx is the usage limit value (minimum value) of the discharge capacity C.
  • control unit 111 determines the length of the obtained life T (S50). The control unit 111 determines that the battery 50 can be used when the life T exists for a predetermined period or longer (S50: YES).
  • the control unit 111 determines that the battery 50 can be used, the current discharge capacity C3 [Ah] measured in the third inspection is stored in the storage unit 113 together with the measurement date and time and the maintenance site (for example, the maintenance site M1). And store it as an inspection history (S60).
  • the control unit 111 then sends a charge command for the battery 50 to the inspection device 150.
  • the inspection device 150 When the inspection device 150 receives a charging command from the battery 50, the first switch 171 is turned on and the second switch 181 is turned off, the charging circuit 170 is connected to the battery 50, and the battery 50 is charged (S70). ..
  • the charged battery 50 After charging the battery 50, by removing it from the inspection device 150, the charged battery 50 can be mounted on the aircraft 10 and used.
  • the next inspection (fourth time) is performed at the maintenance site MT of one of the space APs where the aircraft 10 stays, and the discharge capacity C4 is performed by the inspection device 150 connected to the battery 50. [Ah] is remeasured.
  • the discharge capacities C1 to C3 measured during the first to third inspections are stored in the storage unit 113 of the battery 50 as the inspection history.
  • the battery 50 recalculates the life curve LT showing the time transition of the discharge capacity C [Ah] based on the data of the discharge capacities C0 to C3 stored in the storage unit 113 and the data of the remeasured discharge capacities C4. ,Update. Then, the life T of the assembled battery 60 is calculated from the updated life curve LT.
  • the data of the discharge capacity C measured in the past is cumulatively accumulated in the storage unit 113 of the battery 50 (FIG. 10).
  • the control unit 111 determines that the battery 50 cannot be used when it is less than a predetermined period (S50: No), and notifies the replacement of the battery 50.
  • a command is sent from the battery 50 to the inspection device 150, and a message prompting the replacement of the battery 50 is displayed on the display unit 220 of the inspection device 150.
  • the life T of the assembled battery 60 can be determined even if the frequency of use of the assembled battery 60 and the usage environment (mainly temperature) are not known.
  • the battery 50 is communicated with the inspection device 150, and the battery 50 can acquire the discharge capacity C [Ah] by communication. Therefore, it is not necessary to manually input the data of the inspected discharge capacity C [Ah] to the battery 50, and the burden on the operator can be reduced.
  • a secondary battery cell is shown as an example of the storage cell.
  • the storage cell may be a capacitor or the like.
  • the storage cell is not limited to a plurality of cells, but may be a single cell. A plurality of cells may be connected in series and parallel.
  • the battery 50 is used for an aircraft or a ship. Besides this, it can also be used for vehicles and railways. The usage of the battery 50 is not limited to that of a mobile body. If it is to be inspected regularly to determine its life, it can also be used for stationary purposes such as an uninterruptible power supply or a power storage device for a power generation system.
  • the discharge capacity C [Ah] was measured as the inspection data of the secondary battery cell 62.
  • the inspection data is not limited to the discharge capacity C [Ah].
  • Other data may be used as long as the data has a correlation with the life of the assembled battery 60.
  • it may be an internal resistance.
  • the internal resistance may be obtained from the terminal voltage V and the current Ib of the battery 50.
  • the battery 50 receives the inspection data (discharge capacity) inspected by the inspection device 150 by communication.
  • the method of passing inspection data is not limited to communication.
  • the battery 50 may be provided with a connection port (an example of an input unit) to which an electronic medium such as a USB memory can be connected, and inspection data may be input via the electronic media.
  • the life curve LT showing the time transition of the discharge capacity C is obtained from the data of the current discharge capacity C and the data of the past discharge capacity C stored as the inspection history in the storage unit 113. ..
  • the life of the assembled battery 60 was determined from the obtained life curve LT. If the life of the assembled battery 60 can be determined from the data of the current discharge capacity C and the data of the past discharge capacity C stored in the storage unit 113 as the inspection history, a method different from the life curve LT can be determined. Then, the life of the assembled battery 60 may be determined. For example, the life T may be determined by obtaining the rate of decrease of the discharge capacity C with respect to time and predicting the time transition of the discharge capacity C.

Abstract

A power storage device 50 comprises: a power storage cell 62; an input unit 115 to which inspection data relating to a life of the power storage cell 62 measured by using an inspection instrument 150 is inputted; a memory unit 113 that memorizes the inputted inspection data as inspection history; and a control unit 111. The control unit 111 determines, when the inspection data of the power storage cell is inputted to the input unit 115, the life of the power storage cell 62 on the basis of the currently inputted inspection data and past inspection data memorized as the inspection history in the memory unit 113.

Description

蓄電装置、寿命判断方法Power storage device, life judgment method
 本発明は、蓄電セルの寿命を判断する技術に関する。 The present invention relates to a technique for determining the life of a storage cell.
 特許文献1には、2次電池の充放電寿命判定制御装置に関し、以下の記載がある。電池ユニットの端子電圧を電圧計により検出することにより充放電を検出して、充放電回数検出記憶部に充放電回数を記憶すると共に、充放電回数を警報表示部に表示する。充放電回数比較制御回路では、検出した充放電回数と、予め設定した充放電寿命回数とを比較し、その差がゼロになったら警報表示部により警告を発生させると共に、電池主回路遮断操作回路により電池主回路遮断スイッチを開路させ、電池ユニットの放電路を遮断させる。 Patent Document 1 has the following description regarding the charge / discharge life determination control device for the secondary battery. Charging / discharging is detected by detecting the terminal voltage of the battery unit with a voltmeter, the charging / discharging number is stored in the charge / discharge count detection storage unit, and the charge / discharge count is displayed on the alarm display unit. The charge / discharge count comparison control circuit compares the detected charge / discharge count with the preset charge / discharge life count, and when the difference becomes zero, the alarm display unit issues a warning and the battery main circuit cutoff operation circuit. The battery main circuit cutoff switch is opened to cut off the discharge path of the battery unit.
特開平11-79063号公報Japanese Unexamined Patent Publication No. 11-79063
 蓄電セルの使用頻度(充放電回数)の情報を使用せずに、蓄電セルの寿命を判断することを課題とする。 The problem is to determine the life of the storage cell without using the information on the frequency of use (charge / discharge frequency) of the storage cell.
 蓄電装置は、蓄電セルと、検査器を用いて計測された前記蓄電セルの寿命に関する検査データが入力される入力部と、入力された検査データを検査履歴として記憶する記憶部と、制御部と、を備え、前記制御部は、前記入力部に前記蓄電セルの検査データの入力があった場合、入力された現在の検査データと、前記記憶部に検査履歴として記憶されている過去の検査データとに基づいて、前記蓄電セルの寿命を判断する。 The power storage device includes a power storage cell, an input unit for inputting inspection data regarding the life of the power storage cell measured using an inspection device, a storage unit for storing the input inspection data as an inspection history, and a control unit. When the input unit receives the input of the inspection data of the storage cell, the control unit includes the input current inspection data and the past inspection data stored as the inspection history in the storage unit. Based on the above, the life of the storage cell is determined.
 上記技術は、蓄電セルの寿命判断方法に適用することが出来る。 The above technology can be applied to the method of determining the life of the storage cell.
 本構成では、蓄電セルの使用頻度が分からなくても、蓄電セルの寿命を判断することが出来る。 In this configuration, the life of the storage cell can be determined without knowing the frequency of use of the storage cell.
バッテリの分解斜視図An exploded perspective view of the battery 二次電池セルの平面図Plan view of secondary battery cell 二次電池セルの断面図Cross section of secondary battery cell バッテリの回路図Battery schematic 航空機と空港を示す図Diagram showing aircraft and airport バッテリ及び検査器の回路図Circuit diagram of battery and inspection device バッテリ及び検査器の回路図Circuit diagram of battery and inspection device バッテリ及び検査器の回路図Circuit diagram of battery and inspection device 放電容量の検査シーケンスDischarge capacity inspection sequence 放電容量Cの検査履歴を示す図The figure which shows the inspection history of the discharge capacity C 二次電池セルの寿命曲線を示す図The figure which shows the life curve of a secondary battery cell
 蓄電装置の概要を説明する。
 蓄電装置は、蓄電セルと、検査器を用いて計測された前記蓄電セルの寿命に関する検査データが入力される入力部と、入力された検査データを検査履歴として記憶する記憶部と、制御部と、を備え、前記制御部は、前記入力部に前記蓄電セルの検査データの入力があった場合、入力された現在の検査データと、前記記憶部に検査履歴として記憶されている過去の検査データとに基づいて、前記蓄電セルの寿命を判断する。
The outline of the power storage device will be described.
The power storage device includes a power storage cell, an input unit for inputting inspection data regarding the life of the power storage cell measured using an inspection device, a storage unit for storing the input inspection data as an inspection history, and a control unit. When the input unit receives the input of the inspection data of the storage cell, the control unit includes the input current inspection data and the past inspection data stored as the inspection history in the storage unit. Based on the above, the life of the storage cell is determined.
 この構成では、現在の検査データと、記憶部に検査履歴として記憶された過去の検査データとに基づいて、蓄電セルの寿命を判断する。蓄積された検査データから蓄電セルの寿命を判断するため、検査間の蓄電セルの使用状況や使用頻度が分からなくても、蓄電セルの寿命を判断することが出来る。検査データを検査器に蓄積する場合、その検査器で行った検査結果しか、寿命判断に反映させることが出来ないので、寿命の判断精度に課題がある。特に検査のサイクルが長い場合や、検査に使用される検査器が複数ある場合、顕著である。この構成では、検査を行った検査器を問わず、検査データを記憶部に蓄積して寿命判断に反映させることが出来る。そのため、検査データを検査器に蓄積する場合に比べて、多くの検査データを蓄積することが可能となることから、蓄電装置の寿命を高精度に判断できる。 In this configuration, the life of the storage cell is determined based on the current inspection data and the past inspection data stored as the inspection history in the storage unit. Since the life of the storage cell is determined from the accumulated inspection data, the life of the storage cell can be determined even if the usage status and frequency of use of the storage cell during the inspection are not known. When the inspection data is stored in the inspection device, only the inspection result performed by the inspection device can be reflected in the life judgment, so that there is a problem in the life judgment accuracy. This is especially noticeable when the inspection cycle is long or when there are multiple inspection instruments used for inspection. In this configuration, regardless of the inspection device that has been inspected, the inspection data can be accumulated in the storage unit and reflected in the life determination. Therefore, it is possible to store a large amount of inspection data as compared with the case where the inspection data is stored in the inspection device, so that the life of the power storage device can be determined with high accuracy.
 前記記憶部は、複数の整備場で計測された複数の検査データを、検査履歴として記憶し、前記制御部は、前記入力部に入力された現在の検査データと、前記記憶部に検査履歴として記憶されている複数の整備場で計測された複数の検査データと、に基づいて、前記蓄電セルの寿命を判断してもよい。 The storage unit stores a plurality of inspection data measured at a plurality of maintenance sites as an inspection history, and the control unit stores the current inspection data input to the input unit and the inspection history in the storage unit. The life of the power storage cell may be determined based on a plurality of inspection data measured at a plurality of stored maintenance sites.
 この構成では、複数の整備場で計測された複数の検査データを検査履歴として残すため、同一の整備場からしか検査データを集めない場合に比べて、多くの検査データを得ることが可能となる。そのため、蓄電セルの寿命の判断精度が高まる。特に、移動体に搭載された蓄電装置の場合、特定の整備場に限らず、複数の整備場で検査が行わる場合がある。従って、検査データが集まり難く、寿命の判断精度が低下する懸念がある。移動体に搭載された蓄電装置に、この構成を適用することで、寿命の判断精度が高まる。 In this configuration, since a plurality of inspection data measured at a plurality of maintenance sites are recorded as an inspection history, it is possible to obtain a large amount of inspection data as compared with the case where the inspection data is collected only from the same maintenance site. .. Therefore, the accuracy of determining the life of the storage cell is improved. In particular, in the case of a power storage device mounted on a mobile body, inspection may be performed not only at a specific maintenance site but also at a plurality of maintenance sites. Therefore, it is difficult to collect inspection data, and there is a concern that the accuracy of life determination may decrease. By applying this configuration to the power storage device mounted on the mobile body, the accuracy of determining the life is improved.
 前記制御部は、現在の検査データと過去の検査データとに基づいて、前記検査データの時間推移を示す寿命曲線を求め、求めた寿命曲線より前記蓄電セルの寿命を判断してもよい。この構成では、寿命曲線により検査データの経時変化を予測して蓄電セルの交換時期を判断することが出来る。 The control unit may obtain a life curve showing the time transition of the inspection data based on the current inspection data and the past inspection data, and determine the life of the storage cell from the obtained life curve. In this configuration, it is possible to predict the change over time of the inspection data from the life curve and determine the replacement time of the storage cell.
 前記制御部は、前記蓄電セルの検査データが入力される毎に、現在の検査データと過去に行った検査データとに基づいて、前記蓄電セルの寿命曲線を更新してもよい。この構成では、蓄電セルの検査回数が増えるほど、データ数が多くなり、寿命曲線の精度が高くなる。そのため、蓄電セルの寿命を高精度に判断することが出来る。 The control unit may update the life curve of the storage cell based on the current inspection data and the inspection data performed in the past each time the inspection data of the storage cell is input. In this configuration, as the number of inspections of the storage cell increases, the number of data increases and the accuracy of the life curve increases. Therefore, the life of the storage cell can be determined with high accuracy.
 前記入力部は、前記検査器と通信可能な通信部であり、前記検査器から通信により前記検査データを受信してもよい。この構成では、作業者が検査データを蓄電装置に入力する必要がなくなるので、作業者の負担を軽減することが出来る。 The input unit is a communication unit capable of communicating with the inspection device, and may receive the inspection data from the inspection device by communication. With this configuration, it is not necessary for the operator to input the inspection data into the power storage device, so that the burden on the operator can be reduced.
 <実施形態1>
1.バッテリの説明
 バッテリ50は、図1に示すように、組電池60と、回路基板ユニット65と、収容体71を備える。
<Embodiment 1>
1. 1. Description of Battery As shown in FIG. 1, the battery 50 includes an assembled battery 60, a circuit board unit 65, and an accommodating body 71.
 収容体71は、合成樹脂材料からなる本体73と蓋体74とを備えている。本体73は有底筒状である。本体73は、底面部75と、4つの側面部76とを備えている。4つの側面部76によって上端部分に上方開口部77が形成されている。 The housing body 71 includes a main body 73 made of a synthetic resin material and a lid body 74. The main body 73 has a bottomed tubular shape. The main body 73 includes a bottom surface portion 75 and four side surface portions 76. An upper opening 77 is formed at the upper end portion by the four side surface portions 76.
 収容体71は、組電池60と回路基板ユニット65を収容する。組電池60は12個の二次電池セル62を有する。12個の二次電池セル62は、3並列で4直列に接続されている。 The accommodating body 71 accommodates the assembled battery 60 and the circuit board unit 65. The assembled battery 60 has 12 secondary battery cells 62. The 12 secondary battery cells 62 are connected in 3 parallels and 4 in series.
 回路基板ユニット65は、組電池60の上部に配置されている。図4のブロック図では、並列に接続された3つの二次電池セル62を1つの電池記号で表している。二次電池セル62は「蓄電セル」の一例である。 The circuit board unit 65 is arranged above the assembled battery 60. In the block diagram of FIG. 4, three secondary battery cells 62 connected in parallel are represented by one battery symbol. The secondary battery cell 62 is an example of a “storage cell”.
 蓋体74は、本体73の上方開口部77を閉鎖する。蓋体74の周囲には外周壁78が設けられている。蓋体74は、平面視略T字形の突出部79を有する。蓋体74の前部のうち、一方の隅部に正極の外部端子51が固定され、他方の隅部に負極の外部端子52が固定されている。 The lid 74 closes the upper opening 77 of the main body 73. An outer peripheral wall 78 is provided around the lid 74. The lid body 74 has a protrusion 79 having a substantially T-shape in a plan view. Of the front portion of the lid 74, the external terminal 51 of the positive electrode is fixed to one corner, and the external terminal 52 of the negative electrode is fixed to the other corner.
 バッテリ50は、正負の外部端子51、52に接続された負荷に対して電力を供給する。 The battery 50 supplies electric power to the loads connected to the positive and negative external terminals 51 and 52.
 図2及び図3に示すように、二次電池セル62は、直方体形状のケース82内に電極体83を非水電解質と共に収容したものである。二次電池セル62は一例としてリチウムイオン二次電池である。ケース82は、ケース本体84と、その上方の開口部を閉鎖する蓋85とを有している。 As shown in FIGS. 2 and 3, the secondary battery cell 62 contains an electrode body 83 together with a non-aqueous electrolyte in a rectangular parallelepiped case 82. The secondary battery cell 62 is, for example, a lithium ion secondary battery. The case 82 has a case body 84 and a lid 85 that closes an opening above the case body 84.
 電極体83は、詳細については図示しないが、銅箔からなる基材に活物質を塗布した負極要素と、アルミニウム箔からなる基材に活物質を塗布した正極要素との間に、多孔性の樹脂フィルムからなるセパレータを配置したものである。 Although not shown in detail, the electrode body 83 is porous between the negative electrode element in which the active material is applied to the base material made of copper foil and the positive electrode element in which the active material is applied to the base material made of aluminum foil. A separator made of a resin film is arranged.
 これらはいずれも帯状で、セパレータに対して負極要素と正極要素とを幅方向の反対側にそれぞれ位置をずらした状態で、ケース本体84に収容可能となるように扁平状に巻回されている。 All of these are band-shaped, and are wound flat so that they can be accommodated in the case body 84 with the negative electrode element and the positive electrode element displaced from each other on the opposite sides in the width direction with respect to the separator. ..
 正極要素には正極集電体86を介して正極端子87が、負極要素には負極集電体88を介して負極端子89がそれぞれ接続されている。正極集電体86及び負極集電体88は、平板状の台座部90と、この台座部90から延びる脚部91とからなる。台座部90には貫通孔が形成されている。脚部91は正極要素又は負極要素に接続されている。 The positive electrode terminal 87 is connected to the positive electrode element via the positive electrode current collector 86, and the negative electrode terminal 89 is connected to the negative electrode element via the negative electrode current collector 88. The positive electrode current collector 86 and the negative electrode current collector 88 include a flat plate-shaped pedestal portion 90 and leg portions 91 extending from the pedestal portion 90. A through hole is formed in the pedestal portion 90. The leg 91 is connected to a positive electrode element or a negative electrode element.
 正極端子87及び負極端子89は、端子本体部92と、その下面中心部分から下方に突出する軸部93とからなる。そのうち、正極端子87の端子本体部92と軸部93とは、アルミニウム(単一材料)によって一体成形されている。負極端子89においては、端子本体部92がアルミニウム製で、軸部93が銅製であり、これらを組み付けたものである。 The positive electrode terminal 87 and the negative electrode terminal 89 include a terminal main body portion 92 and a shaft portion 93 protruding downward from the center portion of the lower surface thereof. Among them, the terminal body portion 92 and the shaft portion 93 of the positive electrode terminal 87 are integrally molded of aluminum (single material). In the negative electrode terminal 89, the terminal body portion 92 is made of aluminum and the shaft portion 93 is made of copper, and these are assembled.
 正極端子87及び負極端子89の端子本体部92は、蓋85の両端部に絶縁材料からなるガスケット94を介して配置され、このガスケット94から外方へ露出されている。 The terminal body 92 of the positive electrode terminal 87 and the negative electrode terminal 89 is arranged at both ends of the lid 85 via a gasket 94 made of an insulating material, and is exposed to the outside from the gasket 94.
 蓋85は、圧力開放弁95を有している。圧力開放弁95は、図2に示すように、正極端子87と負極端子89の間に位置している。圧力開放弁95は、ケース82の内圧が制限値を超えた時に、開放して、ケース82の内圧を下げる。 The lid 85 has a pressure release valve 95. As shown in FIG. 2, the pressure release valve 95 is located between the positive electrode terminal 87 and the negative electrode terminal 89. When the internal pressure of the case 82 exceeds the limit value, the pressure release valve 95 is opened to reduce the internal pressure of the case 82.
 図4を参照して、バッテリ50の電気的構成を説明する。バッテリ50は、組電池60と、遮断装置53と、管理装置100とを含む。 The electrical configuration of the battery 50 will be described with reference to FIG. The battery 50 includes an assembled battery 60, a shutoff device 53, and a management device 100.
 組電池60は、直列接続された複数の二次電池セル62から構成されている。二次電池セル62は、リチウムイオン二次電池セルでもよい。二次電池セル62は、本発明の「蓄電セル」の一例である。 The assembled battery 60 is composed of a plurality of secondary battery cells 62 connected in series. The secondary battery cell 62 may be a lithium ion secondary battery cell. The secondary battery cell 62 is an example of the "storage cell" of the present invention.
 組電池60の正極は、パワーライン55Pにより、正極の外部端子51と接続されている。組電池60の負極は、パワーライン55Nにより、負極の外部端子52に接続されている。バッテリ50は、外部端子51、52に接続された負荷Rに対して電力を供給する。外部端子51、52に充電器が接続された場合、充電器より充電することも出来る。 The positive electrode of the assembled battery 60 is connected to the external terminal 51 of the positive electrode by the power line 55P. The negative electrode of the assembled battery 60 is connected to the external terminal 52 of the negative electrode by the power line 55N. The battery 50 supplies electric power to the load R connected to the external terminals 51 and 52. When a charger is connected to the external terminals 51 and 52, it can be charged from the charger.
 遮断装置53は、組電池60の正極に位置し、正極のパワーライン55Pに設けられている。遮断装置53は、リレーやFETなどにより構成することが出来る。 The cutoff device 53 is located on the positive electrode of the assembled battery 60 and is provided on the power line 55P of the positive electrode. The cutoff device 53 can be configured by a relay, an FET, or the like.
 遮断装置53は、回路基板ユニット65上に配置されており、収容体71内に収容されている。 The cutoff device 53 is arranged on the circuit board unit 65 and is housed in the housing body 71.
 遮断装置53は、正常時、CLOSE状態(normally close)に制御される。バッテリ50に異常があった場合、遮断装置53を用いて電流を遮断することで、バッテリ50を保護することが出来る。 The shutoff device 53 is normally controlled to the CLOSE state (normally close). If there is an abnormality in the battery 50, the battery 50 can be protected by cutting off the current using the cutoff device 53.
 管理装置100は、CPU等からなる制御部111と、記憶部113と通信部115とを含む。管理装置100はバッテリ50を管理する。 The management device 100 includes a control unit 111 including a CPU and the like, a storage unit 113, and a communication unit 115. The management device 100 manages the battery 50.
 管理装置100によるバッテリ50の管理項目には、SOCなど充電状態に関する管理や、バッテリ50の使用状態の管理が含まれる。使用状態の管理は、電圧、電圧、温度に関し、適正な使用範囲内で、バッテリ50が使用されているかである。 The management items of the battery 50 by the management device 100 include management of the charging state such as SOC and management of the usage state of the battery 50. The control of the usage state is whether the battery 50 is used within an appropriate usage range with respect to voltage, voltage, and temperature.
 管理装置100は、組電池60の寿命Tを管理する。記憶部113には、バッテリ50の管理に使用となるデータが記憶されている。 The management device 100 manages the life T of the assembled battery 60. The storage unit 113 stores data used for managing the battery 50.
 データには、組電池60の寿命Tを判断するためのデータや、寿命Tを判断する検査シーケンスを実行するためのプログラムを含む。プログラムはCD-ROM等の記録媒体に記憶して譲渡等することが出来る。プログラムは電気通信回線を用いて配信することも出来る。 The data includes data for determining the life T of the assembled battery 60 and a program for executing an inspection sequence for determining the life T. The program can be stored in a recording medium such as a CD-ROM and transferred. The program can also be delivered using a telecommunication line.
 バッテリ50は、航空機10や船舶などの移動体に搭載して、航空機10や船舶に搭載された機器の電源として、使用することが出来る。 The battery 50 can be mounted on a moving body such as an aircraft 10 or a ship and used as a power source for equipment mounted on the aircraft 10 or a ship.
 移動体は、搭載されている機器の検査を定期的に行う場合がある。例えば、航空機用の場合、図5に示すように、空港APの整備場MTにて、航空機10から取り外して、機器の検査が行われる。 Mobile objects may be inspected for the equipment on board on a regular basis. For example, in the case of an aircraft, as shown in FIG. 5, the equipment is inspected by removing it from the aircraft 10 at the maintenance site MT of the airport AP.
 整備場MTは、複数の空港APに設けられており、機器の検査は、特定の整備場MTに限らず、複数の空港APにて行われる場合がある。機器の検査には、バッテリ50の検査が含まれている。 The maintenance site MT is provided at multiple airport APs, and equipment inspection may be performed at multiple airport APs, not limited to a specific maintenance site MT. Inspection of the equipment includes inspection of the battery 50.
 バッテリ50の検査項目の一つに、組電池60の放電容量C[Ah]がある。放電容量C[Ah]は、満充電から放電終止電圧に至るまでに、組電池60が放電する電気量である。放電終止電圧は、安全に放電を行える放電電圧の最低値である。 One of the inspection items of the battery 50 is the discharge capacity C [Ah] of the assembled battery 60. The discharge capacity C [Ah] is the amount of electricity discharged by the assembled battery 60 from the full charge to the discharge end voltage. The discharge end voltage is the minimum value of the discharge voltage at which discharge can be safely performed.
 各空港APの各整備場MTには、同一構造の検査器150が設けられており、どの整備場MTでも、組電池60の放電容量C[Ah]を計測することができる。 Each maintenance site MT of each airport AP is equipped with an inspection device 150 having the same structure, and the discharge capacity C [Ah] of the assembled battery 60 can be measured at any maintenance site MT.
 放電容量C[Ah]は、組電池60の劣化に伴い低下することから、組電池60の寿命と相関性がある。放電容量C[Ah]は、組電池60の寿命に関する検査データの一例である。 Since the discharge capacity C [Ah] decreases as the assembled battery 60 deteriorates, it has a correlation with the life of the assembled battery 60. The discharge capacity C [Ah] is an example of inspection data regarding the life of the assembled battery 60.
 2.検査器150の説明
 検査器150は、図6に示すように、一対の接続端子151、152と、電流センサ160と、充電回路170と、放電回路180と、制御装置200を備える。
2. 2. Description of the Inspector 150 As shown in FIG. 6, the inspector 150 includes a pair of connection terminals 151 and 152, a current sensor 160, a charging circuit 170, a discharge circuit 180, and a control device 200.
 充電回路170は、第1スイッチ171と充電器173を備える。第1スイッチ171と充電器173は直列に接続されている。 The charging circuit 170 includes a first switch 171 and a charger 173. The first switch 171 and the charger 173 are connected in series.
 放電回路180は、第2スイッチ181と放電抵抗183を備える。第2スイッチ181と放電抵抗1833は直列に接続されている。 The discharge circuit 180 includes a second switch 181 and a discharge resistance 183. The second switch 181 and the discharge resistor 1833 are connected in series.
 充電回路170と放電回路180は、並列に接続されている。充電回路170及び放電回路180の一方の接続点P1は、パワーライン155Pを介して、正極の接続端子151に接続され、他方の接続点P2は、パワーライン155Nを介して、負極の接続端子152に接続されている。 The charging circuit 170 and the discharging circuit 180 are connected in parallel. One connection point P1 of the charging circuit 170 and the discharging circuit 180 is connected to the positive electrode connection terminal 151 via the power line 155P, and the other connection point P2 is connected to the negative electrode connection terminal 152 via the power line 155N. It is connected to the.
 電流センサ160は、正極のパワーライン155Pに位置しており、パワーライン155Pに流れる電流を計測する。電流センサ160は、正極のパワーライン155Pに限らず、負極のパワーライン155Nに配置することも出来る。 The current sensor 160 is located at the power line 155P of the positive electrode and measures the current flowing through the power line 155P. The current sensor 160 is not limited to the power line 155P of the positive electrode, but may be arranged in the power line 155N of the negative electrode.
 バッテリ50の外部端子51、52を、検査器150の接続端子151、152にそれぞれ接続することで、バッテリ50を検査器150に対して接続することが出来る。 By connecting the external terminals 51 and 52 of the battery 50 to the connection terminals 151 and 152 of the inspection device 150, respectively, the battery 50 can be connected to the inspection device 150.
 検査器150の2つのスイッチのうち、第1スイッチ171をオン、第2スイッチ181をオフに切り換えることで、検査器150の充電回路170をバッテリ50に接続することが出来る(図7参照)。 Of the two switches of the inspection device 150, the charging circuit 170 of the inspection device 150 can be connected to the battery 50 by switching the first switch 171 on and the second switch 181 off (see FIG. 7).
 検査器150の2つのスイッチ171、181のうち、第1スイッチ171をオフ、第2スイッチ181をオンに切り換えることで、検査器150の放電回路180をバッテリ50に接続することが出来る(図8参照)。 Of the two switches 171 and 181 of the inspection device 150, the discharge circuit 180 of the inspection device 150 can be connected to the battery 50 by switching the first switch 171 off and the second switch 181 on. reference).
 制御装置200は、正極の接続端子151と信号線L1を介して接続されており、正極の接続端子151の電圧V(バッテリ50の正極の端子電圧)が取り込まれるようになっている。電流センサ160とも信号線L2を介して接続されており、電流センサ160の計測値Ibが取り込まれるようになっている。 The control device 200 is connected to the positive electrode connection terminal 151 via the signal line L1, and the voltage V of the positive electrode connection terminal 151 (the terminal voltage of the positive electrode of the battery 50) is taken in. It is also connected to the current sensor 160 via the signal line L2, and the measured value Ib of the current sensor 160 is taken in.
 制御装置200は通信部215を有しており、バッテリ50と通信することが出来る。バッテリ50との通信は、特定の整備場Mに設置された特定の検査器150に限らず、どの整備場Mに設置された検査器150でも行うことが出来る。図6に示すバッテリ50と検査器150は、両間を通信線L3で接続して通信を行うが、バッテリ50と検査器150の通信は、無線通信でもよい。 The control device 200 has a communication unit 215 and can communicate with the battery 50. Communication with the battery 50 is not limited to the specific inspection device 150 installed in the specific maintenance site M, but can be performed by the inspection device 150 installed in any maintenance site M. The battery 50 and the inspection device 150 shown in FIG. 6 are connected to each other by a communication line L3 for communication, but the communication between the battery 50 and the inspection device 150 may be wireless communication.
 3.バッテリの検査と寿命診断
 検査を行う場合、航空機10から取り外されたバッテリ50を、空港APの整備場MTに装備された検査器150に接続する。具体的には、バッテリ50の外部端子51、52と検査器150の接続端子151、152を接続し、更に、バッテリ50の通信部115と検査器150の通信部215を通信線L3で接続する。通信線L3の接続は、着脱可能なコネクタを用いて行う。
3. 3. Battery inspection and life diagnosis When performing inspection, the battery 50 removed from the aircraft 10 is connected to the inspection device 150 installed in the maintenance site MT of the airport AP. Specifically, the external terminals 51 and 52 of the battery 50 and the connection terminals 151 and 152 of the inspection device 150 are connected, and further, the communication unit 115 of the battery 50 and the communication unit 215 of the inspection device 150 are connected by the communication line L3. .. The communication line L3 is connected using a detachable connector.
 検査器150の制御装置200は、通信線L3の接続により、検査器150にバッテリ20が接続されたことを検出することが出来る。バッテリ50の接続は、通信線L3の接続に限らず、接続端子151の端子電圧Vで判断することも出来る。 The control device 200 of the inspection device 150 can detect that the battery 20 is connected to the inspection device 150 by connecting the communication line L3. The connection of the battery 50 is not limited to the connection of the communication line L3, and can be determined by the terminal voltage V of the connection terminal 151.
 制御装置200はバッテリ50の接続を検出した場合、図9に示す放電容量の検査シーケンスを実行する。検査シーケンス実行前の状態において、第1スイッチ171と第2スイッチ181はいずれもオフに制御されている。 When the control device 200 detects the connection of the battery 50, it executes the discharge capacity inspection sequence shown in FIG. In the state before the inspection sequence is executed, both the first switch 171 and the second switch 181 are controlled to be off.
 制御装置200は、検査シーケンスを開始すると、まず、第1スイッチ171をオン、第2スイッチ181をオフに切り換え、充電回路170をバッテリ50に接続する(図7参照)。 When the control device 200 starts the inspection sequence, first, the first switch 171 is switched on and the second switch 181 is switched off, and the charging circuit 170 is connected to the battery 50 (see FIG. 7).
 その後、制御装置200は、充電回路170から組電池60に充電電流Iaを流して、組電池60を満充電まで充電する(S10)。満充電の検出は、接続端子151の電圧Vや充電電流Iaの大きさ等から判断することが出来る。 After that, the control device 200 passes a charging current Ia from the charging circuit 170 to the assembled battery 60 to charge the assembled battery 60 until it is fully charged (S10). The detection of full charge can be determined from the voltage V of the connection terminal 151, the magnitude of the charge current Ia, and the like.
 制御装置200は、組電池60の満充電を検出すると、第1スイッチ171をオフ、第2スイッチ181をオンに切り換えることで、バッテリ50に放電回路180を接続する(図8参照)。 When the control device 200 detects that the assembled battery 60 is fully charged, the control device 200 switches the first switch 171 off and the second switch 181 on, thereby connecting the discharge circuit 180 to the battery 50 (see FIG. 8).
 放電回路180の接続により、満充電に充電された組電池60から放電回路180に放電電流Ibが流れ、組電池60は放電する。組電池60の放電電流Ibは電流センサ160により計測され、そのデータは制御装置200に取り込まれる。 By connecting the discharge circuit 180, a discharge current Ib flows from the fully charged assembled battery 60 to the discharge circuit 180, and the assembled battery 60 is discharged. The discharge current Ib of the assembled battery 60 is measured by the current sensor 160, and the data is taken into the control device 200.
 制御装置200は、組電池60の放電中、接続端子151の電圧Vをモニタし、接続端子151の電圧V、つまりバッテリ50の端子電圧Vが、所定の放電終止電圧まで下がると、第2スイッチ181をオンからオフに切り換えて放電を停止する。これにより、組電池60を放電終止電圧まで放電することが出来る(S20)。 The control device 200 monitors the voltage V of the connection terminal 151 during the discharge of the assembled battery 60, and when the voltage V of the connection terminal 151, that is, the terminal voltage V of the battery 50 drops to a predetermined discharge end voltage, the second switch. The 181 is switched from on to off to stop the discharge. As a result, the assembled battery 60 can be discharged to the discharge end voltage (S20).
 制御装置200は、満充電で放電を開始してから放電終止電圧に至るまでの放電電流Ibを積算することにより、組電池60の放電容量C[Ah]を計測することが出来る。 The control device 200 can measure the discharge capacity C [Ah] of the assembled battery 60 by integrating the discharge current Ib from the start of discharge with full charge to the discharge end voltage.
 制御装置200は、組電池60の放電容量C[Ah]の計測が完了すると、そのデータを、計測日時、整備場の情報と共に、通信線L3を介してバッテリ50に送信する(S30)。 When the measurement of the discharge capacity C [Ah] of the assembled battery 60 is completed, the control device 200 transmits the data together with the measurement date and time and the maintenance site information to the battery 50 via the communication line L3 (S30).
 バッテリ50は、検査器150から放電容量C[Ah]の計測結果を受信すると、受信した現在の放電容量C[Ah]と、記憶部113に検査履歴として記憶された過去の放電容量C[Ah]に基づいて、組電池60の寿命を判断する(S40)。 When the battery 50 receives the measurement result of the discharge capacity C [Ah] from the inspection device 150, the battery 50 receives the current discharge capacity C [Ah] and the past discharge capacity C [Ah] stored in the storage unit 113 as the inspection history. ], The life of the assembled battery 60 is determined (S40).
 図10は、バッテリ50の記憶部113に記憶されている放電容量Cの検査履歴の一例である。検査履歴は、計測日時、整備場、放電容量Cの計測値の項目などから構成することが出来る。 FIG. 10 is an example of the inspection history of the discharge capacity C stored in the storage unit 113 of the battery 50. The inspection history can be composed of items such as the measurement date and time, the maintenance site, and the measured value of the discharge capacity C.
 3回目の検査の場合、過去に検査を2回実行しており、記憶部113に対して、検査履歴として、放電容量C0~C2の3つのデータが記憶されている。 In the case of the third inspection, the inspection has been executed twice in the past, and three data of discharge capacities C0 to C2 are stored in the storage unit 113 as the inspection history.
 「C0」は放電容量の初期値、「C1」は1回目の検査時に整備場M1にて計測した放電容量である。「C2」は2回目の検査時に整備場M2にて計測した放電容量である。 "C0" is the initial value of the discharge capacity, and "C1" is the discharge capacity measured at the maintenance site M1 at the time of the first inspection. "C2" is the discharge capacity measured at the maintenance site M2 at the time of the second inspection.
 制御部111は、記憶部113に記憶されている過去の放電容量C0~C2と、今回(3回目)の検査で計測した現在の放電容量C3から、図11に示すように、放電容量C[Ah]の時間推移を示す寿命曲線LTを求める。 As shown in FIG. 11, the control unit 111 has a discharge capacity C [from the past discharge capacities C0 to C2 stored in the storage unit 113 and the current discharge capacity C3 measured in the current (third) inspection. The life curve LT showing the time transition of [Ah] is obtained.
 寿命曲線LTは、放電容量C[Ah]の時間推移を近似するものであれば、曲線でもいいし、直線でもよい。 The life curve LT may be a curve or a straight line as long as it approximates the time transition of the discharge capacity C [Ah].
 制御部111は、寿命曲線LTを算出すると、算出した寿命曲線LTから組電池60の寿命Tを算出する。寿命Tは、放電容量Cが現在値C3から閾値Cxまで低下するまでの期間である。閾値Cxは、放電容量Cの使用限界値(最低値)である。 When the control unit 111 calculates the life curve LT, the control unit 111 calculates the life T of the assembled battery 60 from the calculated life curve LT. The life T is a period until the discharge capacity C drops from the current value C3 to the threshold value Cx. The threshold value Cx is the usage limit value (minimum value) of the discharge capacity C.
 制御部111は、組電池60の寿命Tを求めると、求めた寿命Tの長さを判断する(S50)。制御部111は、寿命Tが所定期間以上存在する場合、バッテリ50は使用可能と判断する(S50:YES)。 When the control unit 111 obtains the life T of the assembled battery 60, the control unit 111 determines the length of the obtained life T (S50). The control unit 111 determines that the battery 50 can be used when the life T exists for a predetermined period or longer (S50: YES).
 制御部111は、バッテリ50は使用可能と判断した場合、3回目の検査で計測した現在の放電容量C3[Ah]を、計測日時及び整備場(例えば整備場M1)と共に、記憶部113に対して検査履歴として記憶する(S60)。 When the control unit 111 determines that the battery 50 can be used, the current discharge capacity C3 [Ah] measured in the third inspection is stored in the storage unit 113 together with the measurement date and time and the maintenance site (for example, the maintenance site M1). And store it as an inspection history (S60).
 制御部111は、その後、検査器150に対してバッテリ50の充電指令を送る。 The control unit 111 then sends a charge command for the battery 50 to the inspection device 150.
 検査器150は、バッテリ50から充電指令を受けると、その後、第1スイッチ171をオン、第2スイッチ181をオフに切り換え、充電回路170をバッテリ50に接続し、バッテリ50を充電する(S70)。 When the inspection device 150 receives a charging command from the battery 50, the first switch 171 is turned on and the second switch 181 is turned off, the charging circuit 170 is connected to the battery 50, and the battery 50 is charged (S70). ..
 バッテリ50の充電後、検査器150から取り外すことで、充電済みのバッテリ50を、航空機10に搭載して使用することが出来る。 After charging the battery 50, by removing it from the inspection device 150, the charged battery 50 can be mounted on the aircraft 10 and used.
 その後、所定期間が経過すると、航空機10の滞在するいずれかの空間APの整備場MTにて、次の検査(4回目)が行われ、バッテリ50に接続された検査器150により、放電容量C4[Ah]が再計測される。 After that, when the predetermined period elapses, the next inspection (fourth time) is performed at the maintenance site MT of one of the space APs where the aircraft 10 stays, and the discharge capacity C4 is performed by the inspection device 150 connected to the battery 50. [Ah] is remeasured.
 この時点では、バッテリ50の記憶部113に対して、初回の放電容量C0に加えて、第1回目~第3回目までの検査時に計測した放電容量C1~C3が検査履歴として記憶されている。 At this point, in addition to the initial discharge capacity C0, the discharge capacities C1 to C3 measured during the first to third inspections are stored in the storage unit 113 of the battery 50 as the inspection history.
 バッテリ50は、記憶部113に記憶された放電容量C0~C3のデータと、再計測した放電容量C4のデータに基づいて、放電容量C[Ah]の時間推移を示す寿命曲線LTを改めて算出し、更新する。そして、更新した寿命曲線LTから組電池60の寿命Tを算出する。 The battery 50 recalculates the life curve LT showing the time transition of the discharge capacity C [Ah] based on the data of the discharge capacities C0 to C3 stored in the storage unit 113 and the data of the remeasured discharge capacities C4. ,Update. Then, the life T of the assembled battery 60 is calculated from the updated life curve LT.
 このように、バッテリ50の記憶部113には、過去に計測した放電容量Cのデータが累積的に蓄積される(図10)。 In this way, the data of the discharge capacity C measured in the past is cumulatively accumulated in the storage unit 113 of the battery 50 (FIG. 10).
 そのため、使用期間が長くなるほど、つまり寿命Tが短くなるほど、寿命曲線LTの算出に使用されるデータ数が増えるので、組電池60の寿命Tの判定精度が高くなる。 Therefore, as the usage period becomes longer, that is, as the life T becomes shorter, the number of data used for calculating the life curve LT increases, so that the determination accuracy of the life T of the assembled battery 60 becomes higher.
 そして、制御部111は、組電池60の寿命Tを判定した結果、所定期間未満である場合(S50:No)、バッテリ50は使用不可と判断し、バッテリ50の交換を報知する。 Then, as a result of determining the life T of the assembled battery 60, the control unit 111 determines that the battery 50 cannot be used when it is less than a predetermined period (S50: No), and notifies the replacement of the battery 50.
 例えば、バッテリ50から検査器150に指令を送り、検査器150の表示部220にバッテリ50の交換を促すメッセージを表示する。 For example, a command is sent from the battery 50 to the inspection device 150, and a message prompting the replacement of the battery 50 is displayed on the display unit 220 of the inspection device 150.
3.効果説明
 本構成では、組電池60の使用頻度や使用環境(主として温度)が分からなくても、組電池60の寿命Tを判断することが出来る。
3. 3. Explanation of effect In this configuration, the life T of the assembled battery 60 can be determined even if the frequency of use of the assembled battery 60 and the usage environment (mainly temperature) are not known.
 本構成では、複数の整備場M1、M2で計測された複数の放電容量C[Ah]を検査履歴としてバッテリ50に残し、過去の検査データ(放電容量)をバッテリ50で一元管理する。そのため、多くの検査データを得ることが可能となり、検査データを検査器150に蓄積する場合に比べて、組電池60の寿命Tの判断精度が高まる。特に、検査サイクルが長い場合、検査データが集まり難く、判断精度が低下する傾向にあることから、好適である。 In this configuration, a plurality of discharge capacities C [Ah] measured at a plurality of maintenance sites M1 and M2 are left in the battery 50 as an inspection history, and past inspection data (discharge capacities) are centrally managed by the battery 50. Therefore, a large amount of inspection data can be obtained, and the accuracy of determining the life T of the assembled battery 60 is improved as compared with the case where the inspection data is stored in the inspection device 150. In particular, when the inspection cycle is long, it is difficult to collect inspection data and the judgment accuracy tends to decrease, which is preferable.
 本構成では、バッテリ50は検査器150と通信接続されており、バッテリ50は放電容量C[Ah]を通信で取得できる。そのため、検査した放電容量C[Ah]のデータをバッテリ50に対して手動で入力する必要がなく、作業者の負担を軽減することが出来る。 In this configuration, the battery 50 is communicated with the inspection device 150, and the battery 50 can acquire the discharge capacity C [Ah] by communication. Therefore, it is not necessary to manually input the data of the inspected discharge capacity C [Ah] to the battery 50, and the burden on the operator can be reduced.
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described above and the drawings, and for example, the following embodiments are also included in the technical scope of the present invention.
 (1)実施形態では、蓄電セルの一例として、二次電池セルを示した。蓄電セルは、キャパシタなどでもよい。蓄電セルは、複数セルに限らず、単セルでもよい。複数セルが直並列に接続されていてもよい。 (1) In the embodiment, a secondary battery cell is shown as an example of the storage cell. The storage cell may be a capacitor or the like. The storage cell is not limited to a plurality of cells, but may be a single cell. A plurality of cells may be connected in series and parallel.
 (2)実施形態では、バッテリ50を航空機や船舶に使用する場合を例示した。これ以外にも、車両用や鉄道用に使用することも出来る。バッテリ50の使用用途は、移動体用に限定されない。定期的に検査を行って寿命を判断する場合であれば、無停電電源装置や発電システムの蓄電装置など、定置用として使用することも出来る。 (2) In the embodiment, a case where the battery 50 is used for an aircraft or a ship is illustrated. Besides this, it can also be used for vehicles and railways. The usage of the battery 50 is not limited to that of a mobile body. If it is to be inspected regularly to determine its life, it can also be used for stationary purposes such as an uninterruptible power supply or a power storage device for a power generation system.
 (3)実施形態では、二次電池セル62の検査データとして、放電容量C[Ah]を計測した。検査データは、放電容量C[Ah]に限らない。組電池60の寿命と相関性を有するデータであれば、他のデータでもよい。例えば、内部抵抗でもよい。内部抵抗はバッテリ50の端子電圧Vと電流Ibから求めてもよい。 (3) In the embodiment, the discharge capacity C [Ah] was measured as the inspection data of the secondary battery cell 62. The inspection data is not limited to the discharge capacity C [Ah]. Other data may be used as long as the data has a correlation with the life of the assembled battery 60. For example, it may be an internal resistance. The internal resistance may be obtained from the terminal voltage V and the current Ib of the battery 50.
 (4)実施形態では、バッテリ50は、検査器150で検査した検査データ(放電容量)を通信により受信した。検査データの受け渡し方法は、通信に限らない。バッテリ50に、USBメモリなど電子メディアを接続可能な接続ポート(入力部の一例)などを設けて、電子メディアを介して検査データを入力するようにしてもよい。 (4) In the embodiment, the battery 50 receives the inspection data (discharge capacity) inspected by the inspection device 150 by communication. The method of passing inspection data is not limited to communication. The battery 50 may be provided with a connection port (an example of an input unit) to which an electronic medium such as a USB memory can be connected, and inspection data may be input via the electronic media.
 (5)実施形態では、現在の放電容量Cのデータと、記憶部113に検査履歴として記憶された過去の放電容量Cのデータと、から放電容量Cの時間推移を示す寿命曲線LTを求めた。求めた寿命曲線LTから組電池60の寿命を判断した。現在の放電容量Cのデータと、記憶部113に検査履歴として記憶された過去の放電容量Cのデータと、から組電池60の寿命を判断することが出来れば、寿命曲線LTとは別の方法で、組電池60の寿命を判断してもよい。例えば、放電容量Cの時間に対する低下率を求めて、放電容量Cの時間推移を予想することにより、寿命Tを判断してもよい。 (5) In the embodiment, the life curve LT showing the time transition of the discharge capacity C is obtained from the data of the current discharge capacity C and the data of the past discharge capacity C stored as the inspection history in the storage unit 113. .. The life of the assembled battery 60 was determined from the obtained life curve LT. If the life of the assembled battery 60 can be determined from the data of the current discharge capacity C and the data of the past discharge capacity C stored in the storage unit 113 as the inspection history, a method different from the life curve LT can be determined. Then, the life of the assembled battery 60 may be determined. For example, the life T may be determined by obtaining the rate of decrease of the discharge capacity C with respect to time and predicting the time transition of the discharge capacity C.
 50 バッテリ(本発明の「蓄電装置」に相当)
 60 組電池
 100 管理部
 111 制御部
 113 記憶部
 115 通信部(本発明の「入力部」に相当)
 150 検査器
 160 電流センサ
 170 放電回路
 180 充電回路
50 Battery (corresponding to the "power storage device" of the present invention)
60 sets of batteries 100 Management unit 111 Control unit 113 Storage unit 115 Communication unit (corresponding to the "input unit" of the present invention)
150 Inspector 160 Current sensor 170 Discharge circuit 180 Charging circuit

Claims (6)

  1.  蓄電装置であって、
     蓄電セルと、
     検査器を用いて計測された前記蓄電セルの寿命に関する検査データが入力される入力部と、
     入力された検査データを検査履歴として記憶する記憶部と、
     制御部と、を備え、
     前記制御部は、前記入力部に前記蓄電セルの検査データの入力があった場合、
     入力された現在の検査データと、前記記憶部に検査履歴として記憶されている過去の検査データとに基づいて、前記蓄電セルの寿命を判断する、蓄電装置。
    It ’s a power storage device.
    The storage cell and
    An input unit for inputting inspection data regarding the life of the storage cell measured using an inspection device, and an input unit.
    A storage unit that stores the input inspection data as an inspection history,
    With a control unit,
    When the input unit receives input of inspection data of the storage cell, the control unit may use the control unit.
    A power storage device that determines the life of the storage cell based on the input current inspection data and the past inspection data stored in the storage unit as inspection history.
  2.  請求項1に記載の蓄電装置であって、
     前記記憶部は、複数の整備場で計測された複数の検査データを、検査履歴として記憶し、
     前記制御部は、前記入力部に入力された現在の検査データと、前記記憶部に検査履歴として記憶されている複数の整備場で計測された複数の検査データと、に基づいて、前記蓄電セルの寿命を判断する、蓄電装置。
    The power storage device according to claim 1.
    The storage unit stores a plurality of inspection data measured at a plurality of maintenance sites as an inspection history, and stores the inspection data.
    The control unit is based on the current inspection data input to the input unit and a plurality of inspection data measured at a plurality of maintenance sites stored as inspection history in the storage unit. A power storage device that determines the life of the device.
  3.  請求項1又は2に記載の蓄電装置であって、
     前記制御部は、現在の検査データと過去の検査データとに基づいて、前記検査データの時間推移を示す寿命曲線を求め、求めた寿命曲線より前記蓄電セルの寿命を判断する、蓄電装置。
    The power storage device according to claim 1 or 2.
    The control unit is a power storage device that obtains a life curve showing the time transition of the inspection data based on the current inspection data and the past inspection data, and determines the life of the power storage cell from the obtained life curve.
  4.  請求項3に記載の蓄電装置であって、
     前記制御部は、前記蓄電セルの検査データが入力される毎に、現在の検査データと過去に行った検査データとに基づいて、前記蓄電セルの寿命曲線を更新する、蓄電装置。
    The power storage device according to claim 3.
    The control unit is a power storage device that updates the life curve of the power storage cell based on the current inspection data and the inspection data performed in the past each time the inspection data of the power storage cell is input.
  5.  請求項1~請求項4のいずれか一項に記載の蓄電装置であって、
     前記入力部は、前記検査器と通信可能な通信部であり、前記検査器から通信により前記検査データを受信する、蓄電装置。
    The power storage device according to any one of claims 1 to 4.
    The input unit is a communication unit capable of communicating with the inspection device, and is a power storage device that receives the inspection data from the inspection device by communication.
  6.  蓄電装置の寿命判断方法であって、
     前記蓄電装置は、蓄電セルと、検査器を用いて計測された前記蓄電セルの寿命に関する検査データが入力される入力部と、入力された検査データを検査履歴として記憶する記憶部と、を含み、
     前記入力部に前記蓄電セルの検査データの入力があった場合、入力された現在の検査データと、前記記憶部に検査履歴として記憶されている過去の検査データとに基づいて、前記蓄電セルの寿命を判断する、寿命判断方法。
    It is a method of determining the life of a power storage device.
    The power storage device includes a power storage cell, an input unit for inputting inspection data relating to the life of the power storage cell measured using an inspection device, and a storage unit for storing the input inspection data as an inspection history. ,
    When the inspection data of the storage cell is input to the input unit, the storage cell is based on the input current inspection data and the past inspection data stored as the inspection history in the storage unit. Lifespan judgment method to judge the lifespan.
PCT/JP2021/029327 2020-08-26 2021-08-06 Power storage device and life determination method WO2022044775A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-142526 2020-08-26
JP2020142526A JP2022038172A (en) 2020-08-26 2020-08-26 Power storage device and life determination method

Publications (1)

Publication Number Publication Date
WO2022044775A1 true WO2022044775A1 (en) 2022-03-03

Family

ID=80352360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029327 WO2022044775A1 (en) 2020-08-26 2021-08-06 Power storage device and life determination method

Country Status (2)

Country Link
JP (1) JP2022038172A (en)
WO (1) WO2022044775A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615678B1 (en) * 2023-04-27 2023-12-20 켄코아에비에이션 주식회사 Method, device and server for intergrating manned and unmanned air vehicle charging and diagnostic inspection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068085A (en) * 2010-09-22 2012-04-05 Toyota Motor Corp Control device and method for secondary battery
JP2013090360A (en) * 2011-10-13 2013-05-13 Nissan Motor Co Ltd Charge control device
WO2013069423A1 (en) * 2011-11-08 2013-05-16 新神戸電機株式会社 Battery-state monitoring system
JP2014020804A (en) * 2012-07-12 2014-02-03 Toyota Motor Corp Life expectancy determination device for stationary storage battery
JP2015021934A (en) * 2013-07-23 2015-02-02 日本電気株式会社 Deterioration factor determination system, deterioration prediction system, deterioration factor determination method, and deterioration factor determination program
JP2016090416A (en) * 2014-11-06 2016-05-23 日立化成株式会社 Storage battery condition monitoring system, storage battery condition monitoring method, and storage battery condition monitoring program
WO2018003210A1 (en) * 2016-06-28 2018-01-04 株式会社日立製作所 Secondary cell control system and secondary cell control method
JP2020064823A (en) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 Vehicle, and secondary battery deterioration evaluation device and deterioration evaluation method
JP2020065424A (en) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 Display device and vehicle comprising the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068085A (en) * 2010-09-22 2012-04-05 Toyota Motor Corp Control device and method for secondary battery
JP2013090360A (en) * 2011-10-13 2013-05-13 Nissan Motor Co Ltd Charge control device
WO2013069423A1 (en) * 2011-11-08 2013-05-16 新神戸電機株式会社 Battery-state monitoring system
JP2014020804A (en) * 2012-07-12 2014-02-03 Toyota Motor Corp Life expectancy determination device for stationary storage battery
JP2015021934A (en) * 2013-07-23 2015-02-02 日本電気株式会社 Deterioration factor determination system, deterioration prediction system, deterioration factor determination method, and deterioration factor determination program
JP2016090416A (en) * 2014-11-06 2016-05-23 日立化成株式会社 Storage battery condition monitoring system, storage battery condition monitoring method, and storage battery condition monitoring program
WO2018003210A1 (en) * 2016-06-28 2018-01-04 株式会社日立製作所 Secondary cell control system and secondary cell control method
JP2020064823A (en) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 Vehicle, and secondary battery deterioration evaluation device and deterioration evaluation method
JP2020065424A (en) * 2018-10-19 2020-04-23 トヨタ自動車株式会社 Display device and vehicle comprising the same

Also Published As

Publication number Publication date
JP2022038172A (en) 2022-03-10

Similar Documents

Publication Publication Date Title
KR101295467B1 (en) Storage battery system, storage battery monitoring device, and storage battery monitoring method
EP2811310B1 (en) State of charge detection device
US20100201321A1 (en) Battery internal short-circuit detecting device and method, battery pack, and electronic device system
JP7398190B2 (en) Method for reusing secondary batteries and computer program
US20150346285A1 (en) Device for Assessing Extent of Degradation of Secondary Battery
KR20150066464A (en) Cell state calculation apparatus and cell state calculation method
US20150134283A1 (en) Battery system and method of determining polarization of secondary battery
US20170131363A1 (en) Improved Battery Testing Device
EP3961233A1 (en) Battery cell diagnosis device and method
JP7035891B2 (en) Inspection equipment, inspection method
JPWO2018062394A1 (en) Storage device SOC estimation device, power storage device, and storage device SOC estimation method
WO2022044775A1 (en) Power storage device and life determination method
US20240044996A1 (en) Systems, methods, and devices for power rating estimation in energy storage systems
JP2023543747A (en) Battery diagnostic device and method
JP2003068369A (en) Detecting method of total capacity of secondary battery and detector of total capacity
US11885852B2 (en) Battery management device, energy storage apparatus, battery management method, and computer program
US20200185784A1 (en) Battery pack
US20200400749A1 (en) Current measuring device, energy storage apparatus, and current measurement method
KR20200101754A (en) Battery control appratus and battery control method
US20230402666A1 (en) Abnormality detection method, abnormality detection device, energy storage apparatus, and computer program
KR102196270B1 (en) Method and apparatus for detecting short of a battery cell
JP7217538B2 (en) METHOD AND SYSTEM FOR MEASURING CHARACTERISTICS OF LITHIUM-ION BATTERY
JP2023514285A (en) Battery system diagnosis device and method
JP3237229B2 (en) Secondary battery system
EP3901643A1 (en) Device and method for determining battery cell abnormality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861203

Country of ref document: EP

Kind code of ref document: A1