WO2022044708A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2022044708A1
WO2022044708A1 PCT/JP2021/028585 JP2021028585W WO2022044708A1 WO 2022044708 A1 WO2022044708 A1 WO 2022044708A1 JP 2021028585 W JP2021028585 W JP 2021028585W WO 2022044708 A1 WO2022044708 A1 WO 2022044708A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
wavelength
display device
recess
Prior art date
Application number
PCT/JP2021/028585
Other languages
French (fr)
Japanese (ja)
Inventor
昌哉 玉置
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2022044708A1 publication Critical patent/WO2022044708A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present disclosure relates to a display device including a pixel having a light emitting element such as a light emitting diode (LED) element.
  • a light emitting element such as a light emitting diode (LED) element.
  • Patent Document 1 Conventionally, for example, the display device described in Patent Document 1 is known.
  • the display device of the present disclosure has a display surface, and a substrate provided with a recess on the display surface and a substrate.
  • a first light emitting unit located in the recess and emitting light of the first wavelength A second light emitting unit located in the recess and emitting light having a second wavelength shorter than the first wavelength.
  • a third light emitting unit located in the recess and emitting light having a third wavelength shorter than the second wavelength is provided.
  • the first light emitting unit includes a first light emitting element that emits light of the third wavelength, and a wavelength conversion member that converts the light of the third wavelength emitted from the first light emitting element into light of the first wavelength. , Have.
  • FIG. 1 It is a top view schematically showing the display device which concerns on one Embodiment of this disclosure. It is sectional drawing which cut at the cut plane line A1-A2 of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is a top view which shows typically the display device which concerns on other embodiment of this disclosure. It is sectional drawing which cut at the cut plane line A3-A4 of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is sectional drawing which shows typically the modification of the display device of FIG.
  • Patent Document 1 discloses a display device in which each pixel has a red LED element, a green LED element, and a blue LED element.
  • the emission brightness of the LED element depends not only on the drive voltage applied to the LED element but also on the temperature of the LED element.
  • the red LED element that emits the longest wavelength light has a lower emission intensity as the temperature rises than the green LED element and the blue LED element. easy. Therefore, when the conventional display device is used for a long time, the red component in the displayed image is reduced, and as a result, the color reproducibility may be lowered or the display image may be uneven.
  • the decrease in color reproducibility and display unevenness of the display image caused by the temperature rise of the LED element can be reduced by correcting the drive current applied to the LED element.
  • the power consumption of the display device may increase or the manufacturing cost of the display device may increase.
  • the display device according to the embodiment of the present disclosure will be described with reference to the attached drawings.
  • Each figure referred to below shows the main constituent members and the like of the display device which concerns on embodiment.
  • the display device according to the embodiment may have a well-known configuration such as a circuit board, a wiring conductor, a control IC, and an LSI (not shown).
  • FIG. 1 is a plan view schematically showing a display device according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view taken along the cutting plane lines A1-A2 of FIG. 1, FIGS. 3 to 5.
  • the cross-sectional views shown in FIGS. 3 to 5 correspond to the cross-sectional views shown in FIG.
  • the display device 1 of the present disclosure has a first surface 30a as a display surface, and is located in a substrate 30 having a recess 301 provided in the first surface 30a and a recess 301.
  • a first light emitting unit 41 that emits light of the first wavelength
  • a second light emitting unit 42 that is located in the recess 301 and emits light of a second wavelength shorter than the first wavelength
  • a second light emitting unit 42 that is located in the recess 301.
  • a third light emitting unit 43 that emits light having a third wavelength shorter than the wavelength is provided, and the first light emitting unit 41 is from a first light emitting element 41a that emits light of the third wavelength and a first light emitting element 41a. It is configured to include a wavelength conversion member 41b that converts the emitted light of the third wavelength into the light of the first wavelength.
  • the above configuration has the following effects. Since it does not have a light emitting element that emits light of the first wavelength whose emission intensity tends to decrease due to a temperature rise, for example, a red light emitting element, the color reproducibility deteriorates and display unevenness caused by the temperature rise of the light emitting element. Can be suppressed. Further, since a correction circuit or the like for correcting the decrease in the emission intensity of the light emitting element due to the temperature rise by increasing the drive current is not required, the configuration can be simplified and the increase in the current consumption can be suppressed. .. Therefore, according to the display device of the present disclosure, it is possible to suppress an increase in power consumption and an increase in manufacturing cost.
  • the display device 1 includes a substrate (also referred to as a cavity structure) 30, a first light emitting unit 41, a second light emitting unit 42, and a third light emitting unit 43.
  • the cavity structure 30 has a plate-like or block-like shape.
  • the cavity structure 30 has a first surface 30a and a second surface 30b opposite to the first surface 30a.
  • the first surface 30a is a display surface on which the display device 1 emits image light.
  • the cavity structure 30 may be in the shape of a plate-like body such as a substrate, a block-like body, a flexible sheet-like body, a three-dimensional structure having a curved surface, or the like.
  • a recess (also referred to as a cavity) 301 is provided on the first surface 30a.
  • the recess 301 opens on the first surface 30a and is recessed in the thickness direction of the cavity structure 30.
  • the recess 301 has an opening 301a and a bottom surface 301b on the first surface 30a, and an inner peripheral surface 301c connecting the opening 301a and the bottom surface 301b.
  • the concave portion 301 may have a cross-sectional shape parallel to the first surface 30a, for example, a square shape, a rectangular shape, a circular shape, an elliptical shape, or the like, or may have another shape.
  • the recess 301 may have a shape in which the cross-sectional shape of the cross section parallel to the first surface 30a gradually shrinks in the direction from the first surface 30a to the second surface 30b.
  • the recess 301 may have a shape in which the peripheral edge of the opening 301a surrounds the peripheral edge of the bottom surface 301b in a plan view.
  • the cavity structure 30 may be configured to include the first substrate 2 and the second substrate 3, for example, as shown in FIG.
  • the first substrate 2 has one main surface (also referred to as a third surface) 2a and the other main surface (also referred to as a fourth surface) 2b.
  • the fourth surface 2b of the first substrate 2 may be the second surface 30b of the cavity structure 30.
  • the shape of the first substrate 2 when viewed in a plan view is, for example, a triangle, a square, a rectangle, a trapezoid, a hexagon, a circle, an ellipse, or the like. It may have a shape or any other shape.
  • the first substrate 2 is made of, for example, a glass material, a ceramic material, a resin material, a metal material, a semiconductor material, or the like.
  • the glass material used for the first substrate 2 include borosilicate glass, crystallized glass, quartz, soda glass and the like.
  • the ceramic material used for the first substrate 2 include alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), zirconia (ZrO 2 ), silicon carbide (SiC) and the like.
  • the resin material used for the first substrate 2 include epoxy resin, polyimide resin, and polyamide resin.
  • the metal material used for the first substrate 2 examples include aluminum (Al), titanium (Ti), beryllium (Be), magnesium (Mg) (particularly, high-purity magnesium having a purity of 99.95% or more), and zinc ( Zn), tin (Sn), copper (Cu), iron (Fe), chromium (Cr), nickel (Ni), silver (Ag) and the like can be mentioned.
  • the metal material used for the first substrate 2 may be an alloy material.
  • the alloy material used for the first substrate 2 include iron alloys containing iron as a main component (Fe—Ni alloy, Fe—Ni—Co (cobalt) alloy, Fe—Cr alloy, Fe—Cr—Ni alloy).
  • Duralmin Al-Cu alloy, Al-Cu-Mg alloy, Al-Zn-Mg-Cu alloy
  • Al-Cu alloy Al-Cu-Mg alloy
  • Al-Zn-Mg-Cu alloy which is an aluminum alloy containing aluminum as the main component
  • magnesium alloy Mg-Al alloy, Mg
  • -Zn alloy, Mg-Al-Zn alloy titanium boronized, Cu-Zn alloy and the like.
  • the semiconductor material used for the first substrate 2 include silicon (Si), germanium (Ge), gallium arsenide (GaAs) and the like.
  • the first substrate 2 may have a single-layer structure composed of the above-mentioned glass material, ceramic material, resin material, metal material, semiconductor material, etc., or may have a multi-layer laminated structure.
  • the plurality of layers may be made of the same material or may be made of different materials.
  • the second substrate 3 is arranged on the third surface 2a of the first substrate 2, for example, as shown in FIG.
  • the second substrate 3 has a plate-like or block-like shape.
  • the second substrate 3 has a facing surface (also referred to as a fifth surface) 3a facing the third surface 2a of the first substrate 2 and an outer surface (also referred to as a sixth surface) 3b opposite to the fifth surface 3a.
  • the sixth surface 3b of the second substrate 3 may be the first surface 30a of the cavity structure 30.
  • the shape of the second substrate 3 when viewed in a plan view may be, for example, a triangle, a square, a rectangle, a trapezoid, a hexagon, a circle, an ellipse, or the like, or any other shape.
  • the first substrate 2 and the second substrate 3 may have the same plan-view shapes.
  • the second substrate 3 is formed with a through hole 31 penetrating from the fifth surface 3a to the sixth surface 3b.
  • the through hole 31 exposes a portion (also referred to as a mounting portion) 2aa on the third surface 2a of the first substrate 2.
  • the opening 31a on the sixth surface 3b of the through hole 31 may be the opening 301a of the recess 301, and the inner peripheral surface 31b of the through hole 31 may be the inner peripheral surface 301c of the recess 301.
  • the mounting portion 2aa may be the bottom surface 301b of the recess 301.
  • the second substrate 3 is made of a glass material, a ceramic material, a resin material, a metal material, a semiconductor material, or the like.
  • Examples of the glass material used for the second substrate 3 include borosilicate glass, crystallized glass, quartz, soda glass and the like.
  • Examples of the ceramic material used for the second substrate 3 include alumina, aluminum nitride, silicon nitride, zirconia, silicon carbide and the like.
  • Examples of the resin material used for the second substrate 3 include epoxy resin, polyimide resin, and polyamide resin.
  • Examples of the metal material used for the second substrate 3 include aluminum, titanium, beryllium, magnesium (particularly, high-purity magnesium having a purity of 99.95% or more), zinc, tin, copper, iron, chromium, nickel, silver and the like. Can be mentioned.
  • the metal material used for the second substrate 3 may be an alloy material.
  • Examples of the alloy material used for the second substrate 3 include iron alloys containing iron as a main component (Fe—Ni alloy, Fe—Ni—Co alloy, Fe—Cr alloy, Fe—Cr—Ni alloy) and aluminum. Duralmin (Al-Cu alloy, Al-Cu-Mg alloy, Al-Zn-Mg-Cu alloy), which is an aluminum alloy as the main component, and magnesium alloy (Mg-Al alloy, Mg-Zn alloy) whose main component is magnesium. , Mg—Al—Zn alloy), titanium boronized, Cu—Zn alloy and the like.
  • Examples of the semiconductor material used for the second substrate 3 include silicon, germanium, gallium arsenide and the like.
  • the second substrate 3 may have a single-layer structure made of the above-mentioned metal material, or may have a laminated structure of a plurality of layers.
  • the plurality of layers may be made of the same material or may be made of different materials.
  • the through hole 31 may be formed by using, for example, a punching method, an electric casting method (plating method), a cutting method, a laser processing method, or the like.
  • the through hole 31 can be formed by using, for example, a punching method or an electroplating method.
  • the through hole 31 can be formed by a photolithography method or the like including a dry etching step.
  • the second substrate 3 is made of a metal material or a semiconductor material
  • an insulator or an insulating layer made of an electrically insulating material is provided between the third surface 2a of the first substrate 2 and the fifth surface 3a of the second substrate 3. It may be arranged. As a result, it is possible to prevent the electrodes, wiring conductors, and the like provided on the third surface 2a from being short-circuited with each other via the second substrate 3.
  • Examples of the electrically insulating material used for the insulator or the insulating layer include silicon oxide and silicon nitride.
  • the first substrate 2 and the second substrate 3 may both be transparent substrates made of a transparent material such as a transparent resin material and a glass material. In this case, a transparent display device and a double-sided display type transparent display device can be manufactured. Further, the first substrate 2 and the second substrate 3 may both be flexible transparent substrates made of a transparent material such as a transparent resin material having flexibility. In this case, a flexible transparent display device and a double-sided display type transparent display device that can be installed on a non-flat surface such as a curved surface can be manufactured.
  • the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43 are arranged in the recess 301.
  • the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43 arranged inside one recess 301 may constitute one pixel of the display device 1.
  • the display device 1 may include a plurality of pixels, for example, as shown in FIG.
  • the light emitting unit 4 when it is not necessary to distinguish between the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43, they are collectively referred to as the light emitting unit 4.
  • the first light emitting unit 41 emits light having the first wavelength ⁇ 1.
  • the first wavelength ⁇ 1 may be a wavelength corresponding to red.
  • the first wavelength ⁇ 1 may be, for example, a wavelength in the range of 620 to 750 nm.
  • the “light of the first wavelength ⁇ 1” may mean monochromatic spectral light (monochromatic light) of the first wavelength ⁇ 1 and continuously spectral light having an intensity peak at the first wavelength ⁇ 1. It may mean. The same applies to "light having a second wavelength ⁇ 2" and "light having a third wavelength ⁇ 3" described later.
  • the first light emitting unit 41 includes a first light emitting element 41a and a wavelength conversion member 41b.
  • the first light emitting element 41a emits light having a third wavelength ⁇ 3 shorter than the first wavelength ⁇ 1.
  • the first light emitting element 41a may be arranged on the bottom surface 301b of the recess 301.
  • the wavelength conversion member 41b converts the light of the third wavelength ⁇ 3 emitted from the first light emitting element 41a into the light of the first wavelength ⁇ 1.
  • the wavelength conversion member 41b covers at least the light emitting surface of the first light emitting element 41a.
  • the light emitting surface may be the upper surface, or the upper surface and the side surface of the first light emitting element 41a.
  • the wavelength conversion member 41b may be in contact with the first light emitting element 41a or may be separated from the first light emitting element 41a.
  • the first light emitting element 41a has a three-dimensional shape having an upper surface and side surfaces such as a cube, a rectangular parallelepiped, a columnar body, and a polygonal columnar body, and the wavelength conversion member 41b covers the upper surface and the side surface of the first light emitting element 41a. It may be configured to be present. In this case, in the first light emitting element 41a made of an LED element or the like, the upper surface and the side surface are often light emitting surfaces, and further, the lateral synchrotron radiation emitted from the side surface may include the maximum intensity light. be.
  • the wavelength conversion member 41b is configured to cover the upper surface and the side surface of the first light emitting element 41a, and the thickness from the side surface of the portion covering the side surface of the first light emitting element 41a (in the direction orthogonal to the side surface).
  • the thickness may be thicker than the thickness from the upper surface of the portion covering the upper surface of the first light emitting element 41a (thickness in the direction orthogonal to the upper surface).
  • the thickness from the side surface of the portion covering the side surface of the first light emitting element 41a may be about 2 ⁇ m to 80 ⁇ m, and the thickness from the upper surface of the portion covering the upper surface of the first light emitting element 41a is about 2 ⁇ m to 80 ⁇ m. It may be, but it is not limited to these values.
  • the second light emitting unit 42 When the drive current is supplied from the drive circuit, the second light emitting unit 42 emits light having a second wavelength ⁇ 2 shorter than the first wavelength ⁇ 1.
  • the second wavelength ⁇ 2 may be a wavelength corresponding to green light.
  • the second wavelength ⁇ 2 may be, for example, a wavelength in the range of 500 to 570 nm.
  • the second light emitting unit 42 may be configured to include a second light emitting element 42a that emits light having a second wavelength ⁇ 2.
  • the second light emitting element 42a may be arranged on the bottom surface 301b of the recess 301.
  • the third light emitting unit 43 emits light having a third wavelength ⁇ 3 shorter than the second wavelength ⁇ 2.
  • the third wavelength ⁇ 3 may be a wavelength corresponding to blue light.
  • the third wavelength ⁇ 3 may be, for example, a wavelength in the range of 450 to 500 nm.
  • the third light emitting unit 43 may be configured to include a third light emitting element 43a that emits light having a third wavelength ⁇ 3.
  • the third light emitting element 43a may be arranged on the bottom surface 301b of the recess 301.
  • the third light emitting element 43a may be a light emitting element having the same light emitting characteristics as the first light emitting element 41a, or may be the same light emitting element as the first light emitting element 41a. Having the same emission characteristics may mean that the emission wavelengths are the same and the emission intensities for the same drive current are the same.
  • the first light emitting element 41a, the second light emitting element 42a, and the third light emitting element 43a may be self-luminous type light emitting elements.
  • a light emitting element 4a Even if the light emitting element 4a is a self-luminous light emitting element such as a light emitting diode (Light Emitting Diode: LED) element, an organic light emitting diode (Organic Light Emitting Diode: OLED) element, or a semiconductor laser (Laser Diode: LD) element. good.
  • a light emitting diode element is used as the light emitting element 4a.
  • the light emitting diode element is a two-terminal element having an anode terminal and a cathode terminal.
  • the light emitting element 4a may be a micro light emitting diode element.
  • the micro light emitting diode element has a rectangular plan view shape having a side length of about 1 ⁇ m or more and about 100 ⁇ m or less or about 5 ⁇ m or more and about 20 ⁇ m or less when mounted on the bottom surface 301b of the recess 301. May be good.
  • the wavelength conversion member 41b may contain a phosphor or quantum dots. Even if the wavelength conversion member 41b is composed of a main body portion made of a translucent insulating resin material or a translucent glass material, and a fluorescent substance or quantum dots dispersed in the main body portion. good. The fluorophore or quantum dots may be uniformly dispersed throughout the body.
  • Examples of the fluorescent material used for the fluorescent material of the wavelength conversion member 41b include organic fluorescent material such as cyanine-based dye, pyridine-based dye, and rhodamine-based dye, and (Sr, Ca) AlSiN 3 : Eu, Y. Examples thereof include inorganic fluorescent material such as 2 O 2 S: Eu and Y 2 O 3 : Eu. In addition, " ⁇ : Eu” means that Eu is contained as a trace component. Quantum dots are particles having a diameter of about 1 nm or more and about 100 nm or less. Examples of the quantum dot material used for the quantum dots of the wavelength conversion member 41b include CdSe, CdS, InP and the like. When the wavelength conversion member 41b contains quantum dots, the color purity of the light of the first wavelength ⁇ 1 emitted from the wavelength conversion member 41b can be improved.
  • Examples of the insulating resin material used for the wavelength conversion member 41b include fluororesin, silicone resin, acrylic resin, epoxy resin and the like.
  • Examples of the glass material used for the wavelength conversion member 41b include borosilicate glass, crystallized glass, quartz, soda glass and the like.
  • the display device 1 of the present embodiment is a first light emitting unit 41 that emits light having the longest wavelength (light of the first wavelength ⁇ 1) among the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43.
  • it is configured to include a first light emitting element 41a that emits light having a third wavelength ⁇ 3 shorter than the first wavelength ⁇ 1. Therefore, in the display device 1, the emission intensity due to the temperature rise of the first light emitting unit 41 is higher than that in the case where the first light emitting unit 41 includes a light emitting element that emits light having the first wavelength ⁇ 1. The decrease can be reduced.
  • the display device 1 can suppress deterioration of color reproducibility and display unevenness of the displayed image due to the temperature rise of the light emitting unit 4 even when the display device 1 is used for a long time.
  • the display device 1 of the present embodiment it is possible to omit the circuit or function for compensating for the decrease in the emission intensity due to the temperature increase of the light emitting unit 4. As a result, it is possible to reduce the power consumption and cost of the display device.
  • the display device 1 has two types of light emitting elements (first light emitting element). It can be configured by using one light emitting element 41a and a second light emitting element 42a) and one kind of wavelength conversion member (wavelength conversion member 41b). Therefore, the number of processes for manufacturing the display device can be reduced, and the manufacturing process for the display device can be simplified. As a result, the manufacturing cost of the display device can be reduced, and the cost of the display device can be reduced.
  • the first light emitting unit 41 may be configured to include a first light emitting element 41a, a wavelength conversion member 41b, and a color filter 41c.
  • the color filter 41c may transmit light having the first wavelength ⁇ 1 and suppress the transmission of light other than the light having the first wavelength ⁇ 1. That is, the color filter 41c may absorb and suppress light other than the light having the first wavelength ⁇ 1 so as not to be perceived by human visual sensation.
  • the color filter 41c covers the first light emitting element 41a and the wavelength conversion member 41b.
  • the color filter 41c may be in contact with the wavelength conversion member 41b covering the first light emitting element 41a, or may be separated from the first light emitting element 41a and the wavelength conversion member 41b.
  • the color filter 41c is made of a resin material to which a pigment or a dye is added.
  • the pigment used in the color filter 41c may be an organic pigment or an inorganic pigment.
  • Examples of the pigment used in the color filter 41c include an acrylic resin and a polycarbonate resin.
  • the color filter 41c can transmit the light whose wavelength is converted to the first wavelength ⁇ 1 by the wavelength conversion member 41b among the emitted light of the first light emitting element 41a. Further, the color filter 41c can absorb the light emitted from the first light emitting element 41a whose wavelength has not been converted to the first wavelength ⁇ 1 by the wavelength conversion member 41b. As described above, when the first light emitting unit 41 includes the color filter 41c, the color reproducibility of the first light emitting unit 41 can be improved, and by extension, the color reproducibility of the display device 1 can be improved.
  • the wavelength conversion member 41b and the color filter 41c are manufactured, for example, as follows.
  • an insulating resin material or a glass material containing a phosphor or a quantum dot is subjected to a first light emitting unit by using a film forming technique such as a photolithography method or a screen printing method.
  • a film is formed so as to cover 41.
  • the wavelength conversion member 41b can be manufactured by curing the formed insulating resin material or glass material by heating or irradiation with ultraviolet rays.
  • the color filter 41c In order to produce the color filter 41c, first, a resin material to which a pigment or a dye is added is covered with a first light emitting unit 41 and a wavelength conversion member 41b by using a film forming technique such as a photolithography method or a screen printing method. To form a film. After that, the color filter 41c can be manufactured by curing the formed resin material by heating or irradiation with ultraviolet rays.
  • the wavelength conversion member 41b and the color filter 41c may be manufactured after the cavity structure 30 is manufactured, that is, after the first substrate 2 and the second substrate 3 are joined.
  • the wavelength conversion member 41b and the color filter 41c may be manufactured before the cavity structure 30 is manufactured, that is, before the first substrate 2 and the second substrate 3 are joined.
  • the first light emitting unit 41 includes the first light emitting element 41a and the wavelength conversion member 41b, the second light emitting unit 42 having the second light emitting element 42a and not having the wavelength conversion member, and the first light emitting element.
  • the efficiency of extracting light to the outside tends to decrease even if the same drive current is input. That is, the brightness of the first light emitting unit 41 is likely to decrease even if the same drive current is input, as compared with the second light emitting unit 42 and the third light emitting unit 43.
  • the drive current (referred to as the first drive current) input to the first light emitting element 41a provided in the first light emitting unit 41 is transferred to the second light emitting element 42a provided in the second light emitting unit 42. It may be larger than each of the input drive current (referred to as the second drive current) and the drive current input to the first light emitting element 41a provided in the third light emitting unit 43 (referred to as the third drive current).
  • the current value of the first drive current may be set to more than 1 times and not more than 3 times each of the current value of the second drive current and the current value of the third drive current, but is not limited to this range.
  • the cavity structure 30 has a first electrode (also referred to as an anode electrode) 7 and a second electrode (also referred to as a cathode electrode) 8.
  • the anode electrode 7 and the cathode electrode 8 are arranged on the bottom surface 301b of the recess 301.
  • the anode electrode 7 and the cathode electrode 8 are omitted.
  • three anode electrodes 7a, 7b, 7c and a cathode electrode 8 are provided on the bottom surface 301b of the recess 301.
  • the anode terminal of the first light emitting element 41a, the anode terminal of the second light emitting element, and the anode terminal of the third light emitting element 43a are electrically connected to the three anode electrodes 7a, 7b, and 7c, respectively.
  • the cathode terminal of the first light emitting element 41a, the cathode terminal of the second light emitting element, and the cathode terminal of the third light emitting element 43a are electrically connected to the cathode electrode 8.
  • the first light emitting element 41a may be flip-chip connected to the anode electrode 7a and the cathode electrode 8 as shown in FIG. 1, for example.
  • the second light emitting element 42a may be flip-chip connected to the anode electrode 7b and the cathode electrode 8.
  • the third light emitting element 43a may be flip-chip connected to the anode electrode 7c and the cathode electrode 8.
  • the light emitting element 4a and the anode electrode 7 and the cathode electrode 8 are connected by flip-chip connection using a conductive connecting member such as a solder ball, a metal bump, a conductive adhesive, and an anisotropic conductive film (ACF). , Electrically and mechanically connected.
  • a conductive connecting member such as a solder ball, a metal bump, a conductive adhesive, and an anisotropic conductive film (ACF).
  • connection between the light emitting element 4a and the anode electrode 7 and the cathode electrode 8 is not limited to the flip chip connection.
  • the light emitting element 4a, the anode electrode 7, and the cathode electrode 8 may be electrically connected by using a conductive connecting member such as a bonding wire.
  • the light emitting element 4a does not have to be a connection form in which a flip chip connection (horizontal connection) is made to the anode electrode 7 and the cathode electrode 8, and may be a connection form in which a vertical connection is made.
  • the light emitting element 4a having the cathode terminal located on the upper surface and the anode terminal located on the lower surface is mounted on the bottom surface 301b of the recess 301 in that state (vertically placed state), and the anode terminal is connected to the anode electrode 7.
  • the cathode terminal is connected to the cathode electrode 8.
  • the cathode electrode 8 may be a transparent electrode such as ITO (Indium Tin Oxide).
  • the first substrate 2 is made of a metal material or a semiconductor material
  • an insulating layer made of silicon oxide, silicon nitride or the like is arranged on at least the third surface 2a of the first substrate 2, and the anode electrode 7 and the cathode are placed on the insulating layer.
  • the electrode 8 may be arranged.
  • the anode electrode 7 and the cathode electrode 8 are connected to the drive circuit.
  • the drive circuit can control light emission, non-light emission, light emission intensity, and the like of the light emitting element 4a.
  • the drive circuit may be arranged, for example, on the third surface 2a of the first substrate 2 or may be arranged on the fourth surface 2b of the first substrate 2.
  • the drive circuit may be arranged between layers of a plurality of insulating layers made of silicon oxide, silicon nitride, or the like, which are arranged on the third surface 2a or the fourth surface 2b.
  • the drive circuit includes a thin film transistor (TFT), a wiring conductor, and the like.
  • the TFT may have, for example, a semiconductor film (also referred to as a channel) made of amorphous silicon (a-Si), low-Temperature Poly Silicon (LTPS), or the like.
  • the TFT may have three terminals, a gate electrode, a source electrode, and a drain electrode.
  • the TFT functions as a switching element that switches between conduction and non-conduction between the source electrode and the drain electrode according to the voltage applied to the gate electrode.
  • the drive circuit may be formed by using a thin film forming method such as a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • the drive circuit may be a semiconductor integrated circuit element such as an IC (Integrated Circuit) or an LSI (large Scale Integrated Circuit).
  • the display device 1 may be configured such that the light emitted from the light emitting element 4a is reflected at least once on the inner peripheral surface 301c of the recess 301. As a result, the light emitted from the inside of the recess 301 to the outside of the recess 301 can be brought close to the parallel light, so that the directivity of the image light emitted from the display device 1 can be improved.
  • the thickness of the second substrate 3 may be thicker than the thickness of the first substrate 2. That is, the depth of the through hole 31 may be increased.
  • the display device 1 has, for example, the thickness of the second substrate 3, the shape of the recess 301 or the through hole 31, and the dimensions of the recess 301 or the through hole 31 and the light emitting element 4a based on, for example, the intensity distribution of the emitted light of the light emitting element 4a.
  • the emitted light of the light emitting element 4a may be configured to be reflected at least once on the inner peripheral surface 301c of the recess 301.
  • the recess 301 may have a depth that reflects light of the first wavelength, light of the second wavelength, and light of the third wavelength a plurality of times on the inner peripheral surface. It is possible to further improve the effect (convergence effect) of bringing the light emitted from the inside of the recess 301 to the outside of the recess 301 closer to the parallel light.
  • the depth of the recess 301 may be about 3 to 10 times the height of the light emitting element 4a, or may be about 5 to 10 times, but is not limited to these ranges.
  • the inner peripheral surface 301c of the recess 301 may be a mirror surface.
  • the reflectance of the emitted light of the light emitting element 4a on the inner peripheral surface 301c of the recess 301 can be increased, and the loss when the emitted light of the light emitting element 4a is reflected on the inner peripheral surface 301c can be reduced.
  • the inner peripheral surface 301c of the recess 301 may be mirror-finished, for example, by electric field polishing or chemical polishing.
  • the surface roughness Ra of the inner peripheral surface 301c of the recess 301 may be, for example, about 0.01 ⁇ m or more and about 0.1 ⁇ m or less.
  • the reflectance of the inner peripheral surface 301c of the recess 301 with respect to visible light may be, for example, about 85% or more and about 95% or less.
  • the display device 1 may include a light reflecting film 9 provided on the inner peripheral surface 301c of the recess 301.
  • the surface roughness Ra of the inner peripheral surface 301c, etc. the reflectance of light in the recess 301 is increased, and the emitted light of the light emitting portion 4 is reflected in the recess 301. The loss can be reduced.
  • the display device 1 can improve the efficiency of taking out the light emitted from the light emitting unit 4 to the outside of the device, and can display a high-luminance image.
  • the light reflecting film 9 may be made of, for example, a metal material.
  • the metal material used for the light reflecting film 9 include aluminum, silver, and gold.
  • the light reflective film 9 may be formed on the inner peripheral surface 301c of the recess 301 by using a thin film forming method such as a CVD method, a vapor deposition method, or a plating method, and is a resin paste containing particles containing aluminum, silver, gold, and the like. It may be formed by using a film forming method such as a thick film forming method in which a film is fired and solidified.
  • the light reflecting film 9 may be formed by a joining method in which a film containing aluminum, silver, gold, or the like or a film of the above alloy is joined to the inner peripheral surface 301c of the recess 301.
  • the outer surface of the light-reflecting film 9 may be provided with a protective film for suppressing a decrease in reflectance due to oxidation of the light-reflecting film 9.
  • the first surface 30a of the cavity structure 30 may be roughened by blasting or the like. By roughening the first surface 30a, the surface area of the first surface 30a can be increased. As a result, the heat generated from the light emitting unit 4 is easily dissipated to the outside through the first surface 30a of the cavity structure 30. As a result, the display device 1 can suppress the deterioration of the color reproducibility and the display unevenness of the displayed image due to the temperature rise of the light emitting unit 4.
  • the external light incident on the first surface 30a can be diffusely reflected on the first surface 30a.
  • the display device 1 may include a light absorption film 10 arranged on the first surface 30a of the cavity structure 30.
  • the light absorption film 10 can absorb external light incident on the first surface 30a. Since the display device 1 can reduce the reflection of the external light on the first surface 30a, it is possible to suppress the reflected light of the external light from interfering with the image light emitted from the display device 1. As a result, deterioration of the display quality of the display device 1 can be suppressed.
  • the light absorption film 10 may be formed, for example, by applying a photocurable or thermosetting resin material containing a light absorption material to the first surface 30a of the cavity structure 30 and curing it.
  • the light absorbing material may be, for example, an inorganic pigment.
  • the inorganic pigments include, for example, carbon-based pigments such as carbon black, nitride-based pigments such as titanium black, Cr-Fe-Co-based, Cu-Co-Mn (manganese) -based, Fe-Co-Mn-based, and Fe-Co.
  • -A metal oxide pigment such as Ni—Cr may be used.
  • the light absorbing film 10 may have a concave-convex structure on its surface that absorbs incident light.
  • the light absorbing film 10 is a black film formed by mixing a black pigment such as carbon black into a base material such as a silicone resin, and has a structure in which an uneven structure is formed on the surface of the black film. May be good. In this case, the light absorption is significantly improved.
  • the arithmetic average roughness of the uneven structure may be about 10 ⁇ m to 50 ⁇ m, or may be about 20 ⁇ m to 30 ⁇ m.
  • the uneven structure may be formed by, for example, a transfer method.
  • the display device 1 may include a transparent body 11 as shown in FIG. 5, for example.
  • the transparent body 11 is arranged in the recess 301 and seals the light emitting portion 4.
  • the transparent body 11 may be in contact with the surface of the light emitting portion 4 and the inner peripheral surface 301c of the recess 301.
  • the transparent body 11 is made of a transparent resin material or the like.
  • the transparent resin material used for the transparent body 11 include fluororesin, silicone resin, acrylic resin, polycarbonate resin, polymethylmethacrylate resin and the like.
  • the heat dissipation path (or heat transfer path) from the light emitting unit 4 to the cavity structure 30 is compared with the case where the recess 301 is filled with a gas such as air. ) Thermal resistance can be reduced. Therefore, the display device 1 can effectively dissipate the heat generated from the light emitting unit 4 to the outside through the cavity structure 30. As a result, the display device 1 can suppress the deterioration of the color reproducibility and the display unevenness of the displayed image due to the temperature rise of the light emitting unit 4.
  • the display device 1 suppresses the position shift of the light emitting element 4a and the peeling of the light emitting element 4a from the mounting portion 2aa even when used for a long period of time. can. Therefore, according to the display device 1, the display device with improved long-term reliability can be obtained.
  • the transparent body 11 may be configured to have a main body portion made of a transparent resin material and a plurality of insulating particles dispersed inside the main body portion.
  • the transparent resin material used for the main body include fluororesin, silicone resin, acrylic resin, polycarbonate resin, polymethylmethacrylate resin and the like.
  • the insulating particles are made of, for example, a glass material, a ceramic material, or the like. Examples of the glass material used for the insulating particles include borosilicate glass, crystallized glass, quartz, soda glass and the like. Examples of the ceramic material used for the insulating particles include alumina, aluminum nitride, silicon nitride and the like.
  • the insulating particles may be made of a glass material having a higher refractive index than that of the main body, or may be made of a ceramic material having a high light reflectance for visible light.
  • the insulating particles can scatter the external light incident on the transparent body 11 and reflect a part of the external light incident on the transparent body 11 toward the outside of the device. Therefore, the display device 1 can suppress the external light incident on the transparent body 11 from being reflected in the recess 301 and interfering with the emitted light of the light emitting unit 4. As a result, it is possible to suppress the external light from interfering with the image light emitted from the display device 1, and it is possible to suppress the deterioration of the display quality of the display device 1.
  • the insulating particles When the insulating particles are made of a transparent glass material or a transparent resin material, the insulating particles may be given a function as a color filter by coloring the insulating particles.
  • the first light emitting unit 41 and the third light emitting unit 43 may be positioned symmetrically with respect to the second light emitting unit 42 in a plan view. This makes it possible to further reduce the display unevenness of the displayed image.
  • the symmetric position may be a line symmetric position or a rotationally symmetric position.
  • the second light emitting unit 42 may be located at the center of the bottom surface 301b. This makes it possible to further reduce the display unevenness of the displayed image.
  • the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43 are viewed in a plan view.
  • the first light emitting unit 41 and the third light emitting unit 43 may be located on the long axis of the bottom surface 301b and are positioned symmetrically with respect to the second light emitting unit 42 in a plan view. This makes it possible to further reduce the display unevenness of the displayed image.
  • the second light emitting unit 42 may be located at the center of the bottom surface 301b. This makes it possible to further reduce the display unevenness of the displayed image.
  • the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43 may be configured to be located at each apex of an equilateral triangle in a plan view. This makes it possible to further reduce the display unevenness of the displayed image.
  • the center of the equilateral triangle may be located at the center of the bottom surface 301b. This makes it possible to further reduce the display unevenness of the displayed image.
  • FIG. 6 is a plan view schematically showing a display device according to another embodiment of the present disclosure
  • FIG. 7 is a cross-sectional view taken along the cutting plane line A3-A4 of FIG. 6,
  • FIGS. 8A to 8E. , 9 are cross-sectional views schematically showing a modified example of the display device of FIG.
  • the light absorption film is omitted.
  • the anode electrode and the cathode electrode are omitted.
  • the cross-sectional views shown in FIGS. 8A to 8E and 9 correspond to the cross-sectional views shown in FIG. 7.
  • the same reference numerals will be given to the configurations common to or similar to the configurations of the above embodiments, and detailed description thereof will be omitted.
  • FIGS. It may be composed of the second recess 304 and the second recess 304. That is, a wall portion (also referred to as a first wall portion) 302 located in the recess 301 is provided.
  • the wall portion 302 divides the recess 301 into a first recess 303 in which the first light emitting portion 41 is located and a second recess 304 in which the second light emitting portion 42 and the third light emitting portion 43 are located. You may.
  • the color reproducibility of the light emitting unit 4 can be improved, and by extension, the color reproducibility of the display device can be improved.
  • the wall portion 302 may be a member manufactured separately from the cavity structure 30, or may be a member integrally formed with the cavity structure 30.
  • the wall portion 302 When the wall portion 302 is made of a transparent material or a translucent material, it is on the side surface of the wall portion 302 facing the second light emitting portion 42 and the third light emitting portion 43, and on the side surface of the wall portion 302 facing the first light emitting portion 41.
  • a light reflecting film may be provided on at least one of the above.
  • the wavelength conversion member 41b of the display device 1A can be manufactured, for example, as follows. First, the cavity structure 30 in which the wall portion 302 is arranged in the recess 301 is manufactured, and the insulating resin material containing the phosphor or the quantum dot is made into an ink form. Next, the ink-shaped insulating resin material is discharged into the first recess 303 so as to cover the first light emitting element 41a by using inkjet technology. After that, the wavelength conversion member 41b as shown in FIGS. 7 and 8 can be manufactured by curing the insulating resin material by heating or irradiation with ultraviolet rays.
  • the color filter 41c of the display device 1A can be manufactured, for example, as follows. First, the wavelength conversion member 41b is manufactured as described above, and the resin material to which the pigment or dye is added is made into an ink form. Next, the ink-shaped resin material is discharged into the first recess 303 so as to cover the first light emitting element 41a and the wavelength conversion member 41b by using inkjet technology. Then, by curing the resin material by heating or irradiation with ultraviolet rays, the color filter 41c as shown in FIG. 7 can be produced.
  • the color filter 41c is a color filter prepared in advance using a resin material to which a pigment or a dye is added, in the first recess 303, for example, as shown in FIG. 8A. It may be produced by arranging.
  • FIG. 8B shows a configuration in which the upper surface of the first light emitting element 41a is in contact with the lower surface of the wavelength conversion member 41b in the configuration of FIG. 8A.
  • a portion other than the upper surface of the first light emitting element 41a is embedded in a transparent body 41d made of a transparent resin material or the like.
  • the lower end portion of the wavelength conversion member 41b is a portion that does not easily contribute to the wavelength conversion, but in the case of the configuration of FIG. 8B, the entire wavelength conversion member 41b contributes to the wavelength conversion.
  • FIG. 8C is a configuration in which the transparent body 41d is inserted between the first substrate 2 and the second substrate 3 in the configuration of FIG. 8B.
  • the transparent body 41d also functions as a fixing member for fixing the first substrate 2 and the second substrate 3, and the first substrate 2 and the second substrate 3 are firmly fixed.
  • FIG. 8D is a configuration in which the wavelength conversion member 41b is located above the first light emitting element 41a at a distance from the first light emitting element 41a in the configuration of FIG. 8B.
  • the first light emitting element 41a is entirely embedded in the transparent body 41d. In this case, the same effect as in FIG. 8B is obtained.
  • FIG. 8E is a configuration in which the transparent body 41d is inserted between the first substrate 2 and the second substrate 3 in the configuration of FIG. 8D. In this case, the same effect as in FIG. 8C is obtained.
  • the recess 301 includes a first recess 303 in which the first light emitting unit 41 is located, a second recess in which the second light emitting unit 42 is located, and a third light emitting unit 43. It may be composed of a third recess located.
  • the second wall portion 305 located in the second recess 304 may be provided. Even if the second wall portion 305 divides the second recess 304 into a third recess 306 in which the second light emitting portion 42 is located and a fourth recess 307 in which the third light emitting portion 43 is located. good. That is, the second concave portion in which the second light emitting portion 42 is located may be referred to as the third concave portion 306, and the third concave portion in which the third light emitting portion 43 is located may be referred to as the fourth concave portion 307.
  • the emitted light of the second light emitting unit 42 and the emitted light of the third light emitting unit 43 are incident on the wavelength conversion member 41b of the first light emitting unit 41 and are converted into the light of the first wavelength ⁇ 1. Can be suppressed.
  • the color reproducibility of the light emitting unit 4 can be improved, and by extension, the color reproducibility of the display device can be improved.
  • the display device 1A may include a plurality of transparent bodies 11 arranged inside the first recess 303, the third recess 306, and the fourth recess 307, respectively.
  • the plurality of transparent bodies 11 seal the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43, respectively.
  • the transparent body 11 that seals the first light emitting unit 41 is the first transparent body 11a
  • the transparent body 11 that seals the second light emitting unit 42 is the second transparent body 11b
  • the transparent body 11 that seals the third light emitting unit 43 is transparent. Let the body 11 be the third transparent body 11c.
  • the heat generated from the light emitting unit 4 can be effectively dissipated to the outside through the cavity structure 30, so that the color reproducibility deteriorates and the display image is uneven due to the temperature rise of the light emitting unit 4. Can be suppressed. Further, since it is possible to suppress the position shift of the light emitting element 4a and the peeling of the light emitting element 4a from the mounting portion 2aa, the display device with improved long-term reliability can be obtained.
  • the thickness of the first transparent body 11a may be thicker than the thickness of the wavelength conversion member 41b.
  • the first transparent body 11a effectively functions as a light guide body and a heat transfer medium. That is, the directivity of the light of the first wavelength ⁇ 1 guided by the first transparent body 11a and radiated to the outside is improved, and the heat generated by the first light emitting unit 41 is transferred to the second transparent body 11a through the first transparent body 11a. It becomes easy to transmit to the substrate 3 and dissipate heat. Further, it is possible to effectively prevent the wavelength conversion member 41b from being exposed to air and causing deterioration such as oxidation.
  • the second transparent body 11b and the third transparent body 11c are the same as those of the first transparent body 11a.
  • the thickness of the first transparent body 11a may be about 5 ⁇ m to 300 ⁇ m, and the thickness of the wavelength conversion member 41b may be about 2 ⁇ m to 80 ⁇ m, but is not limited to these values.
  • the first recess 303, the third recess 306, and the fourth recess 307 can have substantially the same shape.
  • the intensity distribution of the light emitted from the inside of the first recess 303 to the outside, the intensity distribution of the light emitted from the inside of the third recess 306 to the outside, and the intensity distribution of the light emitted from the inside of the fourth recess 307 to the outside are emitted.
  • the intensity distributions of light can be brought closer to each other. As a result, it becomes possible to suppress display unevenness of the displayed image.
  • each of the first recess 303, the third recess 306, and the fourth recess 307 can be recesses having a high aspect ratio.
  • the emitted light of the first light emitting unit 41 is reflected at least once on the inner peripheral surface of the first recess 303
  • the emitted light of the second light emitting unit 42 is reflected at least once on the inner peripheral surface of the third recess 306.
  • the emitted light of the third light emitting unit 43 can be reflected at least once on the inner peripheral surface of the fourth recess 307. As a result, it becomes possible to increase the directivity of the image light emitted from the display device.
  • the aspect ratio of the recess may be the ratio D / L of the depth D of the recess to the absolute value L of the square root of the bottom area of the recess.
  • the display device 1A may have a ratio D / L of about 2.5 or more. This makes it possible to effectively increase the directivity of the image light.
  • FIG. 10 is a plan view schematically showing a display device according to still another embodiment of the present disclosure.
  • the same reference numerals will be given to the configurations common to or similar to the configurations of the above embodiments, and detailed description thereof will be omitted.
  • the display device 1B of this embodiment is redundantly designed.
  • the display device 1B arranges two first light emitting units 41 in the first recess 303, and two second light emitting units 42 and two second light emitting units 42 in the second recess 304, for example, as shown in FIG.
  • the configuration is such that the three light emitting units 43 are arranged.
  • the display device 1B has a configuration in which each of the two first light emitting units 41 includes a first light emitting element 41a and a wavelength conversion member 41b.
  • the distance between the two adjacent light emitting units 4 becomes short, and even if the heat generated from the light emitting unit 4 is likely to be trapped in the pixel, the color reproducibility deteriorates due to the temperature rise of the light emitting unit 4. And the display unevenness of the display image can be suppressed.
  • the first recess 303 and the second recess 304 are partitioned by the wall portion 302, even if the distance between the two adjacent light emitting portions 4 is shortened, the second recess is second.
  • FIGS. 11A to 11E is a schematic plan view of pixels for explaining the effect of the display device of the present disclosure.
  • FIG. 11A shows a pixel 50a in which the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43 are located in one recess 301.
  • FIG. 11B shows a pixel 50b in which the first light emitting unit 41 is located in the first recess 303, and the second light emitting unit 42 and the third light emitting unit 43 are located in the second recess 304.
  • FIG. 11A shows a pixel 50a in which the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43 are located in one recess 301.
  • FIG. 11B shows a pixel 50b in which the first light emitting unit 41 is located in the first recess 303, and the second light emitting unit 42 and the third light emitting unit 43 are located in the second recess 304.
  • FIG. 11A shows
  • FIG. 11C shows a pixel 50c in which two first light emitting units 41 are located in the first recess 303, and two second light emitting units 42 and two third light emitting units 43 are located in the second recess 304.
  • the first light emitting portion 41 is located in the first concave portion 303
  • the second light emitting portion 42 is located in the third concave portion 306 (shown in FIG. 9) as the second concave portion
  • the fourth light emitting portion 42 is located as the third concave portion.
  • a pixel 50d in which the third light emitting unit 43 is located is shown in the recess 307 (shown in FIG. 9).
  • FIG. 9 shows a pixel 50c in which two first light emitting units 41 are located in the first recess 303
  • two second light emitting units 42 and two third light emitting units 43 are located in the second recess 304.
  • the first light emitting portion 41 is located in the first concave portion 303
  • two first light emitting portions 41 are located in the first concave portion 303
  • two second light emitting portions 42 are located in the third concave portion 306 as the second concave portion
  • the fourth concave portion 307 as the third concave portion. 2 shows a pixel 50d in which two third light emitting units 43 are located.
  • the display device of the present disclosure has a configuration in which the first light emitting unit 41 includes a first light emitting element 41a that emits light of a third wavelength and a wavelength conversion member 41b.
  • the first light emitting unit 41 has a configuration including a blue light emitting element 41a that emits blue light and a wavelength conversion member 41b that converts red light into blue light.
  • the first light emitting unit 41 is a red light emitting unit 41
  • the second light emitting unit 42 is a green light emitting unit 42
  • the third light emitting unit 43 is a blue light emitting unit 43
  • the second light emitting element 42a is green.
  • the light emitting element 42a and the third light emitting element 43a are referred to as a blue light emitting element 43a.
  • configuration A when the blue light of the blue light emitting element 43a is mixed in the wavelength conversion member 41b, the excess blue light is wavelength-converted. Therefore, the blue light emitting element 41a and the blue light emitting element 43a may not be adjacent to each other or may be located in different recesses. Then, the configuration A has a pixel structure of pixels 50a, 50b, and 50c. That is, it has a pixel structure having one wavelength conversion member 41b and one or two recesses. However, in the case of the configuration A, a pixel structure of pixels 50d and 50e may be adopted.
  • the red light emitting unit 41 has a blue light emitting element 41a and a wavelength conversion member 41b
  • the green light emitting unit 42 has a blue light emitting element and a wavelength conversion member (wavelength) that converts blue light into green light.
  • a configuration (referred to as a configuration B) having a conversion member (referred to as a conversion member 42b) is also conceivable. That is, all the light emitting units 4 are provided with a blue light emitting element.
  • the display device of the present disclosure also has an effect that the number of wavelength conversion members and recesses can be reduced.
  • the pixel structure of the pixels 50a, 50b, 50c can also be taken.
  • the display device of the present disclosure can suppress a decrease in color reproducibility and display unevenness caused by an increase in the temperature of the LED element. Further, according to the display device of the present disclosure, it is possible to suppress an increase in power consumption and an increase in manufacturing cost.
  • the display device of this disclosure can be applied to various electronic devices.
  • the electronic devices include automobile route guidance systems (car navigation systems), ship route guidance systems, aircraft route guidance systems, instrument indicators for vehicles such as automobiles, instrument panels, smartphone terminals, mobile phones, tablet terminals, and personals.
  • Digital assistants (PDAs) video cameras, digital still cameras, electronic notebooks, electronic books, electronic dictionaries, personal computers, copying machines, game console terminals, televisions, product display tags, price display tags, industrial programmable displays.

Abstract

This display device comprises: a cavity structure having a first surface as a display surface, the first surface having a recess; a first light emitting unit positioned in the recess to emit light of a first wavelength; a second light emitting unit positioned in the recess to emit light of a second wavelength shorter than the first wavelength; and a third light emitting unit positioned in the recess to emit light of a third wavelength shorter than the second wavelength. The first light emitting unit includes a first light emitting element for emitting light of the third wavelength, and a wavelength conversion member for converting the emitted light of the first light emitting element into light of the first wavelength.

Description

表示装置Display device
 本開示は、発光ダイオード(Light Emitting Diode:LED)素子等の発光素子を有する画素を備えた表示装置に関する。 The present disclosure relates to a display device including a pixel having a light emitting element such as a light emitting diode (LED) element.
 従来、例えば特許文献1に記載された表示装置が知られている。 Conventionally, for example, the display device described in Patent Document 1 is known.
特開2006-119274号公報Japanese Unexamined Patent Publication No. 2006-119274
 本開示の表示装置は、表示面を有し、該表示面に凹部が設けられた基体と、
 前記凹部に位置し、第1波長の光を出射する第1発光部と、
 前記凹部に位置し、前記第1波長よりも短い第2波長の光を出射する第2発光部と、
 前記凹部に位置し、前記第2波長よりも短い第3波長の光を出射する第3発光部と、を備え、
 前記第1発光部は、前記第3波長の光を出射する第1発光素子と、前記第1発光素子から出射した前記第3波長の光を前記第1波長の光に変換する波長変換部材と、を有する。
The display device of the present disclosure has a display surface, and a substrate provided with a recess on the display surface and a substrate.
A first light emitting unit located in the recess and emitting light of the first wavelength,
A second light emitting unit located in the recess and emitting light having a second wavelength shorter than the first wavelength.
A third light emitting unit located in the recess and emitting light having a third wavelength shorter than the second wavelength is provided.
The first light emitting unit includes a first light emitting element that emits light of the third wavelength, and a wavelength conversion member that converts the light of the third wavelength emitted from the first light emitting element into light of the first wavelength. , Have.
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本開示の一実施形態に係る表示装置を模式的に示す平面図である。 図1の切断面線A1-A2で切断した断面図である。 図1の表示装置の変形例を模式的に示す断面図である。 図1の表示装置の変形例を模式的に示す断面図である。 図1の表示装置の変形例を模式的に示す断面図である。 本開示の他の実施形態に係る表示装置を模式的に示す平面図である。 図6の切断面線A3-A4で切断した断面図である。 図6の表示装置の変形例を模式的に示す断面図である。 図6の表示装置の変形例を模式的に示す断面図である。 図6の表示装置の変形例を模式的に示す断面図である。 図6の表示装置の変形例を模式的に示す断面図である。 図6の表示装置の変形例を模式的に示す断面図である。 図6の表示装置の変形例を模式的に示す断面図である。 本開示のさらに他の実施形態に係る表示装置を模式的に示す平面図である。 本開示の表示装置の効果を説明するための画素の模式的な平面図である。 本開示の表示装置の効果を説明するための画素の模式的な平面図である。 本開示の表示装置の効果を説明するための画素の模式的な平面図である。 本開示の表示装置の効果を説明するための画素の模式的な平面図である。 本開示の表示装置の効果を説明するための画素の模式的な平面図である。
The purposes, features, and advantages of this disclosure will become clearer from the detailed description and drawings below.
It is a top view schematically showing the display device which concerns on one Embodiment of this disclosure. It is sectional drawing which cut at the cut plane line A1-A2 of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is a top view which shows typically the display device which concerns on other embodiment of this disclosure. It is sectional drawing which cut at the cut plane line A3-A4 of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is sectional drawing which shows typically the modification of the display device of FIG. It is a top view schematically showing the display device which concerns on still another Embodiment of this disclosure. It is a schematic plan view of the pixel for demonstrating the effect of the display device of this disclosure. It is a schematic plan view of the pixel for demonstrating the effect of the display device of this disclosure. It is a schematic plan view of the pixel for demonstrating the effect of the display device of this disclosure. It is a schematic plan view of the pixel for demonstrating the effect of the display device of this disclosure. It is a schematic plan view of the pixel for demonstrating the effect of the display device of this disclosure.
 本開示の表示装置が基礎とする構成について説明する。特許文献1は、各画素が、赤色LED素子、緑色LED素子および青色LED素子を有する、表示装置を開示している。LED素子の発光輝度は、LED素子に印加される駆動電圧に依存するだけでなく、LED素子の温度にも依存する。特に、赤色LED素子、緑色LED素子および青色LED素子のうち、最も長波長の光を出射する赤色LED素子は、緑色LED素子および青色LED素子と比較して、発光強度が温度上昇に伴い低下し易い。したがって、従来の表示装置は、長時間使用されると、表示画像における赤色成分が減少し、その結果、色再現性が低下したり、表示画像に表示むらが発生したりすることがあった。 The configuration on which the display device of the present disclosure is based will be described. Patent Document 1 discloses a display device in which each pixel has a red LED element, a green LED element, and a blue LED element. The emission brightness of the LED element depends not only on the drive voltage applied to the LED element but also on the temperature of the LED element. In particular, among the red LED element, the green LED element, and the blue LED element, the red LED element that emits the longest wavelength light has a lower emission intensity as the temperature rises than the green LED element and the blue LED element. easy. Therefore, when the conventional display device is used for a long time, the red component in the displayed image is reduced, and as a result, the color reproducibility may be lowered or the display image may be uneven.
 LED素子の温度上昇に伴って生じる色再現性の低下および表示画像の表示むらは、LED素子に印加する駆動電流を補正することによって低減することができる。しかしながら、駆動電流の補正を行う補正回路を表示装置に追加することによって、表示装置の消費電力が増加したり、表示装置の製造コストが増加したりすることがあった。 The decrease in color reproducibility and display unevenness of the display image caused by the temperature rise of the LED element can be reduced by correcting the drive current applied to the LED element. However, by adding a correction circuit for correcting the drive current to the display device, the power consumption of the display device may increase or the manufacturing cost of the display device may increase.
 以下、添付図面を参照して、本開示の実施形態に係る表示装置について説明する。以下で参照する各図は、実施形態に係る表示装置の主要な構成部材等を示している。実施形態に係る表示装置は、図示されていない回路基板、配線導体、制御IC,LSI等の周知の構成を備えていてもよい。 Hereinafter, the display device according to the embodiment of the present disclosure will be described with reference to the attached drawings. Each figure referred to below shows the main constituent members and the like of the display device which concerns on embodiment. The display device according to the embodiment may have a well-known configuration such as a circuit board, a wiring conductor, a control IC, and an LSI (not shown).
 図1は、本開示の一実施形態に係る表示装置を模式的に示す平面図であり、図2は、図1の切断面線A1-A2で切断した断面図であり、図3~図5は、図1の表示装置の変形例を模式的に示す断面図である。図3~図5に示す断面図は、図2に示す断面図に対応する。 1 is a plan view schematically showing a display device according to an embodiment of the present disclosure, and FIG. 2 is a cross-sectional view taken along the cutting plane lines A1-A2 of FIG. 1, FIGS. 3 to 5. Is a cross-sectional view schematically showing a modified example of the display device of FIG. The cross-sectional views shown in FIGS. 3 to 5 correspond to the cross-sectional views shown in FIG.
 本開示の表示装置1は、図1,2に示すように、表示面としての第1面30aを有し、第1面30aに凹部301が設けられた基体30と、凹部301に位置し、第1波長の光を出射する第1発光部41と、凹部301に位置し、第1波長よりも短い第2波長の光を出射する第2発光部42と、凹部301に位置し、第2波長よりも短い第3波長の光を出射する第3発光部43と、を備え、第1発光部41は、第3波長の光を出射する第1発光素子41aと、第1発光素子41aから出射した第3波長の光を第1波長の光に変換する波長変換部材41bと、を有する構成である。 As shown in FIGS. 1 and 2, the display device 1 of the present disclosure has a first surface 30a as a display surface, and is located in a substrate 30 having a recess 301 provided in the first surface 30a and a recess 301. A first light emitting unit 41 that emits light of the first wavelength, a second light emitting unit 42 that is located in the recess 301 and emits light of a second wavelength shorter than the first wavelength, and a second light emitting unit 42 that is located in the recess 301. A third light emitting unit 43 that emits light having a third wavelength shorter than the wavelength is provided, and the first light emitting unit 41 is from a first light emitting element 41a that emits light of the third wavelength and a first light emitting element 41a. It is configured to include a wavelength conversion member 41b that converts the emitted light of the third wavelength into the light of the first wavelength.
 上記の構成により、以下の効果を奏する。温度上昇によって発光強度が低下しやすい第1波長の光を出射する発光素子、例えば赤色発光素子、を有していないことから、発光素子の温度上昇に伴って生じる色再現性の低下および表示むらを抑制できる。また、温度上昇による発光素子の発光強度の低下を、駆動電流を増大させることによって補正する補正回路等が不要となることから、構成が簡易化されるとともに、消費電流の増大を抑えることができる。従って、本開示の表示装置によれば、消費電力の増加および製造コストの増加を抑制できる。 The above configuration has the following effects. Since it does not have a light emitting element that emits light of the first wavelength whose emission intensity tends to decrease due to a temperature rise, for example, a red light emitting element, the color reproducibility deteriorates and display unevenness caused by the temperature rise of the light emitting element. Can be suppressed. Further, since a correction circuit or the like for correcting the decrease in the emission intensity of the light emitting element due to the temperature rise by increasing the drive current is not required, the configuration can be simplified and the increase in the current consumption can be suppressed. .. Therefore, according to the display device of the present disclosure, it is possible to suppress an increase in power consumption and an increase in manufacturing cost.
 本実施形態に係る表示装置1は、基体(キャビティ構造体ともいう)30と、第1発光部41と、第2発光部42と、第3発光部43とを備える。 The display device 1 according to the present embodiment includes a substrate (also referred to as a cavity structure) 30, a first light emitting unit 41, a second light emitting unit 42, and a third light emitting unit 43.
 キャビティ構造体30は、板状またはブロック状の形状を有している。キャビティ構造体30は、第1面30a、および第1面30aとは反対側の第2面30bを有している。第1面30aは、表示装置1が画像光を出射する表示面である。キャビティ構造体30は、基板等の板状体、ブロック状体、フレキシブルなシート状体、曲面を有する立体的構造体等の形状であってもよい。 The cavity structure 30 has a plate-like or block-like shape. The cavity structure 30 has a first surface 30a and a second surface 30b opposite to the first surface 30a. The first surface 30a is a display surface on which the display device 1 emits image light. The cavity structure 30 may be in the shape of a plate-like body such as a substrate, a block-like body, a flexible sheet-like body, a three-dimensional structure having a curved surface, or the like.
 第1面30aには、凹部(キャビティともいう)301が設けられている。凹部301は、第1面30a上に開口し、キャビティ構造体30の厚み方向に凹んでいる。凹部301は、例えば図2に示すように、第1面30a上の開口301a、底面301b、および、開口301aと底面301bとを接続する内周面301cを有している。凹部301は、第1面30aに平行な断面の断面形状が、例えば、正方形状、矩形状、円形状、楕円形等であってもよく、その他の形状であってもよい。また、凹部301は、第1面30aに平行な断面の断面形状が、第1面30aから第2面30bに向かう方向において、徐々に縮小する形状であってもよい。凹部301は、平面視において、開口301aの周縁が底面301bの周縁を取り囲む形状であってもよい。 A recess (also referred to as a cavity) 301 is provided on the first surface 30a. The recess 301 opens on the first surface 30a and is recessed in the thickness direction of the cavity structure 30. As shown in FIG. 2, for example, the recess 301 has an opening 301a and a bottom surface 301b on the first surface 30a, and an inner peripheral surface 301c connecting the opening 301a and the bottom surface 301b. The concave portion 301 may have a cross-sectional shape parallel to the first surface 30a, for example, a square shape, a rectangular shape, a circular shape, an elliptical shape, or the like, or may have another shape. Further, the recess 301 may have a shape in which the cross-sectional shape of the cross section parallel to the first surface 30a gradually shrinks in the direction from the first surface 30a to the second surface 30b. The recess 301 may have a shape in which the peripheral edge of the opening 301a surrounds the peripheral edge of the bottom surface 301b in a plan view.
 キャビティ構造体30は、例えば図2に示すように、第1基板2と第2基板3とを含んで構成されていてもよい。 The cavity structure 30 may be configured to include the first substrate 2 and the second substrate 3, for example, as shown in FIG.
 第1基板2は、一方主面(第3面ともいう)2aおよび他方主面(第4面ともいう)2bを有している。第1基板2の第4面2bは、キャビティ構造体30の第2面30bであってもよい。第1基板2は、平面視したときの(すなわち、第3面2aに垂直な方向から見たときの)形状が、例えば、三角形、正方形、矩形、台形、六角形、円形、楕円形等の形状であってもよく、その他の形状であってもよい。 The first substrate 2 has one main surface (also referred to as a third surface) 2a and the other main surface (also referred to as a fourth surface) 2b. The fourth surface 2b of the first substrate 2 may be the second surface 30b of the cavity structure 30. The shape of the first substrate 2 when viewed in a plan view (that is, when viewed from a direction perpendicular to the third surface 2a) is, for example, a triangle, a square, a rectangle, a trapezoid, a hexagon, a circle, an ellipse, or the like. It may have a shape or any other shape.
 第1基板2は、例えば、ガラス材料、セラミック材料、樹脂材料、金属材料、半導体材料等から成る。第1基板2に用いられるガラス材料としては、例えば、ホウケイ酸ガラス、結晶化ガラス、石英、ソーダガラス等が挙げられる。第1基板2に用いられるセラミック材料としては、例えば、アルミナ(Al23)、窒化アルミニウム(AlN)、窒化珪素(Si34)、ジルコニア(ZrO2)、炭化珪素(SiC)等が挙げられる。第1基板2に用いられる樹脂材料としては、例えば、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂等が挙げられる。第1基板2に用いられる金属材料としては、例えば、アルミニウム(Al)、チタン(Ti)、ベリリウム(Be)、マグネシウム(Mg)(特に、純度99.95%以上の高純度マグネシウム)、亜鉛(Zn)、錫(Sn)、銅(Cu)、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、銀(Ag)等が挙げられる。第1基板2に用いられる金属材料は、合金材料であってもよい。第1基板2に用いられる合金材料としては、例えば、鉄を主成分とする鉄合金(Fe-Ni合金、Fe-Ni-Co(コバルト)合金、Fe-Cr合金、Fe-Cr-Ni合金)、アルミニウムを主成分とするアルミニウム合金であるジュラルミン(Al-Cu合金、Al-Cu-Mg合金、Al-Zn-Mg-Cu合金)、マグネシウムを主成分とするマグネシウム合金(Mg-Al合金、Mg-Zn合金、Mg-Al-Zn合金)、ボロン化チタン、Cu-Zn合金等が挙げられる。第1基板2に用いられる半導体材料としては、例えば、シリコン(Si)、ゲルマニウム(Ge)、ガリウムヒ素(GaAs)等が挙げられる。 The first substrate 2 is made of, for example, a glass material, a ceramic material, a resin material, a metal material, a semiconductor material, or the like. Examples of the glass material used for the first substrate 2 include borosilicate glass, crystallized glass, quartz, soda glass and the like. Examples of the ceramic material used for the first substrate 2 include alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), zirconia (ZrO 2 ), silicon carbide (SiC) and the like. Can be mentioned. Examples of the resin material used for the first substrate 2 include epoxy resin, polyimide resin, and polyamide resin. Examples of the metal material used for the first substrate 2 include aluminum (Al), titanium (Ti), beryllium (Be), magnesium (Mg) (particularly, high-purity magnesium having a purity of 99.95% or more), and zinc ( Zn), tin (Sn), copper (Cu), iron (Fe), chromium (Cr), nickel (Ni), silver (Ag) and the like can be mentioned. The metal material used for the first substrate 2 may be an alloy material. Examples of the alloy material used for the first substrate 2 include iron alloys containing iron as a main component (Fe—Ni alloy, Fe—Ni—Co (cobalt) alloy, Fe—Cr alloy, Fe—Cr—Ni alloy). , Duralmin (Al-Cu alloy, Al-Cu-Mg alloy, Al-Zn-Mg-Cu alloy), which is an aluminum alloy containing aluminum as the main component, and magnesium alloy (Mg-Al alloy, Mg) containing magnesium as the main component. -Zn alloy, Mg-Al-Zn alloy), titanium boronized, Cu-Zn alloy and the like. Examples of the semiconductor material used for the first substrate 2 include silicon (Si), germanium (Ge), gallium arsenide (GaAs) and the like.
 第1基板2は、上記のガラス材料、セラミック材料、樹脂材料、金属材料、半導体材料等から成る単層構造であってもよく、複数層の積層構造であってもよい。第1基板2が複数層の積層構造である場合、該複数層は同一の材料から成っていてもよく、異なる材料から成っていてもよい。 The first substrate 2 may have a single-layer structure composed of the above-mentioned glass material, ceramic material, resin material, metal material, semiconductor material, etc., or may have a multi-layer laminated structure. When the first substrate 2 has a laminated structure of a plurality of layers, the plurality of layers may be made of the same material or may be made of different materials.
 第2基板3は、例えば図2に示すように、第1基板2の第3面2a上に配置されている。第2基板3は、板状またはブロック状の形状を有している。第2基板3は、第1基板2の第3面2aに対向する対向面(第5面ともいう)3a、および第5面3aとは反対側の外表面(第6面ともいう)3bを有している。第2基板3の第6面3bは、キャビティ構造体30の第1面30aであってもよい。第2基板3は、平面視したときの形状が、例えば、三角形、正方形、矩形、台形、六角形、円形、楕円形等の形状であってもよく、その他の形状であってもよい。第1基板2と第2基板3とは、平面視形状が互いに一致していてもよい。 The second substrate 3 is arranged on the third surface 2a of the first substrate 2, for example, as shown in FIG. The second substrate 3 has a plate-like or block-like shape. The second substrate 3 has a facing surface (also referred to as a fifth surface) 3a facing the third surface 2a of the first substrate 2 and an outer surface (also referred to as a sixth surface) 3b opposite to the fifth surface 3a. Have. The sixth surface 3b of the second substrate 3 may be the first surface 30a of the cavity structure 30. The shape of the second substrate 3 when viewed in a plan view may be, for example, a triangle, a square, a rectangle, a trapezoid, a hexagon, a circle, an ellipse, or the like, or any other shape. The first substrate 2 and the second substrate 3 may have the same plan-view shapes.
 第2基板3には、第5面3aから第6面3bにかけて貫通する貫通孔31が形成されている。貫通孔31は、第1基板2の第3面2aにおける部位(実装部位ともいう)2aaを露出させている。貫通孔31の第6面3b上の開口31aが、凹部301の開口301aであってよく、貫通孔31の内周面31bが、凹部301の内周面301cであってよい。また、実装部位2aaは、凹部301の底面301bであってよい。 The second substrate 3 is formed with a through hole 31 penetrating from the fifth surface 3a to the sixth surface 3b. The through hole 31 exposes a portion (also referred to as a mounting portion) 2aa on the third surface 2a of the first substrate 2. The opening 31a on the sixth surface 3b of the through hole 31 may be the opening 301a of the recess 301, and the inner peripheral surface 31b of the through hole 31 may be the inner peripheral surface 301c of the recess 301. Further, the mounting portion 2aa may be the bottom surface 301b of the recess 301.
 第2基板3は、ガラス材料、セラミック材料、樹脂材料、金属材料、半導体材料等から成る。 The second substrate 3 is made of a glass material, a ceramic material, a resin material, a metal material, a semiconductor material, or the like.
 第2基板3に用いられるガラス材料としては、例えば、ホウケイ酸ガラス、結晶化ガラス、石英、ソーダガラス等が挙げられる。第2基板3に用いられるセラミック材料としては、例えば、アルミナ、窒化アルミニウム、窒化珪素、ジルコニア、炭化珪素等が挙げられる。第2基板3に用いられる樹脂材料としては、例えば、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂等が挙げられる。第2基板3に用いられる金属材料としては、例えば、アルミニウム、チタン、ベリリウム、マグネシウム(特に、純度99.95%以上の高純度マグネシウム)、亜鉛、錫、銅、鉄、クロム、ニッケル、銀等が挙げられる。第2基板3に用いられる金属材料は、合金材料であってもよい。第2基板3に用いられる合金材料としては、例えば、鉄を主成分とする鉄合金(Fe-Ni合金、Fe-Ni-Co合金、Fe-Cr合金、Fe-Cr-Ni合金)、アルミニウムを主成分とするアルミニウム合金であるジュラルミン(Al-Cu合金、Al-Cu-Mg合金、Al-Zn-Mg-Cu合金)、マグネシウムを主成分とするマグネシウム合金(Mg-Al合金、Mg-Zn合金、Mg-Al-Zn合金)、ボロン化チタン、Cu-Zn合金等が挙げられる。第2基板3に用いられる半導体材料としては、例えば、シリコン、ゲルマニウム、ガリウムヒ素等が挙げられる。 Examples of the glass material used for the second substrate 3 include borosilicate glass, crystallized glass, quartz, soda glass and the like. Examples of the ceramic material used for the second substrate 3 include alumina, aluminum nitride, silicon nitride, zirconia, silicon carbide and the like. Examples of the resin material used for the second substrate 3 include epoxy resin, polyimide resin, and polyamide resin. Examples of the metal material used for the second substrate 3 include aluminum, titanium, beryllium, magnesium (particularly, high-purity magnesium having a purity of 99.95% or more), zinc, tin, copper, iron, chromium, nickel, silver and the like. Can be mentioned. The metal material used for the second substrate 3 may be an alloy material. Examples of the alloy material used for the second substrate 3 include iron alloys containing iron as a main component (Fe—Ni alloy, Fe—Ni—Co alloy, Fe—Cr alloy, Fe—Cr—Ni alloy) and aluminum. Duralmin (Al-Cu alloy, Al-Cu-Mg alloy, Al-Zn-Mg-Cu alloy), which is an aluminum alloy as the main component, and magnesium alloy (Mg-Al alloy, Mg-Zn alloy) whose main component is magnesium. , Mg—Al—Zn alloy), titanium boronized, Cu—Zn alloy and the like. Examples of the semiconductor material used for the second substrate 3 include silicon, germanium, gallium arsenide and the like.
 第2基板3は、上記の金属材料から成る単層構造を有していてもよく、複数層の積層構造であってもよい。第2基板3が複数層の積層構造である場合、該複数層は同一の材料から成っていてもよく、異なる材料から成っていてもよい。貫通孔31は、例えばパンチング加工法、電気鋳造法(メッキ法)、切削加工法、レーザ加工法等を用いて形成されていてもよい。第2基板3が金属材料から成る場合、貫通孔31は、例えばパンチング加工法、電気鋳造法を用いて形成することができる。第2基板3が半導体材料から成る場合、貫通孔31は、ドライエッチング工程を含むフォトリソグラフィ法等によって形成することができる。 The second substrate 3 may have a single-layer structure made of the above-mentioned metal material, or may have a laminated structure of a plurality of layers. When the second substrate 3 has a laminated structure of a plurality of layers, the plurality of layers may be made of the same material or may be made of different materials. The through hole 31 may be formed by using, for example, a punching method, an electric casting method (plating method), a cutting method, a laser processing method, or the like. When the second substrate 3 is made of a metal material, the through hole 31 can be formed by using, for example, a punching method or an electroplating method. When the second substrate 3 is made of a semiconductor material, the through hole 31 can be formed by a photolithography method or the like including a dry etching step.
 第2基板3が金属材料または半導体材料から成る場合、第1基板2の第3面2aと第2基板3の第5面3aとの間には、電気絶縁材料から成る絶縁体または絶縁層が配置されていてもよい。これにより、第3面2a上に設けられる電極、配線導体等が、第2基板3を介して、互いに短絡することを抑制できる。絶縁体または絶縁層に用いられる電気絶縁材料としては、例えば、酸化珪素、窒化珪素等が挙げられる。 When the second substrate 3 is made of a metal material or a semiconductor material, an insulator or an insulating layer made of an electrically insulating material is provided between the third surface 2a of the first substrate 2 and the fifth surface 3a of the second substrate 3. It may be arranged. As a result, it is possible to prevent the electrodes, wiring conductors, and the like provided on the third surface 2a from being short-circuited with each other via the second substrate 3. Examples of the electrically insulating material used for the insulator or the insulating layer include silicon oxide and silicon nitride.
 第1基板2および第2基板3は、両方とも透明樹脂材料、ガラス材料等の透明材料から成る透明基板であってもよい。この場合、透明表示装置、両面表示型透明表示装置を作製することができる。また、第1基板2および第2基板3は、両方とも可撓性を有する透明樹脂材料等の透明材料から成る可撓性透明基板であってもよい。この場合、曲面等の非平坦面に設置可能な、フレキシブルな透明表示装置、両面表示型透明表示装置を作製することができる。 The first substrate 2 and the second substrate 3 may both be transparent substrates made of a transparent material such as a transparent resin material and a glass material. In this case, a transparent display device and a double-sided display type transparent display device can be manufactured. Further, the first substrate 2 and the second substrate 3 may both be flexible transparent substrates made of a transparent material such as a transparent resin material having flexibility. In this case, a flexible transparent display device and a double-sided display type transparent display device that can be installed on a non-flat surface such as a curved surface can be manufactured.
 第1発光部41、第2発光部42および第3発光部43は、凹部301内に配置されている。1つの凹部301の内部に配置された第1発光部41、第2発光部42および第3発光部43は、表示装置1の1つの画素を構成してよい。表示装置1は、例えば図1に示すように、複数の画素を備えていてもよい。以下では、第1発光部41、第2発光部42および第3発光部43を区別する必要がない場合、発光部4と総称する。 The first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43 are arranged in the recess 301. The first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43 arranged inside one recess 301 may constitute one pixel of the display device 1. The display device 1 may include a plurality of pixels, for example, as shown in FIG. Hereinafter, when it is not necessary to distinguish between the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43, they are collectively referred to as the light emitting unit 4.
 第1発光部41は、第1波長λ1の光を出射する。第1波長λ1は、赤色に対応する波長であってもよい。第1波長λ1は、例えば、620~750nmの範囲の波長であってもよい。なお、本明細書において、「第1波長λ1の光」とは、第1波長λ1の単色スペクトル光(単色光)を意味してもよく、第1波長λ1に強度ピークを有する連続スペクトル光を意味してもよい。後述する「第2波長λ2の光」および「第3波長λ3の光」についても同様である。 The first light emitting unit 41 emits light having the first wavelength λ1. The first wavelength λ1 may be a wavelength corresponding to red. The first wavelength λ1 may be, for example, a wavelength in the range of 620 to 750 nm. In the present specification, the “light of the first wavelength λ1” may mean monochromatic spectral light (monochromatic light) of the first wavelength λ1 and continuously spectral light having an intensity peak at the first wavelength λ1. It may mean. The same applies to "light having a second wavelength λ2" and "light having a third wavelength λ3" described later.
 第1発光部41は、第1発光素子41aおよび波長変換部材41bを含んで構成される。第1発光素子41aは、駆動回路から駆動電流が供給されると、第1波長λ1よりも短い第3波長λ3の光を出射する。第1発光素子41aは、凹部301の底面301b上に配置されていてもよい。波長変換部材41bは、第1発光素子41aから出射された第3波長λ3の光を第1波長λ1の光に変換する。波長変換部材41bは、第1発光素子41aの少なくとも光出射面を覆っている。光出射面は、第1発光素子41aの上面、または上面および側面であってもよい。波長変換部材41bは、第1発光素子41aに接していてもよく、第1発光素子41aから離隔していてもよい。 The first light emitting unit 41 includes a first light emitting element 41a and a wavelength conversion member 41b. When the drive current is supplied from the drive circuit, the first light emitting element 41a emits light having a third wavelength λ3 shorter than the first wavelength λ1. The first light emitting element 41a may be arranged on the bottom surface 301b of the recess 301. The wavelength conversion member 41b converts the light of the third wavelength λ3 emitted from the first light emitting element 41a into the light of the first wavelength λ1. The wavelength conversion member 41b covers at least the light emitting surface of the first light emitting element 41a. The light emitting surface may be the upper surface, or the upper surface and the side surface of the first light emitting element 41a. The wavelength conversion member 41b may be in contact with the first light emitting element 41a or may be separated from the first light emitting element 41a.
 第1発光素子41aは、立方体、直方体、円柱状体、多角柱状体等の、上面および側面を有する立体的形状であり、波長変換部材41bは、第1発光素子41aの上面および側面を覆っている構成であってもよい。この場合、LED素子等から成る第1発光素子41aは、上面および側面が光出射面であることが多く、さらには側面から放射される側方放射光が最大強度光を含むことがあるからである。 The first light emitting element 41a has a three-dimensional shape having an upper surface and side surfaces such as a cube, a rectangular parallelepiped, a columnar body, and a polygonal columnar body, and the wavelength conversion member 41b covers the upper surface and the side surface of the first light emitting element 41a. It may be configured to be present. In this case, in the first light emitting element 41a made of an LED element or the like, the upper surface and the side surface are often light emitting surfaces, and further, the lateral synchrotron radiation emitted from the side surface may include the maximum intensity light. be.
 さらに、波長変換部材41bは、第1発光素子41aの上面および側面を覆っている構成であって、第1発光素子41aの側面を覆っている部位の側面からの厚み(側面に直交する方向の厚み)が、第1発光素子41aの上面を覆っている部位の上面からの厚み(上面に直交する方向の厚み)よりも厚い構成であってもよい。この場合、側面から放射される側方放射光が最大強度光を含む場合に、最大強度光をもれなく効果的に波長変換することができる。第1発光素子41aの側面を覆っている部位の側面からの厚みは2μm~80μm程度であってよく、第1発光素子41aの上面を覆っている部位の上面からの厚みは2μm~80μm程度であってよいが、これらの値に限らない。 Further, the wavelength conversion member 41b is configured to cover the upper surface and the side surface of the first light emitting element 41a, and the thickness from the side surface of the portion covering the side surface of the first light emitting element 41a (in the direction orthogonal to the side surface). The thickness) may be thicker than the thickness from the upper surface of the portion covering the upper surface of the first light emitting element 41a (thickness in the direction orthogonal to the upper surface). In this case, when the lateral synchrotron radiation emitted from the side surface includes the maximum intensity light, the wavelength conversion of the maximum intensity light can be effectively performed without exception. The thickness from the side surface of the portion covering the side surface of the first light emitting element 41a may be about 2 μm to 80 μm, and the thickness from the upper surface of the portion covering the upper surface of the first light emitting element 41a is about 2 μm to 80 μm. It may be, but it is not limited to these values.
 第2発光部42は、駆動回路から駆動電流が供給されると、第1波長λ1よりも短い第2波長λ2の光を出射する。第2波長λ2は、緑色光に対応する波長であってもよい。第2波長λ2は、例えば、500~570nmの範囲の波長であってもよい。第2発光部42は、第2波長λ2の光を出射する第2発光素子42aを有して構成されていてもよい。第2発光素子42aは、凹部301の底面301b上に配置されていてもよい。 When the drive current is supplied from the drive circuit, the second light emitting unit 42 emits light having a second wavelength λ2 shorter than the first wavelength λ1. The second wavelength λ2 may be a wavelength corresponding to green light. The second wavelength λ2 may be, for example, a wavelength in the range of 500 to 570 nm. The second light emitting unit 42 may be configured to include a second light emitting element 42a that emits light having a second wavelength λ2. The second light emitting element 42a may be arranged on the bottom surface 301b of the recess 301.
 第3発光部43は、駆動回路から駆動電流が供給されると、第2波長λ2よりも短い第3波長λ3の光を出射する。第3波長λ3は、青色光に対応する波長であってもよい。第3波長λ3は、例えば、450~500nmの範囲の波長であってもよい。第3発光部43は、第3波長λ3の光を出射する第3発光素子43aを有して構成されていてもよい。第3発光素子43aは、凹部301の底面301b上に配置されていてもよい。第3発光素子43aは、第1発光素子41aと同じ発光特性を有する発光素子であってもよく、第1発光素子41aと同じ発光素子であってもよい。同じ発光特性を有するとは、発光波長が同一であること、および、同一の駆動電流に対する発光強度が同一であることを意味してよい。 When the drive current is supplied from the drive circuit, the third light emitting unit 43 emits light having a third wavelength λ3 shorter than the second wavelength λ2. The third wavelength λ3 may be a wavelength corresponding to blue light. The third wavelength λ3 may be, for example, a wavelength in the range of 450 to 500 nm. The third light emitting unit 43 may be configured to include a third light emitting element 43a that emits light having a third wavelength λ3. The third light emitting element 43a may be arranged on the bottom surface 301b of the recess 301. The third light emitting element 43a may be a light emitting element having the same light emitting characteristics as the first light emitting element 41a, or may be the same light emitting element as the first light emitting element 41a. Having the same emission characteristics may mean that the emission wavelengths are the same and the emission intensities for the same drive current are the same.
 第1発光素子41a、第2発光素子42aおよび第3発光素子43aは、自発光型の発光素子であってもよい。以下では、第1発光素子41a、第2発光素子42aおよび第3発光素子43aを区別する必要がない場合、発光素子4aと総称する。発光素子4aは、発光ダイオード(Light Emitting Diode:LED)素子、有機発光ダイオード(Organic Light Emitting Diode:OLED)素子、半導体レーザ(Laser Diode:LD)素子等の自発光型の発光素子であってもよい。本実施形態では、発光素子4aとして、発光ダイオード素子を用いる。発光ダイオード素子は、アノード端子およびカソード端子を有する2端子素子である。発光素子4aは、マイクロ発光ダイオード素子であってもよい。マイクロ発光ダイオード素子は、凹部301の底面301b上に実装された状態で、一辺の長さが1μm程度以上100μm程度以下または5μm程度以上20μm程度以下である矩形状の平面視形状を有していてもよい。 The first light emitting element 41a, the second light emitting element 42a, and the third light emitting element 43a may be self-luminous type light emitting elements. Hereinafter, when it is not necessary to distinguish between the first light emitting element 41a, the second light emitting element 42a, and the third light emitting element 43a, they are collectively referred to as a light emitting element 4a. Even if the light emitting element 4a is a self-luminous light emitting element such as a light emitting diode (Light Emitting Diode: LED) element, an organic light emitting diode (Organic Light Emitting Diode: OLED) element, or a semiconductor laser (Laser Diode: LD) element. good. In this embodiment, a light emitting diode element is used as the light emitting element 4a. The light emitting diode element is a two-terminal element having an anode terminal and a cathode terminal. The light emitting element 4a may be a micro light emitting diode element. The micro light emitting diode element has a rectangular plan view shape having a side length of about 1 μm or more and about 100 μm or less or about 5 μm or more and about 20 μm or less when mounted on the bottom surface 301b of the recess 301. May be good.
 波長変換部材41bは、蛍光体または量子ドットを含有していてもよい。波長変換部材41bは、透光性の絶縁樹脂材料または透光性のガラス材料から成る本体部と、該本体部中に分散している、蛍光体または量子ドットとを含んで構成されていてもよい。蛍光体または量子ドットは、本体部中に均一に分散していてもよい。 The wavelength conversion member 41b may contain a phosphor or quantum dots. Even if the wavelength conversion member 41b is composed of a main body portion made of a translucent insulating resin material or a translucent glass material, and a fluorescent substance or quantum dots dispersed in the main body portion. good. The fluorophore or quantum dots may be uniformly dispersed throughout the body.
 波長変換部材41bの蛍光体に用いられる蛍光体材料としては、例えば、シアニン系色素、ピリジン系色素、ローダミン系色素等の有機系蛍光体材料、および、(Sr,Ca)AlSiN3:Eu、Y22S:Eu、Y23:Eu等の無機系蛍光体材料が挙げられる。なお、「~:Eu」はEuを微量成分として含むことを意味する。量子ドットは、1nm程度以上100nm程度以下の直径を有する粒子である。波長変換部材41bの量子ドットに用いられる量子ドット材料としては、例えば、CdSe、CdS、InP等が挙げられる。波長変換部材41bが量子ドットを含む場合、波長変換部材41bから出射される第1波長λ1の光の色純度を向上させることができる。 Examples of the fluorescent material used for the fluorescent material of the wavelength conversion member 41b include organic fluorescent material such as cyanine-based dye, pyridine-based dye, and rhodamine-based dye, and (Sr, Ca) AlSiN 3 : Eu, Y. Examples thereof include inorganic fluorescent material such as 2 O 2 S: Eu and Y 2 O 3 : Eu. In addition, "~: Eu" means that Eu is contained as a trace component. Quantum dots are particles having a diameter of about 1 nm or more and about 100 nm or less. Examples of the quantum dot material used for the quantum dots of the wavelength conversion member 41b include CdSe, CdS, InP and the like. When the wavelength conversion member 41b contains quantum dots, the color purity of the light of the first wavelength λ1 emitted from the wavelength conversion member 41b can be improved.
 波長変換部材41bに用いられる絶縁樹脂材料としては、例えば、フッ素樹脂、シリコーン樹脂、アクリル樹脂、エポキシ樹脂等が挙げられる。波長変換部材41bに用いられるガラス材料としては、例えば、ホウケイ酸ガラス、結晶化ガラス、石英、ソーダガラス等が挙げられる。 Examples of the insulating resin material used for the wavelength conversion member 41b include fluororesin, silicone resin, acrylic resin, epoxy resin and the like. Examples of the glass material used for the wavelength conversion member 41b include borosilicate glass, crystallized glass, quartz, soda glass and the like.
 本実施形態の表示装置1は、第1発光部41、第2発光部42および第3発光部43のうち、最も長波長の光(第1波長λ1の光)を出射する第1発光部41が、第1波長λ1よりも短い第3波長λ3の光を出射する第1発光素子41aを含んで構成されている。このため、表示装置1は、第1発光部41が第1波長λ1の光を出射する発光素子を含んで構成される場合と比較して、第1発光部41の温度上昇に伴う発光強度の低下を低減できる。その結果、表示装置1は、長時間使用された場合であっても、発光部4の温度上昇に伴う色再現性の低下および表示画像の表示むらを抑制できる。 The display device 1 of the present embodiment is a first light emitting unit 41 that emits light having the longest wavelength (light of the first wavelength λ1) among the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43. However, it is configured to include a first light emitting element 41a that emits light having a third wavelength λ3 shorter than the first wavelength λ1. Therefore, in the display device 1, the emission intensity due to the temperature rise of the first light emitting unit 41 is higher than that in the case where the first light emitting unit 41 includes a light emitting element that emits light having the first wavelength λ1. The decrease can be reduced. As a result, the display device 1 can suppress deterioration of color reproducibility and display unevenness of the displayed image due to the temperature rise of the light emitting unit 4 even when the display device 1 is used for a long time.
 また、本実施形態の表示装置1によれば、発光部4の温度上昇に伴う発光強度の低下を補償するための回路または機能を省略することができる。その結果、表示装置の低消費電力化および低コスト化が可能になる。 Further, according to the display device 1 of the present embodiment, it is possible to omit the circuit or function for compensating for the decrease in the emission intensity due to the temperature increase of the light emitting unit 4. As a result, it is possible to reduce the power consumption and cost of the display device.
 また、第2発光部42が第2発光素子42aを用いて構成され、第3発光部43が第1発光素子41aを用いて構成される場合、表示装置1は、2種類の発光素子(第1発光素子41aおよび第2発光素子42a)と、1種類の波長変換部材(波長変換部材41b)とを用いて構成されることができる。このため、表示装置を製造する際の工程数を削減したり、表示装置の製造工程を簡易化したりすることができる。その結果、表示装置の製造コストを削減することができ、表示装置の低コスト化が可能になる。 Further, when the second light emitting unit 42 is configured by using the second light emitting element 42a and the third light emitting unit 43 is configured by using the first light emitting element 41a, the display device 1 has two types of light emitting elements (first light emitting element). It can be configured by using one light emitting element 41a and a second light emitting element 42a) and one kind of wavelength conversion member (wavelength conversion member 41b). Therefore, the number of processes for manufacturing the display device can be reduced, and the manufacturing process for the display device can be simplified. As a result, the manufacturing cost of the display device can be reduced, and the cost of the display device can be reduced.
 第1発光部41は、例えば図3に示すように、第1発光素子41a、波長変換部材41bおよびカラーフィルタ41cを含んで構成されていてもよい。カラーフィルタ41cは、第1波長λ1の光を透過させるとともに第1波長λ1の光以外の光の透過を抑制してもよい。即ち、カラーフィルタ41cは、第1波長λ1の光以外の光を、人の視感で感受されない程度となるように吸収し抑制すればよい。カラーフィルタ41cは、例えば図3に示すように、第1発光素子41aおよび波長変換部材41bを覆っている。カラーフィルタ41cは、第1発光素子41aを覆う波長変換部材41bに接していてもよく、第1発光素子41aおよび波長変換部材41bから離隔していてもよい。 As shown in FIG. 3, for example, the first light emitting unit 41 may be configured to include a first light emitting element 41a, a wavelength conversion member 41b, and a color filter 41c. The color filter 41c may transmit light having the first wavelength λ1 and suppress the transmission of light other than the light having the first wavelength λ1. That is, the color filter 41c may absorb and suppress light other than the light having the first wavelength λ1 so as not to be perceived by human visual sensation. As shown in FIG. 3, for example, the color filter 41c covers the first light emitting element 41a and the wavelength conversion member 41b. The color filter 41c may be in contact with the wavelength conversion member 41b covering the first light emitting element 41a, or may be separated from the first light emitting element 41a and the wavelength conversion member 41b.
 カラーフィルタ41cは、顔料または染料を添加した樹脂材料から成る。カラーフィルタ41cに用いられる顔料は、有機顔料であってもよく、無機顔料であってもよい。カラーフィルタ41cに用いられる顔料としては、例えば、アクリル樹脂、ポリカーボネート樹脂等が挙げられる。 The color filter 41c is made of a resin material to which a pigment or a dye is added. The pigment used in the color filter 41c may be an organic pigment or an inorganic pigment. Examples of the pigment used in the color filter 41c include an acrylic resin and a polycarbonate resin.
 カラーフィルタ41cは、第1発光素子41aの出射光のうち、波長変換部材41bによって波長が第1波長λ1に変換された光を透過することができる。また、カラーフィルタ41cは、第1発光素子41aの出射光のうち、波長変換部材41bによって波長が第1波長λ1に変換されなかった光を吸収することができる。このように、第1発光部41がカラーフィルタ41cを含む場合、第1発光部41の色再現性を向上させることができ、ひいては、表示装置1の色再現性を向上させることができる。 The color filter 41c can transmit the light whose wavelength is converted to the first wavelength λ1 by the wavelength conversion member 41b among the emitted light of the first light emitting element 41a. Further, the color filter 41c can absorb the light emitted from the first light emitting element 41a whose wavelength has not been converted to the first wavelength λ1 by the wavelength conversion member 41b. As described above, when the first light emitting unit 41 includes the color filter 41c, the color reproducibility of the first light emitting unit 41 can be improved, and by extension, the color reproducibility of the display device 1 can be improved.
 波長変換部材41bおよびカラーフィルタ41cは、例えば次のように作製される。波長変換部材41bを作製するためには、先ず、蛍光体または量子ドットを含有する、絶縁樹脂材料またはガラス材料を、フォトリソグラフィ法、スクリーン印刷法等の膜成形技術を用いて、第1発光部41を覆うように成膜する。その後、成膜した絶縁樹脂材料またはガラス材料を加熱または紫外線照射によって硬化させることによって、波長変換部材41bを作製することができる。 The wavelength conversion member 41b and the color filter 41c are manufactured, for example, as follows. In order to manufacture the wavelength conversion member 41b, first, an insulating resin material or a glass material containing a phosphor or a quantum dot is subjected to a first light emitting unit by using a film forming technique such as a photolithography method or a screen printing method. A film is formed so as to cover 41. After that, the wavelength conversion member 41b can be manufactured by curing the formed insulating resin material or glass material by heating or irradiation with ultraviolet rays.
 カラーフィルタ41cを作製するためには、先ず、顔料または染料を添加した樹脂材料を、フォトリソグラフィ法、スクリーン印刷法等の膜成形技術を用いて、第1発光部41および波長変換部材41bを覆うように成膜する。その後、成膜した樹脂材料を加熱または紫外線照射によって硬化させることによって、カラーフィルタ41cを作製することができる。 In order to produce the color filter 41c, first, a resin material to which a pigment or a dye is added is covered with a first light emitting unit 41 and a wavelength conversion member 41b by using a film forming technique such as a photolithography method or a screen printing method. To form a film. After that, the color filter 41c can be manufactured by curing the formed resin material by heating or irradiation with ultraviolet rays.
 波長変換部材41bおよびカラーフィルタ41cは、キャビティ構造体30を作製した後、すなわち第1基板2と第2基板3とを接合した後に作製されてもよい。波長変換部材41bおよびカラーフィルタ41cは、キャビティ構造体30を作製する前、すなわち第1基板2と第2基板3とを接合する前に作製されてもよい。 The wavelength conversion member 41b and the color filter 41c may be manufactured after the cavity structure 30 is manufactured, that is, after the first substrate 2 and the second substrate 3 are joined. The wavelength conversion member 41b and the color filter 41c may be manufactured before the cavity structure 30 is manufactured, that is, before the first substrate 2 and the second substrate 3 are joined.
 第1発光部41は、第1発光素子41aおよび波長変換部材41bを備えていることから、第2発光素子42aを備え、波長変換部材を備えていない第2発光部42と、第1発光素子41aを備え、波長変換部材を備えていない第3発光部43と比較して、同じ駆動電流を入力しても光の外部取り出し効率が低下しやすい。すなわち、第1発光部41は、第2発光部42および第3発光部43と比較して、同じ駆動電流を入力しても輝度が低下しやすい。従って、同じ輝度を得る場合、第1発光部41に備わった第1発光素子41aに入力する駆動電流(第1駆動電流とする)を、第2発光部42に備わった第2発光素子42aに入力する駆動電流(第2駆動電流とする)および第3発光部43に備わった第1発光素子41aに入力する駆動電流(第3駆動電流とする)のそれぞれよりも大きくしてもよい。第1駆動電流の電流値は、第2駆動電流の電流値および第3駆動電流の電流値のそれぞれの1倍を超え3倍程度以下に設定してもよいが、この範囲に限らない。 Since the first light emitting unit 41 includes the first light emitting element 41a and the wavelength conversion member 41b, the second light emitting unit 42 having the second light emitting element 42a and not having the wavelength conversion member, and the first light emitting element. Compared with the third light emitting unit 43 which has 41a and does not have a wavelength conversion member, the efficiency of extracting light to the outside tends to decrease even if the same drive current is input. That is, the brightness of the first light emitting unit 41 is likely to decrease even if the same drive current is input, as compared with the second light emitting unit 42 and the third light emitting unit 43. Therefore, when the same brightness is obtained, the drive current (referred to as the first drive current) input to the first light emitting element 41a provided in the first light emitting unit 41 is transferred to the second light emitting element 42a provided in the second light emitting unit 42. It may be larger than each of the input drive current (referred to as the second drive current) and the drive current input to the first light emitting element 41a provided in the third light emitting unit 43 (referred to as the third drive current). The current value of the first drive current may be set to more than 1 times and not more than 3 times each of the current value of the second drive current and the current value of the third drive current, but is not limited to this range.
 キャビティ構造体30は、例えば図1に示すように、第1電極(アノード電極ともいう)7および第2電極(カソード電極ともいう)8を有している。アノード電極7およびカソード電極8は、凹部301の底面301bに配置されている。図2では、アノード電極7およびカソード電極8を省略して図示している。本実施形態では、例えば図1に示すように、凹部301の底面301bに、3つのアノード電極7a,7b,7cおよびカソード電極8が設けられている。3つのアノード電極7a,7b,7cには、第1発光素子41aのアノード端子、第2発光素子のアノード端子および第3発光素子43aのアノード端子がそれぞれ電気的に接続されている。カソード電極8には、第1発光素子41aのカソード端子、第2発光素子のカソード端子および第3発光素子43aのカソード端子が電気的に接続されている。 As shown in FIG. 1, for example, the cavity structure 30 has a first electrode (also referred to as an anode electrode) 7 and a second electrode (also referred to as a cathode electrode) 8. The anode electrode 7 and the cathode electrode 8 are arranged on the bottom surface 301b of the recess 301. In FIG. 2, the anode electrode 7 and the cathode electrode 8 are omitted. In the present embodiment, for example, as shown in FIG. 1, three anode electrodes 7a, 7b, 7c and a cathode electrode 8 are provided on the bottom surface 301b of the recess 301. The anode terminal of the first light emitting element 41a, the anode terminal of the second light emitting element, and the anode terminal of the third light emitting element 43a are electrically connected to the three anode electrodes 7a, 7b, and 7c, respectively. The cathode terminal of the first light emitting element 41a, the cathode terminal of the second light emitting element, and the cathode terminal of the third light emitting element 43a are electrically connected to the cathode electrode 8.
 第1発光素子41aは、例えば図1に示すように、アノード電極7aおよびカソード電極8に対してフリップチップ接続されていてもよい。第2発光素子42aは、アノード電極7bおよびカソード電極8に対してフリップチップ接続されていてもよい。第3発光素子43aは、アノード電極7cおよびカソード電極8に対してフリップチップ接続されていてもよい。発光素子4aとアノード電極7およびカソード電極8とは、はんだボール、金属バンプ、導電性接着剤、異方性導電膜(Anisotropic Conductive Film:ACF)等の導電性接続部材を用いたフリップチップ接続によって、電気的および機械的に接続されていてもよい。なお、発光素子4aとアノード電極7およびカソード電極8との接続は、フリップチップ接続に限られない。発光素子4aとアノード電極7およびカソード電極8とは、ボンディングワイヤ等の導電性接続部材を用いて、電気的に接続されていてもよい。 The first light emitting element 41a may be flip-chip connected to the anode electrode 7a and the cathode electrode 8 as shown in FIG. 1, for example. The second light emitting element 42a may be flip-chip connected to the anode electrode 7b and the cathode electrode 8. The third light emitting element 43a may be flip-chip connected to the anode electrode 7c and the cathode electrode 8. The light emitting element 4a and the anode electrode 7 and the cathode electrode 8 are connected by flip-chip connection using a conductive connecting member such as a solder ball, a metal bump, a conductive adhesive, and an anisotropic conductive film (ACF). , Electrically and mechanically connected. The connection between the light emitting element 4a and the anode electrode 7 and the cathode electrode 8 is not limited to the flip chip connection. The light emitting element 4a, the anode electrode 7, and the cathode electrode 8 may be electrically connected by using a conductive connecting member such as a bonding wire.
 発光素子4aは、アノード電極7およびカソード電極8にフリップチップ接続(横型接続)される接続形態でなくてもよく、縦型接続の接続形態であってもよい。縦型接続は、上面にカソード端子が位置し下面にアノード端子が位置する発光素子4aを、その状態(縦置きの状態)で凹部301の底面301bに搭載し、アノード端子をアノード電極7に接続し、カソード端子をカソード電極8に接続する接続形態である。この場合、カソード電極8は、ITO(Indium Tin Oxide)等の透明電極であってもよい。 The light emitting element 4a does not have to be a connection form in which a flip chip connection (horizontal connection) is made to the anode electrode 7 and the cathode electrode 8, and may be a connection form in which a vertical connection is made. In the vertical connection, the light emitting element 4a having the cathode terminal located on the upper surface and the anode terminal located on the lower surface is mounted on the bottom surface 301b of the recess 301 in that state (vertically placed state), and the anode terminal is connected to the anode electrode 7. It is a connection form in which the cathode terminal is connected to the cathode electrode 8. In this case, the cathode electrode 8 may be a transparent electrode such as ITO (Indium Tin Oxide).
 第1基板2が金属材料または半導体材料から成る場合、第1基板2の少なくとも第3面2a上に酸化珪素、窒化珪素等から成る絶縁層を配置し、該絶縁層上にアノード電極7およびカソード電極8を配置してもよい。これにより、発光素子4aとアノード電極7およびカソード電極8とを電気的に接続した際に、発光素子4aのアノード端子とカソード端子とが電気的に短絡することを抑制できる。 When the first substrate 2 is made of a metal material or a semiconductor material, an insulating layer made of silicon oxide, silicon nitride or the like is arranged on at least the third surface 2a of the first substrate 2, and the anode electrode 7 and the cathode are placed on the insulating layer. The electrode 8 may be arranged. As a result, when the light emitting element 4a is electrically connected to the anode electrode 7 and the cathode electrode 8, it is possible to prevent the anode terminal and the cathode terminal of the light emitting element 4a from being electrically short-circuited.
 アノード電極7およびカソード電極8は、駆動回路に接続されている。駆動回路は、発光素子4aの発光、非発光、発光強度等を制御することができる。駆動回路は、例えば、第1基板2の第3面2a上に配置されていてもよく、第1基板2の第4面2b上に配置されていてもよい。駆動回路は、第3面2a上または第4面2b上に配置された、酸化珪素、窒化珪素等から成る複数の絶縁層の層間に配置されていてもよい。 The anode electrode 7 and the cathode electrode 8 are connected to the drive circuit. The drive circuit can control light emission, non-light emission, light emission intensity, and the like of the light emitting element 4a. The drive circuit may be arranged, for example, on the third surface 2a of the first substrate 2 or may be arranged on the fourth surface 2b of the first substrate 2. The drive circuit may be arranged between layers of a plurality of insulating layers made of silicon oxide, silicon nitride, or the like, which are arranged on the third surface 2a or the fourth surface 2b.
 駆動回路は、薄膜トランジスタ(Thin Film Transistor:TFT)および配線導体等を含んで構成される。TFTは、例えば、アモルファスシリコン(a-Si)、低温多結晶シリコン(Low-Temperature Poly Silicon:LTPS)等から成る半導体膜(チャネルともいう)を有していてもよい。TFTは、ゲート電極、ソース電極およびドレイン電極の3端子を有していてもよい。TFTは、ゲート電極に印加される電圧に応じてソース電極とドレイン電極との間の導通と非導通とを切り替えるスイッチング素子として機能する。駆動回路は、化学的気相成長(Chemical Vapor Deposition:CVD)法等の薄膜形成法を用いて形成されていてもよい。 The drive circuit includes a thin film transistor (TFT), a wiring conductor, and the like. The TFT may have, for example, a semiconductor film (also referred to as a channel) made of amorphous silicon (a-Si), low-Temperature Poly Silicon (LTPS), or the like. The TFT may have three terminals, a gate electrode, a source electrode, and a drain electrode. The TFT functions as a switching element that switches between conduction and non-conduction between the source electrode and the drain electrode according to the voltage applied to the gate electrode. The drive circuit may be formed by using a thin film forming method such as a chemical vapor deposition (CVD) method.
 駆動回路は、IC(Integrated Circuit)、LSI(large Scale Integrated Circuit)等の半導体集積回路素子であってもよい。 The drive circuit may be a semiconductor integrated circuit element such as an IC (Integrated Circuit) or an LSI (large Scale Integrated Circuit).
 表示装置1は、発光素子4aから出射された光が凹部301の内周面301cで少なくとも1回反射するように構成されていてもよい。これにより、凹部301の内部から凹部301の外部に出射される光を平行光に近付けることができるため、表示装置1から出射される画像光の指向性を高めることが可能になる。発光素子4aの出射光を内周面301cで少なくとも1回反射させるには、例えば、第2基板3の厚みを第1基板2の厚みよりも厚くしてもよい。すなわち、貫通孔31の深さを深くしてもよい。表示装置1は、例えば、発光素子4aの出射光の強度分布等に基づいて、第2基板3の厚み、凹部301または貫通孔31の形状、凹部301または貫通孔31と発光素子4aとの寸法比率等を適宜設計することによって、発光素子4aの出射光が凹部301の内周面301cで少なくとも1回反射するように構成されてもよい。 The display device 1 may be configured such that the light emitted from the light emitting element 4a is reflected at least once on the inner peripheral surface 301c of the recess 301. As a result, the light emitted from the inside of the recess 301 to the outside of the recess 301 can be brought close to the parallel light, so that the directivity of the image light emitted from the display device 1 can be improved. In order to reflect the emitted light of the light emitting element 4a at least once on the inner peripheral surface 301c, for example, the thickness of the second substrate 3 may be thicker than the thickness of the first substrate 2. That is, the depth of the through hole 31 may be increased. The display device 1 has, for example, the thickness of the second substrate 3, the shape of the recess 301 or the through hole 31, and the dimensions of the recess 301 or the through hole 31 and the light emitting element 4a based on, for example, the intensity distribution of the emitted light of the light emitting element 4a. By appropriately designing the ratio and the like, the emitted light of the light emitting element 4a may be configured to be reflected at least once on the inner peripheral surface 301c of the recess 301.
 凹部301は、第1波長の光と第2波長の光と第3波長の光のそれぞれを、内周面において複数回反射させる深さを有している構成であってもよい。凹部301の内部から凹部301の外部に出射される光を平行光に近付ける効果(収束効果)をより向上させることができる。凹部301の深さは、発光素子4aの高さの3倍~10倍程度であってもよく、5倍~10倍程度であってもよいが、これらの範囲に限らない。 The recess 301 may have a depth that reflects light of the first wavelength, light of the second wavelength, and light of the third wavelength a plurality of times on the inner peripheral surface. It is possible to further improve the effect (convergence effect) of bringing the light emitted from the inside of the recess 301 to the outside of the recess 301 closer to the parallel light. The depth of the recess 301 may be about 3 to 10 times the height of the light emitting element 4a, or may be about 5 to 10 times, but is not limited to these ranges.
 キャビティ構造体30は、凹部301の内周面301cが鏡面であってもよい。これにより、凹部301の内周面301cにおける発光素子4aの出射光の反射率を高め、発光素子4aの出射光が内周面301cにおいて反射する際の損失を低減できる。その結果、発光素子4aの出射光の装置外への取り出し効率を向上させることができ、ひいては、高輝度の画像表示を行うことができる。 In the cavity structure 30, the inner peripheral surface 301c of the recess 301 may be a mirror surface. As a result, the reflectance of the emitted light of the light emitting element 4a on the inner peripheral surface 301c of the recess 301 can be increased, and the loss when the emitted light of the light emitting element 4a is reflected on the inner peripheral surface 301c can be reduced. As a result, it is possible to improve the efficiency of taking out the emitted light of the light emitting element 4a to the outside of the device, and it is possible to display a high-luminance image.
 凹部301の内周面301cには、例えば、電界研磨、化学研磨等の鏡面加工が施されていてもよい。凹部301は、内周面301cの表面粗さRaが、例えば、0.01μm程度以上0.1μm程度以下であってもよい。凹部301は、可視光に対する内周面301cの反射率が、例えば、85%程度以上95%程度以下であってもよい。 The inner peripheral surface 301c of the recess 301 may be mirror-finished, for example, by electric field polishing or chemical polishing. The surface roughness Ra of the inner peripheral surface 301c of the recess 301 may be, for example, about 0.01 μm or more and about 0.1 μm or less. The reflectance of the inner peripheral surface 301c of the recess 301 with respect to visible light may be, for example, about 85% or more and about 95% or less.
 表示装置1は、例えば図4に示すように、凹部301の内周面301c上に設けられた光反射膜9を備えていてもよい。これにより、キャビティ構造体30を構成する材料、内周面301cの表面粗さRa等に拘らず、凹部301内における光の反射率を高め、発光部4の出射光が凹部301内で反射する際の損失を低減できる。その結果、表示装置1は、発光部4から出射された光の装置外への取り出し効率を向上させることができ、高輝度の画像表示を行うことができる。 As shown in FIG. 4, for example, the display device 1 may include a light reflecting film 9 provided on the inner peripheral surface 301c of the recess 301. As a result, regardless of the material constituting the cavity structure 30, the surface roughness Ra of the inner peripheral surface 301c, etc., the reflectance of light in the recess 301 is increased, and the emitted light of the light emitting portion 4 is reflected in the recess 301. The loss can be reduced. As a result, the display device 1 can improve the efficiency of taking out the light emitted from the light emitting unit 4 to the outside of the device, and can display a high-luminance image.
 光反射膜9は、例えば金属材料等から成っていてもよい。光反射膜9に用いられる金属材料としては、例えば、アルミニウム、銀、金等が挙げられる。 The light reflecting film 9 may be made of, for example, a metal material. Examples of the metal material used for the light reflecting film 9 include aluminum, silver, and gold.
 光反射膜9は、凹部301の内周面301cに、CVD法、蒸着法、メッキ法等の薄膜形成方法を用いて形成されてもよく、アルミニウム、銀、金等を含む粒子を含む樹脂ペーストを焼成し固化させる厚膜形成方法等の膜形成法を用いて形成されてもよい。光反射膜9は、凹部301の内周面301cに、アルミニウム、銀、金等を含むフィルムまたは上記合金のフィルムを接合する接合法を用いて形成されてもよい。光反射膜9の外表面には、光反射膜9の酸化による反射率の低下を抑制するための保護膜が設けられていてもよい。 The light reflective film 9 may be formed on the inner peripheral surface 301c of the recess 301 by using a thin film forming method such as a CVD method, a vapor deposition method, or a plating method, and is a resin paste containing particles containing aluminum, silver, gold, and the like. It may be formed by using a film forming method such as a thick film forming method in which a film is fired and solidified. The light reflecting film 9 may be formed by a joining method in which a film containing aluminum, silver, gold, or the like or a film of the above alloy is joined to the inner peripheral surface 301c of the recess 301. The outer surface of the light-reflecting film 9 may be provided with a protective film for suppressing a decrease in reflectance due to oxidation of the light-reflecting film 9.
 キャビティ構造体30は、第1面30aがブラスト処理等によって粗面化されていてもよい。第1面30aを粗面化することによって、第1面30aの表面積を増加させることができる。これにより、発光部4から発生する熱が、キャビティ構造体30の第1面30aを介して、外部に放熱されやすくなる。その結果、表示装置1は、発光部4の温度上昇に伴う色再現性の低下および表示画像の表示むらを抑制できる。 The first surface 30a of the cavity structure 30 may be roughened by blasting or the like. By roughening the first surface 30a, the surface area of the first surface 30a can be increased. As a result, the heat generated from the light emitting unit 4 is easily dissipated to the outside through the first surface 30a of the cavity structure 30. As a result, the display device 1 can suppress the deterioration of the color reproducibility and the display unevenness of the displayed image due to the temperature rise of the light emitting unit 4.
 また、第1面30aを粗面化することによって、第1面30aに向かって入射してくる外光を第1面30aにおいて乱反射させることができる。その結果、外光の反射光が表示装置1から出射される画像光に干渉することを抑制でき、ひいては、表示装置1の表示品位の低下を抑制できる。 Further, by roughening the first surface 30a, the external light incident on the first surface 30a can be diffusely reflected on the first surface 30a. As a result, it is possible to suppress the reflected light of the external light from interfering with the image light emitted from the display device 1, and it is possible to suppress the deterioration of the display quality of the display device 1.
 表示装置1は、例えば図4に示すように、キャビティ構造体30の第1面30a上に配置された光吸収膜10を備えていてもよい。光吸収膜10は、第1面30aに向かって入射してくる外光を吸収することができる。表示装置1は、第1面30aにおける外光の反射を低減できるため、外光の反射光が表示装置1から出射される画像光に干渉することを抑制できる。ひいては、表示装置1の表示品位の低下を抑制できる。 As shown in FIG. 4, for example, the display device 1 may include a light absorption film 10 arranged on the first surface 30a of the cavity structure 30. The light absorption film 10 can absorb external light incident on the first surface 30a. Since the display device 1 can reduce the reflection of the external light on the first surface 30a, it is possible to suppress the reflected light of the external light from interfering with the image light emitted from the display device 1. As a result, deterioration of the display quality of the display device 1 can be suppressed.
 光吸収膜10は、例えば、光吸収材料を含有する光硬化性または熱硬化性の樹脂材料を、キャビティ構造体30の第1面30aに塗布し、硬化させることによって形成されてもよい。光吸収材料は、例えば、無機顔料であってもよい。無機顔料は、例えば、カーボンブラックなどの炭素系顔料、チタンブラックなどの窒化物系顔料、Cr-Fe-Co系、Cu-Co-Mn(マンガン)系、Fe-Co-Mn系、Fe-Co-Ni-Cr系等の金属酸化物系顔料等であってもよい。 The light absorption film 10 may be formed, for example, by applying a photocurable or thermosetting resin material containing a light absorption material to the first surface 30a of the cavity structure 30 and curing it. The light absorbing material may be, for example, an inorganic pigment. The inorganic pigments include, for example, carbon-based pigments such as carbon black, nitride-based pigments such as titanium black, Cr-Fe-Co-based, Cu-Co-Mn (manganese) -based, Fe-Co-Mn-based, and Fe-Co. -A metal oxide pigment such as Ni—Cr may be used.
 光吸収膜10は、表面に入射光を吸収する凹凸構造を有していてもよい。例えば、光吸収膜10は、シリコーン樹脂等の母材中にカーボンブラック等の黒色顔料を混入させて形成された黒色膜であって、黒色膜の表面に凹凸構造が形成された構成であってもよい。この場合、光吸収性が格段に向上する。凹凸構造の算術平均粗さは、10μm~50μm程度であってもよく、20μm~30μm程度であってもよい。凹凸構造は、例えば転写法等によって形成されていてもよい。 The light absorbing film 10 may have a concave-convex structure on its surface that absorbs incident light. For example, the light absorbing film 10 is a black film formed by mixing a black pigment such as carbon black into a base material such as a silicone resin, and has a structure in which an uneven structure is formed on the surface of the black film. May be good. In this case, the light absorption is significantly improved. The arithmetic average roughness of the uneven structure may be about 10 μm to 50 μm, or may be about 20 μm to 30 μm. The uneven structure may be formed by, for example, a transfer method.
 表示装置1は、例えば図5に示すように、透明体11を備えていてもよい。透明体11は、凹部301内に配置され、発光部4を封止している。透明体11は、発光部4の表面および凹部301の内周面301cに接していてもよい。 The display device 1 may include a transparent body 11 as shown in FIG. 5, for example. The transparent body 11 is arranged in the recess 301 and seals the light emitting portion 4. The transparent body 11 may be in contact with the surface of the light emitting portion 4 and the inner peripheral surface 301c of the recess 301.
 透明体11は、透明樹脂材料等から成る。透明体11に用いられる透明樹脂材料としては、例えば、フッ素樹脂、シリコーン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリメタクリル酸メチル樹脂等が挙げられる。 The transparent body 11 is made of a transparent resin material or the like. Examples of the transparent resin material used for the transparent body 11 include fluororesin, silicone resin, acrylic resin, polycarbonate resin, polymethylmethacrylate resin and the like.
 凹部301内に透明体11が配置されている場合、凹部301内に空気等の気体が充填されている場合と比較して、発光部4からキャビティ構造体30に至る放熱経路(または熱伝達経路)の熱抵抗を減少させることができる。したがって、表示装置1は、発光部4から生じる熱を、キャビティ構造体30を介して、外部に効果的に放熱することができる。その結果、表示装置1は、発光部4の温度上昇に伴う色再現性の低下および表示画像の表示むらを抑制できる。 When the transparent body 11 is arranged in the recess 301, the heat dissipation path (or heat transfer path) from the light emitting unit 4 to the cavity structure 30 is compared with the case where the recess 301 is filled with a gas such as air. ) Thermal resistance can be reduced. Therefore, the display device 1 can effectively dissipate the heat generated from the light emitting unit 4 to the outside through the cavity structure 30. As a result, the display device 1 can suppress the deterioration of the color reproducibility and the display unevenness of the displayed image due to the temperature rise of the light emitting unit 4.
 また、表示装置1は、透明体11を有することによって、長期間使用された場合であっても、発光素子4aが位置ずれしたり、発光素子4aが実装部位2aaから剥離したりすることを抑制できる。このため、表示装置1によれば、長期信頼性が向上した表示装置とすることができる。 Further, by having the transparent body 11, the display device 1 suppresses the position shift of the light emitting element 4a and the peeling of the light emitting element 4a from the mounting portion 2aa even when used for a long period of time. can. Therefore, according to the display device 1, the display device with improved long-term reliability can be obtained.
 透明体11は、透明樹脂材料から成る本体部と、該本体部の内部に分散している複数の絶縁粒子とを有して構成されていてもよい。本体部に用いられる透明樹脂材料としては、例えば、フッ素樹脂、シリコーン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリメタクリル酸メチル樹脂等が挙げられる。絶縁粒子は、例えば、ガラス材料、セラミック材料等から成る。絶縁粒子に用いられるガラス材料としては、例えば、ホウケイ酸ガラス、結晶化ガラス、石英、ソーダガラス等が挙げられる。絶縁粒子に用いられるセラミック材料としては、例えば、アルミナ、窒化アルミニウム、窒化珪素等が挙げられる。絶縁粒子は、本体部よりも高い屈折率を有するガラス材料から成っていてもよく、可視光に対する高い光反射率を有するセラミック材料から成っていてもよい。 The transparent body 11 may be configured to have a main body portion made of a transparent resin material and a plurality of insulating particles dispersed inside the main body portion. Examples of the transparent resin material used for the main body include fluororesin, silicone resin, acrylic resin, polycarbonate resin, polymethylmethacrylate resin and the like. The insulating particles are made of, for example, a glass material, a ceramic material, or the like. Examples of the glass material used for the insulating particles include borosilicate glass, crystallized glass, quartz, soda glass and the like. Examples of the ceramic material used for the insulating particles include alumina, aluminum nitride, silicon nitride and the like. The insulating particles may be made of a glass material having a higher refractive index than that of the main body, or may be made of a ceramic material having a high light reflectance for visible light.
 絶縁粒子は、透明体11に入射した外光を散乱し、透明体11に入射した外光の一部を装置外に向かって反射することができる。このため、表示装置1は、透明体11に入射した外光が、凹部301内において反射し、発光部4の出射光に干渉することを抑制できる。これにより、外光が表示装置1から出射される画像光に干渉することを抑制でき、ひいては、表示装置1の表示品位の低下を抑制できる。 The insulating particles can scatter the external light incident on the transparent body 11 and reflect a part of the external light incident on the transparent body 11 toward the outside of the device. Therefore, the display device 1 can suppress the external light incident on the transparent body 11 from being reflected in the recess 301 and interfering with the emitted light of the light emitting unit 4. As a result, it is possible to suppress the external light from interfering with the image light emitted from the display device 1, and it is possible to suppress the deterioration of the display quality of the display device 1.
 絶縁粒子が透明なガラス材料、透明な樹脂材料から成る場合、絶縁粒子を着色させることによって、絶縁粒子にカラーフィルタとしての機能を付与してもよい。 When the insulating particles are made of a transparent glass material or a transparent resin material, the insulating particles may be given a function as a color filter by coloring the insulating particles.
 凹部301の底面301bにおいて、第1発光部41と第3発光部43が、平面視で第2発光部42を中心として対称な位置にあってもよい。これにより、表示画像の表示むらをより低減できる。対称な位置は、線対称の位置、回転対称の位置であってもよい。またこの場合、第2発光部42が底面301bの中心に位置していてもよい。これにより、表示画像の表示むらをより低減できる。 On the bottom surface 301b of the recess 301, the first light emitting unit 41 and the third light emitting unit 43 may be positioned symmetrically with respect to the second light emitting unit 42 in a plan view. This makes it possible to further reduce the display unevenness of the displayed image. The symmetric position may be a line symmetric position or a rotationally symmetric position. Further, in this case, the second light emitting unit 42 may be located at the center of the bottom surface 301b. This makes it possible to further reduce the display unevenness of the displayed image.
 また、底面301bの平面視における形状が、長方形、楕円形等の長軸および短軸を有する形状である場合、第1発光部41と第2発光部42と第3発光部43が平面視で底面301bの長軸上にあり、第1発光部41と第3発光部43が、平面視で第2発光部42を中心として対称な位置にあってもよい。これにより、表示画像の表示むらをより低減できる。またこの場合、第2発光部42が底面301bの中心に位置していてもよい。これにより、表示画像の表示むらをより低減できる。 Further, when the shape of the bottom surface 301b in a plan view is a shape having a long axis and a short axis such as a rectangle or an ellipse, the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43 are viewed in a plan view. The first light emitting unit 41 and the third light emitting unit 43 may be located on the long axis of the bottom surface 301b and are positioned symmetrically with respect to the second light emitting unit 42 in a plan view. This makes it possible to further reduce the display unevenness of the displayed image. Further, in this case, the second light emitting unit 42 may be located at the center of the bottom surface 301b. This makes it possible to further reduce the display unevenness of the displayed image.
 凹部301の底面301bにおいて、第1発光部41と第2発光部42と第3発光部43が、平面視で正三角形の各頂点に位置する構成であってもよい。これにより、表示画像の表示むらをより低減できる。またこの場合、上記正三角形の中心が底面301bの中心に位置していてもよい。これにより、表示画像の表示むらをより低減できる。 On the bottom surface 301b of the recess 301, the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43 may be configured to be located at each apex of an equilateral triangle in a plan view. This makes it possible to further reduce the display unevenness of the displayed image. In this case, the center of the equilateral triangle may be located at the center of the bottom surface 301b. This makes it possible to further reduce the display unevenness of the displayed image.
 次に、本開示の他の実施形態に係る表示装置について説明する。図6は、本開示の他の実施形態に係る表示装置を模式的に示す平面図であり、図7は、図6の切断面線A3-A4で切断した断面図であり、図8A~8E,9は、図6の表示装置の変形例を模式的に示す断面図である。図6では、光吸収膜を省略して図示している。図7では、アノード電極およびカソード電極を省略して図示している。図8A~8E,9に示す断面図は、図7に示す断面図に対応する。以下では、上記実施形態の構成と共通または類似する構成については、同じ参照符号を付して詳細な説明は省略する。 Next, the display device according to another embodiment of the present disclosure will be described. 6 is a plan view schematically showing a display device according to another embodiment of the present disclosure, and FIG. 7 is a cross-sectional view taken along the cutting plane line A3-A4 of FIG. 6, and FIGS. 8A to 8E. , 9 are cross-sectional views schematically showing a modified example of the display device of FIG. In FIG. 6, the light absorption film is omitted. In FIG. 7, the anode electrode and the cathode electrode are omitted. The cross-sectional views shown in FIGS. 8A to 8E and 9 correspond to the cross-sectional views shown in FIG. 7. In the following, the same reference numerals will be given to the configurations common to or similar to the configurations of the above embodiments, and detailed description thereof will be omitted.
 本実施形態の表示装置1Aは、例えば図6,7に示すように、凹部301は、第1発光部41が位置する第1凹部303と、第2発光部42および第3発光部43が位置する第2凹部304と、から構成されていてもよい。即ち、凹部301内に位置する壁部(第1壁部ともいう)302を備える。壁部302は、凹部301を、第1発光部41が位置している第1凹部303と、第2発光部42および第3発光部43が位置している第2凹部304とに分割していてもよい。これにより、第2発光部42の出射光および第3発光部43の出射光が、第1発光部41の波長変換部材41bに入射し、第1波長λ1の光に変換されてしまうことを抑制できる。その結果、発光部4の色再現性を向上させることができ、ひいては、表示装置の色再現性を向上させることができる。 In the display device 1A of the present embodiment, for example, as shown in FIGS. It may be composed of the second recess 304 and the second recess 304. That is, a wall portion (also referred to as a first wall portion) 302 located in the recess 301 is provided. The wall portion 302 divides the recess 301 into a first recess 303 in which the first light emitting portion 41 is located and a second recess 304 in which the second light emitting portion 42 and the third light emitting portion 43 are located. You may. As a result, it is possible to prevent the emitted light of the second light emitting unit 42 and the emitted light of the third light emitting unit 43 from being incident on the wavelength conversion member 41b of the first light emitting unit 41 and being converted into the light having the first wavelength λ1. can. As a result, the color reproducibility of the light emitting unit 4 can be improved, and by extension, the color reproducibility of the display device can be improved.
 壁部302は、キャビティ構造体30とは別個に作製された部材であってもよく、キャビティ構造体30と一体的に形成された部材であってもよい。 The wall portion 302 may be a member manufactured separately from the cavity structure 30, or may be a member integrally formed with the cavity structure 30.
 壁部302が透明材料または透光性材料から成る場合、壁部302における第2発光部42および第3発光部43に臨む側面上、および、壁部302における第1発光部41に臨む側面上の少なくとも一方に、光反射膜が設けられていてもよい。これにより、第2発光部42の出射光および第3発光部43の出射光が、壁部302を通過して第1凹部303内に進入し、波長変換部材41bに入射する虞を低減できる。その結果、発光部4の色再現性を向上させることができ、ひいては、表示装置の色再現性を向上させることができる。 When the wall portion 302 is made of a transparent material or a translucent material, it is on the side surface of the wall portion 302 facing the second light emitting portion 42 and the third light emitting portion 43, and on the side surface of the wall portion 302 facing the first light emitting portion 41. A light reflecting film may be provided on at least one of the above. As a result, it is possible to reduce the possibility that the emitted light of the second light emitting unit 42 and the emitted light of the third light emitting unit 43 pass through the wall portion 302 and enter the first recess 303 and enter the wavelength conversion member 41b. As a result, the color reproducibility of the light emitting unit 4 can be improved, and by extension, the color reproducibility of the display device can be improved.
 表示装置1Aの波長変換部材41bは、例えば次のように作製することができる。先ず、凹部301内に壁部302が配置されたキャビティ構造体30を作製するとともに、蛍光体または量子ドットを含有する絶縁樹脂材料をインク状にする。次に、インク状にした絶縁樹脂材料を、インクジェット技術を用いて、第1発光素子41aを覆うように、第1凹部303内に吐出する。その後、絶縁樹脂材料を加熱または紫外線照射によって硬化させることによって、図7,8に示すような波長変換部材41bを作製することができる。 The wavelength conversion member 41b of the display device 1A can be manufactured, for example, as follows. First, the cavity structure 30 in which the wall portion 302 is arranged in the recess 301 is manufactured, and the insulating resin material containing the phosphor or the quantum dot is made into an ink form. Next, the ink-shaped insulating resin material is discharged into the first recess 303 so as to cover the first light emitting element 41a by using inkjet technology. After that, the wavelength conversion member 41b as shown in FIGS. 7 and 8 can be manufactured by curing the insulating resin material by heating or irradiation with ultraviolet rays.
 また、表示装置1Aのカラーフィルタ41cは、例えば次のように作製することができる。先ず、波長変換部材41bを上記のように作製するとともに、顔料または染料を添加した樹脂材料をインク状にする。次に、インク状にした樹脂材料を、インクジェット技術を用いて、第1発光素子41aおよび波長変換部材41bを覆うように、第1凹部303内に吐出する。その後、樹脂材料を加熱または紫外線照射によって硬化させることによって、図7に示すようなカラーフィルタ41cを作製することができる。 Further, the color filter 41c of the display device 1A can be manufactured, for example, as follows. First, the wavelength conversion member 41b is manufactured as described above, and the resin material to which the pigment or dye is added is made into an ink form. Next, the ink-shaped resin material is discharged into the first recess 303 so as to cover the first light emitting element 41a and the wavelength conversion member 41b by using inkjet technology. Then, by curing the resin material by heating or irradiation with ultraviolet rays, the color filter 41c as shown in FIG. 7 can be produced.
 なお、表示装置1が壁部302を備える場合、カラーフィルタ41cは、顔料または染料を添加した樹脂材料を用いて予め作製したカラーフィルタを、例えば図8Aに示すように、第1凹部303内に配置することによって作製されてもよい。 When the display device 1 includes the wall portion 302, the color filter 41c is a color filter prepared in advance using a resin material to which a pigment or a dye is added, in the first recess 303, for example, as shown in FIG. 8A. It may be produced by arranging.
 図8Bは、図8Aの構成において、第1発光素子41aの上面が波長変換部材41bの下面に接している構成を示す。第1発光素子41aの上面以外の部位は、透明樹脂材料等から成る透明体41dに埋設されている。この構成の場合、波長変換部材41bにおける波長変換に寄与する部位を増大させることができる。即ち、図8Aの構成の場合は波長変換部材41bの下端部は波長変換に寄与しにくい部位となっているが、図8Bの構成の場合は波長変換部材41bの全体が波長変換に寄与する。 FIG. 8B shows a configuration in which the upper surface of the first light emitting element 41a is in contact with the lower surface of the wavelength conversion member 41b in the configuration of FIG. 8A. A portion other than the upper surface of the first light emitting element 41a is embedded in a transparent body 41d made of a transparent resin material or the like. In the case of this configuration, it is possible to increase the number of portions of the wavelength conversion member 41b that contribute to wavelength conversion. That is, in the case of the configuration of FIG. 8A, the lower end portion of the wavelength conversion member 41b is a portion that does not easily contribute to the wavelength conversion, but in the case of the configuration of FIG. 8B, the entire wavelength conversion member 41b contributes to the wavelength conversion.
 図8Cは、図8Bの構成において、透明体41dが第1基板2と第2基板3との間に入り込んでいる構成である。この場合、透明体41dが第1基板2と第2基板3とを固定させる固定部材としても機能し、第1基板2と第2基板3とが強固に固定される。 FIG. 8C is a configuration in which the transparent body 41d is inserted between the first substrate 2 and the second substrate 3 in the configuration of FIG. 8B. In this case, the transparent body 41d also functions as a fixing member for fixing the first substrate 2 and the second substrate 3, and the first substrate 2 and the second substrate 3 are firmly fixed.
 図8Dは、図8Bの構成において、第1発光素子41aの上方に第1発光素子41aと離隔して波長変換部材41bが位置している構成である。第1発光素子41aは、全体が透明体41dに埋設されている。この場合、図8Bと同様の効果を奏する。 FIG. 8D is a configuration in which the wavelength conversion member 41b is located above the first light emitting element 41a at a distance from the first light emitting element 41a in the configuration of FIG. 8B. The first light emitting element 41a is entirely embedded in the transparent body 41d. In this case, the same effect as in FIG. 8B is obtained.
 図8Eは、図8Dの構成において、透明体41dが第1基板2と第2基板3との間に入り込んでいる構成である。この場合、図8Cと同様の効果を奏する。 FIG. 8E is a configuration in which the transparent body 41d is inserted between the first substrate 2 and the second substrate 3 in the configuration of FIG. 8D. In this case, the same effect as in FIG. 8C is obtained.
 表示装置1Aは、例えば図9に示すように、凹部301は、第1発光部41が位置する第1凹部303と、第2発光部42が位置する第2凹部と、第3発光部43が位置する第3凹部と、から構成されていてもよい。 In the display device 1A, for example, as shown in FIG. 9, the recess 301 includes a first recess 303 in which the first light emitting unit 41 is located, a second recess in which the second light emitting unit 42 is located, and a third light emitting unit 43. It may be composed of a third recess located.
 換言すると、第2凹部304内に位置する第2壁部305を備えていてもよい。第2壁部305は、第2凹部304を、第2発光部42が位置している第3凹部306と、第3発光部43が位置している第4凹部307とに分割していてもよい。即ち、第2発光部42が位置する第2凹部を第3凹部306とし、第3発光部43が位置する第3凹部を第4凹部307としてもよい。これにより、第2発光部42の出射光および第3発光部43の出射光が、第1発光部41の波長変換部材41bに入射し、第1波長λ1の光に変換されてしまうことを効果的に抑制できる。その結果、発光部4の色再現性を向上させることができ、ひいては、表示装置の色再現性を向上させることができる。 In other words, the second wall portion 305 located in the second recess 304 may be provided. Even if the second wall portion 305 divides the second recess 304 into a third recess 306 in which the second light emitting portion 42 is located and a fourth recess 307 in which the third light emitting portion 43 is located. good. That is, the second concave portion in which the second light emitting portion 42 is located may be referred to as the third concave portion 306, and the third concave portion in which the third light emitting portion 43 is located may be referred to as the fourth concave portion 307. As a result, the emitted light of the second light emitting unit 42 and the emitted light of the third light emitting unit 43 are incident on the wavelength conversion member 41b of the first light emitting unit 41 and are converted into the light of the first wavelength λ1. Can be suppressed. As a result, the color reproducibility of the light emitting unit 4 can be improved, and by extension, the color reproducibility of the display device can be improved.
 表示装置1Aは、例えば図9に示すように、第1凹部303、第3凹部306および第4凹部307の内部にそれぞれ配置された複数の透明体11を備えていてもよい。複数の透明体11は、第1発光部41、第2発光部42および第3発光部43をそれぞれ封止している。なお、第1発光部41を封止する透明体11を第1透明体11a、第2発光部42を封止する透明体11を第2透明体11b、第3発光部43を封止する透明体11を第3透明体11cとする。これにより、発光部4から生じる熱を、キャビティ構造体30を介して、外部に効果的に放熱することができるため、発光部4の温度上昇に伴う色再現性の低下および表示画像の表示むらを抑制できる。また、発光素子4aが位置ずれしたり、発光素子4aが実装部位2aaから剥離したりすることを抑制できるため、長期信頼性が向上した表示装置とすることができる。 As shown in FIG. 9, for example, the display device 1A may include a plurality of transparent bodies 11 arranged inside the first recess 303, the third recess 306, and the fourth recess 307, respectively. The plurality of transparent bodies 11 seal the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43, respectively. The transparent body 11 that seals the first light emitting unit 41 is the first transparent body 11a, the transparent body 11 that seals the second light emitting unit 42 is the second transparent body 11b, and the transparent body 11 that seals the third light emitting unit 43 is transparent. Let the body 11 be the third transparent body 11c. As a result, the heat generated from the light emitting unit 4 can be effectively dissipated to the outside through the cavity structure 30, so that the color reproducibility deteriorates and the display image is uneven due to the temperature rise of the light emitting unit 4. Can be suppressed. Further, since it is possible to suppress the position shift of the light emitting element 4a and the peeling of the light emitting element 4a from the mounting portion 2aa, the display device with improved long-term reliability can be obtained.
 第1透明体11aは、その厚みが波長変換部材41bの厚みよりも厚い構成であってもよい。この場合、第1透明体11aが導光体および熱伝達媒体として効果的に機能する。即ち、第1透明体11aによって導光され外部に放射される第1波長λ1の光の指向性が向上するとともに、第1発光部41で生じた熱を第1透明体11aを介して第2基板3に伝達させ放熱することが容易になる。また、波長変換部材41bが空気に晒されて酸化等の劣化が生じることを効果的に抑制することができる。第2透明体11bおよび第3透明体11cについても、第1透明体11aと同様である。第1透明体11aの厚みは5μm~300μm程度であってよく、波長変換部材41bの厚みは2μm~80μm程度であってよいが、これらの値に限らない。 The thickness of the first transparent body 11a may be thicker than the thickness of the wavelength conversion member 41b. In this case, the first transparent body 11a effectively functions as a light guide body and a heat transfer medium. That is, the directivity of the light of the first wavelength λ1 guided by the first transparent body 11a and radiated to the outside is improved, and the heat generated by the first light emitting unit 41 is transferred to the second transparent body 11a through the first transparent body 11a. It becomes easy to transmit to the substrate 3 and dissipate heat. Further, it is possible to effectively prevent the wavelength conversion member 41b from being exposed to air and causing deterioration such as oxidation. The second transparent body 11b and the third transparent body 11c are the same as those of the first transparent body 11a. The thickness of the first transparent body 11a may be about 5 μm to 300 μm, and the thickness of the wavelength conversion member 41b may be about 2 μm to 80 μm, but is not limited to these values.
 表示装置1Aが第1壁部302および第2壁部305を備える場合、第1凹部303、第3凹部306および第4凹部307を、略同一形状とすることができる。これにより、第1凹部303の内部から外部に出射される光の強度分布、第3凹部306の内部から外部に出射される光の強度分布、および、第4凹部307の内部から外部に出射される光の強度分布を互いに近づけることができる。その結果、表示画像の表示むらを抑制することが可能になる。 When the display device 1A includes the first wall portion 302 and the second wall portion 305, the first recess 303, the third recess 306, and the fourth recess 307 can have substantially the same shape. As a result, the intensity distribution of the light emitted from the inside of the first recess 303 to the outside, the intensity distribution of the light emitted from the inside of the third recess 306 to the outside, and the intensity distribution of the light emitted from the inside of the fourth recess 307 to the outside are emitted. The intensity distributions of light can be brought closer to each other. As a result, it becomes possible to suppress display unevenness of the displayed image.
 本実施形態の表示装置1Aでは、第1凹部303、第3凹部306および第4凹部307の各々を、高いアスペクト比を有する凹部とすることができる。これにより、第1発光部41の出射光を第1凹部303の内周面で少なくとも1回反射させ、第2発光部42の出射光を第3凹部306の内周面で少なくとも1回反射させ、第3発光部43の出射光を第4凹部307の内周面で少なくとも1回反射させることが可能になる。その結果、表示装置から出射される画像光の指向性を高めることが可能になる。なお、凹部のアスペクト比とは、凹部の底面積の平方根の絶対値Lに対する凹部の深さDの比D/Lであってよい。表示装置1Aは、比D/Lが2.5程度以上であってもよい。これにより、画像光の指向性を効果的に高めることが可能になる。 In the display device 1A of the present embodiment, each of the first recess 303, the third recess 306, and the fourth recess 307 can be recesses having a high aspect ratio. As a result, the emitted light of the first light emitting unit 41 is reflected at least once on the inner peripheral surface of the first recess 303, and the emitted light of the second light emitting unit 42 is reflected at least once on the inner peripheral surface of the third recess 306. , The emitted light of the third light emitting unit 43 can be reflected at least once on the inner peripheral surface of the fourth recess 307. As a result, it becomes possible to increase the directivity of the image light emitted from the display device. The aspect ratio of the recess may be the ratio D / L of the depth D of the recess to the absolute value L of the square root of the bottom area of the recess. The display device 1A may have a ratio D / L of about 2.5 or more. This makes it possible to effectively increase the directivity of the image light.
 次に、本開示のさらに他の実施形態に係る表示装置について説明する。図10は、本開示のさらに他の実施形態に係る表示装置を模式的に示す平面図である。以下では、上記実施形態の構成と共通または類似する構成については、同じ参照符号を付して詳細な説明は省略する。 Next, the display device according to still another embodiment of the present disclosure will be described. FIG. 10 is a plan view schematically showing a display device according to still another embodiment of the present disclosure. In the following, the same reference numerals will be given to the configurations common to or similar to the configurations of the above embodiments, and detailed description thereof will be omitted.
 本実施形態の表示装置1Bは、冗長設計されている。言い換えれば、表示装置1Bは、例えば図10に示すように、第1凹部303内に2つの第1発光部41を配置し、第2凹部304内に2つの第2発光部42および2つの第3発光部43を配置した構成である。これにより、例えば、表示装置の製造工程において、2つの第1発光部41のうちの一方が欠陥化し、非発光状態となった場合に、他方を駆動することができるので、製造の歩留りを向上させることができる。 The display device 1B of this embodiment is redundantly designed. In other words, the display device 1B arranges two first light emitting units 41 in the first recess 303, and two second light emitting units 42 and two second light emitting units 42 in the second recess 304, for example, as shown in FIG. The configuration is such that the three light emitting units 43 are arranged. As a result, for example, in the manufacturing process of the display device, when one of the two first light emitting units 41 is defective and becomes a non-light emitting state, the other can be driven, so that the manufacturing yield is improved. Can be made to.
 表示装置1Bは、例えば図10に示すように、2つの第1発光部41の各々が、第1発光素子41aおよび波長変換部材41bを含む構成とされている。これにより、隣り合う2つの発光部4間の距離が短くなり、発光部4から発生した熱が画素内に籠り易くなる場合であっても、発光部4の温度上昇に伴う色再現性の低下および表示画像の表示むらを抑制できる。また、表示装置1Bでは、第1凹部303と第2凹部304とが壁部302によって区画されているため、隣り合う2つの発光部4間の距離が短くなった場合であっても、第2発光部42の出射光および第3発光部43の出射光が、波長変換部材41bに入射する虞を低減できる。その結果、表示装置の色再現性の低下を抑制できる。 As shown in FIG. 10, for example, the display device 1B has a configuration in which each of the two first light emitting units 41 includes a first light emitting element 41a and a wavelength conversion member 41b. As a result, the distance between the two adjacent light emitting units 4 becomes short, and even if the heat generated from the light emitting unit 4 is likely to be trapped in the pixel, the color reproducibility deteriorates due to the temperature rise of the light emitting unit 4. And the display unevenness of the display image can be suppressed. Further, in the display device 1B, since the first recess 303 and the second recess 304 are partitioned by the wall portion 302, even if the distance between the two adjacent light emitting portions 4 is shortened, the second recess is second. It is possible to reduce the possibility that the emitted light of the light emitting unit 42 and the emitted light of the third light emitting unit 43 are incident on the wavelength conversion member 41b. As a result, deterioration of the color reproducibility of the display device can be suppressed.
 図11A~図11Eの各図は、本開示の表示装置の効果を説明するための画素の模式的な平面図である。図11Aは、1つの凹部301に第1発光部41と第2発光部42と第3発光部43が位置する画素50aを示す。図11Bは、第1凹部303に第1発光部41が位置し、第2凹部304に第2発光部42および第3発光部43が位置する画素50bを示す。図11Cは、第1凹部303に2つの第1発光部41が位置し、第2凹部304に2つの第2発光部42および2つの第3発光部43が位置する画素50cを示す。図11Dは、第1凹部303に第1発光部41が位置し、第2凹部としての第3凹部306(図9に示す)に第2発光部42が位置し、第3凹部としての第4凹部307(図9に示す)に第3発光部43が位置する画素50dを示す。図11Eは、第1凹部303に2つの第1発光部41が位置し、第2凹部としての第3凹部306に2つの第2発光部42が位置し、第3凹部としての第4凹部307に2つの第3発光部43が位置する画素50dを示す。 Each of FIGS. 11A to 11E is a schematic plan view of pixels for explaining the effect of the display device of the present disclosure. FIG. 11A shows a pixel 50a in which the first light emitting unit 41, the second light emitting unit 42, and the third light emitting unit 43 are located in one recess 301. FIG. 11B shows a pixel 50b in which the first light emitting unit 41 is located in the first recess 303, and the second light emitting unit 42 and the third light emitting unit 43 are located in the second recess 304. FIG. 11C shows a pixel 50c in which two first light emitting units 41 are located in the first recess 303, and two second light emitting units 42 and two third light emitting units 43 are located in the second recess 304. In FIG. 11D, the first light emitting portion 41 is located in the first concave portion 303, the second light emitting portion 42 is located in the third concave portion 306 (shown in FIG. 9) as the second concave portion, and the fourth light emitting portion 42 is located as the third concave portion. A pixel 50d in which the third light emitting unit 43 is located is shown in the recess 307 (shown in FIG. 9). In FIG. 11E, two first light emitting portions 41 are located in the first concave portion 303, two second light emitting portions 42 are located in the third concave portion 306 as the second concave portion, and the fourth concave portion 307 as the third concave portion. 2 shows a pixel 50d in which two third light emitting units 43 are located.
 本開示の表示装置は、第1発光部41は、第3波長の光を出射する第1発光素子41aと、波長変換部材41bと、を有する構成である。例えば、第1発光部41は、青色光を出射する青色発光素子41aと、赤色光を青色光に変換する波長変換部材41bと、を有する構成である。以下、説明を容易にするために、第1発光部41を赤色発光部41、第2発光部42を緑色発光部42、第3発光部43を青色発光部43、第2発光素子42aを緑色発光素子42a、第3発光素子43aを青色発光素子43aとする。 The display device of the present disclosure has a configuration in which the first light emitting unit 41 includes a first light emitting element 41a that emits light of a third wavelength and a wavelength conversion member 41b. For example, the first light emitting unit 41 has a configuration including a blue light emitting element 41a that emits blue light and a wavelength conversion member 41b that converts red light into blue light. Hereinafter, for easy explanation, the first light emitting unit 41 is a red light emitting unit 41, the second light emitting unit 42 is a green light emitting unit 42, the third light emitting unit 43 is a blue light emitting unit 43, and the second light emitting element 42a is green. The light emitting element 42a and the third light emitting element 43a are referred to as a blue light emitting element 43a.
 上記の構成(構成Aとする)において、波長変換部材41bに、青色発光素子43aの青色光が混入すると、余分な青色光が波長変換されることになる。従って、青色発光素子41aと青色発光素子43aは、隣接していないか、または異なる凹部に位置していることがよい。そうすると、構成Aは、画素50a,50b,50cの画素構造となる。即ち、1つの波長変換部材41bと、1つまたは2つの凹部と、を有する画素構造となる。ただし、構成Aの場合、画素50d,50eの画素構造もとり得る。 In the above configuration (referred to as configuration A), when the blue light of the blue light emitting element 43a is mixed in the wavelength conversion member 41b, the excess blue light is wavelength-converted. Therefore, the blue light emitting element 41a and the blue light emitting element 43a may not be adjacent to each other or may be located in different recesses. Then, the configuration A has a pixel structure of pixels 50a, 50b, and 50c. That is, it has a pixel structure having one wavelength conversion member 41b and one or two recesses. However, in the case of the configuration A, a pixel structure of pixels 50d and 50e may be adopted.
 これに対して、例えば、赤色発光部41を、青色発光素子41aと波長変換部材41bを有する構成とし、緑色発光部42を、青色発光素子と青色光を緑色光に変換する波長変換部材(波長変換部材42bとする)を有する構成(構成Bとする)も考えられる。即ち、全ての発光部4が青色発光素子を備えている。この構成Bにおいては、画素50a,50b,50cの場合、青色発光部43と緑色発光部42が隣接していることから、青色発光部43の青色発光素子43aの出射光が緑色発光部42の波長変換部材42bに混入するという不具合が生じる。従って、構成Bの場合、2つの波長変換部材41b,42bと、3つの凹部と、を有する画素50d,50eの画素構造となる。以上より、本開示の表示装置は、波長変換部材および凹部の数を少なくすることができる、という効果も奏する。 On the other hand, for example, the red light emitting unit 41 has a blue light emitting element 41a and a wavelength conversion member 41b, and the green light emitting unit 42 has a blue light emitting element and a wavelength conversion member (wavelength) that converts blue light into green light. A configuration (referred to as a configuration B) having a conversion member (referred to as a conversion member 42b) is also conceivable. That is, all the light emitting units 4 are provided with a blue light emitting element. In this configuration B, in the case of the pixels 50a, 50b, 50c, since the blue light emitting unit 43 and the green light emitting unit 42 are adjacent to each other, the emitted light of the blue light emitting element 43a of the blue light emitting unit 43 is the green light emitting unit 42. There is a problem that it is mixed in the wavelength conversion member 42b. Therefore, in the case of the configuration B, the pixel structure has pixels 50d and 50e having two wavelength conversion members 41b and 42b and three recesses. From the above, the display device of the present disclosure also has an effect that the number of wavelength conversion members and recesses can be reduced.
 ただし、構成Bにおいて、緑色発光部42の波長変換部材42bが青色発光素子の全体を覆うとともに、波長変換部材42bの全体をカラーフィルタが覆っている場合、隣接する青色発光素子43aからの青色光の影響を受けないので、画素50a,50b,50cの画素構造もとり得る。 However, in the configuration B, when the wavelength conversion member 42b of the green light emitting unit 42 covers the entire blue light emitting element and the entire wavelength conversion member 42b is covered by the color filter, the blue light from the adjacent blue light emitting element 43a. Since it is not affected by the above, the pixel structure of the pixels 50a, 50b, 50c can also be taken.
 以上のように、本開示の表示装置は、LED素子の温度上昇に伴って生じる色再現性の低下および表示むらを抑制できる。また、本開示の表示装置によれば、消費電力の増加および製造コストの増加を抑制できる。 As described above, the display device of the present disclosure can suppress a decrease in color reproducibility and display unevenness caused by an increase in the temperature of the LED element. Further, according to the display device of the present disclosure, it is possible to suppress an increase in power consumption and an increase in manufacturing cost.
 以上、本開示の各実施形態について詳細に説明したが、また、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。上記各実施形態をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。 Although each embodiment of the present disclosure has been described in detail above, the present disclosure is not limited to the above-described embodiment, and various changes, improvements, etc. are made without departing from the gist of the present disclosure. Is possible. Needless to say, all or part of each of the above embodiments can be combined as appropriate and within a consistent range.
 本開示の表示装置は、各種の電子機器に適用できる。その電子機器としては、自動車経路誘導システム(カーナビゲーションシステム)、船舶経路誘導システム、航空機経路誘導システム、自動車等の乗り物の計器用インジケータ、インスツルメントパネル、スマートフォン端末、携帯電話、タブレット端末、パーソナルデジタルアシスタント(PDA)、ビデオカメラ、デジタルスチルカメラ、電子手帳、電子書籍、電子辞書、パーソナルコンピュータ、複写機、ゲーム機器の端末装置、テレビジョン、商品表示タグ、価格表示タグ、産業用のプログラマブル表示装置、カーオーディオ、デジタルオーディオプレイヤー、ファクシミリ、プリンタ、現金自動預け入れ払い機(ATM)、自動販売機、医療用表示装置、デジタル表示式腕時計、スマートウォッチ、駅および空港等に設置される案内表示装置、宣伝広告用のサイネージ(デジタルサイネージ)等がある。 The display device of this disclosure can be applied to various electronic devices. The electronic devices include automobile route guidance systems (car navigation systems), ship route guidance systems, aircraft route guidance systems, instrument indicators for vehicles such as automobiles, instrument panels, smartphone terminals, mobile phones, tablet terminals, and personals. Digital assistants (PDAs), video cameras, digital still cameras, electronic notebooks, electronic books, electronic dictionaries, personal computers, copying machines, game console terminals, televisions, product display tags, price display tags, industrial programmable displays. Equipment, car audio, digital audio players, facsimiles, printers, automated cash deposit and payment machines (ATMs), vending machines, medical displays, digital display watches, smart watches, guidance displays installed at stations and airports, etc. , Advertising signage (digital signage), etc.
 1,1A,1B 表示装置
 2   第1基板
 2a  一方主面(第3面)
 2aa 部位(実装部位)
 2b  他方主面(第4面)
 3   第2基板
 3a  対向面(第5面)
 3b  外表面(第6面)
 4   発光部
 4a  発光素子
 41  第1発光部
 41a 第1発光素子
 41b 波長変換部材
 41c カラーフィルタ
 41d 透明体
 42  第2発光部
 42a 第2発光素子
 43  第3発光部
 43a 第3発光素子
 7,7a,7b,7c 第1電極(アノード電極)
 8   第2電極(カソード電極)
 9   光反射膜
 10  光吸収膜
 11  透明体
 11a 第1透明体
 11b 第2透明体
 11c 第3透明体
 30  基体(キャビティ構造体)
 30a 第1面
 30b 第2面
 31  貫通孔
 31a 開口
 31b 内周面
 301 凹部
 301a 開口
 301b 底面
 301c 内周面
 302 壁部(第1壁部)
 303 第1凹部
 304 第2凹部
 305 第2壁部
 306 第3凹部
 307 第4凹部
1,1A, 1B Display device 2 First substrate 2a One main surface (third surface)
2aa part (mounting part)
2b The other main surface (fourth surface)
3 Second substrate 3a Facing surface (fifth surface)
3b outer surface (6th surface)
4 Light emitting unit 4a Light emitting element 41 First light emitting unit 41a First light emitting element 41b Wavelength conversion member 41c Color filter 41d Transparent body 42 Second light emitting unit 42a Second light emitting element 43 Third light emitting unit 43a Third light emitting element 7,7a, 7b, 7c 1st electrode (anode electrode)
8 Second electrode (cathode electrode)
9 Light-reflecting film 10 Light-absorbing film 11 Transparent body 11a First transparent body 11b Second transparent body 11c Third transparent body 30 Substrate (cavity structure)
30a 1st surface 30b 2nd surface 31 Through hole 31a Opening 31b Inner peripheral surface 301 Recessed 301a Opening 301b Bottom surface 301c Inner peripheral surface 302 Wall part (1st wall part)
303 1st recess 304 2nd recess 305 2nd wall part 306 3rd recess 307 4th recess

Claims (18)

  1.  表示面を有し、該表示面に凹部が設けられた基体と、
     前記凹部に位置し、第1波長の光を出射する第1発光部と、
     前記凹部に位置し、前記第1波長よりも短い第2波長の光を出射する第2発光部と、
     前記凹部に位置し、前記第2波長よりも短い第3波長の光を出射する第3発光部と、を備え、
     前記第1発光部は、前記第3波長の光を出射する第1発光素子と、前記第1発光素子から出射した前記第3波長の光を前記第1波長の光に変換する波長変換部材と、を有する表示装置。
    A substrate having a display surface and having a recess on the display surface,
    A first light emitting unit located in the recess and emitting light of the first wavelength,
    A second light emitting unit located in the recess and emitting light having a second wavelength shorter than the first wavelength.
    A third light emitting unit located in the recess and emitting light having a third wavelength shorter than the second wavelength is provided.
    The first light emitting unit includes a first light emitting element that emits light of the third wavelength, and a wavelength conversion member that converts the light of the third wavelength emitted from the first light emitting element into light of the first wavelength. A display device having.
  2.  前記第1発光素子は、上面および側面を有する立体的形状であり、
     前記波長変換部材は、前記第1発光素子の上面および側面を覆っている請求項1に記載の表示装置。
    The first light emitting element has a three-dimensional shape having an upper surface and a side surface, and has a three-dimensional shape.
    The display device according to claim 1, wherein the wavelength conversion member covers the upper surface and the side surface of the first light emitting element.
  3.  前記第1発光素子は、前記側面から放射される側方放射光が最大強度光を含む請求項2に記載の表示装置。 The display device according to claim 2, wherein the first light emitting element is a display device in which the lateral synchrotron radiation emitted from the side surface includes the maximum intensity light.
  4.  前記波長変換部材は、前記第1発光素子の前記側面を覆っている部位の前記側面からの厚みが、前記第1発光素子の前記上面を覆っている部位の前記上面からの厚みよりも厚い請求項3に記載の表示装置。 The wavelength conversion member claims that the thickness of the portion covering the side surface of the first light emitting element from the side surface is thicker than the thickness of the portion covering the upper surface of the first light emitting element from the upper surface. Item 3. The display device according to item 3.
  5.  前記凹部は、前記第1波長の光と前記第2波長の光と前記第3波長の光のそれぞれを、内周面において複数回反射させる深さを有する請求項1~4のいずれか1項に記載の表示装置。 The recess is any one of claims 1 to 4, which has a depth of reflecting each of the first wavelength light, the second wavelength light, and the third wavelength light on the inner peripheral surface a plurality of times. The display device described in.
  6.  前記第2発光部は、前記第2波長の光を出射する第2発光素子を有し、
     前記第3発光部は、前記第3波長の光を出射する前記第1発光素子を有する請求項1~5のいずれか1項に記載の表示装置。
    The second light emitting unit has a second light emitting element that emits light of the second wavelength.
    The display device according to any one of claims 1 to 5, wherein the third light emitting unit has the first light emitting element that emits light having the third wavelength.
  7.  前記第1発光部は、前記波長変換部材から出射される前記第1波長の光を透過させるとともに前記第1波長の光以外の光の透過を抑制するカラーフィルタを有する請求項1~6のいずれか1項に記載の表示装置。 Any of claims 1 to 6, wherein the first light emitting unit has a color filter that transmits light of the first wavelength emitted from the wavelength conversion member and suppresses transmission of light other than the light of the first wavelength. The display device according to item 1.
  8.  前記凹部は、前記第1発光部が位置する第1凹部と、前記第2発光部および前記第3発光部が位置する第2凹部と、から構成されている請求項1~7のいずれか1項に記載の表示装置。 One of claims 1 to 7, wherein the recess is composed of a first recess in which the first light emitting portion is located, a second recess in which the second light emitting portion is located, and a second recess in which the third light emitting portion is located. The display device described in the section.
  9.  前記第1凹部に位置し、前記第1発光部を封止する第1透明体と、
     前記第2凹部に位置し、前記第2発光部および前記第3発光部を封止する第2透明体と、を備える請求項8に記載の表示装置。
    A first transparent body located in the first recess and sealing the first light emitting portion,
    The display device according to claim 8, further comprising a second transparent body located in the second recess and sealing the second light emitting portion and the third light emitting portion.
  10.  前記第1透明体は、その厚みが前記波長変換部材の厚みよりも厚い請求項9に記載の表示装置。 The display device according to claim 9, wherein the first transparent body is thicker than the thickness of the wavelength conversion member.
  11.  前記凹部は、前記第1発光部が位置する第1凹部と、前記第2発光部が位置する第2凹部と、前記第3発光部が位置する第3凹部と、から構成されている請求項1~7のいずれか1項に記載の表示装置。 A claim that the recess is composed of a first recess in which the first light emitting portion is located, a second recess in which the second light emitting portion is located, and a third recess in which the third light emitting portion is located. The display device according to any one of 1 to 7.
  12.  前記第1凹部に位置し、前記第1発光部を封止する第1透明体と、
     前記第2凹部に位置し、前記第2発光部を封止する第2透明体と、
     前記第3凹部に位置し、前記第3発光部を封止する第3透明体と、を備える請求項11に記載の表示装置。
    A first transparent body located in the first recess and sealing the first light emitting portion,
    A second transparent body located in the second recess and sealing the second light emitting portion,
    The display device according to claim 11, further comprising a third transparent body located in the third recess and sealing the third light emitting portion.
  13.  前記第1透明体は、その厚みが前記波長変換部材の厚みよりも厚い請求項12に記載の表示装置。 The display device according to claim 12, wherein the first transparent body is thicker than the thickness of the wavelength conversion member.
  14.  前記波長変換部材は、蛍光体または量子ドットを含有する請求項1~13のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 13, wherein the wavelength conversion member contains a phosphor or quantum dots.
  15.  前記第1波長の光は赤色光であり、前記第2波長の光は緑色光であり、前記第3波長の光は青色光である請求項1~14のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 14, wherein the light having the first wavelength is red light, the light having the second wavelength is green light, and the light having the third wavelength is blue light. ..
  16.  前記第1発光部、前記第2発光部および前記第3発光部のそれぞれは、マイクロ発光ダイオード素子を含む請求項1~12のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 12, wherein each of the first light emitting unit, the second light emitting unit, and the third light emitting unit includes a micro light emitting diode element.
  17.  前記基体は、透明材料から成る請求項1~16のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 16, wherein the substrate is made of a transparent material.
  18.  前記基体は、可撓性を有する請求項1~17のいずれか1項に記載の表示装置。 The display device according to any one of claims 1 to 17, wherein the substrate has flexibility.
PCT/JP2021/028585 2020-08-27 2021-08-02 Display device WO2022044708A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020143628 2020-08-27
JP2020-143628 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022044708A1 true WO2022044708A1 (en) 2022-03-03

Family

ID=80352244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028585 WO2022044708A1 (en) 2020-08-27 2021-08-02 Display device

Country Status (1)

Country Link
WO (1) WO2022044708A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248771A1 (en) * 2022-06-21 2023-12-28 京セラ株式会社 Light-emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199544A1 (en) * 2015-06-08 2016-12-15 シャープ株式会社 Backlight device and liquid crystal display device provided with same
KR20170101065A (en) * 2016-02-26 2017-09-05 엘지이노텍 주식회사 Light emitting module and display device
JP2020061521A (en) * 2018-10-12 2020-04-16 日亜化学工業株式会社 Light-emitting device
JP2020127050A (en) * 2014-09-26 2020-08-20 東芝ホクト電子株式会社 Light emitting module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127050A (en) * 2014-09-26 2020-08-20 東芝ホクト電子株式会社 Light emitting module
WO2016199544A1 (en) * 2015-06-08 2016-12-15 シャープ株式会社 Backlight device and liquid crystal display device provided with same
KR20170101065A (en) * 2016-02-26 2017-09-05 엘지이노텍 주식회사 Light emitting module and display device
JP2020061521A (en) * 2018-10-12 2020-04-16 日亜化学工業株式会社 Light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248771A1 (en) * 2022-06-21 2023-12-28 京セラ株式会社 Light-emitting device

Similar Documents

Publication Publication Date Title
CN107924962B (en) Light emitting device
CN111048544A (en) Method for manufacturing light emitting device and light emitting device
CN110071134B (en) Light emitting element, method of manufacturing the same, and display module
JP2007036073A (en) Lighting device and display unit using it
JP5974910B2 (en) Display panel and display device
US8896016B2 (en) LED lighting module and method of making the same
WO2022044708A1 (en) Display device
JP7311595B2 (en) Light-emitting element substrate, display device, and display device manufacturing method
WO2022044709A1 (en) Display device and production method for display device
WO2021261204A1 (en) Display device
KR102369188B1 (en) Display device using semiconductor light emitting device
KR102456888B1 (en) Display device using semiconductor light emitting device
WO2022039009A1 (en) Display device
WO2023248771A1 (en) Light-emitting device
CN113036016B (en) Electronic device
JP7449380B2 (en) Light emitting device and display device
WO2022196356A1 (en) Light-emitting device and display device
KR20110138756A (en) Light emitting device
WO2022054699A1 (en) Display device and method for manufacturing display device
WO2024070675A1 (en) Light-emitting device and method for producing light-emitting device
TW201933634A (en) Light emitting diode structure, method for manufacturing light emitting diode structure, and pixel structure of microdisplay
TWI790941B (en) Light-emitting module
WO2021261191A1 (en) Display device and composite-type display device
WO2021038994A1 (en) Illumination device and display device
CN117199096A (en) Light-emitting diode display panel, manufacturing method thereof and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP