WO2022044658A1 - Microcapsules, method for producing microcapsules, heat-storage sheet, method for producing heat-storage sheet, and heat-storage object - Google Patents

Microcapsules, method for producing microcapsules, heat-storage sheet, method for producing heat-storage sheet, and heat-storage object Download PDF

Info

Publication number
WO2022044658A1
WO2022044658A1 PCT/JP2021/027732 JP2021027732W WO2022044658A1 WO 2022044658 A1 WO2022044658 A1 WO 2022044658A1 JP 2021027732 W JP2021027732 W JP 2021027732W WO 2022044658 A1 WO2022044658 A1 WO 2022044658A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
microcapsules
core
heat
shell
Prior art date
Application number
PCT/JP2021/027732
Other languages
French (fr)
Japanese (ja)
Inventor
秀樹 冨澤
高史 松井
貴彦 山崎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022545561A priority Critical patent/JPWO2022044658A1/ja
Publication of WO2022044658A1 publication Critical patent/WO2022044658A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa

Definitions

  • the present invention relates to microcapsules, a method for manufacturing microcapsules, a heat storage sheet, a method for manufacturing a heat storage sheet, and a heat storage body.
  • Microcapsules may provide new value to customers in terms of enclosing and protecting functional materials such as heat storage materials, fragrances, dyes, adhesive curing agents, and pharmaceutical ingredients. ..
  • functional materials such as heat storage materials, fragrances, dyes, adhesive curing agents, and pharmaceutical ingredients. ..
  • microcapsules containing a phase change substance (PCM: Phase Change Material) such as paraffin and functioning as a heat storage material for storing heat generated outside have been attracting attention.
  • the heat storage material is included in and used as a heat storage member that stores heat from a heating element and suppresses an increase in overall temperature in equipment such as electronic devices, buildings, automobiles, and waste heat utilization systems.
  • the material having a high heat storage amount examples include an aliphatic amine having an aliphatic hydrocarbon group and an amino group.
  • the primary capsule having an inner shell on the surface of the core agent is a microcapsule for curing an epoxy resin further coated with an outer shell, and the core agent is a basic curing agent and / or a curing acceleration.
  • the invention relating to the epoxy resin curing microcapsule which is an agent is disclosed.
  • Patent Document 1 describes nitrogen-containing compounds such as imidazole compounds, amine compounds, and hydrazide compounds as basic curing agents and / or curing accelerators constituting the core of microcapsules.
  • nitrogen-containing compounds such as imidazole compounds, amine compounds, and hydrazide compounds as basic curing agents and / or curing accelerators constituting the core of microcapsules.
  • Another object of the present invention is to provide microcapsules having more excellent stability of heat storage amount per unit volume over time. Another object of the present invention is to provide a method for manufacturing microcapsules, a heat storage sheet, a method for manufacturing a heat storage sheet, and a heat storage body.
  • the shell has a thickness of 5 to 100 nm.
  • a method for producing microcapsules which comprises a shell forming step for forming, and carries out the core preparation step and the shell forming step in an environment where the aliphatic amine and water do not come into contact with each other.
  • the shell forming step includes a step of forming an inorganic layer made of an inorganic compound by a dry vapor deposition method.
  • a heat storage body comprising the microcapsule according to any one of [1] to [12] and a binder.
  • microcapsules having more excellent stability over time in the amount of heat storage per unit volume. Further, according to the present invention, it is possible to provide a method for manufacturing microcapsules, a heat storage sheet, a method for manufacturing a heat storage sheet, and a heat storage body.
  • the numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the various components described below may be used alone or in combination of two or more.
  • the aliphatic amine described later may be used alone or in combination of two or more.
  • the amount of each component in the composition, layer or mixture is the above-mentioned plurality of substances present in the composition, layer or mixture when a plurality of substances corresponding to the component are present, unless otherwise specified. Means the total amount of.
  • (meth) acrylate represents acrylate and methacrylate
  • (meth) acrylic represents acrylic and methacrylic.
  • preparation means not only the act of synthesizing and / or blending a specific material, but also the act of procuring a predetermined product by purchase or the like.
  • room temperature means 25 ° C. unless otherwise specified. When referring to a value that may fluctuate with temperature in the present specification, the value is a value at 25 ° C. unless otherwise specified. In the present specification, a combination of two or more preferred embodiments is a more preferred embodiment.
  • microcapsules of the present invention are microcapsules having a core and a shell containing the core, wherein the core contains an aliphatic amine and the water vapor transmission rate of the shell is 10 -1 g / (m 2 ⁇ day) or less. Is.
  • the aliphatic amine contained in the microcapsules of the present invention has a high heat storage amount per unit mass, and since hydrogen bonds between molecules are moderately formed by amino groups and has a high density, the heat storage amount per unit volume is high. Is considered to be high.
  • the core containing the aliphatic amine is surrounded by a shell having a high gas barrier property having a water vapor permeability of 10 -1 g / (m 2 ⁇ day) or less, so that a period has passed since the production of the microcapsules. It is presumed that the contained aliphatic amine was not denatured even after the above, and the decrease in the amount of heat storage per unit volume with time was further suppressed.
  • the fact that the heat storage amount per unit volume of the microcapsules is more excellent in stability with time is also described as “the effect of the present invention is more excellent”.
  • the microcapsule has a core and a shell for containing the core material (encapsulating material (also referred to as an inclusion component)) forming the core.
  • the shell is also referred to as a "capsule wall”.
  • Microcapsules contain at least an aliphatic amine as a core material (encapsulating component). Since the aliphatic amine is encapsulated in microcapsules, it can stably exist in a phase state depending on the temperature.
  • the aliphatic amine contained in the microcapsules is not particularly limited as long as it is an amine compound having a main chain skeleton containing an aliphatic hydrocarbon group and at least one amino group.
  • main chain skeleton for example, one or more carbon atoms constituting a chain or cyclic aliphatic hydrocarbon group and a chain or cyclic aliphatic hydrocarbon group are represented by -NR-2. Examples thereof include a group substituted with a valent group (R represents a hydrogen atom or an aliphatic hydrocarbon group which may have an amino group).
  • R represents a hydrogen atom or an aliphatic hydrocarbon group which may have an amino group.
  • the main chain skeleton of the aliphatic amine is preferably linear in that the amount of heat storage per unit volume is more excellent.
  • the fact that the main chain skeleton of an aliphatic amine is linear means that the main chain skeleton is one of carbon atoms constituting a linear aliphatic hydrocarbon group or a linear aliphatic hydrocarbon group.
  • the main chain skeleton does not have a substituent in that the amount of heat storage per unit volume is more excellent.
  • the carbon number thereof is preferably 4 or more, more preferably 6 or more, still more preferably 8 or more, in that the latent heat of the compound is higher.
  • the upper limit is not particularly limited, but 16 or less is preferable, and 12 or less is more preferable, in that the melting point is in a preferable range described later and the density is higher.
  • the aliphatic amine has a linear aliphatic hydrocarbon group having an even number of carbon atoms in that the amount of heat storage per unit volume is more excellent.
  • the main chain skeleton is a group in which one or more of the carbon atoms constituting the aliphatic hydrocarbon group are substituted with a divalent group represented by -NR-, the total number of carbon atoms and nitrogen atoms is used. However, it is preferable that it is included in the above range.
  • the aliphatic amine preferably has a linear aliphatic hydrocarbon group having an even number of 6 to 16 carbon atoms, and has a linear aliphatic hydrocarbon group having 8, 10 or 12 carbon atoms. It is more preferable to have.
  • Examples of the amino group contained in the aliphatic amine include a primary amino group (-NH 2 ), a secondary amino group (> NH), and a tertiary amino group (> N-), which are primary.
  • An amino group or a secondary amino group is preferable, and a primary amino group is more preferable.
  • the number of amino groups contained in the aliphatic amine is not particularly limited, but the aliphatic amine is preferably an aliphatic polyamine having two or more amino groups in that the amount of heat storage per unit volume is more excellent.
  • the number of amino groups contained in the aliphatic polyamine is more preferably 2 to 4, and even more preferably 2 or 3.
  • an aliphatic diamine having two amino groups is particularly preferable in that the hydrogen bond between the two molecules and the van der Waals force of the aliphatic hydrocarbon group become stronger and the density in the core portion is improved.
  • Examples of the aliphatic diamine include compounds represented by the following formula (1).
  • R 1 is a divalent group in which one or more carbon atoms constituting an aliphatic hydrocarbon group having 4 or more carbon atoms or an aliphatic hydrocarbon group having 4 or more carbon atoms is represented by -NR-.
  • a group substituted with a group (R represents a hydrogen atom or an aliphatic hydrocarbon group which may have an amino group) is represented.
  • R represents a hydrogen atom or an aliphatic hydrocarbon group which may have an amino group
  • the amino group in the formula (1) and the divalent group represented by -NR- do not bind to each other.
  • the aliphatic hydrocarbon group in R1 a linear alkylene group having 6 to 16 carbon atoms is preferable, and a linear alkylene group having 8 to 12 carbon atoms is more preferable. Further, it is preferable that the aliphatic hydrocarbon group has an even number of carbon atoms in that the amount of heat storage per unit volume is more excellent.
  • R 1 has a divalent group represented by -NR-, the total number of carbon atoms and nitrogen atoms is preferably the above number.
  • the aliphatic monoamine having one amino group in the molecule includes, for example, dimethylamine, diethylamine, n-butylamine, tert-butylamine, n-hexylamine, cyclohexylamine, n-octylamine, and , 2-Ethylhexylamine.
  • examples of the aliphatic diamine having two amino groups in the molecule include 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, and 1,8-diaminooctane.
  • 1,9-diaminononane 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,13-diaminotridecane, 1,14-diaminotetradecane, and 1,16-diamino.
  • Hexadecane can be mentioned.
  • examples of the aliphatic polyamine having three or more amino groups in the molecule include diethylenetriamine, triethylenetetramine, and tetraethylenepentamine.
  • 1,4-diaminobutane 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11 -Diaminoundecane or 1,12-diaminododecane is preferred, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, or 1,10-diaminodecane.
  • 1,6-diaminohexane, 1,8-diaminooctane, or 1,10-diaminodecane is even more preferred, and 1,8-diaminooctane, or 1,10-diaminodecane is particularly preferred.
  • Aliphatic amines may form salts with counterions.
  • the salt of the aliphatic amine include a salt with an inorganic acid in which at least one non-metal selected from the group consisting of Cl, S, N and P is bonded to hydrogen.
  • aliphatic amine also includes an embodiment in which an aliphatic amine forms a salt with a counterion. The aliphatic amine preferably does not form a salt.
  • the molecular weight of the aliphatic amine is not particularly limited, but 100 to 300 is preferable, and 100 to 200 is more preferable, because the heat storage amount and the density per molecule are excellent in a well-balanced manner.
  • the melting point of the aliphatic amine is preferably close to the operating temperature of an electronic device (particularly a small or portable electronic device) and is excellent in applicability to an electronic device, and is preferably 100 ° C. or lower, more preferably 85 ° C. or lower. 70 ° C. or lower is more preferable.
  • the lower limit is not particularly limited, but is preferably 10 ° C. or higher, more preferably 25 ° C. or higher, and even more preferably 37 ° C. or higher.
  • the aliphatic amine may be used alone or in combination of two or more. When a plurality of aliphatic amines having different melting points are used, the temperature range in which the heat storage property is exhibited can be widened.
  • the fact that the aliphatic amine is substantially one kind means that the content of the compound having the highest content among the aliphatic amines is 95 to 100% by mass with respect to the total mass of the aliphatic amine. It means that it is preferably 98 to 100% by mass.
  • the content of the aliphatic amine is not particularly limited, but is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass or more, based on the total mass of the core, in that the heat storage property is more excellent. preferable.
  • the upper limit is 100% by mass.
  • the content of the aliphatic amine in the microcapsules is not particularly limited, but is preferably 75% by volume or more, more preferably 85% by volume or more, more preferably 90% by volume, based on the total volume of the microcapsules, in that the heat storage property is more excellent. Volume% or more is particularly preferable.
  • the upper limit of the content of the aliphatic amine is not particularly limited, but is preferably 99.9% by volume or less, more preferably 99.5% by volume or less, based on the total volume of the microcapsules, in terms of being superior in strength. 99% by volume or less is more preferable.
  • the density of the aliphatic amine is not particularly limited, but 0.85 g / cm 3 or more is preferable, 0.9 g / cm 3 or more is more preferable, and 1.0 g / cm is preferable in that the heat storage property per unit volume can be further increased. 3 or more is more preferable.
  • the upper limit is not particularly limited, but it is often 2.0 g / cm 3 or less.
  • the latent heat capacity of the aliphatic amine is preferably high, preferably 200 J / cm 3 or more, and more preferably 250 J / cm 3 or more.
  • the upper limit is not particularly limited, but it is often 500 J / cm 3 or less.
  • the latent heat capacity is the heat storage amount per unit mass (J / g) of the aliphatic amine measured by differential scanning calorimetry (DSC) and the density of the aliphatic amine measured by the densitometer (g / g). It is a value calculated from cm 3 ).
  • the microcapsules may contain a second heat storage material as a core material (encapsulating component).
  • the second heat storage material does not contain the above-mentioned aliphatic amine.
  • the type of the second heat storage material is not particularly limited as long as it is a heat storage material other than the aliphatic amine.
  • As the second heat storage material a material that changes phase in response to a temperature change can be used, and the phase change between the solid phase and the liquid phase that accompanies the state change of melting and solidification in response to the temperature change can be repeated.
  • a material that can be used is preferable.
  • the phase change of the second heat storage material is preferably based on the phase change temperature of the second heat storage material itself, and in the case of the phase change between the solid phase and the liquid phase, it is preferably based on the melting point.
  • the second heat storage material includes, for example, a material that can store heat generated outside the microcapsule as sensible heat, and a material that can store heat generated outside the microcapsule as latent heat (hereinafter, "latent heat storage material"). Also referred to as), a material that causes a phase change due to a reversible chemical change, or the like may be used.
  • the second heat storage material is preferably one that can release the stored heat. Among them, the latent heat storage material is preferable as the second heat storage material in terms of ease of control of the amount of heat that can be transferred and received and the size of the amount of heat.
  • the latent heat storage material is a material that stores heat generated outside the microcapsules as latent heat.
  • a phase change between a solid phase and a liquid phase it refers to a material capable of transferring heat by latent heat by repeating a change between melting and solidification with the melting point determined by the material as the phase change temperature.
  • the latent heat storage material utilizes the heat of fusion at the melting point and the heat of solidification at the freezing point, and can store heat and dissipate heat with the phase change between the solid and the liquid.
  • the type of the latent heat storage material is not particularly limited, and can be selected from compounds having a melting point and capable of a phase change.
  • Examples of the latent heat storage material include ice (water); inorganic salts; aliphatic hydrocarbons such as paraffin (for example, isoparaffin and normal paraffin); tri (capryl capric acid) glyceryl, methyl myristate (melting point 16-19 ° C.).
  • Fatty acid ester compounds such as isopropyl myristate (melting point 167 ° C.) and dibutyl phthalate (melting point ⁇ 35 ° C.); alkylnaphthalene compounds such as diisopropylnaphthalene (melting point 67-70 ° C.), 1-phenyl-1. -Diarylalkane compounds such as xylylethane (melting point less than -50 ° C), alkylbiphenyl compounds such as 4-isopropylbiphenyl (melting point 11 ° C), triarylmethane compounds, alkylbenzene compounds, benzylnaphthalene compounds, diarylalkylene compounds.
  • Fatty acid ester compounds such as isopropyl myristate (melting point 167 ° C.) and dibutyl phthalate (melting point ⁇ 35 ° C.); alkylnaphthalene compounds such as diisopropylnaphthalen
  • Aromatic hydrocarbons such as compounds and arylindan compounds; natural animal and vegetable oils such as camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, palm oil, castor oil, and fish oil; mineral oil; diethyl ethers. And so on.
  • the phase change temperature of the second heat storage material is not particularly limited, and may be appropriately selected depending on the type of heating element that generates heat, the heating element temperature of the heating element, the temperature or holding temperature after cooling, the cooling method, and the like. ..
  • a material having a phase change temperature (preferably melting point) in a target temperature region for example, the operating temperature of the heating element; hereinafter also referred to as “heat control region” may be selected.
  • the phase change temperature of the second heat storage material varies depending on the heat control region, but is preferably 0 to 100 ° C, more preferably 10 to 70 ° C.
  • the content of the second heat storage material is not particularly limited, but is preferably less than 30% by mass, more preferably less than 10% by mass, based on the total mass of the core. More preferably, it is 1% by mass or less.
  • the lower limit is not particularly limited, but may be 0% by mass.
  • the total content of the aliphatic amine and the second heat storage material contained in the core is not particularly limited, but 80 to 100% by mass is preferable, and 90 to 100% by mass, based on the total mass of the core, in terms of better heat storage. More preferably by mass.
  • the core material of the microcapsules may contain components other than the above-mentioned heat storage material.
  • Other components that can be encapsulated in the microcapsules as the core material include, for example, solvents and additives.
  • the microcapsules may contain a solvent as a core material.
  • the solvent in this case include a heat storage material whose melting point is out of the temperature range (heat control region; for example, the operating temperature of the heating element) in which the heat storage sheet is used. That is, the solvent refers to a solvent that does not undergo a phase change in the liquid state in the heat control region, and is distinguished from a heat storage material that causes a phase transition in the heat control region and causes an endothermic reaction.
  • additives examples include additives such as flame retardants, ultraviolet absorbers, light stabilizers, antioxidants, waxes, and odor suppressants.
  • the content of the solvent and the additive in the core material is not particularly limited, but is preferably less than 30% by mass, more preferably less than 10% by mass, still more preferably 1% by mass or less, based on the total mass of the core material.
  • the lower limit is not particularly limited, but may be 0% by mass.
  • the particle size of the core of the microcapsules is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 5 ⁇ m or more, in that the amount of heat storage per unit volume is more excellent.
  • the upper limit is not particularly limited, but is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, still more preferably 120 ⁇ m or less, in that damage to the shell due to expansion due to the phase change of the core can be further suppressed.
  • the particle size of the core is an average value obtained by measuring the particle size of the core contained in any 20 microcapsules with an optical microscope or a transmission electron microscope (TEM). Specifically, it is obtained by the following method. First, a liquid in which microcapsules are dispersed is applied onto an arbitrary support and dried to form a coating film. A cross-sectional section of the obtained coating film is prepared, and the cross section is observed with an optical microscope or TEM at 100 to 5000 times, and "(value of median diameter based on volume of microcapsules) x 0.9 to (microcapsules).
  • TEM transmission electron microscope
  • any 20 microcapsules with a particle size in the range of volume-based median diameter) ⁇ 1.1 and observe the cross section of each microcapsule to determine the particle size of the core and average it. By calculating the value, the particle size of the core of the microcapsules can be obtained.
  • the microcapsules of the present invention have a shell containing a core, and the water vapor transmission rate of the shell is 10 -1 g / (m 2 ⁇ day) or less.
  • the water vapor transmission rate of the shell is preferably 10-2 g / (m 2 ⁇ day) or less, and more preferably 10 -4 g / (m 2 ⁇ day) or less, because the effect of the present invention is more excellent.
  • the lower limit is not particularly limited, but 10-5 g / (m 2 ⁇ day) or more is preferable in that the amount of heat per unit volume is excellent and the cost is excellent because the shell does not become too thick.
  • the water vapor transmission rate (unit: g / (m 2 ⁇ day)) of the shell constituting the microcapsules is described in JIS Z 0208, “Humidity Permeability Test Method for Moisture-Proof Packaging Material (Cup Method)”. It is a value measured based on. That is, the material (shell material) constituting the shell and the material (shell material) constituting the shell by a known method such as X-ray diffraction (XRD: X-ray diffraction) or X-ray photoelectron spectroscopy (XPS), if necessary.
  • XRD X-ray diffraction
  • XPS X-ray photoelectron spectroscopy
  • the water vapor permeability (g / ( m2 ⁇ day)) of the shell can be obtained by performing the measurement according to the method described in “Heat Permeability Test Method for Moisture-Proof Packaging Material (Cup Method)”.
  • the method for forming the shell having a water vapor transmission rate of 10 -1 g / (m 2 ⁇ day) or less is not particularly limited, and for example, a method for forming an inorganic layer made of an inorganic compound by a dry vapor deposition method described later may be used. Can be mentioned.
  • the structure of the shell is not particularly limited as long as it contains a core and satisfies the above-mentioned water vapor transmission rate, but the shell preferably has an inorganic layer made of an inorganic compound.
  • the inorganic compound constituting the inorganic layer include inorganic oxides, inorganic nitrides, and inorganic oxynitrides. Inorganic oxides or inorganic nitrides are preferable, and inorganic oxides are more preferable.
  • the inorganic compound include metal elements such as aluminum (Al), zirconia (Zr), hafnium (Hf), and titanium (Ti), as well as silicon (Si), boron (B), and germanium. Examples thereof include compounds containing at least one selected from the group consisting of metalloid elements such as (Ge), and compounds containing at least one element selected from the group consisting of Si, Al, Zr, Hf and Ti are preferable. ..
  • inorganic compounds include inorganic oxides such as silicon oxide (silica), aluminum oxide (alumina), zirconium oxide (zirconia), hafnium oxide, titanium oxide (titania), and indium tin oxide (ITO). Examples thereof include silicon oxide, aluminum oxide, zirconium oxide, hafnium oxide, or titanium oxide, and aluminum oxide is more preferable.
  • the inorganic layer may contain the above-mentioned inorganic compound alone or in combination of two or more.
  • the method for forming the inorganic layer on the core can be selected from known dry vapor deposition methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), depending on the inorganic material. More specifically, sputtering, vacuum deposition, plasma CVD, and atomic layer deposition (ALD) can be mentioned. Above all, it is preferable to form an inorganic layer on the core by the ALD method in that a dense film having high water vapor transmission rate can be formed even though the film thickness is thin.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the ALD method is a thin film forming technique utilizing a continuous chemical reaction of a gas phase, and is a kind of CVD.
  • the ALD method is a film formation method in which a thin film is grown layer by layer at the atomic level by alternating active gas and reactive gas, which are also called precursors or precursors, by adsorption on the particle surface and subsequent chemical reaction. be.
  • the ALD method utilizes the so-called self-limiting effect, in which when the particle surface is covered with a certain gas, the adsorption of that gas does not occur anymore, and the unreacted precursor is adsorbed when only one layer is adsorbed. Exhaust.
  • the ALD method has fewer film forming defects, can form a uniform film, and can form a film so as to follow the unevenness. Therefore, it is a pinhole. Defects can be significantly reduced.
  • the steps of introducing and exhausting the precursor gas and the reactive gas into the reaction vessel one after another are repeated.
  • the device is not particularly limited as long as it can be used, and examples thereof include a barrel type ALD vacuum layer deposition device (manufactured by Creative Coatings Co., Ltd.).
  • the device can form a film having a more uniform thickness by providing a barrel mechanism for stirring the particles introduced into the reaction vessel.
  • the precursor gas and the reactive gas used in the ALD method can be appropriately selected depending on the constituent material of the inorganic layer to be formed.
  • the precursor gas may be Si, Al, Zr, or the like. Examples thereof include organic compounds containing at least one selected from the group consisting of Hf and Ti, and examples of the reactive gas include oxide gases such as ozone and water vapor.
  • the shell may have only one inorganic layer, or may have two or more inorganic layers.
  • the two or more inorganic layers may be the same or different.
  • the thickness of the inorganic layer (total thickness when two or more layers are present) is not particularly limited, but from the viewpoint that the effect of the present invention is more stably exhibited, 3 nm or more is preferable, and 10 nm or more is more preferable. It is preferable, and more preferably 20 nm or more.
  • the upper limit of the thickness of the inorganic layer is not particularly limited, but is preferably 300 nm or less, more preferably 200 nm or less, in that cracks or cracks can be further suppressed.
  • the thickness of the inorganic layer may be measured according to a method for measuring the thickness (wall thickness) of the shell, which will be described later.
  • the inorganic layer it is preferable to form a dense inorganic layer in that the effect of the present invention and the amount of heat storage per unit volume of the microcapsules are well-balanced and excellent.
  • the shell may have a layer other than the above-mentioned inorganic layer.
  • the layer other than the inorganic layer include an organic layer made of an organic compound.
  • a base layer which is formed inside the inorganic layer and has a function of flattening the formation surface of the inorganic layer, and a base layer formed outside the inorganic layer to protect the inorganic layer. Included is a protective layer that has the function of
  • the organic compound constituting the organic layer is not particularly limited, and known organic compounds can be used.
  • the organic compound include polyester, polyurethane, polyurea, polyurethane urea, melamine resin, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, and polyamideimide.
  • Polyetherimide Polyetherimide, cellulose acylate, polyetheretherketone, polycarbonate, alicyclic polyolefin, polyarylate, polyethersulfone, polysulfone, fluorene ring-modified polycarbonate, alicyclic-modified polycarbonate, fluorene ring-modified polyester, acrylic compound, polysiloxane , And other organic silicon compounds. These may be used alone or in combination of two or more.
  • the method for forming the organic layer on the core is not particularly limited, and known methods can be mentioned.
  • precursors such as monomers, dimers, trimmers and oligomers as organic compounds constituting the organic layer and additives such as polymerization initiators, silane coupling agents, surfactants and increasing viscosity agents are dissolved in an organic solvent.
  • this coating liquid is applied to the core, and after drying, the organic compound is polymerized or crosslinked by ultraviolet irradiation, electron beam irradiation and / or heating to form an organic layer on the core. Can be formed.
  • the thickness of the organic layer is not particularly limited, and is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m.
  • the shell may have only one organic layer or may have two or more organic layers. When the shell has two or more organic layers, the two or more organic layers may be the same or different.
  • the shell may have either the above-mentioned inorganic layer or the above-mentioned organic layer as long as the above-mentioned water vapor transmission rate is satisfied, but the shell has at least the above-mentioned inorganic layer in that the effect of the present invention is more excellent. Is preferable, and it is more preferable that the core and the inorganic layer are in direct contact with each other. Above all, it is more preferable that the shell is composed of only an inorganic layer in that the effect of the present invention and the amount of heat per unit volume are well-balanced and excellent.
  • the thickness (wall thickness) of the shell of the microcapsules is not particularly limited as long as the above water vapor transmission rate is satisfied, but is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more.
  • the upper limit is not particularly limited, but 1 ⁇ m or less is preferable, 300 nm or less is more preferable, and 100 nm or less is further preferable, in that the content ratio of the contained core material is high and the amount of heat per unit volume is excellent.
  • the wall thickness is an average value obtained by measuring the individual wall thicknesses of any 20 microcapsules by TEM and averaging them. Specifically, similarly to the above-mentioned method for measuring the particle size of the core, 20 microcapsules are selected from the observation images obtained by TEM, and the cross section of each microcapsule is observed to obtain the thickness of the shell. By calculating the average value, the wall thickness of the microcapsules can be obtained.
  • the microcapsules have, for example, a core preparation step of preparing a core containing an aliphatic amine and a shell forming step of forming a shell containing the core on the surface of the core.
  • the core preparation step is not particularly limited as long as it is a step of preparing a core for use in the shell forming step.
  • the aliphatic amine used as a raw material for the core may be a commercially available product.
  • Examples of commercially available aliphatic amines include aliphatic diamines manufactured by Wako Pure Chemical Industries, Ltd., such as 1,6-diaminohexane, 1,8-diaminooctane and 1,10-diaminodecane.
  • Aliphatic amines are often in the form of particles or powders at room temperature. Therefore, in the core preparation step, a process of adjusting the particle size of the obtained aliphatic amine may be performed, if necessary.
  • the above adjustment of the particle size may be performed by a known method of crushing and crushing the particles, and examples thereof include a method using a mortar and a pestle and a method using a crusher such as a bead mill, a roll mill and a ball mill.
  • a crusher such as a bead mill, a roll mill and a ball mill.
  • the particle size of the core can be adjusted to a desired range by changing conditions such as the treatment time and the amount and size of beads added. Further, it is preferable to adjust the particle size of the core while measuring the particle size of the core using an apparatus such as an optical microscope or TEM.
  • Examples of the shell forming step include a method of forming an inorganic layer on the core described above and a method of forming an organic layer on the core, and at least a dry vapor deposition method is used to form an inorganic layer made of an inorganic compound. It is preferable to include a step. The details of these methods are as described above, and thus description thereof will be omitted here.
  • the core preparation step and the shell forming step are preferably carried out in an environment where the aliphatic amine contained in the core does not come into contact with water.
  • denaturation of the aliphatic amine constituting the core can be suppressed, and a decrease in the amount of heat per unit volume of the microcapsules can be suppressed.
  • the above-mentioned "implemented in an environment where the aliphatic amine contained in the core does not come into contact with water” means that the core preparation step and the shell forming step do not substantially contain water in the core preparing step and the shell forming step. It means that it is carried out in an environment where the core and water do not come into direct contact with each other, such as an atmosphere of an inert gas.
  • the above object is achieved by carrying out the core preparation step and the shell forming step under the above environment until a layer capable of preventing contact between the core and water, such as an inorganic layer described later, is formed.
  • the inert gas include nitrogen and noble gases such as helium and argon.
  • the phrase "substantially free of water" from the inert gas means that the dew point of the inert gas is ⁇ 40 ° C. or lower, and the dew point of the inert gas is preferably ⁇ 40 ° C. or lower, preferably ⁇ 60 ° C. The following are more preferred.
  • the purity of the inert gas is preferably 99.9% by volume or more, more preferably 99.99% by volume or more.
  • the nitrogen atmosphere has a dew point of ⁇ 40 ° C. or lower (more preferably ⁇ 60 ° C. or lower) and a purity of 99.9% by volume or more (more preferably 99.99% by volume or more). It is preferable to carry out below.
  • the core preparation step and the shell forming step are preferably performed at a melting point or lower from the viewpoint of suppressing denaturation of the aliphatic amine constituting the core.
  • the particle size of the microcapsules is not particularly limited, but the median diameter (Dm) based on the volume of the microcapsules is preferably 0.1 to 600 ⁇ m, more preferably 1 to 300 ⁇ m, still more preferably 5 to 150 ⁇ m.
  • Dm median diameter
  • the content of the microcapsule per unit volume can be further increased, and the heat storage amount per unit volume of the heat storage sheet or the heat storage member can be further improved.
  • the particle size of the microcapsules is preferably 60 ⁇ m or less in terms of volume-based median diameter (Dm).
  • the volume-based median diameter of microcapsules is a grain in which the total volume of particles on the large diameter side and the small diameter side is equal when the entire microcapsule is divided into two with the particle size as a threshold. Refers to the diameter.
  • the volume-based median diameter of the microcapsules is measured by a laser diffraction / scattering method using a Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • the isolated microcapsules are obtained by immersing the heat storage sheet or the heat storage member in water or an organic solvent for 24 hours or more and centrifuging the obtained aqueous dispersion. Is obtained.
  • the volume occupied by the core with respect to the total volume of the microcapsules is preferably 10% by volume or more, preferably 20% by volume or more, in that the amount of heat storage per unit volume of the microcapsules is more excellent. Is more preferable, 50% by volume or more is further preferable, and 90% by volume or more is particularly preferable.
  • the upper limit is not particularly limited, but the volume occupied by the core with respect to the total volume of the microcapsules is 99.999 in that the strength of the shell is improved and the damage of the shell due to the expansion due to the phase change of the core can be further suppressed. It is preferably 99.99% by volume or less, more preferably 99.99% by volume or less. It is preferable that the shell occupies the rest of the volume occupied by the core in the microcapsules.
  • the microcapsules are preferably mononuclear microcapsules.
  • the fact that the microcapsules are mononuclear means that there is substantially only one space in which the substance (core) contained in the microcapsules exists.
  • the fact that there is substantially only one space in which the core exists means that one space (preferably a substantially spherical space) in the microcapsule, which is the largest space in which the core exists, is the core.
  • the volume of the space having the largest volume (preferably a substantially spherical space) among the spaces in which the core exists is 10 times or more larger than the volume of the space having the second largest volume.
  • the microcapsules are preferably substantially spherical.
  • the heat storage sheet contains microcapsules containing an aliphatic amine.
  • the heat storage sheet preferably contains the above microcapsules and a binder.
  • the heat storage sheet exhibits a heat storage function by transferring heat accompanying a phase change between a solid and a liquid of an aliphatic amine contained in microcapsules as a heat storage material. This makes it possible, for example, to absorb and release heat in a heating element that emits heat.
  • the heat storage sheet contains the above-mentioned microcapsules having an excellent heat storage amount per unit volume, it is possible to provide a heat storage sheet and a heat storage member (described later) that exhibit a more excellent heat storage function.
  • the heat storage sheet contains microcapsules. Since the details of the microcapsules are as described above, the description thereof will be omitted here.
  • the content of the microcapsules in the heat storage sheet is not particularly limited, but is preferably 50% by mass or more, more preferably 65% by mass or more, still more preferably 75% by mass or more, based on the total mass of the heat storage sheet.
  • the upper limit of the content of the microcapsules is not particularly limited, but is preferably 99.9% by mass or less, more preferably 99% by mass or less, based on the total mass of the heat storage sheet.
  • the heat storage sheet preferably further contains a binder in terms of improving durability.
  • the binder is not particularly limited as long as it is a polymer having adhesion to microcapsules and capable of forming a desired shape such as a membrane, and examples thereof include water-soluble polymers and water-insoluble polymers.
  • the term "water-soluble” in the water-soluble polymer means that the amount of the target substance dissolved in 100% by mass of water at 25 ° C. is 5% by mass or more. A more suitable water-soluble polymer means that the dissolved amount is 10% by mass or more.
  • water-insoluble in the water-insoluble polymer means that the amount of the target substance dissolved in 100% by mass of water at 25 ° C. is less than 5% by mass.
  • water-soluble polymer examples include polyvinyl alcohol (unmodified polyvinyl alcohol and modified polyvinyl alcohol), polyacrylic acid amide and its derivatives, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, and ethylene-anhydrous.
  • water-insoluble polymer examples include silicone polymers such as silicone resin and silicone oil, acrylic resin, polyolefin, styrene-butadiene resin, polyurethane, polyurea, polyurethane urea, and PET (Polyethylene Terephthalate) resin.
  • silicone polymers such as silicone resin and silicone oil, acrylic resin, polyolefin, styrene-butadiene resin, polyurethane, polyurea, polyurethane urea, and PET (Polyethylene Terephthalate) resin.
  • the binder the polymer having heat storage property described in International Publication No. 2018/207387 and JP-A-2007-031610 may be used, and the description of these documents is incorporated in the present specification.
  • the binder is plastically deformable at room temperature (25 ° C.) and has a function of exhibiting the properties of a plastic body in a heat storage sheet (or a heat storage body described later; the same applies hereinafter).
  • the heat storage sheet contains a binder that can be plastically deformed at room temperature and the above-mentioned microcapsules
  • the binder located between the microcapsules in the heat storage sheet is deformed by adhering or adhering to a plurality of microcapsules.
  • the microcapsules can be plastically deformed while maintaining the adhesion between the microcapsules, and the generation of voids such as cracks and cracks can be suppressed in the heat storage sheet.
  • a binder include the above-mentioned silicone polymers, polyurethanes, polyureas, polyurethane ureas, acrylic resins, polyester resins, polyether resins, and polyolefin resins. Of these, high-viscosity silicone oil is preferable.
  • "high viscosity” means that the viscosity of a polymer is 10,000 cP or more. The viscosity of the polymer can be measured at 25 ° C. using an E-type viscometer (“RE-85U” manufactured by Toki Sangyo Co., Ltd.).
  • the content of the binder in the heat storage sheet is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 0.5 to 15% by mass, in terms of the balance between the film strength of the heat storage sheet and the heat storage property of the heat storage member. ..
  • the heat storage sheet may contain other components other than the microcapsules and the binder.
  • Other components include thermally conductive materials, flame retardants, UV absorbers, antioxidants, solvents, colorants, gelling agents, monomers, and preservatives.
  • the content of the other components is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the heat storage sheet.
  • the lower limit is not particularly limited, but may be 0% by mass.
  • the "thermal conductivity" of the thermally conductive material a material having a thermal conductivity of 10 Wm -1 K -1 or more is preferable.
  • the thermal conductivity of the heat conductive material 50 Wm -1 K -1 or more is more preferable in terms of improving the heat dissipation of the heat storage sheet.
  • the thermal conductivity (unit: Wm -1 K -1 ) is a value measured by a flash method under a temperature of 25 ° C. by a method compliant with Japanese Industrial Standards (JIS) R1611.
  • the thickness of the heat storage sheet is not particularly limited, but is preferably 1 to 1000 ⁇ m.
  • the cut surface obtained by cutting the heat storage sheet in parallel with the thickness direction is observed by SEM, 5 arbitrary points are measured, and the average value of the thicknesses of the 5 points is taken as the average value.
  • the latent heat capacity of the heat storage sheet is not particularly limited, but 150 J / cm 3 or more is preferable, and 180 J / cm 3 or more is more preferable, because the heat storage member has high heat storage property and is suitable for temperature control of the heat generating body that generates heat. , 200 J / cm 3 or more is more preferable.
  • the upper limit is not particularly limited, but it is often 500 J / cm 3 or less.
  • the latent heat capacity is a value calculated from the heat storage amount per unit mass (J / g) measured by differential scanning calorimetry (DSC) and the density of the heat storage sheet (g / cm 3 ). .. The density of the heat storage sheet is measured from the mass and volume of the sample.
  • the mass of the sample is measured with an electronic balance.
  • the volume of the sample is calculated by measuring the area and thickness with a caliper, a contact type thickness measuring machine, etc. when the sample is in the form of a sheet, and does not dissolve or swell when the sample is in the form of a lump. Obtained from the increased volume by immersing in a solvent (water, alcohol, etc.).
  • the heat storage sheet is preferably a plastic body that can be plastically deformed at room temperature (25 ° C.). That is, it is preferable that the heat storage sheet can be deformed by applying an external force in a room temperature environment.
  • a heat storage sheet can be produced, for example, by incorporating the above binder together with microcapsules into the heat storage sheet.
  • the method for producing the heat storage sheet is not particularly limited, and examples thereof include known methods.
  • a method for producing a heat storage sheet for example, a coating liquid preparation step of mixing the above microcapsules, the above binder, and a solvent to prepare a coating liquid, and coating the obtained coating liquid on a substrate.
  • a method having a coating step of forming a coating film and a drying step of drying the formed coating film can be mentioned.
  • the base material examples include a resin base material, a glass base material, and a metal base material.
  • the resin contained in the resin base material include polyester (eg, polyethylene terephthalate, polyethylene naphthalate), polyolefin (eg, polyethylene, polypropylene), and polyurethane.
  • polyester eg, polyethylene terephthalate, polyethylene naphthalate
  • polyolefin eg, polyethylene, polypropylene
  • polyurethane polyurethane.
  • a substrate made of a combination of and is more preferable.
  • the thickness of the base material is not particularly limited, but is preferably 1 to 1000 ⁇ m, more preferably 1 to 100
  • the surface of the base material is treated for the purpose of improving the adhesion to the heat storage sheet.
  • the surface treatment method include corona treatment, plasma treatment, and application of a thin layer which is an easy-adhesion layer.
  • the material constituting the easy-adhesion layer is not particularly limited, and examples thereof include resin, and more specific examples thereof include styrene-butadiene rubber, urethane resin, acrylic resin, silicone resin, and polyvinyl resin.
  • the thickness of the easy-adhesion layer is not particularly limited, but is preferably 0.1 to 5 ⁇ m, more preferably 0.5 to 2 ⁇ m.
  • a peelable temporary base material may be used as the base material.
  • the solvent used in the above-mentioned coating liquid preparation step is not particularly limited, and examples thereof include water such as ion-exchanged water and alcohol.
  • Examples of the coating method in the above coating step include a die coating method, an air knife coating method, a roll coating method, a blade coating method, a gravure coating method, and a curtain coating method.
  • the drying temperature in the above drying step is preferably 20 to 150 ° C, more preferably 30 to 120 ° C.
  • the drying time is preferably 30 seconds or longer, more preferably 1 minute or longer. Further, it is preferable that the drying step is completed immediately before all the solvents contained in the coating film are vaporized. There is no particular upper limit to the drying time, but from the viewpoint of the production efficiency of the heat storage sheet, the shorter the drying time, the more preferable.
  • the coating film may be flattened. Examples of the flattening treatment method include a method of improving the density of the aliphatic amine in the coating film by applying pressure to the coating film with a member such as a roller, a nip roller and a calendar.
  • the heat storage sheet can be applied to various uses, for example, an electronic device (for example, a mobile phone (particularly a smartphone), a mobile information terminal, a personal computer (particularly a portable personal computer), a game machine, a remote control, etc.).
  • Automotive for example, batteries (particularly lithium ion batteries), control devices such as power ICs (Integrated Circuits), car navigation systems, liquid crystal monitors, LED (Light Emitting Diode) lamps, heat retention of canisters, etc.); Building materials suitable for temperature control during moderate temperature rise or indoor heating and cooling (for example, floor materials, roofing materials, wall materials, etc.); in response to changes in environmental temperature or changes in body temperature during exercise or rest.
  • Clothes suitable for temperature control for example, underwear, jackets, cold weather clothes, gloves, etc.); Air conditioners; Bedding; Exhaust heat utilization system that stores unnecessary exhaust heat and uses it as heat energy, etc. Can be done.
  • the above microcapsules can also be applied to these uses.
  • the heat storage sheet is preferably used for an electronic device (particularly, a portable electronic device).
  • the reason for this is as follows.
  • a method of suppressing the temperature rise due to heat generation of the electronic device a method of discharging heat to the outside of the electronic device by the flow of air and a method of diffusing the heat to the entire housing of the electronic device by a heat pipe or a heat spreader are used.
  • a method of diffusing heat to the entire housing of the electronic device is used.
  • the heat storage composition is a composition containing microcapsules containing an aliphatic amine.
  • the heat storage composition preferably contains the above microcapsules and the above binder.
  • the shape of the heat storage composition is not particularly limited, and may be a solid form (three-dimensional shape) such as a sheet shape, a film shape, a plate shape, a cylindrical shape, a spherical shape, and a lump shape. Further, the heat storage composition may be in an amorphous form having fluidity such as liquid or slurry.
  • the above solid heat storage composition is also referred to as a “heat storage body”.
  • the sheet-shaped, film-shaped or plate-shaped heat storage body is as described above in the above [heat storage sheet], including its preferred embodiment.
  • the thickness of the heat storage body is preferably 0.5 mm or more, more preferably 1 mm or more, further preferably 2 mm or more, and particularly preferably 3 mm or more. ..
  • the upper limit is not particularly limited, but is preferably 1000 mm or less, and more preferably 100 mm or less.
  • the thickness means the shortest distance when the heat storage body is sandwiched between two parallel planes.
  • the components contained in the heat storage body, the physical properties of the heat storage body, and the use of the heat storage body may be the same as those already described for the heat storage sheet, including the preferred embodiments thereof.
  • the method for producing the heat storage composition and the heat storage body is not particularly limited.
  • a liquid heat storage composition (dispersion of microcapsules) can be prepared by mixing microcapsules containing an aliphatic amine as a heat storage material with optional components such as a binder and a solvent used as needed. Then, by drying the liquid heat storage composition, a solid heat storage composition (heat storage body) can be produced.
  • the heat storage member has the above-mentioned heat storage sheet or heat storage body.
  • the heat storage member may further have a protective layer.
  • the heat storage member preferably has a base material on the heat storage sheet or the heat storage body in terms of handling.
  • the heat storage member will be described using a heat storage sheet (sheet-shaped heat storage body) as an example.
  • the base material of the heat storage member is as described above.
  • the protective layer is a layer arranged on the heat storage sheet, and when the heat storage member has a base material, the protective layer is arranged on the surface side of the heat storage sheet opposite to the base material.
  • the protective layer has a function of protecting the heat storage sheet.
  • the protective layer may be arranged so as to be in contact with the heat storage sheet, or may be arranged on the heat storage sheet via another layer.
  • the material constituting the protective layer is not particularly limited, and a resin is preferable, and a resin selected from the group consisting of a fluororesin and a siloxane resin is more preferable in that water resistance and flame retardancy are better.
  • the protective layer for example, a layer containing a known hard coat agent or a hard coat film described in JP-A-2018-202696, JP-A-2018-18387, and JP-A-2018-111793 may be used. good. Further, from the viewpoint of heat storage property, the protective layer having a polymer having heat storage property described in International Publication No. 2018/207387 and JP-A-2007-031610 may be used.
  • the protective layer may contain components other than the resin.
  • Other components include thermally conductive materials, flame retardants, UV absorbers, antioxidants, colorants, and preservatives.
  • the thickness of the protective layer is not particularly limited, but is preferably 50 ⁇ m or less, more preferably 0.01 to 25 ⁇ m, still more preferably 0.5 to 15 ⁇ m.
  • the cut surface obtained by cutting the protective layer in parallel with the thickness direction is observed by SEM, 5 arbitrary points are measured, and the average value of the thicknesses of the 5 points is taken as the average value.
  • the method of forming the protective layer is not particularly limited, and a known method can be mentioned.
  • a method of adhering the layers on the heat storage sheet can be mentioned.
  • An adhesion layer may be arranged for the purpose of improving the adhesion between the heating element and the heat storage sheet, which will be described later.
  • Examples of the adhesive layer include an adhesive layer and an adhesive layer.
  • the material of the pressure-sensitive adhesive layer is not particularly limited, and examples thereof include known pressure-sensitive adhesives.
  • Examples of the pressure-sensitive adhesive include an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive. Further, as an example of the adhesive, "Characteristic evaluation of release paper / release film and adhesive tape and its control technology", Information Mechanism, 2004, acrylic adhesive described in Chapter 2, ultraviolet curable adhesive, and , Silicone adhesive and the like.
  • the acrylic pressure-sensitive adhesive refers to a pressure-sensitive adhesive containing a polymer of (meth) acrylic monomer ((meth) acrylic polymer).
  • the adhesive layer may further contain a tackifier.
  • the material of the adhesive layer is not particularly limited, and examples thereof include known adhesives.
  • Examples of the adhesive include urethane resin adhesives, polyester adhesives, acrylic resin adhesives, ethylene vinyl acetate resin adhesives, polyvinyl alcohol adhesives, polyamide adhesives, and silicone adhesives.
  • the method for forming the adhesive layer is not particularly limited, and for example, a method of transferring the adhesive layer onto the heat storage sheet and a method of applying a composition containing an adhesive or an adhesive onto the heat storage sheet to form the adhesive layer. Can be mentioned.
  • the thickness of the adhesion layer is not particularly limited, but is preferably 0.5 to 100 ⁇ m, more preferably 1 to 25 ⁇ m, still more preferably 1 to 15 ⁇ m.
  • the heat storage member may further have a temporary base material.
  • a temporary base material is the same as the specific example of the base material. It is preferably a base material having a peeled surface. When using the heat storage member, the temporary base material is peeled off from the heat storage member.
  • the electronic device has the above-mentioned heat storage member and a heating element.
  • the heat storage member heat storage sheet or heat storage body, adhesion layer and protective layer
  • the heat storage member is as described above.
  • the heating element is a member that may generate heat in an electronic device, and is, for example, a SoC such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a SRAM (Static Random Access Memory), and an RF (Radio Frequency) device. (Systems on a Chip), cameras, LED packages, power electronics, and batteries (especially lithium ion secondary batteries).
  • the heating element may be arranged so as to be in contact with the heat storage member, or may be arranged on the heat storage member via another layer (for example, a heat conductive material described later).
  • the electronic device further preferably has a heat conductive material.
  • the heat conductive material means a material having a function of conducting heat generated from a heating element to another medium.
  • the heat conductivity it is preferable that the heat conductivity is 10 Wm -1 K -1 or more. That is, the heat conductive material is preferably a material having a thermal conductivity of 10 Wm -1 K -1 or more.
  • the thermal conductivity (unit: Wm -1 K -1 ) is a value measured by a flash method under a temperature of 25 ° C. by a method compliant with Japanese Industrial Standards (JIS) R1611.
  • Examples of the heat conductive material that the electronic device may have include a heat radiating sheet and silicon grease, and the heat radiating sheet is preferably used.
  • the electronic device preferably has the above-mentioned heat storage member, a heat conductive material, and a heating element.
  • the heat radiating sheet is a sheet having a function of conducting heat generated from a heating element to another medium, and preferably has a heat radiating material.
  • the heat radiating material include carbon, metal (for example, silver, copper, aluminum, iron, platinum, stainless steel and nickel), and silicon.
  • Specific examples of the heat radiating sheet include a copper foil sheet, a metal film resin sheet, a metal-containing resin sheet, and a graphene sheet, and a graphene sheet is preferably used.
  • the thickness of the heat radiating sheet is not particularly limited, but is preferably 10 to 500 ⁇ m, more preferably 20 to 300 ⁇ m.
  • the electronic device preferably further comprises a heat transport member selected from the group consisting of heat pipes and vapor chambers.
  • Both the heat pipe and the vapor chamber are made of metal or the like and include at least a member having a hollow structure and a working fluid which is a heat transfer medium enclosed in the internal space thereof, and the working fluid in a high temperature part (evaporation part). Evaporates (vaporizes) and absorbs heat, and the vaporized working fluid condenses in the low temperature part (condensed part) and releases heat.
  • the heat pipe and the vapor chamber have a function of transporting heat from a member in contact with a high temperature portion to a member in contact with a low temperature portion due to a phase change of the working fluid inside the heat pipe and the vapor chamber.
  • the heat storage member and the heat pipe or the vapor chamber are in contact with each other, and the heat storage member is a heat pipe.
  • the vapor chamber is in contact with the low temperature portion.
  • the phase change temperature of the heat storage material contained in the heat storage sheet or the heat storage body of the heat storage member and the heat is preferable. It is preferable that the temperature range in which the pipe or vapor chamber operates overlaps. Examples of the temperature range in which the heat pipe or the vapor chamber operates include a range of temperatures at which the working fluid can undergo a phase change inside each of them.
  • the heat pipe has at least a tubular member and a working fluid enclosed in its internal space.
  • the heat pipe preferably has a wick structure on the inner wall of the tubular member, which is a flow path for the working fluid based on the capillary phenomenon, and has an internal space inside the wick structure, which is a passage for the vaporized working fluid. ..
  • Examples of the shape of the tubular member include a circular tubular, a square tubular, and a flat elliptical tubular.
  • the tubular member may have a bent portion.
  • the heat pipe may be a loop heat pipe having a structure in which tubular members are connected in a loop shape.
  • the vapor chamber has at least a flat plate-shaped member having a hollow structure and a working fluid enclosed in the internal space thereof.
  • the vapor chamber preferably has a wick structure similar to that of a heat pipe on the inner surface of a flat plate-shaped member. In the vapor chamber, heat is generally absorbed from a member in contact with one main surface of the flat plate-shaped member, and heat is released to the member in contact with the other main surface to transport heat.
  • the material constituting the heat pipe and the vapor chamber is not particularly limited as long as it is a material having high thermal conductivity, and examples thereof include metals such as copper and aluminum.
  • Examples of the working fluid enclosed in the internal space of the heat pipe and the vapor chamber include water, methanol, ethanol and CFC substitutes, which are appropriately selected and used according to the temperature range of the electronic device to be applied.
  • the electronic device may include a protective layer, a heat storage sheet or a heat storage body, a heat conductive material, a heating element, and a member other than the heat transport member described above.
  • Examples of other members include a base material and an adhesion layer. The base material and the adhesive layer are as described above.
  • Example 1 The following steps were carried out to prepare the microcapsules of Example 1.
  • An isoparaffin-based solvent (“IP Solvent 1620", Idemitsu Kosan) in which water and oxygen are removed by bubbling treatment with dry nitrogen in a glove box filled with dry nitrogen (dew point -60 ° C or less, nitrogen concentration 99.99% by volume or more).
  • a mixture was prepared by putting 1.5 g of (manufactured by Fuji Film Co., Ltd.), 0.3 g of 1,8-diaminooctane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 0.5 g of zirconia beads having a diameter of 0.1 mm ⁇ into a cent tube.
  • the mixture in the cent tube was shaken and stirred for 72 hours using a test tube mixer (“DeltaMixer Se-08”, manufactured by TAITEC).
  • the scale of the test tube mixer was "5".
  • the obtained mixed solution was decanted into a dispersion containing particles of 1,8-diaminooctane and zirconia beads. After removing the supernatant from the obtained dispersion by decantation, the particles were dried by directly spraying dry nitrogen for 3 hours to prepare core particles A1 composed of 1,8-diaminooctane.
  • the core particles A1 prepared above were placed in a vial filled with dry nitrogen, sealed, and then the vial was removed from the glove box. From the observation image of the core particle A1 obtained by using a transmission electron microscope (TEM), it was confirmed that the particle size of the core particle A1 was 0.1 ⁇ m.
  • TEM transmission electron microscope
  • the obtained core particles A1 were placed in a barrel-type container of a barrel-type ALD vacuum film forming apparatus (manufactured by Creative Coatings Co., Ltd.). Next, the surface of the core particles A1 is coated with aluminum oxide (Al 2 O 3 ) by ALD in which the following operations (1) to (4) are sequentially performed at room temperature (25 ° C.) while rotating the container. Formed.
  • a gas of trimethylaluminum as a precursor was introduced into the container at a flow rate of 3.0 sccm for 40 seconds.
  • the unit "sccm" of the above flow rate means the flow rate (mL / min) of the gas converted into the value at 1 atm and 25 ° C.
  • Examples 2 to 5 From aluminum oxide (Al 2 O 3 ) according to the method described in Example 1, except that the number of cycles of the above ALD treatment step was adjusted so that the shell having the thickness shown in Table 1 described later was formed. Microcapsules of Examples 2 to 5 were prepared, which had a shell made of 1,8-diaminooctane and contained core particles A1.
  • Example 6 to 10 When stirring the above mixture containing the isoparaffin solvent, 1,8-diaminooctane and zirconia beads using a test tube mixer, the stirring time is changed to 3 hours and the scale of the test tube mixer is changed to "3".
  • core particles A2 composed of 1,8-diaminooctane having a particle size of 5 ⁇ m were prepared according to the method described in Example 1. The particle size of the core particles A2 was measured using an optical microscope. Example 1 except that the core particles A2 produced above were used and the number of cycles of the above ALD treatment step was adjusted so that a shell having the thickness shown in Table 1 described later was formed.
  • microcapsules of Examples 6 to 10 having a shell made of aluminum oxide (Al 2 O 3 ) and containing core particles A2 made of 1,8-diaminooctane were prepared.
  • Examples 11 to 35 1,8-Diaminooctane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is crushed using a mortar and pestle in a glove box filled with dry nitrogen (dew point -60 ° C or lower, nitrogen concentration 99.99% by volume or more).
  • core particles A3 to A7 composed of 1,8-diaminooctane having the particle diameters shown in Table 1 described later were prepared.
  • the particle size of each core particle was measured using an optical microscope.
  • the number of cycles of the above ALD treatment step was adjusted so that any of the core particles A3 to A7 described in Table 1 described later was used and a shell having the thickness shown in Table 1 described later was formed.
  • microcapsules of Examples 11 to 35 having a shell made of aluminum oxide (Al 2 O 3 ) and containing core particles made of 1,8-diaminooctane were prepared. Each was made.
  • Example 36 In a glove box filled with dry nitrogen (dew point -60 ° C or less, nitrogen concentration 99.99% by volume or more), 1,6-diaminohexane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is crushed using a mortar and pestle. As a result, core particles A8 made of 1,6-diaminohexane having a particle diameter of 50 ⁇ m were prepared. The particle size of the core particles A8 was measured using an optical microscope. According to the method described in Example 1, except that the core particles A8 produced above were used and the number of cycles of the above ALD treatment step was adjusted so as to form a shell having a thickness of 50 nm. The microcapsules of Example 36 having a shell made of aluminum oxide (Al 2 O 3 ) and having a thickness of 50 nm and containing core particles A8 made of 1,6-diaminohexane were prepared.
  • Al 2 O 3 aluminum oxide
  • Example 37 In a glove box filled with dry nitrogen (dew point -60 ° C or less, nitrogen concentration 99.99% by volume or more), 1,10-diaminodecane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is crushed using a mortar and pestle. As a result, core particles A9 made of 1,10-diaminodecane having a particle diameter of 50 ⁇ m were prepared. The particle size of the core particles A9 was measured using an optical microscope. According to the method described in Example 1, except that the core particles A9 produced above were used and the number of cycles of the above ALD treatment step was adjusted so as to form a shell having a thickness of 50 nm. The microcapsules of Example 37 having a shell made of aluminum oxide (Al 2 O 3 ) and having a thickness of 50 nm and containing core particles A9 made of 1,10-diaminodecane were prepared.
  • Al 2 O 3 aluminum oxide
  • Example 38 to 40 The core particles A4 used in Examples 16 to 20 were used, trimethylsilane (SiO 2 precursor) was used as a precursor in the operation (1) of the film forming step by ALD, and the thickness was 50 nm.
  • a shell made of silicon oxide (SiO 2 ) having a thickness of 50 nm is provided according to the method described in Example 1, except that the number of cycles of the ALD treatment step is adjusted so as to form a shell.
  • Microcapsules of Example 38 containing core particles A4 composed of 8-diaminooctane were prepared.
  • titanium oxide (TIM 2 ) was according to the method described in Example 38, except that tripropyl orthotitanium (TiO 2 precursor) was used as a precursor in the operation (1) of the film forming step by ALD.
  • the microcapsules of Example 39 having a shell having a thickness of 50 nm and containing core particles A4 consisting of 1,8-diaminooctane were prepared.
  • a thickness made of zirconia oxide (ZrO 2 ) according to the method described in Example 38, except that trimethylzirconium (ZrO 2 precursor) was used as a precursor in the operation (1) of the film forming step by ALD.
  • the microcapsules of Example 40 having a shell having a zirconium of 50 nm and containing core particles A4 composed of 1,8-diaminooctane were prepared.
  • a non-polar solution (b) containing 1% by mass of sorbitan sesquioleate (manufactured by Tokyo Chemical Industry Co., Ltd.) as an emulsifier in 11250 parts by mass of an isoparaffin solvent (Isopar M, manufactured by ExxonMobil, boiling point 234 ° C.) as a non-polar medium. ) was prepared.
  • This aqueous solution (a) was added to the non-polar solution (b), and the mixture was emulsified and dispersed by stirring at 5000 rpm using a homogenizer. Then, the obtained emulsion is heated and stirred at 80 ° C.
  • microcapsules of Comparative Example 1 were repeatedly washed with cyclohexane and then dried in a blower dryer at 40 ° C. to obtain microcapsules of Comparative Example 1.
  • the microcapsules of Comparative Example 1 had core particles of 1,6-diaminohexane, an organic shell made of acrylic acid-maleic acid copolymer on the inside, and an inorganic shell made of titanium oxide (TiO 2 ) on the outside. It has a structure arranged in order.
  • the thicknesses of the organic shell and the inorganic shell of the microcapsules of Comparative Example 1 were 50 ⁇ m and 0.1 ⁇ m, respectively, as a result of measurement by the method of cross-sectional observation using the TEM described in Example 1.
  • the water vapor transmission rate (unit: g / (m 2 ⁇ day)) of the shell constituting the microcapsules obtained in the above-mentioned Example or Comparative Example was determined by JIS Z 0208, “Humidity Permeability Test Method for Moisture-Proof Packaging Material (Cup”). The measurement was performed according to the method described in "Method)".
  • a PET film having a thickness of 100 ⁇ m is prepared, and a film is formed on one surface of the PET film according to the shell forming method described in each Example and Comparative Example to obtain a sample for measuring water vapor transmission rate. Made.
  • the measurement sample prepared above and the PET film having no coating were left for 24 hours under the conditions of a temperature of 40 ° C. and 90% RH.
  • the water vapor transmission rate (unit: g / ( m2 ⁇ day)) of each film was calculated from the mass change of the measurement sample and the PET film having no film before and after leaving. From the obtained calculated values of water vapor transmission rate, the water vapor transmission rate of the shell constituting the microcapsules of each Example or Comparative Example was evaluated based on the following evaluation criteria.
  • the density (g / cm 3 ) of the microcapsules is measured using a dry automatic densitometer (product name "AccuPyc1330", manufactured by Shimadzu Corporation), and the unit mass is measured.
  • the amount of heat stored per unit (J / g) is measured using a differential scanning calorimetry meter (DSC) (product name "X-DSC7200", manufactured by Hitachi High-Tech Science Co., Ltd.) at a temperature rise rate of 3 ° C./min and a temperature range. It was measured under the condition of 20 to 100 ° C.
  • DSC differential scanning calorimetry meter
  • the heat storage amount per unit volume (J / cm 3 ) of the microcapsules produced in each example was calculated. From the calculated heat storage amount per unit volume (J / cm 3 ), the heat storage amount (Fresh heat storage amount) immediately after the production of the microcapsules was evaluated based on the following criteria.
  • microcapsules arbitrarily selected from the microcapsules subjected to the above acceleration test was observed using an optical microscope or TEM.
  • the number of microcapsules in which obvious cracks (cracks and gaps were formed) were observed in the shell was measured, and the durability (survival rate) of the microcapsules was evaluated based on the following criteria. did.
  • Table 1 shows the configurations and evaluation results of the microcapsules produced in Examples 1 to 40 and Comparative Example 1.
  • the "core material” column of “core particles” indicates the compounds contained as the core material in the microcapsules produced in each example.
  • the “melting point” column of “core particles” indicates the melting point (° C.) of the core material measured by the above method.
  • the “particle size” column of “core particles” indicates the particle size of the core particles measured by the above method.
  • the "Constituent material” column of “Shell” indicates the material constituting the shell in the microcapsules produced in each example, and the “Forming method” column indicates the shell forming method.
  • the "Structure” column of “Shell” is “Inorganic shell”
  • the shell is composed of a single layer formed by the method shown in the "Formation method” column for the material shown in the "Constituent material” column. show.
  • the "Structure” column of “Shell” is "Organic shell / Inorganic shell” as described in Comparative Example 1
  • the shell is an organic shell made of an acrylic acid-maleic acid copolymer on the inside, and an organic shell made of an acrylic acid-maleic acid copolymer. It means that it consists of a two-layer structure of an inorganic shell made of titanium oxide (TiO 2 ) on the outside.
  • microcapsules of the present invention have excellent stability over time in the amount of heat storage per unit volume.
  • the stability of the heat storage amount per unit volume with time is more excellent, and when the thickness of the shell is 20 nm or more, the stability of the heat storage amount per unit volume with time is further improved. It was confirmed to be excellent (comparison of Examples 1 to 35).
  • microcapsules (30 g) obtained in Examples 1-40 were added to a mixed solution of heptane (120 g) and isopropanol (30 g).
  • Auridic WNN-153 (Acrylic resin manufactured by DIC Corporation) (3.1 g) was added to the obtained mixed solution as a binder to prepare a coating solution.
  • an optical adhesive sheet MO-3015 (thickness: 5 ⁇ m) manufactured by Lintec Corporation was attached to a PET substrate having a thickness of 6 ⁇ m to form an adhesive layer, and a PET substrate with an adhesive layer was prepared.
  • a coating liquid is applied to the surface of the PET substrate on the adhesive layer side using a bar coater, and the obtained coating film is dried at 80 ° C. for 25 minutes to form a heat storage member having a thickness of 300 ⁇ m on the PET substrate. did. Then, the heat storage member was peeled off from the PET substrate to prepare a heat storage sheet. As a result, it was confirmed that the heat storage sheet produced by using the microcapsules of the present invention is excellent in the stability of the heat storage amount over time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

The present invention addresses the problem of providing microcapsules superior in the stability over time of heat storage amount per unit volume. Furthermore, the present invention addresses the problem of providing a method for producing the microcapsules, a heat-storage sheet, a method for producing the heat-storage sheet, and a heat-storage object. The microcapsules according to the present invention comprise cores and shells containing the cores enclosed therein, wherein the cores comprise an aliphatic amine and the shells have a water vapor permeability of 10-1 g/(m2·day) or less.

Description

マイクロカプセル、マイクロカプセルの製造方法、蓄熱シート、蓄熱シートの製造方法、蓄熱体Microcapsules, microcapsule manufacturing method, heat storage sheet, heat storage sheet manufacturing method, heat storage
 本発明は、マイクロカプセル、マイクロカプセルの製造方法、蓄熱シート、蓄熱シートの製造方法、及び、蓄熱体に関する。 The present invention relates to microcapsules, a method for manufacturing microcapsules, a heat storage sheet, a method for manufacturing a heat storage sheet, and a heat storage body.
 マイクロカプセルは、蓄熱材、香料、染料、接着剤の硬化剤、及び、医薬品成分等の機能性材料を内包して保護すること等の点で、新たな価値を顧客に提供できる可能性がある。近年、パラフィン類等の相変化物質(PCM:Phase Change Material)を含み、外部で発生した熱を蓄える蓄熱材として機能するマイクロカプセルが注目されている。蓄熱材は、例えば、電子デバイス、建築物、自動車及び排熱利用システム等の設備において、発熱体からの熱を貯留し、全体の温度上昇を抑制する蓄熱部材に含まれ、利用される。 Microcapsules may provide new value to customers in terms of enclosing and protecting functional materials such as heat storage materials, fragrances, dyes, adhesive curing agents, and pharmaceutical ingredients. .. In recent years, microcapsules containing a phase change substance (PCM: Phase Change Material) such as paraffin and functioning as a heat storage material for storing heat generated outside have been attracting attention. The heat storage material is included in and used as a heat storage member that stores heat from a heating element and suppresses an increase in overall temperature in equipment such as electronic devices, buildings, automobiles, and waste heat utilization systems.
 蓄熱量の高い材料として、脂肪族炭化水素基とアミノ基とを有する脂肪族アミンが挙げられる。例えば、特許文献1には、コア剤の表面に内側シェルを有する一次カプセルが、更に外側シェルで被覆されたエポキシ樹脂硬化用マイクロカプセルであって、コア剤は塩基性硬化剤及び/又は硬化促進剤である、エポキシ樹脂硬化用マイクロカプセルに関する発明が開示されている。 Examples of the material having a high heat storage amount include an aliphatic amine having an aliphatic hydrocarbon group and an amino group. For example, in Patent Document 1, the primary capsule having an inner shell on the surface of the core agent is a microcapsule for curing an epoxy resin further coated with an outer shell, and the core agent is a basic curing agent and / or a curing acceleration. The invention relating to the epoxy resin curing microcapsule which is an agent is disclosed.
特開2016-035056号公報Japanese Unexamined Patent Publication No. 2016-035056
 特許文献1には、マイクロカプセルのコアを構成する塩基性硬化剤及び/又は硬化促進剤として、イミダゾール化合物、アミン化合物、及び、ヒドラジド化合物等の窒素含有化合物が記載されている。
 本発明者らは、特許文献1を参考にして、脂肪族アミンを内包するマイクロカプセルの蓄熱性について検討した結果、脂肪族アミンを内包するマイクロカプセルにおいて、作製から時間が経つに従って単位体積当たりの蓄熱量が低下するという課題が存在することを知見した。
Patent Document 1 describes nitrogen-containing compounds such as imidazole compounds, amine compounds, and hydrazide compounds as basic curing agents and / or curing accelerators constituting the core of microcapsules.
As a result of examining the heat storage property of the microcapsules containing the aliphatic amine with reference to Patent Document 1, the present inventors have found that the microcapsules containing the aliphatic amine per unit volume as time passes from the preparation. It was found that there is a problem that the amount of heat storage decreases.
 本発明は、上記に鑑みて、単位体積当たりの蓄熱量の経時安定性がより優れたマイクロカプセルを提供することを課題とする。また、本発明は、マイクロカプセルの製造方法、蓄熱シート、蓄熱シートの製造方法及び蓄熱体を提供することも課題とする。 In view of the above, it is an object of the present invention to provide microcapsules having more excellent stability of heat storage amount per unit volume over time. Another object of the present invention is to provide a method for manufacturing microcapsules, a heat storage sheet, a method for manufacturing a heat storage sheet, and a heat storage body.
 本発明者は、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of diligent studies on the above problems, the present inventor has found that the above problems can be solved by the following configuration.
〔1〕
 コアと、上記コアを内包するシェルとを有するマイクロカプセルであって、上記コアが脂肪族アミンを含み、上記シェルの水蒸気透過度が10-1g/(m・day)以下である、マイクロカプセル。
〔2〕
 上記シェルの水蒸気透過度が10-2g/(m・day)以下である、〔1〕に記載のマイクロカプセル。
〔3〕
 上記脂肪族アミンが、2つ以上のアミノ基を有する脂肪族ポリアミンである、〔1〕又は〔2〕に記載のマイクロカプセル。
〔4〕
 上記脂肪族アミンが、炭素数が偶数である直鎖状の脂肪族炭化水素基を有する、〔1〕~〔3〕のいずれかに記載のマイクロカプセル。
〔5〕
 上記脂肪族アミンが、炭素数が6~16の偶数である直鎖状の脂肪族炭化水素基を有する、〔1〕~〔4〕のいずれかに記載のマイクロカプセル。
〔6〕
 上記脂肪族アミンの融点が37~100℃である、〔1〕~〔5〕のいずれかに記載のマイクロカプセル。
〔7〕
 上記シェルが、無機化合物からなる無機層を有する、〔1〕~〔6〕のいずれかに記載のマイクロカプセル。
〔8〕
 上記コアと上記無機層とが直接接している、〔7〕に記載のマイクロカプセル。
〔9〕
上記無機化合物が無機酸化物である、〔7〕又は〔8〕に記載のマイクロカプセル。
〔10〕
 上記無機化合物が、Si、Al、Zr、Hf及びTiからなる群より選択される少なくとも1つの元素を含む化合物である、〔7〕~〔9〕のいずれかに記載のマイクロカプセル。
〔11〕
 上記シェルの厚さが5~100nmである、〔1〕~〔10〕のいずれかに記載のマイクロカプセル。
〔12〕
 上記コアの粒径が0.1~500μmである、〔1〕~〔11〕のいずれかに記載のマイクロカプセル。
〔13〕
 〔1〕~〔12〕のいずれかに記載のマイクロカプセルの製造方法であって、脂肪族アミンを含むコアを準備するコア準備工程と、上記コアの表面上に、上記コアを内包するシェルを形成するシェル形成工程を有し、上記コア準備工程及び上記シェル形成工程を、上記脂肪族アミンと水とが接触しない環境下で実施する、マイクロカプセルの製造方法。
〔14〕
 上記シェル形成工程を、露点が-60℃以下であり、純度が99.9体積%以上である窒素雰囲気下で実施する、〔13〕に記載のマイクロカプセルの製造方法。
〔15〕
 上記シェル形成工程が、乾式の蒸着方法によって無機化合物からなる無機層を形成する工程を含む、〔13〕又は〔14〕に記載のマイクロカプセルの製造方法。
〔16〕
 〔1〕~〔12〕のいずれかに記載のマイクロカプセルと、バインダーとを含む、蓄熱シート。
〔17〕
 〔16〕に記載の蓄熱シートの製造方法であって、〔1〕~〔12〕のいずれかに記載のマイクロカプセル、バインダー、及び、溶剤を混合して塗布液を調製する工程と、上記塗布液を基材上に塗布して塗布膜を形成する工程と、上記塗布膜を乾燥する工程とを有する、蓄熱シートの製造方法。
〔18〕
 〔1〕~〔12〕のいずれかに記載のマイクロカプセルと、バインダーとを含む、蓄熱体。
[1]
A microcapsule having a core and a shell containing the core, wherein the core contains an aliphatic amine and the water vapor transmission rate of the shell is 10 -1 g / (m 2 · day) or less. capsule.
[2]
The microcapsule according to [1], wherein the water vapor transmission rate of the shell is 10-2 g / (m 2 · day) or less.
[3]
The microcapsule according to [1] or [2], wherein the aliphatic amine is an aliphatic polyamine having two or more amino groups.
[4]
The microcapsule according to any one of [1] to [3], wherein the aliphatic amine has a linear aliphatic hydrocarbon group having an even number of carbon atoms.
[5]
The microcapsule according to any one of [1] to [4], wherein the aliphatic amine has a linear aliphatic hydrocarbon group having an even number of 6 to 16 carbon atoms.
[6]
The microcapsule according to any one of [1] to [5], wherein the aliphatic amine has a melting point of 37 to 100 ° C.
[7]
The microcapsule according to any one of [1] to [6], wherein the shell has an inorganic layer made of an inorganic compound.
[8]
The microcapsule according to [7], wherein the core and the inorganic layer are in direct contact with each other.
[9]
The microcapsule according to [7] or [8], wherein the inorganic compound is an inorganic oxide.
[10]
The microcapsule according to any one of [7] to [9], wherein the inorganic compound is a compound containing at least one element selected from the group consisting of Si, Al, Zr, Hf and Ti.
[11]
The microcapsule according to any one of [1] to [10], wherein the shell has a thickness of 5 to 100 nm.
[12]
The microcapsule according to any one of [1] to [11], wherein the core has a particle size of 0.1 to 500 μm.
[13]
The method for producing microcapsules according to any one of [1] to [12], wherein a core preparation step for preparing a core containing an aliphatic amine and a shell containing the core are placed on the surface of the core. A method for producing microcapsules, which comprises a shell forming step for forming, and carries out the core preparation step and the shell forming step in an environment where the aliphatic amine and water do not come into contact with each other.
[14]
The method for producing microcapsules according to [13], wherein the shell forming step is carried out in a nitrogen atmosphere having a dew point of −60 ° C. or lower and a purity of 99.9% by volume or more.
[15]
The method for producing microcapsules according to [13] or [14], wherein the shell forming step includes a step of forming an inorganic layer made of an inorganic compound by a dry vapor deposition method.
[16]
A heat storage sheet containing the microcapsules according to any one of [1] to [12] and a binder.
[17]
The step of preparing a coating liquid by mixing the microcapsules, the binder, and the solvent according to any one of [1] to [12], which is the method for producing a heat storage sheet according to [16], and the above-mentioned coating. A method for producing a heat storage sheet, comprising a step of applying a liquid on a substrate to form a coating film and a step of drying the coating film.
[18]
A heat storage body comprising the microcapsule according to any one of [1] to [12] and a binder.
 本発明によれば、単位体積当たりの蓄熱量の経時安定性がより優れたマイクロカプセルを提供できる。また、本発明によれば、マイクロカプセルの製造方法、蓄熱シート、蓄熱シートの製造方法及び蓄熱体を提供できる。 According to the present invention, it is possible to provide microcapsules having more excellent stability over time in the amount of heat storage per unit volume. Further, according to the present invention, it is possible to provide a method for manufacturing microcapsules, a heat storage sheet, a method for manufacturing a heat storage sheet, and a heat storage body.
 以下、本発明について詳細に説明する。
 なお、本発明の実施形態に関する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
Hereinafter, the present invention will be described in detail.
It should be noted that the description of the constituent elements relating to the embodiment of the present invention may be made based on the typical embodiment of the present invention, but the present invention is not limited to such an embodiment.
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 後述する各種成分は、1種単独で又は2種以上を混合して用いてもよい。例えば、後述する脂肪族アミンは、1種単独で又は2種以上を混合して用いてもよい。
 本明細書において、組成物、層又は混合物中の各成分の量は、その成分に該当する物質が複数存在する場合、特に断らない限り、組成物、層又は混合物中に存在する上記複数の物質の合計量を意味する。
The numerical range represented by using "-" in the present specification means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the numerical range described in the present specification stepwise, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
The various components described below may be used alone or in combination of two or more. For example, the aliphatic amine described later may be used alone or in combination of two or more.
In the present specification, the amount of each component in the composition, layer or mixture is the above-mentioned plurality of substances present in the composition, layer or mixture when a plurality of substances corresponding to the component are present, unless otherwise specified. Means the total amount of.
 本明細書において、(メタ)アクリレートはアクリレート及びメタクリレートを表し、(メタ)アクリルはアクリル及びメタクリルを表す。
 本明細書において、「準備」とは、特定の材料を合成及び/又は調合等をして備える行為の他にも、購入等によって所定の物を調達する行為をも含む意味である。
 本明細書において、「室温」とは、特に断りのない限り、25℃を意味する。
 本明細書において、温度によって変動し得る値について言及する場合、特に断りのない限り、その値は25℃における値である。
 本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
As used herein, (meth) acrylate represents acrylate and methacrylate, and (meth) acrylic represents acrylic and methacrylic.
In the present specification, "preparation" means not only the act of synthesizing and / or blending a specific material, but also the act of procuring a predetermined product by purchase or the like.
As used herein, "room temperature" means 25 ° C. unless otherwise specified.
When referring to a value that may fluctuate with temperature in the present specification, the value is a value at 25 ° C. unless otherwise specified.
In the present specification, a combination of two or more preferred embodiments is a more preferred embodiment.
[マイクロカプセル]
 本発明のマイクロカプセルは、コアと、コアを内包するシェルとを有するマイクロカプセルであって、コアが脂肪族アミンを含み、シェルの水蒸気透過度が10-1g/(m・day)以下である。
[Microcapsules]
The microcapsules of the present invention are microcapsules having a core and a shell containing the core, wherein the core contains an aliphatic amine and the water vapor transmission rate of the shell is 10 -1 g / (m 2 · day) or less. Is.
 本発明のマイクロカプセルにより上記の本発明の効果が得られる詳細なメカニズム等は明らかではないが、例えば、以下の理由により蓄熱量の経時低下が抑制されたものと、本発明者らは推測している。
 本発明のマイクロカプセルが含有する脂肪族アミンは、単位質量当たりの蓄熱量が高く、尚且つ、アミノ基により分子間の水素結合が程よく形成され、高い密度を有するため、単位体積当たりの蓄熱量が高いと考えられる。本発明のマイクロカプセルでは、水蒸気透過度が10-1g/(m・day)以下というガスバリア性の高いシェルによって脂肪族アミンを含むコアが囲まれることにより、マイクロカプセルの作製から期間が経過した後であっても、内包される脂肪族アミンが変性せず、単位体積当たりの蓄熱量の経時低下がより抑制されたものと推測される。
 以下、マイクロカプセルの単位体積当たりの蓄熱量の経時安定性がより優れることを「本発明の効果がより優れる」とも記載する。
Although the detailed mechanism by which the above-mentioned effects of the present invention can be obtained by the microcapsules of the present invention is not clear, the present inventors presume that, for example, the decrease in heat storage amount over time was suppressed for the following reasons. ing.
The aliphatic amine contained in the microcapsules of the present invention has a high heat storage amount per unit mass, and since hydrogen bonds between molecules are moderately formed by amino groups and has a high density, the heat storage amount per unit volume is high. Is considered to be high. In the microcapsules of the present invention, the core containing the aliphatic amine is surrounded by a shell having a high gas barrier property having a water vapor permeability of 10 -1 g / (m 2 · day) or less, so that a period has passed since the production of the microcapsules. It is presumed that the contained aliphatic amine was not denatured even after the above, and the decrease in the amount of heat storage per unit volume with time was further suppressed.
Hereinafter, the fact that the heat storage amount per unit volume of the microcapsules is more excellent in stability with time is also described as “the effect of the present invention is more excellent”.
 マイクロカプセルは、コアと、コアをなすコア材(内包されるもの(内包成分ともいう。))を内包するためのシェルと、を有する。本明細書において、シェルを「カプセル壁」ともいう。 The microcapsule has a core and a shell for containing the core material (encapsulating material (also referred to as an inclusion component)) forming the core. As used herein, the shell is also referred to as a "capsule wall".
〔コア〕
 マイクロカプセルは、コア材(内包成分)として少なくとも脂肪族アミンを内包する。脂肪族アミンは、マイクロカプセルに内包されているため、温度に応じた相状態で安定的に存在できる。
〔core〕
Microcapsules contain at least an aliphatic amine as a core material (encapsulating component). Since the aliphatic amine is encapsulated in microcapsules, it can stably exist in a phase state depending on the temperature.
<脂肪族アミン>
 マイクロカプセルに内包される脂肪族アミンは、脂肪族炭化水素基を含む主鎖骨格と、少なくとも1つのアミノ基とを有するアミン化合物であれば、特に制限されない。
<Alphatic amine>
The aliphatic amine contained in the microcapsules is not particularly limited as long as it is an amine compound having a main chain skeleton containing an aliphatic hydrocarbon group and at least one amino group.
 上記主鎖骨格としては、例えば、鎖状又は環状の脂肪族炭化水素基、及び、鎖状又は環状の脂肪族炭化水素基を構成する炭素原子の1個以上が-NR-で表される2価の基に置換してなる基(Rは、水素原子、又は、アミノ基を有してもよい脂肪族炭化水素基を表す)が挙げられる。
 脂肪族アミンの主鎖骨格は、単位体積当たりの蓄熱量がより優れる点で、直鎖状であることが好ましい。脂肪族アミンの主鎖骨格が直鎖状であるとは、上記主鎖骨格が、直鎖状の脂肪族炭化水素基、又は、直鎖状の脂肪族炭化水素基を構成する炭素原子の1個以上が第2級アミノ基(>NH)に置換してなる基であることを意味する。
 また、脂肪族アミンは、単位体積当たりの蓄熱量がより優れる点で、上記主鎖骨格が置換基を有さないことが好ましい。
In the main chain skeleton, for example, one or more carbon atoms constituting a chain or cyclic aliphatic hydrocarbon group and a chain or cyclic aliphatic hydrocarbon group are represented by -NR-2. Examples thereof include a group substituted with a valent group (R represents a hydrogen atom or an aliphatic hydrocarbon group which may have an amino group).
The main chain skeleton of the aliphatic amine is preferably linear in that the amount of heat storage per unit volume is more excellent. The fact that the main chain skeleton of an aliphatic amine is linear means that the main chain skeleton is one of carbon atoms constituting a linear aliphatic hydrocarbon group or a linear aliphatic hydrocarbon group. It means that more than one is a group formed by substituting a secondary amino group (> NH).
Further, in the aliphatic amine, it is preferable that the main chain skeleton does not have a substituent in that the amount of heat storage per unit volume is more excellent.
 脂肪族アミンの主鎖骨格として脂肪族炭化水素基を有する場合、その炭素数は、化合物の潜熱量がより高い点で、4以上が好ましく、6以上がより好ましく、8以上が更に好ましい。上限は特に制限されないが、融点が後述の好ましい範囲になり、密度がより高くなる点で、16以下が好ましく、12以下がより好ましい。また、単位体積当たりの蓄熱量がより優れる点で、脂肪族アミンが、炭素数が偶数である直鎖状の脂肪族炭化水素基を有することが好ましい。
 主鎖骨格が、脂肪族炭化水素基を構成する炭素原子の1個以上が-NR-で表される2価の基に置換してなる基である場合、炭素原子及び窒素原子の個数の合計が、上記範囲に含まれることが好ましい。
 脂肪族アミンは、炭素数が6~16の偶数である直鎖状の脂肪族炭化水素基を有することが好ましく、炭素数が8、10又は12である直鎖状の脂肪族炭化水素基を有することがより好ましい。
When the main chain skeleton of the aliphatic amine has an aliphatic hydrocarbon group, the carbon number thereof is preferably 4 or more, more preferably 6 or more, still more preferably 8 or more, in that the latent heat of the compound is higher. The upper limit is not particularly limited, but 16 or less is preferable, and 12 or less is more preferable, in that the melting point is in a preferable range described later and the density is higher. Further, it is preferable that the aliphatic amine has a linear aliphatic hydrocarbon group having an even number of carbon atoms in that the amount of heat storage per unit volume is more excellent.
When the main chain skeleton is a group in which one or more of the carbon atoms constituting the aliphatic hydrocarbon group are substituted with a divalent group represented by -NR-, the total number of carbon atoms and nitrogen atoms is used. However, it is preferable that it is included in the above range.
The aliphatic amine preferably has a linear aliphatic hydrocarbon group having an even number of 6 to 16 carbon atoms, and has a linear aliphatic hydrocarbon group having 8, 10 or 12 carbon atoms. It is more preferable to have.
 脂肪族アミンが有するアミノ基としては、第1級アミノ基(-NH)、第2級アミノ基(>NH)、及び、第3級アミノ基(>N-)が挙げられ、第1級アミノ基又は第2級アミノ基が好ましく、第1級アミノ基がより好ましい。
 脂肪族アミンが有するアミノ基の数は特に制限されないが、単位体積当たりの蓄熱量がより優れる点で、脂肪族アミンは、2個以上のアミノ基を有する脂肪族ポリアミンであることが好ましい。脂肪族ポリアミンが有するアミノ基は、2~4個がより好ましく、2又は3個が更に好ましい。なかでも、2分子間の水素結合と脂肪族炭化水素基のファンデルワールス力とが強くなり、コア部内の密度が向上する点で、2つのアミノ基を有する脂肪族ジアミンが特に好ましい。
Examples of the amino group contained in the aliphatic amine include a primary amino group (-NH 2 ), a secondary amino group (> NH), and a tertiary amino group (> N-), which are primary. An amino group or a secondary amino group is preferable, and a primary amino group is more preferable.
The number of amino groups contained in the aliphatic amine is not particularly limited, but the aliphatic amine is preferably an aliphatic polyamine having two or more amino groups in that the amount of heat storage per unit volume is more excellent. The number of amino groups contained in the aliphatic polyamine is more preferably 2 to 4, and even more preferably 2 or 3. Among them, an aliphatic diamine having two amino groups is particularly preferable in that the hydrogen bond between the two molecules and the van der Waals force of the aliphatic hydrocarbon group become stronger and the density in the core portion is improved.
 脂肪族ジアミンとしては、例えば、下記式(1)で表される化合物が挙げられる。
  HN-R-NH   (1)
 式中、Rは、炭素数4以上の脂肪族炭化水素基、又は、炭素数4以上の脂肪族炭化水素基を構成する炭素原子の1個以上が-NR-で表される2価の基に置換してなる基(Rは、水素原子、又は、アミノ基を有してもよい脂肪族炭化水素基を表す)を表す。ただし、式(1)におけるアミノ基及び-NR-で表される2価の基は互いに結合しない。
Examples of the aliphatic diamine include compounds represented by the following formula (1).
H 2 N-R 1 -NH 2 (1)
In the formula, R 1 is a divalent group in which one or more carbon atoms constituting an aliphatic hydrocarbon group having 4 or more carbon atoms or an aliphatic hydrocarbon group having 4 or more carbon atoms is represented by -NR-. A group substituted with a group (R represents a hydrogen atom or an aliphatic hydrocarbon group which may have an amino group) is represented. However, the amino group in the formula (1) and the divalent group represented by -NR- do not bind to each other.
 式(1)中、Rにおける脂肪族炭化水素基としては、炭素数6~16の直鎖状アルキレン基が好ましく、炭素数8~12の直鎖状アルキレン基がより好ましい。また、単位体積当たりの蓄熱量がより優れる点で、脂肪族炭化水素基の炭素数が偶数であることが好ましい。また、Rが上記-NR-で表される2価の基を有する場合、炭素原子及び窒素原子の個数の合計が、上記の個数であることが好ましい。 In the formula (1), as the aliphatic hydrocarbon group in R1 , a linear alkylene group having 6 to 16 carbon atoms is preferable, and a linear alkylene group having 8 to 12 carbon atoms is more preferable. Further, it is preferable that the aliphatic hydrocarbon group has an even number of carbon atoms in that the amount of heat storage per unit volume is more excellent. When R 1 has a divalent group represented by -NR-, the total number of carbon atoms and nitrogen atoms is preferably the above number.
 脂肪族アミンのうち、分子内に1つのアミノ基を有する脂肪族モノアミンとしては、例えば、ジメチルアミン、ジエチルアミン、n-ブチルアミン、tert-ブチルアミン、n-ヘキシルアミン、シクロヘキシルアミン、n-オクチルアミン、及び、2-エチルヘキシルアミンが挙げられる。
 脂肪族アミンのうち、分子内に2つのアミノ基を有する脂肪族ジアミンとしては、例えば、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,13-ジアミノトリデカン、1,14-ジアミノテトラデカン、及び、1,16-ジアミノヘキサデカンが挙げられる。
 脂肪族アミンのうち、分子内に3つ以上のアミノ基を有する脂肪族ポリアミンとしては、例えば、ジエチレントリアミン、トリエチレンテトラミン、及び、テトラエチレンペンタミンが挙げられる。
Among the aliphatic amines, the aliphatic monoamine having one amino group in the molecule includes, for example, dimethylamine, diethylamine, n-butylamine, tert-butylamine, n-hexylamine, cyclohexylamine, n-octylamine, and , 2-Ethylhexylamine.
Among the aliphatic amines, examples of the aliphatic diamine having two amino groups in the molecule include 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, and 1,8-diaminooctane. , 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,13-diaminotridecane, 1,14-diaminotetradecane, and 1,16-diamino. Hexadecane can be mentioned.
Among the aliphatic amines, examples of the aliphatic polyamine having three or more amino groups in the molecule include diethylenetriamine, triethylenetetramine, and tetraethylenepentamine.
 脂肪族アミンとしては、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、又は、1,12-ジアミノドデカンが好ましく、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、又は、1,10-ジアミノデカンがより好ましく、1,6-ジアミノヘキサン、1,8-ジアミノオクタン、又は、1,10-ジアミノデカンが更に好ましく、1,8-ジアミノオクタン、又は、1,10-ジアミノデカンが特に好ましい。 As the aliphatic amine, 1,4-diaminobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11 -Diaminoundecane or 1,12-diaminododecane is preferred, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, or 1,10-diaminodecane. , 1,6-diaminohexane, 1,8-diaminooctane, or 1,10-diaminodecane is even more preferred, and 1,8-diaminooctane, or 1,10-diaminodecane is particularly preferred.
 脂肪族アミンは、対イオンと塩を形成していてもよい。脂肪族アミンの塩としては、例えば、Cl、S、N及びPからなる群より選択される少なくとも1種の非金属が水素と結合してなる無機酸との塩が挙げられる。なお、本明細書において「脂肪族アミン」は、脂肪族アミンが対イオンと塩を形成している態様も含むものとする。
 脂肪族アミンは、塩を形成していないことが好ましい。
Aliphatic amines may form salts with counterions. Examples of the salt of the aliphatic amine include a salt with an inorganic acid in which at least one non-metal selected from the group consisting of Cl, S, N and P is bonded to hydrogen. In addition, in this specification, "aliphatic amine" also includes an embodiment in which an aliphatic amine forms a salt with a counterion.
The aliphatic amine preferably does not form a salt.
 脂肪族アミンの分子量は、特に制限されないが、分子当たりの蓄熱量及び密度がバランス良く優れる点で、100~300が好ましく、100~200がより好ましい。 The molecular weight of the aliphatic amine is not particularly limited, but 100 to 300 is preferable, and 100 to 200 is more preferable, because the heat storage amount and the density per molecule are excellent in a well-balanced manner.
 脂肪族アミンの融点は、電子デバイス(特に、小型又は携帯用の電子デバイス)の作動温度に近く、電子デバイスへの適用性に優れる点で、100℃以下が好ましく、85℃以下がより好ましく、70℃以下が更に好ましい。下限値は特に制限されないが、10℃以上が好ましく、25℃以上がより好ましく、37℃以上が更に好ましい。 The melting point of the aliphatic amine is preferably close to the operating temperature of an electronic device (particularly a small or portable electronic device) and is excellent in applicability to an electronic device, and is preferably 100 ° C. or lower, more preferably 85 ° C. or lower. 70 ° C. or lower is more preferable. The lower limit is not particularly limited, but is preferably 10 ° C. or higher, more preferably 25 ° C. or higher, and even more preferably 37 ° C. or higher.
 脂肪族アミンは、1種単独で使用してもよいし、2種類以上を混合して使用してもよい。融点の異なる脂肪族アミンを複数使用する場合、蓄熱性を発現する温度領域を広くすることができる。
 マイクロカプセルを電子デバイスに適用する場合、脂肪族アミンが実質的に1種類であることも好ましい。実質的に1種類であると、脂肪族アミンが高純度でマイクロカプセルに内包されるため、吸熱性が良好となる。ここで、脂肪族アミンが実質的に1種類であるとは、脂肪族アミンのうち最も含有量が多い化合物の含有量が、脂肪族アミンの全質量に対して95~100質量%であることを意味し、98~100質量%であることが好ましい。
The aliphatic amine may be used alone or in combination of two or more. When a plurality of aliphatic amines having different melting points are used, the temperature range in which the heat storage property is exhibited can be widened.
When applying microcapsules to electronic devices, it is also preferred that there is substantially one type of aliphatic amine. When it is substantially one type, the aliphatic amine is encapsulated in microcapsules with high purity, so that the endothermic property is good. Here, the fact that the aliphatic amine is substantially one kind means that the content of the compound having the highest content among the aliphatic amines is 95 to 100% by mass with respect to the total mass of the aliphatic amine. It means that it is preferably 98 to 100% by mass.
 脂肪族アミンの含有量は、特に制限されないが、蓄熱性がより優れる点で、コアの全質量に対して、90質量%以上が好ましく、95質量%以上がより好ましく、98質量%以上が更に好ましい。上限としては、100質量%が挙げられる。 The content of the aliphatic amine is not particularly limited, but is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass or more, based on the total mass of the core, in that the heat storage property is more excellent. preferable. The upper limit is 100% by mass.
 マイクロカプセル中の脂肪族アミンの含有量は、特に制限されないが、蓄熱性がより優れる点で、マイクロカプセルの全体積に対して、75体積%以上が好ましく、85体積%以上がより好ましく、90体積%以上が特に好ましい。脂肪族アミンの含有量の上限としては、特に制限されないが、強度により優れる点で、マイクロカプセルの全体積に対して、99.9体積%以下が好ましく、99.5体積%以下がより好ましく、99体積%以下が更に好ましい。 The content of the aliphatic amine in the microcapsules is not particularly limited, but is preferably 75% by volume or more, more preferably 85% by volume or more, more preferably 90% by volume, based on the total volume of the microcapsules, in that the heat storage property is more excellent. Volume% or more is particularly preferable. The upper limit of the content of the aliphatic amine is not particularly limited, but is preferably 99.9% by volume or less, more preferably 99.5% by volume or less, based on the total volume of the microcapsules, in terms of being superior in strength. 99% by volume or less is more preferable.
(密度)
 脂肪族アミンの密度は特に制限されないが、単位体積当たりの蓄熱性をより高くできる点で、0.85g/cm以上が好ましく、0.9g/cm以上がより好ましく、1.0g/cm以上が更に好ましい。上限は特に制限されないが、2.0g/cm以下の場合が多い。
(density)
The density of the aliphatic amine is not particularly limited, but 0.85 g / cm 3 or more is preferable, 0.9 g / cm 3 or more is more preferable, and 1.0 g / cm is preferable in that the heat storage property per unit volume can be further increased. 3 or more is more preferable. The upper limit is not particularly limited, but it is often 2.0 g / cm 3 or less.
(潜熱容量)
 脂肪族アミンの潜熱容量は高い方が好ましく、200J/cm以上が好ましく、250J/cm以上がより好ましい。上限は特に制限されないが、500J/cm以下の場合が多い。
 潜熱容量は、示差走査熱量測定(DSC;Differential scanning calorimetry)により測定される脂肪族アミンの単位質量当たりの蓄熱量(J/g)と、密度計により測定される脂肪族アミンの密度(g/cm)とから算出される値である。
(Latent heat capacity)
The latent heat capacity of the aliphatic amine is preferably high, preferably 200 J / cm 3 or more, and more preferably 250 J / cm 3 or more. The upper limit is not particularly limited, but it is often 500 J / cm 3 or less.
The latent heat capacity is the heat storage amount per unit mass (J / g) of the aliphatic amine measured by differential scanning calorimetry (DSC) and the density of the aliphatic amine measured by the densitometer (g / g). It is a value calculated from cm 3 ).
<第2の蓄熱材>
 マイクロカプセルは、コア材(内包成分)として、第2の蓄熱材を内包していてもよい。なお、本明細書において第2の蓄熱材は、上記の脂肪族アミンを含まない。
 第2の蓄熱材の種類は、脂肪族アミン以外の蓄熱材であれば特に制限されない。第2の蓄熱材としては、温度変化に応じて相変化する材料を用いることができ、温度変化に応じた融解と凝固との状態変化を伴う固相-液相間の相変化を繰り返すことができる材料が好ましい。
 第2の蓄熱材の相変化は、第2の蓄熱材自体が有する相変化温度に基づくことが好ましく、固相-液相間の相変化の場合、融点に基づくことが好ましい。
<Second heat storage material>
The microcapsules may contain a second heat storage material as a core material (encapsulating component). In this specification, the second heat storage material does not contain the above-mentioned aliphatic amine.
The type of the second heat storage material is not particularly limited as long as it is a heat storage material other than the aliphatic amine. As the second heat storage material, a material that changes phase in response to a temperature change can be used, and the phase change between the solid phase and the liquid phase that accompanies the state change of melting and solidification in response to the temperature change can be repeated. A material that can be used is preferable.
The phase change of the second heat storage material is preferably based on the phase change temperature of the second heat storage material itself, and in the case of the phase change between the solid phase and the liquid phase, it is preferably based on the melting point.
 第2の蓄熱材としては、例えば、マイクロカプセルの外部で発生した熱を顕熱として蓄え得る材料、及び、マイクロカプセルの外部で発生した熱を潜熱として蓄え得る材料(以下、「潜熱蓄熱材」ともいう。)、可逆的な化学変化に伴う相変化を生じる材料等のいずれでもよい。第2の蓄熱材は、蓄えた熱を放出し得るものが好ましい。
 なかでも、授受可能な熱量の制御のしやすさ、及び、熱量の大きさの点で、第2の蓄熱材としては、潜熱蓄熱材が好ましい。
The second heat storage material includes, for example, a material that can store heat generated outside the microcapsule as sensible heat, and a material that can store heat generated outside the microcapsule as latent heat (hereinafter, "latent heat storage material"). Also referred to as), a material that causes a phase change due to a reversible chemical change, or the like may be used. The second heat storage material is preferably one that can release the stored heat.
Among them, the latent heat storage material is preferable as the second heat storage material in terms of ease of control of the amount of heat that can be transferred and received and the size of the amount of heat.
 潜熱蓄熱材とは、マイクロカプセルの外部で発生した熱を潜熱として蓄熱する材料である。例えば、固相-液相間の相変化の場合、材料により定められた融点を相変化温度として融解と凝固との間の変化を繰り返すことで潜熱による熱の授受が可能な材料を指す。
 潜熱蓄熱材は、固相-液相間の相変化の場合、融点での融解熱及び凝固点での凝固熱を利用し、固体-液体間の相変化を伴って蓄熱し、また放熱できる。
The latent heat storage material is a material that stores heat generated outside the microcapsules as latent heat. For example, in the case of a phase change between a solid phase and a liquid phase, it refers to a material capable of transferring heat by latent heat by repeating a change between melting and solidification with the melting point determined by the material as the phase change temperature.
In the case of a phase change between a solid phase and a liquid phase, the latent heat storage material utilizes the heat of fusion at the melting point and the heat of solidification at the freezing point, and can store heat and dissipate heat with the phase change between the solid and the liquid.
 潜熱蓄熱材の種類は特に制限されず、融点を有して相変化が可能な化合物から選択できる。
 潜熱蓄熱材としては、例えば、氷(水);無機塩;パラフィン(例えば、イソパラフィン、ノルマルパラフィン)等の脂肪族炭化水素;トリ(カプリル・カプリン酸)グリセリル、ミリスチン酸メチル(融点16~19℃)、ミリスチン酸イソプロピル(融点167℃)、及び、フタル酸ジブチル(融点-35℃)等の脂肪酸エステル系化合物;ジイソプロピルナフタレン(融点67~70℃)等のアルキルナフタレン系化合物、1-フェニル-1-キシリルエタン(融点-50℃未満)等のジアリールアルカン系化合物、4-イソプロピルビフェニル(融点11℃)等のアルキルビフェニル系化合物、トリアリールメタン系化合物、アルキルベンゼン系化合物、ベンジルナフタレン系化合物、ジアリールアルキレン系化合物、及び、アリールインダン系化合物等の芳香族炭化水素;ツバキ油、大豆油、コーン油、綿実油、菜種油、オリーブ油、ヤシ油、ひまし油、及び、魚油等の天然動植物油;鉱物油;ジエチルエーテル類等が挙げられる。
The type of the latent heat storage material is not particularly limited, and can be selected from compounds having a melting point and capable of a phase change.
Examples of the latent heat storage material include ice (water); inorganic salts; aliphatic hydrocarbons such as paraffin (for example, isoparaffin and normal paraffin); tri (capryl capric acid) glyceryl, methyl myristate (melting point 16-19 ° C.). ), Fatty acid ester compounds such as isopropyl myristate (melting point 167 ° C.) and dibutyl phthalate (melting point −35 ° C.); alkylnaphthalene compounds such as diisopropylnaphthalene (melting point 67-70 ° C.), 1-phenyl-1. -Diarylalkane compounds such as xylylethane (melting point less than -50 ° C), alkylbiphenyl compounds such as 4-isopropylbiphenyl (melting point 11 ° C), triarylmethane compounds, alkylbenzene compounds, benzylnaphthalene compounds, diarylalkylene compounds. Aromatic hydrocarbons such as compounds and arylindan compounds; natural animal and vegetable oils such as camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, palm oil, castor oil, and fish oil; mineral oil; diethyl ethers. And so on.
 第2の蓄熱材の相変化温度は特に制限されず、熱を発する発熱体の種類、発熱体の発熱温度、冷却後の温度又は保持温度、及び、冷却方法等に応じて適宜選択すればよい。
 第2の蓄熱材は、目的とする温度領域(例えば、発熱体の動作温度;以下、「熱制御領域」ともいう。)に相変化温度(好ましくは融点)を持つ材料が選択されることが好ましい。
 第2の蓄熱材の相変化温度は、熱制御領域に応じて異なるが、0~100℃が好ましく、10~70℃がより好ましい。
The phase change temperature of the second heat storage material is not particularly limited, and may be appropriately selected depending on the type of heating element that generates heat, the heating element temperature of the heating element, the temperature or holding temperature after cooling, the cooling method, and the like. ..
As the second heat storage material, a material having a phase change temperature (preferably melting point) in a target temperature region (for example, the operating temperature of the heating element; hereinafter also referred to as “heat control region”) may be selected. preferable.
The phase change temperature of the second heat storage material varies depending on the heat control region, but is preferably 0 to 100 ° C, more preferably 10 to 70 ° C.
 マイクロカプセルが第2の蓄熱材を内包する場合、第2の蓄熱材の含有量は特に制限されないが、コアの全質量に対して、30質量%未満が好ましく、10質量%未満がより好ましく、1質量%以下が更に好ましい。下限は特に制限されないが、0質量%が挙げられる。
 コアに含まれる脂肪族アミン及び第2の蓄熱材の合計含有量は特に制限されないが、蓄熱性がより優れる点で、コアの全質量に対して、80~100質量%が好ましく、90~100質量%がより好ましい。
When the microcapsules contain the second heat storage material, the content of the second heat storage material is not particularly limited, but is preferably less than 30% by mass, more preferably less than 10% by mass, based on the total mass of the core. More preferably, it is 1% by mass or less. The lower limit is not particularly limited, but may be 0% by mass.
The total content of the aliphatic amine and the second heat storage material contained in the core is not particularly limited, but 80 to 100% by mass is preferable, and 90 to 100% by mass, based on the total mass of the core, in terms of better heat storage. More preferably by mass.
<他の成分>
 マイクロカプセルのコア材としては、上述した蓄熱材以外の他の成分が内包されていてもよい。マイクロカプセルにコア材として内包し得る他の成分としては、例えば、溶剤及び添加剤が挙げられる。
<Other ingredients>
The core material of the microcapsules may contain components other than the above-mentioned heat storage material. Other components that can be encapsulated in the microcapsules as the core material include, for example, solvents and additives.
 マイクロカプセルは、コア材として、溶剤を内包していてもよい。
 この場合の溶剤としては、蓄熱シートが使用される温度領域(熱制御領域;例えば、発熱体の動作温度)から融点が外れている蓄熱材が挙げられる。即ち、溶剤は、熱制御領域において液体の状態で相変化しないものを指し、熱制御領域内において相転移を起こして吸放熱反応が生じる蓄熱材と区別される。
The microcapsules may contain a solvent as a core material.
Examples of the solvent in this case include a heat storage material whose melting point is out of the temperature range (heat control region; for example, the operating temperature of the heating element) in which the heat storage sheet is used. That is, the solvent refers to a solvent that does not undergo a phase change in the liquid state in the heat control region, and is distinguished from a heat storage material that causes a phase transition in the heat control region and causes an endothermic reaction.
 マイクロカプセルにコア材として内包し得る添加剤としては、例えば、難燃剤、紫外線吸収剤、光安定化剤、酸化防止剤、ワックス、及び、臭気抑制剤等の添加剤が挙げられる。 Examples of the additives that can be included in the microcapsules as the core material include additives such as flame retardants, ultraviolet absorbers, light stabilizers, antioxidants, waxes, and odor suppressants.
 コア材に占める溶剤及び添加剤の含有量は特に制限されないが、コア材全質量に対して、30質量%未満が好ましく、10質量%未満がより好ましく、1質量%以下が更に好ましい。下限は特に制限されないが、0質量%が挙げられる。 The content of the solvent and the additive in the core material is not particularly limited, but is preferably less than 30% by mass, more preferably less than 10% by mass, still more preferably 1% by mass or less, based on the total mass of the core material. The lower limit is not particularly limited, but may be 0% by mass.
<物性>
 マイクロカプセルが有するコアの粒子径は、単位体積当たりの蓄熱量がより優れる点で、0.1μm以上が好ましく、1μm以上がより好ましく、5μm以上が更に好ましい。上限は特に制限されないが、コアの相変化に伴う膨張によるシェルの破損をより抑制できる点で、500μm以下が好ましく、300μm以下がより好ましく、120μm以下が更に好ましい。
<Physical characteristics>
The particle size of the core of the microcapsules is preferably 0.1 μm or more, more preferably 1 μm or more, still more preferably 5 μm or more, in that the amount of heat storage per unit volume is more excellent. The upper limit is not particularly limited, but is preferably 500 μm or less, more preferably 300 μm or less, still more preferably 120 μm or less, in that damage to the shell due to expansion due to the phase change of the core can be further suppressed.
 コアの粒子径は、任意の20個のマイクロカプセルに含まれるコアの粒子径を光学顕微鏡又は透過型電子顕微鏡(TEM:Transmission Electron Microscope)により測定して平均した平均値をいう。
 具体的には、以下の方法で求められる。まず、マイクロカプセルが分散した液を任意の支持体上に塗布し、乾燥させて塗布膜を形成する。得られた塗布膜の断面切片を作製し、その断面を光学顕微鏡又はTEMにより100~5000倍にて観察し、「(マイクロカプセルの体積基準のメジアン径の値)×0.9~(マイクロカプセルの体積基準のメジアン径の値)×1.1」の範囲の粒径を有する任意の20個のマイクロカプセルを選択し、個々のマイクロカプセルの断面を観察してコアの粒子径を求めて平均値を算出することにより、マイクロカプセルが有するコアの粒子径が求められる。
The particle size of the core is an average value obtained by measuring the particle size of the core contained in any 20 microcapsules with an optical microscope or a transmission electron microscope (TEM).
Specifically, it is obtained by the following method. First, a liquid in which microcapsules are dispersed is applied onto an arbitrary support and dried to form a coating film. A cross-sectional section of the obtained coating film is prepared, and the cross section is observed with an optical microscope or TEM at 100 to 5000 times, and "(value of median diameter based on volume of microcapsules) x 0.9 to (microcapsules). Select any 20 microcapsules with a particle size in the range of volume-based median diameter) × 1.1 ”and observe the cross section of each microcapsule to determine the particle size of the core and average it. By calculating the value, the particle size of the core of the microcapsules can be obtained.
〔シェル(カプセル壁)〕
 本発明のマイクロカプセルは、コアを内包するシェルを有し、シェルの水蒸気透過度が10-1g/(m・day)以下である。
[Shell (capsule wall)]
The microcapsules of the present invention have a shell containing a core, and the water vapor transmission rate of the shell is 10 -1 g / (m 2 · day) or less.
 水蒸気透過度が所定の範囲にあるシェルを用いてコアを内包することにより、コア材である脂肪族アミンの変性を抑制し、マイクロカプセルの単位体積当たりの蓄熱量の経時劣化を抑制することができる。
 シェルの水蒸気透過度は、本発明の効果がより優れる点で、10-2g/(m・day)以下が好ましく、10-4g/(m・day)以下がより好ましい。下限は特に制限されないが、シェルが厚くなり過ぎないために、単位体積当たりの熱量が優れる点、及び、コストが優れる点で、10-5g/(m・day)以上が好ましい。
By encapsulating the core using a shell having a water vapor transmission rate within a predetermined range, it is possible to suppress the denaturation of the aliphatic amine as the core material and suppress the deterioration of the heat storage amount per unit volume of the microcapsules over time. can.
The water vapor transmission rate of the shell is preferably 10-2 g / (m 2 · day) or less, and more preferably 10 -4 g / (m 2 · day) or less, because the effect of the present invention is more excellent. The lower limit is not particularly limited, but 10-5 g / (m 2 · day) or more is preferable in that the amount of heat per unit volume is excellent and the cost is excellent because the shell does not become too thick.
 なお、本明細書において、マイクロカプセルを構成するシェルの水蒸気透過度(単位:g/(m・day))は、JIS Z 0208に記載の「防湿包装材料の透湿度試験方法(カップ法)」に基づいて測定した値である。即ち、必要に応じてX線回折法(XRD:X-ray diffraction)又はX線光電子分光法(XPS:X-ray photoelectron spectroscopy)等の公知の方法により、シェルを構成する材料(シェル材)及びシェルの厚さを分析及び測定した上で、シェルと同じ構成及び厚さを有する層を基材上に形成して試験用フィルムを作製し、得られた試験用フィルムに対して、JIS Z 0208の「防湿包装材料の透湿度試験方法(カップ法)」に記載の方法に従って測定を行うことによって、シェルの水蒸気透過度(g/(m・day))が得られる。 In the present specification, the water vapor transmission rate (unit: g / (m 2 · day)) of the shell constituting the microcapsules is described in JIS Z 0208, “Humidity Permeability Test Method for Moisture-Proof Packaging Material (Cup Method)”. It is a value measured based on. That is, the material (shell material) constituting the shell and the material (shell material) constituting the shell by a known method such as X-ray diffraction (XRD: X-ray diffraction) or X-ray photoelectron spectroscopy (XPS), if necessary. After analyzing and measuring the thickness of the shell, a layer having the same structure and thickness as the shell was formed on the substrate to prepare a test film, and the obtained test film was subjected to JIS Z 0208. The water vapor permeability (g / ( m2 · day)) of the shell can be obtained by performing the measurement according to the method described in “Heat Permeability Test Method for Moisture-Proof Packaging Material (Cup Method)”.
 水蒸気透過度が10-1g/(m・day)以下であるシェルの形成方法は、特に制限されないが、例えば、後述する乾式の蒸着方法によって無機化合物からなる無機層を形成する方法等が挙げられる。 The method for forming the shell having a water vapor transmission rate of 10 -1 g / (m 2 · day) or less is not particularly limited, and for example, a method for forming an inorganic layer made of an inorganic compound by a dry vapor deposition method described later may be used. Can be mentioned.
<無機層>
 シェルの構成は、コアを内包し、上記の水蒸気透過度を満たすものであれば特に制限されないが、シェルは、無機化合物からなる無機層を有することが好ましい。
 無機層を構成する無機化合物としては、例えば、無機酸化物、無機窒化物、及び、無機酸窒化物が挙げられ、無機酸化物又は無機窒化物が好ましく、無機酸化物がより好ましい。
 また、無機化合物としては、例えば、アルミニウム(Al)、ジルコニア(Zr)、ハフニウム(Hf)、及び、チタン(Ti)等の金属元素、並びに、ケイ素(Si)、ホウ素(B)、及び、ゲルマニウム(Ge)等の半金属元素からなる群より選択される少なくとも1つを含む化合物が挙げられ、Si、Al、Zr、Hf及びTiからなる群より選択される少なくとも1つの元素を含む化合物が好ましい。
<Inorganic layer>
The structure of the shell is not particularly limited as long as it contains a core and satisfies the above-mentioned water vapor transmission rate, but the shell preferably has an inorganic layer made of an inorganic compound.
Examples of the inorganic compound constituting the inorganic layer include inorganic oxides, inorganic nitrides, and inorganic oxynitrides. Inorganic oxides or inorganic nitrides are preferable, and inorganic oxides are more preferable.
Examples of the inorganic compound include metal elements such as aluminum (Al), zirconia (Zr), hafnium (Hf), and titanium (Ti), as well as silicon (Si), boron (B), and germanium. Examples thereof include compounds containing at least one selected from the group consisting of metalloid elements such as (Ge), and compounds containing at least one element selected from the group consisting of Si, Al, Zr, Hf and Ti are preferable. ..
 より具体的な無機化合物としては、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、酸化ハフニウム、酸化チタン(チタニア)、及び、酸化インジウムスズ(ITO)等の無機酸化物が挙げられ、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、又は、酸化チタンが好ましく、酸化アルミニウムがより好ましい。
 無機層は、上記の無機化合物を1種単独で含有してもよく、2種以上を含有してもよい。
More specific inorganic compounds include inorganic oxides such as silicon oxide (silica), aluminum oxide (alumina), zirconium oxide (zirconia), hafnium oxide, titanium oxide (titania), and indium tin oxide (ITO). Examples thereof include silicon oxide, aluminum oxide, zirconium oxide, hafnium oxide, or titanium oxide, and aluminum oxide is more preferable.
The inorganic layer may contain the above-mentioned inorganic compound alone or in combination of two or more.
 コア上に無機層を形成する方法としては、無機材料に応じて、物理蒸着(PVD:Physical Vapor Deposition)及び化学蒸着(CVD:Chemical Vapor Deposition)等の公知の乾式の蒸着方法から選択できる。
 より具体的には、スパッタリング、真空蒸着、プラズマCVD、及び、原子層堆積法(ALD:Atomic Layer Deposition)が挙げられる。
 なかでも、膜厚が薄いにもかかわらず、緻密で水蒸気透過度が高い被膜が形成できる点で、ALD法によりコア上に無機層を形成することが好ましい。
The method for forming the inorganic layer on the core can be selected from known dry vapor deposition methods such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), depending on the inorganic material.
More specifically, sputtering, vacuum deposition, plasma CVD, and atomic layer deposition (ALD) can be mentioned.
Above all, it is preferable to form an inorganic layer on the core by the ALD method in that a dense film having high water vapor transmission rate can be formed even though the film thickness is thin.
 ALD法は、気相の連続的な化学反応を利用した薄膜形成技術であり、CVDの1種である。ALD法は、前駆体又はプリカーサとも云われる活性に富んだガスと反応性ガスを交互に用い、粒子表面における吸着とこれに続く化学反応によって、原子レベルで一層ずつ薄膜を成長させる成膜方法である。
 ALD法では、粒子表面がある種のガスで覆われると、それ以上そのガスの吸着が生じない、いわゆるセルフ・リミッテイング効果を利用し、前駆体が一層のみ吸着したところで未反応の前駆体を排気する。続いて、反応性ガスを導入して、先の前駆体を酸化または還元させて所望の組成を有する薄膜を一層のみ形成した後、反応性ガスを排気する。このような処理を1サイクルとし、このサイクルを繰り返すことで、繰り返した回数分の分子層の薄膜を成長させることができる。
 ALD法は、他の成膜方法と比較して、成膜欠陥が少なく、一様な成膜が可能であり、且つ、凹凸に追従するように成膜することが可能であるため、ピンホール欠陥を著しく低減できる。
The ALD method is a thin film forming technique utilizing a continuous chemical reaction of a gas phase, and is a kind of CVD. The ALD method is a film formation method in which a thin film is grown layer by layer at the atomic level by alternating active gas and reactive gas, which are also called precursors or precursors, by adsorption on the particle surface and subsequent chemical reaction. be.
The ALD method utilizes the so-called self-limiting effect, in which when the particle surface is covered with a certain gas, the adsorption of that gas does not occur anymore, and the unreacted precursor is adsorbed when only one layer is adsorbed. Exhaust. Subsequently, a reactive gas is introduced to oxidize or reduce the precursor to form only one thin film having a desired composition, and then the reactive gas is exhausted. By setting such a process as one cycle and repeating this cycle, the thin film of the molecular layer can be grown as many times as the number of repetitions.
Compared with other film forming methods, the ALD method has fewer film forming defects, can form a uniform film, and can form a film so as to follow the unevenness. Therefore, it is a pinhole. Defects can be significantly reduced.
 ALD法によるコア上での無機層の形成に使用できる装置としては、反応容器内に粒子を入れた後、反応容器内に前駆体ガス及び反応性ガスを次々に導入及び排気する工程を繰り返すことができる装置であれば特に制限されないが、例えば、バレル型ALD真空成膜装置(株式会社クリエイティブコーティングス製)が挙げられる。上記装置は、反応容器内に導入された粒子を攪拌するバレル機構を備えることにより、より均一な厚さの膜を形成できる。 As a device that can be used to form an inorganic layer on the core by the ALD method, after putting particles in the reaction vessel, the steps of introducing and exhausting the precursor gas and the reactive gas into the reaction vessel one after another are repeated. The device is not particularly limited as long as it can be used, and examples thereof include a barrel type ALD vacuum layer deposition device (manufactured by Creative Coatings Co., Ltd.). The device can form a film having a more uniform thickness by providing a barrel mechanism for stirring the particles introduced into the reaction vessel.
 ALD法において使用する前駆体ガス及び反応性ガスは、形成する無機層の構成材料に応じて適宜選択できる。
 無機層を構成する無機化合物が酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、又は、酸化チタンからなる群より選択される少なくとも1つである場合、前駆体ガスとしては、Si、Al、Zr、Hf及びTiからなる群より選択される少なくとも1つを含む有機化合物が挙げられ、反応性ガスとしては、オゾン及び水蒸気等の酸化ガスが挙げられる。
The precursor gas and the reactive gas used in the ALD method can be appropriately selected depending on the constituent material of the inorganic layer to be formed.
When the inorganic compound constituting the inorganic layer is at least one selected from the group consisting of silicon oxide, aluminum oxide, zirconium oxide, hafnium oxide, or titanium oxide, the precursor gas may be Si, Al, Zr, or the like. Examples thereof include organic compounds containing at least one selected from the group consisting of Hf and Ti, and examples of the reactive gas include oxide gases such as ozone and water vapor.
 シェルは、無機層を1層のみ有していてもよく、2層以上の無機層を有していてもよい。シェルが2層以上の無機層を有する場合、2層以上の無機層は同一であってもよく異なっていてもよい。
 無機層の厚さ(無機層が2層以上存在する場合は合計厚さ)は特に制限されないが、本発明の効果がより安定して発揮される観点から、3nm以上が好ましく、10nm以上がより好ましく、20nm以上が更に好ましい。
 無機層の厚さの上限は、特に制限されないが、ヒビ又は割れをより抑制できる点で、300nm以下が好ましく、200nm以下がより好ましい。
 なお、無機層の厚さは、後述するシェルの厚さ(壁厚)の測定方法に従って測定すればよい。
The shell may have only one inorganic layer, or may have two or more inorganic layers. When the shell has two or more inorganic layers, the two or more inorganic layers may be the same or different.
The thickness of the inorganic layer (total thickness when two or more layers are present) is not particularly limited, but from the viewpoint that the effect of the present invention is more stably exhibited, 3 nm or more is preferable, and 10 nm or more is more preferable. It is preferable, and more preferably 20 nm or more.
The upper limit of the thickness of the inorganic layer is not particularly limited, but is preferably 300 nm or less, more preferably 200 nm or less, in that cracks or cracks can be further suppressed.
The thickness of the inorganic layer may be measured according to a method for measuring the thickness (wall thickness) of the shell, which will be described later.
 無機層としては、本発明の効果とマイクロカプセルの単位体積当たりの蓄熱量とがバランス良く優れる点で、緻密な無機層を形成することが好ましい。 As the inorganic layer, it is preferable to form a dense inorganic layer in that the effect of the present invention and the amount of heat storage per unit volume of the microcapsules are well-balanced and excellent.
 シェルは、上記無機層以外の他の層を有していてもよい。
 無機層以外の層としては、有機化合物からなる有機層が挙げられる。有機層のより具体的な態様としては、無機層よりも内側に形成され、無機層の形成面を平坦化する機能を有する下地層、及び、無機層よりも外側に形成され、無機層を保護する機能を有する保護層が挙げられる。
The shell may have a layer other than the above-mentioned inorganic layer.
Examples of the layer other than the inorganic layer include an organic layer made of an organic compound. As a more specific embodiment of the organic layer, a base layer which is formed inside the inorganic layer and has a function of flattening the formation surface of the inorganic layer, and a base layer formed outside the inorganic layer to protect the inorganic layer. Included is a protective layer that has the function of
 有機層を構成する有機化合物は特に制限されず、公知の有機化合物が利用できる。
 有機化合物としては、例えば、ポリエステル、ポリウレタン、ポリウレア、ポリウレタンウレア、メラミン樹脂、アクリル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、セルロースアシレート、ポリエーテルエーテルケトン、ポリカーボネート、脂環式ポリオレフィン、ポリアリレート、ポリエーテルスルホン、ポリスルホン、フルオレン環変性ポリカーボネート、脂環変性ポリカーボネート、フルオレン環変性ポリエステル、アクリロイル化合物、ポリシロキサン、及び、その他の有機珪素化合物が挙げられる。これらは、単独で用いてもよく、複数を組み合わせて用いてもよい。
The organic compound constituting the organic layer is not particularly limited, and known organic compounds can be used.
Examples of the organic compound include polyester, polyurethane, polyurea, polyurethane urea, melamine resin, acrylic resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene, transparent fluororesin, polyimide, fluorinated polyimide, polyamide, and polyamideimide. , Polyetherimide, cellulose acylate, polyetheretherketone, polycarbonate, alicyclic polyolefin, polyarylate, polyethersulfone, polysulfone, fluorene ring-modified polycarbonate, alicyclic-modified polycarbonate, fluorene ring-modified polyester, acrylic compound, polysiloxane , And other organic silicon compounds. These may be used alone or in combination of two or more.
 コア上に有機層を形成する方法は特に制限されず、公知の方法が挙げられる。
 例えば、有機層を構成する有機化合物としてモノマー、ダイマー、トリマー及びオリゴマー等の前駆体と、重合開始剤、シランカップリング剤、界面活性剤及び増加粘剤等の添加剤を有機溶剤に溶解してなる塗布液を調製し、次いで、この塗布液をコアに塗布し、乾燥後、紫外線照射、電子線照射及び/又は加熱等によって、有機化合物を重合又は架橋することにより、コア上に有機層を形成することができる。
The method for forming the organic layer on the core is not particularly limited, and known methods can be mentioned.
For example, precursors such as monomers, dimers, trimmers and oligomers as organic compounds constituting the organic layer and additives such as polymerization initiators, silane coupling agents, surfactants and increasing viscosity agents are dissolved in an organic solvent. Then, this coating liquid is applied to the core, and after drying, the organic compound is polymerized or crosslinked by ultraviolet irradiation, electron beam irradiation and / or heating to form an organic layer on the core. Can be formed.
 有機層の厚さは特に制限されず、0.01~10μmが好ましく、0.05~5μmがより好ましい。
 シェルは、有機層を1層のみ有していてもよく、2層以上の有機層を有していてもよい。シェルが2層以上の有機層を有する場合、2層以上の有機層は同一であってもよく異なっていてもよい。
The thickness of the organic layer is not particularly limited, and is preferably 0.01 to 10 μm, more preferably 0.05 to 5 μm.
The shell may have only one organic layer or may have two or more organic layers. When the shell has two or more organic layers, the two or more organic layers may be the same or different.
 シェルは、上記の水蒸気透過度を満たす限り、上記の無機層及び上記の有機層のいずれを有していてもよいが、本発明の効果がより優れる点で、シェルは少なくとも無機層を有することが好ましく、コアと無機層とが直接接していることがより好ましい。
 なかでも、本発明の効果と単位体積当たりの熱量とがバランス良く優れる点で、シェルは無機層のみで構成されていることが更に好ましい。
The shell may have either the above-mentioned inorganic layer or the above-mentioned organic layer as long as the above-mentioned water vapor transmission rate is satisfied, but the shell has at least the above-mentioned inorganic layer in that the effect of the present invention is more excellent. Is preferable, and it is more preferable that the core and the inorganic layer are in direct contact with each other.
Above all, it is more preferable that the shell is composed of only an inorganic layer in that the effect of the present invention and the amount of heat per unit volume are well-balanced and excellent.
<シェル厚さ(壁厚)>
 マイクロカプセルのシェルの厚さ(壁厚)は、上記の水蒸気透過度を満たす限り特に制限されないが、5nm以上が好ましく、10nm以上がより好ましく、20nm以上が更に好ましい。上限は特に制限されないが、内包するコア材の含有割合が高くなり、単位体積当たりの熱量が優れる点で、1μm以下が好ましく、300nm以下がより好ましく、100nm以下が更に好ましい。
<Shell thickness (wall thickness)>
The thickness (wall thickness) of the shell of the microcapsules is not particularly limited as long as the above water vapor transmission rate is satisfied, but is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more. The upper limit is not particularly limited, but 1 μm or less is preferable, 300 nm or less is more preferable, and 100 nm or less is further preferable, in that the content ratio of the contained core material is high and the amount of heat per unit volume is excellent.
 壁厚は、任意の20個のマイクロカプセルの個々の壁厚をTEMにより測定して平均した平均値をいう。
 具体的には、上記のコアの粒子径の測定方法と同様に、TEMにより得られる観察画像から任意の20個のマイクロカプセルを選択し、個々のマイクロカプセルの断面を観察してシェルの厚さを求めて平均値を算出することにより、マイクロカプセルが有する壁厚が求められる。
The wall thickness is an average value obtained by measuring the individual wall thicknesses of any 20 microcapsules by TEM and averaging them.
Specifically, similarly to the above-mentioned method for measuring the particle size of the core, 20 microcapsules are selected from the observation images obtained by TEM, and the cross section of each microcapsule is observed to obtain the thickness of the shell. By calculating the average value, the wall thickness of the microcapsules can be obtained.
〔マイクロカプセルの製造方法〕
 マイクロカプセルは、例えば、脂肪族アミンを含むコアを準備するコア準備工程と、コアの表面上に、コアを内包するシェルを形成するシェル形成工程を有する。
[Manufacturing method of microcapsules]
The microcapsules have, for example, a core preparation step of preparing a core containing an aliphatic amine and a shell forming step of forming a shell containing the core on the surface of the core.
 コア準備工程は、シェル形成工程に使用するためのコアを準備する工程であれば特に制限されない。
 コアの原料として用いる脂肪族アミンは、市販品であってもよい。脂肪族アミンの市販品としては、例えば、富士フイルム和光純薬株式会社製の1,6-ジアミノヘキサン、1,8-ジアミノオクタン及び1,10-ジアミノデカン等の脂肪族ジアミンが挙げられる。
 脂肪族アミンは、室温で粒子状又は粉末状であることが多い。そこで、コア準備工程において、必要に応じて、入手した脂肪族アミンの粒子径を調整する処理を行ってもよい。上記の粒子径の調整は、粒子を粉砕及び解砕する公知の方法で行えばよく、例えば、乳鉢及び乳棒を用いる方法、並びに、ビーズミル、ロールミル及びボールミル等の粉砕機を用いる方法が挙げられる。
 粒子径が小さい(例えば10μm以下等)コアを作製する場合は、上記の粉砕機を用いて原料粒子を微粒化処理することが好ましい。この場合、処理時間並びにビーズの添加量及びサイズ等の条件を変えることにより、コアの粒子径を所望の範囲に調整できる。また、コアの粒子径の調整は、光学顕微鏡又はTEM等の装置を用いてコアの粒子径を測定しながら行うことが好ましい。
The core preparation step is not particularly limited as long as it is a step of preparing a core for use in the shell forming step.
The aliphatic amine used as a raw material for the core may be a commercially available product. Examples of commercially available aliphatic amines include aliphatic diamines manufactured by Wako Pure Chemical Industries, Ltd., such as 1,6-diaminohexane, 1,8-diaminooctane and 1,10-diaminodecane.
Aliphatic amines are often in the form of particles or powders at room temperature. Therefore, in the core preparation step, a process of adjusting the particle size of the obtained aliphatic amine may be performed, if necessary. The above adjustment of the particle size may be performed by a known method of crushing and crushing the particles, and examples thereof include a method using a mortar and a pestle and a method using a crusher such as a bead mill, a roll mill and a ball mill.
When producing a core having a small particle size (for example, 10 μm or less), it is preferable to atomize the raw material particles using the above-mentioned pulverizer. In this case, the particle size of the core can be adjusted to a desired range by changing conditions such as the treatment time and the amount and size of beads added. Further, it is preferable to adjust the particle size of the core while measuring the particle size of the core using an apparatus such as an optical microscope or TEM.
 シェル形成工程としては、例えば、上述したコア上に無機層を形成する方法、及び、コア上に有機層を形成する方法が挙げられ、少なくとも乾式の蒸着方法によって無機化合物からなる無機層を形成する工程を含むことが好ましい。これらの方法の詳細については、既述の通りであるので、ここでは説明を省略する。 Examples of the shell forming step include a method of forming an inorganic layer on the core described above and a method of forming an organic layer on the core, and at least a dry vapor deposition method is used to form an inorganic layer made of an inorganic compound. It is preferable to include a step. The details of these methods are as described above, and thus description thereof will be omitted here.
 コア準備工程及びシェル形成工程は、コアに含まれる脂肪族アミンと水とが接触しない環境下で実施することが好ましい。これにより、コアを構成する脂肪族アミンの変性を抑制し、マイクロカプセルの単位体積当たりの熱量の低下を抑制できる。
 上記の「コアに含まれる脂肪族アミンと水とが接触しない環境下で実施する」とは、コア準備工程及びシェル形成工程において、コア準備工程及びシェル形成工程を、水を実質的に含まない不活性ガスの雰囲気等の、コアと水とを直接接触させない環境下で実施することを意味する。なお、後述する無機層等のコアと水との接触を防止できる層が形成されるまで、上記環境下でコア準備工程及びシェル形成工程を実施することにより、上記の目的は達成される。
 不活性ガスとしては、窒素、並びに、ヘリウム及びアルゴン等の希ガスが挙げられる。不活性ガスが「水を実質的に含まない」とは、不活性ガスの露点が-40℃以下であることを意味し、不活性ガスの露点は、-40℃以下が好ましく、-60℃以下がより好ましい。不活性ガスの純度は、99.9体積%以上が好ましく、99.99体積%以上がより好ましい。
 コア準備工程及びシェル形成工程は、露点が-40℃以下(より好ましくは-60℃以下)であり、純度が99.9体積%以上(より好ましくは99.99体積%以上)である窒素雰囲気下で実施することが好ましい。
The core preparation step and the shell forming step are preferably carried out in an environment where the aliphatic amine contained in the core does not come into contact with water. As a result, denaturation of the aliphatic amine constituting the core can be suppressed, and a decrease in the amount of heat per unit volume of the microcapsules can be suppressed.
The above-mentioned "implemented in an environment where the aliphatic amine contained in the core does not come into contact with water" means that the core preparation step and the shell forming step do not substantially contain water in the core preparing step and the shell forming step. It means that it is carried out in an environment where the core and water do not come into direct contact with each other, such as an atmosphere of an inert gas. The above object is achieved by carrying out the core preparation step and the shell forming step under the above environment until a layer capable of preventing contact between the core and water, such as an inorganic layer described later, is formed.
Examples of the inert gas include nitrogen and noble gases such as helium and argon. The phrase "substantially free of water" from the inert gas means that the dew point of the inert gas is −40 ° C. or lower, and the dew point of the inert gas is preferably −40 ° C. or lower, preferably −60 ° C. The following are more preferred. The purity of the inert gas is preferably 99.9% by volume or more, more preferably 99.99% by volume or more.
In the core preparation step and the shell forming step, the nitrogen atmosphere has a dew point of −40 ° C. or lower (more preferably −60 ° C. or lower) and a purity of 99.9% by volume or more (more preferably 99.99% by volume or more). It is preferable to carry out below.
 コア準備工程及びシェル形成工程は、コアを構成する脂肪族アミンの変性抑制の観点から、融点以下で行うのが好ましい。 The core preparation step and the shell forming step are preferably performed at a melting point or lower from the viewpoint of suppressing denaturation of the aliphatic amine constituting the core.
〔マイクロカプセルの物性〕
 マイクロカプセルの粒径は特に制限されないが、マイクロカプセルの体積基準のメジアン径(Dm)で0.1~600μmが好ましく、1~300μmがより好ましく、5~150μmが更に好ましい。
 マイクロカプセルを後述する蓄熱シート等の蓄熱部材の形態で電子部品に用いる場合、単位体積当たりのマイクロカプセルの含有量をより高め、蓄熱シート又は蓄熱部材の単位体積当たりの蓄熱量をより向上できる点で、マイクロカプセルの粒径は、体積基準のメジアン径(Dm)で60μm以下が好ましい。
[Physical characteristics of microcapsules]
The particle size of the microcapsules is not particularly limited, but the median diameter (Dm) based on the volume of the microcapsules is preferably 0.1 to 600 μm, more preferably 1 to 300 μm, still more preferably 5 to 150 μm.
When the microcapsule is used for an electronic component in the form of a heat storage member such as a heat storage sheet described later, the content of the microcapsule per unit volume can be further increased, and the heat storage amount per unit volume of the heat storage sheet or the heat storage member can be further improved. The particle size of the microcapsules is preferably 60 μm or less in terms of volume-based median diameter (Dm).
 ここで、マイクロカプセルの体積基準のメジアン径とは、粒径を閾値としてマイクロカプセル全体を2つに分けた場合に、大径側と小径側での粒子の体積の合計が等量となる粒径をいう。マイクロカプセルの体積基準のメジアン径は、マイクロトラックMT3300EXII(日機装株式会社製)を用いてレーザー回折・散乱法により測定される。
 なお、マイクロカプセルが蓄熱シート又は蓄熱部材に含まれる場合、蓄熱シート又は蓄熱部材を水又は有機溶剤に24時間以上浸漬し、得られた水分散液を遠心分離することにより、単離したマイクロカプセルが得られる。
Here, the volume-based median diameter of microcapsules is a grain in which the total volume of particles on the large diameter side and the small diameter side is equal when the entire microcapsule is divided into two with the particle size as a threshold. Refers to the diameter. The volume-based median diameter of the microcapsules is measured by a laser diffraction / scattering method using a Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
When the microcapsules are contained in the heat storage sheet or the heat storage member, the isolated microcapsules are obtained by immersing the heat storage sheet or the heat storage member in water or an organic solvent for 24 hours or more and centrifuging the obtained aqueous dispersion. Is obtained.
 マイクロカプセルにおいてコアが占める割合については、マイクロカプセルの単位体積当たりの蓄熱量がより優れる点で、マイクロカプセルの全体積に対してコアが占める体積が、10体積%以上が好ましく、20体積%以上がより好ましく、50体積%以上が更に好ましく、90体積%以上が特に好ましい。上限値は特に制限されないが、シェルの強度が向上し、コアの相変化に伴う膨張によるシェルの破損をより抑制できる点で、マイクロカプセルの全体積に対してコアが占める体積が、99.999体積%以下が好ましく、99.99体積%以下がより好ましい。
 なお、マイクロカプセル中、上記のコアが占める体積の残りをシェルが占めることが好ましい。
Regarding the ratio of the core in the microcapsules, the volume occupied by the core with respect to the total volume of the microcapsules is preferably 10% by volume or more, preferably 20% by volume or more, in that the amount of heat storage per unit volume of the microcapsules is more excellent. Is more preferable, 50% by volume or more is further preferable, and 90% by volume or more is particularly preferable. The upper limit is not particularly limited, but the volume occupied by the core with respect to the total volume of the microcapsules is 99.999 in that the strength of the shell is improved and the damage of the shell due to the expansion due to the phase change of the core can be further suppressed. It is preferably 99.99% by volume or less, more preferably 99.99% by volume or less.
It is preferable that the shell occupies the rest of the volume occupied by the core in the microcapsules.
 マイクロカプセルは、単核のマイクロカプセルであることが好ましい。
 マイクロカプセルが単核であるとは、マイクロカプセルが内包する物質(コア)が存在する空間が実質的に1つのみであることを意味する。コアが存在する空間が実質的に1つのみであるとは、マイクロカプセル中における、コアが存在する空間のうちの最大の大きさである1つの空間(好ましくは略球形の空間)が、コアが存在する全空間の体積に対して、50~100体積%(好ましくは75~100体積%、より好ましくは95~100体積%)を占めることを意味する。また、コアが存在する空間のうち、体積が最も大きい空間(好ましくは略球形の空間)の体積が、体積が2番目に大きい空間の体積よりも、10倍以上大きいことが好ましい。
 また、マイクロカプセルは、略球形であることが好ましい。
The microcapsules are preferably mononuclear microcapsules.
The fact that the microcapsules are mononuclear means that there is substantially only one space in which the substance (core) contained in the microcapsules exists. The fact that there is substantially only one space in which the core exists means that one space (preferably a substantially spherical space) in the microcapsule, which is the largest space in which the core exists, is the core. Means that it occupies 50 to 100% by volume (preferably 75 to 100% by volume, more preferably 95 to 100% by volume) with respect to the volume of the entire space in which. Further, it is preferable that the volume of the space having the largest volume (preferably a substantially spherical space) among the spaces in which the core exists is 10 times or more larger than the volume of the space having the second largest volume.
Further, the microcapsules are preferably substantially spherical.
[蓄熱シート]
 蓄熱シートは、脂肪族アミンを内包するマイクロカプセルを含む。蓄熱シートは、上記マイクロカプセルと、バインダーとを含むことが好ましい。
 蓄熱シートは、蓄熱材としてマイクロカプセルに内包される脂肪族アミンの、固体-液体間での相変化に伴う熱の授受によって蓄熱機能を発現する。これにより、例えば熱を発する発熱体における熱の吸放出が可能である。蓄熱シートが、単位体積当たりの蓄熱量に優れる上記のマイクロカプセルを含むことで、より優れた蓄熱機能を発現する蓄熱シート及び蓄熱部材(後述)を提供できる。
[Heat storage sheet]
The heat storage sheet contains microcapsules containing an aliphatic amine. The heat storage sheet preferably contains the above microcapsules and a binder.
The heat storage sheet exhibits a heat storage function by transferring heat accompanying a phase change between a solid and a liquid of an aliphatic amine contained in microcapsules as a heat storage material. This makes it possible, for example, to absorb and release heat in a heating element that emits heat. When the heat storage sheet contains the above-mentioned microcapsules having an excellent heat storage amount per unit volume, it is possible to provide a heat storage sheet and a heat storage member (described later) that exhibit a more excellent heat storage function.
<マイクロカプセル>
 蓄熱シートは、マイクロカプセルを含む。マイクロカプセルの詳細については、既述の通りであるので、ここでは説明を省略する。
 蓄熱シート中のマイクロカプセルの含有量は特に制限されないが、蓄熱シートの全質量に対して、50質量%以上が好ましく、65質量%以上がより好ましく、75質量%以上が更に好ましい。マイクロカプセルの含有量の上限は特に制限されないが、蓄熱シートの全質量に対して、99.9質量%以下が好ましく、99質量%以下がより好ましい。
<Microcapsules>
The heat storage sheet contains microcapsules. Since the details of the microcapsules are as described above, the description thereof will be omitted here.
The content of the microcapsules in the heat storage sheet is not particularly limited, but is preferably 50% by mass or more, more preferably 65% by mass or more, still more preferably 75% by mass or more, based on the total mass of the heat storage sheet. The upper limit of the content of the microcapsules is not particularly limited, but is preferably 99.9% by mass or less, more preferably 99% by mass or less, based on the total mass of the heat storage sheet.
<バインダー>
 蓄熱シートは、耐久性が向上する点で、バインダーを更に含むことが好ましい。
 バインダーとしては、マイクロカプセルと密着性を有し、膜等の所望の形状を形成できるポリマーであれば特に制限されず、水溶性ポリマー、及び、非水溶性ポリマーが挙げられる。
 なお、水溶性ポリマーにおける「水溶性」とは、25℃の水100質量%に対する対象物質の溶解量が5質量%以上であることを意味する。より好適な水溶性ポリマーは、溶解量が10質量%以上であることを意味する。
 また、非水溶性ポリマーにおける「非水溶性」とは、25℃の水100質量%に対する対象物質の溶解量が5質量%未満であることを意味する。
<Binder>
The heat storage sheet preferably further contains a binder in terms of improving durability.
The binder is not particularly limited as long as it is a polymer having adhesion to microcapsules and capable of forming a desired shape such as a membrane, and examples thereof include water-soluble polymers and water-insoluble polymers.
The term "water-soluble" in the water-soluble polymer means that the amount of the target substance dissolved in 100% by mass of water at 25 ° C. is 5% by mass or more. A more suitable water-soluble polymer means that the dissolved amount is 10% by mass or more.
Further, "water-insoluble" in the water-insoluble polymer means that the amount of the target substance dissolved in 100% by mass of water at 25 ° C. is less than 5% by mass.
 水溶性ポリマーとしては、例えば、ポリビニルアルコール(未変性のポリビニルアルコール及び変性ポリビニルアルコール)、ポリアクリル酸アミド及びその誘導体、エチレン-酢酸ビニル共重合体、スチレン-無水マレイン酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、ポリビニルピロリドン、エチレン-アクリル酸共重合体、酢酸ビニル-アクリル酸共重合体、カルボキシメチルセルロース、メチルセルロース、カゼイン、ゼラチン、澱粉誘導体、アラビアゴム、及び、アルギン酸ナトリウムが挙げられる。
 非水溶性ポリマーとしては、シリコーン樹脂及びシリコーンオイル等のシリコーンポリマー、アクリル樹脂、ポリオレフィン、スチレン-ブタジエン樹脂、ポリウレタン、ポリウレア、ポリウレタンウレア、並びに、PET(Polyethylene Terephthalate)樹脂が挙げられる。
 また、バインダーとしては、国際公開第2018/207387号及び特開2007-031610号公報に記載された蓄熱性を有するポリマーを用いてもよく、これらの文献の記載は本明細書に組み込まれる。
Examples of the water-soluble polymer include polyvinyl alcohol (unmodified polyvinyl alcohol and modified polyvinyl alcohol), polyacrylic acid amide and its derivatives, ethylene-vinyl acetate copolymer, styrene-maleic anhydride copolymer, and ethylene-anhydrous. Maleic acid copolymer, isobutylene-maleic anhydride copolymer, polyvinylpyrrolidone, ethylene-acrylic acid copolymer, vinyl acetate-acrylic acid copolymer, carboxymethyl cellulose, methyl cellulose, casein, gelatin, starch derivative, gum arabic, And sodium alginate.
Examples of the water-insoluble polymer include silicone polymers such as silicone resin and silicone oil, acrylic resin, polyolefin, styrene-butadiene resin, polyurethane, polyurea, polyurethane urea, and PET (Polyethylene Terephthalate) resin.
Further, as the binder, the polymer having heat storage property described in International Publication No. 2018/207387 and JP-A-2007-031610 may be used, and the description of these documents is incorporated in the present specification.
 バインダーは、室温(25℃)において塑性変形可能であり、蓄熱シート(又は後述する蓄熱体。以下同様)に塑性体としての性質を発現させる機能を有することが好ましい。蓄熱シートが、室温において塑性変形可能なバインダーと、上記のマイクロカプセルとを含有することにより、蓄熱シート中、マイクロカプセル間に位置するバインダーが、複数のマイクロカプセルと接着又は粘着することで、変形等の目的で蓄熱シートに外からの力を加えた場合であっても、マイクロカプセル同士の密着性を維持しながら塑性変形して、蓄熱シートにヒビ及び割れ等の空隙の発生を抑制できる。
 このようなバインダーとしては、例えば、上記のシリコーンポリマー、ポリウレタン、ポリウレア、ポリウレタンウレア、アクリル樹脂、ポリエステル樹脂、ポリエーテル樹脂、及び、ポリオレフィン樹脂が挙げられる。なかでも、高粘度シリコーンオイルが好ましい。
 なお、本明細書において「高粘度」とは、ポリマーの粘度が1万cP以上であることを意味する。
 ポリマーの粘度は、25℃でE型粘度計(東機産業株式会社製「RE-85U」)を用いて測定できる。
It is preferable that the binder is plastically deformable at room temperature (25 ° C.) and has a function of exhibiting the properties of a plastic body in a heat storage sheet (or a heat storage body described later; the same applies hereinafter). When the heat storage sheet contains a binder that can be plastically deformed at room temperature and the above-mentioned microcapsules, the binder located between the microcapsules in the heat storage sheet is deformed by adhering or adhering to a plurality of microcapsules. Even when an external force is applied to the heat storage sheet for the above purpose, the microcapsules can be plastically deformed while maintaining the adhesion between the microcapsules, and the generation of voids such as cracks and cracks can be suppressed in the heat storage sheet.
Examples of such a binder include the above-mentioned silicone polymers, polyurethanes, polyureas, polyurethane ureas, acrylic resins, polyester resins, polyether resins, and polyolefin resins. Of these, high-viscosity silicone oil is preferable.
In addition, in this specification, "high viscosity" means that the viscosity of a polymer is 10,000 cP or more.
The viscosity of the polymer can be measured at 25 ° C. using an E-type viscometer (“RE-85U” manufactured by Toki Sangyo Co., Ltd.).
 蓄熱シートにおけるバインダーの含有量は特に制限されないが、蓄熱シートの膜強度及び蓄熱部材の蓄熱性のバランスの点で、0.1~30質量%が好ましく、0.5~15質量%がより好ましい。 The content of the binder in the heat storage sheet is not particularly limited, but is preferably 0.1 to 30% by mass, more preferably 0.5 to 15% by mass, in terms of the balance between the film strength of the heat storage sheet and the heat storage property of the heat storage member. ..
<他の成分>
 蓄熱シートは、マイクロカプセル及びバインダー以外の他の成分を含んでいてもよい。他の成分としては、熱伝導性材料、難燃剤、紫外線吸収剤、酸化防止剤、溶剤、着色剤、ゲル化剤、モノマー、及び、防腐剤が挙げられる。
 上記他の成分の含有量は、蓄熱シート全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。下限は特に制限されないが、0質量%が挙げられる。
 なお、熱伝導性材料の「熱伝導性」については、熱伝導率が10Wm-1-1以上である材料が好ましい。なかでも、熱伝導性材料の熱伝導率としては、蓄熱シートの放熱性が良好になる点で、50Wm-1-1以上がより好ましい。
 熱伝導率(単位:Wm-1-1)は、フラッシュ法にて25℃の温度下、日本工業規格(JIS)R1611に準拠した方法により測定される値である。
<Other ingredients>
The heat storage sheet may contain other components other than the microcapsules and the binder. Other components include thermally conductive materials, flame retardants, UV absorbers, antioxidants, solvents, colorants, gelling agents, monomers, and preservatives.
The content of the other components is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the heat storage sheet. The lower limit is not particularly limited, but may be 0% by mass.
Regarding the "thermal conductivity" of the thermally conductive material, a material having a thermal conductivity of 10 Wm -1 K -1 or more is preferable. Among them, as the thermal conductivity of the heat conductive material, 50 Wm -1 K -1 or more is more preferable in terms of improving the heat dissipation of the heat storage sheet.
The thermal conductivity (unit: Wm -1 K -1 ) is a value measured by a flash method under a temperature of 25 ° C. by a method compliant with Japanese Industrial Standards (JIS) R1611.
<蓄熱シートの物性>
(厚さ)
 蓄熱シートの厚さは特に制限されないが、1~1000μmが好ましい。
 厚さは、蓄熱シートを厚さ方向と平行に裁断した裁断面をSEMで観察し、任意の点を5点測定し、5点の厚さを平均した平均値とする。
<Physical characteristics of heat storage sheet>
(thickness)
The thickness of the heat storage sheet is not particularly limited, but is preferably 1 to 1000 μm.
For the thickness, the cut surface obtained by cutting the heat storage sheet in parallel with the thickness direction is observed by SEM, 5 arbitrary points are measured, and the average value of the thicknesses of the 5 points is taken as the average value.
(潜熱容量)
 蓄熱シートの潜熱容量は特に制限されないが、蓄熱部材の蓄熱性が高く、熱を発する発熱体の温度調節に好適である点で、150J/cm以上が好ましく、180J/cm以上がより好ましく、200J/cm以上が更に好ましい。上限は特に制限されないが、500J/cm以下の場合が多い。
 潜熱容量は、示差走査熱量測定(DSC;Differential scanning calorimetry)により測定される単位質量当たりの蓄熱量(J/g)と、蓄熱シートの密度(g/cm)とから算出される値である。蓄熱シートの密度は、サンプルの質量及び体積から測定する。サンプルの質量は電子天秤で測定する。また、サンプルの体積は、サンプルがシート状である場合には、面積と厚みをノギス、及び接触式厚み測定機等で測定して計算し、サンプルが塊状である場合には、溶解及び膨潤しない溶媒(水、アルコール等)に浸漬して増加した体積から求める。
(Latent heat capacity)
The latent heat capacity of the heat storage sheet is not particularly limited, but 150 J / cm 3 or more is preferable, and 180 J / cm 3 or more is more preferable, because the heat storage member has high heat storage property and is suitable for temperature control of the heat generating body that generates heat. , 200 J / cm 3 or more is more preferable. The upper limit is not particularly limited, but it is often 500 J / cm 3 or less.
The latent heat capacity is a value calculated from the heat storage amount per unit mass (J / g) measured by differential scanning calorimetry (DSC) and the density of the heat storage sheet (g / cm 3 ). .. The density of the heat storage sheet is measured from the mass and volume of the sample. The mass of the sample is measured with an electronic balance. The volume of the sample is calculated by measuring the area and thickness with a caliper, a contact type thickness measuring machine, etc. when the sample is in the form of a sheet, and does not dissolve or swell when the sample is in the form of a lump. Obtained from the increased volume by immersing in a solvent (water, alcohol, etc.).
 蓄熱シートは、室温(25℃)において塑性変形可能な塑性体であることが好ましい。即ち、蓄熱シートは、室温環境下において外からの力が加わることによって変形可能であることが好ましい。このような蓄熱シートは、例えば、マイクロカプセルとともに上記のバインダーを蓄熱シートに含有させることによって、作製できる。 The heat storage sheet is preferably a plastic body that can be plastically deformed at room temperature (25 ° C.). That is, it is preferable that the heat storage sheet can be deformed by applying an external force in a room temperature environment. Such a heat storage sheet can be produced, for example, by incorporating the above binder together with microcapsules into the heat storage sheet.
<蓄熱シートの製造方法>
 蓄熱シートの製造方法は特に制限されず、公知の方法が挙げられる。
 蓄熱シートの製造方法としては、例えば、上記のマイクロカプセルと、上記のバインダーと、溶剤とを混合して塗布液を調製する塗布液調製工程と、得られた塗布液を基材上に塗布して塗布膜を形成する塗布工程と、形成された塗布膜を乾燥させる乾燥工程とを有する方法が挙げられる。
 他の方法としては、上記のマイクロカプセル及び上記のバインダーを含む組成物を、基材上に溶融製膜することにより、蓄熱シートを製造する方法も挙げられる。
 必要に応じて、基材と蓄熱シートとの積層体から基材を剥がすことで、蓄熱シートの単体を製造することもできる。
<Manufacturing method of heat storage sheet>
The method for producing the heat storage sheet is not particularly limited, and examples thereof include known methods.
As a method for producing a heat storage sheet, for example, a coating liquid preparation step of mixing the above microcapsules, the above binder, and a solvent to prepare a coating liquid, and coating the obtained coating liquid on a substrate. A method having a coating step of forming a coating film and a drying step of drying the formed coating film can be mentioned.
As another method, there is also a method of producing a heat storage sheet by melt-forming a composition containing the above-mentioned microcapsules and the above-mentioned binder on a substrate.
If necessary, a single heat storage sheet can be manufactured by peeling the base material from the laminate of the base material and the heat storage sheet.
 基材としては、例えば、樹脂基材、ガラス基材、及び、金属基材が挙げられる。樹脂基材に含まれる樹脂としては、ポリエステル(例:ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリオレフィン(例:ポリエチレン、ポリプロピレン)、及び、ポリウレタンが挙げられる。
 また、面方向又は膜厚方向の熱伝導性を向上させ、発熱部分から蓄熱部位に速やかに熱拡散させる機能を基材に追加することが好ましく、金属基材とグラフェンシート等の熱伝導性材料とを組み合わせてなる基材がより好ましい。
 基材の厚さは特に制限されないが、1~1000μmが好ましく、1~100μmがより好ましく、1~25μmが更に好ましい。
Examples of the base material include a resin base material, a glass base material, and a metal base material. Examples of the resin contained in the resin base material include polyester (eg, polyethylene terephthalate, polyethylene naphthalate), polyolefin (eg, polyethylene, polypropylene), and polyurethane.
Further, it is preferable to add a function to improve the thermal conductivity in the surface direction or the film thickness direction and to quickly dissipate heat from the heat generating portion to the heat storage portion to the base material, and it is preferable to add a heat conductive material such as a metal base material and a graphene sheet. A substrate made of a combination of and is more preferable.
The thickness of the base material is not particularly limited, but is preferably 1 to 1000 μm, more preferably 1 to 100 μm, still more preferably 1 to 25 μm.
 蓄熱シートとの密着性を向上させる目的で、基材の表面が処理されていることが好ましい。表面処理方法としては、例えば、コロナ処理、プラズマ処理、及び、易接着層である薄層の付与等が挙げられる。
 易接着層を構成する材料は特に制限されないが、樹脂が挙げられ、より具体的には、スチレン-ブタジエンゴム、ウレタン樹脂、アクリル樹脂、シリコーン樹脂、及び、ポリビニル樹脂が挙げられる。
 易接着層の厚さは特に制限されないが、0.1~5μmが好ましく、0.5~2μmがより好ましい。
 なお、基材としては、剥離可能な仮基材を用いてもよい。
It is preferable that the surface of the base material is treated for the purpose of improving the adhesion to the heat storage sheet. Examples of the surface treatment method include corona treatment, plasma treatment, and application of a thin layer which is an easy-adhesion layer.
The material constituting the easy-adhesion layer is not particularly limited, and examples thereof include resin, and more specific examples thereof include styrene-butadiene rubber, urethane resin, acrylic resin, silicone resin, and polyvinyl resin.
The thickness of the easy-adhesion layer is not particularly limited, but is preferably 0.1 to 5 μm, more preferably 0.5 to 2 μm.
As the base material, a peelable temporary base material may be used.
 上記の塗布液調製工程で使用する溶剤としては、特に制限されず、イオン交換水等の水及びアルコールが挙げられる。
 上記の塗布工程における塗布方法としては、例えば、ダイコート法、エアーナイフコート法、ロールコート法、ブレードコート法、グラビアコート法、及び、カーテンコート法が挙げられる。
The solvent used in the above-mentioned coating liquid preparation step is not particularly limited, and examples thereof include water such as ion-exchanged water and alcohol.
Examples of the coating method in the above coating step include a die coating method, an air knife coating method, a roll coating method, a blade coating method, a gravure coating method, and a curtain coating method.
 上記の乾燥工程における乾燥温度は、20~150℃が好ましく、30~120℃がより好ましい。
 乾燥時間は、30秒間以上が好ましく、1分間以上がより好ましい。また、乾燥工程は、塗布膜に含まれる溶剤が全て気化する直前に終了することが好ましい。乾燥時間の上限は特に無いが、蓄熱シートの生産効率の点からは、乾燥時間は短ければ短いほど好ましい。
 乾燥工程では、塗布膜に対して、平坦化処理を施してもよい。平坦化処理の方法としては、ローラー、ニップローラー及びカレンダー等の部材で塗布膜に圧力をかけることにより、塗布膜中の脂肪族アミンの密度を向上する方法が挙げられる。
The drying temperature in the above drying step is preferably 20 to 150 ° C, more preferably 30 to 120 ° C.
The drying time is preferably 30 seconds or longer, more preferably 1 minute or longer. Further, it is preferable that the drying step is completed immediately before all the solvents contained in the coating film are vaporized. There is no particular upper limit to the drying time, but from the viewpoint of the production efficiency of the heat storage sheet, the shorter the drying time, the more preferable.
In the drying step, the coating film may be flattened. Examples of the flattening treatment method include a method of improving the density of the aliphatic amine in the coating film by applying pressure to the coating film with a member such as a roller, a nip roller and a calendar.
<蓄熱シートの用途>
 蓄熱シートは、種々の用途に適用でき、例えば、電子デバイス(例えば、携帯電話(特に、スマートフォン)、携帯情報端末、パーソナルコンピューター(特に、携帯用のパーソナルコンピューター)、ゲーム機、及び、リモコン等);自動車(例えば、バッテリー(特に、リチウムイオン電池)、パワーIC(Integrated Circuit)等の制御装置、カーナビ、液晶モニター、LED(Light Emitting Diode)ランプ、及び、キャニスターの保温等);日中の急激な温度上昇又は室内での暖冷房時の温調に適した建材(例えば、床材、屋根材、及び、壁材等);環境温度の変化又は運動時もしくは安静時の体温変化等に応じた調温に適した衣類(例えば、下着、上着、防寒着、及び、手袋等);エアコン;寝具;不要な排出熱を蓄えて熱エネルギーとして利用する排熱利用システム、等の用途に用いることができる。
 また、上記マイクロカプセルも、これらの用途に適用できる。
<Use of heat storage sheet>
The heat storage sheet can be applied to various uses, for example, an electronic device (for example, a mobile phone (particularly a smartphone), a mobile information terminal, a personal computer (particularly a portable personal computer), a game machine, a remote control, etc.). Automotive (for example, batteries (particularly lithium ion batteries), control devices such as power ICs (Integrated Circuits), car navigation systems, liquid crystal monitors, LED (Light Emitting Diode) lamps, heat retention of canisters, etc.); Building materials suitable for temperature control during moderate temperature rise or indoor heating and cooling (for example, floor materials, roofing materials, wall materials, etc.); in response to changes in environmental temperature or changes in body temperature during exercise or rest. Clothes suitable for temperature control (for example, underwear, jackets, cold weather clothes, gloves, etc.); Air conditioners; Bedding; Exhaust heat utilization system that stores unnecessary exhaust heat and uses it as heat energy, etc. Can be done.
The above microcapsules can also be applied to these uses.
 なかでも、蓄熱シートは、電子デバイス(特に、携帯用の電子デバイス)に用いることが好ましい。この理由は以下の通りである。
 電子デバイスの発熱による温度上昇を抑制する方法として、空気の流れによって熱を電子デバイスの外部に排出する方法、及び、ヒートパイプ又はヒートスプレッダ等によって電子デバイスの筐体全体に熱を拡散する方法が用いられてきた。しかしながら、近年の電子デバイスの薄型化及び防水性の点から、電子デバイスの気密性が向上しており、空気の流れによって熱を排出する方法を採用することが困難であるので、上記方法のなかでは、電子デバイスの筐体全体に熱を拡散する方法が用いられる。そのため、電子デバイスの温度上昇の抑制には、限界があった。
 この問題に対して、電子デバイス内に上記の蓄熱シートを導入することで、電子デバイスの気密性及び防水性を保ちつつ、電子デバイスの温度上昇を抑制できる。すなわち、蓄熱シートによって、電子デバイス内に一定時間熱を溜められる部分ができるので、電子デバイス内の発熱体の表面温度を任意の温度域に保持できる。
Above all, the heat storage sheet is preferably used for an electronic device (particularly, a portable electronic device). The reason for this is as follows.
As a method of suppressing the temperature rise due to heat generation of the electronic device, a method of discharging heat to the outside of the electronic device by the flow of air and a method of diffusing the heat to the entire housing of the electronic device by a heat pipe or a heat spreader are used. Has been done. However, from the viewpoint of thinning and waterproofing of electronic devices in recent years, the airtightness of electronic devices has improved, and it is difficult to adopt a method of discharging heat by the flow of air. Then, a method of diffusing heat to the entire housing of the electronic device is used. Therefore, there is a limit to suppressing the temperature rise of the electronic device.
To solve this problem, by introducing the above heat storage sheet into the electronic device, it is possible to suppress the temperature rise of the electronic device while maintaining the airtightness and waterproofness of the electronic device. That is, since the heat storage sheet creates a portion in the electronic device where heat can be stored for a certain period of time, the surface temperature of the heating element in the electronic device can be maintained in an arbitrary temperature range.
[蓄熱組成物、蓄熱体]
 蓄熱組成物は、脂肪族アミンを内包するマイクロカプセルを含む組成物である。
 蓄熱組成物は、上記マイクロカプセルと、上記バインダーとを含むことが好ましい。
 蓄熱組成物の形状は特に制限されず、シート状、フィルム状、板状、円筒状、球体状、及び、塊状等の固形の形態(立体形状)であってもよい。また、蓄熱組成物は、液状及びスラリー状等の流動性を有する不定形な態様であってもよい。以下、上記の固形の蓄熱組成物を「蓄熱体」とも記載する。
[Heat storage composition, heat storage body]
The heat storage composition is a composition containing microcapsules containing an aliphatic amine.
The heat storage composition preferably contains the above microcapsules and the above binder.
The shape of the heat storage composition is not particularly limited, and may be a solid form (three-dimensional shape) such as a sheet shape, a film shape, a plate shape, a cylindrical shape, a spherical shape, and a lump shape. Further, the heat storage composition may be in an amorphous form having fluidity such as liquid or slurry. Hereinafter, the above solid heat storage composition is also referred to as a “heat storage body”.
 シート状、フィルム状又は板状の蓄熱体は、その好ましい態様も含めて、上記[蓄熱シート]において既に説明した通りである。
 蓄熱体の形態が、シート状、フィルム状及び板状のいずれでもない場合、蓄熱体の厚みは、0.5mm以上が好ましく、1mm以上がより好ましく、2mm以上が更に好ましく、3mm以上が特に好ましい。上限は特に制限されないが、1000mm以下が好ましく、100mm以下がより好ましい。なお、上記厚みは、蓄熱体を2つの平行な面で蓄熱体を挟んだ時の最も短い距離を意味する。
 蓄熱体に含まれる成分、蓄熱体の物性、及び、蓄熱体の用途については、その好ましい態様も含めて、蓄熱シートについて既に説明した内容と同じであってよい。
The sheet-shaped, film-shaped or plate-shaped heat storage body is as described above in the above [heat storage sheet], including its preferred embodiment.
When the form of the heat storage body is not a sheet shape, a film shape, or a plate shape, the thickness of the heat storage body is preferably 0.5 mm or more, more preferably 1 mm or more, further preferably 2 mm or more, and particularly preferably 3 mm or more. .. The upper limit is not particularly limited, but is preferably 1000 mm or less, and more preferably 100 mm or less. The thickness means the shortest distance when the heat storage body is sandwiched between two parallel planes.
The components contained in the heat storage body, the physical properties of the heat storage body, and the use of the heat storage body may be the same as those already described for the heat storage sheet, including the preferred embodiments thereof.
 蓄熱組成物及び蓄熱体の製造方法は特に制限されない。例えば、蓄熱材として脂肪族アミンを内包したマイクロカプセルと、必要に応じて用いられるバインダー及び溶剤等の任意成分とを混合することにより、液状の蓄熱組成物(マイクロカプセルの分散液)を作製でき、次いで液状の蓄熱組成物を乾燥させることにより、固形の蓄熱組成物(蓄熱体)を作製できる。 The method for producing the heat storage composition and the heat storage body is not particularly limited. For example, a liquid heat storage composition (dispersion of microcapsules) can be prepared by mixing microcapsules containing an aliphatic amine as a heat storage material with optional components such as a binder and a solvent used as needed. Then, by drying the liquid heat storage composition, a solid heat storage composition (heat storage body) can be produced.
[蓄熱部材]
 蓄熱部材は、上記の蓄熱シート又は蓄熱体を有する。
 蓄熱部材は、更に保護層を有していてもよい。また、蓄熱部材は、ハンドリングの点で、蓄熱シート又は蓄熱体上に基材を有することが好ましい。
 以下、蓄熱シート(シート状の蓄熱体)を例に、蓄熱部材について説明する。
[Heat storage member]
The heat storage member has the above-mentioned heat storage sheet or heat storage body.
The heat storage member may further have a protective layer. Further, the heat storage member preferably has a base material on the heat storage sheet or the heat storage body in terms of handling.
Hereinafter, the heat storage member will be described using a heat storage sheet (sheet-shaped heat storage body) as an example.
<基材>
 蓄熱部材が有する基材は、上述した通りである。
<Base material>
The base material of the heat storage member is as described above.
<保護層>
 保護層は、蓄熱シート上に配置される層であって、蓄熱部材が基材を有する場合には、蓄熱シートにおける基材とは反対側の面側に配置される。保護層は、蓄熱シートを保護する機能を有する。
 保護層は、蓄熱シートと接触するように配置されていてもよいし、他の層を介して蓄熱シート上に配置されていてもよい。
 保護層を構成する材料は特に制限されず、樹脂が好ましく、耐水性、及び、難燃性がより良好となる点で、フッ素樹脂及びシロキサン樹脂からなる群から選択される樹脂がより好ましい。
<Protective layer>
The protective layer is a layer arranged on the heat storage sheet, and when the heat storage member has a base material, the protective layer is arranged on the surface side of the heat storage sheet opposite to the base material. The protective layer has a function of protecting the heat storage sheet.
The protective layer may be arranged so as to be in contact with the heat storage sheet, or may be arranged on the heat storage sheet via another layer.
The material constituting the protective layer is not particularly limited, and a resin is preferable, and a resin selected from the group consisting of a fluororesin and a siloxane resin is more preferable in that water resistance and flame retardancy are better.
 保護層としては、例えば、特開2018-202696号公報、特開2018-183877号公報、特開2018-111793号公報に記載の、公知のハードコート剤を含む層又はハードコートフィルムを用いてもよい。また、蓄熱性の観点から、国際公開第2018/207387号及び特開2007-031610号公報に記載の、蓄熱性を有するポリマーを有する保護層を用いてもよい。 As the protective layer, for example, a layer containing a known hard coat agent or a hard coat film described in JP-A-2018-202696, JP-A-2018-18387, and JP-A-2018-111793 may be used. good. Further, from the viewpoint of heat storage property, the protective layer having a polymer having heat storage property described in International Publication No. 2018/207387 and JP-A-2007-031610 may be used.
 保護層は、樹脂以外の他の成分を含んでいてもよい。他の成分としては、熱伝導性材料、難燃剤、紫外線吸収剤、酸化防止剤、着色剤、及び、防腐剤が挙げられる。 The protective layer may contain components other than the resin. Other components include thermally conductive materials, flame retardants, UV absorbers, antioxidants, colorants, and preservatives.
 保護層の厚さは特に制限されないが、50μm以下が好ましく、0.01~25μmがより好ましく、0.5~15μmが更に好ましい。
 厚さは、保護層を厚さ方向と平行に裁断した裁断面をSEMで観察し、任意の点を5点測定し、5点の厚さを平均した平均値とする。
The thickness of the protective layer is not particularly limited, but is preferably 50 μm or less, more preferably 0.01 to 25 μm, still more preferably 0.5 to 15 μm.
For the thickness, the cut surface obtained by cutting the protective layer in parallel with the thickness direction is observed by SEM, 5 arbitrary points are measured, and the average value of the thicknesses of the 5 points is taken as the average value.
 保護層の形成方法は特に制限されず、公知の方法が挙げられる。例えば、樹脂又はその前駆体を含む保護層形成用組成物と蓄熱シートとを接触させて、蓄熱シート上に形成された塗膜に対して、必要に応じて硬化処理を施す方法、及び、保護層を蓄熱シート上に貼り合わせる方法が挙げられる。 The method of forming the protective layer is not particularly limited, and a known method can be mentioned. For example, a method in which a protective layer forming composition containing a resin or a precursor thereof is brought into contact with a heat storage sheet, and a coating film formed on the heat storage sheet is subjected to a curing treatment as necessary, and protection. A method of adhering the layers on the heat storage sheet can be mentioned.
<密着層>
 後述する発熱体と蓄熱シートとの密着性を向上する目的で、密着層を配置してもよい。密着層としては、粘着層及び接着層が挙げられる。
 粘着層の材料は特に制限されず、公知の粘着剤が挙げられる。
 粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤、及び、シリコーン系粘着剤が挙げられる。また、粘着剤の例として、「剥離紙・剥離フィルム及び粘着テープの特性評価とその制御技術」、情報機構、2004年、第2章に記載のアクリル系粘着剤、紫外線硬化型粘着剤、及び、シリコーン粘着剤等が挙げられる。
 なお、アクリル系粘着剤とは、(メタ)アクリルモノマーの重合体((メタ)アクリルポリマー)を含む粘着剤をいう。
 粘着層は、更に、粘着付与剤を含んでいてもよい。
<Adhesion layer>
An adhesion layer may be arranged for the purpose of improving the adhesion between the heating element and the heat storage sheet, which will be described later. Examples of the adhesive layer include an adhesive layer and an adhesive layer.
The material of the pressure-sensitive adhesive layer is not particularly limited, and examples thereof include known pressure-sensitive adhesives.
Examples of the pressure-sensitive adhesive include an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive. Further, as an example of the adhesive, "Characteristic evaluation of release paper / release film and adhesive tape and its control technology", Information Mechanism, 2004, acrylic adhesive described in Chapter 2, ultraviolet curable adhesive, and , Silicone adhesive and the like.
The acrylic pressure-sensitive adhesive refers to a pressure-sensitive adhesive containing a polymer of (meth) acrylic monomer ((meth) acrylic polymer).
The adhesive layer may further contain a tackifier.
 接着層の材料は特に制限されず、公知の接着剤が挙げられる。
 接着剤としては、例えば、ウレタン樹脂接着剤、ポリエステル接着剤、アクリル樹脂接着剤、エチレン酢酸ビニル樹脂接着剤、ポリビニルアルコール接着剤、ポリアミド接着剤、及び、シリコーン接着剤が挙げられる。
The material of the adhesive layer is not particularly limited, and examples thereof include known adhesives.
Examples of the adhesive include urethane resin adhesives, polyester adhesives, acrylic resin adhesives, ethylene vinyl acetate resin adhesives, polyvinyl alcohol adhesives, polyamide adhesives, and silicone adhesives.
 密着層の形成方法は特に制限されないが、例えば、蓄熱シート上に密着層を転写する方法、及び、粘着剤又は接着剤を含む組成物を蓄熱シート上に塗布して密着層を形成する方法が挙げられる。
 密着層の厚さは特に制限されないが、0.5~100μmが好ましく、1~25μmがより好ましく、1~15μmが更に好ましい。
The method for forming the adhesive layer is not particularly limited, and for example, a method of transferring the adhesive layer onto the heat storage sheet and a method of applying a composition containing an adhesive or an adhesive onto the heat storage sheet to form the adhesive layer. Can be mentioned.
The thickness of the adhesion layer is not particularly limited, but is preferably 0.5 to 100 μm, more preferably 1 to 25 μm, still more preferably 1 to 15 μm.
<他の部材>
 蓄熱部材は、さらに仮基材を有していてもよい。これにより、蓄熱部材の保管時及び搬送時等において、蓄熱シートの傷付き等を抑制できる。
 仮基材の具体例は、基材の具体例と同様である。剥離面を有する基材であることが好ましい。
 蓄熱部材の使用する際には、蓄熱部材から仮基材を剥離する。
<Other members>
The heat storage member may further have a temporary base material. As a result, it is possible to suppress scratches on the heat storage sheet during storage and transportation of the heat storage member.
The specific example of the temporary base material is the same as the specific example of the base material. It is preferably a base material having a peeled surface.
When using the heat storage member, the temporary base material is peeled off from the heat storage member.
[電子デバイス]
 電子デバイスは、上記の蓄熱部材と、発熱体とを有する。
 蓄熱部材(蓄熱シート又は蓄熱体、密着層及び保護層)については、上述した通りである。
[Electronic device]
The electronic device has the above-mentioned heat storage member and a heating element.
The heat storage member (heat storage sheet or heat storage body, adhesion layer and protective layer) is as described above.
<発熱体>
 発熱体は、電子デバイスにおける発熱する場合がある部材であって、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、SRAM(Static Random Access Memory)及びRF(Radio Frequency)デバイス等のSoC(Systems on a Chip)、カメラ、LEDパッケージ、パワーエレクトロニクス、並びに、バッテリー(特にリチウムイオン二次電池)が挙げられる。
 発熱体は、蓄熱部材と接触するように配置されていてもよいし、他の層(例えば、後述する熱伝導材料)を介して蓄熱部材に配置されていてもよい。
<Heating element>
The heating element is a member that may generate heat in an electronic device, and is, for example, a SoC such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a SRAM (Static Random Access Memory), and an RF (Radio Frequency) device. (Systems on a Chip), cameras, LED packages, power electronics, and batteries (especially lithium ion secondary batteries).
The heating element may be arranged so as to be in contact with the heat storage member, or may be arranged on the heat storage member via another layer (for example, a heat conductive material described later).
<熱伝導材料>
 電子デバイスは、さらに、熱伝導材料を有することが好ましい。
 熱伝導材料とは、発熱体から生じた熱を別の媒体に伝導する機能を有する材料を意味する。
 熱伝導材料の「熱伝導性」としては、熱伝導率が10Wm-1-1以上であることが好ましい。即ち、熱伝導材料は、熱伝導率が10Wm-1-1以上である材料であることが好ましい。熱伝導率(単位:Wm-1-1)は、フラッシュ法にて25℃の温度下、日本工業規格(JIS)R1611に準拠した方法により測定される値である。
 電子デバイスが有してもよい熱伝導材料としては、例えば、放熱シート、及びシリコングリースが挙げられ、放熱シートが好ましく用いられる。
 電子デバイスは、上述の蓄熱部材と、熱伝導性材料と、発熱体とを有することが好ましい。
<Heat conductive material>
The electronic device further preferably has a heat conductive material.
The heat conductive material means a material having a function of conducting heat generated from a heating element to another medium.
As the "heat conductivity" of the heat conductive material, it is preferable that the heat conductivity is 10 Wm -1 K -1 or more. That is, the heat conductive material is preferably a material having a thermal conductivity of 10 Wm -1 K -1 or more. The thermal conductivity (unit: Wm -1 K -1 ) is a value measured by a flash method under a temperature of 25 ° C. by a method compliant with Japanese Industrial Standards (JIS) R1611.
Examples of the heat conductive material that the electronic device may have include a heat radiating sheet and silicon grease, and the heat radiating sheet is preferably used.
The electronic device preferably has the above-mentioned heat storage member, a heat conductive material, and a heating element.
(放熱シート)
 放熱シートは、発熱体から生じた熱を別の媒体に伝導する機能を有するシートであり、放熱材を有することが好ましい。放熱材としては、例えば、カーボン、金属(例えば、銀、銅、アルミニウム、鉄、白金、ステンレス及びニッケル)、並びに、シリコンが挙げられる。
 放熱シートの具体例としては、銅箔シート、金属皮膜樹脂シート、金属含有樹脂シート及び、グラフェンシートが挙げられ、グラフェンシートが好ましく用いられる。放熱シートの厚さは特に制限されないが、10~500μmが好ましく、20~300μmがより好ましい。
(Heat dissipation sheet)
The heat radiating sheet is a sheet having a function of conducting heat generated from a heating element to another medium, and preferably has a heat radiating material. Examples of the heat radiating material include carbon, metal (for example, silver, copper, aluminum, iron, platinum, stainless steel and nickel), and silicon.
Specific examples of the heat radiating sheet include a copper foil sheet, a metal film resin sheet, a metal-containing resin sheet, and a graphene sheet, and a graphene sheet is preferably used. The thickness of the heat radiating sheet is not particularly limited, but is preferably 10 to 500 μm, more preferably 20 to 300 μm.
<ヒートパイプ、ベイパーチャンバー>
 電子デバイスは、ヒートパイプ及びベイパーチャンバーからなる群より選択される熱輸送部材を更に有することが好ましい。
 ヒートパイプ及びベイパーチャンバーはいずれも、金属等で形成され、中空構造を有する部材と、その内部空間に封入される熱伝達媒体である作動流体とを少なくとも備え、高温部(蒸発部)において作動流体が蒸発(気化)して熱を吸収し、低温部(凝縮部)において気化した作動流体が凝縮して熱を放出する。ヒートパイプ及びベイパーチャンバーは、この内部での作動流体の相変化により、高温部に接触する部材から低温部に接触する部材に熱を輸送する機能を有する。
<Heat pipe, vapor chamber>
The electronic device preferably further comprises a heat transport member selected from the group consisting of heat pipes and vapor chambers.
Both the heat pipe and the vapor chamber are made of metal or the like and include at least a member having a hollow structure and a working fluid which is a heat transfer medium enclosed in the internal space thereof, and the working fluid in a high temperature part (evaporation part). Evaporates (vaporizes) and absorbs heat, and the vaporized working fluid condenses in the low temperature part (condensed part) and releases heat. The heat pipe and the vapor chamber have a function of transporting heat from a member in contact with a high temperature portion to a member in contact with a low temperature portion due to a phase change of the working fluid inside the heat pipe and the vapor chamber.
 電子デバイスが蓄熱部材と、ヒートパイプ及びベイパーチャンバーからなる群より選択される熱輸送部材とを有する場合、蓄熱部材とヒートパイプ又はベイパーチャンバーとが接触していることが好ましく、蓄熱部材がヒートパイプ又はベイパーチャンバーの低温部に接触していることがより好ましい。
 また、電子デバイスが蓄熱部材と、ヒートパイプ及びベイパーチャンバーからなる群より選択される熱輸送部材とを有する場合、蓄熱部材が有する蓄熱シート又は蓄熱体に含まれる蓄熱材の相変化温度と、ヒートパイプ又はベイパーチャンバーが作動する温度領域とが重複していることが好ましい。ヒートパイプ又はベイパーチャンバーが作動する温度領域としては、例えば、それぞれの内部において作動流体が相変化可能な温度の範囲が挙げられる。
When the electronic device has a heat storage member and a heat transport member selected from the group consisting of a heat pipe and a vapor chamber, it is preferable that the heat storage member and the heat pipe or the vapor chamber are in contact with each other, and the heat storage member is a heat pipe. Alternatively, it is more preferable that the vapor chamber is in contact with the low temperature portion.
Further, when the electronic device has a heat storage member and a heat transport member selected from the group consisting of a heat pipe and a vapor chamber, the phase change temperature of the heat storage material contained in the heat storage sheet or the heat storage body of the heat storage member and the heat. It is preferable that the temperature range in which the pipe or vapor chamber operates overlaps. Examples of the temperature range in which the heat pipe or the vapor chamber operates include a range of temperatures at which the working fluid can undergo a phase change inside each of them.
 ヒートパイプは、管状部材と、その内部空間に封入された作動流体とを少なくとも有する。ヒートパイプは、管状部材の内壁に毛細管現象に基づく作動流体の流路となるウィック構造を有し、その内側に気化した作動流体の通路となる内部空間が設けられた断面構成を有することが好ましい。管状部材の形状としては、円管状、角管状及び偏平な楕円管状等が挙げられる。管状部材は、屈曲部を有していてもよい。また、ヒートパイプは、管状部材がループ状に連結した構造を有するループヒートパイプであってもよい。 The heat pipe has at least a tubular member and a working fluid enclosed in its internal space. The heat pipe preferably has a wick structure on the inner wall of the tubular member, which is a flow path for the working fluid based on the capillary phenomenon, and has an internal space inside the wick structure, which is a passage for the vaporized working fluid. .. Examples of the shape of the tubular member include a circular tubular, a square tubular, and a flat elliptical tubular. The tubular member may have a bent portion. Further, the heat pipe may be a loop heat pipe having a structure in which tubular members are connected in a loop shape.
 ベイパーチャンバーは、中空構造を有する平板状の部材と、その内部空間に封入された作動流体とを少なくとも有する。ベイパーチャンバーは、平板状部材の内面にヒートパイプと同様のウィック構造を有することが好ましい。ベイパーチャンバーでは、概ね、平板状部材の一方の主面に接触する部材から熱が吸収され、他方の主面に接触する部材に熱が放出されることで、熱が輸送される。 The vapor chamber has at least a flat plate-shaped member having a hollow structure and a working fluid enclosed in the internal space thereof. The vapor chamber preferably has a wick structure similar to that of a heat pipe on the inner surface of a flat plate-shaped member. In the vapor chamber, heat is generally absorbed from a member in contact with one main surface of the flat plate-shaped member, and heat is released to the member in contact with the other main surface to transport heat.
 ヒートパイプ及びベイパーチャンバーを構成する材料は、熱伝導性が高い材料であれば特に制限されず、銅及びアルミニウム等の金属が挙げられる。
 ヒートパイプ及びベイパーチャンバーの内部空間に封入される作動流体としては、例えば、水、メタノール、エタノール及び代替フロンが挙げられ、適用される電子デバイスの温度範囲に応じて適宜選択して使用される。
The material constituting the heat pipe and the vapor chamber is not particularly limited as long as it is a material having high thermal conductivity, and examples thereof include metals such as copper and aluminum.
Examples of the working fluid enclosed in the internal space of the heat pipe and the vapor chamber include water, methanol, ethanol and CFC substitutes, which are appropriately selected and used according to the temperature range of the electronic device to be applied.
<他の部材>
 電子デバイスは、保護層、蓄熱シート又は蓄熱体、熱伝導材料、発熱体、及び、上述した熱輸送部材以外の他の部材を含んでいてもよい。他の部材としては、基材、及び、密着層が挙げられる。基材及び密着層については、上述した通りである。
<Other members>
The electronic device may include a protective layer, a heat storage sheet or a heat storage body, a heat conductive material, a heating element, and a member other than the heat transport member described above. Examples of other members include a base material and an adhesion layer. The base material and the adhesive layer are as described above.
 電子デバイスの具体例については、上述した通りであるので、その説明を省略する。 The specific examples of the electronic device are as described above, so the description thereof will be omitted.
 以下、本発明を実施例により更に具体的に説明する。本発明はその主旨を越えない限り、以下の実施例に制限されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples. The present invention is not limited to the following examples as long as the gist is not exceeded.
[マイクロカプセルの作製]
〔実施例1〕
 以下の工程を行い、実施例1のマイクロカプセルを作製した。
 乾燥窒素(露点-60℃以下、窒素濃度99.99体積%以上)を充填したグローブボックス内において、乾燥窒素によるバブリング処理により水分及び酸素を除去したイソパラフィン系溶剤(「IPソルベント1620」、出光興産株式会社製)1.5g、1,8-ジアミノオクタン(富士フイルム和光純薬社製)0.3g、及び、直径0.1mmΦのジルコニアビーズ0.5gをセントチューブに入れ、混合物を調製した。上記セントチューブ中の混合物を、試験管ミキサー(「DeltaMixer Se-08」、TAITEC社製)を用いて72時間振とう及び攪拌した。上記試験管ミキサーの目盛りは「5」であった。得られた混合液をデカンテーションで、1,8-ジアミノオクタンの粒子を含む分散液とジルコニアビーズとに分離した。得られた分散液から上澄みをデカンテーションで取り除いた後、乾燥窒素を直接3時間吹きかけることにより粒子を乾燥させて、1,8-ジアミノオクタンからなるコア粒子A1を作製した。
 上記で作製されたコア粒子A1を、乾燥窒素で充填したバイアル瓶に入れ、密封した後、バイアル瓶をグローブボックスから取り出した。
 透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて得られたコア粒子A1の観察画像から、コア粒子A1の粒子径が0.1μmであったことが確認された。
[Making microcapsules]
[Example 1]
The following steps were carried out to prepare the microcapsules of Example 1.
An isoparaffin-based solvent ("IP Solvent 1620", Idemitsu Kosan) in which water and oxygen are removed by bubbling treatment with dry nitrogen in a glove box filled with dry nitrogen (dew point -60 ° C or less, nitrogen concentration 99.99% by volume or more). A mixture was prepared by putting 1.5 g of (manufactured by Fuji Film Co., Ltd.), 0.3 g of 1,8-diaminooctane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 0.5 g of zirconia beads having a diameter of 0.1 mmΦ into a cent tube. The mixture in the cent tube was shaken and stirred for 72 hours using a test tube mixer (“DeltaMixer Se-08”, manufactured by TAITEC). The scale of the test tube mixer was "5". The obtained mixed solution was decanted into a dispersion containing particles of 1,8-diaminooctane and zirconia beads. After removing the supernatant from the obtained dispersion by decantation, the particles were dried by directly spraying dry nitrogen for 3 hours to prepare core particles A1 composed of 1,8-diaminooctane.
The core particles A1 prepared above were placed in a vial filled with dry nitrogen, sealed, and then the vial was removed from the glove box.
From the observation image of the core particle A1 obtained by using a transmission electron microscope (TEM), it was confirmed that the particle size of the core particle A1 was 0.1 μm.
 得られたコア粒子A1を、バレル型ALD真空成膜装置(株式会社クリエイティブコーティングス製)のバレル型容器に入れた。次いで、容器を回転させながら、室温(25℃)下にて、下記(1)~(4)の操作を順に行うALDにより、コア粒子A1の表面に酸化アルミニウム(Al)からなる被膜を形成した。
(1)前駆体としてトリメチルアルミニウムのガスを3.0sccmの流量で容器内に40秒間導入した。なお、上記の流量の単位「sccm」は、1気圧、25℃での値に換算した気体の流量(mL/分)を意味する。
(2)容器内の残留ガスを排気ポンプで排気した。
(3)活性化された水蒸気を3.0sccmの流量で容器内に60秒間導入した。
(4)容器内の残留ガスを排気ポンプで排気した。
 上記の操作(1)~(4)を1サイクルのALD処理工程として、このALD処理工程を繰り返すことにより、酸化アルミニウム(Al)からなる厚さ5nmのシェルを有し、1,8-ジアミノオクタンからなるコア粒子A1を内包する実施例1のマイクロカプセルを作製した。なお、シェルの厚さ(壁厚)は、TEMにより得られる観察画像から任意の20個のマイクロカプセルを選択し、個々のマイクロカプセルの断面を観察してシェルの厚さを求めて平均値を算出することにより、測定した。
The obtained core particles A1 were placed in a barrel-type container of a barrel-type ALD vacuum film forming apparatus (manufactured by Creative Coatings Co., Ltd.). Next, the surface of the core particles A1 is coated with aluminum oxide (Al 2 O 3 ) by ALD in which the following operations (1) to (4) are sequentially performed at room temperature (25 ° C.) while rotating the container. Formed.
(1) A gas of trimethylaluminum as a precursor was introduced into the container at a flow rate of 3.0 sccm for 40 seconds. The unit "sccm" of the above flow rate means the flow rate (mL / min) of the gas converted into the value at 1 atm and 25 ° C.
(2) The residual gas in the container was exhausted by an exhaust pump.
(3) Activated steam was introduced into the container at a flow rate of 3.0 sccm for 60 seconds.
(4) The residual gas in the container was exhausted by an exhaust pump.
By repeating the above operations (1) to (4) as one cycle of ALD treatment step and repeating this ALD treatment step, a shell made of aluminum oxide (Al 2 O 3 ) having a thickness of 5 nm is provided, and 1,8 -The microcapsules of Example 1 containing the core particles A1 composed of diaminooctane were prepared. For the shell thickness (wall thickness), select any 20 microcapsules from the observation image obtained by TEM, observe the cross section of each microcapsule, obtain the shell thickness, and calculate the average value. It was measured by calculation.
〔実施例2~5〕
 後述する表1に示す厚さのシェルが形成されるように、上記のALD処理工程のサイクル数を調整したこと以外は、実施例1に記載の方法に従って、酸化アルミニウム(Al)からなるシェルを有し、1,8-ジアミノオクタンからなるコア粒子A1を内包する実施例2~5のマイクロカプセルを作製した。
[Examples 2 to 5]
From aluminum oxide (Al 2 O 3 ) according to the method described in Example 1, except that the number of cycles of the above ALD treatment step was adjusted so that the shell having the thickness shown in Table 1 described later was formed. Microcapsules of Examples 2 to 5 were prepared, which had a shell made of 1,8-diaminooctane and contained core particles A1.
〔実施例6~10〕
 上記のイソパラフィン系溶剤、1,8-ジアミノオクタン及びジルコニアビーズを含む混合物を試験管ミキサーを用いて攪拌する際、攪拌時間を3時間に変更し、試験管ミキサーの目盛りを「3」に変更すること以外は、実施例1に記載の方法に従って、粒子径が5μmである1,8-ジアミノオクタンからなるコア粒子A2を作製した。なお、コア粒子A2の粒子径は、光学顕微鏡を用いて測定した。
 上記で作製されたコア粒子A2を使用したこと、及び、後述する表1に示す厚さのシェルが形成されるように、上記のALD処理工程のサイクル数を調整したこと以外は、実施例1に記載の方法に従って、酸化アルミニウム(Al)からなるシェルを有し、1,8-ジアミノオクタンからなるコア粒子A2を内包する実施例6~10のマイクロカプセルをそれぞれ作製した。
[Examples 6 to 10]
When stirring the above mixture containing the isoparaffin solvent, 1,8-diaminooctane and zirconia beads using a test tube mixer, the stirring time is changed to 3 hours and the scale of the test tube mixer is changed to "3". Other than that, core particles A2 composed of 1,8-diaminooctane having a particle size of 5 μm were prepared according to the method described in Example 1. The particle size of the core particles A2 was measured using an optical microscope.
Example 1 except that the core particles A2 produced above were used and the number of cycles of the above ALD treatment step was adjusted so that a shell having the thickness shown in Table 1 described later was formed. In accordance with the method described in the above, microcapsules of Examples 6 to 10 having a shell made of aluminum oxide (Al 2 O 3 ) and containing core particles A2 made of 1,8-diaminooctane were prepared.
〔実施例11~35〕
 乾燥窒素(露点-60℃以下、窒素濃度99.99体積%以上)を充填したグローブボックス内において、1,8-ジアミノオクタン(富士フイルム和光純薬社製)を乳鉢及び乳棒を用いて粉砕することにより、後述する表1に記載の粒子径を有する1,8-ジアミノオクタンからなるコア粒子A3~A7を作製した。なお、各コア粒子の粒子径は、光学顕微鏡を用いて測定した。
 後述する表1に記載されたコア粒子A3~A7のいずれかを使用したこと、及び、後述する表1に示す厚さのシェルが形成されるように上記のALD処理工程のサイクル数を調整したこと以外は、実施例1に記載の方法に従って、酸化アルミニウム(Al)からなるシェルを有し、1,8-ジアミノオクタンからなるコア粒子を内包する実施例11~35のマイクロカプセルをそれぞれ作製した。
[Examples 11 to 35]
1,8-Diaminooctane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is crushed using a mortar and pestle in a glove box filled with dry nitrogen (dew point -60 ° C or lower, nitrogen concentration 99.99% by volume or more). As a result, core particles A3 to A7 composed of 1,8-diaminooctane having the particle diameters shown in Table 1 described later were prepared. The particle size of each core particle was measured using an optical microscope.
The number of cycles of the above ALD treatment step was adjusted so that any of the core particles A3 to A7 described in Table 1 described later was used and a shell having the thickness shown in Table 1 described later was formed. Other than that, according to the method described in Example 1, microcapsules of Examples 11 to 35 having a shell made of aluminum oxide (Al 2 O 3 ) and containing core particles made of 1,8-diaminooctane were prepared. Each was made.
〔実施例36〕
 乾燥窒素(露点-60℃以下、窒素濃度99.99体積%以上)を充填したグローブボックス内において、1,6-ジアミノヘキサン(富士フイルム和光純薬社製)を乳鉢及び乳棒を用いて粉砕することにより、粒子径が50μmである1,6-ジアミノヘキサンからなるコア粒子A8を作製した。なお、コア粒子A8の粒子径は、光学顕微鏡を用いて測定した。
 上記で作製されたコア粒子A8を使用したこと、及び、厚さ50nmのシェルが形成されるように上記のALD処理工程のサイクル数を調整したこと以外は、実施例1に記載の方法に従って、酸化アルミニウム(Al)からなる厚さ50nmのシェルを有し、1,6-ジアミノヘキサンからなるコア粒子A8を内包する実施例36のマイクロカプセルを作製した。
[Example 36]
In a glove box filled with dry nitrogen (dew point -60 ° C or less, nitrogen concentration 99.99% by volume or more), 1,6-diaminohexane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is crushed using a mortar and pestle. As a result, core particles A8 made of 1,6-diaminohexane having a particle diameter of 50 μm were prepared. The particle size of the core particles A8 was measured using an optical microscope.
According to the method described in Example 1, except that the core particles A8 produced above were used and the number of cycles of the above ALD treatment step was adjusted so as to form a shell having a thickness of 50 nm. The microcapsules of Example 36 having a shell made of aluminum oxide (Al 2 O 3 ) and having a thickness of 50 nm and containing core particles A8 made of 1,6-diaminohexane were prepared.
〔実施例37〕
 乾燥窒素(露点-60℃以下、窒素濃度99.99体積%以上)を充填したグローブボックス内において、1,10-ジアミノデカン(富士フイルム和光純薬社製)を乳鉢及び乳棒を用いて粉砕することにより、粒子径が50μmである1,10-ジアミノデカンからなるコア粒子A9を作製した。なお、コア粒子A9の粒子径は、光学顕微鏡を用いて測定した。
 上記で作製されたコア粒子A9を使用したこと、及び、厚さ50nmのシェルが形成されるように上記のALD処理工程のサイクル数を調整したこと以外は、実施例1に記載の方法に従って、酸化アルミニウム(Al)からなる厚さ50nmのシェルを有し、1,10-ジアミノデカンからなるコア粒子A9を内包する実施例37のマイクロカプセルを作製した。
[Example 37]
In a glove box filled with dry nitrogen (dew point -60 ° C or less, nitrogen concentration 99.99% by volume or more), 1,10-diaminodecane (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) is crushed using a mortar and pestle. As a result, core particles A9 made of 1,10-diaminodecane having a particle diameter of 50 μm were prepared. The particle size of the core particles A9 was measured using an optical microscope.
According to the method described in Example 1, except that the core particles A9 produced above were used and the number of cycles of the above ALD treatment step was adjusted so as to form a shell having a thickness of 50 nm. The microcapsules of Example 37 having a shell made of aluminum oxide (Al 2 O 3 ) and having a thickness of 50 nm and containing core particles A9 made of 1,10-diaminodecane were prepared.
〔実施例38~40〕
 実施例16~20で使用したコア粒子A4を使用したこと、ALDによる被膜の形成工程の操作(1)において前駆体としてトリメチルシラン(SiO前駆体)を用いたこと、及び、厚さ50nmのシェルが形成されるように上記のALD処理工程のサイクル数を調整したこと以外は、実施例1に記載の方法に従って、酸化シリコン(SiO)からなる厚さ50nmのシェルを有し、1,8-ジアミノオクタンからなるコア粒子A4を内包する実施例38のマイクロカプセルを作製した。
 また、ALDによる被膜の形成工程の操作(1)において前駆体としてオルトチタン酸トリプロピル(TiO前駆体)を用いたこと以外は、実施例38に記載の方法に従って、酸化チタン(TiO)からなる厚さ50nmのシェルを有し、1,8-ジアミノオクタンからなるコア粒子A4を内包する実施例39のマイクロカプセルを作製した。
 更に、ALDによる被膜の形成工程の操作(1)において前駆体としてトリメチルジルコニウム(ZrO前駆体)を用いたこと以外は、実施例38に記載の方法に従って、酸化ジルコニア(ZrO)からなる厚さ50nmのシェルを有し、1,8-ジアミノオクタンからなるコア粒子A4を内包する実施例40のマイクロカプセルを作製した。
[Examples 38 to 40]
The core particles A4 used in Examples 16 to 20 were used, trimethylsilane (SiO 2 precursor) was used as a precursor in the operation (1) of the film forming step by ALD, and the thickness was 50 nm. A shell made of silicon oxide (SiO 2 ) having a thickness of 50 nm is provided according to the method described in Example 1, except that the number of cycles of the ALD treatment step is adjusted so as to form a shell. Microcapsules of Example 38 containing core particles A4 composed of 8-diaminooctane were prepared.
Further, titanium oxide (TIM 2 ) was according to the method described in Example 38, except that tripropyl orthotitanium (TiO 2 precursor) was used as a precursor in the operation (1) of the film forming step by ALD. The microcapsules of Example 39 having a shell having a thickness of 50 nm and containing core particles A4 consisting of 1,8-diaminooctane were prepared.
Further, a thickness made of zirconia oxide (ZrO 2 ) according to the method described in Example 38, except that trimethylzirconium (ZrO 2 precursor) was used as a precursor in the operation (1) of the film forming step by ALD. The microcapsules of Example 40 having a shell having a zirconium of 50 nm and containing core particles A4 composed of 1,8-diaminooctane were prepared.
〔比較例1〕
 1,6-ジアミノヘキサン20質量部と、アクリル酸-マレイン酸コポリマー(アルドリッチ社製、酸価:1044mg/g・KOH、質量平均分子量:3000)80質量部とを水2250質量部に溶解させて、水性溶液(a)を得た。
 一方、非極性媒体としてのイソパラフィン系溶剤(アイソパーM、エクソンモービル社製、沸点234℃)11250質量部に乳化剤としてソルビタンセスキオレエート(東京化成工業社製)を1質量%含む非極性溶液(b)を調製した。
 この水性溶液(a)を非極性溶液(b)に加え、ホモジナイザーを用いて5000rpmで攪拌して乳化分散させた。その後、得られた乳化液を80℃で24時間、350rpmで加熱撹拌して水を除去することにより、1,6-ジアミノヘキサンの表面に、上記コポリマーを含有する内側シェルを有する一次カプセルの分散液を得た。
 得られた分散液を40℃、3時間撹拌した後、有機金属化合物の単量体としてチタンテトラブトキシド(和光純薬工業社製)45質量部をアイソパーM1350質量部に溶解させた溶液を分散液に添加することにより、最表層に酸化チタン(TiO)が析出したマイクロカプセルの分散液を得た。得られたマイクロカプセルをシクロヘキサンを用いて繰り返して洗浄した後、40℃の送風乾燥機にて乾燥して、比較例1のマイクロカプセルを得た。比較例1のマイクロカプセルは、1,6-ジアミノヘキサンのコア粒子、内側にあり、アクリル酸-マレイン酸コポリマーからなる有機シェル、及び、外側にあり、酸化チタン(TiO)からなる無機シェルが順に配置された構造を有する。
 なお、比較例1のマイクロカプセルの有機シェル及び無機シェルの厚さは、実施例1に記載のTEMを用いた断面観察の方法により測定した結果、それぞれ、50μm及び0.1μmであった。
[Comparative Example 1]
20 parts by mass of 1,6-diaminohexane and 80 parts by mass of acrylic acid-maleic acid copolymer (acid value: 1044 mg / g · KOH, mass average molecular weight: 3000) manufactured by Aldrich Co., Ltd. are dissolved in 2250 parts by mass of water. , An aqueous solution (a) was obtained.
On the other hand, a non-polar solution (b) containing 1% by mass of sorbitan sesquioleate (manufactured by Tokyo Chemical Industry Co., Ltd.) as an emulsifier in 11250 parts by mass of an isoparaffin solvent (Isopar M, manufactured by ExxonMobil, boiling point 234 ° C.) as a non-polar medium. ) Was prepared.
This aqueous solution (a) was added to the non-polar solution (b), and the mixture was emulsified and dispersed by stirring at 5000 rpm using a homogenizer. Then, the obtained emulsion is heated and stirred at 80 ° C. for 24 hours at 350 rpm to remove water, whereby a primary capsule having an inner shell containing the above copolymer is dispersed on the surface of 1,6-diaminohexane. Obtained liquid.
After stirring the obtained dispersion at 40 ° C. for 3 hours, a solution prepared by dissolving 45 parts by mass of titanium tetrabutoxide (manufactured by Wako Pure Chemical Industries, Ltd.) in 1350 parts by mass of Isoper M as a monomer of an organic metal compound is a dispersion liquid. To obtain a dispersion of microcapsules in which titanium oxide (TiO 2 ) was precipitated on the outermost layer. The obtained microcapsules were repeatedly washed with cyclohexane and then dried in a blower dryer at 40 ° C. to obtain microcapsules of Comparative Example 1. The microcapsules of Comparative Example 1 had core particles of 1,6-diaminohexane, an organic shell made of acrylic acid-maleic acid copolymer on the inside, and an inorganic shell made of titanium oxide (TiO 2 ) on the outside. It has a structure arranged in order.
The thicknesses of the organic shell and the inorganic shell of the microcapsules of Comparative Example 1 were 50 μm and 0.1 μm, respectively, as a result of measurement by the method of cross-sectional observation using the TEM described in Example 1.
[測定及び評価]
<コア材の融点の測定>
 上記の実施例又は比較例で得られたマイクロカプセルに含まれるコア材の融点を、示差走査熱量測定計(DSC)(製品名「X-DSC7200」、株式会社日立ハイテクサイエンス社製)を用いて測定した。測定条件は、昇温速度3℃/min、温度範囲20~100℃の条件であった。
[Measurement and evaluation]
<Measurement of melting point of core material>
The melting point of the core material contained in the microcapsules obtained in the above Example or Comparative Example was measured using a differential scanning calorimeter (DSC) (product name "X-DSC7200", manufactured by Hitachi High-Tech Science Corporation). It was measured. The measurement conditions were a heating rate of 3 ° C./min and a temperature range of 20 to 100 ° C.
<水蒸気透過度の測定>
 上記の実施例又は比較例で得られたマイクロカプセルを構成するシェルの水蒸気透過度(単位:g/(m・day))を、JIS Z 0208の「防湿包装材料の透湿度試験方法(カップ法)」に記載された手法に従って測定した。
 厚さ100μmのPET製フィルムを準備し、このPET製フィルムの一方の表面に、各実施例及び比較例に記載されたシェルの形成方法に従って被膜を形成して、水蒸気透過度の測定用試料を作製した。上記で作製された測定用試料、及び、被膜を有さないPET製フィルムを、温度40℃及び90%RHの条件下で24時間放置した。放置前後の測定用試料及び被膜を有さないPET製フィルムの質量変化から、各被膜の水蒸気透過度(単位:g/(m・day))を算出した。得られた水蒸気透過度の算出値から、下記評価基準に基づいて、各実施例又は比較例のマイクロカプセルを構成するシェルの水蒸気透過度を評価した。
<Measurement of water vapor transmission rate>
The water vapor transmission rate (unit: g / (m 2 · day)) of the shell constituting the microcapsules obtained in the above-mentioned Example or Comparative Example was determined by JIS Z 0208, “Humidity Permeability Test Method for Moisture-Proof Packaging Material (Cup”). The measurement was performed according to the method described in "Method)".
A PET film having a thickness of 100 μm is prepared, and a film is formed on one surface of the PET film according to the shell forming method described in each Example and Comparative Example to obtain a sample for measuring water vapor transmission rate. Made. The measurement sample prepared above and the PET film having no coating were left for 24 hours under the conditions of a temperature of 40 ° C. and 90% RH. The water vapor transmission rate (unit: g / ( m2 · day)) of each film was calculated from the mass change of the measurement sample and the PET film having no film before and after leaving. From the obtained calculated values of water vapor transmission rate, the water vapor transmission rate of the shell constituting the microcapsules of each Example or Comparative Example was evaluated based on the following evaluation criteria.
(評価基準)
A:10-4g/(m・day)以下
B:10-4g/(m・day)超10-2g/(m・day)以下
C:10-2g/(m・day)超10-1g/(m・day)以下
D:10-1g/(m・day)超
(Evaluation criteria)
A: 10 -4 g / (m 2 · day) or less B: 10 -4 g / (m 2 · day) over 10 -2 g / (m 2 · day) or less C: 10 -2 g / (m 2 )・ Day) Super 10 -1 g / (m 2・ day) or less D: 10 -1 g / (m 2・ day) Super
<Fresh蓄熱量>
 各実施例又は比較例で作製した直後に、マイクロカプセルの密度(g/cm)を、乾式自動密度計(製品名「AccuPyc1330」、株式会社島津製作所製)を用いて測定するとともに、単位質量当たりの蓄熱量(J/g)を、示差走査熱量測定計(DSC)(製品名「X-DSC7200」、株式会社日立ハイテクサイエンス社製)を用いて、昇温速度3℃/min、温度範囲20~100℃の条件で測定した。
 得られた密度(g/cm)及び単位質量当たりの蓄熱量(J/g)から、各例で作製したマイクロカプセルの単位体積当たりの蓄熱量(J/cm)を算出した。
 算出された単位体積当たりの蓄熱量(J/cm)から、下記の基準に基づいてマイクロカプセルの製造直後の蓄熱量(Fresh蓄熱量)を評価した。
<Fresh heat storage amount>
Immediately after preparation in each Example or Comparative Example, the density (g / cm 3 ) of the microcapsules is measured using a dry automatic densitometer (product name "AccuPyc1330", manufactured by Shimadzu Corporation), and the unit mass is measured. The amount of heat stored per unit (J / g) is measured using a differential scanning calorimetry meter (DSC) (product name "X-DSC7200", manufactured by Hitachi High-Tech Science Co., Ltd.) at a temperature rise rate of 3 ° C./min and a temperature range. It was measured under the condition of 20 to 100 ° C.
From the obtained density (g / cm 3 ) and the heat storage amount per unit mass (J / g), the heat storage amount per unit volume (J / cm 3 ) of the microcapsules produced in each example was calculated.
From the calculated heat storage amount per unit volume (J / cm 3 ), the heat storage amount (Fresh heat storage amount) immediately after the production of the microcapsules was evaluated based on the following criteria.
(評価基準)
A:350J/cm
B:250J/cm超350J/cm以下
C:200J/cm超250(J/cm)以下
D:200J/cm以下
(Evaluation criteria)
A: 350J / cm 3 or more B: 250J / cm 3 or more 350J / cm 3 or less C: 200J / cm 3 or more 250 (J / cm 3 ) or less D: 200J / cm 3 or less
<経時安定性評価>
 各実施例及び比較例で作製したマイクロカプセルに対して、85℃及び85%RHの雰囲気下で12時間放置する経時安定性試験(加速試験)を行った。試験後、上記<Fresh蓄熱量>と同じ方法でマイクロカプセルの単位体積当たりの蓄熱量(J/cm)を算出した。
 各実施例及び比較例のマイクロカプセルについて、製造直後の蓄熱量(J/cm)に対する試験後の蓄熱量(J/cm)の比率(試験後の蓄熱量/製造直後の蓄熱量)(%)を算出した。
 算出された比率(%)から、下記の基準に基づいて、マイクロカプセルの単位体積当たりの蓄熱量に関する経時安定性を評価した。
<Evaluation of stability over time>
The microcapsules prepared in each Example and Comparative Example were subjected to a temporal stability test (accelerated test) in which they were left to stand for 12 hours in an atmosphere of 85 ° C. and 85% RH. After the test, the heat storage amount (J / cm 3 ) per unit volume of the microcapsules was calculated by the same method as the above <Fresh heat storage amount>.
For the microcapsules of each Example and Comparative Example, the ratio of the heat storage amount after the test (J / cm 3 ) to the heat storage amount immediately after production (J / cm 3 ) (heat storage amount after test / heat storage amount immediately after production) ( %) Was calculated.
From the calculated ratio (%), the stability over time regarding the amount of heat storage per unit volume of the microcapsules was evaluated based on the following criteria.
(評価基準)
A:80%超
B:50%超80%以下
C:20%超50%以下
D:20%以下
(Evaluation criteria)
A: More than 80% B: More than 50% 80% or less C: More than 20% 50% or less D: 20% or less
 また、上記の加速試験を行ったマイクロカプセルから任意に選択した50個のマイクロカプセルの外観を、光学顕微鏡又はTEMを用いて観察した。その結果、シェルにおいて明らかな割れ(ひびが入り、間隙が形成されている状態)が観察されたマイクロカプセルの個数を計測し、下記の基準に基づいてマイクロカプセルの耐久性(生存率)を評価した。 In addition, the appearance of 50 microcapsules arbitrarily selected from the microcapsules subjected to the above acceleration test was observed using an optical microscope or TEM. As a result, the number of microcapsules in which obvious cracks (cracks and gaps were formed) were observed in the shell was measured, and the durability (survival rate) of the microcapsules was evaluated based on the following criteria. did.
(評価基準)
A:90%超
B:50%超90%以下
C:30%超50%以下
D:30%以下
(Evaluation criteria)
A: More than 90% B: More than 50% 90% or less C: More than 30% 50% or less D: 30% or less
 表1に、実施例1~40及び比較例1で作製したマイクロカプセルの構成及び評価結果を示す。
 表1中、「コア粒子」の「コア材」欄は、各例で作製したマイクロカプセルがコア材として含む化合物を示す。
 「コア粒子」の「融点」欄は、上記の方法で測定されたコア材の融点(℃)を示す。
 「コア粒子」の「粒子径」欄は、上記の方法で測定されたコア粒子の粒子径を示す。
Table 1 shows the configurations and evaluation results of the microcapsules produced in Examples 1 to 40 and Comparative Example 1.
In Table 1, the "core material" column of "core particles" indicates the compounds contained as the core material in the microcapsules produced in each example.
The "melting point" column of "core particles" indicates the melting point (° C.) of the core material measured by the above method.
The "particle size" column of "core particles" indicates the particle size of the core particles measured by the above method.
 表1中、「シェル」の「構成材料」欄は、各例で作製したマイクロカプセルにおいてシェルを構成する材料を示し、「形成方法」欄は、シェルの形成方法を示す。
 「シェル」の「構成」欄が「無機シェル」である場合、シェルが、「構成材料」欄に示す材料を「形成方法」欄に示す方法で形成された単層で構成されていることを示す。また、「シェル」の「構成」欄が「有機シェル/無機シェル」である場合、上記比較例1に記載の通り、シェルが、内側にあるアクリル酸-マレイン酸コポリマーからなる有機シェル、及び、外側にある酸化チタン(TiO)からなる無機シェルの2層構造からなることを意味する。
In Table 1, the "Constituent material" column of "Shell" indicates the material constituting the shell in the microcapsules produced in each example, and the "Forming method" column indicates the shell forming method.
When the "Structure" column of "Shell" is "Inorganic shell", it means that the shell is composed of a single layer formed by the method shown in the "Formation method" column for the material shown in the "Constituent material" column. show. When the "Structure" column of "Shell" is "Organic shell / Inorganic shell", as described in Comparative Example 1, the shell is an organic shell made of an acrylic acid-maleic acid copolymer on the inside, and an organic shell made of an acrylic acid-maleic acid copolymer. It means that it consists of a two-layer structure of an inorganic shell made of titanium oxide (TiO 2 ) on the outside.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表に示した結果より、本発明のマイクロカプセルは単位体積当たりの蓄熱量の経時安定性が優れることが確認された。 From the results shown in the table, it was confirmed that the microcapsules of the present invention have excellent stability over time in the amount of heat storage per unit volume.
 また、シェルの厚さが10nm以上である場合、単位体積当たりの蓄熱量の経時安定性がより優れ、シェルの厚さが20nm以上である場合、単位体積当たりの蓄熱量の経時安定性が更に優れることが確認された(実施例1~35の比較)。 Further, when the thickness of the shell is 10 nm or more, the stability of the heat storage amount per unit volume with time is more excellent, and when the thickness of the shell is 20 nm or more, the stability of the heat storage amount per unit volume with time is further improved. It was confirmed to be excellent (comparison of Examples 1 to 35).
 コアの粒子径が5μm以上である場合、単位体積当たりの蓄熱量がより優れることが確認された(実施例1~35の比較)。
 また、コアの粒子径が300μm以下である場合、マイクロカプセルの経時安定性試験後の耐久性がより優れ、コアの粒子径が100μm以下である場合、マイクロカプセルの経時安定性試験後の耐久性が更に優れることが確認された(実施例1~35の比較)。
It was confirmed that when the particle size of the core was 5 μm or more, the amount of heat storage per unit volume was more excellent (comparison of Examples 1 to 35).
Further, when the particle size of the core is 300 μm or less, the durability of the microcapsules after the time stability test is more excellent, and when the particle size of the core is 100 μm or less, the durability of the microcapsules after the time stability test is better. Was confirmed to be even better (comparison of Examples 1 to 35).
 脂肪族アミンに含まれる脂肪族炭化水素基の炭素数が8以上である場合、単位体積当たりの蓄熱量がより優れることが確認された(実施例19、36及び37の比較)。 It was confirmed that when the number of carbon atoms of the aliphatic hydrocarbon group contained in the aliphatic amine is 8 or more, the heat storage amount per unit volume is more excellent (comparison of Examples 19, 36 and 37).
[蓄熱シートの作製]
 実施例1~40で得られたマイクロカプセル(30g)を、ヘプタン(120g)及びイソプロパノール(30g)の混合溶液に添加した。得られた混合溶液に、バインダーとしてアウリディックWNN-153(DIC株式会社製、アクリル樹脂)(3.1g)を添加し、塗布液を調製した。
 これとは別に、リンテック株式会社製の光学粘着シートMO-3015(厚さ:5μm)を厚さ6μmのPET基材に貼り付けて粘着層を形成し、粘着層付きPET基材を用意した。
 PET基材の粘着層側の表面にバーコーターを用いて塗布液を塗布し、得られた塗布膜を80℃で25分間乾燥することにより、PET基材上に厚さ300μmの蓄熱部材を形成した。その後、PET基材から蓄熱部材を剥離して、蓄熱シートを作製した。
 その結果、本発明のマイクロカプセルを用いて作製される蓄熱シートは、蓄熱量の経時安定性に優れることが確認された。
[Making a heat storage sheet]
The microcapsules (30 g) obtained in Examples 1-40 were added to a mixed solution of heptane (120 g) and isopropanol (30 g). Auridic WNN-153 (Acrylic resin manufactured by DIC Corporation) (3.1 g) was added to the obtained mixed solution as a binder to prepare a coating solution.
Separately from this, an optical adhesive sheet MO-3015 (thickness: 5 μm) manufactured by Lintec Corporation was attached to a PET substrate having a thickness of 6 μm to form an adhesive layer, and a PET substrate with an adhesive layer was prepared.
A coating liquid is applied to the surface of the PET substrate on the adhesive layer side using a bar coater, and the obtained coating film is dried at 80 ° C. for 25 minutes to form a heat storage member having a thickness of 300 μm on the PET substrate. did. Then, the heat storage member was peeled off from the PET substrate to prepare a heat storage sheet.
As a result, it was confirmed that the heat storage sheet produced by using the microcapsules of the present invention is excellent in the stability of the heat storage amount over time.

Claims (18)

  1.  コアと、前記コアを内包するシェルとを有するマイクロカプセルであって、
     前記コアが脂肪族アミンを含み、
     前記シェルの水蒸気透過度が10-1g/(m・day)以下である、マイクロカプセル。
    A microcapsule having a core and a shell containing the core.
    The core contains an aliphatic amine and
    Microcapsules having a water vapor transmission rate of 10 -1 g / (m 2 · day) or less in the shell.
  2.  前記シェルの水蒸気透過度が10-2g/(m・day)以下である、請求項1に記載のマイクロカプセル。 The microcapsule according to claim 1, wherein the shell has a water vapor transmission rate of 10-2 g / (m 2 · day) or less.
  3.  前記脂肪族アミンが、2つ以上のアミノ基を有する脂肪族ポリアミンである、請求項1又は2に記載のマイクロカプセル。 The microcapsule according to claim 1 or 2, wherein the aliphatic amine is an aliphatic polyamine having two or more amino groups.
  4.  前記脂肪族アミンが、炭素数が偶数である直鎖状の脂肪族炭化水素基を有する、請求項1~3のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 3, wherein the aliphatic amine has a linear aliphatic hydrocarbon group having an even number of carbon atoms.
  5.  前記脂肪族アミンが、炭素数が6~16の偶数である直鎖状の脂肪族炭化水素基を有する、請求項1~4のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 4, wherein the aliphatic amine has a linear aliphatic hydrocarbon group having an even number of 6 to 16 carbon atoms.
  6.  前記脂肪族アミンの融点が37~100℃である、請求項1~5のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 5, wherein the aliphatic amine has a melting point of 37 to 100 ° C.
  7.  前記シェルが、無機化合物からなる無機層を有する、請求項1~6のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 6, wherein the shell has an inorganic layer made of an inorganic compound.
  8.  前記コアと前記無機層とが直接接している、請求項7に記載のマイクロカプセル。 The microcapsule according to claim 7, wherein the core and the inorganic layer are in direct contact with each other.
  9. 前記無機化合物が無機酸化物である、請求項7又は8に記載のマイクロカプセル。 The microcapsule according to claim 7 or 8, wherein the inorganic compound is an inorganic oxide.
  10.  前記無機化合物が、Si、Al、Zr、Hf及びTiからなる群より選択される少なくとも1つの元素を含む化合物である、請求項7~9のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 7 to 9, wherein the inorganic compound is a compound containing at least one element selected from the group consisting of Si, Al, Zr, Hf and Ti.
  11.  前記シェルの厚さが5~100nmである、請求項1~10のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 10, wherein the shell has a thickness of 5 to 100 nm.
  12.  前記コアの粒径が0.1~500μmである、請求項1~11のいずれか1項に記載のマイクロカプセル。 The microcapsule according to any one of claims 1 to 11, wherein the core has a particle size of 0.1 to 500 μm.
  13.  請求項1~12のいずれか1項に記載のマイクロカプセルの製造方法であって、
     脂肪族アミンを含むコアを準備するコア準備工程と、
     前記コアの表面上に、前記コアを内包するシェルを形成するシェル形成工程を有し、
     前記コア準備工程及び前記シェル形成工程を、前記脂肪族アミンと水とが接触しない環境下で実施する、マイクロカプセルの製造方法。
    The method for producing microcapsules according to any one of claims 1 to 12.
    A core preparation process for preparing a core containing an aliphatic amine,
    It has a shell forming step of forming a shell containing the core on the surface of the core.
    A method for producing microcapsules, wherein the core preparation step and the shell forming step are carried out in an environment where the aliphatic amine and water do not come into contact with each other.
  14.  前記シェル形成工程を、露点が-60℃以下であり、純度が99.9体積%以上である窒素雰囲気下で実施する、請求項13に記載のマイクロカプセルの製造方法。 The method for producing microcapsules according to claim 13, wherein the shell forming step is carried out in a nitrogen atmosphere having a dew point of −60 ° C. or lower and a purity of 99.9% by volume or more.
  15.  前記シェル形成工程が、乾式の蒸着方法によって無機化合物からなる無機層を形成する工程を含む、請求項13又は14に記載のマイクロカプセルの製造方法。 The method for producing microcapsules according to claim 13, wherein the shell forming step includes a step of forming an inorganic layer made of an inorganic compound by a dry vapor deposition method.
  16.  請求項1~12のいずれか1項に記載のマイクロカプセルと、バインダーとを含む、蓄熱シート。 A heat storage sheet containing the microcapsules according to any one of claims 1 to 12 and a binder.
  17.  請求項16に記載の蓄熱シートの製造方法であって、
     請求項1~12のいずれか1項に記載のマイクロカプセル、バインダー、及び、溶剤を混合して塗布液を調製する工程と、
     前記塗布液を基材上に塗布して塗布膜を形成する工程と、
     前記塗布膜を乾燥する工程とを有する、蓄熱シートの製造方法。
    The method for manufacturing a heat storage sheet according to claim 16.
    The step of mixing the microcapsules, the binder, and the solvent according to any one of claims 1 to 12 to prepare a coating liquid, and
    The step of applying the coating liquid on the substrate to form a coating film, and
    A method for manufacturing a heat storage sheet, which comprises a step of drying the coating film.
  18.  請求項1~12のいずれか1項に記載のマイクロカプセルと、バインダーとを含む、蓄熱体。 A heat storage body containing the microcapsules according to any one of claims 1 to 12 and a binder.
PCT/JP2021/027732 2020-08-25 2021-07-27 Microcapsules, method for producing microcapsules, heat-storage sheet, method for producing heat-storage sheet, and heat-storage object WO2022044658A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022545561A JPWO2022044658A1 (en) 2020-08-25 2021-07-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-141571 2020-08-25
JP2020141571 2020-08-25

Publications (1)

Publication Number Publication Date
WO2022044658A1 true WO2022044658A1 (en) 2022-03-03

Family

ID=80353090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027732 WO2022044658A1 (en) 2020-08-25 2021-07-27 Microcapsules, method for producing microcapsules, heat-storage sheet, method for producing heat-storage sheet, and heat-storage object

Country Status (2)

Country Link
JP (1) JPWO2022044658A1 (en)
WO (1) WO2022044658A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106760A1 (en) * 2005-04-01 2006-10-12 Kawamura Institute Of Chemical Research Monodisperse silica microparticle containing polyamine and process for producing the same
WO2014057976A1 (en) * 2012-10-10 2014-04-17 Dic株式会社 Core-shell silica nanoparticles and production method thereof, hollow silica nanoparticle production method using same, and hollow silica nanoparticles obtained by said production method
JP2016053161A (en) * 2014-09-02 2016-04-14 国立大学法人 千葉大学 Core-shell particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106760A1 (en) * 2005-04-01 2006-10-12 Kawamura Institute Of Chemical Research Monodisperse silica microparticle containing polyamine and process for producing the same
WO2014057976A1 (en) * 2012-10-10 2014-04-17 Dic株式会社 Core-shell silica nanoparticles and production method thereof, hollow silica nanoparticle production method using same, and hollow silica nanoparticles obtained by said production method
JP2016053161A (en) * 2014-09-02 2016-04-14 国立大学法人 千葉大学 Core-shell particle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU CHANG-BO; WU GANG; YANG XI; LIU YU-JING; LIANG TAO; FU WEI-FEI; WANG MANG; CHEN HONG-ZHENG: "Preparation of microencapsulated medium temperature phase change material of Tris(hydroxymethyl)methyl aminomethane@SiO2with excellent cycling performance", APPLIED ENERGY., ELSEVIER SCIENCE PUBLISHERS., GB, vol. 154, 26 May 2015 (2015-05-26), GB , pages 361 - 368, XP029250362, ISSN: 0306-2619, DOI: 10.1016/j.apenergy.2015.05.029 *

Also Published As

Publication number Publication date
JPWO2022044658A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
Kim et al. Preparation and properties of microencapsulated octadecane with waterborne polyurethane
WO2017173176A1 (en) Microencapsulated composite phase change materials
JP6221490B2 (en) Easily deformable aggregate and method for producing the same, heat conductive resin composition, heat conductive member and method for producing the same, and heat conductive adhesive sheet
JP7080343B2 (en) Heat storage sheet, heat storage member and electronic device
WO2013175744A1 (en) Easily deformable aggregates and process for producing same, thermally conductive resin composition, thermally conductive member and process for producing same, and thermally conductive adhesion sheet
TW200829633A (en) Heat conducting sheet, process for producing the same, and radiator utilizing the sheet
JP6211686B2 (en) Hygroscopic material, method for producing the same and blister pack
JP7307226B2 (en) Heat storage sheet, heat storage member, electronic device, and method for manufacturing heat storage sheet
WO2007001483A2 (en) Beverage bottle labels for reducing heat transfer
KR100632983B1 (en) An Adhesive Sheet Containing Phase Change Materials
Irani et al. Fabrication and characterization of microencapsulated n-heptadecane with graphene/starch composite shell for thermal energy storage
Liu et al. A hollow porous Mn2O3 microcontainer for encapsulation and release of corrosion inhibitors
WO2022044658A1 (en) Microcapsules, method for producing microcapsules, heat-storage sheet, method for producing heat-storage sheet, and heat-storage object
US20210385965A1 (en) Heat storage member, electronic device, manufacturing method of heat storage member, and composition for forming protective layer
JP6988153B2 (en) Gas barrier transfer film
WO2021131404A1 (en) Microcapsule, heat storage composition, heat storage sheet, and method for producing microcapsule
US20160116132A1 (en) Heat dissipating plate device for light emitting diode, head lamp for automobile and method for preparing the same
WO2021241167A1 (en) Heat storage body and method for manufacturing heat storage body
US20210329934A1 (en) Compositions and methods for differential release of 1-methylcyclopropene
JP2019212489A (en) Carbon nanotube water-based dispersion
WO2021070562A1 (en) Layered body and electronic device
KR20070084290A (en) Antirust agent
WO2021251008A1 (en) Heat storage body, method for producing heat storage body, and electronic device
TWI838495B (en) Heat storage composition, heat storage member, electronic device, and method for manufacturing heat storage member
CN114096634A (en) Composite phase change materials with active support media for thermal energy storage applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861086

Country of ref document: EP

Kind code of ref document: A1