WO2021241167A1 - Heat storage body and method for manufacturing heat storage body - Google Patents

Heat storage body and method for manufacturing heat storage body Download PDF

Info

Publication number
WO2021241167A1
WO2021241167A1 PCT/JP2021/017520 JP2021017520W WO2021241167A1 WO 2021241167 A1 WO2021241167 A1 WO 2021241167A1 JP 2021017520 W JP2021017520 W JP 2021017520W WO 2021241167 A1 WO2021241167 A1 WO 2021241167A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage body
microcapsules
resin
preferable
Prior art date
Application number
PCT/JP2021/017520
Other languages
French (fr)
Japanese (ja)
Inventor
哲朗 三ツ井
優樹 中川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2021241167A1 publication Critical patent/WO2021241167A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage body and a method for manufacturing the heat storage body.
  • Patent Document 1 discloses a heat storage sheet-shaped molded body obtained by molding and curing a heat storage acrylic resin composition containing a predetermined amount of microcapsules containing a heat storage material into a sheet shape.
  • the present inventors increased the amount of microcapsules containing a heat storage material as described in Patent Document 1, and when handling the obtained heat storage material (particularly when the heat storage material was pulled). , It was found that defects (for example, cracks and cracks) are likely to occur in the heat storage body. In particular, when the heat storage body is thick, defects are likely to occur in the heat storage body.
  • Another object of the present invention is to provide a heat storage body in which the occurrence of defects during handling is suppressed. Another object of the present invention is to provide a method for producing a heat storage body.
  • a heat storage body containing a microcapsule containing a heat storage material and a resin The content of the heat storage material with respect to the total mass of the heat storage body is 65% by mass or more. A heat storage body having a porosity of less than 10% by volume.
  • the heat storage body according to any one of (1) to (4), wherein the elongation at break of the resin is 300% or more.
  • the heat storage body according to any one of (1) to (5), wherein the ratio of the thickness of the capsule wall of the microcapsule to the volume-based median diameter of the microcapsule is 0.0075 or less.
  • the heat storage body according to any one of (1) to (6), wherein the thickness of the capsule wall of the microcapsule is 0.20 ⁇ m or less.
  • the heat storage body according to any one of (1) to (7), wherein the deformation rate of the microcapsules is 35% or more.
  • the heat storage body according to any one of (1) to (8), wherein the capsule wall of the microcapsule and the resin have the same functional group.
  • a method for producing a heat storage body which comprises producing a heat storage body using a composition for forming a heat storage body containing microcapsules, a resin, and water.
  • the present invention it is possible to provide a heat storage body in which the occurrence of defects during handling is suppressed. Further, according to the present invention, it is also possible to provide a method for producing a heat storage body.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the various components described later may be used alone or in combination of two or more.
  • the polyisocyanate described later may be used alone or in combination of two or more.
  • the heat storage body of the present invention contains a predetermined amount of heat storage material and has a porosity of less than 10% by volume. According to the heat storage body of the present invention, the occurrence of defects during handling can be suppressed. This is presumed to be due to the following reasons. As the amount of microcapsules containing the heat storage material increases, defects are likely to occur in the heat storage material. It is considered that by lowering the porosity of such a heat storage material, the contact area between the microcapsules in the heat storage body is widened, and the strength of the heat storage body is improved. As a result, it is presumed that the brittleness of the heat storage body is increased and the occurrence of defects (for example, cracks and cracks) during handling of the heat storage body can be suppressed.
  • defects for example, cracks and cracks
  • the heat storage material of the present invention contains microcapsules containing the heat storage material and a resin, and the content ratio of the heat storage material to the total mass of the heat storage material is 65% by mass or more, and the void ratio is less than 10% by volume.
  • the materials contained in the heat storage body will be described in detail first, and then the characteristics of the heat storage body will be described in detail.
  • the microcapsule has a core portion and a capsule wall for encapsulating a core material (encapsulated material (also referred to as an encapsulating component)) forming the core portion.
  • encapsulated material also referred to as an encapsulating component
  • the microcapsule contains a heat storage material as a core material (inclusion component). Since the heat storage material is encapsulated in microcapsules, the heat storage material can stably exist in a phase state depending on the temperature.
  • the type of heat storage material is not particularly limited, and a material that changes phase in response to a temperature change can be used, and the phase change between the solid phase and the liquid phase that accompanies the state change of melting and solidification in response to the temperature change is repeated. Materials that can be used are preferred.
  • the phase change of the heat storage material is preferably based on the phase change temperature of the heat storage material itself, and in the case of the phase change between the solid phase and the liquid phase, it is preferably based on the melting point.
  • the heat storage material for example, a material that can store heat generated outside the heat storage body as sensible heat and a material that can store heat generated outside the heat storage body as latent heat (hereinafter, also referred to as "latent heat storage material”. ), A material that causes a phase change due to a reversible chemical change, or the like.
  • the heat storage material is preferably one that can release the stored heat.
  • the latent heat storage material is preferable as the heat storage material in terms of ease of control of the amount of heat that can be transferred and received and the size of the amount of heat.
  • the latent heat storage material is a material that stores heat generated outside the heat storage body as latent heat.
  • a phase change between a solid phase and a liquid phase it refers to a material capable of transferring heat by latent heat by repeating a change between melting and solidification with the melting point determined by the material as the phase change temperature.
  • the latent heat storage material utilizes the heat of fusion at the melting point and the heat of solidification at the freezing point, and can store heat and dissipate heat with the phase change between the solid and the liquid.
  • the type of the latent heat storage material is not particularly limited, and can be selected from compounds having a melting point and capable of a phase change.
  • Examples of the latent heat storage material include ice (water); inorganic salts; aliphatic hydrocarbons such as paraffin (for example, isoparaffin and normal paraffin); tri (capryl capric acid) glyceryl, methyl myristate (melting point 16-19 ° C.).
  • Fatty acid ester compounds such as isopropyl myristate (melting point 167 ° C.) and dibutyl phthalate (melting point ⁇ 35 ° C.); alkylnaphthalene compounds such as diisopropylnaphthalene (melting point 67-70 ° C.), 1-phenyl-1. -Diarylalkane compounds such as xylylethane (melting point less than -50 ° C), alkylbiphenyl compounds such as 4-isopropylbiphenyl (melting point 11 ° C), triarylmethane compounds, alkylbenzene compounds, benzylnaphthalene compounds, diarylalkylene compounds.
  • Fatty acid ester compounds such as isopropyl myristate (melting point 167 ° C.) and dibutyl phthalate (melting point ⁇ 35 ° C.); alkylnaphthalene compounds such as diisopropylnaphthalen
  • Aromatic hydrocarbons such as compounds and arylindan compounds; natural animal and vegetable oils such as camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, palm oil, castor oil, and fish oil; mineral oil; diethyl ethers. ; Fat group diols; sugars; sugar alcohols and the like.
  • the phase change temperature of the heat storage material is not particularly limited, and may be appropriately selected depending on the type of the heating element that generates heat, the heating element temperature of the heating element, the temperature or holding temperature after cooling, the cooling method, and the like.
  • the heat storage material it is preferable to select a material having a phase change temperature (preferably melting point) in a target temperature range (for example, the operating temperature of the heating element; hereinafter also referred to as “heat control region”).
  • the phase change temperature of the heat storage material varies depending on the heat control region, but is preferably 0 to 80 ° C, more preferably 10 to 70 ° C.
  • the heat storage material having the following melting points is preferable.
  • a heat storage material having a melting point of 0 to 80 ° C. is preferable.
  • the material having a melting point of less than 0 ° C. or more than 80 ° C. is not included in the heat storage material.
  • the material having a melting point of less than 0 ° C. or more than 80 ° C. the material in a liquid state may be used in combination with the heat storage material as a solvent.
  • a heat storage material having a melting point of 10 to 70 ° C. is preferable.
  • the material having a melting point of less than 10 ° C. or more than 70 ° C. is not included in the heat storage material.
  • the materials having a melting point of less than 10 ° C. or more than 70 ° C. the material in a liquid state may be used in combination with the heat storage material as a solvent.
  • a heat storage material having a melting point of 15 to 50 ° C. is preferable. When a heat storage material having a melting point of 15 to 50 ° C.
  • the material having a melting point of less than 15 ° C. or more than 50 ° C. is not included in the heat storage material.
  • the material having a melting point of less than 15 ° C. or more than 50 ° C. the material in a liquid state may be used in combination with the heat storage material as a solvent.
  • a heat storage material having a melting point of 20 to 62 ° C. is also preferable.
  • heating elements of thin or portable electronic devices such as notebook computers, tablets, and smartphones often have an operating temperature of 20 to 65 ° C, and it is suitable to use a heat storage material having a melting point of 20 to 62 ° C. ing.
  • the material having a melting point of less than 20 ° C. or more than 62 ° C. is not included in the heat storage material.
  • the material in a liquid state may be used in combination with a heat storage material as a solvent, but the fact that the material does not contain a solvent produces a large amount of heat generated by the heating element. It is preferable in that it absorbs heat.
  • an aliphatic hydrocarbon is preferable as the latent heat storage material, and paraffin is more preferable, in that the heat storage property of the heat storage body is more excellent and the void ratio of the microcapsules can be reduced.
  • the melting point of the aliphatic hydrocarbon is not particularly limited, but is preferably 0 ° C. or higher, more preferably 15 ° C. or higher, still more preferably 20 ° C. or higher in terms of application of the heat storage member to various uses.
  • the upper limit is not particularly limited, but is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, further preferably 60 ° C. or lower, and particularly preferably 50 ° C. or lower.
  • a linear aliphatic hydrocarbon is preferable in that the heat storage property of the heat storage member is more excellent.
  • the number of carbon atoms of the linear aliphatic hydrocarbon is not particularly limited, but 14 or more is preferable, 16 or more is more preferable, and 17 or more is further preferable.
  • the upper limit is not particularly limited, but is preferably 26 or less.
  • a linear aliphatic hydrocarbon having a melting point of 0 ° C. or higher is preferable, and a linear aliphatic hydrocarbon having a melting point of 0 ° C. or higher and having 14 or more carbon atoms is more preferable. preferable.
  • linear aliphatic hydrocarbon having a melting point of 0 ° C. or higher
  • linear aliphatic hydrocarbon melting point paraffin
  • melting point 6 ° C. melting point 6 ° C.
  • n-pentadecane melting point 10 ° C.
  • n-hexadecane melting point 18 ° C.
  • n-heptadecan (melting point 22 °C), n-octadecane (melting point 28 °C), n-nonadecan (melting point 32 °C), n-eicosan (melting point 37 °C), n-henikosan (melting point 40 °C), n- Docosan (melting point 44 ° C), n-tricosan (melting point 48-50 ° C), n-tetracosan (melting point 52 ° C), n-pentacosan (melting point 53-56 ° C), n-hexakosan (melting point 57 ° C), n-heptacosan (Melting point 60 ° C.), n-octacosane (melting point 62 ° C.), n-nonakosan (melting point 63-66 ° C.), and n-triacontane (melting
  • n-heptadecan (melting point 22 ° C.), n-octadecane (melting point 28 ° C.), n-nonadecan (melting point 32 ° C.), n-eicosan (melting point 37 ° C.), n-henikosan (melting point 40 ° C.), n- Docosan (melting point 44 ° C), n-tricosan (melting point 48-50 ° C), n-tetracosan (melting point 52 ° C), n-pentacosan (melting point 53-56 ° C), n-hexakosan (melting point 60 ° C), n-heptacosan (Melting point 60 ° C.) or n-octacosane (melting point 62 ° C.) is preferable.
  • the content of the linear aliphatic hydrocarbon is preferably 80% by mass or more, preferably 90% by mass or more, based on the content of the heat storage material. Is more preferable, 95% by mass or more is further preferable, and 98% by mass or more is particularly preferable.
  • the upper limit is 100% by mass.
  • an inorganic hydrate is preferable, and for example, an alkali metal chloride hydrate (eg, sodium chloride dihydrate, etc.) and an alkali metal acetate hydrate (eg, sodium acetate water) are preferable.
  • alkali metal sulfate hydrate eg, sodium sulfate hydrate, etc.
  • alkali metal thiosulfate hydrate eg, thiosulfate sodium hydrate, etc.
  • alkaline earth metal examples thereof include sulfate hydrate (eg, calcium sulfate hydrate, etc.) and alkaline earth metal chloride hydrate (eg, calcium chloride hydrate, etc.).
  • Examples of the aliphatic diol include 1,6-hexanediol and 1,8-octanediol.
  • sugars and sugar alcohols include xylitol, erythritol, galactitol, and dihydroxyacetone.
  • the heat storage material one type may be used alone, or two or more types may be mixed and used.
  • the temperature range in which heat storage property is exhibited and the amount of heat storage can be adjusted according to the application.
  • the temperature range in which heat can be stored can be expanded by mixing the heat storage material having a melting point before and after the heat storage material having a melting point at the center temperature at which the heat storage effect of the heat storage material is desired to be obtained.
  • paraffin a having a melting point at the center temperature at which the heat storage effect of the heat storage material is desired is used as the core material, and the number of carbon atoms before and after the paraffin a and the paraffin a is set.
  • the heat storage body can be designed to have a wide temperature region (heat control region).
  • the content of paraffin having a melting point at the center temperature at which the heat storage action is desired is not particularly limited, but is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more with respect to the total mass of the heat storage material. Is more preferable, and 98% by mass or more is particularly preferable.
  • the upper limit is 100% by mass.
  • paraffin When paraffin is used as the heat storage material, one type of paraffin may be used alone, or two or more types may be mixed and used. When a plurality of types of paraffin having different melting points are used, the temperature range in which heat storage property is exhibited can be widened. When a plurality of paraffins having different melting points are used, a mixture containing only linear paraffins without substantially containing branched chain paraffins is desirable in order not to reduce the endothermic property.
  • substantially free of branched-chain paraffin means that the content of branched-chain paraffin is 5% by mass or less with respect to the total mass of paraffin, and 2% by mass or less. Is preferable, and 1% by mass or less is more preferable.
  • substantially one type of paraffin As the heat storage material for application to electronic devices, it is also preferable that there is substantially one type of paraffin.
  • substantially one type of paraffin means that the content of the main paraffin is 95 to 100% by mass with respect to the total mass of paraffin, and is preferably 98 to 100% by mass.
  • the content of the main paraffin is not particularly limited in terms of the temperature range in which heat storage is exhibited and the amount of heat storage, but 80 to 100% by mass is preferable with respect to the total mass of paraffin. 90 to 100% by mass is more preferable, and 95 to 100% by mass is further preferable.
  • the "main paraffin” refers to the paraffin having the highest content among the plurality of paraffins contained.
  • the content of the main paraffin is preferably 50% by mass or more with respect to the total mass of paraffin.
  • the content of paraffin is not particularly limited, but is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, and 95 to 100% by mass with respect to the total mass of the heat storage material (preferably latent heat storage material).
  • the paraffin is preferably linear paraffin, and preferably does not substantially contain branched chain paraffin. This is because the heat storage property is further improved by containing the linear paraffin and substantially not containing the branched paraffin. It is presumed that the reason for this is that the association between the molecules of linear paraffin can be suppressed from being inhibited by the branched-chain paraffin.
  • the content of the heat storage material in the heat storage body is 65% by mass or more with respect to the total mass of the heat storage body. Among them, 70% by mass or more is preferable, and 75% by mass or more is more preferable, because the effect of the present invention is more excellent.
  • the upper limit of the content of the heat storage material is not particularly limited, but in terms of the strength of the heat storage body, it is preferably 99.9% by mass or less, more preferably 99% by mass or less, and 98% by mass or less with respect to the total mass of the heat storage body. Is more preferable.
  • the core material of the microcapsules may contain components other than the above-mentioned heat storage material.
  • Other components that can be encapsulated in the microcapsules as the core material include, for example, a solvent and an additive such as a flame retardant.
  • the content of the heat storage material in the core material is not particularly limited, but 80 to 100% by mass is preferable, and 90 to 100% by mass is more preferable with respect to the total mass of the core material in that the heat storage property of the heat storage body is more excellent. ..
  • the microcapsules may contain a solvent as a core material.
  • the solvent in this case include the above-mentioned heat storage material whose melting point is outside the temperature range in which the heat storage body is used (heat control range; for example, the operating temperature of the heat storage body). That is, the solvent refers to a solvent that does not undergo a phase change in the liquid state in the heat control region, and is distinguished from a heat storage material that causes a phase transition in the heat control region and causes an endothermic reaction.
  • the content of the solvent in the core material is not particularly limited, but is preferably less than 30% by mass, more preferably less than 10% by mass, still more preferably 1% by mass or less, based on the total mass of the core material.
  • the lower limit is not particularly limited, but may be 0% by mass.
  • Examples of other components that can be included in the microcapsules as the core material include additives such as ultraviolet absorbers, light stabilizers, antioxidants, waxes, and odor suppressants.
  • the microcapsules have a capsule wall that encloses the core material.
  • the material for forming the capsule wall in the microcapsules is not particularly limited, and examples thereof include polymers, and specific examples thereof include polyurethane urea, polyurethane, polyurea, melamine resin, and acrylic resin.
  • the capsule wall preferably contains polyurethane, polyurea, polyurethane urea, or melamine resin, and more preferably contains polyurethane, polyurea, or polyurethane urea, in that the capsule wall can be made thinner and the heat storage property of the heat storage body is more excellent. preferable.
  • the polyurethane is a polymer having a plurality of urethane bonds, and a reaction product of a polyol and a polyisocyanate is preferable.
  • the polyurea is a polymer having a plurality of urea bonds, and a reaction product of a polyamine and a polyisocyanate is preferable.
  • the polyurethane urea is a polymer having a urethane bond and a urea bond, and a reaction product of a polyol, a polyamine, and a polyisocyanate is preferable.
  • the capsule wall of the microcapsules preferably has a urethane bond.
  • Capsule walls with urethane bonds are obtained, for example, using the polyurethane ureas or polyurethanes described above. Since the urethane bond is a highly motile bond, it can provide thermoplasticity to the capsule wall. In addition, it is easy to adjust the flexibility of the capsule wall. Therefore, for example, if the drying time during the production of the heat storage body is lengthened, the microcapsules are easily deformed and bonded to each other. As a result, the microcapsules can easily form a close-packed structure, so that the porosity of the heat storage body can be further reduced.
  • the microcapsules exist as deformable particles.
  • the microcapsules can be deformed without breaking, and the filling rate of the microcapsules in the heat storage body can be improved.
  • the fact that the microcapsules are deformed without breaking means that the microcapsules are deformed from the shape in a state where no external pressure is applied to each microcapsule, regardless of the degree of deformation.
  • Deformations that occur in microcapsules include deformations in which when microcapsules are pressed against each other in a heat storage body, spherical surfaces come into contact with each other to form a planar surface, or a contact surface in which one is convex and the other is concave. Is done.
  • Polyurethane urea, polyurethane, or polyurea is preferable, polyurethane urea or polyurethane is more preferable, and polyurethane urea is further preferable as the material for forming the capsule wall in that the microcapsules can be deformable particles.
  • polyurethane, polyurea, and polyurethane urea are preferably formed using polyisocyanate.
  • the polyisocyanate is a compound having two or more isocyanate groups, and examples thereof include aromatic polyisocyanates and aliphatic polyisocyanates.
  • aromatic polyisocyanate include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, naphthalene-1,4-diisocyanate, and diphenylmethane-4,4'-.
  • aliphatic polyisocyanate examples include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, and cyclohexylene-1,3-diisocyanate.
  • Cyclohexylene-1,4-diisocyanate, dicyclohexammethane-4,4'-diisocyanate, 1,4-bis (isocyanatemethyl) cyclohexane, 1,3-bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate, lysine diisocyanate, and Hexamethylene diisocyanate can be mentioned.
  • trifunctional or higher functional polyisocyanates may also be used as polyisocyanates.
  • the polyisocyanate includes a burette or isocyanurate which is a trimer of the above-mentioned bifunctional polyisocyanate, an adduct of a polyol such as trimethylolpropane and a bifunctional polyisocyanate, and benzene.
  • Examples thereof include formarin condensates of isocyanates, polyisocyanates having a polymerizable group such as methacryloyloxyethyl isocyanate, and lysine triisocyanates.
  • Polyisocyanates are described in the "Polyurethane Resin Handbook" (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
  • the polyisocyanate a trifunctional or higher functional polyisocyanate is preferable.
  • the trifunctional or higher functional polyisocyanate include a trifunctional or higher functional aromatic polyisocyanate and a trifunctional or higher functional aliphatic polyisocyanate.
  • trifunctional or higher functional polyisocyanate an adduct form (addition) of a bifunctional polyisocyanate and a compound having three or more active hydrogen groups in the molecule (for example, a trifunctional or higher functional polyol, polyamine, polythiol, etc.)
  • a trifunctional or higher polyisocyanate (adduct type trifunctional or higher polyisocyanate) and a trimer of bifunctional polyisocyanate (biuret type or isocyanurate type) are also preferable.
  • Examples of the adduct-type trifunctional or higher-functional polyisocyanate include Takenate® D-102, D-103, D-103H, D-103M2, P49-75S, D-110N, D-120N, and D-. 140N, D-160N (all manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) L75, UL57SP (manufactured by Sumika Bayer Urethane Co., Ltd.), Coronate (registered trademark) HL, HX, L (manufactured by Nippon Polyurethane Co., Ltd.) ), P301-75E (manufactured by Asahi Kasei Corporation), and Barnock (registered trademark) D-750 (manufactured by DIC Co., Ltd.).
  • adduct-type trifunctional or higher polyisocyanate Takenate (registered trademark) D-110N, D-120N, D-140N, D-160N manufactured by Mitsui Chemicals, Inc., or Barnock manufactured by DIC Corporation. (Registered trademark) D-750 is preferable.
  • isocyanurate-type trifunctional or higher functional isocyanate include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N, and D-204 (manufactured by Mitsui Chemicals, Inc.).
  • Biuret-type trifunctional or higher functional isocyanates include, for example, Takenate (registered trademark) D-165N, NP1100 (manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) N3200 (Sumitomo Bayer Urethane), and Duranate (registered trademark). ) 24A-100 (manufactured by Asahi Kasei Corporation).
  • the polyol is a compound having two or more hydroxyl groups, and is, for example, a low molecular weight polyol (eg, aliphatic polyol, aromatic polyol), a polyether polyol, a polyester-based polyol, a polylactone-based polyol, a castor oil-based polyol. , Polyol-based polyols, and hydroxyl group-containing amine-based compounds.
  • the low molecular weight polyol means a polyol having a molecular weight of 300 or less, for example, bifunctional low molecular weight polyols such as ethylene glycol, diethylene glycol, and propylene glycol, as well as glycerin, trimethylolpropane, hexanetriol, and penta. Examples thereof include trifunctional or higher low molecular weight polyols such as erythritol and sorbitol. As the above-mentioned polyol, a small molecule polyol is preferable because the microcapsules are easily deformed.
  • Examples of the hydroxyl group-containing amine compound include amino alcohols as oxyalkylated derivatives of amino compounds.
  • the amino alcohol include N, N, N', N'-tetrakis [2-hydroxypropyl] ethylenediamine, which are propylene oxides or adducts of ethylene oxide of amino compounds such as ethylenediamine, and N, N, N'. , N'-Tetrakis [2-hydroxyethyl] ethylenediamine and the like.
  • a polyamine is a compound having two or more amino groups (primary amino group or secondary amino group), and is a fat such as diethylenetriamine, triethylenetetramine, 1,3-propylenediamine, and hexamethylenediamine.
  • Group polyvalent amines Epoxy compound adducts of aliphatic polyvalent amines; Alicyclic polyvalent amines such as piperazine; and 3,9-bis-aminopropyl-2,4,8,10-tetraoxaspiro- ( 5,5) Examples thereof include heterocyclic diamines such as undecane.
  • the mass of the capsule wall in the microcapsule is not particularly limited, but is preferably 12% by mass or less, more preferably 10% by mass or less, based on the total mass of the heat storage material contained in the core portion.
  • the fact that the mass of the capsule wall is 12% by mass or less with respect to the heat storage material which is the inclusion component indicates that the capsule wall is a thin wall.
  • the lower limit of the mass of the capsule wall is not particularly limited, but 1% by mass or more is preferable, 2% by mass or more is more preferable, and 3% by mass is more preferable with respect to the total mass of the heat storage material in terms of maintaining the pressure resistance of the microcapsules. The above is more preferable.
  • the particle size of the microcapsules is not particularly limited, but the volume-based median diameter (Dm) is preferably 1 to 80 ⁇ m, more preferably 10 to 70 ⁇ m, and even more preferably 15 to 50 ⁇ m.
  • Dm volume-based median diameter
  • the particle size of the microcapsules is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less in terms of volume-based median diameter (Dm).
  • the volume-based median diameter of the microcapsules can be controlled by changing the dispersion conditions in the emulsification step of the method described below for the method of producing microcapsules.
  • the volume-based median diameter of microcapsules is a grain in which the total volume of particles on the large diameter side and the small diameter side is equal when the entire microcapsule is divided into two with the particle size as a threshold. Refers to the diameter.
  • the volume-based median diameter of the microcapsules is measured by a laser diffraction / scattering method using a Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
  • the isolated microcapsules can be obtained by immersing the heat storage body in water for 24 hours or more and centrifuging the obtained aqueous dispersion.
  • the particle size distribution of the microcapsules is not particularly limited, but the CV (Coefficient of Variation) value (correlation coefficient) of the median diameter based on the volume of the microcapsules calculated by the following formula may be 10 to 100%. preferable.
  • CV value standard deviation ⁇ / median diameter x 100
  • the standard deviation ⁇ is calculated based on the volume-based particle size of the microcapsules measured according to the above-mentioned method for measuring the median diameter.
  • the thickness (wall thickness) of the capsule wall of the microcapsules is not particularly limited, but the thinner the capsule wall, the easier it is to deform, reduce the number of voids, and / or increase the contact area between the microcapsules. Therefore, it is possible to further suppress the occurrence of defects during handling. Specifically, 10 ⁇ m or less is preferable, 0.20 ⁇ m or less is more preferable, 0.15 ⁇ m or less is further preferable, and 0.11 ⁇ m or less is particularly preferable, in that the effect of the present invention is more excellent. On the other hand, since the strength of the capsule wall can be maintained by having a certain thickness, the wall thickness is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more.
  • the wall thickness is an average value obtained by determining the individual wall thickness ( ⁇ m) of any 20 microcapsules with a scanning electron microscope (SEM) and averaging them. Specifically, a cross-sectional section of the heat storage body is prepared, the cross section is observed using SEM, and 20 microcapsules are formed for the microcapsules having a size of ⁇ 10% of the median diameter calculated by the above-mentioned measurement method. select. The wall thickness of the microcapsules is determined by observing the cross section of each of the selected microcapsules, measuring the wall thickness, and calculating the average value of the wall thicknesses of the 20 microcapsules.
  • SEM scanning electron microscope
  • the volume-based median diameter of the above-mentioned microcapsules is Dm [unit: ⁇ m] and the thickness of the capsule wall of the above-mentioned microcapsules is ⁇ [unit: ⁇ m], the microcapsules with respect to the volume-based median diameter of the microcapsules.
  • the ratio of the thickness of the capsule wall ( ⁇ / Dm) is preferably 0.02 or less, more preferably 0.0075 or less, further preferably 0.006 or less, and particularly preferably 0.005 or less.
  • ⁇ / Dm When ⁇ / Dm is 0.0075 or less, the microcapsules are easily deformed during the production of the heat storage body, so that the porosity of the heat storage body can be particularly low and / or the adjacency ratio of the microcapsules described later is particularly high. can.
  • the lower limit of ⁇ / Dm is preferably 0.001 or more, more preferably 0.0015 or more, still more preferably 0.0025 or more, from the viewpoint of maintaining the strength of the microcapsules.
  • the deformation rate of the microcapsules is not particularly limited, but a larger deformation rate is preferable in that the porosity of the capsule can be reduced and the capsule adjacency ratio can be increased.
  • the deformation rate of the microcapsules means a value measured by the following method. By directly removing the microcapsules from the heat storage body forming composition or eluting the microcapsules from the heat storage body with a solvent, 15 microcapsules having a particle size within ⁇ 10% of the average value are taken out. The microcapsules are heated on a hot plate set to a temperature of + 5 ° C. at which the inclusion component melts to melt the inclusion component.
  • an HM2000 type micro hardness tester manufactured by Fisher Instruments Co., Ltd. can be used as the indentation hardness tester.
  • As the deformation rate of the microcapsules 30% or more is preferable, 35% or more is more preferable, 40% or more is further preferable, and 50% or more is particularly preferable, because the effect of the present invention is more excellent. In particular, when the deformation rate is 35% or more, the effect is more excellent.
  • the upper limit is not particularly limited, but is, for example, 100% or less, preferably 60% or less from the viewpoint of ease of handling during manufacturing and the like.
  • the deformation rate of the microcapsules depends on, for example, the thickness of the capsule wall of the microcapsules, the ratio of the thickness of the capsule wall of the microcapsules to the median diameter based on the volume of the microcapsules ( ⁇ / Dm), and the material forming the capsule wall. , Can be adjusted.
  • the content of the microcapsules in the heat storage body is not particularly limited, but 80% by mass or more is preferable, and 85 to 99% by mass is more preferable with respect to the total mass of the heat storage body, in that the heat storage property of the heat storage body is more excellent. 90 to 99% by mass is more preferable.
  • the method for producing microcapsules is not particularly limited, and known methods can be adopted.
  • the capsule wall contains polyurethane urea, polyurethane, or polyurea
  • a step of dispersing an oil phase containing a heat storage material and a capsule wall material in an aqueous phase containing an emulsifier to prepare an emulsion emulsification step.
  • An interface polymerization method including a step of forming a capsule wall by polymerizing a capsule wall material at an interface between an oil phase and an aqueous phase to form a microcapsule containing a heat storage material (encapsulation step) can be mentioned.
  • the capsule wall contains melamine resin
  • the oil phase containing the heat storage material is dispersed in the aqueous phase containing the emulsifier to prepare an emulsified solution (emulsification step)
  • the capsule wall material is added to the aqueous phase to emulsify.
  • a core selvation method including a step of forming a polymer layer of a capsule wall material on the surface of a droplet to form a microcapsule containing a heat storage material (encapsulation step) can be mentioned.
  • the capsule wall material means a material that can form a capsule wall. In the following, each step of the interfacial polymerization method will be described in detail.
  • an oil phase containing a heat storage material and a capsule wall material is dispersed in an aqueous phase containing an emulsifier to prepare an emulsion.
  • the capsule wall material contains at least a polyisocyanate and at least one selected compound consisting of a polyol and a polyamine.
  • the emulsion is formed by dispersing an oil phase containing a heat storage material and a capsule wall material in an aqueous phase containing an emulsifier.
  • the oil phase contains at least a heat storage material and a capsule wall material, and may further contain other components such as a solvent and / or an additive, if necessary.
  • a water-insoluble organic solvent is preferable, and ethyl acetate, methyl ethyl ketone, or toluene is more preferable, because the dispersion stability is excellent.
  • the aqueous phase can include at least an aqueous medium and an emulsifier.
  • the aqueous medium include water and a mixed solvent of water and a water-soluble organic solvent, and water is preferable.
  • Water-soluble means that the amount of the target substance dissolved in 100% by mass of water at 25 ° C. is 5% by mass or more.
  • the content of the aqueous medium is not particularly limited, but is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and 40 to 60% by mass with respect to the total mass of the emulsion which is a mixture of the oil phase and the aqueous phase. % Is more preferable.
  • the emulsifier examples include a dispersant, a surfactant and a combination thereof.
  • the dispersant a known dispersant can be used, and polyvinyl alcohol is preferable.
  • the surfactant include a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • the surfactant may be used alone or in combination of two or more.
  • the content of the emulsifier is preferably more than 0% by mass and 20% by mass or less, more preferably 0.005 to 10% by mass, and 0.01 to 10 with respect to the total mass of the emulsion which is a mixture of the oil phase and the aqueous phase.
  • the mass% is more preferable, and 1 to 5% by mass is particularly preferable.
  • the aqueous phase may contain other components such as UV absorbers, antioxidants, and preservatives, if desired.
  • Dispersion refers to dispersing the oil phase as oil droplets in the aqueous phase (emulsification). Dispersion can be carried out using means commonly used for dispersion between the oil phase and the aqueous phase (eg, homogenizers, manton gorries, ultrasonic dispersers, dissolvers, keddy mills, and other known dispersers).
  • means commonly used for dispersion between the oil phase and the aqueous phase eg, homogenizers, manton gorries, ultrasonic dispersers, dissolvers, keddy mills, and other known dispersers.
  • the mixing ratio of the oil phase to the aqueous phase is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and even more preferably 0.4 to 1.0. ..
  • the capsule wall material is polymerized at the interface between the oil phase and the aqueous phase to form a capsule wall, and microcapsules containing a heat storage material are formed.
  • Polymerization is preferably carried out under heating.
  • the reaction temperature in the polymerization is preferably 40 to 100 ° C, more preferably 50 to 80 ° C.
  • the reaction time of the polymerization is preferably about 0.5 to 10 hours, more preferably about 1 to 5 hours.
  • aqueous solution for example, water, an acetic acid aqueous solution, etc.
  • a dispersant for preventing aggregation may be added to the reaction system during the polymerization.
  • a charge regulator such as niglocin or any other auxiliary agent may be added to the reaction system during the polymerization.
  • the heat storage body contains a resin.
  • the resin is located between the above-mentioned microcapsules and functions as a binder for ensuring the adhesion between the microcapsules.
  • the type of resin is not particularly limited, and examples thereof include known resins.
  • the resin include polyurethane, polyurea, polyurethane urea, and poly (meth) acrylate.
  • the resin preferably contains at least one resin selected from the group consisting of polyurethane, polyurea, and polyurethane urea, because the effect of the present invention is more excellent.
  • the capsule wall and the resin of the microcapsules have the same functional group in that the effect of the present invention is more excellent.
  • the capsule wall and the resin of the microcapsules have the same polar functional group.
  • the polar functional group include a hydroxyl group, a carboxyl group, an amide group, a urethane group, and a urea group.
  • both the capsule wall and the resin of the microcapsules contain at least one selected from the group consisting of polyurethane, polyurea, and polyurethane urea, and the polyurethane urea is used. It is more preferable to include it.
  • the glass transition temperature of the resin is not particularly limited, but is preferably 50 ° C. or lower, more preferably 40 ° C. or lower, still more preferably 20 ° C. or lower, in that the effect of the present invention is more excellent.
  • the lower limit is not particularly limited, but from the viewpoint of handleability, ⁇ 100 ° C. or higher is preferable, ⁇ 60 ° C. or higher is more preferable, and ⁇ 40 ° C. or higher is further preferable.
  • the method for measuring the glass transition temperature of the resin is as follows.
  • the glass transition temperature of the resin is measured from 25 ° C to (heat) at a temperature rise rate of 5 ° C / min using a differential scanning calorimeter DSC (device name: DSC-60A Plus, Shimadzu Corporation) and a closed pan. Measure in the range of decomposition temperature (° C) -5 ° C).
  • DSC differential scanning calorimeter
  • the value at the time of raising the temperature in the second cycle is used.
  • the glass transition temperature is described as the catalog value of the commercially available product, that value may be used as the glass transition temperature of the resin.
  • the elastic modulus (tensile elastic modulus) of the resin is not particularly limited, but is preferably 100 MPa or less, more preferably 15 MPa or less, in that the effect of the present invention is more excellent.
  • the lower limit is not particularly limited, but from the viewpoint of handleability, 0.1 MPa or more is preferable, 1 MPa or more is more preferable, and 6 MPa or more is further preferable.
  • the method for measuring the elastic modulus (tensile elastic modulus) of the resin is to measure the tensile elastic modulus (Young's modulus) at a temperature of 25 ° C. and a humidity of 40% using a static extensometer according to JIS7161. When a commercially available product is used as the resin, if the elastic modulus is described as the catalog value of the commercially available product, that value may be used as the elastic modulus of the resin.
  • the elongation at break of the resin is not particularly limited, but 300% or more is preferable, and 500% or more is more preferable, because the effect of the present invention is more excellent.
  • the upper limit is not particularly limited, but from the viewpoint of handleability, 5000% or less is preferable, and 2000% or less is more preferable.
  • the method for measuring the breaking elongation of the resin is measured according to JIS-C-2151. Specifically, it is calculated from the elongation when the sample is cut (broken) by tensioning at a speed of 200 mm / min using a tensile tester.
  • Fracture elongation (%) 100 ⁇ (L-Lo) / Lo Lo: Sample length before test, L: Sample length at break When using a commercially available resin, if the catalog value of the commercially available product describes the elongation at break, that value. May be used as the breaking elongation of the resin.
  • the resin may be used as a dispersion liquid in which the resin is dispersed in a solvent.
  • the solvent include water and a mixed solution of water and an organic solvent.
  • the resin When the resin is dispersed in the dispersion liquid, the resin may be in the form of particles. That is, the resin may be used as a latex in which particulate resin is dispersed in water.
  • the diameter of the particulate resin (resin particles) in the dispersion is not particularly limited, but 0.001 to 10 ⁇ m is preferable, and 0.01 to 1 ⁇ m is more preferable, because the effect of the present invention is more excellent.
  • the content of the resin in the heat storage body is not particularly limited, but 20% by mass or less is preferable and 1 to 15% by mass is more preferable with respect to the total mass of the heat storage body in that the heat storage property of the heat storage body is more excellent. Up to 15% by mass is more preferable.
  • the heat storage body may contain water, but when the water contained in the heat storage body evaporates, the portion where the water has evaporated may become a void in the heat storage body. Therefore, the water content in the heat storage body is preferably small from the viewpoint of suppressing the generation of voids. Specifically, the water content in the heat storage body is preferably 5% by mass or less, more preferably 2% by mass or less, based on the total mass of the heat storage body, from the viewpoint of further suppressing the generation of voids in the heat storage body. 1% by mass or less is more preferable. The lower limit of the water content in the heat storage body is not particularly limited, but may be 0% by mass.
  • the method for measuring the water content in the heat storage body is as follows.
  • the heat storage body is stored in a constant temperature and humidity chamber at 25% RH and 40 ° C. for 24 hours to obtain the heat storage body A.
  • the heat storage body A taken out from the constant temperature and humidity chamber is dried at 100 ° C. for 3 hours to obtain a heat storage body B.
  • the masses of the heat storage body A and the heat storage body B thus obtained are measured, and the value obtained according to the following formula is used as the water content in the heat storage body.
  • Water content in the heat storage body (mass%) 100 ⁇ ⁇ (mass of heat storage body A)-(mass of heat storage body B) ⁇ / (mass of heat storage body A)
  • the heat storage body may contain other components other than the microcapsules and the resin.
  • Other components include thermally conductive materials, flame retardants, UV absorbers, antioxidants, and preservatives.
  • the content of the other components is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the heat storage body.
  • the lower limit is not particularly limited, but may be 0% by mass.
  • the "thermal conductivity" of the thermally conductive material a material having a thermal conductivity of 10 Wm -1 K -1 or more is preferable.
  • the thermal conductivity of the heat conductive material 50 Wm -1 K -1 or more is more preferable in terms of improving the heat dissipation of the heat storage body.
  • the thermal conductivity (unit: Wm -1 K -1 ) is a value measured by a flash method at a temperature of 25 ° C. by a method compliant with Japanese Industrial Standards (JIS) R1611.
  • the shape of the heat storage body is not particularly limited, and it can take any form (three-dimensional shape) such as a cylindrical shape, a spherical shape, and a lump shape as well as a sheet shape, a film shape, and a plate shape.
  • the effect of the present invention becomes remarkable when the heat storage body is thick, and the thickness of the heat storage body is preferably 0.5 mm or more, more preferably 1 mm or more, and further preferably 2 mm or more. It is preferably 3 mm or more, and particularly preferably 3 mm or more.
  • the upper limit is not particularly limited, but is preferably 1000 mm or less, and more preferably 100 mm or less.
  • the thickness means the shortest distance when the heat storage body is sandwiched between two parallel planes. However, when the heat storage body is plate-shaped, sheet-shaped, or film-shaped, the thickness of the heat storage body is determined by observing the cut surface of the heat storage body cut in parallel with the thickness direction with SEM and observing 5 arbitrary points. Measure and use the average value of the thicknesses of the five points.
  • the latent heat capacity of the heat storage body is not particularly limited, but 115J / cc or more is preferable, 120J / cc or more is more preferable, and 130J or more is preferable in that the heat storage property of the heat storage body is high and it is suitable for temperature control of the heat generating body that generates heat. / Cc or more is more preferable.
  • the upper limit is not particularly limited, but is preferably 300 J / cc or less.
  • the latent heat capacity is a value calculated from the result of differential scanning calorimetry (DSC) and the density of the heat storage body (g / cm 3). The density is measured from the mass and volume of the sample. The mass of the sample is measured with an electronic balance.
  • the volume of the sample is calculated by measuring the area and thickness with a caliper, a contact type thickness measuring machine, etc. when the sample is in the form of a sheet, and when the sample is in the form of a lump, a solvent that does not dissolve or swell. Obtained from the increased volume by immersing in (water, alcohol, etc.). Considering that a high amount of heat storage is exhibited in a limited space, it is considered appropriate to grasp the amount of heat storage as "J / cc", but when considering the use of electronic devices, etc., The weight of the electronic device is also important. Therefore, if we consider that high heat storage is exhibited within a limited mass, it may be appropriate to consider it as "J / g (heat storage amount per unit mass)".
  • the latent heat capacity is preferably 150 J / g or more, more preferably 160 J / g or more.
  • the upper limit is not particularly limited, but is preferably 300 J / g or less.
  • the volume ratio of the microcapsules in the heat storage body is not particularly limited, but is preferably 60% by volume or more, more preferably 80% by volume or more, still more preferably 90% by volume or more, based on the total volume of the heat storage body.
  • the upper limit is not particularly limited, but 100% by volume or less can be mentioned.
  • the porosity of the heat storage body means the volume fraction of the voids in the heat storage body.
  • the void means a region inside the heat storage body in which the material (solid and liquid) constituting the heat storage body does not exist and is surrounded by the material constituting the heat storage body, and is usually a gas (mainly). Is filled with air).
  • the void ratio of the heat storage body is less than 10% by volume with respect to the total volume of the heat storage body, and is preferably 6% by volume or less, preferably 5% by volume or less, from the viewpoint of further suppressing the occurrence of defects in the heat storage body during handling. Is more preferable.
  • the lower limit of the porosity of the heat storage body is not particularly limited, but may be 0% by volume.
  • the porosity of the heat storage body is less than 10% by volume, the amount of heat storage per unit volume can be further improved.
  • the method of reducing the porosity of the heat storage body to less than 10% by volume is not particularly limited, but the material and resin of the capsule wall of the microcapsules are the same while using the microcapsules having a thin wall thickness and a high deformation rate. Examples thereof include a method of adjusting to have a functional group.
  • the void ratio of the heat storage body is calculated based on image data obtained by a known X-ray CT apparatus using an X-ray CT (X-ray Computed Tomography) method as a measurement principle. Specifically, an arbitrary region of 1 mm ⁇ 1 mm in the in-plane direction of the heat storage body is scanned along the film thickness direction of the heat storage body by the X-ray CT method, and the gas (air) and the others (solid and solid) are scanned. Distinguish from liquid). Then, from the three-dimensional image data obtained by image processing a plurality of scanning layers obtained by scanning along the film thickness direction, the volume of the gas (void portion) existing in the scanned region and the scanned region are obtained. (Total volume of gas, solid and liquid) and the total volume of. Then, the ratio of the volume of the gas to the total volume of the scanned regions is defined as the porosity (volume%) of the heat storage body.
  • X-ray CT X-ray Computed Tomography
  • the microcapsules contained in the heat storage body are preferably deformed.
  • the aspect ratio of the microcapsules is preferably 1.2 or more, more preferably 1.5 or more, and even more preferably 2.0 or more.
  • the filling rate of the microcapsules is improved, the contact area between the microcapsules is widened, the strength of the heat storage body is improved, and defects of the heat storage body are generated during handling. Can be further suppressed.
  • the amount of the heat storage material can be increased, and more excellent heat storage can be realized.
  • the upper limit of the aspect ratio of the microcapsules is not particularly limited, but may be, for example, 10 or less.
  • the aspect ratio of the microcapsules can be obtained by the following method from the SEM cross-sectional image of the heat storage body. After observing the cross section of the heat storage body using SEM and obtaining an SEM cross section image, 20 microcapsules are selected from the obtained images. Of the two parallel tangents circumscribing the outer circumference of each selected microcapsule, the distance between the two parallel tangents selected so as to maximize the distance between the tangents is defined as the length L of the long side. Further, of the two parallel tangents orthogonal to the two parallel tangents giving the length L and circumscribing the outer circumference of the microcapsule, the distance between the tangents selected so as to maximize the distance between the tangents is selected.
  • the length of the short side be S.
  • the aspect ratio was calculated using the following formula, and the average value of the aspect ratios of 20 microcapsules was obtained. The obtained average value is used as the aspect ratio of the microcapsules.
  • Aspect ratio L ( ⁇ m) / S ( ⁇ m)
  • the method described as a method of reducing the porosity of the heat storage body can be mentioned.
  • the microcapsules contained in the heat storage body preferably have flat portions or recesses formed by contact with other microcapsules or the like. Specifically, it is preferable that the microcapsules in the heat storage body observed by the following method have two or more flat portions and recesses. After obtaining an SEM cross-sectional image by the same method as the aspect ratio calculation method described above, 20 microcapsules are selected. Then, from the SEM cross-sectional image, the selected microcapsules form a portion in which at least two or more microcapsules are adjacent to each other, and in the outer shape of the selected microcapsules, the outer shape of the adjacent microcapsules.
  • the condition of having two or more linear or concave portions formed along the above condition is satisfied.
  • the number of microcapsules satisfying the above conditions is preferably 5 or more, more preferably 10 or more, and even more preferably 20.
  • the elastic modulus (tensile elastic modulus) of the heat storage body is not particularly limited, but is preferably 50 MPa or more, more preferably 100 MPa or more, further preferably 500 MPa or more, and particularly preferably 1000 MPa or more.
  • the upper limit of the elastic modulus of the heat storage body is not particularly limited, but is preferably 10,000 MPa or less.
  • the elastic modulus (tensile elastic modulus) of the heat storage body is measured according to JIS K 7161-1: 2014.
  • the method for producing the heat storage body is not particularly limited, and a known method can be mentioned.
  • a method of producing a heat storage body by using the above-mentioned microcapsule, a resin, and a composition for forming a heat storage body containing water can be mentioned.
  • a method for producing a heat storage body by applying the heat storage body forming composition on a predetermined substrate and drying it, forming the heat storage body in a gap between members A method of filling a heat storage composition and drying it to produce a heat storage body, a method of dropping a heat storage body forming composition onto a substrate to form a lump, and a mold for the heat storage body forming composition.
  • the microcapsules and the resin contained in the composition for forming a heat storage body are as described above.
  • the method for preparing the composition for forming a heat storage body is not particularly limited, and for example, a dispersion liquid in which microcapsules are dispersed (for example, an aqueous dispersion liquid) and a dispersion liquid in which particulate resin is dispersed (for example, an aqueous dispersion liquid, so-called). , Latex.), And a method of mixing powdery microcapsules and a dispersion liquid in which particulate resin is dispersed.
  • Examples of the method for obtaining powdered microcapsules include a method for recovering microcapsules by removing a solvent from the above-mentioned dispersion liquid in which microcapsules are dispersed.
  • the method for recovering the microcapsules is not particularly limited, and examples thereof include a method for recovering the microcapsules in the dispersion liquid in which the microcapsules are dispersed by decantation.
  • the base material examples include a resin base material, a glass base material, and a metal base material.
  • the resin contained in the resin base material include polyester (eg, polyethylene terephthalate, polyethylene naphthalate), polyolefin (eg, polyethylene, polypropylene), and polyurethane.
  • polyester eg, polyethylene terephthalate, polyethylene naphthalate
  • polyolefin eg, polyethylene, polypropylene
  • polyurethane it is preferable to add a function to improve the thermal conductivity in the in-plane direction or the film thickness direction and to quickly dissipate heat from the heat generating portion to the heat storage portion to the base material.
  • a base material made by combining a metal base material and a heat conductive material such as a graphite sheet or a graphene sheet is more preferable.
  • the thickness of the base material is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 25 ⁇ m, still more preferably 3 to 15 ⁇ m.
  • the base material is preferably treated on the surface of the base material for the purpose of improving the adhesion to the heat storage body. Examples of the surface treatment method include corona treatment, plasma treatment, and application of a thin layer which is an easy-adhesion layer.
  • the material constituting the easy-adhesion layer is not particularly limited, and examples thereof include resin, and more specific examples thereof include styrene-butadiene rubber, urethane resin, acrylic resin, silicone resin, and polyvinyl resin.
  • the thickness of the easy-adhesion layer is not particularly limited, but is preferably 0.01 to 5 ⁇ m, more preferably 0.5 to 2 ⁇ m.
  • a peelable temporary base material may be used as the base material.
  • Examples of the coating method include a die coating method, an air knife coating method, a roll coating method, a blade coating method, a gravure coating method, and a curtain coating method.
  • the preferable range of the drying temperature depends on the amount of water at the time of drying, but when water is contained in the composition for forming the heat storage body, 20 to 130 ° C. is preferable because the porosity of the heat storage body can be further lowered. , 30 to 120 ° C. is more preferable, and 33 to 100 ° C. is even more preferable.
  • the drying time is preferably completed immediately before the moisture in the membrane is completely dried, but in that range, 30 seconds or more is preferable and 1 minute or more is more preferable from the viewpoint that the porosity of the heat storage body can be further lowered. The shorter the upper limit of the drying time, the better from the viewpoint of the production efficiency of the heat storage body.
  • the coating film may be subjected to a flattening treatment.
  • the flattening treatment method include a method of applying pressure to the coating film with a roller, a nip roller, a calendar, or the like to increase the filling rate of microcapsules in the film.
  • microcapsules that are easily deformed large deformation rate
  • slowly dry the coating film or thicken the film at one time. It is preferable to apply the coating film in a plurality of times without forming a suitable coating film.
  • the heat storage body of the present invention can be applied to various uses, for example, electronic devices (for example, mobile phones (particularly smartphones), mobile information terminals, personal computers (particularly portable personal computers), game machines, and (Remote control, etc.); Automobiles (for example, batteries (particularly lithium ion batteries), control devices such as power ICs (Integrated Circuits), car navigation systems, liquid crystal monitors, LED (Light Emitting Diode) lamps, heat insulation of canisters, etc.); Building materials suitable for temperature control during rapid temperature rise in the room or indoor heating and cooling (for example, floor materials, roofing materials, wall materials, etc.); Changes in environmental temperature or changes in body temperature during exercise or rest, etc. Clothes suitable for temperature control according to the temperature (for example, underwear, jacket, cold protection clothes, gloves, etc.); Air conditioner; Bedding; Exhaust heat utilization system that stores unnecessary exhaust heat and uses it as heat energy, etc. Can be used for.
  • electronic devices for example, mobile phones (particularly smartphones), mobile information terminals, personal computers (particularly portable personal computers),
  • the heat storage member of the present invention has the above-mentioned heat storage body.
  • the heat storage member preferably has another layer (for example, a protective layer) as described later.
  • the heat storage member may have a base material on the heat storage body in terms of handling.
  • the heat storage member may have a protective layer.
  • the protective layer is a layer arranged on the heat storage body, and when the heat storage member has a base material, the protective layer is arranged on the surface side of the heat storage body opposite to the base material.
  • the protective layer has a function of protecting the heat storage body.
  • the protective layer may be arranged so as to be in contact with the heat storage body, or may be arranged on the heat storage body via another layer.
  • the material constituting the protective layer is not particularly limited, and a resin is preferable, and a resin selected from the group consisting of a fluororesin and a siloxane resin is preferable in that water resistance and flame retardancy are better.
  • fluororesin examples include known fluororesins.
  • examples of the fluororesin include polytetrafluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, polyethylene trifluorochloride, and polytetrafluoropropylene.
  • the fluororesin may be a homopolymer obtained by polymerizing a single monomer, or may be a copolymer of two or more types. Further, a copolymer of these monomers and other monomers may be used.
  • copolymer examples include a copolymer of tetrafluoroethylene and tetrafluoropropylene, a copolymer of tetrafluoroethylene and vinylidene fluoride, a copolymer of tetrafluoroethylene and ethylene, and tetrafluoroethylene and propylene.
  • fluororesin examples include Obligato (registered trademark) SW0011F, SIFCLEAR-F101, F102 (manufactured by JSR), KYNAR AQUATEC (registered trademark) ARC, and FMA-12 (both manufactured by Arkema) manufactured by AGC Cortec. ..
  • the siloxane resin is a polymer having a repeating unit having a siloxane skeleton, and a hydrolyzed condensate of a compound represented by the following formula (1) is preferable.
  • Equation (1) Si (X) n (R) 4-n X represents a hydrolyzable group.
  • the hydrolyzable group include an alkoxy group, a halogen group, an acetoxy group, and an isocyanate group.
  • R represents a non-hydrolyzable group.
  • non-hydrolytable group examples include an alkyl group (for example, a methyl group, an ethyl group, and a propyl group), an aryl group (for example, a phenyl group, a trill group, and a mesityl group), and an alkenyl group (for example, vinyl).
  • alkyl group for example, a methyl group, an ethyl group, and a propyl group
  • aryl group for example, a phenyl group, a trill group, and a mesityl group
  • an alkenyl group for example, vinyl
  • haloalkyl group eg ⁇ -chloropropyl group
  • aminoalkyl group eg ⁇ -aminopropyl group and ⁇ - (2-aminoethyl) aminopropyl group
  • epoxyalkyl group For example, ⁇ -glycidoxypropyl group and ⁇ - (3,4-epoxycyclohexyl) ethyl group
  • ⁇ -mercaptoalkyl group (meth) acryloyloxyalkyl group ( ⁇ -methacryloyloxypropyl group
  • a hydroxyalkyl group eg, ⁇ -hydroxypropyl group.
  • n represents an integer of 1 to 4, preferably 3 or 4.
  • the hydrolyzed condensate is intended to be a compound obtained by hydrolyzing a hydrolyzable group in the compound represented by the formula (1) and condensing the obtained hydrolyzate.
  • the hydrolyzed condensate may be partially hydrolyzed even if all hydrolyzable groups are hydrolyzed and all the hydrolyzated products are condensed (completely hydrolyzed condensate).
  • the sex group may be hydrolyzed and a part of the hydrolyzate may be condensed (partially hydrolyzed condensate). That is, the hydrolyzed condensate may be a completely hydrolyzed condensate, a partially hydrolyzed condensate, or a mixture thereof.
  • the protective layer for example, a layer containing a known hard coat agent or a hard coat film described in JP-A-2018-202696, JP-A-2018-18387, and JP-A-2018-111793 may be used. good. Further, from the viewpoint of heat storage property, a protective layer having a polymer having heat storage property described in International Publication No. 2018/207387 and JP-A-2007-031610 may be used.
  • the protective layer may contain components other than the resin.
  • Other components include thermally conductive materials, flame retardants, UV absorbers, antioxidants, and preservatives.
  • the flame retardant is not particularly limited, and a known material can be used.
  • a flame retardant or the like described in "Techniques for Utilizing Flame Retardants / Flame Retardants” (CMC Publishing) can be used, and halogen-based flame retardants, phosphorus-based flame retardants, or inorganic flame retardants are preferable.
  • phosphorus-based flame retardants or inorganic flame retardants are preferable.
  • Phosphorus-based flame retardants include phosphate-based materials such as triphenyl phosphate, tricresyl phosphate, trixilenyl phosphate, cresylphenyl phosphate, and 2-ethylhexyldiphenyl phosphate, other aromatic phosphate esters, and aromatic condensed phosphorus. Examples thereof include acid esters, polyphosphates, phosphinic acid metal salts, and red phosphorus. It is also preferable to include a flame retardant aid in combination with the flame retardant. Examples of the flame retardant aid include pentaerythritol, phosphorous acid, and 22-oxidized tetrasalt 12boron heptahydrate.
  • the thickness of the protective layer is not particularly limited, but is preferably 50 ⁇ m or less, more preferably 0.01 to 25 ⁇ m, still more preferably 0.5 to 15 ⁇ m.
  • the cut surface obtained by cutting the protective layer in parallel with the thickness direction is observed by SEM, 5 arbitrary points are measured, and the thickness of the 5 points is averaged.
  • the method for forming the protective layer is not particularly limited, and known methods can be mentioned.
  • a method of bonding the layers on the heat storage body can be mentioned.
  • the method of using the composition for forming a protective layer will be described in detail.
  • the resin contained in the protective layer forming composition is as described above.
  • the resin precursor means a component that becomes a resin by curing treatment, and examples thereof include a compound represented by the above-mentioned formula (1).
  • the composition for forming a protective layer may contain a solvent (for example, water and an organic solvent), if necessary.
  • the method of contacting the protective layer forming composition with the heat storage body is not particularly limited, and the method of applying the protective layer forming composition onto the heat storage body and the method of immersing the heat storage body in the protective layer forming composition are immersed.
  • the method can be mentioned.
  • a dip coater, a die coater, a slit coater, a bar coater, an extrusion coater, a curtain flow coater, a known coating device such as spray coating, and gravure printing are used. , Screen printing, offset printing, and a method using a printing device such as inkjet printing.
  • an adhesion layer is arranged on the side opposite to the heat storage body of the base material for the purpose of improving the adhesion between the heating element and the heat storage element, which will be described later.
  • the adhesive layer include an adhesive layer and an adhesive layer.
  • the material of the pressure-sensitive adhesive layer is not particularly limited, and examples thereof include known pressure-sensitive adhesives.
  • Examples of the pressure-sensitive adhesive include an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive.
  • the acrylic pressure-sensitive adhesive refers to a pressure-sensitive adhesive containing a polymer of (meth) acrylic monomer ((meth) acrylic polymer).
  • the adhesive layer may further contain a tackifier.
  • the material of the adhesive layer is not particularly limited, and examples thereof include known adhesives.
  • Examples of the adhesive include urethane resin adhesives, polyester adhesives, acrylic resin adhesives, ethylene vinyl acetate resin adhesives, polyvinyl alcohol adhesives, polyamide adhesives, and silicone adhesives.
  • the method for forming the adhesion layer is not particularly limited, and for example, a method of transferring the adhesion layer onto the heat storage body and a method of applying a composition containing an adhesive or an adhesive onto the heat storage body to form the adhesion layer. Can be mentioned.
  • the thickness of the adhesion layer is not particularly limited, but is preferably 0.5 to 100 ⁇ m, more preferably 1 to 25 ⁇ m, still more preferably 1 to 15 ⁇ m.
  • the heat storage member When the heat storage body is in the form of a sheet, a plate, or a film, the heat storage member may have a flame-retardant layer. Further, the heat storage body may have a flame-retardant component.
  • the position of the flame-retardant layer is not particularly limited, and may be integrated with the protective layer or may be provided as a separate layer. When it is provided as a separate layer, it is preferably laminated between the protective layer and the heat storage body. When it is integrated with the protective layer, it means that the protective layer has a flame-retardant function.
  • the entire heat storage member can be made flame-retardant by having a flame-retardant protective layer or a flame-retardant layer.
  • the flame-retardant protective layer and the flame-retardant layer are not particularly limited as long as they are flame-retardant, but are flame-retardant organic resins such as polyetheretherketone resin, polycarbonate resin, silicone resin, and fluorine-containing resin, as well. , It is preferably formed from an inorganic material such as a glass film.
  • the glass film can be formed by, for example, applying a silane coupling agent or a siloxane oligomer on a heat storage body and heating or drying the glass film.
  • a flame retardant may be mixed and formed in the protective layer.
  • the flame retardant the above-mentioned flame retardant and inorganic particles such as silica are preferable.
  • the amount and type of the inorganic particles can be adjusted including the type of the resin depending on the surface shape and / or the film quality.
  • the size of the inorganic particles is preferably 0.01 to 1 ⁇ m, more preferably 0.05 to 0.3 ⁇ m, still more preferably 0.1 to 0.2 ⁇ m.
  • the content of the inorganic particles is preferably 0.1 to 50% by mass, more preferably 1 to 40% by mass, based on the total mass of the protective layer.
  • the content of the flame retardant is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, and 1 to 5% by mass with respect to the total mass of the protective layer from the viewpoint of heat storage amount and flame retardancy. Is more preferable.
  • the thickness of the flame-retardant protective layer is preferably 0.1 to 20 ⁇ m, more preferably 0.5 to 15 ⁇ m, and even more preferably 0.5 to 10 ⁇ m from the viewpoint of heat storage amount and flame retardancy.
  • the heat storage member When the heat storage body is in the form of a sheet, a plate, or a film, the heat storage member may have a colored layer. Further, the heat storage body may have a coloring component. By providing the colored layer, it is possible to suppress the change in the appearance of the heat storage member even when the color of the heat storage body changes. In addition, rubbing during handling or invasion of water or the like into the heat storage body can be suppressed, physical or chemical changes in the microcapsules can be suppressed, and as a result, color change of the heat storage body itself can be suppressed.
  • the colored layer may be integrated with the protective layer, or may be arranged as a separate layer so as to be in contact with the heat storage body.
  • the colored layer preferably contains a colorant in order to obtain the desired hue.
  • the colorant include pigments and dyes, and pigments are preferable, black pigments are more preferable, and carbon black is further preferable, because they have excellent weather resistance and can further suppress the change in the appearance of the heat storage member. preferable. When carbon black is used, the thermal conductivity of the colored layer is further improved.
  • the pigment include various conventionally known inorganic pigments and organic pigments. Specific examples of the inorganic pigment include white pigments such as titanium dioxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, and barium sulfate, and carbon black, titanium black, and titanium. Examples thereof include black pigments such as carbon, iron oxide, and graphite.
  • Examples of the organic pigment include the organic pigment described in paragraph 0093 of JP-A-2009-256572.
  • Examples of the organic pigment include C.I. I. Pigment Red 177, 179, 224, 242, 254, 255, 264 and other red pigments, C.I. I. Pigment Yellow 138, 139, 150, 180, 185 and other yellow pigments, C.I. I. Pigment Orange 36, 38, 71 and other orange pigments, C.I. I. Pigment Green 7, 36, 58 and other green pigments, C.I. I. Blue pigments such as Pigment Blue 15: 6 and C.I. I. Examples include purple pigments such as Pigment Violet 23.
  • the colorant may be used alone or in combination of two or more.
  • the content of the colorant (for example, black pigment) in the colored layer is not particularly limited, but is 2 to 30% by volume with respect to the total volume of the colored layer in that the change in the appearance of the heat storage member can be further suppressed. It is preferable, 5 to 25% by volume is more preferable.
  • the colored layer may contain a binder.
  • the type of the binder is not particularly limited, and known materials can be mentioned, and a resin is preferable.
  • a resin is preferable.
  • the resin a resin selected from the group consisting of fluororesins and siloxane resins is preferable because it has better water resistance and flame retardancy.
  • the resin selected from the group consisting of fluororesin and siloxane resin having good water resistance in the colored layer the chemical change of the microcapsules can be suppressed and the color change of the heat storage body can be suppressed.
  • Specific examples of the fluororesin and the siloxane resin are as described above.
  • the content of the binder in the colored layer is not particularly limited, but is preferably 50 to 98% by volume, preferably 75 to 95% by volume, based on the total volume of the colored layer, in that the change in the appearance of the heat storage member can be further suppressed. Is more preferable.
  • the binder in the colored layer may be used alone or in combination of two or more.
  • the colored layer may contain other components other than the colorant and the binder.
  • Other components include thermally conductive materials, flame retardants, UV absorbers, antioxidants, and preservatives.
  • the thickness of the colored layer is not particularly limited, but is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 10 ⁇ m.
  • the cut surface obtained by cutting the colored layer in parallel with the thickness direction is observed by SEM, 5 arbitrary points are measured, and the thickness of the 5 points is averaged.
  • One of the preferred forms of the colored layer is a form in which the film thickness of the colored layer is 15 ⁇ m or less and the optical density of the colored layer is 1.0 or more.
  • the optical density is preferably 1.2 or more.
  • the upper limit is not particularly limited, but 6.0 or less is preferable.
  • X-rite eXact manufactured by X-Rite
  • the density status is measured at ISO status T and D50 / 2 ° without a filter.
  • the K value is adopted as the OD value of Xrite.
  • the method for forming the colored layer is not particularly limited, and known methods can be mentioned.
  • a composition for forming a colored layer containing a colorant and a binder or a precursor thereof is brought into contact with a heat storage body, and a coating film formed on the heat storage body is subjected to a curing treatment as necessary.
  • a curing treatment as necessary.
  • the colorants and binders contained in the composition for forming a colored layer are as described above.
  • the precursor of the binder contained in the composition for forming a colored layer means a component that becomes a binder by a curing treatment, and examples thereof include a compound represented by the above-mentioned formula (1).
  • the colored layer forming composition may contain a solvent (for example, water and an organic solvent), if necessary.
  • the method of contacting the colored layer forming composition with the heat storage body is not particularly limited, and the method of applying the colored layer forming composition onto the heat storage body and the method of immersing the heat storage body in the colored layer forming composition are immersed.
  • the method can be mentioned.
  • the method of applying the composition for forming a colored layer is the same as the method described in the method of applying the composition for forming a protective layer.
  • the colored layer may be provided on the entire surface of the heat storage body, or may be provided in a pattern on a part thereof.
  • the heat storage member When the heat storage member is in the form of a sheet, a plate, or a film, the heat storage member has a base material arranged on the surface side opposite to the protective layer in the heat storage body and a surface opposite to the heat storage body in the above base material. It may have an adhesion layer arranged on the side and a temporary substrate arranged on the surface side of the adhesion layer opposite to the substrate. As a result, it is possible to suppress damage to the heat storage body during storage and transportation of the heat storage member.
  • the base material and the adhesive layer are as described above.
  • the specific example of the temporary base material is the same as the specific example of the base material. It is preferably a base material having a peeled surface. When using the heat storage member, the temporary base material is peeled off from the heat storage member.
  • the electronic device of the present invention has the above-mentioned heat storage member or heat storage body and a heating element.
  • the heat storage member is as described above.
  • the heating element is a member that may generate heat in an electronic device, and is, for example, a SoC such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a SRAM (Static Random Access Memory), and an RF (Radio Frequency) device. (Systems on a Chip), cameras, LED packages, power electronics, and batteries (especially lithium ion secondary batteries).
  • the heating element may be arranged so as to be in contact with the heat storage member, or may be arranged on the heat storage member via another layer (for example, a heat conductive material described later).
  • the electronic device further preferably has a thermally conductive material.
  • the heat conductive material means a material having a function of conducting heat generated from a heating element to another medium.
  • the thermal conductivity is 10 Wm -1 K -1 or more. That is, the heat conductive material is preferably a material having a thermal conductivity of 10 Wm -1 K -1 or more.
  • the thermal conductivity (unit: Wm -1 K -1 ) is a value measured by a flash method at a temperature of 25 ° C. by a method compliant with Japanese Industrial Standards (JIS) R1611.
  • Examples of the heat conductive material that the electronic device may have include a metal plate, a heat radiating sheet, and silicon grease, and a metal plate or a heat radiating sheet is preferably used.
  • the electronic device preferably has the above-mentioned heat storage member, a heat conductive material arranged on the heat storage member, and a heating element arranged on the surface side of the heat conductive material opposite to the heat storage member. Further, it is more preferable that the electronic device has the above-mentioned heat storage member, a metal plate arranged on the heat storage member, and a heating element arranged on the surface side of the metal plate opposite to the heat storage member.
  • one of the preferred embodiments of the electronic device is a above-mentioned heat storage member, a metal plate arranged on the surface side of the above-mentioned heat storage member opposite to the above-mentioned protective layer, and the above-mentioned heat storage member.
  • An embodiment having a heating element arranged on the surface side of the metal plate opposite to the heat storage member can be mentioned.
  • the protective layer, the heat storage body, the metal plate, and the heat generating body are laminated in this order.
  • the metal plate has a function of protecting the heating element and conducting heat generated from the heating element to the heat storage element.
  • the surface of the metal plate opposite to the surface on which the heating element is provided may be in contact with the heat storage element, or heat may be stored via another layer (for example, a heat dissipation sheet, an adhesion layer, or a base material).
  • the body may be arranged. Examples of the material constituting the metal plate include aluminum, copper, and stainless steel.
  • the heat radiating sheet is a sheet having a function of conducting heat generated from a heating element to another medium, and preferably has a heat radiating material.
  • the heat radiating material include carbon, metal (for example, silver, copper, aluminum, iron, platinum, stainless steel, and nickel), and silicon.
  • Specific examples of the heat radiating sheet include a copper foil sheet, a metal film resin sheet, a metal-containing resin sheet, and a graphene sheet, and a graphene sheet is preferably used.
  • the thickness of the heat radiating sheet is not particularly limited, but is preferably 10 to 500 ⁇ m, more preferably 20 to 300 ⁇ m.
  • the electronic device preferably further comprises a heat transport member selected from the group consisting of heat pipes and vapor chambers.
  • Both the heat pipe and the vapor chamber are made of metal or the like and include at least a member having a hollow structure and a working fluid which is a heat transfer medium enclosed in the internal space thereof, and the working fluid in a high temperature part (evaporation part). Evaporates (vaporizes) and absorbs heat, and the vaporized working fluid condenses in the low temperature part (condensed part) and releases heat.
  • the heat pipe and the vapor chamber have a function of transporting heat from a member in contact with a high temperature portion to a member in contact with a low temperature portion due to a phase change of the working fluid inside the heat pipe and the vapor chamber.
  • the heat storage member and the heat pipe or the vapor chamber are in contact with each other, and the heat storage member is a heat pipe.
  • the vapor chamber is in contact with the low temperature portion.
  • the phase change temperature of the heat storage material contained in the heat storage body of the present invention possessed by the heat storage member and heat. It is preferable that the temperature range in which the pipe or vapor chamber operates overlaps.
  • the temperature range in which the heat pipe or the vapor chamber operates includes, for example, a range of temperatures in which the working fluid can undergo a phase change.
  • the heat pipe has at least a tubular member and a working fluid enclosed in its internal space.
  • the heat pipe preferably has a wick structure on the inner wall of the tubular member as a flow path for the working fluid based on the capillary phenomenon, and has a cross-sectional structure in which an internal space for the passage of the vaporized working fluid is provided inside the wick structure. ..
  • Examples of the shape of the tubular member include a circular tube, a square tube, and a flat elliptical tube.
  • the tubular member may have a bent portion.
  • the heat pipe may be a loop heat pipe having a structure in which tubular members are connected in a loop shape.
  • the vapor chamber has at least a flat plate-shaped member having a hollow structure and a working fluid enclosed in the internal space thereof.
  • the vapor chamber preferably has a wick structure similar to that of a heat pipe on the inner surface of a flat plate-shaped member. In the vapor chamber, heat is generally absorbed from a member in contact with one main surface of the flat plate-shaped member, and heat is released to the member in contact with the other main surface to transport heat.
  • the material constituting the heat pipe and the vapor chamber is not particularly limited as long as it is a material having high thermal conductivity, and examples thereof include metals such as copper and aluminum.
  • Examples of the working fluid enclosed in the internal space of the heat pipe and the vapor chamber include water, methanol, ethanol and CFC substitutes, which are appropriately selected and used according to the temperature range of the electronic device to be applied.
  • the electronic device may include a protective layer, a heat storage body, a heat conductive material, a heating element, and other members other than the heat transport member described above.
  • Examples of other members include a base material and an adhesion layer. The base material and the adhesive layer are as described above.
  • the electronic device may have at least one member selected from the group consisting of a heat radiating sheet, a base material, and an adhesion layer between the heat storage body and the metal plate.
  • a heat radiating sheet When two or more members of the heat dissipation sheet, the base material, and the close contact layer are arranged between the heat storage body and the metal plate, the base material and the close contact are made from the heat storage body side toward the metal plate side. It is preferable that the layers and the heat dissipation sheets are arranged in this order. Further, the electronic device may have a heat radiating sheet between the metal plate and the heating element.
  • Example 1> preparation of microcapsule dispersion 100 parts by mass of icosane (latent heat storage material; an aliphatic hydrocarbon having a melting point of 37 ° C. and 20 carbon atoms) was heated and dissolved at 60 ° C. to obtain a solution A to which 120 parts by mass of ethyl acetate was added. Next, 0.1 part by mass of N, N, N', N'-tetrakis (2-hydroxypropyl) ethylenediamine (ADEKApolyether EDP-300, ADEKA CORPORATION) is added to the stirring solution A to make a solution. B was obtained.
  • icosane latent heat storage material; an aliphatic hydrocarbon having a melting point of 37 ° C. and 20 carbon atoms
  • the thickness of the capsule wall of the microcapsules was 0.1 ⁇ m. Further, the deformation rate of the microcapsules taken out from the obtained dispersion was measured by the above method using an HM2000 type microhardness meter manufactured by Fisher Instruments Co., Ltd. as an indentation hardness tester. As a result, the deformation rate of the microcapsules was obtained. Was 41%.
  • microcapsule aggregates After separating the upper layer and the lower layer which is the aqueous phase, the operation of removing the lower layer which is the aqueous phase was repeated four times.
  • the obtained microcapsule agglomerates were wrapped in a non-woven fabric and dried by applying cold air while rubbing to obtain microcapsule powder.
  • the obtained heat storage body forming composition 1 (5 cc) was dropped onto a release film, dried at 85 ° C. for 2 hours to a size of 30 mm in diameter, and the heat storage body without cracks (thickness: 5400 ⁇ m). ) was manufactured.
  • the porosity of the obtained heat storage body was 5% by volume.
  • the heat absorption amount of the heat storage body was 160 J / cc.
  • Example 1 A heat storage body was produced according to the same procedure as in Example 1 except that the type of material used was changed as shown in Table 1.
  • the heat absorption amount of the obtained heat storage body was calculated from the differential scanning calorimetry.
  • the heat absorption amount of the heat storage body itself from which the release film was peeled off was measured.
  • the heat storage body was cut into 15 mm ⁇ 25 mm to prepare a measurement sample.
  • the appearance of defects (cracks and chips) in the heat storage body was visually observed. .. Evaluation was made according to the following criteria. Practically, "0" or "1" is preferable. The case where no defect occurred was set as “0”, the case where cracks occurred very slightly was set as "1”, and the case where cracks and chips occurred was set as "2".
  • the "solid content (%)” column in the “resin” column represents the solid content concentration (mass%) in each commercially available product described in the "type” column in the “resin” column.
  • the “Tg (° C.)” column in the “resin” column in Table 1 represents the glass transition temperature (° C.) of the resin in the commercially available product used.
  • the “breaking elongation” column in the “resin” column in Table 1 represents the breaking elongation (%) of the resin in the commercially available product used.
  • the “resin content (mass%)” column in Table 1 represents the resin content (mass%) with respect to the total mass of the heat storage body.
  • the “heat storage material content (mass%)” column in Table 1 represents the content (mass%) of the heat storage material with respect to the total mass of the heat storage body.
  • the Superflex E2000 shown in Table 1 is a commercially available product sold by Dai-ichi Kogyo Seiyaku Co., Ltd., and the resin contained in the Superflex E2000 is polyurethane.
  • the Superflex 300 shown in Table 1 is a commercially available product sold by Dai-ichi Kogyo Seiyaku Co., Ltd., and the resin contained in the Superflex 300 is polyurethane.
  • the Superflex E4800 shown in Table 1 is a commercially available product sold by Dai-ichi Kogyo Seiyaku Co., Ltd., and the resin contained in the Superflex E4800 is polyurethane.
  • the Kuraray Poval KL-318 shown in Table 1 is a commercially available product sold by Dai-ichi Kogyo Seiyaku Co., Ltd., and the resin contained in Kuraray Poval KL-318 is polyvinyl alcohol.

Abstract

The present invention provides a heat storage body in which the occurrence of defects during handling is suppressed, and a method for manufacturing the heat storage body. The heat storage body of the present invention includes a microcapsule in which a heat storage material is enclosed and a resin, wherein the content of the heat storage material with respect to the total mass of the heat storage body is 65% by mass or more, and the void ratio is less than 10% by volume.

Description

蓄熱体、蓄熱体の製造方法Heat storage body, manufacturing method of heat storage body
 本発明は、蓄熱体、及び、蓄熱体の製造方法に関する。 The present invention relates to a heat storage body and a method for manufacturing the heat storage body.
 近年、蓄熱材、香料、染料、及び、医薬品成分等の機能性材料を内包したマイクロカプセルが注目されている。
 例えば、特許文献1においては、蓄熱材を内包するマイクロカプセルが所定量含有された蓄熱性アクリル系樹脂組成物をシート状に成形及び硬化せしめてなる蓄熱性シート状成形体が開示されている。
In recent years, microcapsules containing functional materials such as heat storage materials, fragrances, dyes, and pharmaceutical ingredients have attracted attention.
For example, Patent Document 1 discloses a heat storage sheet-shaped molded body obtained by molding and curing a heat storage acrylic resin composition containing a predetermined amount of microcapsules containing a heat storage material into a sheet shape.
特開2007-031610号公報Japanese Unexamined Patent Publication No. 2007-031610
 一方で、近年、蓄熱性の向上のために、蓄熱材を内包するマイクロカプセルの使用量を増やすことが望まれている。つまり、蓄熱体中での上記マイクロカプセル(特に、蓄熱材)の含有量を増やすことが望まれている。 On the other hand, in recent years, it has been desired to increase the amount of microcapsules containing a heat storage material in order to improve the heat storage property. That is, it is desired to increase the content of the microcapsules (particularly, the heat storage material) in the heat storage body.
 本発明者らは、特許文献1に記載されているような蓄熱材を内包するマイクロカプセルの使用量を増やしたところ、得られた蓄熱体の取り扱い時(特に、蓄熱体を引っ張った時)において、蓄熱体に欠陥(例えば、ひび、及び、割れ)が生じやすくなることを知見した。特に、蓄熱体の厚みが厚い場合に、蓄熱体に欠陥が生じやすかった。 The present inventors increased the amount of microcapsules containing a heat storage material as described in Patent Document 1, and when handling the obtained heat storage material (particularly when the heat storage material was pulled). , It was found that defects (for example, cracks and cracks) are likely to occur in the heat storage body. In particular, when the heat storage body is thick, defects are likely to occur in the heat storage body.
 本発明は、上記実情に鑑みて、取り扱い時における欠陥の発生が抑制された蓄熱体を提供することを課題とする。
 また、本発明は、蓄熱体の製造方法を提供することも課題とする。
In view of the above circumstances, it is an object of the present invention to provide a heat storage body in which the occurrence of defects during handling is suppressed.
Another object of the present invention is to provide a method for producing a heat storage body.
 本発明者らは、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of diligent studies on the above problems, the present inventors have found that the above problems can be solved by the following configuration.
(1) 蓄熱材を内包するマイクロカプセル、及び、樹脂を含む、蓄熱体であって、
 蓄熱体の全質量に対する蓄熱材の含有量が65質量%以上であり、
 空隙率が10体積%未満である、蓄熱体。
(2) 樹脂の含有量が、蓄熱体全質量に対して、20質量%以下である、(1)に記載の蓄熱体。
(3) 樹脂の弾性率が、15MPa以下である、(1)又は(2)に記載の蓄熱体。
(4) 樹脂のガラス転移温度が50℃以下である、(1)~(3)のいずれかに記載の蓄熱体。
(5) 樹脂の破断伸度が300%以上である、(1)~(4)のいずれかに記載の蓄熱体。
(6) マイクロカプセルの体積基準のメジアン径に対するマイクロカプセルのカプセル壁の厚みの割合が、0.0075以下である、(1)~(5)のいずれかに記載の蓄熱体。
(7) マイクロカプセルのカプセル壁の厚みが、0.20μm以下である、(1)~(6)のいずれかに記載の蓄熱体。
(8) マイクロカプセルの変形率が、35%以上である、(1)~(7)のいずれかに記載の蓄熱体。
(9) マイクロカプセルのカプセル壁及び樹脂が、同じ官能基を有する、(1)~(8)のいずれかに記載の蓄熱体。
(10) 樹脂が、ポリウレタン、ポリウレア、及び、ポリウレタンウレアからなる群から選択される少なくとも1種を含む、(1)~(9)のいずれかに記載の蓄熱体。
(11) 樹脂、及び、マイクロカプセルのカプセル壁の両方が、ポリウレタン、ポリウレア、及び、ポリウレタンウレアからなる群から選択される少なくとも1種を含む、(1)~(10)のいずれかに記載の蓄熱体。
(12) 空隙率が5体積%以下である、(1)~(11)のいずれかに記載の蓄熱体。
(13) 厚みが0.5mm以上である、(1)~(12)のいずれかに記載の蓄熱体。
(14) (1)~(13)のいずれかに記載の蓄熱体の製造方法であって、
 マイクロカプセル、樹脂、及び、水を含む蓄熱体形成用組成物を用いて、蓄熱体を製造する、蓄熱体の製造方法。
(15) 蓄熱体形成用組成物中における樹脂が粒子状である、(14)に記載の蓄熱体の製造方法。
(1) A heat storage body containing a microcapsule containing a heat storage material and a resin.
The content of the heat storage material with respect to the total mass of the heat storage body is 65% by mass or more.
A heat storage body having a porosity of less than 10% by volume.
(2) The heat storage body according to (1), wherein the content of the resin is 20% by mass or less with respect to the total mass of the heat storage body.
(3) The heat storage body according to (1) or (2), wherein the elastic modulus of the resin is 15 MPa or less.
(4) The heat storage body according to any one of (1) to (3), wherein the glass transition temperature of the resin is 50 ° C. or lower.
(5) The heat storage body according to any one of (1) to (4), wherein the elongation at break of the resin is 300% or more.
(6) The heat storage body according to any one of (1) to (5), wherein the ratio of the thickness of the capsule wall of the microcapsule to the volume-based median diameter of the microcapsule is 0.0075 or less.
(7) The heat storage body according to any one of (1) to (6), wherein the thickness of the capsule wall of the microcapsule is 0.20 μm or less.
(8) The heat storage body according to any one of (1) to (7), wherein the deformation rate of the microcapsules is 35% or more.
(9) The heat storage body according to any one of (1) to (8), wherein the capsule wall of the microcapsule and the resin have the same functional group.
(10) The heat storage material according to any one of (1) to (9), wherein the resin contains at least one selected from the group consisting of polyurethane, polyurea, and polyurethane urea.
(11) The method according to any one of (1) to (10), wherein both the resin and the capsule wall of the microcapsules contain at least one selected from the group consisting of polyurethane, polyurea, and polyurethane urea. Heat storage body.
(12) The heat storage body according to any one of (1) to (11), wherein the porosity is 5% by volume or less.
(13) The heat storage body according to any one of (1) to (12), which has a thickness of 0.5 mm or more.
(14) The method for producing a heat storage body according to any one of (1) to (13).
A method for producing a heat storage body, which comprises producing a heat storage body using a composition for forming a heat storage body containing microcapsules, a resin, and water.
(15) The method for producing a heat storage body according to (14), wherein the resin in the composition for forming a heat storage body is in the form of particles.
 本発明によれば、取り扱い時における欠陥の発生が抑制された蓄熱体を提供することができる。
 また、本発明によれば、蓄熱体の製造方法を提供することもできる。
According to the present invention, it is possible to provide a heat storage body in which the occurrence of defects during handling is suppressed.
Further, according to the present invention, it is also possible to provide a method for producing a heat storage body.
 以下、本発明について詳細に説明する。
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
Hereinafter, the present invention will be described in detail.
In the present specification, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively. In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
 後述する各種成分は、1種単独で又は2種以上を混合して用いてもよい。例えば、後述するポリイソシアネートは、1種単独で又は2種以上を混合して用いてもよい。 The various components described later may be used alone or in combination of two or more. For example, the polyisocyanate described later may be used alone or in combination of two or more.
 本発明の蓄熱体は、所定量の蓄熱材を含み、空隙率が10体積%未満である。
 本発明の蓄熱体によれば、取り扱い時における欠陥の発生が抑制できる。これは、以下の理由によるものと推測される。
 蓄熱材を内包するマイクロカプセルの使用量が増えると、蓄熱体に欠陥が生じやすくなる。そのような蓄熱材の空隙率を低くすることにより、蓄熱体中におけるマイクロカプセル同士の接触面積が広くなり、蓄熱体の強度が向上すると考えられる。その結果、蓄熱体の脆性が高くなって、蓄熱体の取り扱い時における欠陥(例えば、ひび、及び、割れ)の発生を抑制できたと推測される。
The heat storage body of the present invention contains a predetermined amount of heat storage material and has a porosity of less than 10% by volume.
According to the heat storage body of the present invention, the occurrence of defects during handling can be suppressed. This is presumed to be due to the following reasons.
As the amount of microcapsules containing the heat storage material increases, defects are likely to occur in the heat storage material. It is considered that by lowering the porosity of such a heat storage material, the contact area between the microcapsules in the heat storage body is widened, and the strength of the heat storage body is improved. As a result, it is presumed that the brittleness of the heat storage body is increased and the occurrence of defects (for example, cracks and cracks) during handling of the heat storage body can be suppressed.
 本発明の蓄熱体は、蓄熱材を内包するマイクロカプセル、及び、樹脂を含み、蓄熱体の全質量に対する蓄熱材の含有比率が65質量%以上であり、空隙率が10体積%未満である。
 以下、まず、蓄熱体に含まれる材料について詳述し、その後、蓄熱体の特性について詳述する。
The heat storage material of the present invention contains microcapsules containing the heat storage material and a resin, and the content ratio of the heat storage material to the total mass of the heat storage material is 65% by mass or more, and the void ratio is less than 10% by volume.
Hereinafter, the materials contained in the heat storage body will be described in detail first, and then the characteristics of the heat storage body will be described in detail.
<マイクロカプセル>
 マイクロカプセルは、コア部と、コア部をなすコア材(内包されるもの(内包成分ともいう。))を内包するためのカプセル壁と、を有する。
<Microcapsules>
The microcapsule has a core portion and a capsule wall for encapsulating a core material (encapsulated material (also referred to as an encapsulating component)) forming the core portion.
 マイクロカプセルは、コア材(内包成分)として、蓄熱材を内包する。蓄熱材がマイクロカプセルに内包されているため、蓄熱材は温度に応じた相状態で安定的に存在できる。 The microcapsule contains a heat storage material as a core material (inclusion component). Since the heat storage material is encapsulated in microcapsules, the heat storage material can stably exist in a phase state depending on the temperature.
(蓄熱材)
 蓄熱材の種類は特に制限されず、温度変化に応じて相変化する材料を用いることができ、温度変化に応じた融解と凝固との状態変化を伴う固相-液相間の相変化を繰り返すことができる材料が好ましい。
 蓄熱材の相変化は、蓄熱材自体が有する相変化温度に基づくことが好ましく、固相-液相間の相変化の場合、融点に基づくことが好ましい。
(Heat storage material)
The type of heat storage material is not particularly limited, and a material that changes phase in response to a temperature change can be used, and the phase change between the solid phase and the liquid phase that accompanies the state change of melting and solidification in response to the temperature change is repeated. Materials that can be used are preferred.
The phase change of the heat storage material is preferably based on the phase change temperature of the heat storage material itself, and in the case of the phase change between the solid phase and the liquid phase, it is preferably based on the melting point.
 蓄熱材としては、例えば、蓄熱体の外部で発生した熱を顕熱として蓄え得る材料、及び、蓄熱体の外部で発生した熱を潜熱として蓄え得る材料(以下、「潜熱蓄熱材」ともいう。)、可逆的な化学変化に伴う相変化を生じる材料等のいずれでもよい。蓄熱材は、蓄えた熱を放出し得るものが好ましい。
 なかでも、授受可能な熱量の制御のしやすさ、及び、熱量の大きさの点で、蓄熱材としては、潜熱蓄熱材が好ましい。
As the heat storage material, for example, a material that can store heat generated outside the heat storage body as sensible heat and a material that can store heat generated outside the heat storage body as latent heat (hereinafter, also referred to as "latent heat storage material". ), A material that causes a phase change due to a reversible chemical change, or the like. The heat storage material is preferably one that can release the stored heat.
Among them, the latent heat storage material is preferable as the heat storage material in terms of ease of control of the amount of heat that can be transferred and received and the size of the amount of heat.
 潜熱蓄熱材とは、蓄熱体の外部で発生した熱を潜熱として蓄熱する材料である。例えば、固相-液相間の相変化の場合、材料により定められた融点を相変化温度として融解と凝固との間の変化を繰り返すことで潜熱による熱の授受が行える材料を指す。
 潜熱蓄熱材は、固相-液相間の相変化の場合、融点での融解熱及び凝固点での凝固熱を利用し、固体-液体間の相変化を伴って蓄熱し、また放熱できる。
The latent heat storage material is a material that stores heat generated outside the heat storage body as latent heat. For example, in the case of a phase change between a solid phase and a liquid phase, it refers to a material capable of transferring heat by latent heat by repeating a change between melting and solidification with the melting point determined by the material as the phase change temperature.
In the case of a phase change between a solid phase and a liquid phase, the latent heat storage material utilizes the heat of fusion at the melting point and the heat of solidification at the freezing point, and can store heat and dissipate heat with the phase change between the solid and the liquid.
 潜熱蓄熱材の種類は特に制限されず、融点を有して相変化が可能な化合物から選択できる。
 潜熱蓄熱材としては、例えば、氷(水);無機塩;パラフィン(例えば、イソパラフィン、ノルマルパラフィン)等の脂肪族炭化水素;トリ(カプリル・カプリン酸)グリセリル、ミリスチン酸メチル(融点16~19℃)、ミリスチン酸イソプロピル(融点167℃)、及び、フタル酸ジブチル(融点-35℃)等の脂肪酸エステル系化合物;ジイソプロピルナフタレン(融点67~70℃)等のアルキルナフタレン系化合物、1-フェニル-1-キシリルエタン(融点-50℃未満)等のジアリールアルカン系化合物、4-イソプロピルビフェニル(融点11℃)等のアルキルビフェニル系化合物、トリアリールメタン系化合物、アルキルベンゼン系化合物、ベンジルナフタレン系化合物、ジアリールアルキレン系化合物、及び、アリールインダン系化合物等の芳香族炭化水素;ツバキ油、大豆油、コーン油、綿実油、菜種油、オリーブ油、ヤシ油、ひまし油、及び、魚油等の天然動植物油;鉱物油;ジエチルエーテル類;脂肪族ジオール;糖;糖アルコール等が挙げられる。
The type of the latent heat storage material is not particularly limited, and can be selected from compounds having a melting point and capable of a phase change.
Examples of the latent heat storage material include ice (water); inorganic salts; aliphatic hydrocarbons such as paraffin (for example, isoparaffin and normal paraffin); tri (capryl capric acid) glyceryl, methyl myristate (melting point 16-19 ° C.). ), Fatty acid ester compounds such as isopropyl myristate (melting point 167 ° C.) and dibutyl phthalate (melting point −35 ° C.); alkylnaphthalene compounds such as diisopropylnaphthalene (melting point 67-70 ° C.), 1-phenyl-1. -Diarylalkane compounds such as xylylethane (melting point less than -50 ° C), alkylbiphenyl compounds such as 4-isopropylbiphenyl (melting point 11 ° C), triarylmethane compounds, alkylbenzene compounds, benzylnaphthalene compounds, diarylalkylene compounds. Aromatic hydrocarbons such as compounds and arylindan compounds; natural animal and vegetable oils such as camellia oil, soybean oil, corn oil, cottonseed oil, rapeseed oil, olive oil, palm oil, castor oil, and fish oil; mineral oil; diethyl ethers. ; Fat group diols; sugars; sugar alcohols and the like.
 蓄熱材の相変化温度は特に制限されず、熱を発する発熱体の種類、発熱体の発熱温度、冷却後の温度又は保持温度、及び、冷却方法等に応じて適宜選択すればよい。
 蓄熱材は、目的とする温度領域(例えば、発熱体の動作温度;以下、「熱制御領域」ともいう。)に相変化温度(好ましくは融点)を持つ材料が選択されることが好ましい。
 蓄熱材の相変化温度は、熱制御領域に応じて異なるが、0~80℃が好ましく、10~70℃がより好ましい。
The phase change temperature of the heat storage material is not particularly limited, and may be appropriately selected depending on the type of the heating element that generates heat, the heating element temperature of the heating element, the temperature or holding temperature after cooling, the cooling method, and the like.
As the heat storage material, it is preferable to select a material having a phase change temperature (preferably melting point) in a target temperature range (for example, the operating temperature of the heating element; hereinafter also referred to as “heat control region”).
The phase change temperature of the heat storage material varies depending on the heat control region, but is preferably 0 to 80 ° C, more preferably 10 to 70 ° C.
 電子デバイス(特に、小型又は携帯用の電子デバイス)に適用する場合、蓄熱材として、以下の融点を有する蓄熱材が好ましい。
(1)蓄熱材(好ましくは潜熱蓄熱材)としては、融点が0~80℃の蓄熱材が好ましい。
 融点が0~80℃の蓄熱材を用いる場合、融点が0℃未満又は80℃超の材料は蓄熱材には含まれない。融点が0℃未満又は80℃超の材料のうち、液体の状態にある材料は、溶剤として蓄熱材と併用されてもよい。
(2)上記(1)の中では、融点が10~70℃の蓄熱材が好ましい。
 融点が10~70℃の蓄熱材を用いる場合、融点が10℃未満又は70℃超の材料は蓄熱材には含まれない。融点が10℃未満又は70℃超の材料のうち、液体の状態にある材料は、溶剤として蓄熱材と併用されてもよい。
(3)更に、上記(2)の中では、融点が15~50℃の蓄熱材が好ましい。
 融点が15~50℃の蓄熱材を用いる場合、融点が15℃未満又は50℃超の材料は蓄熱材には含まれない。融点が15℃未満又は50℃超の材料のうち、液体の状態にある材料は、溶剤として蓄熱材と併用されてもよい。
(4)更に、上記(2)の中では、融点が20~62℃の蓄熱材も好ましい。
 特に、薄型又は携帯用のノートパソコン、タブレット、及びスマートフォン等の電子デバイスの発熱体は、作動温度が20~65℃であることが多く、融点が20~62℃の蓄熱材を用いることが適している。融点が20~62℃の蓄熱材を用いる場合、融点が20℃未満又は62℃超の材料は蓄熱材には含まれない。融点が20℃未満又は62℃超の材料のうち、液体の状態にある材料は、溶剤として蓄熱材と併用されてもよいが、実質的に溶剤を含まないことが発熱体が発する熱を多く吸熱する点で好ましい。
When applied to an electronic device (particularly, a small-sized or portable electronic device), the heat storage material having the following melting points is preferable.
(1) As the heat storage material (preferably a latent heat storage material), a heat storage material having a melting point of 0 to 80 ° C. is preferable.
When a heat storage material having a melting point of 0 to 80 ° C. is used, the material having a melting point of less than 0 ° C. or more than 80 ° C. is not included in the heat storage material. Among the materials having a melting point of less than 0 ° C. or more than 80 ° C., the material in a liquid state may be used in combination with the heat storage material as a solvent.
(2) Among the above (1), a heat storage material having a melting point of 10 to 70 ° C. is preferable.
When a heat storage material having a melting point of 10 to 70 ° C. is used, the material having a melting point of less than 10 ° C. or more than 70 ° C. is not included in the heat storage material. Among the materials having a melting point of less than 10 ° C. or more than 70 ° C., the material in a liquid state may be used in combination with the heat storage material as a solvent.
(3) Further, in the above (2), a heat storage material having a melting point of 15 to 50 ° C. is preferable.
When a heat storage material having a melting point of 15 to 50 ° C. is used, the material having a melting point of less than 15 ° C. or more than 50 ° C. is not included in the heat storage material. Among the materials having a melting point of less than 15 ° C. or more than 50 ° C., the material in a liquid state may be used in combination with the heat storage material as a solvent.
(4) Further, in the above (2), a heat storage material having a melting point of 20 to 62 ° C. is also preferable.
In particular, heating elements of thin or portable electronic devices such as notebook computers, tablets, and smartphones often have an operating temperature of 20 to 65 ° C, and it is suitable to use a heat storage material having a melting point of 20 to 62 ° C. ing. When a heat storage material having a melting point of 20 to 62 ° C. is used, the material having a melting point of less than 20 ° C. or more than 62 ° C. is not included in the heat storage material. Of the materials having a melting point of less than 20 ° C or higher than 62 ° C, the material in a liquid state may be used in combination with a heat storage material as a solvent, but the fact that the material does not contain a solvent produces a large amount of heat generated by the heating element. It is preferable in that it absorbs heat.
 なかでも、蓄熱体の蓄熱性がより優れる点、及び、マイクロカプセルの空隙率を低下することができる点で、潜熱蓄熱材としては脂肪族炭化水素が好ましく、パラフィンがより好ましい。
 脂肪族炭化水素(好ましくはパラフィン)の融点は特に制限されないが、蓄熱部材の各種用途への適用の点で、0℃以上が好ましく、15℃以上がより好ましく、20℃以上が更に好ましい。上限は特に制限されないが、80℃以下が好ましく、70℃以下がより好ましく、60℃以下が更に好ましく、50℃以下が特に好ましい。
 脂肪族炭化水素としては、蓄熱部材の蓄熱性がより優れる点で、直鎖状の脂肪族炭化水素が好ましい。直鎖状の脂肪族炭化水素の炭素数は特に制限されないが、14以上が好ましく、16以上がより好ましく、17以上が更に好ましい。上限は特に制限されないが、26以下が好ましい。
 脂肪族炭化水素としては、融点が0℃以上の直鎖状の脂肪族炭化水素が好ましく、融点が0℃以上であって、かつ、炭素数14以上の直鎖状の脂肪族炭化水素がより好ましい。
Among them, an aliphatic hydrocarbon is preferable as the latent heat storage material, and paraffin is more preferable, in that the heat storage property of the heat storage body is more excellent and the void ratio of the microcapsules can be reduced.
The melting point of the aliphatic hydrocarbon (preferably paraffin) is not particularly limited, but is preferably 0 ° C. or higher, more preferably 15 ° C. or higher, still more preferably 20 ° C. or higher in terms of application of the heat storage member to various uses. The upper limit is not particularly limited, but is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, further preferably 60 ° C. or lower, and particularly preferably 50 ° C. or lower.
As the aliphatic hydrocarbon, a linear aliphatic hydrocarbon is preferable in that the heat storage property of the heat storage member is more excellent. The number of carbon atoms of the linear aliphatic hydrocarbon is not particularly limited, but 14 or more is preferable, 16 or more is more preferable, and 17 or more is further preferable. The upper limit is not particularly limited, but is preferably 26 or less.
As the aliphatic hydrocarbon, a linear aliphatic hydrocarbon having a melting point of 0 ° C. or higher is preferable, and a linear aliphatic hydrocarbon having a melting point of 0 ° C. or higher and having 14 or more carbon atoms is more preferable. preferable.
 融点が0℃以上の直鎖状の脂肪族炭化水素(直鎖状のパラフィン)としては、例えば、n-テトラデカン(融点6℃)、n-ペンタデカン(融点10℃)、n-ヘキサデカン(融点18℃)、n-ヘプタデカン(融点22℃)、n-オクタデカン(融点28℃)、n-ノナデカン(融点32℃)、n-エイコサン(融点37℃)、n-ヘンイコサン(融点40℃)、n-ドコサン(融点44℃)、n-トリコサン(融点48~50℃)、n-テトラコサン(融点52℃)、n-ペンタコサン(融点53~56℃)、n-ヘキサコサン(融点57℃)、n-ヘプタコサン(融点60℃)、n-オクタコサン(融点62℃)、n-ノナコサン(融点63~66℃)、及び、n-トリアコンタン(融点66℃)が挙げられる。
 なかでも、n-ヘプタデカン(融点22℃)、n-オクタデカン(融点28℃)、n-ノナデカン(融点32℃)、n-エイコサン(融点37℃)、n-ヘンイコサン(融点40℃)、n-ドコサン(融点44℃)、n-トリコサン(融点48~50℃)、n-テトラコサン(融点52℃)、n-ペンタコサン(融点53~56℃)、n-ヘキサコサン(融点60℃)、n-ヘプタコサン(融点60℃)、又は、n-オクタコサン(融点62℃)が好ましい。
Examples of the linear aliphatic hydrocarbon (melting point paraffin) having a melting point of 0 ° C. or higher include n-tetradecane (melting point 6 ° C.), n-pentadecane (melting point 10 ° C.), and n-hexadecane (melting point 18 ° C.). ℃), n-heptadecan (melting point 22 ℃), n-octadecane (melting point 28 ℃), n-nonadecan (melting point 32 ℃), n-eicosan (melting point 37 ℃), n-henikosan (melting point 40 ℃), n- Docosan (melting point 44 ° C), n-tricosan (melting point 48-50 ° C), n-tetracosan (melting point 52 ° C), n-pentacosan (melting point 53-56 ° C), n-hexakosan (melting point 57 ° C), n-heptacosan (Melting point 60 ° C.), n-octacosane (melting point 62 ° C.), n-nonakosan (melting point 63-66 ° C.), and n-triacontane (melting point 66 ° C.).
Among them, n-heptadecan (melting point 22 ° C.), n-octadecane (melting point 28 ° C.), n-nonadecan (melting point 32 ° C.), n-eicosan (melting point 37 ° C.), n-henikosan (melting point 40 ° C.), n- Docosan (melting point 44 ° C), n-tricosan (melting point 48-50 ° C), n-tetracosan (melting point 52 ° C), n-pentacosan (melting point 53-56 ° C), n-hexakosan (melting point 60 ° C), n-heptacosan (Melting point 60 ° C.) or n-octacosane (melting point 62 ° C.) is preferable.
 蓄熱材として、直鎖状の脂肪族炭化水素を使用する場合、直鎖状の脂肪族炭化水素の含有量は、蓄熱材の含有量に対して、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましい。上限としては、100質量%が挙げられる。 When a linear aliphatic hydrocarbon is used as the heat storage material, the content of the linear aliphatic hydrocarbon is preferably 80% by mass or more, preferably 90% by mass or more, based on the content of the heat storage material. Is more preferable, 95% by mass or more is further preferable, and 98% by mass or more is particularly preferable. The upper limit is 100% by mass.
 無機塩としては、無機水和塩が好ましく、例えば、アルカリ金属の塩化物の水和物(例:塩化ナトリウム2水和物等)、アルカリ金属の酢酸塩の水和物(例:酢酸ナトリウム水和物等)、アルカリ金属硫酸塩の水和物(例:硫酸ナトリウム水和物等)、アルカリ金属のチオ硫酸塩の水和物(例:チオ硫酸ナトリウム水和物等)、アルカリ土類金属硫酸塩の水和物(例:硫酸カルシウム水和物等)、及び、アルカリ土類金属の塩化物の水和物(例:塩化カルシウム水和物等)が挙げられる。
 脂肪族ジオールとしては、1,6-ヘキサンジオール、及び、1,8-オクタンジオールが挙げられる。
 糖及び糖アルコールとしては、キシリトール、エリスリトール、ガラクチトール、及び、ジヒドロキシアセトンが挙げられる。
As the inorganic salt, an inorganic hydrate is preferable, and for example, an alkali metal chloride hydrate (eg, sodium chloride dihydrate, etc.) and an alkali metal acetate hydrate (eg, sodium acetate water) are preferable. Japanese products, etc.), alkali metal sulfate hydrate (eg, sodium sulfate hydrate, etc.), alkali metal thiosulfate hydrate (eg, thiosulfate sodium hydrate, etc.), alkaline earth metal Examples thereof include sulfate hydrate (eg, calcium sulfate hydrate, etc.) and alkaline earth metal chloride hydrate (eg, calcium chloride hydrate, etc.).
Examples of the aliphatic diol include 1,6-hexanediol and 1,8-octanediol.
Examples of sugars and sugar alcohols include xylitol, erythritol, galactitol, and dihydroxyacetone.
 蓄熱材は、1種単独で使用してもよいし、2種類以上を混合して使用してもよい。蓄熱材を1種単独で使用する又は融点の異なる複数種を使用することで、用途に応じて蓄熱性を発現する温度領域及び蓄熱量を調節できる。
 蓄熱材の蓄熱作用を得たい中心温度に融点を持つ蓄熱材を中心に、その前後に融点を持つ蓄熱材を混合することで、蓄熱可能な温度領域を広げることができる。蓄熱材としてパラフィンを用いる場合を例に具体的に説明すると、蓄熱材の蓄熱作用を得たい中心温度に融点を持つパラフィンaを中心材料として用い、パラフィンaと、パラフィンaの前後に炭素数を有する他のパラフィンと、を混合することで、蓄熱体が広い温度領域(熱制御領域)を持つように設計できる。
 また、蓄熱作用を得たい中心温度に融点を持つパラフィンの含有量は特に制限されないが、蓄熱材全質量に対して、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましい。上限としては、100質量%が挙げられる。
As the heat storage material, one type may be used alone, or two or more types may be mixed and used. By using one type of heat storage material alone or by using a plurality of types having different melting points, the temperature range in which heat storage property is exhibited and the amount of heat storage can be adjusted according to the application.
The temperature range in which heat can be stored can be expanded by mixing the heat storage material having a melting point before and after the heat storage material having a melting point at the center temperature at which the heat storage effect of the heat storage material is desired to be obtained. To specifically explain the case of using paraffin as the heat storage material as an example, paraffin a having a melting point at the center temperature at which the heat storage effect of the heat storage material is desired is used as the core material, and the number of carbon atoms before and after the paraffin a and the paraffin a is set. By mixing with other paraffins that have, the heat storage body can be designed to have a wide temperature region (heat control region).
The content of paraffin having a melting point at the center temperature at which the heat storage action is desired is not particularly limited, but is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass or more with respect to the total mass of the heat storage material. Is more preferable, and 98% by mass or more is particularly preferable. The upper limit is 100% by mass.
 蓄熱材としてパラフィンを用いる場合、パラフィンを1種単独で使用してもよいし、2種類以上を混合して使用してもよい。融点の異なるパラフィンを複数種使用する場合、蓄熱性を発現する温度領域を広げることができる。融点の異なるパラフィンを複数使用する場合は、吸熱性を低下させいないために、分岐鎖状のパラフィンを実質的に含まず、直鎖状のパラフィンのみの混合物が望ましい。ここで、分岐鎖状のパラフィンを実質的に含まないとは、分岐鎖状のパラフィンの含有量が、パラフィンの全質量に対して、5質量%以下であることを意味し、2質量%以下が好ましく、1質量%以下が更に好ましい。
 一方、電子デバイスに適用するための蓄熱材としては、パラフィンは実質的に1種類であることも好ましい。実質的に1種類であると、パラフィンが高純度で蓄熱体に充填されるため、電子デバイスの発熱体に対する吸熱性が良好となる。ここで、実質的に1種類のパラフィンとは、主たるパラフィンの含有量が、パラフィン全質量に対して95~100質量%であることを意味し、98~100質量%であることが好ましい。
When paraffin is used as the heat storage material, one type of paraffin may be used alone, or two or more types may be mixed and used. When a plurality of types of paraffin having different melting points are used, the temperature range in which heat storage property is exhibited can be widened. When a plurality of paraffins having different melting points are used, a mixture containing only linear paraffins without substantially containing branched chain paraffins is desirable in order not to reduce the endothermic property. Here, substantially free of branched-chain paraffin means that the content of branched-chain paraffin is 5% by mass or less with respect to the total mass of paraffin, and 2% by mass or less. Is preferable, and 1% by mass or less is more preferable.
On the other hand, as the heat storage material for application to electronic devices, it is also preferable that there is substantially one type of paraffin. When there is substantially one type, paraffin is filled in the heat storage body with high purity, so that the heat absorption property of the electronic device with respect to the heating element is good. Here, substantially one type of paraffin means that the content of the main paraffin is 95 to 100% by mass with respect to the total mass of paraffin, and is preferably 98 to 100% by mass.
 複数のパラフィンを使用する場合には、蓄熱性を発現する温度領域及び蓄熱量の点で、主たるパラフィンの含有量は特に制限されないが、パラフィン全質量に対して、80~100質量%が好ましく、90~100質量%がより好ましく、95~100質量%が更に好ましい。
 なお、「主たるパラフィン」とは、含有される複数のパラフィンのうち、最も含有量の多いパラフィンのことを指す。主たるパラフィンの含有量は、パラフィン全質量に対して50質量%以上が好ましい。
 また、パラフィンの含有量は特に制限されないが、蓄熱材(好ましくは潜熱蓄熱材)全質量に対して、80~100質量%が好ましく、90~100質量%がより好ましく、95~100質量%が更に好ましく、98~100質量%が特に好ましい。
 また、パラフィンは、直鎖状のパラフィンが好ましく、分岐鎖状のパラフィンを実質的に含まないことが好ましい。直鎖状のパラフィンを含み、分岐鎖状のパラフィンを実質的に含まないことで、蓄熱性がより向上するためである。この理由としては、直鎖状のパラフィンの分子同士の会合が、分岐鎖状のパラフィンによって阻害されることを抑制できるためと推測される。
When a plurality of paraffins are used, the content of the main paraffin is not particularly limited in terms of the temperature range in which heat storage is exhibited and the amount of heat storage, but 80 to 100% by mass is preferable with respect to the total mass of paraffin. 90 to 100% by mass is more preferable, and 95 to 100% by mass is further preferable.
The "main paraffin" refers to the paraffin having the highest content among the plurality of paraffins contained. The content of the main paraffin is preferably 50% by mass or more with respect to the total mass of paraffin.
The content of paraffin is not particularly limited, but is preferably 80 to 100% by mass, more preferably 90 to 100% by mass, and 95 to 100% by mass with respect to the total mass of the heat storage material (preferably latent heat storage material). More preferably, 98 to 100% by mass is particularly preferable.
Further, the paraffin is preferably linear paraffin, and preferably does not substantially contain branched chain paraffin. This is because the heat storage property is further improved by containing the linear paraffin and substantially not containing the branched paraffin. It is presumed that the reason for this is that the association between the molecules of linear paraffin can be suppressed from being inhibited by the branched-chain paraffin.
 蓄熱体中の蓄熱材の含有量は、蓄熱体全質量に対して、65質量%以上である。
 なかでも、本発明の効果がより優れる点で、70質量%以上が好ましく、75質量%以上がより好ましい。蓄熱材の含有量の上限は特に制限されないが、蓄熱体の強度の点で、蓄熱体全質量に対して、99.9質量%以下が好ましく、99質量%以下がより好ましく、98質量%以下が更に好ましい。
The content of the heat storage material in the heat storage body is 65% by mass or more with respect to the total mass of the heat storage body.
Among them, 70% by mass or more is preferable, and 75% by mass or more is more preferable, because the effect of the present invention is more excellent. The upper limit of the content of the heat storage material is not particularly limited, but in terms of the strength of the heat storage body, it is preferably 99.9% by mass or less, more preferably 99% by mass or less, and 98% by mass or less with respect to the total mass of the heat storage body. Is more preferable.
(他の成分)
 マイクロカプセルのコア材としては、上述した蓄熱材以外の他の成分が内包されていてもよい。マイクロカプセルにコア材として内包し得る他の成分としては、例えば、溶剤、及び、難燃剤等の添加剤が挙げられる。
 コア材に占める蓄熱材の含有量は特に制限されないが、蓄熱体の蓄熱性がより優れる点で、コア材全質量に対して、80~100質量%が好ましく、90~100質量%がより好ましい。
(Other ingredients)
The core material of the microcapsules may contain components other than the above-mentioned heat storage material. Other components that can be encapsulated in the microcapsules as the core material include, for example, a solvent and an additive such as a flame retardant.
The content of the heat storage material in the core material is not particularly limited, but 80 to 100% by mass is preferable, and 90 to 100% by mass is more preferable with respect to the total mass of the core material in that the heat storage property of the heat storage body is more excellent. ..
 マイクロカプセルは、コア材として、溶剤を内包していてもよい。
 この場合の溶剤としては、融点が、蓄熱体が使用される温度領域(熱制御領域;例えば、発熱体の動作温度)から外れている既述の蓄熱材が挙げられる。即ち、溶剤は、熱制御領域において液体の状態で相変化しないものを指し、熱制御領域内において相転移を起こして吸放熱反応が生じる蓄熱材と区別される。
The microcapsules may contain a solvent as a core material.
Examples of the solvent in this case include the above-mentioned heat storage material whose melting point is outside the temperature range in which the heat storage body is used (heat control range; for example, the operating temperature of the heat storage body). That is, the solvent refers to a solvent that does not undergo a phase change in the liquid state in the heat control region, and is distinguished from a heat storage material that causes a phase transition in the heat control region and causes an endothermic reaction.
 コア材に占める溶剤の含有量は特に制限されないが、コア材全質量に対して、30質量%未満が好ましく、10質量%未満がより好ましく、1質量%以下が更に好ましい。下限は特に制限されないが、0質量%が挙げられる。 The content of the solvent in the core material is not particularly limited, but is preferably less than 30% by mass, more preferably less than 10% by mass, still more preferably 1% by mass or less, based on the total mass of the core material. The lower limit is not particularly limited, but may be 0% by mass.
 マイクロカプセルにコア材として内包し得る他の成分としては、例えば、紫外線吸収剤、光安定化剤、酸化防止剤、ワックス、及び、臭気抑制剤等の添加剤が挙げられる。 Examples of other components that can be included in the microcapsules as the core material include additives such as ultraviolet absorbers, light stabilizers, antioxidants, waxes, and odor suppressants.
(カプセル壁(壁部))
 マイクロカプセルは、コア材を内包するカプセル壁を有する。
 マイクロカプセルにおけるカプセル壁を形成する材料は特に制限されず、例えば、ポリマーが挙げられ、具体的には、ポリウレタンウレア、ポリウレタン、ポリウレア、メラミン樹脂、及び、アクリル樹脂が挙げられる。
 カプセル壁を薄くでき、蓄熱体の蓄熱性がより優れる点で、カプセル壁は、ポリウレタン、ポリウレア、ポリウレタンウレア、又は、メラミン樹脂を含むことが好ましく、ポリウレタン、ポリウレア、又はポリウレタンウレアを含むことがより好ましい。
 なお、ポリウレタンとはウレタン結合を複数有するポリマーであり、ポリオールとポリイソシアネートとの反応生成物が好ましい。
 また、ポリウレアとはウレア結合を複数有するポリマーであり、ポリアミンとポリイソシアネートとの反応生成物が好ましい。
 また、ポリウレタンウレアとはウレタン結合及びウレア結合を有するポリマーであり、ポリオールと、ポリアミンと、ポリイソシアネートとの反応生成物が好ましい。なお、ポリオールとポリイソシアネートとを反応させる際に、ポリイソシアネートの一部が水と反応してポリアミンとなり、結果的にポリウレタンウレアが得られることがある。
(Capsule wall (wall))
The microcapsules have a capsule wall that encloses the core material.
The material for forming the capsule wall in the microcapsules is not particularly limited, and examples thereof include polymers, and specific examples thereof include polyurethane urea, polyurethane, polyurea, melamine resin, and acrylic resin.
The capsule wall preferably contains polyurethane, polyurea, polyurethane urea, or melamine resin, and more preferably contains polyurethane, polyurea, or polyurethane urea, in that the capsule wall can be made thinner and the heat storage property of the heat storage body is more excellent. preferable.
The polyurethane is a polymer having a plurality of urethane bonds, and a reaction product of a polyol and a polyisocyanate is preferable.
Further, the polyurea is a polymer having a plurality of urea bonds, and a reaction product of a polyamine and a polyisocyanate is preferable.
Further, the polyurethane urea is a polymer having a urethane bond and a urea bond, and a reaction product of a polyol, a polyamine, and a polyisocyanate is preferable. When the polyol and the polyisocyanate are reacted, a part of the polyisocyanate reacts with water to form a polyamine, and as a result, polyurethane urea may be obtained.
 マイクロカプセルのカプセル壁は、ウレタン結合を有することが好ましい。ウレタン結合を有するカプセル壁は、例えば、上述したポリウレタンウレア又はポリウレタンを用いて得られる。
 ウレタン結合は、運動性の高い結合であるので、カプセル壁に熱可塑性をもたらすことができる。また、カプセル壁の柔軟性を調節しやすい。そのため、例えば蓄熱体の製造時の乾燥時間を長くすると、マイクロカプセルが変形しながら互いに結合しやすくなる。その結果、マイクロカプセルが細密充填構造をとりやすくなるので、蓄熱体の空隙率をより低減できる。
The capsule wall of the microcapsules preferably has a urethane bond. Capsule walls with urethane bonds are obtained, for example, using the polyurethane ureas or polyurethanes described above.
Since the urethane bond is a highly motile bond, it can provide thermoplasticity to the capsule wall. In addition, it is easy to adjust the flexibility of the capsule wall. Therefore, for example, if the drying time during the production of the heat storage body is lengthened, the microcapsules are easily deformed and bonded to each other. As a result, the microcapsules can easily form a close-packed structure, so that the porosity of the heat storage body can be further reduced.
 また、マイクロカプセルは、変形する粒子として存在していることが好ましい。
 マイクロカプセルが変形する粒子である場合、マイクロカプセルが壊れずに変形でき、蓄熱体中におけるマイクロカプセルの充填率を向上させることができる。結果、蓄熱体における蓄熱材の量を増やすことが可能になり、より優れた蓄熱性を実現できる。
 なお、マイクロカプセルが壊れずに変形するとは、変形量の程度は問わず、個々のマイクロカプセルに外圧が与えられていない状態での形状から変形することを意味する。マイクロカプセルに生じる変形としては、蓄熱体内においてマイクロカプセル同士が互いに押され合った場合に、球面同士が接触して平面状、又は一方が凸状で他方が凹状である接触面ができる変形が含まれる。
 マイクロカプセルが変形する粒子となり得る点で、カプセル壁を形成する材料としては、ポリウレタンウレア、ポリウレタン、又は、ポリウレアが好ましく、ポリウレタンウレア、又は、ポリウレタンがより好ましく、ポリウレタンウレアが更に好ましい。
Further, it is preferable that the microcapsules exist as deformable particles.
When the microcapsules are deformable particles, the microcapsules can be deformed without breaking, and the filling rate of the microcapsules in the heat storage body can be improved. As a result, it becomes possible to increase the amount of the heat storage material in the heat storage body, and it is possible to realize more excellent heat storage property.
The fact that the microcapsules are deformed without breaking means that the microcapsules are deformed from the shape in a state where no external pressure is applied to each microcapsule, regardless of the degree of deformation. Deformations that occur in microcapsules include deformations in which when microcapsules are pressed against each other in a heat storage body, spherical surfaces come into contact with each other to form a planar surface, or a contact surface in which one is convex and the other is concave. Is done.
Polyurethane urea, polyurethane, or polyurea is preferable, polyurethane urea or polyurethane is more preferable, and polyurethane urea is further preferable as the material for forming the capsule wall in that the microcapsules can be deformable particles.
 上述したように、ポリウレタン、ポリウレア、及び、ポリウレタンウレアは、ポリイソシアネートを用いて形成されることが好ましい。 As described above, polyurethane, polyurea, and polyurethane urea are preferably formed using polyisocyanate.
 ポリイソシアネートとは、2つ以上のイソシアネート基を有する化合物であり、芳香族ポリイソシアネート、及び、脂肪族ポリイソシアネートが挙げられる。
 芳香族ポリイソシアネートとしては、例えば、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネート、ナフタレン-1,4-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3,3’-ジメトキシ-ビフェニルジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、キシリレン-1,4-ジイソシアネート、キシリレン-1,3-ジイソシアネート、4-クロロキシリレン-1,3-ジイソシアネート、2-メチルキシリレン-1,3-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、及び、4,4’-ジフェニルヘキサフルオロプロパンジイソシアネートが挙げられる。
The polyisocyanate is a compound having two or more isocyanate groups, and examples thereof include aromatic polyisocyanates and aliphatic polyisocyanates.
Examples of the aromatic polyisocyanate include m-phenylene diisocyanate, p-phenylene diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, naphthalene-1,4-diisocyanate, and diphenylmethane-4,4'-. Diisocyanate, 3,3'-dimethoxy-biphenyldiisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, xylylene-1,4-diisocyanate, xylylene-1,3-diisocyanate, 4-chloroxylylene-1 , 3-Diisocyanate, 2-methylxylylene-1,3-diisocyanate, 4,4'-diphenylpropanediisocyanate, and 4,4'-diphenylhexafluoropropanediisocyanate.
 脂肪族ポリイソシアネートとしては、例えば、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン-1,2-ジイソシアネート、ブチレン-1,2-ジイソシアネート、シクロヘキシレン-1,2-ジイソシアネート、シクロヘキシレン-1,3-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,4-ビス(イソシアネートメチル)シクロヘキサン、1,3-ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、リジンジイソシアネート、及び、水素化キシリレンジイソシアネートが挙げられる。 Examples of the aliphatic polyisocyanate include trimethylene diisocyanate, hexamethylene diisocyanate, propylene-1,2-diisocyanate, butylene-1,2-diisocyanate, cyclohexylene-1,2-diisocyanate, and cyclohexylene-1,3-diisocyanate. , Cyclohexylene-1,4-diisocyanate, dicyclohexammethane-4,4'-diisocyanate, 1,4-bis (isocyanatemethyl) cyclohexane, 1,3-bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate, lysine diisocyanate, and Hexamethylene diisocyanate can be mentioned.
 なお、上記では2官能の芳香族ポリイソシアネート及び脂肪族ポリイソシアネートを例示したが、ポリイソシアネートとしては、3官能以上のポリイソシアネート(例えば、3官能のトリイソシアネート、及び、4官能のテトライソシアネート)も挙げられる。
 より具体的には、ポリイソシアネートとしては、上記の2官能のポリイソシアネートの3量体であるビューレット体又はイソシアヌレート体、トリメチロールプロパン等のポリオールと2官能のポリイソシアネートとの付加体、ベンゼンイソシアネートのホルマリン縮合物、メタクリロイルオキシエチルイソシアネート等の重合性基を有するポリイソシアネート、及び、リジントリイソシアネートも挙げられる。
 ポリイソシアネートについては「ポリウレタン樹脂ハンドブック」(岩田敬治編、日刊工業新聞社発行(1987))に記載されている。
Although bifunctional aromatic polyisocyanates and aliphatic polyisocyanates have been exemplified above, trifunctional or higher functional polyisocyanates (for example, trifunctional triisocyanates and tetrafunctional tetraisocyanates) may also be used as polyisocyanates. Can be mentioned.
More specifically, the polyisocyanate includes a burette or isocyanurate which is a trimer of the above-mentioned bifunctional polyisocyanate, an adduct of a polyol such as trimethylolpropane and a bifunctional polyisocyanate, and benzene. Examples thereof include formarin condensates of isocyanates, polyisocyanates having a polymerizable group such as methacryloyloxyethyl isocyanate, and lysine triisocyanates.
Polyisocyanates are described in the "Polyurethane Resin Handbook" (edited by Keiji Iwata, published by Nikkan Kogyo Shimbun (1987)).
 なかでも、ポリイソシアネートとしては、3官能以上のポリイソシアネートが好ましい。
 3官能以上のポリイソシアネートとしては、例えば、3官能以上の芳香族ポリイソシアネート、及び、3官能以上の脂肪族ポリイソシアネートが挙げられる。
 3官能以上のポリイソシアネートとしては、2官能のポリイソシアネートと分子中に3つ以上の活性水素基を有する化合物(例えば、3官能以上の、ポリオール、ポリアミン、又はポリチオール等)とのアダクト体(付加物)である3官能以上のポリイソシアネート(アダクト型である3官能以上のポリイソシアネート)、及び、2官能のポリイソシアネートの3量体(ビウレット型又はイソシアヌレート型)も好ましい。
Among them, as the polyisocyanate, a trifunctional or higher functional polyisocyanate is preferable.
Examples of the trifunctional or higher functional polyisocyanate include a trifunctional or higher functional aromatic polyisocyanate and a trifunctional or higher functional aliphatic polyisocyanate.
As the trifunctional or higher functional polyisocyanate, an adduct form (addition) of a bifunctional polyisocyanate and a compound having three or more active hydrogen groups in the molecule (for example, a trifunctional or higher functional polyol, polyamine, polythiol, etc.) A trifunctional or higher polyisocyanate (adduct type trifunctional or higher polyisocyanate) and a trimer of bifunctional polyisocyanate (biuret type or isocyanurate type) are also preferable.
 アダクト型である3官能以上のポリイソシアネートとしては、例えば、タケネート(登録商標)D-102、D-103、D-103H、D-103M2、P49-75S、D-110N、D-120N、D-140N、D-160N(以上、三井化学株式会社製)、デスモジュール(登録商標)L75、UL57SP(住化バイエルウレタン株式会社製)、コロネート(登録商標)HL、HX、L(日本ポリウレタン株式会社製)、P301-75E(旭化成株式会社製)、及び、バーノック(登録商標)D-750(DIC株式会社製)が挙げられる。
 なかでも、アダクト型の3官能以上のポリイソシアネートとしては、三井化学株式会社製のタケネート(登録商標)D-110N、D-120N、D-140N、D-160N、又は、DIC株式会社製のバーノック(登録商標)D-750が好ましい。
 イソシアヌレート型の3官能以上のポリイソシアネートとしては、例えば、タケネート(登録商標)D-127N、D-170N、D-170HN、D-172N、D-177N、D-204(三井化学株式会社製)、スミジュールN3300、デスモジュール(登録商標)N3600、N3900、Z4470BA(住化バイエルウレタン)、コロネート(登録商標)HX、HK(日本ポリウレタン株式会社製)、デュラネート(登録商標)TPA-100、TKA-100、TSA-100、TSS-100、TLA-100、TSE-100(旭化成株式会社製)が挙げられる。
 ビウレット型の3官能以上のポリイソシアネートとしては、例えば、タケネート(登録商標)D-165N、NP1100(三井化学株式会社製)、デスモジュール(登録商標)N3200(住化バイエルウレタン)、デュラネート(登録商標)24A-100(旭化成株式会社製)が挙げられる。
Examples of the adduct-type trifunctional or higher-functional polyisocyanate include Takenate® D-102, D-103, D-103H, D-103M2, P49-75S, D-110N, D-120N, and D-. 140N, D-160N (all manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) L75, UL57SP (manufactured by Sumika Bayer Urethane Co., Ltd.), Coronate (registered trademark) HL, HX, L (manufactured by Nippon Polyurethane Co., Ltd.) ), P301-75E (manufactured by Asahi Kasei Corporation), and Barnock (registered trademark) D-750 (manufactured by DIC Co., Ltd.).
Among them, as the adduct-type trifunctional or higher polyisocyanate, Takenate (registered trademark) D-110N, D-120N, D-140N, D-160N manufactured by Mitsui Chemicals, Inc., or Barnock manufactured by DIC Corporation. (Registered trademark) D-750 is preferable.
Examples of the isocyanurate-type trifunctional or higher functional isocyanate include Takenate (registered trademark) D-127N, D-170N, D-170HN, D-172N, D-177N, and D-204 (manufactured by Mitsui Chemicals, Inc.). , Sumijour N3300, Death Module (registered trademark) N3600, N3900, Z4470BA (Sumika Bayer Urethane), Coronate (registered trademark) HX, HK (manufactured by Nippon Polyurethane Industry Co., Ltd.), Duranate (registered trademark) TPA-100, TKA- 100, TSA-100, TSS-100, TLA-100, TSE-100 (manufactured by Asahi Kasei Corporation) can be mentioned.
Biuret-type trifunctional or higher functional isocyanates include, for example, Takenate (registered trademark) D-165N, NP1100 (manufactured by Mitsui Chemicals, Inc.), Death Module (registered trademark) N3200 (Sumitomo Bayer Urethane), and Duranate (registered trademark). ) 24A-100 (manufactured by Asahi Kasei Corporation).
 ポリオールとは、2つ以上のヒドロキシル基を有する化合物であり、例えば、低分子ポリオール(例:脂肪族ポリオール、芳香族ポリオール)、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリラクトン系ポリオール、ヒマシ油系ポリオール、ポリオレフィン系ポリオール、及び、水酸基含有アミン系化合物が挙げられる。
 なお、低分子ポリオールとは、分子量が300以下のポリオールを意味し、例えば、エチレングリコール、ジエチレングリコール、及び、プロピレングリコール等の2官能の低分子ポリオール、並びに、グリセリン、トリメチロールプロパン、ヘキサントリオール、ペンタエリスリトール、及び、ソルビトール等の3官能以上の低分子ポリオールが挙げられる。
 マイクロカプセルが変形しやすい点で、上記ポリオールとしては、低分子ポリオールが好ましい。
The polyol is a compound having two or more hydroxyl groups, and is, for example, a low molecular weight polyol (eg, aliphatic polyol, aromatic polyol), a polyether polyol, a polyester-based polyol, a polylactone-based polyol, a castor oil-based polyol. , Polyol-based polyols, and hydroxyl group-containing amine-based compounds.
The low molecular weight polyol means a polyol having a molecular weight of 300 or less, for example, bifunctional low molecular weight polyols such as ethylene glycol, diethylene glycol, and propylene glycol, as well as glycerin, trimethylolpropane, hexanetriol, and penta. Examples thereof include trifunctional or higher low molecular weight polyols such as erythritol and sorbitol.
As the above-mentioned polyol, a small molecule polyol is preferable because the microcapsules are easily deformed.
 なお、水酸基含有アミン系化合物としては、例えば、アミノ化合物のオキシアルキル化誘導体等として、アミノアルコールが挙げられる。アミノアルコールとしては、例えば、エチレンジアミン等のアミノ化合物のプロピレンオキサイド又はエチレンオキサイド付加物である、N,N,N’,N’-テトラキス[2-ヒドロキシプロピル]エチレンジアミン、及び、N,N,N’,N’-テトラキス[2-ヒドロキシエチル]エチレンジアミン等が挙げられる。 Examples of the hydroxyl group-containing amine compound include amino alcohols as oxyalkylated derivatives of amino compounds. Examples of the amino alcohol include N, N, N', N'-tetrakis [2-hydroxypropyl] ethylenediamine, which are propylene oxides or adducts of ethylene oxide of amino compounds such as ethylenediamine, and N, N, N'. , N'-Tetrakis [2-hydroxyethyl] ethylenediamine and the like.
 ポリアミンとは、2つ以上のアミノ基(第1級アミノ基又は第2級アミノ基)を有する化合物であり、ジエチレントリアミン、トリエチレンテトラミン、1,3-プロピレンジアミン、及び、ヘキサメチレンジアミン等の脂肪族多価アミン;脂肪族多価アミンのエポキシ化合物付加物;ピペラジン等の脂環式多価アミン;並びに、3,9-ビス-アミノプロピル-2,4,8,10-テトラオキサスピロ-(5,5)ウンデカン等の複素環式ジアミンが挙げられる。 A polyamine is a compound having two or more amino groups (primary amino group or secondary amino group), and is a fat such as diethylenetriamine, triethylenetetramine, 1,3-propylenediamine, and hexamethylenediamine. Group polyvalent amines; Epoxy compound adducts of aliphatic polyvalent amines; Alicyclic polyvalent amines such as piperazine; and 3,9-bis-aminopropyl-2,4,8,10-tetraoxaspiro- ( 5,5) Examples thereof include heterocyclic diamines such as undecane.
 マイクロカプセルにおけるカプセル壁の質量は特に制限されないが、コア部に含まれる蓄熱材全質量に対して、12質量%以下が好ましく、10質量%以下がより好ましい。カプセル壁の質量が内包成分である蓄熱材に対して12質量%以下であることは、カプセル壁が薄壁であることを示す。カプセル壁を薄壁とすることで、蓄熱体中に占める蓄熱材を内包したマイクロカプセルの含量が高められ、結果、蓄熱部材の蓄熱性がより優れたものとなる。
 また、カプセル壁の質量の下限は特に制限されないが、マイクロカプセルの耐圧性を保つ点で、蓄熱材全質量に対して、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上が更に好ましい。
The mass of the capsule wall in the microcapsule is not particularly limited, but is preferably 12% by mass or less, more preferably 10% by mass or less, based on the total mass of the heat storage material contained in the core portion. The fact that the mass of the capsule wall is 12% by mass or less with respect to the heat storage material which is the inclusion component indicates that the capsule wall is a thin wall. By making the capsule wall a thin wall, the content of the microcapsules containing the heat storage material in the heat storage body is increased, and as a result, the heat storage property of the heat storage member becomes more excellent.
The lower limit of the mass of the capsule wall is not particularly limited, but 1% by mass or more is preferable, 2% by mass or more is more preferable, and 3% by mass is more preferable with respect to the total mass of the heat storage material in terms of maintaining the pressure resistance of the microcapsules. The above is more preferable.
(マイクロカプセルの物性)
-粒径-
 マイクロカプセルの粒径は特に制限されないが、体積基準のメジアン径(Dm)で1~80μmが好ましく、10~70μmがより好ましく、15~50μmが更に好ましい。マイクロカプセルの粒径は小さい方が、マイクロカプセル間の空隙をより少なくすることができ、マイクロカプセル同士の接触面積を広げることができるため、取り扱い時における欠陥の発生を更に抑制することができる。その点で、マイクロカプセルの粒径は、体積基準のメジアン径(Dm)で40μm以下が好ましく、30μm以下がより好ましく、20μm以下が更に好ましい。
 マイクロカプセルの体積基準のメジアン径は、後述するマイクロカプセルの製造方法について説明した方法の乳化工程における分散の条件を変更することにより、制御できる。
 ここで、マイクロカプセルの体積基準のメジアン径とは、粒径を閾値としてマイクロカプセル全体を2つに分けた場合に、大径側と小径側での粒子の体積の合計が等量となる粒径をいう。マイクロカプセルの体積基準のメジアン径は、マイクロトラックMT3300EXII(日機装株式会社製)を用いてレーザー回折・散乱法により測定される。
 なお、マイクロカプセルの分取方法としては、蓄熱体を水に24時間以上浸漬し、得られた水分散液を遠心分離することで単離したマイクロカプセルが得られる。
(Physical characteristics of microcapsules)
-Particle size-
The particle size of the microcapsules is not particularly limited, but the volume-based median diameter (Dm) is preferably 1 to 80 μm, more preferably 10 to 70 μm, and even more preferably 15 to 50 μm. The smaller the particle size of the microcapsules, the smaller the voids between the microcapsules and the wider the contact area between the microcapsules, so that the occurrence of defects during handling can be further suppressed. In that respect, the particle size of the microcapsules is preferably 40 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less in terms of volume-based median diameter (Dm).
The volume-based median diameter of the microcapsules can be controlled by changing the dispersion conditions in the emulsification step of the method described below for the method of producing microcapsules.
Here, the volume-based median diameter of microcapsules is a grain in which the total volume of particles on the large diameter side and the small diameter side is equal when the entire microcapsule is divided into two with the particle size as a threshold. Refers to the diameter. The volume-based median diameter of the microcapsules is measured by a laser diffraction / scattering method using a Microtrack MT3300EXII (manufactured by Nikkiso Co., Ltd.).
As a method for separating the microcapsules, the isolated microcapsules can be obtained by immersing the heat storage body in water for 24 hours or more and centrifuging the obtained aqueous dispersion.
-粒径分布-
 マイクロカプセルの粒径分布は特に制限されないが、以下の式で算出されるマイクロカプセルの体積基準のメジアン径のCV(Coefficient of Variation)値(相関係数)が、10~100%であることが好ましい。
  CV値=標準偏差σ/メジアン径×100
 なお、標準偏差σは、上記のメジアン径の測定方法に従って測定されるマイクロカプセルの体積基準の粒径に基づいて算出される。
-Particle size distribution-
The particle size distribution of the microcapsules is not particularly limited, but the CV (Coefficient of Variation) value (correlation coefficient) of the median diameter based on the volume of the microcapsules calculated by the following formula may be 10 to 100%. preferable.
CV value = standard deviation σ / median diameter x 100
The standard deviation σ is calculated based on the volume-based particle size of the microcapsules measured according to the above-mentioned method for measuring the median diameter.
-壁の厚み-
 マイクロカプセルのカプセル壁の厚み(壁厚)は、特に制限されないが、より薄い方が変形しやすく、空隙を少なくすること、及び/又は、マイクロカプセル同士の接触面積を広げることが容易になりやすいため、取り扱い時における欠陥の発生を更に抑制することができる。具体的には、10μm以下が好ましく、本発明の効果がより優れる点で、0.20μm以下がより好ましく、0.15μm以下が更に好ましく、0.11μm以下が特に好ましい。一方で、ある程度の厚みがあることで、カプセル壁の強度が保つことができるため、壁厚は、0.01μm以上が好ましく、0.05μm以上がより好ましい。
 壁厚は、任意の20個のマイクロカプセルの個々の壁厚(μm)を走査型電子顕微鏡(SEM:Scanning Electron Microscope)により求めて平均した平均値をいう。
 具体的には、蓄熱体の断面切片を作製し、SEMを用いてその断面を観察し、上述した測定方法により算出したメジアン径±10%の大きさのマイクロカプセルについて、20個のマイクロカプセルを選択する。それら個々の選択されたマイクロカプセルについて断面を観察して壁厚を測定し、20個のマイクロカプセルの壁厚の平均値を算出することにより、マイクロカプセルの壁厚が求められる。
-Wall thickness-
The thickness (wall thickness) of the capsule wall of the microcapsules is not particularly limited, but the thinner the capsule wall, the easier it is to deform, reduce the number of voids, and / or increase the contact area between the microcapsules. Therefore, it is possible to further suppress the occurrence of defects during handling. Specifically, 10 μm or less is preferable, 0.20 μm or less is more preferable, 0.15 μm or less is further preferable, and 0.11 μm or less is particularly preferable, in that the effect of the present invention is more excellent. On the other hand, since the strength of the capsule wall can be maintained by having a certain thickness, the wall thickness is preferably 0.01 μm or more, more preferably 0.05 μm or more.
The wall thickness is an average value obtained by determining the individual wall thickness (μm) of any 20 microcapsules with a scanning electron microscope (SEM) and averaging them.
Specifically, a cross-sectional section of the heat storage body is prepared, the cross section is observed using SEM, and 20 microcapsules are formed for the microcapsules having a size of ± 10% of the median diameter calculated by the above-mentioned measurement method. select. The wall thickness of the microcapsules is determined by observing the cross section of each of the selected microcapsules, measuring the wall thickness, and calculating the average value of the wall thicknesses of the 20 microcapsules.
 上述のマイクロカプセルの体積基準のメジアン径をDm[単位:μm]とし、上述のマイクロカプセルのカプセル壁の厚みをδ[単位:μm]とした場合、マイクロカプセルの体積基準のメジアン径に対するマイクロカプセルのカプセル壁の厚みの割合(δ/Dm)は、0.02以下が好ましく、0.0075以下がより好ましく、0.006以下が更に好ましく、0.005以下が特に好ましい。δ/Dmが0.0075以下であれば、蓄熱体の製造時にマイクロカプセルが変形しやすくなるので、蓄熱体の空隙率を特に低くでき、且つ/又は、後述するマイクロカプセルの隣接比を特に高くできる。
 δ/Dmの下限値は、マイクロカプセルの強度を維持できる点から、0.001以上が好ましく、0.0015以上がより好ましく、0.0025以上が更に好ましい。
When the volume-based median diameter of the above-mentioned microcapsules is Dm [unit: μm] and the thickness of the capsule wall of the above-mentioned microcapsules is δ [unit: μm], the microcapsules with respect to the volume-based median diameter of the microcapsules. The ratio of the thickness of the capsule wall (δ / Dm) is preferably 0.02 or less, more preferably 0.0075 or less, further preferably 0.006 or less, and particularly preferably 0.005 or less. When δ / Dm is 0.0075 or less, the microcapsules are easily deformed during the production of the heat storage body, so that the porosity of the heat storage body can be particularly low and / or the adjacency ratio of the microcapsules described later is particularly high. can.
The lower limit of δ / Dm is preferably 0.001 or more, more preferably 0.0015 or more, still more preferably 0.0025 or more, from the viewpoint of maintaining the strength of the microcapsules.
-変形率-
 マイクロカプセルの変形率は、特に制限されないが、変形率が大きい方が、カプセルの空隙率を低下することができる点、及び、カプセル隣接比を高くすることができる点で好ましい。ここで、マイクロカプセルの変形率とは、以下の手法により測定した値を意味する。
 蓄熱体形成用組成物からマイクロカプセルを直接取り出すか、又は、蓄熱体から溶剤で溶出させることにより、粒径が平均値の±10%以内のマイクロカプセルを15個取り出す。このマイクロカプセルを内包成分が溶融する温度+5℃に設定したホットプレートで加温し、内包成分を溶融させる。内包成分が溶融した状態のマイクロカプセルに対して、押し込み硬度計を用いて、0.1mm角の平面圧子を接触させてから、最大押し込み荷重1mNで押し当てることにより平面圧子が沈み込む距離の最大値(最大押し込み深さ)を測定する。
 上記の測定結果から、(最大押し込み深さ(単位:μm))/(マイクロカプセルのメジアン径Dm(単位:μm))×100の値を算出し、測定した15個分を平均した平均値を、マイクロカプセルの変形率とした。変形率が大きいほど、マイクロカプセルが大きく変形していることを表す。なお、押し込み硬度計としては、フィッシャー・インストルメンツ社製HM2000型微小硬度計を使用できる。
 マイクロカプセルの変形率としては、本発明の効果がより優れる点で、30%以上が好ましく、35%以上がより好ましく、40%以上が更に好ましく、50%以上が特に好ましい。特に、変形率が35%以上であると、効果がより優れる。上限については特に制限されないが、例えば、100%以下であり、製造時等の取り扱いのし易さから、60%以下が好ましい。
-Deformation rate-
The deformation rate of the microcapsules is not particularly limited, but a larger deformation rate is preferable in that the porosity of the capsule can be reduced and the capsule adjacency ratio can be increased. Here, the deformation rate of the microcapsules means a value measured by the following method.
By directly removing the microcapsules from the heat storage body forming composition or eluting the microcapsules from the heat storage body with a solvent, 15 microcapsules having a particle size within ± 10% of the average value are taken out. The microcapsules are heated on a hot plate set to a temperature of + 5 ° C. at which the inclusion component melts to melt the inclusion component. The maximum distance that the flat indenter sinks by contacting the microcapsules with the contained components in a molten state with a 0.1 mm square flat indenter using an indentation hardness tester and then pressing with a maximum indentation load of 1 mN. Measure the value (maximum indentation depth).
From the above measurement results, the value of (maximum indentation depth (unit: μm)) / (microcapsule median diameter Dm (unit: μm)) × 100 was calculated, and the average value of the measured 15 pieces was calculated. , The deformation rate of the microcapsules. The larger the deformation rate, the larger the deformation of the microcapsules. As the indentation hardness tester, an HM2000 type micro hardness tester manufactured by Fisher Instruments Co., Ltd. can be used.
As the deformation rate of the microcapsules, 30% or more is preferable, 35% or more is more preferable, 40% or more is further preferable, and 50% or more is particularly preferable, because the effect of the present invention is more excellent. In particular, when the deformation rate is 35% or more, the effect is more excellent. The upper limit is not particularly limited, but is, for example, 100% or less, preferably 60% or less from the viewpoint of ease of handling during manufacturing and the like.
 マイクロカプセルの変形率は、例えば、マイクロカプセルのカプセル壁の厚み、マイクロカプセルの体積基準のメジアン径に対するマイクロカプセルのカプセル壁の厚みの割合(δ/Dm)、及び、カプセル壁を形成する材料によって、調整できる。 The deformation rate of the microcapsules depends on, for example, the thickness of the capsule wall of the microcapsules, the ratio of the thickness of the capsule wall of the microcapsules to the median diameter based on the volume of the microcapsules (δ / Dm), and the material forming the capsule wall. , Can be adjusted.
 蓄熱体中におけるマイクロカプセルの含有量は特に制限されないが、蓄熱体の蓄熱性がより優れる点で、蓄熱体全質量に対して、80質量%以上が好ましく、85~99質量%がより好ましく、90~99質量%が更に好ましい。 The content of the microcapsules in the heat storage body is not particularly limited, but 80% by mass or more is preferable, and 85 to 99% by mass is more preferable with respect to the total mass of the heat storage body, in that the heat storage property of the heat storage body is more excellent. 90 to 99% by mass is more preferable.
(マイクロカプセルの製造方法)
 マイクロカプセルの製造方法は特に制限されず、公知の方法が採用できる。
 例えば、カプセル壁がポリウレタンウレア、ポリウレタン、又は、ポリウレアを含む場合、蓄熱材とカプセル壁材とを含む油相を、乳化剤を含む水相に分散して乳化液を調製する工程(乳化工程)と、カプセル壁材を油相と水相との界面で重合させてカプセル壁を形成し、蓄熱材を内包するマイクロカプセルを形成する工程(カプセル化工程)と、を含む界面重合法が挙げられる。
 カプセル壁がメラミン樹脂を含む場合は、蓄熱材を含む油相を、乳化剤を含む水相に分散して乳化液を調製する工程(乳化工程)と、カプセル壁材を水相に添加し、乳化液滴の表面にカプセル壁材による高分子層を形成し、蓄熱材を内包するマイクロカプセルを形成する工程(カプセル化工程)を含むコアセルベーション法が挙げられる。
 なお、カプセル壁材とは、カプセル壁を形成し得る材料を意味する。
 以下では、界面重合法の各工程について詳述する。
(Manufacturing method of microcapsules)
The method for producing microcapsules is not particularly limited, and known methods can be adopted.
For example, when the capsule wall contains polyurethane urea, polyurethane, or polyurea, a step of dispersing an oil phase containing a heat storage material and a capsule wall material in an aqueous phase containing an emulsifier to prepare an emulsion (emulsification step). An interface polymerization method including a step of forming a capsule wall by polymerizing a capsule wall material at an interface between an oil phase and an aqueous phase to form a microcapsule containing a heat storage material (encapsulation step) can be mentioned.
When the capsule wall contains melamine resin, the oil phase containing the heat storage material is dispersed in the aqueous phase containing the emulsifier to prepare an emulsified solution (emulsification step), and the capsule wall material is added to the aqueous phase to emulsify. A core selvation method including a step of forming a polymer layer of a capsule wall material on the surface of a droplet to form a microcapsule containing a heat storage material (encapsulation step) can be mentioned.
The capsule wall material means a material that can form a capsule wall.
In the following, each step of the interfacial polymerization method will be described in detail.
 界面重合法の乳化工程では、蓄熱材とカプセル壁材とを含む油相を、乳化剤を含む水相に分散して乳化液を調製する。なお、カプセル壁材には、ポリイソシアネートと、ポリオール及びポリアミンからなる選択される少なくとも1種の化合物とが少なくとも含まれる。
 乳化液は、蓄熱材とカプセル壁材とを含む油相を、乳化剤を含む水相に分散させることにより形成される。
 油相は、少なくとも蓄熱材及びカプセル壁材を含み、必要に応じて、溶剤、及び/又は、添加剤等の他の成分を更に含んでいてもよい。油相に含んでもよい溶剤としては、分散安定性が優れる点から、非水溶性有機溶剤が好ましく、酢酸エチル、メチルエチルケトン、又は、トルエンがより好ましい。
 水相は、少なくとも水性媒体及び乳化剤を含むことができる。
 水性媒体としては、水、及び、水と水溶性有機溶剤との混合溶剤が挙げられ、水が好ましい。「水溶性」とは、25℃の水100質量%に対する対象物質の溶解量が5質量%以上であることを意味する。
 水性媒体の含有量は特に制限されないが、油相と水相との混合物である乳化液全質量に対して、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が更に好ましい。
In the emulsification step of the interfacial polymerization method, an oil phase containing a heat storage material and a capsule wall material is dispersed in an aqueous phase containing an emulsifier to prepare an emulsion. The capsule wall material contains at least a polyisocyanate and at least one selected compound consisting of a polyol and a polyamine.
The emulsion is formed by dispersing an oil phase containing a heat storage material and a capsule wall material in an aqueous phase containing an emulsifier.
The oil phase contains at least a heat storage material and a capsule wall material, and may further contain other components such as a solvent and / or an additive, if necessary. As the solvent that may be contained in the oil phase, a water-insoluble organic solvent is preferable, and ethyl acetate, methyl ethyl ketone, or toluene is more preferable, because the dispersion stability is excellent.
The aqueous phase can include at least an aqueous medium and an emulsifier.
Examples of the aqueous medium include water and a mixed solvent of water and a water-soluble organic solvent, and water is preferable. "Water-soluble" means that the amount of the target substance dissolved in 100% by mass of water at 25 ° C. is 5% by mass or more.
The content of the aqueous medium is not particularly limited, but is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and 40 to 60% by mass with respect to the total mass of the emulsion which is a mixture of the oil phase and the aqueous phase. % Is more preferable.
 乳化剤としては、分散剤、界面活性剤及びこれらの組み合わせが挙げられる。
 分散剤としては、公知の分散剤が使用でき、ポリビニルアルコールが好ましい。
 界面活性剤としては、ノニオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、及び、両性界面活性剤が挙げられる。界面活性剤は、1種単独で使用してもよいし、2種類以上を混合して使用してもよい。
 乳化剤の含有量は、油相と水相との混合物である乳化液全質量に対し、0質量%超20質量%以下が好ましく、0.005~10質量%がより好ましく、0.01~10質量%が更に好ましく、1~5質量%が特に好ましい。
 水相は、必要に応じて、紫外線吸収剤、酸化防止剤、及び、防腐剤等の他の成分を含んでいてもよい。
Examples of the emulsifier include a dispersant, a surfactant and a combination thereof.
As the dispersant, a known dispersant can be used, and polyvinyl alcohol is preferable.
Examples of the surfactant include a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant. The surfactant may be used alone or in combination of two or more.
The content of the emulsifier is preferably more than 0% by mass and 20% by mass or less, more preferably 0.005 to 10% by mass, and 0.01 to 10 with respect to the total mass of the emulsion which is a mixture of the oil phase and the aqueous phase. The mass% is more preferable, and 1 to 5% by mass is particularly preferable.
The aqueous phase may contain other components such as UV absorbers, antioxidants, and preservatives, if desired.
 分散は、油相を油滴として水相に分散させること(乳化)をいう。分散は、油相と水相との分散に通常用いられる手段(例えば、ホモジナイザー、マントンゴーリー、超音波分散機、ディゾルバー、ケディーミル、及び、その他の公知の分散装置)を用いて行うことができる。 Dispersion refers to dispersing the oil phase as oil droplets in the aqueous phase (emulsification). Dispersion can be carried out using means commonly used for dispersion between the oil phase and the aqueous phase (eg, homogenizers, manton gorries, ultrasonic dispersers, dissolvers, keddy mills, and other known dispersers).
 油相の水相に対する混合比(油相質量/水相質量)は、0.1~1.5が好ましく、0.2~1.2がより好ましく、0.4~1.0が更に好ましい。 The mixing ratio of the oil phase to the aqueous phase (oil phase mass / aqueous phase mass) is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and even more preferably 0.4 to 1.0. ..
-カプセル化工程-
 カプセル化工程では、カプセル壁材を油相と水相との界面で重合させてカプセル壁を形成し、蓄熱材を内包するマイクロカプセルを形成する。
-Encapsulation process-
In the encapsulation step, the capsule wall material is polymerized at the interface between the oil phase and the aqueous phase to form a capsule wall, and microcapsules containing a heat storage material are formed.
 重合は、好ましくは加熱下で行われる。重合における反応温度は、40~100℃が好ましく、50~80℃がより好ましい。また、重合の反応時間は、0.5~10時間程度が好ましく、1~5時間程度がより好ましい。 Polymerization is preferably carried out under heating. The reaction temperature in the polymerization is preferably 40 to 100 ° C, more preferably 50 to 80 ° C. The reaction time of the polymerization is preferably about 0.5 to 10 hours, more preferably about 1 to 5 hours.
 重合中に、マイクロカプセル同士の凝集を防止するためには、水性溶液(例えば、水、酢酸水溶液等)を更に加えてマイクロカプセル同士の衝突確率を下げることが好ましい。
 また、充分な攪拌を行うことも好ましい。
 更に、重合中に反応系に凝集防止用の分散剤を添加してもよい。
 更に、必要に応じて、重合中に反応系にニグロシン等の荷電調節剤、又はその他任意の補助剤を添加してもよい。
In order to prevent the agglutination of the microcapsules during the polymerization, it is preferable to further add an aqueous solution (for example, water, an acetic acid aqueous solution, etc.) to reduce the collision probability between the microcapsules.
It is also preferable to perform sufficient stirring.
Further, a dispersant for preventing aggregation may be added to the reaction system during the polymerization.
Further, if necessary, a charge regulator such as niglocin or any other auxiliary agent may be added to the reaction system during the polymerization.
<樹脂>
 蓄熱体は、樹脂を含む。樹脂は、上述したマイクロカプセル間を位置し、マイクロカプセル間の密着性を担保するバインダーとして機能する。
 樹脂の種類は特に制限されず、公知の樹脂が挙げられる。
 樹脂としては、例えば、ポリウレタン、ポリウレア、ポリウレタンウレア、及び、ポリ(メタ)アクリレートが挙げられる。
 なかでも、本発明の効果がより優れる点で、樹脂は、ポリウレタン、ポリウレア、及び、ポリウレタンウレアからなる群から選択される少なくとも1つの樹脂を含むことが好ましい。
<Resin>
The heat storage body contains a resin. The resin is located between the above-mentioned microcapsules and functions as a binder for ensuring the adhesion between the microcapsules.
The type of resin is not particularly limited, and examples thereof include known resins.
Examples of the resin include polyurethane, polyurea, polyurethane urea, and poly (meth) acrylate.
Among them, the resin preferably contains at least one resin selected from the group consisting of polyurethane, polyurea, and polyurethane urea, because the effect of the present invention is more excellent.
 なお、本発明の効果がより優れる点で、マイクロカプセルのカプセル壁及び樹脂が、同じ官能基を有することが好ましい。なかでも、マイクロカプセルのカプセル壁及び樹脂が、同じ極性官能基を有することが好ましい。極性官能基としては、例えば、水酸基、カルボキシル基、アミド基、ウレタン基、及び、ウレア基が挙げられる。
 また、本発明の効果がより優れる点で、マイクロカプセルのカプセル壁及び樹脂の両方が、ポリウレタン、ポリウレア、及び、ポリウレタンウレアからなる群から選択される少なくとも1種を含むことが好ましく、ポリウレタンウレアを含むことがより好ましい。
It is preferable that the capsule wall and the resin of the microcapsules have the same functional group in that the effect of the present invention is more excellent. Among them, it is preferable that the capsule wall and the resin of the microcapsules have the same polar functional group. Examples of the polar functional group include a hydroxyl group, a carboxyl group, an amide group, a urethane group, and a urea group.
Further, in that the effect of the present invention is more excellent, it is preferable that both the capsule wall and the resin of the microcapsules contain at least one selected from the group consisting of polyurethane, polyurea, and polyurethane urea, and the polyurethane urea is used. It is more preferable to include it.
 樹脂のガラス転移温度は特に制限されないが、本発明の効果がより優れる点で、50℃以下が好ましく、40℃以下がより好ましく、20℃以下が更に好ましい。下限は特に制限されないが、取り扱い性の点から、-100℃以上が好ましく、-60℃以上がより好ましく、-40℃以上が更に好ましい。
 樹脂のガラス転移温度の測定方法は、以下の通りである。
 樹脂のガラス転移温度を、示差走査熱量計DSC(装置名:DSC-60A Plus、(株)島津製作所)を用いて、密閉パンを使用し、昇温速度5℃/minで25℃~(熱分解温度(℃)-5℃)の範囲で測定する。樹脂のガラス転移温度としては、2サイクル目の昇温時の値を使用する。
 なお、樹脂として市販品を使用する際に、その市販品のカタログ値としてガラス転移温度が記載されている場合には、その値を樹脂のガラス転移温度として用いてもよい。
The glass transition temperature of the resin is not particularly limited, but is preferably 50 ° C. or lower, more preferably 40 ° C. or lower, still more preferably 20 ° C. or lower, in that the effect of the present invention is more excellent. The lower limit is not particularly limited, but from the viewpoint of handleability, −100 ° C. or higher is preferable, −60 ° C. or higher is more preferable, and −40 ° C. or higher is further preferable.
The method for measuring the glass transition temperature of the resin is as follows.
The glass transition temperature of the resin is measured from 25 ° C to (heat) at a temperature rise rate of 5 ° C / min using a differential scanning calorimeter DSC (device name: DSC-60A Plus, Shimadzu Corporation) and a closed pan. Measure in the range of decomposition temperature (° C) -5 ° C). As the glass transition temperature of the resin, the value at the time of raising the temperature in the second cycle is used.
When a commercially available product is used as the resin, if the glass transition temperature is described as the catalog value of the commercially available product, that value may be used as the glass transition temperature of the resin.
 樹脂の弾性率(引張弾性率)は特に制限されないが、本発明の効果がより優れる点で、100MPa以下が好ましく、15MPa以下がより好ましい。下限は特に制限されないが、取り扱い性の点から、0.1MPa以上が好ましく、1MPa以上がより好ましく、6MPa以上が更に好ましい。
 樹脂の弾性率(引張弾性率)の測定方法は、JIS7161に従い、静的伸び計を用いて、温度25℃、湿度40%で、引張弾性率(ヤング率)を測定する。
 なお、樹脂として市販品を使用する際に、その市販品のカタログ値として弾性率が記載されている場合には、その値を樹脂の弾性率として用いてもよい。
The elastic modulus (tensile elastic modulus) of the resin is not particularly limited, but is preferably 100 MPa or less, more preferably 15 MPa or less, in that the effect of the present invention is more excellent. The lower limit is not particularly limited, but from the viewpoint of handleability, 0.1 MPa or more is preferable, 1 MPa or more is more preferable, and 6 MPa or more is further preferable.
The method for measuring the elastic modulus (tensile elastic modulus) of the resin is to measure the tensile elastic modulus (Young's modulus) at a temperature of 25 ° C. and a humidity of 40% using a static extensometer according to JIS7161.
When a commercially available product is used as the resin, if the elastic modulus is described as the catalog value of the commercially available product, that value may be used as the elastic modulus of the resin.
 樹脂の破断伸度は特に制限されないが、本発明の効果がより優れる点で、300%以上が好ましく、500%以上がより好ましい。上限は特に制限されないが、取り扱い性の点から、5000%以下が好ましく、2000%以下がより好ましい。
 樹脂の破断伸度の測定方法は、JIS-C-2151に準じて測定する。具体的には、引張試験機を用いて、速度200mm/minで引張、試料が切断(破断)したときの伸びから算出する。
破断伸び(%)=100×(L-Lo)/Lo
Lo:試験前の試料長さ、L:破断時の試料長さ
 なお、樹脂として市販品を使用する際に、その市販品のカタログ値として破断伸度が記載されている場合には、その値を樹脂の破断伸度として用いてもよい。
The elongation at break of the resin is not particularly limited, but 300% or more is preferable, and 500% or more is more preferable, because the effect of the present invention is more excellent. The upper limit is not particularly limited, but from the viewpoint of handleability, 5000% or less is preferable, and 2000% or less is more preferable.
The method for measuring the breaking elongation of the resin is measured according to JIS-C-2151. Specifically, it is calculated from the elongation when the sample is cut (broken) by tensioning at a speed of 200 mm / min using a tensile tester.
Fracture elongation (%) = 100 × (L-Lo) / Lo
Lo: Sample length before test, L: Sample length at break When using a commercially available resin, if the catalog value of the commercially available product describes the elongation at break, that value. May be used as the breaking elongation of the resin.
 樹脂は、取り扱い時には、樹脂が溶媒に分散した分散液として使用してもよい。溶媒としては、水、及び、水と有機溶剤との混合液が挙げられる。
 分散液に樹脂が分散している際には、樹脂は粒子状であってもよい。つまり、樹脂は、粒子状の樹脂が水中に分散してなるラテックスとして用いてもよい。
 分散液中の粒子状の樹脂(樹脂粒子)の直径は特に制限されないが、本発明の効果がより優れる点で、0.001~10μmが好ましく、0.01~1μmがより好ましい。
At the time of handling, the resin may be used as a dispersion liquid in which the resin is dispersed in a solvent. Examples of the solvent include water and a mixed solution of water and an organic solvent.
When the resin is dispersed in the dispersion liquid, the resin may be in the form of particles. That is, the resin may be used as a latex in which particulate resin is dispersed in water.
The diameter of the particulate resin (resin particles) in the dispersion is not particularly limited, but 0.001 to 10 μm is preferable, and 0.01 to 1 μm is more preferable, because the effect of the present invention is more excellent.
 蓄熱体中における樹脂の含有量は特に制限されないが、蓄熱体の蓄熱性がより優れる点で、蓄熱体全質量に対して、20質量%以下が好ましく、1~15質量%がより好ましく、5~15質量%が更に好ましい。 The content of the resin in the heat storage body is not particularly limited, but 20% by mass or less is preferable and 1 to 15% by mass is more preferable with respect to the total mass of the heat storage body in that the heat storage property of the heat storage body is more excellent. Up to 15% by mass is more preferable.
<水>
 蓄熱体は水を含んでいてもよいが、蓄熱体に含まれる水分が蒸発すると、水分が蒸発した部分が蓄熱体における空隙になる場合がある。そのため、蓄熱体における水の含有量は、空隙の発生を抑制する点から、少ない方が好ましい。具体的には、蓄熱体における水の含有量は、蓄熱体における空隙の発生をより抑制する点から、蓄熱体の全質量に対して、5質量%以下が好ましく、2質量%以下がより好ましく、1質量%以下が更に好ましい。
 蓄熱体における水の含有量の下限は特に制限されないが、0質量%が挙げられる。
 蓄熱体における水の含有量の測定方法は次の通りである。まず、蓄熱体を25%RH、40℃の恒温恒湿槽内にて24時間保存して、蓄熱体Aを得る。恒温恒湿槽から取り出した蓄熱体Aを100℃で3時間乾燥して、蓄熱体Bを得る。このようにして得られた蓄熱体A及び蓄熱体Bの質量を測定して、以下の式に従って得られた値を蓄熱体における水の含有量とする。
 蓄熱体における水の含有量(質量%)=100×{(蓄熱体Aの質量)-(蓄熱体Bの質量)}/(蓄熱体Aの質量)
<Water>
The heat storage body may contain water, but when the water contained in the heat storage body evaporates, the portion where the water has evaporated may become a void in the heat storage body. Therefore, the water content in the heat storage body is preferably small from the viewpoint of suppressing the generation of voids. Specifically, the water content in the heat storage body is preferably 5% by mass or less, more preferably 2% by mass or less, based on the total mass of the heat storage body, from the viewpoint of further suppressing the generation of voids in the heat storage body. 1% by mass or less is more preferable.
The lower limit of the water content in the heat storage body is not particularly limited, but may be 0% by mass.
The method for measuring the water content in the heat storage body is as follows. First, the heat storage body is stored in a constant temperature and humidity chamber at 25% RH and 40 ° C. for 24 hours to obtain the heat storage body A. The heat storage body A taken out from the constant temperature and humidity chamber is dried at 100 ° C. for 3 hours to obtain a heat storage body B. The masses of the heat storage body A and the heat storage body B thus obtained are measured, and the value obtained according to the following formula is used as the water content in the heat storage body.
Water content in the heat storage body (mass%) = 100 × {(mass of heat storage body A)-(mass of heat storage body B)} / (mass of heat storage body A)
<他の成分>
 蓄熱体は、マイクロカプセル及び樹脂以外の他の成分を含んでいてもよい。他の成分としては、熱伝導性材料、難燃剤、紫外線吸収剤、酸化防止剤、及び、防腐剤が挙げられる。
 上記他の成分の含有量は、蓄熱体全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。下限は特に制限されないが、0質量%が挙げられる。
 なお、熱伝導性材料の「熱伝導性」については、熱伝導率が10Wm-1-1以上である材料が好ましい。なかでも、熱伝導性材料の熱伝導率としては、蓄熱体の放熱性が良好になる点で、50Wm-1-1以上がより好ましい。
 熱伝導率(単位:Wm-1-1)は、フラッシュ法にて25℃の温度下、日本工業規格(JIS)R1611に準拠した方法により測定される値である。
<Other ingredients>
The heat storage body may contain other components other than the microcapsules and the resin. Other components include thermally conductive materials, flame retardants, UV absorbers, antioxidants, and preservatives.
The content of the other components is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the heat storage body. The lower limit is not particularly limited, but may be 0% by mass.
Regarding the "thermal conductivity" of the thermally conductive material, a material having a thermal conductivity of 10 Wm -1 K -1 or more is preferable. Among them, as the thermal conductivity of the heat conductive material, 50 Wm -1 K -1 or more is more preferable in terms of improving the heat dissipation of the heat storage body.
The thermal conductivity (unit: Wm -1 K -1 ) is a value measured by a flash method at a temperature of 25 ° C. by a method compliant with Japanese Industrial Standards (JIS) R1611.
<蓄熱体の物性>
 蓄熱体の形状は特に制限されず、シート状、フィルム状、及び、板状だけでなく、円筒状、球体状、及び、塊状等、自由な形態(立体形状)をとることができる。
 本発明の効果が顕著になるのは蓄熱体が厚い場合であり、蓄熱体の厚みは、0.5mm以上であることが好ましく、1mm以上であることがより好ましく、2mm以上であることが更に好ましく、3mm以上であることが特に好ましい。上限は特に制限されないが、1000mm以下が好ましく、100mm以下がより好ましい。なお、上記厚みは、蓄熱体を2つの平行な面で蓄熱体を挟んだ時の最も短い距離を意味する。
 ただし、蓄熱体が板状、シート状、又は、フィルム状の場合においては、蓄熱体の厚みは、蓄熱体を厚み方向と平行に裁断した裁断面をSEMで観察し、任意の点を5点測定し、5点の厚みを平均した平均値とする。
<Physical characteristics of heat storage body>
The shape of the heat storage body is not particularly limited, and it can take any form (three-dimensional shape) such as a cylindrical shape, a spherical shape, and a lump shape as well as a sheet shape, a film shape, and a plate shape.
The effect of the present invention becomes remarkable when the heat storage body is thick, and the thickness of the heat storage body is preferably 0.5 mm or more, more preferably 1 mm or more, and further preferably 2 mm or more. It is preferably 3 mm or more, and particularly preferably 3 mm or more. The upper limit is not particularly limited, but is preferably 1000 mm or less, and more preferably 100 mm or less. The thickness means the shortest distance when the heat storage body is sandwiched between two parallel planes.
However, when the heat storage body is plate-shaped, sheet-shaped, or film-shaped, the thickness of the heat storage body is determined by observing the cut surface of the heat storage body cut in parallel with the thickness direction with SEM and observing 5 arbitrary points. Measure and use the average value of the thicknesses of the five points.
(潜熱容量(吸熱量))
 蓄熱体の潜熱容量は特に制限されないが、蓄熱体の蓄熱性が高く、熱を発する発熱体の温度調節に好適である点で、115J/cc以上が好ましく、120J/cc以上がより好ましく、130J/cc以上が更に好ましい。上限は特に制限されないが、300J/cc以下が好ましい。
 潜熱容量は、示差走査熱量測定(DSC;Differential scanning calorimetry)の結果と蓄熱体の密度(g/cm)とから算出される値である。
 なお、密度は、サンプルの質量及び体積から測定する。サンプルの質量は電子天秤で測定する。また、サンプルの体積は、サンプルがシート状である場合には、面積と厚みをノギス、接触式厚み測定機等で測定して計算し、サンプルが塊状である場合には、溶解及び膨潤しない溶媒(水、アルコール等)に浸漬して増加した体積から求める。
 なお、限られた空間内で高い蓄熱量を発現するという点で考えた場合、蓄熱量は「J/cc」で捉えることが適切と考えられるが、電子デバイス等の用途を考慮した場合は、電子デバイスの重さも重要となる。そのため、限られた質量内において高い蓄熱性を発現するという捉え方をすると、「J/g(単位質量当たりの蓄熱量)」で捉えることが適当な場合がある。この場合には、潜熱容量としては、150J/g以上が好ましく、160J/g以上がより好ましい。上限は特に制限されないが、300J/g以下が好ましい。
(Latent heat capacity (heat absorption))
The latent heat capacity of the heat storage body is not particularly limited, but 115J / cc or more is preferable, 120J / cc or more is more preferable, and 130J or more is preferable in that the heat storage property of the heat storage body is high and it is suitable for temperature control of the heat generating body that generates heat. / Cc or more is more preferable. The upper limit is not particularly limited, but is preferably 300 J / cc or less.
The latent heat capacity is a value calculated from the result of differential scanning calorimetry (DSC) and the density of the heat storage body (g / cm 3).
The density is measured from the mass and volume of the sample. The mass of the sample is measured with an electronic balance. The volume of the sample is calculated by measuring the area and thickness with a caliper, a contact type thickness measuring machine, etc. when the sample is in the form of a sheet, and when the sample is in the form of a lump, a solvent that does not dissolve or swell. Obtained from the increased volume by immersing in (water, alcohol, etc.).
Considering that a high amount of heat storage is exhibited in a limited space, it is considered appropriate to grasp the amount of heat storage as "J / cc", but when considering the use of electronic devices, etc., The weight of the electronic device is also important. Therefore, if we consider that high heat storage is exhibited within a limited mass, it may be appropriate to consider it as "J / g (heat storage amount per unit mass)". In this case, the latent heat capacity is preferably 150 J / g or more, more preferably 160 J / g or more. The upper limit is not particularly limited, but is preferably 300 J / g or less.
(マイクロカプセルの体積率)
 蓄熱体中に占めるマイクロカプセルの体積率は特に制限されないが、蓄熱体の全体積に対して、60体積%以上が好ましく、80体積%以上がより好ましく、90体積%以上が更に好ましい。上限は特に制限されないが、100体積%以下が挙げられる。
(Volume fraction of microcapsules)
The volume ratio of the microcapsules in the heat storage body is not particularly limited, but is preferably 60% by volume or more, more preferably 80% by volume or more, still more preferably 90% by volume or more, based on the total volume of the heat storage body. The upper limit is not particularly limited, but 100% by volume or less can be mentioned.
(空隙率)
 蓄熱体の空隙率とは、蓄熱体中に占める空隙の体積率を意味する。ここで、空隙とは、蓄熱体の内部において、蓄熱体を構成する材料(固体及び液体)が存在せず、蓄熱体を構成する材料で囲まれている領域を意味し、通常は気体(主に空気)で満たされている。
 蓄熱体の空隙率は、蓄熱体の全体積に対して、10体積%未満であり、取り扱い時における蓄熱体の欠陥の発生をより抑制できる点から、6体積%以下が好ましく、5体積%以下がより好ましい。蓄熱体の空隙率の下限は特に制限されないが、0体積%が挙げられる。
 また、蓄熱体の空隙率が10体積%未満であることで、単位体積当たりの蓄熱量をより向上できる。
 蓄熱体の空隙率を10体積%未満にする方法は特に制限されないが、壁厚の薄く、変形率の高いマイクロカプセルを使用しつつ、かつ、マイクロカプセルのカプセル壁の材料と樹脂とが同一の官能基を有するように調整する方法が挙げられる。
(Porosity)
The porosity of the heat storage body means the volume fraction of the voids in the heat storage body. Here, the void means a region inside the heat storage body in which the material (solid and liquid) constituting the heat storage body does not exist and is surrounded by the material constituting the heat storage body, and is usually a gas (mainly). Is filled with air).
The void ratio of the heat storage body is less than 10% by volume with respect to the total volume of the heat storage body, and is preferably 6% by volume or less, preferably 5% by volume or less, from the viewpoint of further suppressing the occurrence of defects in the heat storage body during handling. Is more preferable. The lower limit of the porosity of the heat storage body is not particularly limited, but may be 0% by volume.
Further, when the porosity of the heat storage body is less than 10% by volume, the amount of heat storage per unit volume can be further improved.
The method of reducing the porosity of the heat storage body to less than 10% by volume is not particularly limited, but the material and resin of the capsule wall of the microcapsules are the same while using the microcapsules having a thin wall thickness and a high deformation rate. Examples thereof include a method of adjusting to have a functional group.
 蓄熱体の空隙率は、X線CT(X-ray Computed Tomography)法を測定原理とする公知のX線CT装置によって得られる画像データに基づいて算出される。
 具体的には、蓄熱体の面内方向の1mm×1mmの任意の領域について、X線CT法によって蓄熱体の膜厚方向に沿ってスキャニングして、気体(空気)と、それ以外(固体及び液体)と区別する。そして、膜厚方向に沿ってスキャニングして得られた複数のスキャニング層を画像処理して得られた3次元画像データから、スキャニングした領域に存在する気体(空隙部分)の体積と、スキャニングした領域の全体積(気体、固体及び液体の合計体積)と、を求める。そして、スキャニングした領域の全体積に対する、気体の体積の割合を、蓄熱体の空隙率(体積%)とする。
The void ratio of the heat storage body is calculated based on image data obtained by a known X-ray CT apparatus using an X-ray CT (X-ray Computed Tomography) method as a measurement principle.
Specifically, an arbitrary region of 1 mm × 1 mm in the in-plane direction of the heat storage body is scanned along the film thickness direction of the heat storage body by the X-ray CT method, and the gas (air) and the others (solid and solid) are scanned. Distinguish from liquid). Then, from the three-dimensional image data obtained by image processing a plurality of scanning layers obtained by scanning along the film thickness direction, the volume of the gas (void portion) existing in the scanned region and the scanned region are obtained. (Total volume of gas, solid and liquid) and the total volume of. Then, the ratio of the volume of the gas to the total volume of the scanned regions is defined as the porosity (volume%) of the heat storage body.
(マイクロカプセルのアスペクト比)
 上述のとおり、蓄熱体に含まれるマイクロカプセルは、変形していることが好ましい。なかでも、マイクロカプセルのアスペクト比が、1.2以上であることが好ましく、1.5以上であることがより好ましく、2.0以上であることが更に好ましい。
 マイクロカプセルのアスペクト比が上記範囲にあると、マイクロカプセルの充填率が向上することにより、マイクロカプセル同士の接触面積が広くなり、蓄熱体の強度が向上し、取り扱い時における蓄熱体の欠陥の発生をより抑制できる。また、マイクロカプセルの充填率が向上することにより、蓄熱材の量が増えて、より優れた蓄熱性を実現できる。
 マイクロカプセルのアスペクト比の上限は特に制限されないが、例えば、10以下であってよい。
(Aspect ratio of microcapsules)
As described above, the microcapsules contained in the heat storage body are preferably deformed. Among them, the aspect ratio of the microcapsules is preferably 1.2 or more, more preferably 1.5 or more, and even more preferably 2.0 or more.
When the aspect ratio of the microcapsules is within the above range, the filling rate of the microcapsules is improved, the contact area between the microcapsules is widened, the strength of the heat storage body is improved, and defects of the heat storage body are generated during handling. Can be further suppressed. Further, by improving the filling rate of the microcapsules, the amount of the heat storage material can be increased, and more excellent heat storage can be realized.
The upper limit of the aspect ratio of the microcapsules is not particularly limited, but may be, for example, 10 or less.
 マイクロカプセルのアスペクト比は、蓄熱体のSEM断面画像から、以下の方法で求められる。SEMを用いて蓄熱体の断面を観察して、SEM断面画像を得た後、得られた画像から20個のマイクロカプセルを選択する。選択された各マイクロカプセルの外周に外接する平行な2本の接線のうち、接線間距離が最大となるように選ばれる平行な2本の接線の距離を長辺の長さLとする。また、長さLを与える平行な2本の接線に直交し、且つ、マイクロカプセルの外周に外接する平行な2本の接線のうち、接線間距離が最大となるように選ばれる接線間距離を短辺の長さSとする。得られた長辺の長さL(μm)及び短辺の長さS(μm)から、以下の式を用いてアスペクト比を算出し、20個のマイクロカプセルのアスペクト比の平均値を求め、得られた平均値をマイクロカプセルのアスペクト比とする。
  アスペクト比=L(μm)/S(μm)
 マイクロカプセルのアスペクト比を上記の範囲内にする方法の一例としては、蓄熱体の空隙率を低下させる方法として記載した方法が挙げられる。
The aspect ratio of the microcapsules can be obtained by the following method from the SEM cross-sectional image of the heat storage body. After observing the cross section of the heat storage body using SEM and obtaining an SEM cross section image, 20 microcapsules are selected from the obtained images. Of the two parallel tangents circumscribing the outer circumference of each selected microcapsule, the distance between the two parallel tangents selected so as to maximize the distance between the tangents is defined as the length L of the long side. Further, of the two parallel tangents orthogonal to the two parallel tangents giving the length L and circumscribing the outer circumference of the microcapsule, the distance between the tangents selected so as to maximize the distance between the tangents is selected. Let the length of the short side be S. From the obtained long side length L (μm) and short side length S (μm), the aspect ratio was calculated using the following formula, and the average value of the aspect ratios of 20 microcapsules was obtained. The obtained average value is used as the aspect ratio of the microcapsules.
Aspect ratio = L (μm) / S (μm)
As an example of the method of keeping the aspect ratio of the microcapsules within the above range, the method described as a method of reducing the porosity of the heat storage body can be mentioned.
(マイクロカプセルの形状)
 また、蓄熱体に含まれるマイクロカプセルは、他のマイクロカプセルとの接触等によって形成された平坦部又は凹部を有することが好ましい。
 具体的には、以下の方法で観察される蓄熱体中のマイクロカプセルが、平坦部及び凹部を2ヶ所以上有することが好ましい。上述したアスペクト比の算出方法と同様な方法でSEM断面画像を得た後、20個のマイクロカプセルを選択する。次いで、SEM断面画像から、選択されたマイクロカプセルが、少なくとも2つ以上のマイクロカプセルが隣接してなる部分を形成しており、且つ、選択されたマイクロカプセルの外形において、隣接するマイクロカプセルの外形に沿って形成された直線状又は凹状の部分を2ヶ所以上有するとの条件を満たすか否かの確認を行う。選択された20個のマイクロカプセルのうち、上記の条件を満たすマイクロカプセルの個数は、5個以上が好ましく、10個以上がより好ましく、20個が更に好ましい。
(Shape of microcapsules)
Further, the microcapsules contained in the heat storage body preferably have flat portions or recesses formed by contact with other microcapsules or the like.
Specifically, it is preferable that the microcapsules in the heat storage body observed by the following method have two or more flat portions and recesses. After obtaining an SEM cross-sectional image by the same method as the aspect ratio calculation method described above, 20 microcapsules are selected. Then, from the SEM cross-sectional image, the selected microcapsules form a portion in which at least two or more microcapsules are adjacent to each other, and in the outer shape of the selected microcapsules, the outer shape of the adjacent microcapsules. It is confirmed whether or not the condition of having two or more linear or concave portions formed along the above condition is satisfied. Of the 20 selected microcapsules, the number of microcapsules satisfying the above conditions is preferably 5 or more, more preferably 10 or more, and even more preferably 20.
(弾性率)
 蓄熱体の弾性率(引張弾性率)は特に制限されないが、50MPa以上が好ましく、100MPa以上がより好ましく、500MPa以上が更に好ましく、1000MPa以上が特に好ましい。
 蓄熱体の弾性率の上限は特に制限されないが、10000MPa以下が好ましい。
 なお、蓄熱体の弾性率(引張弾性率)は、JIS K 7161-1:2014に従って測定される。
(Elastic modulus)
The elastic modulus (tensile elastic modulus) of the heat storage body is not particularly limited, but is preferably 50 MPa or more, more preferably 100 MPa or more, further preferably 500 MPa or more, and particularly preferably 1000 MPa or more.
The upper limit of the elastic modulus of the heat storage body is not particularly limited, but is preferably 10,000 MPa or less.
The elastic modulus (tensile elastic modulus) of the heat storage body is measured according to JIS K 7161-1: 2014.
<蓄熱体の製造方法>
 蓄熱体の製造方法は特に制限されず、公知の方法が挙げられる。例えば、上述のマイクロカプセルと、樹脂と、水とを含む蓄熱体形成用組成物を用いて、蓄熱体を製造する方法が挙げられる。より具体的には、例えば、上記蓄熱体形成用組成物を、所定の基材上に塗布し、乾燥させて、蓄熱体を製造する方法、部材と部材との間の隙間に上記蓄熱体形成用組成物を充填して、乾燥させて、蓄熱体を製造する方法、基材上に蓄熱体形成用組成物を滴下して塊状にして成形する方法、及び、蓄熱体形成用組成物を型に入れて成形する方法が挙げられる。
 なお、必要に応じて、得られた基材と蓄熱体との積層体から基材を剥がすことで、蓄熱体の単体を得ることができる。
<Manufacturing method of heat storage body>
The method for producing the heat storage body is not particularly limited, and a known method can be mentioned. For example, a method of producing a heat storage body by using the above-mentioned microcapsule, a resin, and a composition for forming a heat storage body containing water can be mentioned. More specifically, for example, a method for producing a heat storage body by applying the heat storage body forming composition on a predetermined substrate and drying it, forming the heat storage body in a gap between members. A method of filling a heat storage composition and drying it to produce a heat storage body, a method of dropping a heat storage body forming composition onto a substrate to form a lump, and a mold for the heat storage body forming composition. There is a method of molding by putting it in a heat storage.
If necessary, the base material can be peeled off from the laminate of the obtained base material and the heat storage body to obtain a simple substance of the heat storage body.
 蓄熱体形成用組成物に含まれるマイクロカプセル及び樹脂は、上述した通りである。
 蓄熱体形成用組成物の調製方法は特に制限されず、例えば、マイクロカプセルが分散した分散液(例えば、水分散液)と、粒子状の樹脂が分散した分散液(例えば、水分散液。いわゆる、ラテックス。)とを混合する方法、及び、粉体状のマイクロカプセルと、粒子状の樹脂が分散した分散液とを混合する方法が挙げられる。
 粉体状のマイクロカプセルを得る方法としては、上述したマイクロカプセルが分散した分散液から、溶媒を除去してマイクロカプセルを回収する方法が挙げられる。マイクロカプセルを回収する方法は特に制限されず、例えば、マイクロカプセルが分散した分散液中のマイクロカプセルをデカンテーションにより回収する方法が挙げられる。
The microcapsules and the resin contained in the composition for forming a heat storage body are as described above.
The method for preparing the composition for forming a heat storage body is not particularly limited, and for example, a dispersion liquid in which microcapsules are dispersed (for example, an aqueous dispersion liquid) and a dispersion liquid in which particulate resin is dispersed (for example, an aqueous dispersion liquid, so-called). , Latex.), And a method of mixing powdery microcapsules and a dispersion liquid in which particulate resin is dispersed.
Examples of the method for obtaining powdered microcapsules include a method for recovering microcapsules by removing a solvent from the above-mentioned dispersion liquid in which microcapsules are dispersed. The method for recovering the microcapsules is not particularly limited, and examples thereof include a method for recovering the microcapsules in the dispersion liquid in which the microcapsules are dispersed by decantation.
 基材としては、例えば、樹脂基材、ガラス基材、及び、金属基材が挙げられる。樹脂基材に含まれる樹脂としては、ポリエステル(例:ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリオレフィン(例:ポリエチレン、ポリプロピレン)、及び、ポリウレタンが挙げられる。また、面内方向又は膜厚方向の熱伝導性を向上させ、発熱部分から蓄熱部位に速やかに熱拡散させる機能を基材に追加することが好ましい。基材としては、金属基材と、グラファイトシート又はグラフェンシート等の熱伝導性材料とを組み合わせてなる基材がより好ましい。
 基材の厚みは特に制限されないが、1~100μmが好ましく、1~25μmがより好ましく、3~15μmが更に好ましい。
 基材は、蓄熱体との密着性を向上させる目的で、基材の表面を処理することが好ましい。表面処理方法としては、例えば、コロナ処理、プラズマ処理、及び、易接着層である薄層の付与等が挙げられる。
Examples of the base material include a resin base material, a glass base material, and a metal base material. Examples of the resin contained in the resin base material include polyester (eg, polyethylene terephthalate, polyethylene naphthalate), polyolefin (eg, polyethylene, polypropylene), and polyurethane. Further, it is preferable to add a function to improve the thermal conductivity in the in-plane direction or the film thickness direction and to quickly dissipate heat from the heat generating portion to the heat storage portion to the base material. As the base material, a base material made by combining a metal base material and a heat conductive material such as a graphite sheet or a graphene sheet is more preferable.
The thickness of the base material is not particularly limited, but is preferably 1 to 100 μm, more preferably 1 to 25 μm, still more preferably 3 to 15 μm.
The base material is preferably treated on the surface of the base material for the purpose of improving the adhesion to the heat storage body. Examples of the surface treatment method include corona treatment, plasma treatment, and application of a thin layer which is an easy-adhesion layer.
 易接着層を構成する材料は特に制限はないが、樹脂が挙げられ、より具体的には、スチレン-ブタジエンゴム、ウレタン樹脂、アクリル樹脂、シリコーン樹脂、及び、ポリビニル樹脂が挙げられる。
 易接着層の厚みは特に制限されないが、0.01~5μmが好ましく、0.5~2μmがより好ましい。
The material constituting the easy-adhesion layer is not particularly limited, and examples thereof include resin, and more specific examples thereof include styrene-butadiene rubber, urethane resin, acrylic resin, silicone resin, and polyvinyl resin.
The thickness of the easy-adhesion layer is not particularly limited, but is preferably 0.01 to 5 μm, more preferably 0.5 to 2 μm.
 なお、基材としては、剥離可能な仮基材を用いてもよい。 As the base material, a peelable temporary base material may be used.
 塗布方法としては、例えば、ダイコート法、エアーナイフコート法、ロールコート法、ブレードコート法、グラビアコート法、及び、カーテンコート法が挙げられる。 Examples of the coating method include a die coating method, an air knife coating method, a roll coating method, a blade coating method, a gravure coating method, and a curtain coating method.
 乾燥温度の好ましい範囲は、乾燥する際の水分量にも依存するが、蓄熱体形成用組成物に水が含まれる場合、蓄熱体の空隙率をより低くできる点から、20~130℃が好ましく、30~120℃がより好ましく、33~100℃が更に好ましい。
 乾燥時間は、膜中の水分が乾燥しきる直前で終了することが好ましいが、その範囲で、蓄熱体の空隙率をより低くできる点から、30秒以上が好ましく、1分以上がより好ましい。乾燥時間の上限は、蓄熱体の生産効率の点からは、短ければ短いほどよい。
 乾燥を行う工程では、塗布膜に対して、平坦化処理を施してもよい。平坦化処理の方法としては、ローラー、ニップローラー、及び、カレンダー等で塗布膜に圧力をかけて膜中のマイクロカプセルの充填率を上げる方法が挙げられる。
The preferable range of the drying temperature depends on the amount of water at the time of drying, but when water is contained in the composition for forming the heat storage body, 20 to 130 ° C. is preferable because the porosity of the heat storage body can be further lowered. , 30 to 120 ° C. is more preferable, and 33 to 100 ° C. is even more preferable.
The drying time is preferably completed immediately before the moisture in the membrane is completely dried, but in that range, 30 seconds or more is preferable and 1 minute or more is more preferable from the viewpoint that the porosity of the heat storage body can be further lowered. The shorter the upper limit of the drying time, the better from the viewpoint of the production efficiency of the heat storage body.
In the step of drying, the coating film may be subjected to a flattening treatment. Examples of the flattening treatment method include a method of applying pressure to the coating film with a roller, a nip roller, a calendar, or the like to increase the filling rate of microcapsules in the film.
 また、蓄熱体中の空隙率を少なくするためには、変形しやすい(変形率の大きい)マイクロカプセルを用いること、塗布膜を形成する際の乾燥を緩やかに行うこと、又は、一度に厚膜な塗布膜を形成せずに、複数回に分割して塗布すること、等の方法が好ましい。 Further, in order to reduce the porosity in the heat storage body, use microcapsules that are easily deformed (large deformation rate), slowly dry the coating film, or thicken the film at one time. It is preferable to apply the coating film in a plurality of times without forming a suitable coating film.
[蓄熱体の用途]
 本発明の蓄熱体は、種々の用途に適用でき、例えば、電子デバイス(例えば、携帯電話(特に、スマートフォン)、携帯情報端末、パーソナルコンピューター(特に、携帯用のパーソナルコンピューター)、ゲーム機、及び、リモコン等);自動車(例えば、バッテリー(特に、リチウムイオン電池)、パワーIC(Integrated Circuit)等の制御装置、カーナビ、液晶モニター、LED(Light Emitting Diode)ランプ、及び、キャニスターの保温等);日中の急激な温度上昇又は室内での暖冷房時の温調に適した建材(例えば、床材、屋根材、及び、壁材等);環境温度の変化又は運動時もしくは安静時の体温変化等に応じた調温に適した衣類(例えば、下着、上着、防寒着、及び、手袋等);エアコン;寝具;不要な排出熱を蓄えて熱エネルギーとして利用する排熱利用システム、等の用途に用いることができる。
[Use of heat storage body]
The heat storage body of the present invention can be applied to various uses, for example, electronic devices (for example, mobile phones (particularly smartphones), mobile information terminals, personal computers (particularly portable personal computers), game machines, and (Remote control, etc.); Automobiles (for example, batteries (particularly lithium ion batteries), control devices such as power ICs (Integrated Circuits), car navigation systems, liquid crystal monitors, LED (Light Emitting Diode) lamps, heat insulation of canisters, etc.); Building materials suitable for temperature control during rapid temperature rise in the room or indoor heating and cooling (for example, floor materials, roofing materials, wall materials, etc.); Changes in environmental temperature or changes in body temperature during exercise or rest, etc. Clothes suitable for temperature control according to the temperature (for example, underwear, jacket, cold protection clothes, gloves, etc.); Air conditioner; Bedding; Exhaust heat utilization system that stores unnecessary exhaust heat and uses it as heat energy, etc. Can be used for.
 なかでも、電子デバイス(特に、携帯用の電子デバイス)に用いることが好ましい。この理由は以下の通りである。
 電子デバイスの発熱による温度上昇を抑制する方法として、空気の流れによって熱を電子デバイスの外部に排出する方法、及び、ヒートパイプ又はヒートスプレッダ等によって電子デバイスの筐体全体に熱を拡散する方法が用いられてきた。しかしながら、近年の電子デバイスの薄型化及び防水性の点から、電子デバイスの気密性が向上しており、空気の流れによって熱を排出する方法を採用することが困難であるので、上記方法のなかでは、電子デバイスの筐体全体に熱を拡散する方法が用いられる。そのため、電子デバイスの温度上昇の抑制には、限界があった。
 この問題に対して、電子デバイス内に上述の蓄熱体を導入することで、電子デバイスの気密性及び防水性を保ちつつ、電子デバイスの温度上昇を抑制できる。すなわち、蓄熱体によって、電子デバイス内に一定時間熱を溜められる部分ができるので、電子デバイス内の発熱体の表面温度を任意の温度域に保持できる。
Above all, it is preferable to use it for an electronic device (particularly, a portable electronic device). The reason for this is as follows.
As a method of suppressing the temperature rise due to heat generation of the electronic device, a method of discharging heat to the outside of the electronic device by the flow of air and a method of diffusing the heat to the entire housing of the electronic device by a heat pipe or a heat spreader are used. Has been done. However, from the viewpoint of thinning and waterproofing of electronic devices in recent years, the airtightness of electronic devices has improved, and it is difficult to adopt a method of discharging heat by the flow of air. Then, a method of diffusing heat to the entire housing of the electronic device is used. Therefore, there is a limit to suppressing the temperature rise of the electronic device.
To solve this problem, by introducing the above-mentioned heat storage body into the electronic device, it is possible to suppress the temperature rise of the electronic device while maintaining the airtightness and waterproofness of the electronic device. That is, since the heat storage body creates a portion in the electronic device where heat can be stored for a certain period of time, the surface temperature of the heating element in the electronic device can be maintained in an arbitrary temperature range.
[蓄熱部材]
 本発明の蓄熱部材は、上述の蓄熱体を有する。
 蓄熱体がシート状、板状、及び、フィルム状の場合、蓄熱部材は、後述のような、更に他の層(例えば、保護層)を有することが好ましい。また、蓄熱体がシート状、板状、及び、フィルム状の場合、蓄熱部材は、ハンドリングの点で、蓄熱体上に基材を有してもよい。
[Heat storage member]
The heat storage member of the present invention has the above-mentioned heat storage body.
When the heat storage body is in the form of a sheet, a plate, or a film, the heat storage member preferably has another layer (for example, a protective layer) as described later. Further, when the heat storage body is in the form of a sheet, a plate, or a film, the heat storage member may have a base material on the heat storage body in terms of handling.
<保護層>
 蓄熱体がシート状、板状、及び、フィルム状の場合、蓄熱部材は保護層を有していてもよい。保護層は、蓄熱体上に配置される層であって、蓄熱部材が基材を有する場合には、蓄熱体における基材とは反対側の面側に配置される。保護層は、蓄熱体を保護する機能を有する。
 保護層は、蓄熱体と接触するように配置されていてもよいし、他の層を介して蓄熱体上に配置されていてもよい。
 保護層を構成する材料は特に制限されず、樹脂が好ましく、耐水性、及び、難燃性がより良好となる点で、フッ素樹脂及びシロキサン樹脂からなる群から選択される樹脂が好ましい。
<Protective layer>
When the heat storage body is in the form of a sheet, a plate, or a film, the heat storage member may have a protective layer. The protective layer is a layer arranged on the heat storage body, and when the heat storage member has a base material, the protective layer is arranged on the surface side of the heat storage body opposite to the base material. The protective layer has a function of protecting the heat storage body.
The protective layer may be arranged so as to be in contact with the heat storage body, or may be arranged on the heat storage body via another layer.
The material constituting the protective layer is not particularly limited, and a resin is preferable, and a resin selected from the group consisting of a fluororesin and a siloxane resin is preferable in that water resistance and flame retardancy are better.
 フッ素樹脂としては、公知のフッ素樹脂が挙げられる。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリ塩化3フッ化エチレン、及び、ポリテトラフルオロプロピレンが挙げられる。
 フッ素樹脂は、単独のモノマーを重合したホモポリマーでもよいし、2種類以上を共重合したものでもよい。更には、これらのモノマーと他のモノマーとの共重合体でもよい。
 共重合体としては、例えば、テトラフルオロエチレンとテトラフルオロプロピレンとの共重合体、テトラフルオロエチレンとフッ化ビニリデンとの共重合体、テトラフルオロエチレンとエチレンとの共重合体、テトラフルオロエチレンとプロピレンとの共重合体、テトラフルオロエチレンとビニルエーテルとの共重合体、テトラフルオロエチレンとパーフロロビニルエーテルとの共重合体、クロロトリフルオロエチレンとビニルエーテルとの共重合体、及び、クロロトリフルオロエチレンとパーフロロビニルエーテルとの共重合体が挙げられる。
 フッ素樹脂としては、例えば、AGCコーテック社製のオブリガート(登録商標)SW0011F、SIFCLEAR-F101、F102(JSR社製)、KYNAR AQUATEC(登録商標)ARC、FMA-12(ともにアルケマ社製)が挙げられる。
Examples of the fluororesin include known fluororesins. Examples of the fluororesin include polytetrafluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, polyethylene trifluorochloride, and polytetrafluoropropylene.
The fluororesin may be a homopolymer obtained by polymerizing a single monomer, or may be a copolymer of two or more types. Further, a copolymer of these monomers and other monomers may be used.
Examples of the copolymer include a copolymer of tetrafluoroethylene and tetrafluoropropylene, a copolymer of tetrafluoroethylene and vinylidene fluoride, a copolymer of tetrafluoroethylene and ethylene, and tetrafluoroethylene and propylene. Polymers with, tetrafluoroethylene and vinyl ether copolymers, tetrafluoroethylene and perfluorovinyl ether copolymers, chlorotrifluoroethylene and vinyl ether copolymers, and chlorotrifluoroethylene and per. Examples thereof include a polymer with fluorovinyl ether.
Examples of the fluororesin include Obligato (registered trademark) SW0011F, SIFCLEAR-F101, F102 (manufactured by JSR), KYNAR AQUATEC (registered trademark) ARC, and FMA-12 (both manufactured by Arkema) manufactured by AGC Cortec. ..
 シロキサン樹脂は、シロキサン骨格を有する繰り返し単位を有するポリマーであり、下記式(1)で表される化合物の加水分解縮合物が好ましい。
 式(1)  Si(X)(R)4-n
 Xは、加水分解性基を表す。加水分解性基としては、例えば、アルコキシ基、ハロゲン基、アセトキシ基、及び、イソシアネート基が挙げられる。
 Rは、非加水分解性基を表す。非加水分解性基としては、例えば、アルキル基(例えば、メチル基、エチル基、及び、プロピル基)、アリール基(例えば、フェニル基、トリル基、及び、メシチル基)、アルケニル基(例えば、ビニル基、及び、アリル基)、ハロアルキル基(例えば、γ-クロロプロピル基)、アミノアルキル基(例えば、γ-アミノプロピル基、及び、γ-(2-アミノエチル)アミノプロピル基)、エポキシアルキル基(例えば、γ-グリシドキシプロピル基、及び、β-(3,4-エポキシシクロヘキシル)エチル基)、γ-メルカプトアルキル基、(メタ)アクリロイルオキシアルキル基(γ-メタクリロイルオキシプロピル基)、並びに、ヒドロキシアルキル基(例えば、γ-ヒドロキシプロピル基)が挙げられる。
 nは、1~4の整数を表し、3又は4が好ましい。
 上記加水分解縮合物とは、式(1)で表される化合物中の加水分解性基が加水分解し、得られた加水分解物を縮合して得られる化合物を意図する。なお、上記加水分解縮合物としては、すべての加水分解性基が加水分解され、かつ、加水分解物がすべて縮合されているもの(完全加水分解縮合物)であっても、一部の加水分解性基が加水分解され、一部の加水分解物が縮合しているもの(部分加水分解縮合物)であってもよい。つまり、上記加水分解縮合物は、完全加水分解縮合物、部分加水分解縮合物、又は、これらの混合物であってもよい。
The siloxane resin is a polymer having a repeating unit having a siloxane skeleton, and a hydrolyzed condensate of a compound represented by the following formula (1) is preferable.
Equation (1) Si (X) n (R) 4-n
X represents a hydrolyzable group. Examples of the hydrolyzable group include an alkoxy group, a halogen group, an acetoxy group, and an isocyanate group.
R represents a non-hydrolyzable group. Examples of the non-hydrolytable group include an alkyl group (for example, a methyl group, an ethyl group, and a propyl group), an aryl group (for example, a phenyl group, a trill group, and a mesityl group), and an alkenyl group (for example, vinyl). Group and allyl group), haloalkyl group (eg γ-chloropropyl group), aminoalkyl group (eg γ-aminopropyl group and γ- (2-aminoethyl) aminopropyl group), epoxyalkyl group (For example, γ-glycidoxypropyl group and β- (3,4-epoxycyclohexyl) ethyl group), γ-mercaptoalkyl group, (meth) acryloyloxyalkyl group (γ-methacryloyloxypropyl group), and , A hydroxyalkyl group (eg, γ-hydroxypropyl group).
n represents an integer of 1 to 4, preferably 3 or 4.
The hydrolyzed condensate is intended to be a compound obtained by hydrolyzing a hydrolyzable group in the compound represented by the formula (1) and condensing the obtained hydrolyzate. The hydrolyzed condensate may be partially hydrolyzed even if all hydrolyzable groups are hydrolyzed and all the hydrolyzated products are condensed (completely hydrolyzed condensate). The sex group may be hydrolyzed and a part of the hydrolyzate may be condensed (partially hydrolyzed condensate). That is, the hydrolyzed condensate may be a completely hydrolyzed condensate, a partially hydrolyzed condensate, or a mixture thereof.
 保護層としては、例えば、特開2018-202696号公報、特開2018-183877号公報、特開2018-111793号公報に記載の、公知のハードコート剤を含む層又はハードコートフィルムを用いてもよい。また、蓄熱性の点から、国際公開第2018/207387号及び特開2007-031610号公報に記載の、蓄熱性を有するポリマーを有する保護層を用いてもよい。 As the protective layer, for example, a layer containing a known hard coat agent or a hard coat film described in JP-A-2018-202696, JP-A-2018-18387, and JP-A-2018-111793 may be used. good. Further, from the viewpoint of heat storage property, a protective layer having a polymer having heat storage property described in International Publication No. 2018/207387 and JP-A-2007-031610 may be used.
 保護層は、樹脂以外の他の成分を含んでいてもよい。他の成分としては、熱伝導性材料、難燃剤、紫外線吸収剤、酸化防止剤、及び、防腐剤が挙げられる。 The protective layer may contain components other than the resin. Other components include thermally conductive materials, flame retardants, UV absorbers, antioxidants, and preservatives.
 難燃剤としては、特に制限はなく、公知の材料を用いることができる。例えば、「難燃剤・難燃材料の活用技術」(シーエムシー出版)記載の難燃剤等を用いることでき、ハロゲン系難燃剤、リン系難燃剤、又は、無機系難燃剤が好ましい。電子用途でハロゲンの混入が抑制されることが望ましい場合等は、リン系難燃剤、又は、無機系難燃剤が好ましい。
 リン系難燃剤としては、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルフェニルホスフェート、及び、2―エチルヘキシルジフェニルホスフェート等のホスフェート系材料、その他芳香族リン酸エステル、芳香族縮合リン酸エステル、ポリリン酸塩類、ホスフィン酸金属塩、並びに、赤リン等が挙げられる。
 また、難燃剤と併用して難燃助剤を含むことも好ましい。難燃助剤としては、例えば、ペンタエリスリトール、亜リン酸、及び、22酸化4亜塩12ホウ素7水和物等が挙げられる。
The flame retardant is not particularly limited, and a known material can be used. For example, a flame retardant or the like described in "Techniques for Utilizing Flame Retardants / Flame Retardants" (CMC Publishing) can be used, and halogen-based flame retardants, phosphorus-based flame retardants, or inorganic flame retardants are preferable. When it is desirable to suppress the mixing of halogens in electronic applications, phosphorus-based flame retardants or inorganic flame retardants are preferable.
Phosphorus-based flame retardants include phosphate-based materials such as triphenyl phosphate, tricresyl phosphate, trixilenyl phosphate, cresylphenyl phosphate, and 2-ethylhexyldiphenyl phosphate, other aromatic phosphate esters, and aromatic condensed phosphorus. Examples thereof include acid esters, polyphosphates, phosphinic acid metal salts, and red phosphorus.
It is also preferable to include a flame retardant aid in combination with the flame retardant. Examples of the flame retardant aid include pentaerythritol, phosphorous acid, and 22-oxidized tetrasalt 12boron heptahydrate.
 保護層の厚みは特に制限されないが、50μm以下が好ましく、0.01~25μmがより好ましく、0.5~15μmが更に好ましい。
 厚みは、保護層を厚み方向と平行に裁断した裁断面をSEMで観察し、任意の点を5点測定し、5点の厚みを平均した平均値とする。
The thickness of the protective layer is not particularly limited, but is preferably 50 μm or less, more preferably 0.01 to 25 μm, still more preferably 0.5 to 15 μm.
For the thickness, the cut surface obtained by cutting the protective layer in parallel with the thickness direction is observed by SEM, 5 arbitrary points are measured, and the thickness of the 5 points is averaged.
 保護層の形成方法は特に制限されず、公知の方法が挙げられる。例えば、樹脂又はその前駆体を含む保護層形成用組成物と蓄熱体とを接触させて、蓄熱体上に形成された塗膜に対して、必要に応じて硬化処理を施す方法、及び、保護層を蓄熱体上に貼り合わせる方法が挙げられる。
 以下、保護層形成用組成物を用いる方法について詳述する。
The method for forming the protective layer is not particularly limited, and known methods can be mentioned. For example, a method in which a protective layer forming composition containing a resin or a precursor thereof is brought into contact with a heat storage body, and a coating film formed on the heat storage body is subjected to a curing treatment as necessary, and protection. A method of bonding the layers on the heat storage body can be mentioned.
Hereinafter, the method of using the composition for forming a protective layer will be described in detail.
 保護層形成用組成物に含まれる樹脂は、上述した通りである。
 なお、樹脂の前駆体とは、硬化処理により樹脂となる成分を意味し、例えば、上述した式(1)で表される化合物が挙げられる。
 保護層形成用組成物は、必要に応じて、溶剤(例えば、水及び有機溶剤)を含んでいてもよい。
The resin contained in the protective layer forming composition is as described above.
The resin precursor means a component that becomes a resin by curing treatment, and examples thereof include a compound represented by the above-mentioned formula (1).
The composition for forming a protective layer may contain a solvent (for example, water and an organic solvent), if necessary.
 保護層形成用組成物と蓄熱体とを接触させる方法は特に制限されず、保護層形成用組成物を蓄熱体上に塗布する方法、及び、保護層形成用組成物中に蓄熱体を浸漬する方法が挙げられる。
 なお、保護層形成用組成物を塗布する方法としては、ディップコーター、ダイコーター、スリットコーター、バーコーター、エクストルージョンコーター、カーテンフローコーター、及び、スプレー塗布等の公知の塗布装置、並びに、グラビア印刷、スクリーン印刷、オフセット印刷、及び、インクジェット印刷等の印刷装置を用いる方法が挙げられる。
The method of contacting the protective layer forming composition with the heat storage body is not particularly limited, and the method of applying the protective layer forming composition onto the heat storage body and the method of immersing the heat storage body in the protective layer forming composition are immersed. The method can be mentioned.
As a method for applying the protective layer forming composition, a dip coater, a die coater, a slit coater, a bar coater, an extrusion coater, a curtain flow coater, a known coating device such as spray coating, and gravure printing are used. , Screen printing, offset printing, and a method using a printing device such as inkjet printing.
<密着層>
 蓄熱体がシート状、板状、及び、フィルム状の場合、後述する発熱体と蓄熱体との密着性を向上する目的で、基材の蓄熱体とは反対の面側に密着層を配置してもよい。密着層としては、粘着層及び接着層が挙げられる。
 粘着層の材料は特に制限されず、公知の粘着剤が挙げられる。
 粘着剤としては、例えば、アクリル系粘着剤、ゴム系粘着剤、及び、シリコーン系粘着剤が挙げられる。また、粘着剤の例として、「剥離紙・剥離フィルム及び粘着テープの特性評価とその制御技術」、情報機構、2004年、第2章に記載のアクリル系粘着剤、紫外線硬化型粘着剤、及び、シリコーン粘着剤等が挙げられる。
 なお、アクリル系粘着剤とは、(メタ)アクリルモノマーの重合体((メタ)アクリルポリマー)を含む粘着剤をいう。
 粘着層は、更に、粘着付与剤を含んでいてもよい。
<Adhesion layer>
When the heat storage body is in the form of a sheet, a plate, or a film, an adhesion layer is arranged on the side opposite to the heat storage body of the base material for the purpose of improving the adhesion between the heating element and the heat storage element, which will be described later. You may. Examples of the adhesive layer include an adhesive layer and an adhesive layer.
The material of the pressure-sensitive adhesive layer is not particularly limited, and examples thereof include known pressure-sensitive adhesives.
Examples of the pressure-sensitive adhesive include an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive. Further, as an example of the adhesive, "Characteristic evaluation of release paper / release film and adhesive tape and its control technology", Information Mechanism, 2004, acrylic adhesive described in Chapter 2, ultraviolet curable adhesive, and , Silicone adhesive and the like.
The acrylic pressure-sensitive adhesive refers to a pressure-sensitive adhesive containing a polymer of (meth) acrylic monomer ((meth) acrylic polymer).
The adhesive layer may further contain a tackifier.
 接着層の材料は特に制限されず、公知の接着剤が挙げられる。
 接着剤としては、例えば、ウレタン樹脂接着剤、ポリエステル接着剤、アクリル樹脂接着剤、エチレン酢酸ビニル樹脂接着剤、ポリビニルアルコール接着剤、ポリアミド接着剤、及び、シリコーン接着剤が挙げられる。
The material of the adhesive layer is not particularly limited, and examples thereof include known adhesives.
Examples of the adhesive include urethane resin adhesives, polyester adhesives, acrylic resin adhesives, ethylene vinyl acetate resin adhesives, polyvinyl alcohol adhesives, polyamide adhesives, and silicone adhesives.
 密着層の形成方法は特に制限されないが、例えば、蓄熱体上に密着層を転写する方法、及び、粘着剤又は接着剤を含む組成物を蓄熱体上に塗布して密着層を形成する方法が挙げられる。
 密着層の厚みは特に制限されないが、0.5~100μmが好ましく、1~25μmがより好ましく、1~15μmが更に好ましい。
The method for forming the adhesion layer is not particularly limited, and for example, a method of transferring the adhesion layer onto the heat storage body and a method of applying a composition containing an adhesive or an adhesive onto the heat storage body to form the adhesion layer. Can be mentioned.
The thickness of the adhesion layer is not particularly limited, but is preferably 0.5 to 100 μm, more preferably 1 to 25 μm, still more preferably 1 to 15 μm.
<難燃層>
 蓄熱体がシート状、板状、及び、フィルム状の場合、蓄熱部材は、難燃層を有していてもよい。また、蓄熱体中に難燃成分を有してもよい。難燃層の位置は特に制限されず、保護層と一体となっていても、別の層として設けていてもよい。別の層として設ける場合には、上記保護層と上記蓄熱体との間に積層されていることが好ましい。また、保護層と一体となっている場合には、上記保護層が難燃性の機能を有していることを意味する。特に、潜熱蓄熱材がパラフィンのような燃えやすい材料の場合には、難燃性の保護層又は難燃層を有することで、蓄熱部材全体を難燃性とすることができる。
 難燃性の保護層及び難燃層としては、難燃性であれば特に制限されないが、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、シリコーン樹脂、及び、フッ素含有樹脂等の難燃性有機樹脂、並びに、ガラス膜等の無機素材から形成されることが好ましい。ここで、ガラス膜は、例えば、シランカップリング剤又はシロキサンオリゴマーを蓄熱体上に塗布し、加熱又は乾燥して形成できる。
 難燃性の保護層を形成する方法としては、上記保護層中に、難燃剤を混合して形成してもよい。難燃剤としては、上述した難燃剤、及び、シリカ等の無機粒子が好ましい。無機粒子の量、種類は、面状及び/又は膜質によって、樹脂の種類を含めて調整できる。無機粒子のサイズは、0.01~1μmが好ましく、0.05~0.3μmがより好ましく、0.1~0.2μmが更に好ましい。
 無機粒子の含有量は、保護層の全質量に対して、0.1~50質量%が好ましく、1~40質量%がより好ましい。
 難燃剤の含有量は、蓄熱量及び難燃性の点から、保護層の全質量に対して、0.1~20質量%が好ましく、1~15質量%がより好ましく、1~5質量%が更に好ましい。また、難燃性の保護層の厚みは、蓄熱量及び難燃性の点から、0.1~20μmが好ましく、0.5~15μmがより好ましく、0.5~10μmが更に好ましい。
<Flame-retardant layer>
When the heat storage body is in the form of a sheet, a plate, or a film, the heat storage member may have a flame-retardant layer. Further, the heat storage body may have a flame-retardant component. The position of the flame-retardant layer is not particularly limited, and may be integrated with the protective layer or may be provided as a separate layer. When it is provided as a separate layer, it is preferably laminated between the protective layer and the heat storage body. When it is integrated with the protective layer, it means that the protective layer has a flame-retardant function. In particular, when the latent heat storage material is a flammable material such as paraffin, the entire heat storage member can be made flame-retardant by having a flame-retardant protective layer or a flame-retardant layer.
The flame-retardant protective layer and the flame-retardant layer are not particularly limited as long as they are flame-retardant, but are flame-retardant organic resins such as polyetheretherketone resin, polycarbonate resin, silicone resin, and fluorine-containing resin, as well. , It is preferably formed from an inorganic material such as a glass film. Here, the glass film can be formed by, for example, applying a silane coupling agent or a siloxane oligomer on a heat storage body and heating or drying the glass film.
As a method for forming the flame retardant protective layer, a flame retardant may be mixed and formed in the protective layer. As the flame retardant, the above-mentioned flame retardant and inorganic particles such as silica are preferable. The amount and type of the inorganic particles can be adjusted including the type of the resin depending on the surface shape and / or the film quality. The size of the inorganic particles is preferably 0.01 to 1 μm, more preferably 0.05 to 0.3 μm, still more preferably 0.1 to 0.2 μm.
The content of the inorganic particles is preferably 0.1 to 50% by mass, more preferably 1 to 40% by mass, based on the total mass of the protective layer.
The content of the flame retardant is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, and 1 to 5% by mass with respect to the total mass of the protective layer from the viewpoint of heat storage amount and flame retardancy. Is more preferable. The thickness of the flame-retardant protective layer is preferably 0.1 to 20 μm, more preferably 0.5 to 15 μm, and even more preferably 0.5 to 10 μm from the viewpoint of heat storage amount and flame retardancy.
<着色層>
 蓄熱体がシート状、板状、及び、フィルム状の場合、蓄熱部材は、着色層を有していてもよい。また、蓄熱体中に着色成分を有してもよい。着色層を設けることにより、蓄熱体の色味が変化した際にも、蓄熱部材の見た目の色味変化を抑制できる。また、ハンドリング時のこすれ、又は、蓄熱体への水等の侵入を抑制でき、マイクロカプセルの物理的又は化学的変化を抑制でき、結果として、蓄熱体自体の色味変化を抑制もできる。
 着色層は、保護層と一体となっていてもよいし、蓄熱体と接触するように別の層として配置されていてもよい。
<Colored layer>
When the heat storage body is in the form of a sheet, a plate, or a film, the heat storage member may have a colored layer. Further, the heat storage body may have a coloring component. By providing the colored layer, it is possible to suppress the change in the appearance of the heat storage member even when the color of the heat storage body changes. In addition, rubbing during handling or invasion of water or the like into the heat storage body can be suppressed, physical or chemical changes in the microcapsules can be suppressed, and as a result, color change of the heat storage body itself can be suppressed.
The colored layer may be integrated with the protective layer, or may be arranged as a separate layer so as to be in contact with the heat storage body.
 着色層は目的とする色相を得るため、着色剤を含むことが好ましい。
 着色剤としては、顔料、及び、染料が挙げられ、耐候性に優れ、かつ、蓄熱部材の見た目の色味変化をより抑制できる点で、顔料が好ましく、黒色顔料がより好ましく、カーボンブラックが更に好ましい。なお、カーボンブラックを使用する場合、着色層の熱伝導性がより向上する。
 顔料としては、従来公知の種々の無機顔料及び有機顔料が挙げられる。
 具体的な無機顔料としては、例えば、二酸化チタン、酸化亜鉛、リトポン、軽質炭酸カルシウム、ホワイトカーボン、酸化アルミニウム、水酸化アルミニウム、及び、硫酸バリウム等の白色顔料、並びに、カーボンブラック、チタンブラック、チタンカーボン、酸化鉄、及び、黒鉛等の黒色顔料が挙げられる。
The colored layer preferably contains a colorant in order to obtain the desired hue.
Examples of the colorant include pigments and dyes, and pigments are preferable, black pigments are more preferable, and carbon black is further preferable, because they have excellent weather resistance and can further suppress the change in the appearance of the heat storage member. preferable. When carbon black is used, the thermal conductivity of the colored layer is further improved.
Examples of the pigment include various conventionally known inorganic pigments and organic pigments.
Specific examples of the inorganic pigment include white pigments such as titanium dioxide, zinc oxide, lithopone, light calcium carbonate, white carbon, aluminum oxide, aluminum hydroxide, and barium sulfate, and carbon black, titanium black, and titanium. Examples thereof include black pigments such as carbon, iron oxide, and graphite.
 有機顔料としては、例えば、特開2009-256572号公報の段落0093に記載の有機顔料が挙げられる。
 有機顔料としては、例えば、C.I.Pigment Red 177、179、224、242、254、255、264等の赤色顔料、C.I.Pigment Yellow 138、139、150、180、185等の黄色顔料、C.I.Pigment Orange 36、38、71等の橙色顔料、C.I.Pigment Green 7、36、58等の緑色顔料、C.I.Pigment Blue 15:6等の青色顔料、及び、C.I.Pigment Violet 23等の紫色顔料が挙げられる。
 着色剤は、1種単独で用いてもよいし、2種以上を使用してもよい。
Examples of the organic pigment include the organic pigment described in paragraph 0093 of JP-A-2009-256572.
Examples of the organic pigment include C.I. I. Pigment Red 177, 179, 224, 242, 254, 255, 264 and other red pigments, C.I. I. Pigment Yellow 138, 139, 150, 180, 185 and other yellow pigments, C.I. I. Pigment Orange 36, 38, 71 and other orange pigments, C.I. I. Pigment Green 7, 36, 58 and other green pigments, C.I. I. Blue pigments such as Pigment Blue 15: 6 and C.I. I. Examples include purple pigments such as Pigment Violet 23.
The colorant may be used alone or in combination of two or more.
 着色層中における着色剤(例えば、黒色顔料)の含有量は特に制限されないが、蓄熱部材の見た目の色味変化をより抑制できる点で、着色層全体積に対して、2~30体積%が好ましく、5~25体積%がより好ましい。 The content of the colorant (for example, black pigment) in the colored layer is not particularly limited, but is 2 to 30% by volume with respect to the total volume of the colored layer in that the change in the appearance of the heat storage member can be further suppressed. It is preferable, 5 to 25% by volume is more preferable.
 着色層は、バインダーを含んでいてもよい。
 バインダーの種類は特に制限されず、公知の材料が挙げられ、樹脂が好ましい。
 樹脂としては、耐水性、及び、難燃性がより良好となる点で、フッ素樹脂及びシロキサン樹脂からなる群から選択される樹脂が好ましい。耐水性が良好な、フッ素樹脂及びシロキサン樹脂からなる群から選択される樹脂を着色層が含むことで、マイクロカプセルの化学変化を抑制でき、蓄熱体の色味変化を抑制できる。
 フッ素樹脂及びシロキサン樹脂の具体例は、上述の通りである。
The colored layer may contain a binder.
The type of the binder is not particularly limited, and known materials can be mentioned, and a resin is preferable.
As the resin, a resin selected from the group consisting of fluororesins and siloxane resins is preferable because it has better water resistance and flame retardancy. By including the resin selected from the group consisting of fluororesin and siloxane resin having good water resistance in the colored layer, the chemical change of the microcapsules can be suppressed and the color change of the heat storage body can be suppressed.
Specific examples of the fluororesin and the siloxane resin are as described above.
 着色層中におけるバインダーの含有量は特に制限されないが、蓄熱部材の見た目の色味変化をより抑制できる点で、着色層全体積に対して、50~98体積%が好ましく、75~95体積%がより好ましい。
 着色層中におけるバインダーは、1種単独で用いてもよく、2種以上を使用してもよい。
The content of the binder in the colored layer is not particularly limited, but is preferably 50 to 98% by volume, preferably 75 to 95% by volume, based on the total volume of the colored layer, in that the change in the appearance of the heat storage member can be further suppressed. Is more preferable.
The binder in the colored layer may be used alone or in combination of two or more.
 着色層は、着色剤及びバインダー以外の他の成分を含んでいてもよい。他の成分としては、熱伝導性材料、難燃剤、紫外線吸収剤、酸化防止剤、及び、防腐剤が挙げられる。 The colored layer may contain other components other than the colorant and the binder. Other components include thermally conductive materials, flame retardants, UV absorbers, antioxidants, and preservatives.
 着色層の厚みは特に制限されないが、0.1~100μmが好ましく、0.5~10μmがより好ましい。
 厚みは、着色層を厚み方向と平行に裁断した裁断面をSEMで観察し、任意の点を5点測定し、5点の厚みを平均した平均値とする。
The thickness of the colored layer is not particularly limited, but is preferably 0.1 to 100 μm, more preferably 0.5 to 10 μm.
For the thickness, the cut surface obtained by cutting the colored layer in parallel with the thickness direction is observed by SEM, 5 arbitrary points are measured, and the thickness of the 5 points is averaged.
 着色層の好適形態の一つとしては、着色層の膜厚が15μm以下であり、着色層の光学濃度が1.0以上である形態が挙げられる。光学濃度が上記範囲であれば、着色層を薄い場合でも、蓄熱部材の見た目の色味変化をより抑制できる。
 上記光学濃度は、1.2以上が好ましい。上限は特に制限されないが、6.0以下が好ましい。
 上記光学濃度の測定方法としては、X-rite eXact(X-Rite社製)を用いて、フィルタなし、濃度ステータスはISOステータスT、D50/2°で測定する。なお、光学濃度としては、XriteのOD値で、K値を採用する。
One of the preferred forms of the colored layer is a form in which the film thickness of the colored layer is 15 μm or less and the optical density of the colored layer is 1.0 or more. When the optical density is in the above range, even when the colored layer is thin, the change in the appearance of the heat storage member can be further suppressed.
The optical density is preferably 1.2 or more. The upper limit is not particularly limited, but 6.0 or less is preferable.
As the method for measuring the optical density, X-rite eXact (manufactured by X-Rite) is used, and the density status is measured at ISO status T and D50 / 2 ° without a filter. As the optical density, the K value is adopted as the OD value of Xrite.
 着色層の形成方法は特に制限されず、公知の方法が挙げられる。例えば、着色剤及びバインダー又はその前駆体を含む着色層形成用組成物と蓄熱体とを接触させて、蓄熱体上に形成された塗膜に対して、必要に応じて硬化処理を施す方法が挙げられる。
 以下、上記方法について詳述する。
The method for forming the colored layer is not particularly limited, and known methods can be mentioned. For example, there is a method in which a composition for forming a colored layer containing a colorant and a binder or a precursor thereof is brought into contact with a heat storage body, and a coating film formed on the heat storage body is subjected to a curing treatment as necessary. Can be mentioned.
Hereinafter, the above method will be described in detail.
 着色層形成用組成物に含まれる着色剤及びバインダーは、上述した通りである。
 着色層形成用組成物に含まれるバインダーの前駆体とは、硬化処理によりバインダーとなる成分を意味し、例えば、上述した式(1)で表される化合物が挙げられる。
 着色層形成用組成物は、必要に応じて、溶剤(例えば、水及び有機溶剤)を含んでいてもよい。
The colorants and binders contained in the composition for forming a colored layer are as described above.
The precursor of the binder contained in the composition for forming a colored layer means a component that becomes a binder by a curing treatment, and examples thereof include a compound represented by the above-mentioned formula (1).
The colored layer forming composition may contain a solvent (for example, water and an organic solvent), if necessary.
 着色層形成用組成物と蓄熱体とを接触させる方法は特に制限されず、着色層形成用組成物を蓄熱体上に塗布する方法、及び、着色層形成用組成物中に蓄熱体を浸漬する方法が挙げられる。
 なお、着色層形成用組成物を塗布する方法としては、保護層形成用組成物を塗布する方法で挙げた方法と同様である。
 着色層は、蓄熱体の全面に設けてもよいし、一部に模様状に設けてもよい。
The method of contacting the colored layer forming composition with the heat storage body is not particularly limited, and the method of applying the colored layer forming composition onto the heat storage body and the method of immersing the heat storage body in the colored layer forming composition are immersed. The method can be mentioned.
The method of applying the composition for forming a colored layer is the same as the method described in the method of applying the composition for forming a protective layer.
The colored layer may be provided on the entire surface of the heat storage body, or may be provided in a pattern on a part thereof.
<他の部材>
 蓄熱部材は、蓄熱体がシート状、板状、及び、フィルム状の場合、蓄熱体における保護層とは反対の面側に配置された基材と、上記基材における蓄熱体とは反対の面側に配置された密着層と、上記密着層における上記基材とは反対の面側に配置された仮基材と、を有していてもよい。これにより、蓄熱部材の保管時及び搬送時等において、蓄熱体の傷付き等を抑制できる。
 基材及び密着層については、上述した通りである。また、仮基材の具体例は、基材の具体例と同様である。剥離面を有する基材であることが好ましい。
 蓄熱部材の使用する際には、蓄熱部材から仮基材を剥離する。
<Other members>
When the heat storage member is in the form of a sheet, a plate, or a film, the heat storage member has a base material arranged on the surface side opposite to the protective layer in the heat storage body and a surface opposite to the heat storage body in the above base material. It may have an adhesion layer arranged on the side and a temporary substrate arranged on the surface side of the adhesion layer opposite to the substrate. As a result, it is possible to suppress damage to the heat storage body during storage and transportation of the heat storage member.
The base material and the adhesive layer are as described above. Moreover, the specific example of the temporary base material is the same as the specific example of the base material. It is preferably a base material having a peeled surface.
When using the heat storage member, the temporary base material is peeled off from the heat storage member.
[電子デバイス]
 本発明の電子デバイスは、上述の蓄熱部材又は蓄熱体と、発熱体とを有する。
 蓄熱部材については、上述した通りである。
[Electronic device]
The electronic device of the present invention has the above-mentioned heat storage member or heat storage body and a heating element.
The heat storage member is as described above.
<発熱体>
 発熱体は、電子デバイスにおける発熱する場合がある部材であって、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、SRAM(Static Random Access Memory)及びRF(Radio Frequency)デバイス等のSoC(Systems on a Chip)、カメラ、LEDパッケージ、パワーエレクトロニクス、並びに、バッテリー(特にリチウムイオン二次電池)が挙げられる。
 発熱体は、蓄熱部材と接触するように配置されていてもよいし、他の層(例えば、後述する熱伝導性材料)を介して蓄熱部材に配置されていてもよい。
<Heating element>
The heating element is a member that may generate heat in an electronic device, and is, for example, a SoC such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a SRAM (Static Random Access Memory), and an RF (Radio Frequency) device. (Systems on a Chip), cameras, LED packages, power electronics, and batteries (especially lithium ion secondary batteries).
The heating element may be arranged so as to be in contact with the heat storage member, or may be arranged on the heat storage member via another layer (for example, a heat conductive material described later).
<熱伝導性材料>
 電子デバイスは、更に、熱伝導性材料を有することが好ましい。
 熱伝導性材料とは、発熱体から生じた熱を別の媒体に伝導する機能を有する材料を意味する。
 熱伝導性材料の「熱伝導性」としては、熱伝導率が10Wm-1-1以上であることが好ましい。即ち、熱伝導性材料は、熱伝導率が10Wm-1-1以上である材料であることが好ましい。熱伝導率(単位:Wm-1-1)は、フラッシュ法にて25℃の温度下、日本工業規格(JIS)R1611に準拠した方法により測定される値である。
 電子デバイスが有してもよい熱伝導性材料としては、例えば、金属板、放熱シート、及びシリコングリースが挙げられ、金属板、又は放熱シートが好ましく用いられる。
 電子デバイスは、上述の蓄熱部材と、蓄熱部材上に配置された熱伝導性材料と、熱伝導性材料における蓄熱部材とは反対の面側に配置された発熱体とを有することが好ましい。また、電子デバイスは、上述の蓄熱部材と、蓄熱部材上に配置された金属板と、金属板における蓄熱部材とは反対の面側に配置された発熱体とを有することがより好ましい。
 上述の蓄熱部材が保護層を有する場合において、電子デバイスの好適態様の一つとしては、上述の蓄熱部材と、上記蓄熱部材における上記保護層とは反対の面側に配置された金属板と、上記金属板における上記蓄熱部材とは反対の面側に配置された発熱体と、を有する態様が挙げられる。換言すると、保護層、蓄熱体、金属板、及び、発熱体がこの順に積層されている態様が好ましい。
<Thermal conductive material>
The electronic device further preferably has a thermally conductive material.
The heat conductive material means a material having a function of conducting heat generated from a heating element to another medium.
As the "thermal conductivity" of the thermally conductive material, it is preferable that the thermal conductivity is 10 Wm -1 K -1 or more. That is, the heat conductive material is preferably a material having a thermal conductivity of 10 Wm -1 K -1 or more. The thermal conductivity (unit: Wm -1 K -1 ) is a value measured by a flash method at a temperature of 25 ° C. by a method compliant with Japanese Industrial Standards (JIS) R1611.
Examples of the heat conductive material that the electronic device may have include a metal plate, a heat radiating sheet, and silicon grease, and a metal plate or a heat radiating sheet is preferably used.
The electronic device preferably has the above-mentioned heat storage member, a heat conductive material arranged on the heat storage member, and a heating element arranged on the surface side of the heat conductive material opposite to the heat storage member. Further, it is more preferable that the electronic device has the above-mentioned heat storage member, a metal plate arranged on the heat storage member, and a heating element arranged on the surface side of the metal plate opposite to the heat storage member.
When the above-mentioned heat storage member has a protective layer, one of the preferred embodiments of the electronic device is a above-mentioned heat storage member, a metal plate arranged on the surface side of the above-mentioned heat storage member opposite to the above-mentioned protective layer, and the above-mentioned heat storage member. An embodiment having a heating element arranged on the surface side of the metal plate opposite to the heat storage member can be mentioned. In other words, it is preferable that the protective layer, the heat storage body, the metal plate, and the heat generating body are laminated in this order.
(金属板)
 金属板は、発熱体の保護、及び、発熱体から生じた熱を蓄熱体に伝導する機能を有する。
 金属板における発熱体が設けられた面とは反対側の面は、蓄熱体と接触していてもよいし、他の層(例えば、放熱シート、密着層、又は、基材)を介して蓄熱体が配置されていてもよい。
 金属板を構成する材料としては、アルミニウム、銅、及び、ステンレスが挙げられる。
(Metal plate)
The metal plate has a function of protecting the heating element and conducting heat generated from the heating element to the heat storage element.
The surface of the metal plate opposite to the surface on which the heating element is provided may be in contact with the heat storage element, or heat may be stored via another layer (for example, a heat dissipation sheet, an adhesion layer, or a base material). The body may be arranged.
Examples of the material constituting the metal plate include aluminum, copper, and stainless steel.
(放熱シート)
 放熱シートは、発熱体から生じた熱を別の媒体に伝導する機能を有するシートであり、放熱材を有することが好ましい。放熱材としては、例えば、カーボン、金属(例えば、銀、銅、アルミニウム、鉄、白金、ステンレス、及びニッケル)、並びに、シリコンが挙げられる。
 放熱シートの具体例としては、銅箔シート、金属皮膜樹脂シート、金属含有樹脂シート及び、グラフェンシートが挙げられ、グラフェンシートが好ましく用いられる。放熱シートの厚みは特に制限されないが、10~500μmが好ましく、20~300μmがより好ましい。
(Heat dissipation sheet)
The heat radiating sheet is a sheet having a function of conducting heat generated from a heating element to another medium, and preferably has a heat radiating material. Examples of the heat radiating material include carbon, metal (for example, silver, copper, aluminum, iron, platinum, stainless steel, and nickel), and silicon.
Specific examples of the heat radiating sheet include a copper foil sheet, a metal film resin sheet, a metal-containing resin sheet, and a graphene sheet, and a graphene sheet is preferably used. The thickness of the heat radiating sheet is not particularly limited, but is preferably 10 to 500 μm, more preferably 20 to 300 μm.
<ヒートパイプ、ベイパーチャンバー>
 電子デバイスは、ヒートパイプ及びベイパーチャンバーからなる群より選択される熱輸送部材を更に有することが好ましい。
 ヒートパイプ及びベイパーチャンバーはいずれも、金属等で形成され、中空構造を有する部材と、その内部空間に封入される熱伝達媒体である作動流体とを少なくとも備え、高温部(蒸発部)において作動流体が蒸発(気化)して熱を吸収し、低温部(凝縮部)において気化した作動流体が凝縮して熱を放出する。ヒートパイプ及びベイパーチャンバーは、この内部での作動流体の相変化により、高温部に接触する部材から低温部に接触する部材に熱を輸送する機能を有する。
<Heat pipe, vapor chamber>
The electronic device preferably further comprises a heat transport member selected from the group consisting of heat pipes and vapor chambers.
Both the heat pipe and the vapor chamber are made of metal or the like and include at least a member having a hollow structure and a working fluid which is a heat transfer medium enclosed in the internal space thereof, and the working fluid in a high temperature part (evaporation part). Evaporates (vaporizes) and absorbs heat, and the vaporized working fluid condenses in the low temperature part (condensed part) and releases heat. The heat pipe and the vapor chamber have a function of transporting heat from a member in contact with a high temperature portion to a member in contact with a low temperature portion due to a phase change of the working fluid inside the heat pipe and the vapor chamber.
 電子デバイスが蓄熱部材と、ヒートパイプ及びベイパーチャンバーからなる群より選択される熱輸送部材とを有する場合、蓄熱部材とヒートパイプ又はベイパーチャンバーとが接触していることが好ましく、蓄熱部材がヒートパイプ又はベイパーチャンバーの低温部に接触していることがより好ましい。
 また、電子デバイスが蓄熱部材と、ヒートパイプ及びベイパーチャンバーからなる群より選択される熱輸送部材とを有する場合、蓄熱部材が有する本発明の蓄熱体に含まれる蓄熱材の相変化温度と、ヒートパイプ又はベイパーチャンバーが作動する温度領域とが重複していることが好ましい。ヒートパイプ又はベイパーチャンバーが作動する温度領域としては、例えば、それぞれの内部において作動流体が相変化可能な温度の範囲が挙げられる。
When the electronic device has a heat storage member and a heat transport member selected from the group consisting of a heat pipe and a vapor chamber, it is preferable that the heat storage member and the heat pipe or the vapor chamber are in contact with each other, and the heat storage member is a heat pipe. Alternatively, it is more preferable that the vapor chamber is in contact with the low temperature portion.
Further, when the electronic device has a heat storage member and a heat transport member selected from the group consisting of a heat pipe and a vapor chamber, the phase change temperature of the heat storage material contained in the heat storage body of the present invention possessed by the heat storage member and heat. It is preferable that the temperature range in which the pipe or vapor chamber operates overlaps. The temperature range in which the heat pipe or the vapor chamber operates includes, for example, a range of temperatures in which the working fluid can undergo a phase change.
 ヒートパイプは、管状部材と、その内部空間に封入された作動流体とを少なくとも有する。ヒートパイプは、管状部材の内壁に毛細管現象に基づく作動流体の流路となるウィック構造を有し、その内側に気化した作動流体の通路となる内部空間が設けられた断面構成を有することが好ましい。管状部材の形状としては、円管状、角管状及び偏平な楕円管状等が挙げられる。管状部材は、屈曲部を有していてもよい。また、ヒートパイプは、管状部材がループ状に連結した構造を有するループヒートパイプであってもよい。 The heat pipe has at least a tubular member and a working fluid enclosed in its internal space. The heat pipe preferably has a wick structure on the inner wall of the tubular member as a flow path for the working fluid based on the capillary phenomenon, and has a cross-sectional structure in which an internal space for the passage of the vaporized working fluid is provided inside the wick structure. .. Examples of the shape of the tubular member include a circular tube, a square tube, and a flat elliptical tube. The tubular member may have a bent portion. Further, the heat pipe may be a loop heat pipe having a structure in which tubular members are connected in a loop shape.
 ベイパーチャンバーは、中空構造を有する平板状の部材と、その内部空間に封入された作動流体とを少なくとも有する。ベイパーチャンバーは、平板状部材の内面にヒートパイプと同様のウィック構造を有することが好ましい。ベイパーチャンバーでは、概ね、平板状部材の一方の主面に接触する部材から熱が吸収され、他方の主面に接触する部材に熱が放出されることで、熱が輸送される。 The vapor chamber has at least a flat plate-shaped member having a hollow structure and a working fluid enclosed in the internal space thereof. The vapor chamber preferably has a wick structure similar to that of a heat pipe on the inner surface of a flat plate-shaped member. In the vapor chamber, heat is generally absorbed from a member in contact with one main surface of the flat plate-shaped member, and heat is released to the member in contact with the other main surface to transport heat.
 ヒートパイプ及びベイパーチャンバーを構成する材料は、熱伝導性が高い材料であれば特に制限されず、銅及びアルミニウム等の金属が挙げられる。
 ヒートパイプ及びベイパーチャンバーの内部空間に封入される作動流体としては、例えば、水、メタノール、エタノール及び代替フロンが挙げられ、適用される電子デバイスの温度範囲に応じて適宜選択して使用される。
The material constituting the heat pipe and the vapor chamber is not particularly limited as long as it is a material having high thermal conductivity, and examples thereof include metals such as copper and aluminum.
Examples of the working fluid enclosed in the internal space of the heat pipe and the vapor chamber include water, methanol, ethanol and CFC substitutes, which are appropriately selected and used according to the temperature range of the electronic device to be applied.
<他の部材>
 電子デバイスは、保護層、蓄熱体、熱伝導性材料、発熱体、及び、上述した熱輸送部材以外の他の部材を含んでいてもよい。他の部材としては、基材、及び、密着層が挙げられる。基材及び密着層については、上述した通りである。
<Other members>
The electronic device may include a protective layer, a heat storage body, a heat conductive material, a heating element, and other members other than the heat transport member described above. Examples of other members include a base material and an adhesion layer. The base material and the adhesive layer are as described above.
 電子デバイスは、蓄熱体と金属板との間に、放熱シート、基材、及び、密着層からなる群より選択される少なくとも1種の部材を有していてもよい。蓄熱体と金属板との間に、放熱シート、基材、及び、密着層のうち、2つ以上の部材が配置される場合には、蓄熱体側から金属板側に向かって、基材、密着層、及び、放熱シートがこの順になるように配置されることが好ましい。
 また、電子デバイスは、金属板と発熱体との間に、放熱シートを有していてもよい。
The electronic device may have at least one member selected from the group consisting of a heat radiating sheet, a base material, and an adhesion layer between the heat storage body and the metal plate. When two or more members of the heat dissipation sheet, the base material, and the close contact layer are arranged between the heat storage body and the metal plate, the base material and the close contact are made from the heat storage body side toward the metal plate side. It is preferable that the layers and the heat dissipation sheets are arranged in this order.
Further, the electronic device may have a heat radiating sheet between the metal plate and the heating element.
 電子デバイスの具体例については、上述した通りであるので、その説明を省略する。 The specific examples of the electronic device are as described above, so the description thereof will be omitted.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその趣旨を越えない限り、以下の実施例に制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist is not exceeded.
<実施例1>
(マイクロカプセル分散液の調製)
 エイコサン(潜熱蓄熱材;融点37℃、炭素数20の脂肪族炭化水素)100質量部を60℃に加熱溶解し、酢酸エチル120質量部を加えた溶液Aを得た。
 次に、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン(アデカポリエーテルEDP-300、株式会社ADEKA)0.1質量部を、攪拌している溶液Aに加えて溶液Bを得た。
 更に、メチルエチルケトン1質量部に溶解したトリレンジイソシアネートとトリメチロールプロパンとの付加物(バーノックD-750、DIC株式会社)10質量部を、攪拌している溶液Bに加え、溶液Cを得た。
 そして、水140質量部に乳化剤としてポリビニルアルコール(クラレポバール(登録商標)KL-318(株式会社クラレ製;PVA(Polyvinyl alcohol)))10質量部を溶解した溶液中に、上記の溶液Cを加えて、乳化分散した。乳化分散後の乳化液に水250質量部を加え、得られた溶液を攪拌しながら70℃まで加温し、1時間攪拌を継続した後、30℃に冷却した。冷却後の溶液に更に水を加えて濃度を調整し、ポリウレタンウレアのカプセル壁を有するエイコサン内包マイクロカプセル分散液を得た。
 エイコサン内包マイクロカプセル分散液の固形分濃度は、19質量%であった。また、エイコサン内包マイクロカプセルのカプセル壁の質量は、内包されたエイコサンの質量に対して、10質量%であった。マイクロカプセルの体積基準でのメジアン径は20μmであった。また、マイクロカプセルのカプセル壁の厚みは、0.1μmであった。
 また、得られた分散液から取り出されたマイクロカプセルの変形率を、押し込み硬度計としてフィッシャー・インストルメンツ社製HM2000型微小硬度計を用いて、上述の方法により測定した結果、マイクロカプセルの変形率は、41%であった。
<Example 1>
(Preparation of microcapsule dispersion)
100 parts by mass of icosane (latent heat storage material; an aliphatic hydrocarbon having a melting point of 37 ° C. and 20 carbon atoms) was heated and dissolved at 60 ° C. to obtain a solution A to which 120 parts by mass of ethyl acetate was added.
Next, 0.1 part by mass of N, N, N', N'-tetrakis (2-hydroxypropyl) ethylenediamine (ADEKApolyether EDP-300, ADEKA CORPORATION) is added to the stirring solution A to make a solution. B was obtained.
Further, 10 parts by mass of an adduct of trimethylolpropane and trimethylolpropane dissolved in 1 part by mass of methyl ethyl ketone (Bernock D-750, DIC Corporation) was added to the stirring solution B to obtain a solution C.
Then, the above solution C is added to a solution prepared by dissolving 10 parts by mass of polyvinyl alcohol (Kuraray (registered trademark) KL-318 (manufactured by Kuraray Co., Ltd .; PVA (Polyvinyl alcohol))) as an emulsifier in 140 parts by mass of water. And emulsified and dispersed. 250 parts by mass of water was added to the emulsified liquid after emulsification and dispersion, and the obtained solution was heated to 70 ° C. while stirring, and after continuing stirring for 1 hour, it was cooled to 30 ° C. Water was further added to the cooled solution to adjust the concentration to obtain an icosane-encapsulating microcapsule dispersion having a polyurethane urea capsule wall.
The solid content concentration of the microcapsule dispersion containing Eikosan was 19% by mass. The mass of the capsule wall of the icosane-encapsulated microcapsules was 10% by mass with respect to the mass of the encapsulated icosane. The median diameter of the microcapsules on a volume basis was 20 μm. The thickness of the capsule wall of the microcapsules was 0.1 μm.
Further, the deformation rate of the microcapsules taken out from the obtained dispersion was measured by the above method using an HM2000 type microhardness meter manufactured by Fisher Instruments Co., Ltd. as an indentation hardness tester. As a result, the deformation rate of the microcapsules was obtained. Was 41%.
(マイクロカプセル粉体の調製)
 エイコサン内包マイクロカプセル分散液(100質量部)に水(800質量部)を加え、30分間攪拌後、80℃で4時間静置することにより、マイクロカプセルが凝集した上層と水相である下層とに分離した。マイクロカプセルに吸着していない乳化剤であるポリビニルアルコールは水相である下層に溶解していた。
 その後、水相である下層を除去した後、残った固形分(マイクロカプセル凝集物)に水(800質量部)を加え、30分間攪拌し、80℃で4時間静置して、マイクロカプセル凝集した上層と水相である下層とに分離させた後、水相である下層を除去する操作を4回繰り返した。得られたマイクロカプセル凝集物を不織布で包み、もみほぐしながら冷風を当てて乾燥させて、マイクロカプセル粉体を得た。
(Preparation of microcapsule powder)
Water (800 parts by mass) was added to the Eikosan-encapsulating microcapsule dispersion (100 parts by mass), and after stirring for 30 minutes, the mixture was allowed to stand at 80 ° C. for 4 hours to form an upper layer in which the microcapsules aggregated and a lower layer which is an aqueous phase. Separated into. Polyvinyl alcohol, which is an emulsifier not adsorbed on the microcapsules, was dissolved in the lower layer, which is the aqueous phase.
Then, after removing the lower layer which is the aqueous phase, water (800 parts by mass) is added to the remaining solid content (microcapsule aggregates), the mixture is stirred for 30 minutes, and allowed to stand at 80 ° C. for 4 hours to aggregate the microcapsules. After separating the upper layer and the lower layer which is the aqueous phase, the operation of removing the lower layer which is the aqueous phase was repeated four times. The obtained microcapsule agglomerates were wrapped in a non-woven fabric and dried by applying cold air while rubbing to obtain microcapsule powder.
(蓄熱体形成用組成物の調製)
 マイクロカプセル粉体(13.3質量部)に対して、スーパーフレックスE2000(3.9質量部)、及び、水(1.3質量部)を加え、ミックスローターにて4時間攪拌した。その後、得られた溶液に、セロゲンEP水溶液(水溶液全質量に対するセロゲンEP濃度:1質量%)(1.2質量部)、及び、ナトリウム-1,2-(ビス(3,3,4,4,5,5,6,6,6-ナノフルオロヘキシルカルボニル))エタンスルホナート(以下、「化合物A」ともいう。)水溶液(水溶液全質量に対する化合物Aの濃度:2質量%)(0.23質量部)を加え、ミックスローターで4時間攪拌して、蓄熱体形成用組成物1を得た。
 その後、得られた蓄熱体形成用組成物1(5cc)を離型フィルム上に滴下して、直径30mmの大きさとして、85℃で2時間乾燥して、ひび割れがない蓄熱体(厚み:5400μm)を製造した。
 得られた蓄熱体の空隙率は、5体積%であった。また、蓄熱体の吸熱量は160J/ccだった。
(Preparation of composition for forming heat storage body)
Superflex E2000 (3.9 parts by mass) and water (1.3 parts by mass) were added to the microcapsule powder (13.3 parts by mass), and the mixture was stirred with a mix rotor for 4 hours. Then, in the obtained solution, an aqueous solution of carbonyl EP (concentration of carbonyl EP with respect to the total mass of the aqueous solution: 1% by mass) (1.2 parts by mass) and sodium-1,2- (bis (3,3,4,4) , 5, 5, 6, 6, 6-Nanofluorohexylcarbonyl)) Ethanesulfonate (hereinafter, also referred to as "Compound A") Aqueous solution (Concentration of Compound A with respect to the total mass of the aqueous solution: 2% by mass) (0.23) By mass) was added, and the mixture was stirred with a mix rotor for 4 hours to obtain a heat storage body forming composition 1.
Then, the obtained heat storage body forming composition 1 (5 cc) was dropped onto a release film, dried at 85 ° C. for 2 hours to a size of 30 mm in diameter, and the heat storage body without cracks (thickness: 5400 μm). ) Was manufactured.
The porosity of the obtained heat storage body was 5% by volume. The heat absorption amount of the heat storage body was 160 J / cc.
<実施例2~3、比較例1>
 使用する材料の種類を表1のように変更した以外は、実施例1と同様の手順に従って、蓄熱体を作製した。
<Examples 2 to 3, Comparative Example 1>
A heat storage body was produced according to the same procedure as in Example 1 except that the type of material used was changed as shown in Table 1.
<評価>
 実施例及び比較例にて得られた蓄熱体に関して、以下の評価を実施した。
<Evaluation>
The following evaluations were carried out on the heat storage bodies obtained in Examples and Comparative Examples.
(空隙率の測定)
 X線CT装置を用いて、上述した方法に従って蓄熱体の空隙率を算出した。
 なお、空隙率は、剥離フィルムを剥がして、蓄熱体部分のみをX線CT装置で解析した。
(Measurement of porosity)
Using an X-ray CT device, the porosity of the heat storage body was calculated according to the method described above.
The porosity was analyzed by peeling off the release film and analyzing only the heat storage body portion with an X-ray CT apparatus.
(吸熱量の測定)
 得られた蓄熱体の吸熱量を、示差走査熱量測定より算出した。
 なお、蓄熱体の潜熱容量は、離型フィルムを剥離した蓄熱体自身の吸熱量を測定した。
(Measurement of heat absorption)
The heat absorption amount of the obtained heat storage body was calculated from the differential scanning calorimetry.
For the latent heat capacity of the heat storage body, the heat absorption amount of the heat storage body itself from which the release film was peeled off was measured.
(ハンドリング性評価)
 蓄熱体を15mm×25mmに切断して測定用サンプルを準備した。測定用サンプルの長辺の両側の1cm分を掴んで、測定サンプルの長辺方向に沿って0.5cm引き延ばした際の、蓄熱体への欠陥(ひび及び欠け)の入り方を目視で観察した。以下の基準に従って、評価した。実用上、「0」又は「1」が好ましい。
 欠陥が生じない場合を「0」、ひびがごくわずかに生じる場合を「1」、ひび及び欠けの欠陥が生じる場合を「2」とした。
(Evaluation of handleability)
The heat storage body was cut into 15 mm × 25 mm to prepare a measurement sample. When 1 cm on both sides of the long side of the measurement sample was grasped and stretched 0.5 cm along the long side of the measurement sample, the appearance of defects (cracks and chips) in the heat storage body was visually observed. .. Evaluation was made according to the following criteria. Practically, "0" or "1" is preferable.
The case where no defect occurred was set as "0", the case where cracks occurred very slightly was set as "1", and the case where cracks and chips occurred was set as "2".
 表1中、「樹脂」欄の「固形分(%)」欄は、「樹脂」欄の「種類」欄に記載の各市販品中における固形分濃度(質量%)を表す。
 表1中の「樹脂」欄の「Tg(℃)」欄は、使用された市販品中の樹脂のガラス転移温度(℃)を表す。
 表1中の「樹脂」欄の「破断伸度」欄は、使用された市販品中の樹脂の破断伸度(%)を表す。
 表1中の「樹脂含有量(質量%)」欄は、蓄熱体全質量に対する樹脂の含有量(質量%)を表す。
 表1中の「蓄熱材含有量(質量%)」欄は、蓄熱体全質量に対する蓄熱材の含有量(質量%)を表す。
In Table 1, the "solid content (%)" column in the "resin" column represents the solid content concentration (mass%) in each commercially available product described in the "type" column in the "resin" column.
The "Tg (° C.)" column in the "resin" column in Table 1 represents the glass transition temperature (° C.) of the resin in the commercially available product used.
The "breaking elongation" column in the "resin" column in Table 1 represents the breaking elongation (%) of the resin in the commercially available product used.
The "resin content (mass%)" column in Table 1 represents the resin content (mass%) with respect to the total mass of the heat storage body.
The "heat storage material content (mass%)" column in Table 1 represents the content (mass%) of the heat storage material with respect to the total mass of the heat storage body.
 表1に記載のスーパーフレックスE2000は第1工業製薬社から販売される市販品であり、スーパーフレックスE2000に含まれる樹脂はポリウレタンである。
 表1に記載のスーパーフレックス300は第1工業製薬社から販売される市販品であり、スーパーフレックス300に含まれる樹脂はポリウレタンである。
 表1に記載のスーパーフレックスE4800は第1工業製薬社から販売される市販品であり、スーパーフレックスE4800に含まれる樹脂はポリウレタンである。
 表1に記載のクラレポバールKL-318は第1工業製薬社から販売される市販品であり、クラレポバールKL-318に含まれる樹脂はポリビニルアルコールである。
The Superflex E2000 shown in Table 1 is a commercially available product sold by Dai-ichi Kogyo Seiyaku Co., Ltd., and the resin contained in the Superflex E2000 is polyurethane.
The Superflex 300 shown in Table 1 is a commercially available product sold by Dai-ichi Kogyo Seiyaku Co., Ltd., and the resin contained in the Superflex 300 is polyurethane.
The Superflex E4800 shown in Table 1 is a commercially available product sold by Dai-ichi Kogyo Seiyaku Co., Ltd., and the resin contained in the Superflex E4800 is polyurethane.
The Kuraray Poval KL-318 shown in Table 1 is a commercially available product sold by Dai-ichi Kogyo Seiyaku Co., Ltd., and the resin contained in Kuraray Poval KL-318 is polyvinyl alcohol.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明の蓄熱体は、所望の効果を示すことが確認された。
 なかでも、空隙率が5体積%以下である場合、ハンドリング性がより優れることが確認された。
As shown in Table 1, it was confirmed that the heat storage material of the present invention exhibited a desired effect.
Above all, when the porosity was 5% by volume or less, it was confirmed that the handleability was more excellent.

Claims (15)

  1.  蓄熱材を内包するマイクロカプセル、及び、樹脂を含む、蓄熱体であって、
     蓄熱体の全質量に対する前記蓄熱材の含有量が65質量%以上であり、
     空隙率が10体積%未満である、蓄熱体。
    A heat storage body containing a microcapsule containing a heat storage material and a resin.
    The content of the heat storage material with respect to the total mass of the heat storage body is 65% by mass or more.
    A heat storage body having a porosity of less than 10% by volume.
  2.  前記樹脂の含有量が、前記蓄熱体全質量に対して、20質量%以下である、請求項1に記載の蓄熱体。 The heat storage body according to claim 1, wherein the content of the resin is 20% by mass or less with respect to the total mass of the heat storage body.
  3.  前記樹脂の弾性率が、15MPa以下である、請求項1又は2に記載の蓄熱体。 The heat storage body according to claim 1 or 2, wherein the elastic modulus of the resin is 15 MPa or less.
  4.  前記樹脂のガラス転移温度が50℃以下である、請求項1~3のいずれか1項に記載の蓄熱体。 The heat storage body according to any one of claims 1 to 3, wherein the glass transition temperature of the resin is 50 ° C. or lower.
  5.  前記樹脂の破断伸度が300%以上である、請求項1~4のいずれか1項に記載の蓄熱体。 The heat storage body according to any one of claims 1 to 4, wherein the resin has a breaking elongation of 300% or more.
  6.  前記マイクロカプセルの体積基準のメジアン径に対する前記マイクロカプセルのカプセル壁の厚みの割合が、0.0075以下である、請求項1~5のいずれか1項に記載の蓄熱体。 The heat storage body according to any one of claims 1 to 5, wherein the ratio of the thickness of the capsule wall of the microcapsules to the volume-based median diameter of the microcapsules is 0.0075 or less.
  7.  前記マイクロカプセルのカプセル壁の厚みが、0.20μm以下である、請求項1~6のいずれか1項に記載の蓄熱体。 The heat storage body according to any one of claims 1 to 6, wherein the thickness of the capsule wall of the microcapsule is 0.20 μm or less.
  8.  前記マイクロカプセルの変形率が、35%以上である、請求項1~7のいずれか1項に記載の蓄熱体。 The heat storage body according to any one of claims 1 to 7, wherein the deformation rate of the microcapsules is 35% or more.
  9.  前記マイクロカプセルのカプセル壁及び前記樹脂が、同じ官能基を有する、請求項1~8のいずれか1項に記載の蓄熱体。 The heat storage body according to any one of claims 1 to 8, wherein the capsule wall of the microcapsule and the resin have the same functional group.
  10.  前記樹脂が、ポリウレタン、ポリウレア、及び、ポリウレタンウレアからなる群から選択される少なくとも1種を含む、請求項1~9のいずれか1項に記載の蓄熱体。 The heat storage body according to any one of claims 1 to 9, wherein the resin contains at least one selected from the group consisting of polyurethane, polyurea, and polyurethane urea.
  11.  前記樹脂、及び、前記マイクロカプセルのカプセル壁の両方が、ポリウレタン、ポリウレア、及び、ポリウレタンウレアからなる群から選択される少なくとも1種を含む、請求項1~10のいずれか1項に記載の蓄熱体。 The heat storage according to any one of claims 1 to 10, wherein both the resin and the capsule wall of the microcapsules contain at least one selected from the group consisting of polyurethane, polyurea, and polyurethane urea. body.
  12.  前記空隙率が5体積%以下である、請求項1~11のいずれか1項に記載の蓄熱体。 The heat storage body according to any one of claims 1 to 11, wherein the porosity is 5% by volume or less.
  13.  厚みが0.5mm以上である、請求項1~12のいずれか1項に記載の蓄熱体。 The heat storage body according to any one of claims 1 to 12, which has a thickness of 0.5 mm or more.
  14.  請求項1~13のいずれか1項に記載の蓄熱体の製造方法であって、
     前記マイクロカプセル、前記樹脂、及び、水を含む蓄熱体形成用組成物を用いて、前記蓄熱体を製造する、蓄熱体の製造方法。
    The method for manufacturing a heat storage body according to any one of claims 1 to 13.
    A method for producing a heat storage body, wherein the heat storage body is manufactured by using the composition for forming a heat storage body containing the microcapsules, the resin, and water.
  15.  前記蓄熱体形成用組成物中における前記樹脂が粒子状である、請求項14に記載の蓄熱体の製造方法。
     
    The method for producing a heat storage body according to claim 14, wherein the resin in the heat storage body forming composition is in the form of particles.
PCT/JP2021/017520 2020-05-25 2021-05-07 Heat storage body and method for manufacturing heat storage body WO2021241167A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-090384 2020-05-25
JP2020090384 2020-05-25

Publications (1)

Publication Number Publication Date
WO2021241167A1 true WO2021241167A1 (en) 2021-12-02

Family

ID=78723358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017520 WO2021241167A1 (en) 2020-05-25 2021-05-07 Heat storage body and method for manufacturing heat storage body

Country Status (2)

Country Link
TW (1) TW202202597A (en)
WO (1) WO2021241167A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162596A1 (en) * 2022-02-28 2023-08-31 富士フイルム株式会社 Thermal storage sheet, resin pellet, and molded article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270043A (en) * 2003-03-05 2004-09-30 Dai Ichi Kogyo Seiyaku Co Ltd Thermal storage sheet
JP2004269560A (en) * 2003-03-05 2004-09-30 Dai Ichi Kogyo Seiyaku Co Ltd Heat storage molded product
JP2004269574A (en) * 2003-03-05 2004-09-30 Dai Ichi Kogyo Seiyaku Co Ltd Heat storage coating
KR20050055492A (en) * 2003-12-08 2005-06-13 학교법인연세대학교 Preparation method of multicore microcapsules containing phase change materials
JP2007119656A (en) * 2005-10-31 2007-05-17 Mitsubishi Paper Mills Ltd Heat accumulation board
JP2014129467A (en) * 2012-12-28 2014-07-10 Toho Chem Ind Co Ltd Two-liquid type curable polyurethane resin composition
JP2018154663A (en) * 2017-03-15 2018-10-04 日本製紙株式会社 Heat storage sheet
WO2020110662A1 (en) * 2018-11-26 2020-06-04 富士フイルム株式会社 Thermal storage sheet, thermal storage member, and electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270043A (en) * 2003-03-05 2004-09-30 Dai Ichi Kogyo Seiyaku Co Ltd Thermal storage sheet
JP2004269560A (en) * 2003-03-05 2004-09-30 Dai Ichi Kogyo Seiyaku Co Ltd Heat storage molded product
JP2004269574A (en) * 2003-03-05 2004-09-30 Dai Ichi Kogyo Seiyaku Co Ltd Heat storage coating
KR20050055492A (en) * 2003-12-08 2005-06-13 학교법인연세대학교 Preparation method of multicore microcapsules containing phase change materials
JP2007119656A (en) * 2005-10-31 2007-05-17 Mitsubishi Paper Mills Ltd Heat accumulation board
JP2014129467A (en) * 2012-12-28 2014-07-10 Toho Chem Ind Co Ltd Two-liquid type curable polyurethane resin composition
JP2018154663A (en) * 2017-03-15 2018-10-04 日本製紙株式会社 Heat storage sheet
WO2020110662A1 (en) * 2018-11-26 2020-06-04 富士フイルム株式会社 Thermal storage sheet, thermal storage member, and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162596A1 (en) * 2022-02-28 2023-08-31 富士フイルム株式会社 Thermal storage sheet, resin pellet, and molded article

Also Published As

Publication number Publication date
TW202202597A (en) 2022-01-16

Similar Documents

Publication Publication Date Title
JP7080343B2 (en) Heat storage sheet, heat storage member and electronic device
JP7050953B2 (en) Manufacturing method of heat storage sheet, heat storage member, electronic device, and heat storage sheet
WO2021241167A1 (en) Heat storage body and method for manufacturing heat storage body
US20210385965A1 (en) Heat storage member, electronic device, manufacturing method of heat storage member, and composition for forming protective layer
JP7417730B2 (en) Heat storage body, heat storage body manufacturing method, electronic device
WO2021070562A1 (en) Layered body and electronic device
US20230202072A1 (en) Resin pellet, manufacturing method for resin pellet, molded product, automobile part, electronic apparatus part, and fiber
JP7137695B2 (en) heat storage material
WO2021131404A1 (en) Microcapsule, heat storage composition, heat storage sheet, and method for producing microcapsule
WO2022044738A1 (en) Heat storage body, method for producing heat storage body, and electronic device
WO2023162596A1 (en) Thermal storage sheet, resin pellet, and molded article
TWI838495B (en) Heat storage composition, heat storage member, electronic device, and method for manufacturing heat storage member
JP7163484B2 (en) Heat storage composition, heat storage member, electronic device, method for producing heat storage member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP