WO2022044424A1 - Gas-insulated switching device - Google Patents

Gas-insulated switching device Download PDF

Info

Publication number
WO2022044424A1
WO2022044424A1 PCT/JP2021/015967 JP2021015967W WO2022044424A1 WO 2022044424 A1 WO2022044424 A1 WO 2022044424A1 JP 2021015967 W JP2021015967 W JP 2021015967W WO 2022044424 A1 WO2022044424 A1 WO 2022044424A1
Authority
WO
WIPO (PCT)
Prior art keywords
spiral
arc
electrode
gas
spiral electrode
Prior art date
Application number
PCT/JP2021/015967
Other languages
French (fr)
Japanese (ja)
Inventor
淳 額賀
隆浩 西村
健 岩田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022044424A1 publication Critical patent/WO2022044424A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/18Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear

Definitions

  • the present invention relates to a gas-insulated switchgear having a disconnector.
  • gas-insulated switchgear In facilities such as high-voltage power plants and high-voltage substations that have high-voltage and large-capacity power systems as equipment, gas-insulated switchgear is installed to protect these facilities. In recent years, gas-insulated switchgear is required to be compact from the viewpoint of application to underground in urban areas and improvement of economy.
  • an arc electrode is installed in the disconnector of the gas-insulated switchgear.
  • the arc electrode controls an arc discharge path that suppresses damage to the main contactor for energization and the shield for electric field relaxation due to the arc discharge generated during the opening operation.
  • the disconnector has a fixed arc electrode installed on the fixed side and a movable arc electrode installed on the movable side, and electrically connects between the fixed arc electrode and the movable arc electrode.
  • a spiral electrode that uses a permanent magnet, generates a magnetic field, and uses electromagnetic force may be used for the arc electrode.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-176942
  • Patent Document 1 a gas-insulated switchgear in which a facing-side insulating member is installed on the facing surface side of a non-contact recess in a spiral electrode, and a back-side insulating member having an outer diameter equal to or larger than that of the spiral electrode is installed on the back surface side of the spiral electrode. The device is described (see summary).
  • Patent Document 1 describes a gas-insulated switching device in which a spiral electrode is installed as an arc electrode and an arc current is energized along the spiral portion of the spiral electrode to rotate the arc and improve the current cutoff performance. Has been done.
  • the arc driving force in an arc-driven disconnector using a spiral electrode increases the Lorentz force as the arc current flows in the spiral direction, and the arc lands on the tip of the spiral portion.
  • the Lorentz force of the root portion of the spiral portion having a short spiral current path is smaller than that of the tip portion of the spiral portion having a long spiral current path.
  • the arc driving force is weaker and the rotational movement of the arc is stronger than when the arc is sunk at the tip of the spiral part where the Lorentz force is large. It becomes smaller, the effect of the spiral electrode is reduced, and the arc time and the amount of electrode melting may increase.
  • Patent Document 1 does not describe a gas-insulated switchgear having a disconnector that prevents the arc from being isolated in a place where the arc driving force of the spiral electrode is weak.
  • the present invention provides a gas-insulated switchgear having an arc-driven disconnector that uses a spiral electrode to prevent arc from being isolated in a place where the arc driving force of the spiral electrode is weak and to improve current cutoff performance. do.
  • the gas-insulated opening / closing device of the present invention has a closed container for enclosing an insulating gas and a pair of arc contacts installed facing the inside of the closed container, and has a pair.
  • At least one of the arc contacts of the above is a spiral electrode having a spiral groove formed in a direction of rotation around the axis of the arc contact, and the height of the spiral portion of the spiral electrode in the direction of the facing surface is set to the spiral. It is characterized by having a breaker that is lower than the height of the tip of the spiral portion of the electrode in the direction of the facing surface.
  • a gas-insulated switchgear having an arc-driven disconnector that uses a spiral electrode to prevent arc from being isolated in a place where the arc driving force of the spiral electrode is weak and to improve current cutoff performance. can do.
  • FIG. 5 is a cross-sectional (side) view illustrating the movable side spiral electrode 1 included in the disconnector 100 described in the first embodiment. It is a plane (front) view explaining the fixed side spiral electrode 5 included in the disconnector 100 described in Example 1.
  • FIG. 5 is a cross-sectional (side) view illustrating the fixed side spiral electrode 5 included in the disconnector 100 described in the first embodiment. It is a top view explaining the arc current which flows when the arc is isolated on the movable side spiral electrode 1 of FIG. 1A described in Example 1.
  • FIG. 3 is a cross-sectional (side surface) view illustrating a main portion (closed pole state) of the disconnector 100 described in the first embodiment in an enlarged manner.
  • FIG. 3 is a cross-sectional (side surface) view illustrating a main portion (state in the middle of opening a pole) of the disconnector 100 described in the first embodiment in an enlarged manner.
  • FIG. It is explanatory drawing schematically explaining the magnetic field formed by the arc current flowing through the spiral electrode described in Example 1.
  • FIG. It is sectional drawing explaining the movable side spiral electrode 1 which the disconnector 100 described in Example 2 has. It is sectional drawing explaining the fixed side spiral electrode 5 included in the disconnector 100 described in Example 2.
  • FIG. It is sectional drawing explaining the main part (state in the process of opening pole) of the disconnector 100 described in Example 3 in an enlarged manner.
  • FIG. 1A is a plan (front) view illustrating the movable side spiral electrode 1 included in the disconnector 100 described in the first embodiment
  • FIG. 1B is a plan view (front) view of the movable side spiral electrode 1 included in the disconnector 100 described in the first embodiment. It is sectional drawing (side surface) view explaining 1.
  • the movable side spiral electrode 1 is made of a metal having arc resistance, and the spiral groove 2 is formed in two directions (2a, 2b) clockwise from the central portion to the outer peripheral portion.
  • the movable side spiral electrode 1 is used as a movable side arc contactor (hereinafter referred to as a movable side arc electrode), and the spiral groove 2 formed in the movable side spiral electrode 1 is around the axis of the movable side arc electrode. It is formed in the direction of rotation.
  • the movable side spiral electrode 1 is an electrode (spiral electrode 1) that is installed as a movable side arc electrode and has a spiral groove (spiral groove 2) cut in a substantially disk electrode as an arc traveling portion. Then, by energizing the arc current along the spiral portion (the portion other than the spiral groove 2), the arc is rotated and the current cutoff performance is improved.
  • the movable side spiral electrode 1 has a spiral groove 2 and a spiral portion, and the height of the root portion 4 of the spiral portion in the facing surface direction is compared with the height of the tip portion 3 of the spiral portion in the facing surface direction. make low.
  • Example 1 the surface of the root portion 4 of the spiral portion (the surface facing the fixed-side spiral electrode 5) is a flat surface.
  • the height of the movable side spiral electrode 1 is lowered toward the electrode facing surface of the root portion 4 of the spiral portion with respect to the height of the tip portion 3 of the spiral portion toward the electrode facing surface.
  • the movable side spiral electrode 1 has a height in the facing surface direction of the tip portion 3 of the electrode portion (spiral portion) constituting the spiral, and a facing surface direction of the base portion 4 of the electrode portion (spiral portion) constituting the spiral. Lower the height of the.
  • the electric field of the root portion 4 of the spiral portion can be made relatively lower than the electric field of the tip portion 3 of the spiral portion.
  • the arc formation can be concentrated on the tip portion 3 of the spiral portion.
  • FIG. 2A is a plan view (front view) for explaining the fixed-side spiral electrode 5 included in the disconnector 100 described in the first embodiment
  • FIG. 2B is a plan view (front) view of the fixed-side spiral electrode 5 included in the disconnector 100 described in the first embodiment
  • 5 is a cross-sectional (side surface) view illustrating 5.
  • the fixed-side spiral electrode 5 is made of an arc-resistant metal, and the spiral groove 2 is formed in two directions (2a, 2b) counterclockwise from the central portion to the outer peripheral portion.
  • the fixed-side spiral electrode 5 is used as a fixed-side arc contactor (hereinafter referred to as a fixed-side arc electrode), and the spiral groove 2 formed in the fixed-side spiral electrode 5 is formed around the axis of the fixed-side arc electrode. It is formed in the direction of rotation.
  • the fixed side spiral electrode 5 is an electrode (spiral electrode 5) that is installed as a fixed side arc electrode and has a spiral groove (spiral groove 2) cut in a substantially disk electrode as an arc traveling portion. Then, by energizing the arc current along the spiral portion (the portion other than the spiral groove 2), the arc is rotated and the current cutoff performance is improved.
  • the fixed-side spiral electrode 5 has a spiral groove 2 and a spiral portion, and the height of the root portion 4 of the spiral portion in the facing surface direction is compared with the height of the tip portion 3 of the spiral portion in the facing surface direction. make low.
  • the surface of the root portion 4 of the spiral portion (the surface facing the movable side spiral electrode 1) is a flat surface.
  • the fixed-side spiral electrode 5 is lowered toward the electrode facing surface of the root portion 4 of the spiral portion with respect to the height of the tip portion 3 of the spiral portion toward the electrode facing surface.
  • the fixed-side spiral electrode 5 has a height in the facing surface direction of the tip portion 3 of the electrode portion (spiral portion) constituting the spiral, and a facing surface direction of the base portion 4 of the electrode portion (spiral portion) constituting the spiral. Lower the height of the.
  • the electric field of the root portion 4 of the spiral portion can be made relatively lower than the electric field of the tip portion 3 of the spiral portion.
  • the arc formation can be concentrated on the tip portion 3 of the spiral portion.
  • the distance between the poles of the root portion 4 of the spiral portion is set to the tip portion of the spiral portion. It is longer than the distance between the poles of 3, and the root portion 4 of the spiral portion has a concave shape (state) with respect to the tip portion 3 of the spiral portion.
  • the distance between the poles is the distance between the opposite movable side spiral electrode 1 and the fixed side spiral electrode 5.
  • the electric field at the base 4 of the spiral portion is relatively lower than the electric field at the tip 3 of the spiral portion. Since the arc locates at a place where the electric field strength is high, the arc preferentially locates at the tip portion 3 of the spiral portion rather than the root portion 4 of the spiral portion.
  • the root portion 4 of the spiral portion (the region where the height is relatively lower than the tip portion 3 of the spiral portion). Is preferably 5 degrees or more and 44 or less in the circumferential direction, and the tip portion 3 of the spiral portion (the region where the height is relatively higher than the root portion 4 of the spiral portion) is in the circumferential direction. It is preferable that the temperature is 136 degrees or more and 175 degrees or less. As a result, it is possible to prevent the arc from being deposited in a place where the arc driving force of the spiral electrode is weak, and to improve the current cutoff performance.
  • the root portion 4 of the spiral portion and the tip portion 3 of the spiral portion may be manufactured by cutting a portion that becomes the root portion 4 of the spiral portion, or the portion that becomes the tip portion 3 of the spiral portion and the spiral portion.
  • a mold may be formed so as to have a portion to be a root portion 4 of the mold, and the mold may be manufactured by casting.
  • the height of the root portion 4 of the spiral portion is equal to or higher than the height of the spiral portions other than the tip portion 3 of the spiral portion.
  • the base portion 4 of the spiral portion of the movable side spiral electrode 1 and the root portion 4 of the spiral portion of the fixed side spiral electrode 5 are formed. Is at the same position, and the tip portion 3 of the spiral portion of the movable side spiral electrode 1 and the tip portion 3 of the spiral portion of the fixed side spiral electrode 5 are at the same position.
  • FIG. 3A is a plan view illustrating an arc current that flows when an arc is stranded on the movable side spiral electrode 1 of FIG. 1A described in the first embodiment.
  • FIG. 3B is a plan view illustrating an arc current that flows when an arc is isolated from the fixed side spiral electrode 5 of FIG. 2A described in the first embodiment.
  • the spiral electrode as in the first embodiment, that is, by installing the movable side spiral electrode 1 shown in FIG. 1 and the fixed side spiral electrode 5 shown in FIG. 2 so as to face each other.
  • the magnetic field formed by the arc current flowing through each spiral portion strengthens between the opposing movable side spiral electrode 1 and the fixed side spiral electrode 5, and a magnetic field directed in the radial direction from the center of the spiral electrode is formed.
  • the arc receives an arc driving force in the circumferential direction of the spiral electrode.
  • the distance through which the arc current flows in the spiral direction becomes longer, the Lorentz force becomes larger, and the arc driving force becomes larger and stronger. Then, the arc discharge is not fixed in the isolated place, the arc is cooled, the resistance due to stretching increases, the rotational motion of the arc increases, the effect of the spiral electrode also increases, and the arc time and electrode melting The amount is also reduced.
  • FIG. 4 is an explanatory diagram illustrating the analysis result of the Lorentz force received by the arc due to the landing position of the arc described in the first embodiment.
  • the Lorentz force is reduced to about 1/3 with respect to the tip portion 3 of the spiral portion.
  • the protruding height of the root portion 4 of the spiral portion in the facing direction is made lower than the protruding height of the tip portion 3 of the spiral portion in the facing direction, thereby lowering the protruding height of the root portion 4 of the spiral portion.
  • the electric field of is relatively low as compared with the electric field of the tip portion 3 of the spiral portion.
  • the probability that the arc will land on the tip 3 of the spiral portion is higher than the probability that the arc will land on the root 4 of the spiral portion, and the arc driving force can be increased.
  • the number (direction) of the spiral grooves 2 formed on the spiral electrode may be at least one (one direction) or more. In the first embodiment, there are two directions.
  • the direction of the spiral groove 2 formed in the movable side spiral electrode 1 and the direction of the spiral groove 2 formed in the fixed side spiral electrode 5 are opposite to each other. For example, if the direction of the spiral groove 2 formed in the movable side spiral electrode 1 is clockwise, the direction of the spiral groove 2 formed in the fixed side spiral electrode 5 is counterclockwise, and the spiral groove 2 is formed in the movable side spiral electrode 1. If the direction of the spiral groove 2 is counterclockwise, the direction of the spiral groove 2 formed on the fixed side spiral electrode 5 is clockwise.
  • the movable side spiral electrode 1 and the fixed side spiral electrode 5 are formed by the spiral outer peripheral portion of the spiral electrode (the outer peripheral portion of the spiral portion: the tip portion 3 of the spiral portion and the root portion 4 of the spiral portion). In the area where the arc is formed), make it concave so that the arc is isolated.
  • FIG. 5 is a cross-sectional (side) view schematically illustrating the schematic configuration of the disconnector 100 described in the first embodiment. Note that FIG. 5 shows a closed pole state of the disconnector 100.
  • the disconnector 100 described in the first embodiment is an arc drive type disconnector that uses a spiral electrode (a spiral electrode that uses a permanent magnet to generate a magnetic field and uses an electromagnetic force). Further, the disconnector 100 constitutes a gas-insulated switchgear together with a grounding switchgear and a circuit breaker.
  • the disconnector 100 has a closed container 10.
  • a gas compartment is formed by the insulating spacer 11, and the insulating gas 12 is filled (enclosed) in the gas compartment.
  • the insulating gas includes a negative gas such as SF 6 having high insulating properties, a SF 6 / N 2 mixed gas containing a negative gas such as dry air, nitrogen, carbon dioxide, and SF 6 , and a negative gas such as SF 6 .
  • An N 2 / O 2 mixed gas or the like that does not contain the above is used.
  • An embedded conductor 13 is installed in the center of the insulating spacer 11.
  • the fixed side high voltage conductor 14 and the movable side high voltage conductor 15 are installed facing each other with a predetermined insulation distance.
  • a fixed-side electric field relaxation shield 16 is installed on the fixed-side high-voltage conductor 14
  • a movable-side electric field relaxation shield 17 is installed on the movable-side high-voltage conductor 15, and a fixed-side electric field relaxation shield 16 and a movable side are installed. It is installed facing the electric field relaxation shield 17.
  • the movable side main contactor 21 is installed inside the movable side electric field relaxation shield 17 installed on the movable side high voltage conductor 15.
  • the movable (sliding) inside the movable side main contact 21 is moved (sliding), and the metal movable element 18 is movably installed on the axis thereof via an insulating operation rod 19 by an external actuator (not shown).
  • a fixed-side main contactor 20 is installed inside the fixed-side electric field relaxation shield 16 installed on the fixed-side high-voltage conductor 14.
  • the fixed side main contact 20 and the movable side main contact 21 always maintain an electrical connection state via the movable element 18. Further, the fixed-side high-voltage conductor 14 and the movable-side high-voltage conductor 15 always maintain an electrical connection state via the fixed-side main contactor 20, the movable-side main contactor 21, and the movable element 18.
  • FIG. 6 is a cross-sectional (side view) view illustrating the main part (closed pole state) of the disconnector 100 described in the first embodiment in an enlarged manner.
  • a rod 22 for fixing the fixed-side spiral electrode 5 Inside the fixed-side main contact 20, a rod 22 for fixing the fixed-side spiral electrode 5, a pedestal 23 for fixing the rod for supporting the rod 22, and a spring installed on the rear surface of the pedestal 23 to press the pedestal 23. 25 and are installed.
  • the gantry 23 is made of metal and is in contact with the inner peripheral surface of the fixed-side main contact 20 and is electrically connected.
  • the rod 22 is also metal. That is, the fixed-side spiral electrode 5 and the fixed-side main contactor 20 are electrically connected via the rod 22 and the gantry 23.
  • the fixed-side spiral electrode 5 (fixed-side arc electrode) is fixed to the tip of the rod 22.
  • the movable side spiral electrode 1 (movable side arc electrode) is fixed to the tip of the mover 18 so as to face the fixed side spiral electrode 5. That is, the movable side spiral electrode 1 and the movable side main contactor 21 are electrically connected via the movable element 18.
  • the fixed-side spiral electrode 5 and the movable-side spiral electrode 1 are in contact with each other, and the fixed-side main contactor 20 and the movable-side main contactor 21 are electrically connected to each other, resulting in a closed pole state. Then, in the closed pole state, the fixed-side high-voltage conductor 14, the fixed-side main contactor 20, the mover 18, the movable-side main contactor 21, and the movable-side high-voltage conductor 15 form a current passage.
  • the mover 18 is separated from the fixed side main contact 20, and the current flowing through the contact portion between the fixed side main contact 20 and the mover 18 is cut off.
  • the gantry 23, the rod 22, the fixed side spiral electrode 5, and the movable side spiral electrode 1 are pushed by the spring 25 in the initial stage of the open pole state. As a unit, move to the right following the opening operation of the mover 18.
  • the fixed side spiral electrode 5 and the movable side spiral electrode 1 move while being in contact with each other. Therefore, the fixed side high voltage conductor 14, the fixed side main contact 20, the gantry 23, the rod 22, the fixed side spiral electrode 5, the movable side spiral electrode 1, the mover 18, the movable side main contact 21, the movable side high voltage.
  • the conductor 15 forms a current path.
  • FIG. 7 is a cross-sectional (side surface) view illustrating the main part (state in the middle of opening the pole) of the disconnector 100 described in the first embodiment in an enlarged manner.
  • the gantry 23 stops moving to the right by the fixed-side main contactor 20.
  • the rod 22 and the fixed-side spiral electrode 5 also stop moving to the right.
  • the fixed-side spiral electrode 5 is inside the fixed-side electric field relaxation shield 16. Since the fixed-side spiral electrode 5 is inside the fixed-side electric field relaxation shield 16, the electric field of the fixed-side spiral electrode 5 can be suppressed to a low level and discharge can be suppressed in the open pole state.
  • the movable side spiral electrode 1 and the fixed side spiral electrode 5 are opened, and an arc 24 is generated between the movable side spiral electrode 1 and the fixed side spiral electrode 5.
  • the current cutoff is completed while repeating the re-roll call.
  • Example 1 Next, the magnetic field formed by the arc current flowing through the spiral electrode described in Example 1 will be schematically described.
  • FIG. 8 is an explanatory diagram schematically illustrating a magnetic field formed by an arc current flowing through the spiral electrode described in the first embodiment.
  • the movable side spiral electrode 1 and the fixed side spiral electrode 5 are installed facing each other with the same center, and the direction of the spiral groove 2 formed in the movable side spiral electrode 1 and the spiral formed in the fixed side spiral electrode 5.
  • the direction is opposite to the direction of the groove 2. For example, if the direction of the spiral groove 2 formed in the movable side spiral electrode 1 is clockwise, the direction of the spiral groove 2 formed in the fixed side spiral electrode 5 is counterclockwise, and the direction of the spiral groove 2 is counterclockwise in the movable side spiral electrode 1. If the direction of the spiral groove 2 formed is counterclockwise, the direction of the spiral groove 2 formed in the fixed side spiral electrode 5 is clockwise.
  • the current I flows from the rod 22 through the tip of the rod 22 to the fixed-side spiral electrode 5 in the Z-axis direction in FIG. 8, and the current I flows from the movable-side spiral electrode 1 to the mover 18 of the mover 18. It flows through the tip portion to the mover 18 in the Z-axis direction in FIG.
  • the arc 24 is generated between the fixed side spiral electrode 5 and the movable side spiral electrode 1.
  • the spiral groove 2 is formed in the opposite direction between the fixed side spiral electrode 5 and the movable side spiral electrode 1, the spiral groove 2 is formed.
  • an arc current 9 flows toward the front of the paper surface above the central axis (Z axis), and an arc current flows toward the depth of the paper surface below the central axis (Z axis).
  • an arc current 8 flows in the depth direction of the paper surface above the central axis (Z axis), and an arc current flows toward the front side of the paper surface below the central axis (Z axis). 8 flows.
  • the arc 24 receives the arc driving force F in the circumferential direction of the spiral electrode (circumferential direction of the central axis (Z axis)) by the Lorentz force F due to the magnetic field B and the current I.
  • the circuit breaker 100 described in the first embodiment has a closed container 10 for enclosing the insulating gas 12 and a pair of arc electrodes (movable side arc electrode and fixed) installed facing the inside of the closed container 10.
  • Spiral electrode movable side spiral electrode
  • having a side arc electrode and having a spiral groove 2 formed in a direction in which both (or at least one of them) of the pair of arc electrodes are rotated around the axis of the arc electrode. 1 and / or the fixed side spiral electrode 5). Then, the height of the root portion 4 of the spiral portion of the spiral electrode in the facing surface direction is made lower than the height of the tip portion 3 of the spiral portion of the spiral electrode in the facing surface direction.
  • the arc landing position on the spiral electrode can be set to a place where the arc driving force is strong, and stable current cutoff performance can be obtained.
  • the arc since the arc is sunk in a place where the electric field strength is high, the arc is sunk in the tip portion 3 of the spiral portion preferentially over the root portion 4 of the spiral portion. become. Then, the arc can be concentrated on the tip 3 of the spiral portion, the arc can be prevented from being anchored to the portion where the arc driving force of the spiral electrode is weak (the root portion 4 of the spiral portion), and the rotation of the arc can be prevented. It is possible to increase the motion and improve the current cutoff performance (performance that can cut off the arc discharge efficiently in a short time).
  • the disconnector 100 which improves the current cutoff performance and improves the reliability.
  • the disconnector 100 can reduce the size and weight of the external actuator, and can reduce the operating force of the external actuator.
  • FIG. 9A is a cross-sectional view illustrating the movable side spiral electrode 1 included in the disconnector 100 described in the second embodiment.
  • the root portion 4 of the spiral portion formed on the movable side spiral electrode 1 described in Example 2 is flat.
  • the surface (the surface facing the fixed side spiral electrode 5) is a curved surface (cross-sectional shape with rounded corners). That is, the surface of the root portion 4 has a smooth curved shape with no corners in the cross section.
  • FIG. 9B is a cross-sectional view illustrating the fixed-side spiral electrode 5 included in the disconnector 100 described in the second embodiment.
  • the root portion 4 of the spiral portion formed on the fixed-side spiral electrode 5 described in Example 1 is flat
  • the root portion 4 of the spiral portion formed on the fixed-side spiral electrode 5 described in Example 2 is flat.
  • the surface (the surface facing the movable side spiral electrode 1) is a curved surface (cross-sectional shape with rounded corners). That is, the surface of the root portion 4 has a smooth curved shape with no corners in the cross section.
  • FIG. 10 is a cross-sectional view illustrating an enlarged main part (state in the middle of opening the pole) of the disconnector 100 described in the third embodiment.
  • the disconnector 100 described in the first embodiment has a movable side spiral electrode 1 installed on the movable side and a fixed side spiral electrode 5 installed on the fixed side, but the disconnector 100 described in the third embodiment has a disconnector 100.
  • the fixed side has a fixed side spiral electrode 5 at the tip of the rod 22, and the movable side has a flat plate type movable side arc electrode 26 at the tip of the mover 18. That is, in the third embodiment, the movable side arc electrode is a flat plate type movable side arc electrode.
  • the magnetic driving force is not generated in the movable side arc electrode, but by installing the fixed side spiral electrode 5 shown in FIG. 2 on the fixed side, the electric field concentration is reduced and the withstand voltage between the electrodes is increased. be able to.
  • the flat plate type movable side arc electrode 26 is installed at the tip of the mover 18. , The magnetic driving force can be secured and the withstand voltage between the electrodes can be increased.
  • Example 3 the fixed side spiral electrode 5 shown in FIG. 2 is provided on the fixed side, and the flat plate type movable side arc electrode 26 is provided on the movable side, but the flat plate type fixed side arc electrode is provided on the fixed side.
  • the movable side spiral electrode 1 shown in FIG. 1 may be provided on the movable side.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-mentioned examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

The present invention provides a gas-insulated switching device that has an arc-driving-type disconnector that prevents the ignition of an arc at a location where the arc driving force in a spiral electrode is weak and uses the spiral electrode with improved current breaking performance. This gas-insulated switching device is characterized by having the disconnector that has a sealed container in which an insulative gas is sealed, and a pair of arc contacts which are arranged facing each other inside the sealed container, wherein at least one of the pair of arc contacts serves as the spiral electrode that has a spiral groove formed in a direction rotating about a shaft of the arc contact, and the height of the root of a spiral section in the facing surface direction is reduced compared to the height of the tip of the spiral section in the facing surface direction.

Description

ガス絶縁開閉装置Gas insulation switchgear
 本発明は、断路器を有するガス絶縁開閉装置に関する。 The present invention relates to a gas-insulated switchgear having a disconnector.
 高電圧大容量の電力系統を設備として有する高電圧発電所や高電圧変電所などの施設では、これらの設備を保護するため、ガス絶縁開閉装置が設置される。そして、近年、ガス絶縁開閉装置は、都市部の地下への適用や経済性向上の観点から、コンパクト化が要求される。 In facilities such as high-voltage power plants and high-voltage substations that have high-voltage and large-capacity power systems as equipment, gas-insulated switchgear is installed to protect these facilities. In recent years, gas-insulated switchgear is required to be compact from the viewpoint of application to underground in urban areas and improvement of economy.
 一般的に、ガス絶縁開閉装置の断路器には、アーク電極が設置される。アーク電極は、開極動作時に発生するアーク放電による、通電用の主接触子や電界緩和用シールドの損傷を抑制するアーク放電路を制御する。 Generally, an arc electrode is installed in the disconnector of the gas-insulated switchgear. The arc electrode controls an arc discharge path that suppresses damage to the main contactor for energization and the shield for electric field relaxation due to the arc discharge generated during the opening operation.
 断路器は、固定側には固定側アーク電極を設置し、可動側には可動側アーク電極を設置し、固定側アーク電極と可動側アーク電極との間を電気的に接続する。 The disconnector has a fixed arc electrode installed on the fixed side and a movable arc electrode installed on the movable side, and electrically connects between the fixed arc electrode and the movable arc electrode.
 そして、アーク電極には、電流遮断性能を向上させるため、永久磁石を使用し、磁界を発生させ、電磁力を使用するスパイラル電極が使用される場合がある。 And, in order to improve the current cutoff performance, a spiral electrode that uses a permanent magnet, generates a magnetic field, and uses electromagnetic force may be used for the arc electrode.
 こうした技術分野における背景技術として、特開2008-176942号公報(特許文献1)がある。特許文献1には、スパイラル電極における非接触凹部の対向面側に対向側絶縁部材を設置し、また、スパイラル電極の裏面側に同等以上の外径を持つ裏面側絶縁物を設置するガス絶縁開閉装置が記載されている(要約参照)。 As a background technology in such a technical field, there is Japanese Patent Application Laid-Open No. 2008-176942 (Patent Document 1). In Patent Document 1, a gas-insulated switchgear in which a facing-side insulating member is installed on the facing surface side of a non-contact recess in a spiral electrode, and a back-side insulating member having an outer diameter equal to or larger than that of the spiral electrode is installed on the back surface side of the spiral electrode. The device is described (see summary).
特開2008-176942号公報Japanese Unexamined Patent Publication No. 2008-176942
 特許文献1には、アーク電極として、スパイラル電極を設置し、アーク電流をスパイラル電極のスパイラル部に沿って通電させることにより、アークを回転運動させ、電流遮断性能を向上させるガス絶縁開閉装置が記載されている。 Patent Document 1 describes a gas-insulated switching device in which a spiral electrode is installed as an arc electrode and an arc current is energized along the spiral portion of the spiral electrode to rotate the arc and improve the current cutoff performance. Has been done.
 一般的に、スパイラル電極を使用するアーク駆動方式の断路器では、スパイラル部の円周方向のいずれの箇所にもアークが着孤する恐れがある。 Generally, in an arc-driven disconnector that uses a spiral electrode, there is a risk that the arc will land at any point in the circumferential direction of the spiral portion.
 一般的に、スパイラル電極を使用するアーク駆動方式の断路器におけるアーク駆動力は、スパイラル方向に、アーク電流が流れる距離が長い程、ローレンツ力が大きくなり、アークがスパイラル部の先端部に着孤した場合と、アークがスパイラル部の根元部に着孤した場合とでは、アーク駆動力に大きな差が発生する。つまり、スパイラル電流路の長さが短いスパイラル部の根元部は、スパイラル電流路の長さが長いスパイラル部の先端部よりも、ローレンツ力が小さくなる。 Generally, the arc driving force in an arc-driven disconnector using a spiral electrode increases the Lorentz force as the arc current flows in the spiral direction, and the arc lands on the tip of the spiral portion. There is a large difference in the arc driving force between the case where the arc is sunk and the case where the arc is isolated at the base of the spiral portion. That is, the Lorentz force of the root portion of the spiral portion having a short spiral current path is smaller than that of the tip portion of the spiral portion having a long spiral current path.
 ローレンツ力が小さいスパイラル部の根元部にアークが着孤した場合は、ローレンツ力が大きいスパイラル部の先端部にアークが着孤した場合と比較して、アーク駆動力が弱く、アークの回転運動が小さくなり、スパイラル電極の効果が低減し、アーク時間や電極溶損量が増加する恐れがある。 When the arc is sunk at the base of the spiral part where the Lorentz force is small, the arc driving force is weaker and the rotational movement of the arc is stronger than when the arc is sunk at the tip of the spiral part where the Lorentz force is large. It becomes smaller, the effect of the spiral electrode is reduced, and the arc time and the amount of electrode melting may increase.
 つまり、今後、増々、遮断電流が大きくなる、スパイラル電極を使用するアーク駆動方式の断路器の電流遮断性能を向上させるためには、スパイラル電極のアーク駆動力が弱い箇所へのアークの着孤を防止する必要がある。 In other words, in order to improve the current cutoff performance of an arc-driven disconnector that uses a spiral electrode, where the breaking current will increase more and more in the future, the arc will be isolated at a location where the arc driving force of the spiral electrode is weak. Need to prevent.
 しかし、特許文献1には、こうしたスパイラル電極のアーク駆動力が弱い箇所へのアークの着孤を防止する断路器を有するガス絶縁開閉装置は記載されていない。 However, Patent Document 1 does not describe a gas-insulated switchgear having a disconnector that prevents the arc from being isolated in a place where the arc driving force of the spiral electrode is weak.
 そこで、本発明は、スパイラル電極のアーク駆動力が弱い箇所へのアークの着孤を防止し、電流遮断性能を向上させるスパイラル電極を使用するアーク駆動方式の断路器を有するガス絶縁開閉装置を提供する。 Therefore, the present invention provides a gas-insulated switchgear having an arc-driven disconnector that uses a spiral electrode to prevent arc from being isolated in a place where the arc driving force of the spiral electrode is weak and to improve current cutoff performance. do.
 上記した課題を解決するため、本発明のガス絶縁開閉装置は、絶縁性ガスを封入する密閉容器と、密閉容器の内部に対向して設置される一対のアーク接触子と、を有し、一対のアーク接触子の少なくとも一方を、アーク接触子の軸の周りに回転する方向に形成されるスパイラル溝を有するスパイラル電極とし、スパイラル電極のスパイラル部の根元部の対向面方向の高さを、スパイラル電極のスパイラル部の先端部の対向面方向の高さと比較して、低くする断路器を有することを特徴する。 In order to solve the above-mentioned problems, the gas-insulated opening / closing device of the present invention has a closed container for enclosing an insulating gas and a pair of arc contacts installed facing the inside of the closed container, and has a pair. At least one of the arc contacts of the above is a spiral electrode having a spiral groove formed in a direction of rotation around the axis of the arc contact, and the height of the spiral portion of the spiral electrode in the direction of the facing surface is set to the spiral. It is characterized by having a breaker that is lower than the height of the tip of the spiral portion of the electrode in the direction of the facing surface.
 本発明によれば、スパイラル電極のアーク駆動力が弱い箇所へのアークの着孤を防止し、電流遮断性能を向上させるスパイラル電極を使用するアーク駆動方式の断路器を有するガス絶縁開閉装置を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided a gas-insulated switchgear having an arc-driven disconnector that uses a spiral electrode to prevent arc from being isolated in a place where the arc driving force of the spiral electrode is weak and to improve current cutoff performance. can do.
 上記した以外の課題、構成及び効果については、下記する実施例の説明により明らかにされる。 Issues, configurations and effects other than those mentioned above will be clarified by the explanation of the examples below.
実施例1に記載する断路器100が有する可動側スパイラル電極1を説明する平面(正面)図である。It is a plane (front) view explaining the movable side spiral electrode 1 which the disconnector 100 described in Example 1 has. 実施例1に記載する断路器100が有する可動側スパイラル電極1を説明する断面(側面)図である。FIG. 5 is a cross-sectional (side) view illustrating the movable side spiral electrode 1 included in the disconnector 100 described in the first embodiment. 実施例1に記載する断路器100が有する固定側スパイラル電極5を説明する平面(正面)図である。It is a plane (front) view explaining the fixed side spiral electrode 5 included in the disconnector 100 described in Example 1. FIG. 実施例1に記載する断路器100が有する固定側スパイラル電極5を説明する断面(側面)図である。FIG. 5 is a cross-sectional (side) view illustrating the fixed side spiral electrode 5 included in the disconnector 100 described in the first embodiment. 実施例1に記載する図1Aの可動側スパイラル電極1にアークが着孤した際に流れるアーク電流を説明する平面図である。It is a top view explaining the arc current which flows when the arc is isolated on the movable side spiral electrode 1 of FIG. 1A described in Example 1. FIG. 実施例1に記載する図2Aの固定側スパイラル電極5にアークが着孤した際に流れるアーク電流を説明する平面図である。It is a top view explaining the arc current which flows when the arc is isolated on the fixed side spiral electrode 5 of FIG. 2A described in Example 1. FIG. 実施例1に記載するアークの着孤位置によるアークが受けるローレンツ力の解析結果を説明する説明図である。It is explanatory drawing explaining the analysis result of the Lorentz force received by the arc by the landing position of the arc described in Example 1. FIG. 実施例1に記載する断路器100の概略構成を模式的に説明する断面(側面)図である。It is sectional drawing (side surface) diagram schematically explaining the schematic structure of the disconnector 100 described in Example 1. FIG. 実施例1に記載する断路器100の主要部(閉極状態)を拡大して説明する断面(側面)図である。FIG. 3 is a cross-sectional (side surface) view illustrating a main portion (closed pole state) of the disconnector 100 described in the first embodiment in an enlarged manner. 実施例1に記載する断路器100の主要部(開極途中状態)を拡大して説明する断面(側面)図である。FIG. 3 is a cross-sectional (side surface) view illustrating a main portion (state in the middle of opening a pole) of the disconnector 100 described in the first embodiment in an enlarged manner. 実施例1に記載するスパイラル電極を流れるアーク電流が形成する磁場を模式的に説明する説明図である。It is explanatory drawing schematically explaining the magnetic field formed by the arc current flowing through the spiral electrode described in Example 1. FIG. 実施例2に記載する断路器100が有する可動側スパイラル電極1を説明する断面図である。It is sectional drawing explaining the movable side spiral electrode 1 which the disconnector 100 described in Example 2 has. 実施例2に記載する断路器100が有する固定側スパイラル電極5を説明する断面図である。It is sectional drawing explaining the fixed side spiral electrode 5 included in the disconnector 100 described in Example 2. FIG. 実施例3に記載する断路器100の主要部(開極途中状態)を拡大して説明する断面図である。It is sectional drawing explaining the main part (state in the process of opening pole) of the disconnector 100 described in Example 3 in an enlarged manner.
 以下、本発明の実施例を、図面を使用して説明する。なお、実質的に同一又は類似の構成には同一の符号を付し、説明が重複する場合には、その説明を省略する場合がある。 Hereinafter, examples of the present invention will be described with reference to the drawings. It should be noted that substantially the same or similar configurations are designated by the same reference numerals, and if the explanations are duplicated, the explanations may be omitted.
 先ず、実施例1に記載する断路器100が有する可動側スパイラル電極1を説明する。 First, the movable side spiral electrode 1 included in the disconnector 100 described in the first embodiment will be described.
 図1Aは、実施例1に記載する断路器100が有する可動側スパイラル電極1を説明する平面(正面)図であり、図1Bは、実施例1に記載する断路器100が有する可動側スパイラル電極1を説明する断面(側面)図である。 FIG. 1A is a plan (front) view illustrating the movable side spiral electrode 1 included in the disconnector 100 described in the first embodiment, and FIG. 1B is a plan view (front) view of the movable side spiral electrode 1 included in the disconnector 100 described in the first embodiment. It is sectional drawing (side surface) view explaining 1.
 可動側スパイラル電極1は、耐アーク性を有する金属により構成され、スパイラル溝2が中心部から外周部に向かって時計回りに2方向(2a、2b)に形成される。 The movable side spiral electrode 1 is made of a metal having arc resistance, and the spiral groove 2 is formed in two directions (2a, 2b) clockwise from the central portion to the outer peripheral portion.
 なお、可動側スパイラル電極1は、可動側アーク接触子(以下、可動側アーク電極と称する)として使用され、可動側スパイラル電極1に形成されるスパイラル溝2は、可動側アーク電極の軸の周りに回転する方向に形成される。 The movable side spiral electrode 1 is used as a movable side arc contactor (hereinafter referred to as a movable side arc electrode), and the spiral groove 2 formed in the movable side spiral electrode 1 is around the axis of the movable side arc electrode. It is formed in the direction of rotation.
 可動側スパイラル電極1は、可動側アーク電極として設置され、略円盤電極にアーク走行部としてスパイラル状の溝(スパイラル溝2)を切った電極(スパイラル電極1)である。そして、アーク電流をスパイラル部(スパイラル溝2以外の部分)に沿って通電させることにより、アークを回転運動させ、電流遮断性能を向上させる。 The movable side spiral electrode 1 is an electrode (spiral electrode 1) that is installed as a movable side arc electrode and has a spiral groove (spiral groove 2) cut in a substantially disk electrode as an arc traveling portion. Then, by energizing the arc current along the spiral portion (the portion other than the spiral groove 2), the arc is rotated and the current cutoff performance is improved.
 可動側スパイラル電極1は、スパイラル溝2とスパイラル部とを有し、スパイラル部の根元部4の対向面方向の高さを、スパイラル部の先端部3の対向面方向の高さと比較して、低くする。 The movable side spiral electrode 1 has a spiral groove 2 and a spiral portion, and the height of the root portion 4 of the spiral portion in the facing surface direction is compared with the height of the tip portion 3 of the spiral portion in the facing surface direction. make low.
 なお、実施例1では、スパイラル部の根元部4の表面(固定側スパイラル電極5と対向する面)は平面である。 In Example 1, the surface of the root portion 4 of the spiral portion (the surface facing the fixed-side spiral electrode 5) is a flat surface.
 つまり、可動側スパイラル電極1は、スパイラル部の先端部3の電極対向面に向けた高さに対して、スパイラル部の根元部4の電極対向面に向けた高さを低くする。可動側スパイラル電極1は、スパイラルを構成する電極部(スパイラル部)の先端部3の対向面方向の高さに対して、スパイラルを構成する電極部(スパイラル部)の根元部4の対向面方向の高さを低くする。 That is, the height of the movable side spiral electrode 1 is lowered toward the electrode facing surface of the root portion 4 of the spiral portion with respect to the height of the tip portion 3 of the spiral portion toward the electrode facing surface. The movable side spiral electrode 1 has a height in the facing surface direction of the tip portion 3 of the electrode portion (spiral portion) constituting the spiral, and a facing surface direction of the base portion 4 of the electrode portion (spiral portion) constituting the spiral. Lower the height of the.
 これにより、スパイラル部の根元部4の電界を、スパイラル部の先端部3の電界に対して、相対的に低くすることができる。そして、これにより、アークの着孤をスパイラル部の先端部3に集中させることができる。 Thereby, the electric field of the root portion 4 of the spiral portion can be made relatively lower than the electric field of the tip portion 3 of the spiral portion. As a result, the arc formation can be concentrated on the tip portion 3 of the spiral portion.
 次に、実施例1に記載する断路器100が有する固定側スパイラル電極5を説明する。 Next, the fixed-side spiral electrode 5 included in the disconnector 100 described in the first embodiment will be described.
 図2Aは、実施例1に記載する断路器100が有する固定側スパイラル電極5を説明する平面(正面)図であり、図2Bは、実施例1に記載する断路器100が有する固定側スパイラル電極5を説明する断面(側面)図である。 FIG. 2A is a plan view (front view) for explaining the fixed-side spiral electrode 5 included in the disconnector 100 described in the first embodiment, and FIG. 2B is a plan view (front) view of the fixed-side spiral electrode 5 included in the disconnector 100 described in the first embodiment. 5 is a cross-sectional (side surface) view illustrating 5.
 固定側スパイラル電極5は、耐アーク性を有する金属により構成され、スパイラル溝2が中心部から外周部に向かって反時計回りに2方向(2a、2b)に形成される。 The fixed-side spiral electrode 5 is made of an arc-resistant metal, and the spiral groove 2 is formed in two directions (2a, 2b) counterclockwise from the central portion to the outer peripheral portion.
 なお、固定側スパイラル電極5は、固定側アーク接触子(以下、固定側アーク電極と称する)として使用され、固定側スパイラル電極5に形成されるスパイラル溝2は、固定側アーク電極の軸の周りに回転する方向に形成される。 The fixed-side spiral electrode 5 is used as a fixed-side arc contactor (hereinafter referred to as a fixed-side arc electrode), and the spiral groove 2 formed in the fixed-side spiral electrode 5 is formed around the axis of the fixed-side arc electrode. It is formed in the direction of rotation.
 固定側スパイラル電極5は、固定側アーク電極として設置され、略円盤電極にアーク走行部としてスパイラル状の溝(スパイラル溝2)を切った電極(スパイラル電極5)である。そして、アーク電流をスパイラル部(スパイラル溝2以外の部分)に沿って通電させることにより、アークを回転運動させ、電流遮断性能を向上させる。 The fixed side spiral electrode 5 is an electrode (spiral electrode 5) that is installed as a fixed side arc electrode and has a spiral groove (spiral groove 2) cut in a substantially disk electrode as an arc traveling portion. Then, by energizing the arc current along the spiral portion (the portion other than the spiral groove 2), the arc is rotated and the current cutoff performance is improved.
 固定側スパイラル電極5は、スパイラル溝2とスパイラル部とを有し、スパイラル部の根元部4の対向面方向の高さを、スパイラル部の先端部3の対向面方向の高さと比較して、低くする。 The fixed-side spiral electrode 5 has a spiral groove 2 and a spiral portion, and the height of the root portion 4 of the spiral portion in the facing surface direction is compared with the height of the tip portion 3 of the spiral portion in the facing surface direction. make low.
 なお、実施例1では、スパイラル部の根元部4の表面(可動側スパイラル電極1と対向する面)は平面である。 In the first embodiment, the surface of the root portion 4 of the spiral portion (the surface facing the movable side spiral electrode 1) is a flat surface.
 つまり、固定側スパイラル電極5は、スパイラル部の先端部3の電極対向面に向けた高さに対して、スパイラル部の根元部4の電極対向面に向けた高さを低くする。固定側スパイラル電極5は、スパイラルを構成する電極部(スパイラル部)の先端部3の対向面方向の高さに対して、スパイラルを構成する電極部(スパイラル部)の根元部4の対向面方向の高さを低くする。 That is, the height of the fixed-side spiral electrode 5 is lowered toward the electrode facing surface of the root portion 4 of the spiral portion with respect to the height of the tip portion 3 of the spiral portion toward the electrode facing surface. The fixed-side spiral electrode 5 has a height in the facing surface direction of the tip portion 3 of the electrode portion (spiral portion) constituting the spiral, and a facing surface direction of the base portion 4 of the electrode portion (spiral portion) constituting the spiral. Lower the height of the.
 これにより、スパイラル部の根元部4の電界を、スパイラル部の先端部3の電界に対して、相対的に低くすることができる。そして、これにより、アークの着孤をスパイラル部の先端部3に集中させることができる。 Thereby, the electric field of the root portion 4 of the spiral portion can be made relatively lower than the electric field of the tip portion 3 of the spiral portion. As a result, the arc formation can be concentrated on the tip portion 3 of the spiral portion.
 そして、図1に示す可動側スパイラル電極1と図2に示す固定側スパイラル電極5とが対向して設置された際に、それぞれの電極を流れるアーク電流により形成される磁場が強め合い、スパイラル電極の中心部から半径方向に向けた磁場が形成される。 When the movable side spiral electrode 1 shown in FIG. 1 and the fixed side spiral electrode 5 shown in FIG. 2 are installed facing each other, the magnetic fields formed by the arc currents flowing through the respective electrodes are strengthened and the spiral electrodes are formed. A magnetic field is formed in the radial direction from the center of the.
 これにより、可動側スパイラル電極1と固定側スパイラル電極5とが対向した状態で、断路器100が開極動作になった場合、スパイラル部の根元部4の極間距離が、スパイラル部の先端部3の極間距離よりも、長くなり、かつ、スパイラル部の根元部4が、スパイラル部の先端部3に対して、凹んだ形状(状態)となる。なお、極間距離とは、対向する可動側スパイラル電極1と固定側スパイラル電極5との間の距離である。 As a result, when the disconnector 100 is opened to the pole with the movable side spiral electrode 1 and the fixed side spiral electrode 5 facing each other, the distance between the poles of the root portion 4 of the spiral portion is set to the tip portion of the spiral portion. It is longer than the distance between the poles of 3, and the root portion 4 of the spiral portion has a concave shape (state) with respect to the tip portion 3 of the spiral portion. The distance between the poles is the distance between the opposite movable side spiral electrode 1 and the fixed side spiral electrode 5.
 このため、極間に発生する電圧差により、スパイラル部の根元部4の電界が、スパイラル部の先端部3の電界に対して、相対的に低くなる。アークは、電界強度の高い箇所に着孤するため、アークは、スパイラル部の根元部4よりもスパイラル部の先端部3に、優先的に着孤することになる。 Therefore, due to the voltage difference generated between the poles, the electric field at the base 4 of the spiral portion is relatively lower than the electric field at the tip 3 of the spiral portion. Since the arc locates at a place where the electric field strength is high, the arc preferentially locates at the tip portion 3 of the spiral portion rather than the root portion 4 of the spiral portion.
 そして、スパイラル溝2が中心部から外周部に向かって2方向に形成される場合には、スパイラル部の根元部4(高さをスパイラル部の先端部3に対して相対的に低くする領域)は、円周方向で5度以上44以下とすることが好ましく、また、スパイラル部の先端部3(高さをスパイラル部の根元部4に対して相対的に高くする領域)は、円周方向で136度以上175度以下とすることが好ましい。これにより、スパイラル電極のアーク駆動力が弱い箇所へのアークの着孤を防止し、電流遮断性能を向上させることができる。 When the spiral groove 2 is formed in two directions from the central portion to the outer peripheral portion, the root portion 4 of the spiral portion (the region where the height is relatively lower than the tip portion 3 of the spiral portion). Is preferably 5 degrees or more and 44 or less in the circumferential direction, and the tip portion 3 of the spiral portion (the region where the height is relatively higher than the root portion 4 of the spiral portion) is in the circumferential direction. It is preferable that the temperature is 136 degrees or more and 175 degrees or less. As a result, it is possible to prevent the arc from being deposited in a place where the arc driving force of the spiral electrode is weak, and to improve the current cutoff performance.
 なお、スパイラル部の根元部4とスパイラル部の先端部3とは、スパイラル部の根元部4となる部分を切削し、製造してもよいし、スパイラル部の先端部3となる部分とスパイラル部の根元部4となる部分とを有するように鋳型を形成し、鋳造により、製造してもよい。 The root portion 4 of the spiral portion and the tip portion 3 of the spiral portion may be manufactured by cutting a portion that becomes the root portion 4 of the spiral portion, or the portion that becomes the tip portion 3 of the spiral portion and the spiral portion. A mold may be formed so as to have a portion to be a root portion 4 of the mold, and the mold may be manufactured by casting.
 なお、スパイラル部の根元部4の高さは、スパイラル部の先端部3以外の他のスパイラル部の高さと同等、又はこの高さよりも高い。 The height of the root portion 4 of the spiral portion is equal to or higher than the height of the spiral portions other than the tip portion 3 of the spiral portion.
 そして、可動側スパイラル電極1と固定側スパイラル電極5とが対向した状態(閉極状態)では、可動側スパイラル電極1のスパイラル部の根元部4と固定側スパイラル電極5のスパイラル部の根元部4とは、同様の位置にあり、可動側スパイラル電極1のスパイラル部の先端部3と固定側スパイラル電極5のスパイラル部の先端部3とは、同様の位置にある。 When the movable side spiral electrode 1 and the fixed side spiral electrode 5 face each other (closed pole state), the base portion 4 of the spiral portion of the movable side spiral electrode 1 and the root portion 4 of the spiral portion of the fixed side spiral electrode 5 are formed. Is at the same position, and the tip portion 3 of the spiral portion of the movable side spiral electrode 1 and the tip portion 3 of the spiral portion of the fixed side spiral electrode 5 are at the same position.
 次に、実施例1に記載する図1Aの可動側スパイラル電極1にアークが着孤した際に流れるアーク電流を説明する。 Next, the arc current that flows when the arc is isolated from the movable side spiral electrode 1 of FIG. 1A described in the first embodiment will be described.
 図3Aは、実施例1に記載する図1Aの可動側スパイラル電極1にアークが着孤した際に流れるアーク電流を説明する平面図である。 FIG. 3A is a plan view illustrating an arc current that flows when an arc is stranded on the movable side spiral electrode 1 of FIG. 1A described in the first embodiment.
 図3Aに示すように、可動側スパイラル電極1のスパイラル部(スパイラル外周部)の先端部3(点孤箇所6)にアークが着孤した際には、点孤箇所6から中心部7に向かって、可動側スパイラル電極1をアーク電流8が流れる。 As shown in FIG. 3A, when the arc lands on the tip portion 3 (point isolated portion 6) of the spiral portion (spiral outer peripheral portion) of the movable side spiral electrode 1, the arc is directed from the dotted portion 6 toward the central portion 7. Then, an arc current 8 flows through the movable side spiral electrode 1.
 次に、実施例1に記載する図2Aの固定側スパイラル電極5にアークが着孤した際に流れるアーク電流を説明する。 Next, the arc current that flows when the arc is isolated from the fixed side spiral electrode 5 of FIG. 2A described in the first embodiment will be described.
 図3Bは、実施例1に記載する図2Aの固定側スパイラル電極5にアークが着孤した際に流れるアーク電流を説明する平面図である。 FIG. 3B is a plan view illustrating an arc current that flows when an arc is isolated from the fixed side spiral electrode 5 of FIG. 2A described in the first embodiment.
 図3Bに示すように、固定側スパイラル電極5のスパイラル部(スパイラル外周部)の先端部3(点孤箇所6)にアークが着孤した際には、中心部7から点孤箇所6に向かって、固定側スパイラル電極5をアーク電流9が流れる。 As shown in FIG. 3B, when the arc lands on the tip portion 3 (point isolated portion 6) of the spiral portion (spiral outer peripheral portion) of the fixed side spiral electrode 5, the arc is directed from the central portion 7 toward the point isolated portion 6. Then, the arc current 9 flows through the fixed side spiral electrode 5.
 図3A及び図3Bに示すように、可動側スパイラル電極1のスパイラル部の先端部3(点孤箇所6)と固定側スパイラル電極5のスパイラル部の先端部3(点孤箇所6)との間に、アークが着孤した際には、アーク電流が、点孤箇所6から中心部7に向かって、可動側スパイラル電極1をアーク電流8として流れ、アーク電流が、中心部7から点孤箇所6に向かって、固定側スパイラル電極5をアーク電流9として流れ、アークにつながる。 As shown in FIGS. 3A and 3B, between the tip portion 3 (dotted portion 6) of the spiral portion of the movable side spiral electrode 1 and the tip portion 3 (dotted portion 6) of the spiral portion of the fixed side spiral electrode 5. When the arc is isolated, an arc current flows from the point 6 toward the central portion 7 through the movable side spiral electrode 1 as an arc current 8, and the arc current flows from the central portion 7 to the central portion 7. A spiral electrode 5 on the fixed side flows toward 6 as an arc current 9, and is connected to an arc.
 このように、実施例1のようにスパイラル電極を構成することにより、つまり、図1に示す可動側スパイラル電極1と図2に示す固定側スパイラル電極5とを対向するように設置することにより、それぞれのスパイラル部を流れるアーク電流により形成される磁場が、対向する可動側スパイラル電極1と固定側スパイラル電極5との間で強め合い、スパイラル電極の中心部から半径方向に向けた磁場が形成される。 In this way, by configuring the spiral electrode as in the first embodiment, that is, by installing the movable side spiral electrode 1 shown in FIG. 1 and the fixed side spiral electrode 5 shown in FIG. 2 so as to face each other. The magnetic field formed by the arc current flowing through each spiral portion strengthens between the opposing movable side spiral electrode 1 and the fixed side spiral electrode 5, and a magnetic field directed in the radial direction from the center of the spiral electrode is formed. To.
 そして、このような磁場と電流とによるローレンツ力により、アークは、スパイラル電極の円周方向にアーク駆動力を受ける。 Then, due to the Lorentz force due to such a magnetic field and current, the arc receives an arc driving force in the circumferential direction of the spiral electrode.
 これにより、実施例1によれば、スパイラル方向にアーク電流が流れる距離が長くなり、ローレンツ力も大きくなり、アーク駆動力も大きく、強くなる。そして、アーク放電が着孤場所に固定されることがなく、アークが冷却され、延伸による抵抗が増加し、アークの回転運動も大きくなり、スパイラル電極の効果も増加し、アーク時間や電極溶損量も低減する。 As a result, according to the first embodiment, the distance through which the arc current flows in the spiral direction becomes longer, the Lorentz force becomes larger, and the arc driving force becomes larger and stronger. Then, the arc discharge is not fixed in the isolated place, the arc is cooled, the resistance due to stretching increases, the rotational motion of the arc increases, the effect of the spiral electrode also increases, and the arc time and electrode melting The amount is also reduced.
 次に、実施例1に記載するアークの着孤位置によるアークが受けるローレンツ力の解析結果を説明する。 Next, the analysis result of the Lorentz force received by the arc due to the landing position of the arc described in Example 1 will be described.
 図4は、実施例1に記載するアークの着孤位置によるアークが受けるローレンツ力の解析結果を説明する説明図である。 FIG. 4 is an explanatory diagram illustrating the analysis result of the Lorentz force received by the arc due to the landing position of the arc described in the first embodiment.
 図4に示すように、スパイラル部の根元部4では、スパイラル部の先端部3に対して、ローレンツ力は1/3程度まで低下する。 As shown in FIG. 4, at the root portion 4 of the spiral portion, the Lorentz force is reduced to about 1/3 with respect to the tip portion 3 of the spiral portion.
 そこで、実施例1では、スパイラル部の根元部4の対向方向の突き出し高さを、スパイラル部の先端部3の対向方向の突き出し高さと比較して、低くすることにより、スパイラル部の根元部4の電界を、スパイラル部の先端部3の電界と比較して、相対的に低くする。 Therefore, in the first embodiment, the protruding height of the root portion 4 of the spiral portion in the facing direction is made lower than the protruding height of the tip portion 3 of the spiral portion in the facing direction, thereby lowering the protruding height of the root portion 4 of the spiral portion. The electric field of is relatively low as compared with the electric field of the tip portion 3 of the spiral portion.
 これにより、アークがスパイラル部の先端部3に着孤する確率が、アークがスパイラル部の根元部4に着孤する確率と比較して、高くなり、アーク駆動力を大きくすることができる。 As a result, the probability that the arc will land on the tip 3 of the spiral portion is higher than the probability that the arc will land on the root 4 of the spiral portion, and the arc driving force can be increased.
 また、スパイラル電極に形成されるスパイラル溝2の数(方向)は、少なくとも一つ(一方向)以上あればよい。実施例1では、2方向とする。 Further, the number (direction) of the spiral grooves 2 formed on the spiral electrode may be at least one (one direction) or more. In the first embodiment, there are two directions.
 また、可動側スパイラル電極1に形成するスパイラル溝2の方向と固定側スパイラル電極5に形成するスパイラル溝2の方向とは、反対方向とする。例えば、可動側スパイラル電極1に形成するスパイラル溝2の方向が時計回りであれば、固定側スパイラル電極5に形成するスパイラル溝2の方向は反時計回りであり、可動側スパイラル電極1に形成するスパイラル溝2の方向が反時計回りであれば、固定側スパイラル電極5に形成するスパイラル溝2の方向は時計回りである。 Further, the direction of the spiral groove 2 formed in the movable side spiral electrode 1 and the direction of the spiral groove 2 formed in the fixed side spiral electrode 5 are opposite to each other. For example, if the direction of the spiral groove 2 formed in the movable side spiral electrode 1 is clockwise, the direction of the spiral groove 2 formed in the fixed side spiral electrode 5 is counterclockwise, and the spiral groove 2 is formed in the movable side spiral electrode 1. If the direction of the spiral groove 2 is counterclockwise, the direction of the spiral groove 2 formed on the fixed side spiral electrode 5 is clockwise.
 また、スパイラル電極の断面は、可動側スパイラル電極1と固定側スパイラル電極5とは、スパイラル電極のスパイラル外周部(スパイラル部の外周部:スパイラル部の先端部3及びスパイラル部の根元部4が形成される領域)で、アークが着孤するように、凹型とする。 Further, in the cross section of the spiral electrode, the movable side spiral electrode 1 and the fixed side spiral electrode 5 are formed by the spiral outer peripheral portion of the spiral electrode (the outer peripheral portion of the spiral portion: the tip portion 3 of the spiral portion and the root portion 4 of the spiral portion). In the area where the arc is formed), make it concave so that the arc is isolated.
 次に、実施例1に記載する断路器100の概略構成を模式的に説明する。 Next, the schematic configuration of the disconnector 100 described in the first embodiment will be schematically described.
 図5は、実施例1に記載する断路器100の概略構成を模式的に説明する断面(側面)図である。なお、図5は、断路器100の閉極状態を示す。 FIG. 5 is a cross-sectional (side) view schematically illustrating the schematic configuration of the disconnector 100 described in the first embodiment. Note that FIG. 5 shows a closed pole state of the disconnector 100.
 なお、実施例1に記載する断路器100は、スパイラル電極(永久磁石を使用し、磁界を発生させ、電磁力を使用するスパイラル電極)を使用するアーク駆動方式の断路器である。また、断路器100は、接地開閉器や遮断器と共に、ガス絶縁開閉装置を構成するものである。 The disconnector 100 described in the first embodiment is an arc drive type disconnector that uses a spiral electrode (a spiral electrode that uses a permanent magnet to generate a magnetic field and uses an electromagnetic force). Further, the disconnector 100 constitutes a gas-insulated switchgear together with a grounding switchgear and a circuit breaker.
 断路器100は、密閉容器10を有する。密閉容器10内は、絶縁スペーサ11により、ガス区画が形成され、このガス区画内には、絶縁性ガス12が充満(封入)される。絶縁性ガスとしては、絶縁性の高いSFなどの負性ガス、乾燥空気、窒素、二酸化炭素、SFなどの負性ガスを含むSF/N混合ガス、SFなどの負性ガスを含まないN/O混合ガスなどが使用される。 The disconnector 100 has a closed container 10. In the closed container 10, a gas compartment is formed by the insulating spacer 11, and the insulating gas 12 is filled (enclosed) in the gas compartment. The insulating gas includes a negative gas such as SF 6 having high insulating properties, a SF 6 / N 2 mixed gas containing a negative gas such as dry air, nitrogen, carbon dioxide, and SF 6 , and a negative gas such as SF 6 . An N 2 / O 2 mixed gas or the like that does not contain the above is used.
 絶縁スペーサ11の中心部には、埋め込み導体13が設置される。 An embedded conductor 13 is installed in the center of the insulating spacer 11.
 そして、密閉容器10から電気的に絶縁された状態で、所定の絶縁距離を隔てて対向して、固定側高電圧導体14と可動側高電圧導体15とが設置される。固定側高電圧導体14には、固定側電界緩和用シールド16が設置され、可動側高電圧導体15には、可動側電界緩和用シールド17が設置され、固定側電界緩和用シールド16と可動側電界緩和用シールド17とは対向して、設置される。 Then, in a state of being electrically insulated from the closed container 10, the fixed side high voltage conductor 14 and the movable side high voltage conductor 15 are installed facing each other with a predetermined insulation distance. A fixed-side electric field relaxation shield 16 is installed on the fixed-side high-voltage conductor 14, a movable-side electric field relaxation shield 17 is installed on the movable-side high-voltage conductor 15, and a fixed-side electric field relaxation shield 16 and a movable side are installed. It is installed facing the electric field relaxation shield 17.
 可動側高電圧導体15に設置される可動側電界緩和用シールド17の内部には、可動側主接触子21が設置される。可動側主接触子21の内部を移動(摺動)し、金属である可動子18は、外部操作器(図示なし)により、絶縁操作ロッド19を介して、その軸線上を移動可能に設置される。 The movable side main contactor 21 is installed inside the movable side electric field relaxation shield 17 installed on the movable side high voltage conductor 15. The movable (sliding) inside the movable side main contact 21 is moved (sliding), and the metal movable element 18 is movably installed on the axis thereof via an insulating operation rod 19 by an external actuator (not shown). To.
 固定側高電圧導体14に設置される固定側電界緩和用シールド16の内部には、固定側主接触子20が設置される。 A fixed-side main contactor 20 is installed inside the fixed-side electric field relaxation shield 16 installed on the fixed-side high-voltage conductor 14.
 固定側主接触子20と可動側主接触子21とは、可動子18を介して、常時、電気的な接続状態を保持する。また、固定側高電圧導体14と可動側高圧導体15とは、固定側主接触子20、可動側主接触子21、可動子18を介して、常時、電気的な接続状態を保持する。 The fixed side main contact 20 and the movable side main contact 21 always maintain an electrical connection state via the movable element 18. Further, the fixed-side high-voltage conductor 14 and the movable-side high-voltage conductor 15 always maintain an electrical connection state via the fixed-side main contactor 20, the movable-side main contactor 21, and the movable element 18.
 次に、実施例1に記載する断路器100の主要部を拡大して説明する。 Next, the main part of the disconnector 100 described in the first embodiment will be expanded and described.
 図6は、実施例1に記載する断路器100の主要部(閉極状態)を拡大して説明する断面(側面)図である。 FIG. 6 is a cross-sectional (side view) view illustrating the main part (closed pole state) of the disconnector 100 described in the first embodiment in an enlarged manner.
 固定側主接触子20の内部には、固定側スパイラル電極5を固定するロッド22と、ロッド22を支持するロッド固定用の架台23と、架台23の後面に設置され、架台23を押圧するばね25と、が設置される。 Inside the fixed-side main contact 20, a rod 22 for fixing the fixed-side spiral electrode 5, a pedestal 23 for fixing the rod for supporting the rod 22, and a spring installed on the rear surface of the pedestal 23 to press the pedestal 23. 25 and are installed.
 架台23は、金属であり、固定側主接触子20の内周面と接触し、電気的に接続される。ロッド22も、金属である。つまり、固定側スパイラル電極5と固定側主接触子20とは、ロッド22、架台23を介して、電気的に接続される。 The gantry 23 is made of metal and is in contact with the inner peripheral surface of the fixed-side main contact 20 and is electrically connected. The rod 22 is also metal. That is, the fixed-side spiral electrode 5 and the fixed-side main contactor 20 are electrically connected via the rod 22 and the gantry 23.
 そして、固定側スパイラル電極5(固定側アーク電極)は、ロッド22の先端部に固定される。 Then, the fixed-side spiral electrode 5 (fixed-side arc electrode) is fixed to the tip of the rod 22.
 一方、可動側スパイラル電極1(可動側アーク電極)は、固定側スパイラル電極5と対向するように、可動子18の先端部に固定される。つまり、可動側スパイラル電極1と可動側主接触子21とは、可動子18を介して、電気的に接続される。 On the other hand, the movable side spiral electrode 1 (movable side arc electrode) is fixed to the tip of the mover 18 so as to face the fixed side spiral electrode 5. That is, the movable side spiral electrode 1 and the movable side main contactor 21 are electrically connected via the movable element 18.
 なお、固定側スパイラル電極5と可動側スパイラル電極1とが接触し、固定側主接触子20と可動側主接触子21とが電気的に接続され、閉極状態となる。そして、閉極状態では、固定側高電圧導体14、固定側主接触子20、可動子18、可動側主接触子21、可動側高電圧導体15が、電流通路を形成する。 The fixed-side spiral electrode 5 and the movable-side spiral electrode 1 are in contact with each other, and the fixed-side main contactor 20 and the movable-side main contactor 21 are electrically connected to each other, resulting in a closed pole state. Then, in the closed pole state, the fixed-side high-voltage conductor 14, the fixed-side main contactor 20, the mover 18, the movable-side main contactor 21, and the movable-side high-voltage conductor 15 form a current passage.
 断路器100の閉極状態では、可動子18の先端部は、固定側電界緩和用シールド16の内部にまで入り込み、可動子18と固定側主接触子20とは接触する。 In the closed pole state of the disconnector 100, the tip of the mover 18 penetrates into the fixed side electric field relaxation shield 16 and the mover 18 and the fixed side main contact 20 come into contact with each other.
 ここで、断路器100の電流遮断動作について説明する。 Here, the current cutoff operation of the disconnector 100 will be described.
 図5に示す閉極状態において、外部操作器(図示なし)により、絶縁操作ロッド19を時計方向に回転させ、可動子18に開極操作力を付与すると、可動子18は、その軸線上を右方向(開極方向)に移動する。 In the closed pole state shown in FIG. 5, when the insulating operation rod 19 is rotated clockwise by an external actuator (not shown) and an open pole operating force is applied to the mover 18, the mover 18 moves on its axis. Move to the right (open pole direction).
 先ず、固定側主接触子20から可動子18が開離し、固定側主接触子20と可動子18との接触部を介して流れていた電流は遮断される。 First, the mover 18 is separated from the fixed side main contact 20, and the current flowing through the contact portion between the fixed side main contact 20 and the mover 18 is cut off.
 閉極状態では、ばね25は圧縮している状態であるため、開極状態の初期では、架台23、ロッド22、固定側スパイラル電極5、可動側スパイラル電極1は、ばね25により押され、これらは、一体となって、右方向に、可動子18の開極動作に追従して、移動する。 Since the spring 25 is in the compressed state in the closed pole state, the gantry 23, the rod 22, the fixed side spiral electrode 5, and the movable side spiral electrode 1 are pushed by the spring 25 in the initial stage of the open pole state. As a unit, move to the right following the opening operation of the mover 18.
 このとき、固定側スパイラル電極5と可動側スパイラル電極1とは、接触しながら移動する。このため、固定側高電圧導体14、固定側主接触子20、架台23、ロッド22、固定側スパイラル電極5、可動側スパイラル電極1、可動子18、可動側主接触子21、可動側高電圧導体15が、電流通路を形成する。 At this time, the fixed side spiral electrode 5 and the movable side spiral electrode 1 move while being in contact with each other. Therefore, the fixed side high voltage conductor 14, the fixed side main contact 20, the gantry 23, the rod 22, the fixed side spiral electrode 5, the movable side spiral electrode 1, the mover 18, the movable side main contact 21, the movable side high voltage. The conductor 15 forms a current path.
 図7は、実施例1に記載する断路器100の主要部(開極途中状態)を拡大して説明する断面(側面)図である。 FIG. 7 is a cross-sectional (side surface) view illustrating the main part (state in the middle of opening the pole) of the disconnector 100 described in the first embodiment in an enlarged manner.
 図7に示すように、架台23は、固定側主接触子20により、右方向への移動を停止する。これにより、ロッド22及び固定側スパイラル電極5も、右方向への移動を停止する。このとき、固定側スパイラル電極5は、固定側電界緩和用シールド16の内部にある。
なお、固定側スパイラル電極5が、固定側電界緩和用シールド16の内部にあるため、開極状態では、固定側スパイラル電極5の電界を低く抑え、放電を抑制することができる。
As shown in FIG. 7, the gantry 23 stops moving to the right by the fixed-side main contactor 20. As a result, the rod 22 and the fixed-side spiral electrode 5 also stop moving to the right. At this time, the fixed-side spiral electrode 5 is inside the fixed-side electric field relaxation shield 16.
Since the fixed-side spiral electrode 5 is inside the fixed-side electric field relaxation shield 16, the electric field of the fixed-side spiral electrode 5 can be suppressed to a low level and discharge can be suppressed in the open pole state.
 その後、可動子18の開極動作により、可動側スパイラル電極1と固定側スパイラル電極5とが開極し、可動側スパイラル電極1と固定側スパイラル電極5との間に、アーク24が発生し、再点呼を繰り返しながら、電流遮断が完了する。 After that, due to the opening operation of the mover 18, the movable side spiral electrode 1 and the fixed side spiral electrode 5 are opened, and an arc 24 is generated between the movable side spiral electrode 1 and the fixed side spiral electrode 5. The current cutoff is completed while repeating the re-roll call.
 なお、電流遮断時に、高い回復電圧が印加される場合には、高電界箇所を起点とした再発呼や地絡などが発生し、電流遮断が成立しない場合がある。 If a high recovery voltage is applied when the current is cut off, recalls or ground faults may occur starting from the high electric field location, and the current cutoff may not be established.
 次に、実施例1に記載するスパイラル電極を流れるアーク電流が形成する磁場を模式的に説明する。 Next, the magnetic field formed by the arc current flowing through the spiral electrode described in Example 1 will be schematically described.
 図8は、実施例1に記載するスパイラル電極を流れるアーク電流が形成する磁場を模式的に説明する説明図である。 FIG. 8 is an explanatory diagram schematically illustrating a magnetic field formed by an arc current flowing through the spiral electrode described in the first embodiment.
 可動側スパイラル電極1と固定側スパイラル電極5とは、中心を同一として、対向して設置され、可動側スパイラル電極1に形成されるスパイラル溝2の方向と固定側スパイラル電極5に形成されるスパイラル溝2の方向とは、反対方向になる。例えば、可動側スパイラル電極1に形成されるスパイラル溝2の方向が時計回りであれば、固定側スパイラル電極5に形成されるスパイラル溝2の方向は反時計回りであり、可動側スパイラル電極1に形成されるスパイラル溝2の方向が反時計回りであれば、固定側スパイラル電極5に形成されるスパイラル溝2の方向は時計回りである。 The movable side spiral electrode 1 and the fixed side spiral electrode 5 are installed facing each other with the same center, and the direction of the spiral groove 2 formed in the movable side spiral electrode 1 and the spiral formed in the fixed side spiral electrode 5. The direction is opposite to the direction of the groove 2. For example, if the direction of the spiral groove 2 formed in the movable side spiral electrode 1 is clockwise, the direction of the spiral groove 2 formed in the fixed side spiral electrode 5 is counterclockwise, and the direction of the spiral groove 2 is counterclockwise in the movable side spiral electrode 1. If the direction of the spiral groove 2 formed is counterclockwise, the direction of the spiral groove 2 formed in the fixed side spiral electrode 5 is clockwise.
 電流Iは、ロッド22から、ロッド22の先端部を介して、固定側スパイラル電極5に、図8中Z軸方向に流れ、また、電流Iは、可動側スパイラル電極1から、可動子18の先端部を介して、可動子18に、図8中Z軸方向に流れる。 The current I flows from the rod 22 through the tip of the rod 22 to the fixed-side spiral electrode 5 in the Z-axis direction in FIG. 8, and the current I flows from the movable-side spiral electrode 1 to the mover 18 of the mover 18. It flows through the tip portion to the mover 18 in the Z-axis direction in FIG.
 また、アーク24は、固定側スパイラル電極5と可動側スパイラル電極1との間に発生する。 Further, the arc 24 is generated between the fixed side spiral electrode 5 and the movable side spiral electrode 1.
 図8に示すように、固定側スパイラル電極5と可動側スパイラル電極1とには、反対方向に、スパイラル溝2が形成されるため、
(1)固定側スパイラル電極5では、中心軸(Z軸)より上部では、紙面手前方向に向かってアーク電流9が流れ、中心軸(Z軸)より下部では、紙面奥行方向に向かってアーク電流9が流れ、
(2)可動側スパイラル電極1では、中心軸(Z軸)より上部では、紙面奥行方向に向かってアーク電流8が流れ、中心軸(Z軸)より下部では、紙面手前方向に向かってアーク電流8が流れる。
As shown in FIG. 8, since the spiral groove 2 is formed in the opposite direction between the fixed side spiral electrode 5 and the movable side spiral electrode 1, the spiral groove 2 is formed.
(1) In the fixed-side spiral electrode 5, an arc current 9 flows toward the front of the paper surface above the central axis (Z axis), and an arc current flows toward the depth of the paper surface below the central axis (Z axis). 9 flows,
(2) In the movable side spiral electrode 1, an arc current 8 flows in the depth direction of the paper surface above the central axis (Z axis), and an arc current flows toward the front side of the paper surface below the central axis (Z axis). 8 flows.
 このため、中心軸(Z軸)から半径方向(電流Iが流れる方向と直交する方向)に向かう磁場Bが発生し、アークに、磁気駆動力F(F(アーク駆動力)=I×B)が作用する。つまり、アーク24は、このような磁場Bと電流Iとによるローレンツ力Fにより、スパイラル電極の円周方向(中心軸(Z軸)の円周方向)にアーク駆動力Fを受ける。 Therefore, a magnetic field B is generated in the radial direction (direction orthogonal to the direction in which the current I flows) from the central axis (Z axis), and the magnetic driving force F (F (arc driving force) = I × B) is generated in the arc. Works. That is, the arc 24 receives the arc driving force F in the circumferential direction of the spiral electrode (circumferential direction of the central axis (Z axis)) by the Lorentz force F due to the magnetic field B and the current I.
 このように、実施例1に記載する断路器100は、絶縁性ガス12を封入する密閉容器10と、密閉容器10の内部に対向して設置される一対のアーク電極(可動側アーク電極及び固定側アーク電極)と、を有し、一対のアーク電極の両方(少なくとも一方でもよい)を、アーク電極の軸の周りに回転する方向に形成されるスパイラル溝2を有するスパイラル電極(可動側スパイラル電極1及び/又は固定側スパイラル電極5)とする。そして、スパイラル電極のスパイラル部の根元部4の対向面方向の高さを、スパイラル電極のスパイラル部の先端部3の対向面方向の高さと比較して、低くする。 As described above, the circuit breaker 100 described in the first embodiment has a closed container 10 for enclosing the insulating gas 12 and a pair of arc electrodes (movable side arc electrode and fixed) installed facing the inside of the closed container 10. Spiral electrode (movable side spiral electrode) having a side arc electrode) and having a spiral groove 2 formed in a direction in which both (or at least one of them) of the pair of arc electrodes are rotated around the axis of the arc electrode. 1 and / or the fixed side spiral electrode 5). Then, the height of the root portion 4 of the spiral portion of the spiral electrode in the facing surface direction is made lower than the height of the tip portion 3 of the spiral portion of the spiral electrode in the facing surface direction.
 図1に示す可動側スパイラル電極1と図2に示す固定側スパイラル電極5とを対向して設置することにより、スパイラル方向にアーク電流が流れる距離が長くなり、ローレンツ力も大きくなり、アーク駆動力も大きく、強くなる。そして、アークの回転運動も大きくなり、スパイラル電極の効果が増加する。 By installing the movable side spiral electrode 1 shown in FIG. 1 and the fixed side spiral electrode 5 shown in FIG. 2 facing each other, the distance through which the arc current flows in the spiral direction becomes longer, the Lorentz force becomes larger, and the arc driving force becomes larger. ,Become stronger. Then, the rotational movement of the arc also increases, and the effect of the spiral electrode increases.
 実施例1によれば、断路器100の開極時、スパイラル電極におけるアークの着孤位置を、アーク駆動力の強い場所とすることができ、安定した電流遮断性能を得ることができる。 According to the first embodiment, when the disconnector 100 is opened, the arc landing position on the spiral electrode can be set to a place where the arc driving force is strong, and stable current cutoff performance can be obtained.
 また、実施例1によれば、アークは、電界強度の高い箇所に着孤するため、アークは、スパイラル部の先端部3に、スパイラル部の根元部4よりも、優先的に着孤することになる。そして、アークの着孤をスパイラル部の先端部3に集中させることができ、スパイラル電極のアーク駆動力が弱い箇所(スパイラル部の根元部4)へのアークの着孤を防止し、アークの回転運動を大きくし、電流遮断性能(短時間で効率良く、アーク放電を遮断することができる性能)を向上させることができる。 Further, according to the first embodiment, since the arc is sunk in a place where the electric field strength is high, the arc is sunk in the tip portion 3 of the spiral portion preferentially over the root portion 4 of the spiral portion. become. Then, the arc can be concentrated on the tip 3 of the spiral portion, the arc can be prevented from being anchored to the portion where the arc driving force of the spiral electrode is weak (the root portion 4 of the spiral portion), and the rotation of the arc can be prevented. It is possible to increase the motion and improve the current cutoff performance (performance that can cut off the arc discharge efficiently in a short time).
 これにより、電流遮断性能を向上させ、信頼性を向上させる断路器100を提供することができる。そして、この断路器100は、外部操作器を小型軽量化することができ、また、外部操作器の操作力を低減することができる。 Thereby, it is possible to provide the disconnector 100 which improves the current cutoff performance and improves the reliability. The disconnector 100 can reduce the size and weight of the external actuator, and can reduce the operating force of the external actuator.
 次に、実施例2に記載する断路器100が有するスパイラル電極を説明する。 Next, the spiral electrode included in the disconnector 100 described in Example 2 will be described.
 図9Aは、実施例2に記載する断路器100が有する可動側スパイラル電極1を説明する断面図である。 FIG. 9A is a cross-sectional view illustrating the movable side spiral electrode 1 included in the disconnector 100 described in the second embodiment.
 実施例1に記載する可動側スパイラル電極1に形成されるスパイラル部の根元部4の表面は平面であるが、実施例2に記載する可動側スパイラル電極1に形成されるスパイラル部の根元部4の表面(固定側スパイラル電極5と対向する面)は、曲面(角部がR加工された断面形状)である。つまり、根元部4の表面は、断面において、角部がない、滑らかな曲線形状である。 Although the surface of the base portion 4 of the spiral portion formed on the movable side spiral electrode 1 described in Example 1 is flat, the root portion 4 of the spiral portion formed on the movable side spiral electrode 1 described in Example 2 is flat. The surface (the surface facing the fixed side spiral electrode 5) is a curved surface (cross-sectional shape with rounded corners). That is, the surface of the root portion 4 has a smooth curved shape with no corners in the cross section.
 これにより、電界集中を低減する。そして、アークの着孤をスパイラル部の先端部3に集中させることができ、安定したアーク駆動力を得ることができる。 This reduces the electric field concentration. Then, the arc formation can be concentrated on the tip portion 3 of the spiral portion, and a stable arc driving force can be obtained.
 図9Bは、実施例2に記載する断路器100が有する固定側スパイラル電極5を説明する断面図である。 FIG. 9B is a cross-sectional view illustrating the fixed-side spiral electrode 5 included in the disconnector 100 described in the second embodiment.
 実施例1に記載する固定側スパイラル電極5に形成されるスパイラル部の根元部4の表面は平面であるが、実施例2に記載する固定側スパイラル電極5に形成されるスパイラル部の根元部4の表面(可動側スパイラル電極1と対向する面)は、曲面(角部がR加工された断面形状)である。つまり、根元部4の表面が、断面において、角部がない、滑らかな曲線形状である。 Although the surface of the root portion 4 of the spiral portion formed on the fixed-side spiral electrode 5 described in Example 1 is flat, the root portion 4 of the spiral portion formed on the fixed-side spiral electrode 5 described in Example 2 is flat. The surface (the surface facing the movable side spiral electrode 1) is a curved surface (cross-sectional shape with rounded corners). That is, the surface of the root portion 4 has a smooth curved shape with no corners in the cross section.
 これにより、電界集中を低減する。そして、アークの着孤をスパイラル部の先端部3に集中させることができ、安定したアーク駆動力を得ることができる。 This reduces the electric field concentration. Then, the arc formation can be concentrated on the tip portion 3 of the spiral portion, and a stable arc driving force can be obtained.
 次に、実施例3に記載する断路器100の主要部(開極途中状態)を拡大して説明する。 Next, the main part (state in the middle of opening the pole) of the disconnector 100 described in the third embodiment will be expanded and described.
 図10は、実施例3に記載する断路器100の主要部(開極途中状態)を拡大して説明する断面図である。 FIG. 10 is a cross-sectional view illustrating an enlarged main part (state in the middle of opening the pole) of the disconnector 100 described in the third embodiment.
 実施例1に記載する断路器100は、可動側に設置される可動側スパイラル電極1と固定側に設置される固定側スパイラル電極5とを有するが、実施例3に記載する断路器100は、固定側にはロッド22の先端部に固定側スパイラル電極5を有し、可動側には可動子18の先端部に平板型可動側アーク電極26を有する。つまり、実施例3では、可動側アーク電極を、平板型の可動側アーク電極とする。 The disconnector 100 described in the first embodiment has a movable side spiral electrode 1 installed on the movable side and a fixed side spiral electrode 5 installed on the fixed side, but the disconnector 100 described in the third embodiment has a disconnector 100. The fixed side has a fixed side spiral electrode 5 at the tip of the rod 22, and the movable side has a flat plate type movable side arc electrode 26 at the tip of the mover 18. That is, in the third embodiment, the movable side arc electrode is a flat plate type movable side arc electrode.
 実施例3では、可動側アーク電極における磁気駆動力は発生しないが、固定側に、図2に示す固定側スパイラル電極5を設置することにより、電界集中を低減し、電極間の耐電圧を高めることができる。 In the third embodiment, the magnetic driving force is not generated in the movable side arc electrode, but by installing the fixed side spiral electrode 5 shown in FIG. 2 on the fixed side, the electric field concentration is reduced and the withstand voltage between the electrodes is increased. be able to.
 つまり、固定側スパイラル電極5のみで、十分に磁気駆動力を確保し、電流遮断性能を高めることができる場合には、可動子18の先端部に平板型可動側アーク電極26を設置することにより、磁気駆動力を確保し、電極間の耐電圧を高めることができる。 That is, when the fixed side spiral electrode 5 alone can sufficiently secure the magnetic driving force and improve the current cutoff performance, the flat plate type movable side arc electrode 26 is installed at the tip of the mover 18. , The magnetic driving force can be secured and the withstand voltage between the electrodes can be increased.
 なお、実施例3では、固定側に図2に示す固定側スパイラル電極5を有し、可動側に平板型可動側アーク電極26を有するが、固定側に平板型固定側アーク電極を有し、可動側に図1に示す可動側スパイラル電極1を有してもよい。 In Example 3, the fixed side spiral electrode 5 shown in FIG. 2 is provided on the fixed side, and the flat plate type movable side arc electrode 26 is provided on the movable side, but the flat plate type fixed side arc electrode is provided on the fixed side. The movable side spiral electrode 1 shown in FIG. 1 may be provided on the movable side.
 なお、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は、本発明を分かりやすく説明するために、詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 The present invention is not limited to the above-described embodiment, but includes various modifications. For example, the above-mentioned examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
 また、ある実施例の構成の一部を、他の実施例の構成の一部に、置き換えることが可能であり、ある実施例の構成に、他の実施例の構成を、追加することも可能である。 Further, it is possible to replace a part of the configuration of one embodiment with a part of the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Is.
 1…可動側スパイラル電極、2…スパイラル溝、3…スパイラル部の先端部、4…スパイラル部の根元部、5…固定側スパイラル電極、6…点孤箇所、7…中心部、8…可動側のアーク電流、9…固定側のアーク電流、10…密閉容器、11…絶縁スペーサ、12…絶縁性ガス、13…埋め込み導体、14…固定側高電圧導体、15…可動側高電圧導体、16…固定側電界緩和用シールド、17…可動側電界緩和用シールド、18…可動子、19…絶縁操作ロッド、20…固定側主接触子、21…可動側主接触子、22…ロッド、23…架台、24…アーク、25…ばね、26…平板型可動側アーク電極、100…断路器。 1 ... Movable side spiral electrode, 2 ... Spiral groove, 3 ... Spiral part tip part, 4 ... Spiral part root part, 5 ... Fixed side spiral electrode, 6 ... Point isolated part, 7 ... Central part, 8 ... Movable side Arc current, 9 ... fixed side arc current, 10 ... closed container, 11 ... insulating spacer, 12 ... insulating gas, 13 ... embedded conductor, 14 ... fixed side high voltage conductor, 15 ... movable side high voltage conductor, 16 ... Fixed side electric field relaxation shield, 17 ... Movable side electric field relaxation shield, 18 ... Movable element, 19 ... Insulation operation rod, 20 ... Fixed side main contactor, 21 ... Movable side main contactor, 22 ... Rod, 23 ... Frame, 24 ... arc, 25 ... spring, 26 ... flat plate type movable side arc electrode, 100 ... breaker.

Claims (7)

  1.  絶縁性ガスを封入する密閉容器と、前記密閉容器の内部に対向して設置される一対のアーク接触子と、を有し、
     前記一対のアーク接触子の少なくとも一方を、前記アーク接触子の軸の周りに回転する方向に形成されるスパイラル溝を有するスパイラル電極とし、
     前記スパイラル電極のスパイラル部の根元部の対向面方向の高さを、前記スパイラル電極のスパイラル部の先端部の対向面方向の高さと比較して、低くする断路器を有することを特徴するガス絶縁開閉装置。
    It has a closed container for enclosing an insulating gas and a pair of arc contacts installed facing the inside of the closed container.
    At least one of the pair of arc contacts is a spiral electrode having a spiral groove formed in a direction of rotation around the axis of the arc contacts.
    Gas insulation characterized by having a disconnector that lowers the height of the base of the spiral portion of the spiral electrode in the facing surface direction with respect to the height of the tip of the spiral portion of the spiral electrode in the facing surface direction. Switchgear.
  2.  請求項1に記載するガス絶縁開閉装置であって、
     前記一対のアーク接触子の両方に、前記スパイラル溝を有するスパイラル電極を設置し、
     可動側スパイラル電極に形成されるスパイラル溝と固定側スパイラル電極に形成されるスパイラル溝とは、反対方向に形成されることを特徴するガス絶縁開閉装置。
    The gas-insulated switchgear according to claim 1.
    Spiral electrodes having the spiral groove are installed in both of the pair of arc contacts.
    A gas-insulated switchgear characterized in that the spiral groove formed on the movable side spiral electrode and the spiral groove formed on the fixed side spiral electrode are formed in opposite directions.
  3.  請求項1に記載するガス絶縁開閉装置であって、
     前記一対のアーク接触子の一方には、スパイラル電極が設置され、前記一対のアーク接触子の他方には、平板型のアーク電極が設置されることを特徴とするガス絶縁開閉装置。
    The gas-insulated switchgear according to claim 1.
    A gas-insulated switchgear characterized in that a spiral electrode is installed on one of the pair of arc contacts, and a flat plate type arc electrode is installed on the other of the pair of arc contacts.
  4.  請求項3に記載するガス絶縁開閉装置であって、
     前記一対のアーク接触子の一方の固定側には、固定側スパイラル電極が設置され、前記一対のアーク接触子の他方の可動側には、平板型可動側アーク電極が設置されることを特徴とするガス絶縁開閉装置。
    The gas-insulated switchgear according to claim 3.
    A fixed side spiral electrode is installed on one fixed side of the pair of arc contacts, and a flat plate type movable side arc electrode is installed on the other movable side of the pair of arc contacts. Gas-insulated switchgear.
  5.  請求項1に記載するガス絶縁開閉装置であって、
     前記根元部の高さを相対的に低くする領域が、円周方向で5度以上44以下であることを特徴とするガス絶縁開閉装置。
    The gas-insulated switchgear according to claim 1.
    A gas-insulated switchgear characterized in that the region where the height of the root portion is relatively lowered is 5 degrees or more and 44 or less in the circumferential direction.
  6.  請求項1に記載するガス絶縁開閉装置であって、
     前記先端部の高さを相対的に高くする領域が、円周方向で136度以上175度以下であることを特徴とするガス絶縁開閉装置。
    The gas-insulated switchgear according to claim 1.
    A gas-insulated switchgear characterized in that the region in which the height of the tip portion is relatively high is 136 degrees or more and 175 degrees or less in the circumferential direction.
  7.  請求項1に記載するガス絶縁開閉装置であって、
     前記根元部が、断面において、曲線形状であることを特徴とするガス絶縁開閉装置。
    The gas-insulated switchgear according to claim 1.
    A gas-insulated switchgear characterized in that the root portion has a curved shape in a cross section.
PCT/JP2021/015967 2020-08-24 2021-04-20 Gas-insulated switching device WO2022044424A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020140956A JP7393310B2 (en) 2020-08-24 2020-08-24 gas insulated switchgear
JP2020-140956 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022044424A1 true WO2022044424A1 (en) 2022-03-03

Family

ID=80354938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015967 WO2022044424A1 (en) 2020-08-24 2021-04-20 Gas-insulated switching device

Country Status (2)

Country Link
JP (1) JP7393310B2 (en)
WO (1) WO2022044424A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052576A (en) * 1999-06-04 2001-02-23 Mitsubishi Electric Corp Vacuum valve
JP2001135206A (en) * 1999-11-05 2001-05-18 Hitachi Ltd Electrode, vacuum valve electrode, vacuum valve and vacuum switch
JP2008176942A (en) * 2007-01-16 2008-07-31 Japan Ae Power Systems Corp Gas-insulated switch
JP2020048252A (en) * 2018-09-14 2020-03-26 株式会社日立製作所 Gas-insulation opening/closing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052576A (en) * 1999-06-04 2001-02-23 Mitsubishi Electric Corp Vacuum valve
JP2001135206A (en) * 1999-11-05 2001-05-18 Hitachi Ltd Electrode, vacuum valve electrode, vacuum valve and vacuum switch
JP2008176942A (en) * 2007-01-16 2008-07-31 Japan Ae Power Systems Corp Gas-insulated switch
JP2020048252A (en) * 2018-09-14 2020-03-26 株式会社日立製作所 Gas-insulation opening/closing device

Also Published As

Publication number Publication date
JP7393310B2 (en) 2023-12-06
JP2022036644A (en) 2022-03-08

Similar Documents

Publication Publication Date Title
US6163002A (en) Vacuum circuit interrupter with contact structure including support pins
JP4852434B2 (en) Gas insulated switch
KR101072518B1 (en) Disconnecting switch
JP2000164084A (en) Vacuum switchgear
JP2022509713A (en) Contact mechanism and switching equipment for switching equipment
JPH06335125A (en) Switching device
JP2004063110A (en) Switching device
WO2022044424A1 (en) Gas-insulated switching device
JPH038050B2 (en)
JP2020161459A (en) Ground switchgear and gas insulation switchgear with the same
JP6975111B2 (en) Gas insulation switchgear
WO2021070409A1 (en) Disconnector and gas-insulated switchgear
WO2021152646A1 (en) Gas-insulated switchgear
JPH0719505B2 (en) Disconnector
JP7492376B2 (en) Switchgear
Zhao et al. Development of an indoor 40.5 kV vacuum circuit breaker for back-to-back capacitor bank switching duty
Giere et al. Control of diffuse vacuum arc using axial magnetic fields in commercial high voltage switchgear
JPH0142267Y2 (en)
CN118471712A (en) Low-voltage switch pole
CN110890249A (en) Magnetic force driven high-voltage switch
JP2866428B2 (en) Puffer type gas circuit breaker
JP2910162B2 (en) Gas circuit breaker
JPS6312518Y2 (en)
JP3270130B2 (en) Vacuum circuit breaker
JP2523478B2 (en) Puffer type gas breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860856

Country of ref document: EP

Kind code of ref document: A1