WO2022044186A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2022044186A1
WO2022044186A1 PCT/JP2020/032309 JP2020032309W WO2022044186A1 WO 2022044186 A1 WO2022044186 A1 WO 2022044186A1 JP 2020032309 W JP2020032309 W JP 2020032309W WO 2022044186 A1 WO2022044186 A1 WO 2022044186A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
control device
air
actuators
threshold value
Prior art date
Application number
PCT/JP2020/032309
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 岡崎
大輔 杉山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/032309 priority Critical patent/WO2022044186A1/en
Priority to CN202080007376.9A priority patent/CN114521225B/en
Priority to JP2021532202A priority patent/JP7301133B2/en
Publication of WO2022044186A1 publication Critical patent/WO2022044186A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data

Definitions

  • This disclosure relates to an air conditioner, and particularly to an actuator control.
  • Patent Document 1 controls to improve the comfort of the air-conditioned space, but does not give much consideration to energy saving.
  • Patent Document 1 conventionally, there has been a demand for improving energy saving while maintaining the comfort of the air-conditioned space.
  • This disclosure is made to solve the above problems, and aims to provide an air conditioner with improved energy saving while maintaining the comfort of the air-conditioned space.
  • the air conditioner according to the present disclosure is an air conditioner including at least a compressor, a flap, an indoor blower, and an outdoor blower as actuators, and is instructed to be started or stopped by an operating means, and is a future air conditioning load.
  • the control device comprises a control device for obtaining a numerical value of a feeling of warmth and coldness indicating a tendency of an air-conditioning load, which is an inclination indicating the tendency of the air-conditioning space, or a feeling of a person in the air-conditioning space.
  • the numerical value of the air conditioning load tendency or the hot / cold feeling is obtained, and the actuator is started or stopped according to the numerical value of the air conditioning load tendency or the hot / cold feeling.
  • the actuator is operated or stopped according to the numerical value of the air conditioning load tendency or the feeling of warm / cold feeling. Therefore, it is possible to improve energy saving while maintaining comfort.
  • FIG. 5 is a perspective view showing an operating state of only the sensor unit of the indoor unit of the air conditioner according to the first embodiment. It is a perspective view which shows the outdoor unit of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure which shows the outline of the input / output relation about the control of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a time chart of the control of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a time chart of the control of the air conditioner which concerns on Embodiment 2.
  • FIG. It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 2.
  • FIG. It is a time chart of the control of the air conditioner which concerns on Embodiment 3.
  • FIG. It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 3.
  • FIG. It is a time chart of the control of the air conditioner which concerns on Embodiment 4.
  • FIG. It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 4.
  • FIG. 1 It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 5. It is a time chart of the control of the air conditioner which concerns on Embodiment 6. It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 6. It is a time chart of the control of the air conditioner which concerns on Embodiment 7. It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 7. It is a time chart of the control of the air conditioner which concerns on Embodiment 8. It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 8. It is a time chart of the control of the air conditioner which concerns on Embodiment 9. FIG.
  • FIG. 1 is a diagram showing an overall configuration of an air conditioner according to the first embodiment.
  • the air conditioner according to the first embodiment includes an indoor unit 100 and an outdoor unit 200. Further, the air conditioner has a refrigerant circuit in which the indoor unit 100 and the outdoor unit 200 are connected by a gas refrigerant pipe 300 and a liquid refrigerant pipe 400.
  • the indoor unit 100 includes an indoor heat exchanger 12 and indoor blowers 6a and 6b.
  • the indoor heat exchanger 12 exchanges heat between the air in the room, which is an air-conditioned space, and the refrigerant.
  • the indoor blowers 6a and 6b allow indoor air to pass through the indoor heat exchanger 12 to promote heat exchange in the indoor heat exchanger 12.
  • the indoor unit 100 includes an indoor control device 11 as a control system device. Further, the indoor unit 100 includes an indoor temperature sensor 14, an indoor humidity sensor 15, and an indoor heat exchanger temperature sensor 13 as sensors.
  • the indoor temperature sensor 14 detects, for example, the room temperature of the air-conditioned space and sends a signal to the indoor control device 11.
  • the indoor heat exchanger temperature sensor 13 detects, for example, the temperature of the indoor heat exchanger 12 during operation and sends a signal to the indoor control device 11.
  • the outdoor unit 200 includes a compressor 20, an outdoor blower 21, an outdoor heat exchanger 22, a flow path switching device 23, and a throttle device 24.
  • the compressor 20 compresses and discharges the sucked refrigerant.
  • the compressor 20 can change the capacity of the compressor 20, that is, the amount of the refrigerant delivered per unit time, by arbitrarily changing the operating frequency by, for example, an inverter circuit or the like. ..
  • the flow path switching device 23 is, for example, a four-way valve or the like, and is a valve that switches the flow of the refrigerant depending on the cooling operation, the defrosting operation, and the heating operation.
  • the throttle device 24 is, for example, an electronic expansion valve, and the opening degree is adjusted based on the instruction of the outdoor control device 25 to reduce the pressure of the refrigerant and expand it.
  • the outdoor heat exchanger 22 exchanges heat between the outdoor air and the refrigerant.
  • the outdoor blower 21 passes the outdoor air through the outdoor heat exchanger 22 to promote heat exchange in the outdoor heat exchanger 22.
  • the outdoor unit 200 includes an outdoor control device 25 as a control system device. Further, the outdoor unit 200 includes an outside air temperature sensor 26 as sensors. For example, the outside air temperature sensor 26 detects the outside air temperature indicating the situation outside the room and sends a signal to the outdoor control device 25. A signal is sent from the outdoor control device 25 to the indoor control device 11 for the detected outside air temperature, and the outside air temperature data is used.
  • the air conditioner is provided with a remote controller (hereinafter referred to as a remote controller) 16 as an operating means for instructing operation or stop.
  • the remote controller 16 is connected to the indoor control device 11 of the indoor unit 100.
  • the connection method may be wireless or wired.
  • the operating means may be bundled with the air conditioner, or may be a smartphone or a HEMS device. Then, the remote controller 16 sends a signal including instructions, settings, etc. input by the user to the indoor control device 11.
  • FIG. 2 is a perspective view showing an operating state of the indoor unit 100 of the air conditioner according to the first embodiment.
  • FIG. 3 is a perspective view showing a stopped state of the indoor unit 100 of the air conditioner according to the first embodiment.
  • FIG. 4 is a perspective view showing an operating state of only the sensor unit 7 of the indoor unit 100 of the air conditioner according to the first embodiment.
  • the indoor unit 100 has an indoor unit main body 1 on which an indoor heat exchanger 12 (not shown in FIG. 2) is mounted.
  • a suction port 2 is formed in the upper part of the indoor unit main body 1, and an outlet 3 is formed in the lower part on the front side of the indoor unit main body 1.
  • Indoor blowers 6a and 6b are provided below the suction port 2 inside the indoor unit main body 1.
  • the vertical wind direction plates 4a and 4b and the front wind direction plate 10 for adjusting the up and down in the air blowing direction are provided.
  • the vertical wind direction plate 4b is provided with a left and right wind direction plate 5 for adjusting the left and right in the air blowing direction.
  • the vertical wind direction plates 4a and 4b, the left and right wind direction plates 5, and the front wind direction plate 10 are collectively referred to as flaps.
  • the vertical wind direction plates 4a and 4b according to the first embodiment are composed of two sheets, but the present invention is not limited to this, and one or three or more sheets may be used.
  • the left and right wind direction plates 5 are provided on the upper and lower wind direction plates 4b, but are not limited to this, and are provided at independent positions, for example, between the upper and lower wind direction plates 4a and 4b, or on the upper and lower wind direction plates 4a. May be.
  • the indoor unit 100 according to the first embodiment includes two indoor blowers 6a and 6b, but the present invention is not limited to this, and one or three or more may be provided.
  • a sensor unit 7 is provided at the lower right side of the indoor unit main body 1.
  • the sensor unit 7 is a non-thermal infrared detection sensor such as a pyroelectric type or a thermoelectromotive force type, a visible light camera, a distance measuring sensor, a Doppler sensor, a photometric sensor, a microphone, a borometer, or a SOI (Silicon On Insulator). It has an indoor condition detection sensor 8 which is a contact type sensor.
  • the vertical wind direction plates 4a and 4b and the front wind direction plate 10 move to the operating position, the indoor blowers 6a and 6b rotate, and the air is blown from the outlet 3. To. At this time, the suction port 2 is exposed to the outside. Further, the sensor unit 7 protrudes from the indoor unit main body 1 and rotates left and right.
  • the vertical wind direction plates 4a and 4b and the front wind direction plate 10 move to the stop positions, and the indoor blowers 6a and 6b stop. At this time, the suction port 2 is covered with the vertical wind direction plates 4a and 4b and the front wind direction plate 10. Further, the sensor unit 7 is housed in the indoor unit main body 1.
  • the sensor unit 7 protrudes from the indoor unit main body 1 and rotates left and right, but the vertical wind direction plates 4a and 4b and the front surface.
  • the wind direction plate 10 may be left in the stopped position, and the indoor blowers 6a and 6b may be left stopped.
  • the sensor unit 7 is said to protrude from the indoor unit main body 1 when the indoor unit 100 is in an operating state and is housed in the indoor unit main body 1 when the indoor unit 100 is stopped, but the present invention is not limited to this.
  • the sensor unit 7 may remain protruding regardless of the state of the indoor unit 100, or may detect the state of the air-conditioned space in a fixed state without rotating left and right.
  • FIG. 5 is a perspective view showing the outdoor unit 200 of the air conditioner according to the first embodiment.
  • the outdoor unit 200 includes an outdoor unit main body 51 that forms an outer shell.
  • a circular outlet 52 is formed on the front surface of the outdoor unit main body 51.
  • a fan guard 53 covering the air outlet 52 is attached to the front surface of the outdoor unit main body 51.
  • the inside of the outdoor unit main body 51 is divided into a blower room and a machine room by a partition plate (not shown) arranged from the front side to the back side.
  • the blower room is provided with an outdoor heat exchanger 22, an outdoor blower 21, and the like.
  • the machine room is provided with a compressor 20, a flow path switching device 23, a throttle device 24, and the like.
  • FIG. 6 is a diagram showing an outline of the input / output relationship regarding the control of the air conditioner according to the first embodiment.
  • the air conditioner according to the first embodiment includes an indoor control device 11 and an outdoor control device 25 as described above.
  • Each of the indoor control device 11 and the outdoor control device 25 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, processor) that executes a program stored in dedicated hardware or memory, respectively. Also known as).
  • the indoor control device 11 mainly performs processing related to indoor operation in the indoor unit 100.
  • the outdoor control device 25 mainly performs processing related to outdoor operation in the outdoor unit 200.
  • the indoor control device 11 and the outdoor control device 25 communicate with each other and exchange signals including data related to control.
  • the indoor control device 11 and the outdoor control device 25 are collectively referred to as a control device.
  • the outdoor control device 25 includes an outdoor input unit 41, an outdoor control unit 42, and an outdoor output unit 43.
  • the outdoor input unit 41 sends data included in a signal transmitted from an external device of the outdoor control device 25 to the outdoor control unit 42.
  • As the data sent from the outdoor input unit 41 to the outdoor control unit 42 for example, there is data on the outside air temperature related to the detection of the outside air temperature sensor 26.
  • the outdoor output unit 43 processes the data related to the control instruction from the outdoor control unit 42, and sends a signal to the corresponding device.
  • Devices to which instructions are sent via the outdoor output unit 43 include a compressor 20, an outdoor blower 21, a flow path switching device 23, and a throttle device 24.
  • the indoor control device 11 includes an indoor input unit 31, an indoor control unit 37, and an indoor output unit 38.
  • the indoor input unit 31 sends data included in a signal transmitted from an external device of the indoor control device 11 to the indoor control unit 37.
  • the data sent from the indoor input unit 31 to the indoor control unit 37 includes, for example, operation content data such as an operation mode and a set temperature instructed by the user to the remote controller 16, and data related to various sensors.
  • the data related to various sensors include the indoor heat exchanger temperature data related to the detection of the indoor heat exchanger temperature sensor 13, the room temperature data related to the detection of the indoor temperature sensor 14, and the humidity of the air conditioning space related to the detection of the indoor humidity sensor 15.
  • the indoor output unit 38 processes the data related to the control instruction from the indoor control unit 37 and sends a signal to the corresponding device.
  • the indoor control unit 37 controls the equipment in the indoor unit 100 and controls the entire indoor unit 100.
  • the indoor control unit 37 includes an arithmetic processing unit 32, an air conditioning load determination unit 33, a heating / cooling sensation determination unit 34, a determination processing unit 35, and a storage unit 36.
  • the arithmetic processing unit 32 performs arithmetic processing of values used for the determination processing of the determination processing unit 35 such as calculation of temperature difference.
  • the air conditioning load determination unit 33 determines the air conditioning load in the air conditioning space. Further, the air conditioning load determination unit 33 obtains a tendency of the air conditioning load in the future (hereinafter referred to as an air conditioning load tendency).
  • the air-conditioning load tendency is a slope, and indicates whether the air-conditioning load will increase, decrease, or remain as it is in the future. Further, the air-conditioning load tendency is obtained based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space in the present and the past.
  • the air conditioning capacity is determined based on the rotation speed of the compressor 20, the rotation speeds of the indoor blowers 6a and 6b, the rotation speed of the outdoor blower 21, and the temperature of the indoor heat exchanger. Further, the amount of solar radiation that has passed through the window of the air-conditioned space is detected by the indoor condition detection sensor 8 of the sensor unit 7.
  • the air conditioning load tendency is positive, the future air conditioning load will increase, if the numerical value of the air conditioning load tendency is negative, the future air conditioning load will decrease, and if the numerical value of the air conditioning load tendency is 0, the air conditioning will continue.
  • the load remains the same. The larger the numerical value of the air conditioning load tendency, the larger the degree of increase / decrease.
  • the heating / cooling sensation determination unit 34 is based on the temperature data and operation data of the human body detected by the indoor condition detection sensor 8, the heat data of the air conditioning space, the illuminance (the amount of light acquired by the light intensity sensor) data, and the like, and the temperature data of the person in the air conditioning space.
  • Judge the feeling of warmth and coldness is the feeling that the person in the air-conditioned space feels hot or cold. This feeling of warmth and coldness can be expressed numerically. If the value of feeling of warmth and coldness is positive and the larger the value, the person in the air-conditioned space feels hot, and if the value of feeling of warmth and coldness is negative and the value is small, The smaller it is, the colder the person in the air-conditioned space feels.
  • the determination processing unit 35 performs processing related to determination.
  • a determination process is performed regarding whether to put each actuator in the operating state, continue the operating state, or put it in the stopped state.
  • the actuators are, but are not limited to, the compressor 20, the flap, the indoor blowers 6a and 6b, the outdoor blower 21, and the sensor unit 7. If at least the compressor 20, the flap, the indoor blowers 6a and 6b, and the outdoor blower 21 are included, others may be included.
  • the storage unit 36 is a device that stores data and the like required when the indoor control unit 37 obtains the numerical values of the air conditioning load tendency and the feeling of temperature and temperature.
  • the indoor output unit 38 processes data related to control instructions from the indoor control unit 37 and sends a signal to the corresponding device.
  • Equipment to which instructions are sent via the indoor output unit 38 includes indoor blowers 6a and 6b, left and right wind direction plates 5, vertical wind direction plates 4a and 4b, a front wind direction plate 10, a sensor unit 7, and the like.
  • FIG. 7 is a time chart of control of the air conditioner according to the first embodiment.
  • FIG. 8 is a diagram showing a control flow of the air conditioner according to the first embodiment.
  • Step S500 When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
  • Step S501 The control device obtains the air conditioning load tendency.
  • the air-conditioning load tendency is determined based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space, as described above.
  • Step S502 The control device determines whether the air conditioning load tendency is the threshold value Qmin1-1 or less. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin1-1, the process proceeds to step S503. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin1-1, the process returns to the process of step S501.
  • Step S503 The control device puts the vertical wind direction plates 4a and 4b, the left and right wind direction plates 5, the indoor blowers 6a and 6b, the front wind direction plates 10 and the sensor unit 7 in the stopped state shown in FIG. 3, and also puts the compressor 20 and the outdoor blower in the stopped state. Put 21 in the stopped state.
  • the control device may drive only the sensor unit 7 without stopping it to detect the state of the air-conditioned space.
  • Step S504 After stopping each actuator, the control device determines whether the air conditioning load tendency is larger than the threshold value Qmin1-2. When the control device determines that the air conditioning load tendency is larger than the threshold value Qmin1-2, the process returns to the process of step S500. On the other hand, if the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin1-2, the process proceeds to step S505.
  • the threshold value Qmin1-2 may be the same as or different from the above-mentioned threshold value Qmin1-1.
  • the comparison with the air conditioning load tendency may be performed continuously, for example, periodically, such as once every 30 minutes, or only once. Further, when determining the air conditioning load tendency, the indoor blowers 6a and 6b may be driven in order to accurately detect the temperature of the indoor heat exchanger 12, the temperature of the air conditioning space, or the humidity of the air conditioning space.
  • Step S505 The control device maintains the stopped state of each actuator.
  • Step S506 The control device determines whether or not the stop of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines that the remote controller 16 or the like has instructed to stop the air conditioner, the process proceeds to step S507. On the other hand, when the control device determines that the stop of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S504. That is, if the remote controller 16 or the like does not instruct to stop the air conditioner, the determination in step S504 is repeated.
  • Step S507 The control device stops the operation of the air conditioner, and when the sensor unit 7 is driven, the sensor unit 7 is also stopped.
  • each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
  • the control device obtains the air conditioning load tendency after receiving the operation instruction by the operating means while all the actuators are in the operating state while the air conditioner is stopped, and obtains the air conditioning load. When it is determined that the tendency is equal to or less than the preset threshold value, all the actuators are stopped.
  • the actuator when it is determined that the air conditioning load tendency is equal to or less than a preset threshold value after the start of operation, that is, when the air conditioning load tends to decrease in the future, the actuator is used. Put all in a stopped state. By doing so, the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
  • Embodiment 2 Hereinafter, the second embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 9 is a time chart of control of the air conditioner according to the second embodiment.
  • FIG. 10 is a diagram showing a control flow of the air conditioner according to the second embodiment.
  • the compressor 20 the indoor blowers 6a, 6b, and the air conditioner 20 are used even when the air conditioner is in operation due to the decrease in the numerical value of the feeling of heat and cold. Controls to stop actuators such as flaps.
  • the control of the air conditioner according to the second embodiment will be described with reference to FIG.
  • Step S600 When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
  • Step S601 The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the state of the air-conditioned space detected by the indoor condition detection sensor 8.
  • Step S602 The control device determines whether or not the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei2-1.
  • the process proceeds to step S603.
  • the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei2-1, the process returns to the process of step S601.
  • Step S603 The control device puts the vertical wind direction plates 4a and 4b, the left and right wind direction plates 5, the indoor blower 6a and 6b, and the front wind direction plate 10 in the stopped state shown in FIG. 4, and puts the compressor 20 and the outdoor blower 21 in the stopped state. do.
  • the control device drives only the sensor unit 7 without stopping it, detects the state of the air-conditioned space, and obtains the numerical value of the feeling of warmth and coldness.
  • Step S604 After stopping each actuator, the control device determines whether or not the value of the feeling of warmth and coldness is larger than the threshold value Tonrei2-2. When the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei2-2, the process returns to the process of step S600. On the other hand, when the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei2-2, the process proceeds to step S605.
  • the threshold value Tonrei2-2 may be the same as or different from the above-mentioned threshold value Tonrei2-1.
  • the comparison with the numerical value of the feeling of warmth and coldness may be performed continuously, for example, periodically, such as once every 30 minutes, or only once. Further, the indoor blowers 6a and 6b may be driven in order to accurately detect the temperature of the heat exchanger, the air-conditioning space temperature, and the air-conditioning space humidity when determining the numerical value of the feeling of heat and cold.
  • Step S605 The control device maintains the stopped state of each actuator.
  • Step S606 The control device determines whether or not the stop of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines that the remote controller 16 or the like has instructed to stop the air conditioner, the process proceeds to step S607. On the other hand, when the control device determines that the stop of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S604. That is, if the remote controller 16 or the like does not instruct to stop the air conditioner, the determination in step S604 is repeated.
  • Step S607 The control device stops the operation of the air conditioner, and also puts the sensor unit 7 in the stopped state.
  • step S602 the value of hot / cold feeling ⁇ Tonrei2-3, and in step S604, the value of hot / cold feeling ⁇ Tonrei2-4.
  • the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different.
  • each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
  • the control device when the control device receives an operation instruction by the operating means while the air conditioner is stopped, all the actuators are put into the operating state, and then the numerical value of the feeling of warming and cooling is obtained.
  • the warm / cold feeling value is equal to or less than the preset first threshold value during the cooling operation
  • the hot / cold feeling value is equal to or higher than the preset second threshold value during the heating operation. Stop all actuators.
  • the air conditioner according to the second embodiment when it is determined that the value of the feeling of heating and cooling is equal to or less than the preset threshold value after the start of operation, that is, the person in the air-conditioned space is not hot during the cooling operation. If you feel that it is not cold during heating operation, stop all actuators. By doing so, the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
  • Embodiment 3 Hereinafter, the third embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 11 is a time chart of control of the air conditioner according to the third embodiment.
  • FIG. 12 is a diagram showing a control flow of the air conditioner according to the third embodiment.
  • the compressor 20 In the air conditioner according to the third embodiment, as shown in FIG. 11, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioning load is applied. As the number of actuators increases, the actuators are controlled to be in the operating state.
  • the control of the air conditioner according to the third embodiment will be described with reference to FIG.
  • Step S700 When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
  • Step S701 The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S702. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process of step S701 is performed again.
  • Step S702 The control device puts only the sensor unit 7 in the operating state and starts detecting the state of the air-conditioned space.
  • the control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
  • Step S703 The control device obtains the air conditioning load tendency.
  • the air-conditioning load tendency is obtained based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space as described above.
  • Step S704 The control device determines whether the air conditioning load tendency is equal to or higher than the threshold value Qmin3-1. If the control device determines that the air conditioning load tendency is equal to or higher than the threshold value Qmin3-1, the process proceeds to step S705. On the other hand, when the control device determines that the air conditioning load tendency is smaller than the threshold value Qmin3-1, the process returns to the process of step S702.
  • Step S705 The control device also puts each actuator other than the sensor unit 7 into an operating state.
  • each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
  • the control device obtains the air conditioning load tendency when receiving an operation instruction by the operating means while the air conditioner is stopped, and the air conditioning load tendency is equal to or less than a preset threshold value. If it is determined that there is, all the actuators are left in the stopped state, and if it is determined that the air conditioning load tendency is larger than the preset threshold value, all the actuators are put into the operating state.
  • the actuator is left in the stopped state when the air conditioning space is in a comfortable state. By doing so, it is possible to avoid the operation of the actuator at unnecessary timings, reduce power consumption, and improve energy saving.
  • Embodiment 4 Hereinafter, the fourth embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 13 is a time chart of control of the air conditioner according to the fourth embodiment.
  • FIG. 14 is a diagram showing a control flow of the air conditioner according to the fourth embodiment.
  • the air conditioner according to the fourth embodiment As shown in FIG. 13, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioner is heated and cooled. As the numerical value of the feeling increases, the actuators are controlled to be in the operating state.
  • the control of the air conditioner according to the fourth embodiment will be described with reference to FIG.
  • Step S800 When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
  • Step S801 The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S802. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process of step S801 is performed again.
  • Step S802 The control device puts only the sensor unit 7 in the operating state and starts detecting the state of the air-conditioned space.
  • the control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
  • Step S803 The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the state of the air-conditioned space detected by the indoor condition detection sensor 8.
  • Step S804 The control device determines whether or not the value of the feeling of warmth and coldness is equal to or higher than the threshold value Tonrei4-1.
  • the process proceeds to step S805.
  • the control device determines that the value of the feeling of warm / cold is smaller than the threshold value Tonrei4-1, the process returns to the process of step S802.
  • Step S805 The control device also puts each actuator other than the sensor unit 7 into an operating state.
  • step S804 in the case of cooling operation, it is as described above, but in the case of heating operation, the sign of the threshold value is reversed and the direction of ⁇ is also reversed. That is, in the case of the heating operation, in step S804, the numerical value of the feeling of warm / cold ⁇ Tonrei4-2.
  • the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different. Further, each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
  • the control device obtains a numerical value of a feeling of hot / cold feeling when receiving an operation instruction by an operating means while the air conditioner is stopped, and a numerical value of a feeling of hot / cold feeling during a cooling operation. If it is determined that is equal to or less than the preset first threshold value, and if it is determined that the warm / cool feeling value is equal to or higher than the preset second threshold value during the heating operation, all the actuators are left in the stopped state. If it is determined that the hot / cold feeling value is larger than the preset first threshold value during the cooling operation, or if it is determined that the hot / cold feeling value is smaller than the preset second threshold value during the heating operation, the actuator is operated. All are to be put into operation.
  • the actuator is left in the stopped state when the air conditioning space is in a comfortable state. By doing so, it is possible to avoid the operation of the actuator at unnecessary timings, reduce power consumption, and improve energy saving.
  • Embodiment 5 Hereinafter, the fifth embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 15 is a time chart of control of the air conditioner according to the fifth embodiment.
  • FIG. 16 is a diagram showing a control flow of the air conditioner according to the fifth embodiment.
  • the air conditioner according to the fifth embodiment as shown in FIG. 15, as the air conditioning load decreases, even if the air conditioner is in operation, the compressor 20, the indoor blowers 6a, 6b, the flap, and the like are used. Controls the actuators to be sequentially stopped.
  • the control of the air conditioner according to the fifth embodiment will be described with reference to FIG.
  • Step S900 When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
  • Step S901 The control device obtains the air conditioning load tendency.
  • the air-conditioning load tendency is determined based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space, as described above.
  • Step S902 The control device determines whether the air conditioning load tendency is equal to or less than the threshold value Qmin5-1. Here, it is determined whether or not the compressor 20 needs to be operated. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin5-1, the process proceeds to step S903. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin5-1, the process returns to the process of step S900.
  • Step S903 The control device puts the compressor 20 in a stopped state.
  • Step S904 The control device determines whether the air conditioning load tendency is equal to or less than the threshold value Qmin5-2. Here, it is determined whether or not the indoor blowers 6a and 6b need to be operated. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin5-2, the process proceeds to step S905. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin5-2, the process returns to the process of step S902.
  • Step S905 The control device stops the indoor blowers 6a and 6b.
  • Step S906 The control device determines whether the air conditioning load tendency is the threshold value Qmin5-3 or less. Here, it is determined whether or not the flap operation is necessary. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin5-3, the process proceeds to step S907. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin5-3, the process returns to the process of step S904.
  • Step S907 The control device puts the flap in a stopped state.
  • Step S908 The control device determines whether the air conditioning load tendency is the threshold value Qmin5-4 or less. Here, it is determined whether or not it is necessary to operate other actuators (compressor 20, indoor blowers 6a, 6b, and flaps). If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin5-4, the process proceeds to step S909. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin5-4, the process returns to the process of step S906.
  • Step S909 The control device puts the other actuators in a stopped state.
  • Step S910 The control device determines whether or not the stop of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines that the remote controller 16 or the like has instructed to stop the air conditioner, the process proceeds to step S911. On the other hand, when the control device determines that the stop of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S908.
  • Step S911 The control device stops the operation of the air conditioner.
  • each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
  • the control device obtains the air conditioning load tendency after receiving the operation instruction by the operating means while all the actuators are in the operating state while the air conditioner is stopped, and obtains the air conditioning load.
  • a process of putting a part of the actuators in the stopped state is performed, and the process is repeated until all the actuators are in the stopped state.
  • each actuator is stopped at an appropriate timing. By doing so, the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
  • Embodiment 6 Hereinafter, the sixth embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 17 is a time chart of control of the air conditioner according to the sixth embodiment.
  • FIG. 18 is a diagram showing a control flow of the air conditioner according to the sixth embodiment.
  • the compressor 20 the indoor blowers 6a and 6b, and the indoor blowers 6a and 6b are used even when the air conditioner is in operation due to the decrease in the numerical value of the feeling of heat and cold. Controls to sequentially stop actuators such as flaps.
  • actuators such as flaps.
  • Step S1000 When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
  • Step S1001 The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the state of the air-conditioned space detected by the indoor condition detection sensor 8.
  • Step S1002 The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei6-1. Here, it is determined whether or not the compressor 20 needs to be operated.
  • the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei6-1
  • the process proceeds to step S1003.
  • the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei6-1
  • the process returns to the process of step S1000.
  • Step S1003 The control device puts the compressor 20 in a stopped state.
  • Step S1004 The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei6-2. Here, it is determined whether or not the indoor blowers 6a and 6b need to be operated.
  • the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei6-2
  • the process proceeds to step S1005.
  • the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei6-2, the process returns to the process of step S1002.
  • Step S1005 The control device stops the indoor blowers 6a and 6b.
  • Step S1006 The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei6-3. Here, it is determined whether or not the flap operation is necessary.
  • the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei6-3
  • the process proceeds to step S1007.
  • the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei6-3
  • the process returns to the process of step S1004.
  • Step S1007 The control device puts the flap in a stopped state.
  • Step S1008 The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei6-4. Here, it is determined whether or not it is necessary to operate other actuators (compressor 20, indoor blowers 6a, 6b, and flaps).
  • the control device determines that the numerical value of the feeling of warm / cold is equal to or less than the threshold value Tonrei6-4
  • the process proceeds to step S1009.
  • the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei6-4, the process returns to the process of step S1006.
  • Step S1009 The control device puts the other actuators in a stopped state.
  • Step S1011 The control device stops the operation of the air conditioner.
  • the above is as described in the case of cooling operation, but in the case of heating operation, the sign of the threshold value is reversed and the directions of ⁇ and> are also reversed. .. That is, in the case of the heating operation, the numerical value of the feeling of warm / cold ⁇ Tonrei6-5 in step S1002, and the same applies to steps S1004, S1006, and S1008.
  • the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different.
  • each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
  • the control device when the control device receives an operation instruction by the operating means while the air conditioner is stopped, all the actuators are put into the operating state, and then the numerical value of the feeling of warm / cold is obtained.
  • the warm / cold feeling value is equal to or less than the preset first threshold value during the cooling operation
  • the hot / cold feeling value is equal to or higher than the preset second threshold value during the heating operation.
  • a process of putting a part of the actuator into a stopped state is performed, and the process is repeated until all of the actuators are in the stopped state.
  • each actuator is stopped at an appropriate timing. By doing so, the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
  • Embodiment 7 Hereinafter, the seventh embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 19 is a time chart of control of the air conditioner according to the seventh embodiment.
  • FIG. 20 is a diagram showing a control flow of the air conditioner according to the seventh embodiment.
  • the air conditioner according to the seventh embodiment as shown in FIG. 19, as the air conditioning load decreases, even if the air conditioner is in operation, the compressor 20, the indoor blowers 6a, 6b, the flap, and the like are used. Controls the actuators to be sequentially stopped.
  • the control of the air conditioner according to the seventh embodiment will be described with reference to FIG. 20.
  • Step S1100 When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
  • Step S1101 The control device obtains the air conditioning load tendency.
  • the air-conditioning load tendency is determined based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space, as described above.
  • Step S1102 The control device determines whether the air conditioning load tendency is equal to or less than the threshold value Qmin7-1. Here, it is determined whether or not the compressor 20 needs to be operated. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin7-1, the process proceeds to step S1103. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin7-1, the process returns to the process of step S1100.
  • Step S1103 The control device puts the compressor 20 in a stopped state.
  • Step S1104 The control device determines whether the time after stopping the compressor 20 has elapsed Time 7-1.
  • the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that the time 7-1 has elapsed, the process proceeds to step S1105. On the other hand, if the control device determines that the time has not elapsed for Time 7-1, the process returns to the process of step S1102.
  • Step S1105 The control device stops the indoor blowers 6a and 6b.
  • Step S1106 The control device determines whether the air conditioning load tendency is equal to or less than the threshold value Qmin7-1. Here, it is determined whether or not the flap operation is necessary. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin7-1, the process proceeds to step S1107. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin7-1, the process returns to the process of step S1100.
  • Step S1107 The control device determines whether the time after stopping the indoor blowers 6a and 6b has passed Time7-2. If the control device determines that Time7-2 has elapsed, the process proceeds to step S1108. On the other hand, if the control device determines that the time has not elapsed, the process returns to the process of step S1106.
  • Step S1108 The control device puts the flap in a stopped state.
  • Step S1109 The control device determines whether the air conditioning load tendency is equal to or less than the threshold value Qmin7-1. Here, it is determined whether or not it is necessary to operate other actuators (compressor 20, indoor blowers 6a, 6b, and flaps). If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin7-1, the process proceeds to step S1110. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin7-1, the process returns to the process of step S1100.
  • Step S1110 The control device puts the other actuators in a stopped state.
  • Step S1111 The control device determines whether or not the stop of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines that the remote controller 16 or the like has instructed to stop the air conditioner, the process proceeds to step S1112. On the other hand, when the control device determines that the stop of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1109.
  • Step S1112 The control device stops the operation of the air conditioner.
  • each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
  • the threshold values of steps S1102, S1106, and S1109 may be the same or different. Further, the measurement timing of each elapsed time may be from the stop of each actuator as described above, or from the time when the condition of step S1102 is satisfied.
  • the control device in the control device, after a part of the actuators is stopped and a preset time elapses, a part or all of the other actuators is stopped. It is something to do.
  • each actuator is stopped at an appropriate timing while having a safety factor according to time.
  • the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
  • Embodiment 8 Hereinafter, the eighth embodiment will be described, but the description thereof will be omitted for those overlapping with the first embodiment, and the same parts or the corresponding parts as those in the first embodiment will be designated by the same reference numerals.
  • FIG. 21 is a time chart of control of the air conditioner according to the eighth embodiment.
  • FIG. 22 is a diagram showing a control flow of the air conditioner according to the eighth embodiment.
  • the compressor 20 the indoor blowers 6a, 6b, and the air conditioner 20 are used even when the air conditioner is in operation due to the decrease in the numerical value of the feeling of heat and cold. Controls to sequentially stop actuators such as flaps.
  • the control of the air conditioner according to the eighth embodiment will be described with reference to FIG. 22.
  • Step S1200 When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
  • Step S1201 The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the state of the air-conditioned space detected by the indoor condition detection sensor 8.
  • Step S1202 The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei8-1. Here, it is determined whether or not the compressor 20 needs to be operated.
  • the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei8-1
  • the process proceeds to step S1203.
  • the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei8-1
  • the process returns to the process of step S1200.
  • Step S1203 The control device puts the compressor 20 in a stopped state.
  • Step S1204 The control device determines whether the time after stopping the compressor 20 has elapsed Time 8-1.
  • the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that the time has elapsed, the process proceeds to step S1205. On the other hand, if the control device determines that the time has not elapsed, the process returns to the process of step S1202.
  • Step S1205 The control device stops the indoor blowers 6a and 6b.
  • Step S1206 The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei8-1. Here, it is determined whether or not the flap operation is necessary.
  • the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei8-1
  • the process proceeds to step S1207.
  • the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei8-11, the process returns to the process of step S1200.
  • Step S1207 The control device determines whether Time 8-2 has elapsed after the indoor blowers 6a and 6b are stopped. If the control device determines that the time has elapsed, the process proceeds to step S1208. On the other hand, if the control device determines that the time has not elapsed, the process returns to the process of step S1206.
  • Step S1208 The control device puts the flap in a stopped state.
  • Step S1209 The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei8-1. Here, it is determined whether or not it is necessary to operate other actuators (compressor 20, indoor blowers 6a, 6b, and flaps).
  • the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei8-1
  • the process proceeds to step S1210.
  • the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei8-1
  • the process returns to the process of step S1200.
  • Step S1210 The control device puts the other actuators in a stopped state.
  • Step S1211 The control device determines whether or not the stop of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines that the remote controller 16 or the like has instructed to stop the air conditioner, the process proceeds to step S1212. On the other hand, when the control device determines that the stop of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1209.
  • Step S1212 The control device stops the operation of the air conditioner.
  • the above is as described in the case of cooling operation, but in the case of heating operation, the sign of the threshold value is reversed and the direction of ⁇ is also reversed. That is, in the case of the heating operation, the numerical value of the feeling of warm / cold ⁇ Tonrei8-2 in step S1202, and the same applies to steps S1206 and S1209. Further, the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different. Further, each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
  • the threshold values of steps S1202, S1206, and S1209 may be the same or different. Further, the measurement timing of each elapsed time may be from the stop of each actuator as described above, or from the time when the condition of step S1202 is satisfied.
  • each actuator is stopped at an appropriate timing while having a safety factor according to time.
  • the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
  • Embodiment 9 Hereinafter, the ninth embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 23 is a time chart of control of the air conditioner according to the ninth embodiment.
  • FIG. 24 is a diagram showing a control flow of the air conditioner according to the ninth embodiment.
  • the compressor 20 In the air conditioner according to the ninth embodiment, as shown in FIG. 23, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioning load is applied. As the number of actuators increases, the actuators are sequentially controlled to be in the operating state.
  • the control of the air conditioner according to the ninth embodiment will be described with reference to FIG. 24.
  • Step S1300 When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
  • Step S1301 The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S1302. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1300.
  • Step S1302 The control device puts only the sensor unit 7 in the operating state and starts detecting the state of the air-conditioned space.
  • the control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
  • Step S1303 The control device obtains the air conditioning load tendency.
  • the air-conditioning load tendency is determined based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space, as described above.
  • Step S1304 The control device determines whether the air conditioning load tendency is larger than the threshold value Qmin9-1. Here, it is determined whether or not the flap operation is necessary. If the control device determines that the air conditioning load tendency is larger than the threshold value Qmin9-1, the process proceeds to step S1305. On the other hand, when the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin9-1, the process returns to the process of step S1302.
  • Step S1305 The control device puts the flap into operation.
  • Step S1306 The control device determines whether the air conditioning load tendency is larger than the threshold value Qmin9-2. Here, it is determined whether or not the indoor blowers 6a and 6b need to be operated. If the control device determines that the air conditioning load tendency is larger than the threshold value Qmin9-2, the process proceeds to step S1307. On the other hand, when the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin9-2, the process returns to the process of step S1304.
  • Step S130-7 The control device puts the indoor blowers 6a and 6b into an operating state.
  • Step S1308 The control device determines whether the air conditioning load tendency is larger than the threshold value Qmin9-3. Here, it is determined whether or not the compressor 20 and other actuators (other than the compressor 20, the indoor blowers 6a and 6b, and the flap) need to be operated. If the control device determines that the air conditioning load tendency is larger than the threshold value Qmin9-3, the process proceeds to step S1309. On the other hand, when the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin9-3, the process returns to the process of step S1306.
  • Step S1309 The control device puts the compressor 20 and other actuators into operation.
  • each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
  • the control device obtains the air conditioning load tendency when receiving an operation instruction from the operating means while the air conditioner is stopped, and the air conditioning load tendency is set from a preset threshold value. If it is determined to be large, a process of putting a part of the actuator into the operating state is performed, and the process is repeated until all of the actuators are in the operating state.
  • the air conditioner according to the ninth embodiment after the operation of the air conditioner is started, only the sensor unit 7 is put into the operating state, and when the air conditioning space is comfortable, the other actuators are not put into the operating state. .. By doing so, it is possible to avoid the operation of the actuator at unnecessary timings, reduce power consumption, and improve energy saving.
  • Embodiment 10 Hereinafter, the tenth embodiment will be described, but the description thereof will be omitted for those overlapping with the first embodiment, and the same parts or the corresponding parts as those in the first embodiment will be designated by the same reference numerals.
  • FIG. 25 is a time chart of control of the air conditioner according to the tenth embodiment.
  • FIG. 26 is a diagram showing a control flow of the air conditioner according to the tenth embodiment.
  • the air conditioner according to the tenth embodiment As shown in FIG. 25, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioner is heated and cooled. As the numerical value of the feeling increases, the actuators are sequentially controlled to be in the operating state.
  • the control of the air conditioner according to the tenth embodiment will be described with reference to FIG. 26.
  • Step S1400 When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
  • Step S1401 The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S1402. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1400.
  • Step S1402 The control device puts only the sensor unit 7 in the operating state and starts detecting the state of the air-conditioned space.
  • the control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
  • Step S1403 The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the state of the air-conditioned space detected by the indoor condition detection sensor 8.
  • Step S1404 The control device determines whether the value of the feeling of warmth and coldness is larger than the threshold value Tonrei10-1. Here, it is determined whether or not the flap operation is necessary.
  • the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei10-1
  • the process proceeds to step S1405.
  • the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei10-1
  • the process returns to the process of step S1402.
  • Step S1405 The control device puts the flap into operation.
  • Step S1406 The control device determines whether the value of the feeling of warmth and coldness is larger than the threshold value Tonrei10-2. Here, it is determined whether or not the indoor blowers 6a and 6b need to be operated. If the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei10-2, the process proceeds to step S1407. On the other hand, when the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei10-2, the process returns to the process of step S1404.
  • Step S1407 The control device puts the indoor blowers 6a and 6b into an operating state.
  • Step S1408 The control device determines whether the value of the feeling of warmth and coldness is larger than the threshold value Tonrei10-3. Here, it is determined whether or not the compressor 20 and other actuators (other than the compressor 20, the indoor blowers 6a and 6b, and the flap) need to be operated. If the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei10-3, the process proceeds to step S1409. On the other hand, when the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei10-3, the process returns to the process of step S1406.
  • Step S1409 The control device puts the compressor 20 and other actuators into operation.
  • the above is as described in the case of cooling operation, but in the case of heating operation, the sign of the threshold value is reversed and the direction of> is also reversed. That is, in the case of the heating operation, the numerical value of the feeling of warm / cold ⁇ Tonrei10-4 in step S1404, and the same applies to steps S1406 and S1408.
  • the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different.
  • each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
  • the control device obtains a numerical value of a feeling of warming and cooling when receiving an operation instruction by an operating means while the air conditioner is stopped, and a numerical value of a feeling of warming and cooling during a cooling operation. If it is determined that is larger than the preset first threshold value, and if it is determined that the temperature / cooling feeling value is smaller than the preset second threshold value during heating operation, a process of putting a part of the actuator into the operating state is performed. Is performed, and the process is repeated until all of the actuators are in the operating state.
  • the air conditioner according to the tenth embodiment after the operation of the air conditioner is started, only the sensor unit 7 is put into the operating state first, and when the air conditioning space is comfortable, the other actuators are not put into the operating state. .. By doing so, it is possible to avoid the operation of the actuator at unnecessary timings, reduce power consumption, and improve energy saving.
  • Embodiment 11 Hereinafter, the eleventh embodiment will be described, but the description thereof will be omitted for those overlapping with the first embodiment, and the same parts or the corresponding parts as those in the first embodiment will be designated by the same reference numerals.
  • FIG. 27 is a time chart of control of the air conditioner according to the eleventh embodiment.
  • FIG. 28 is a diagram showing a control flow of the air conditioner according to the eleventh embodiment.
  • the compressor 20 In the air conditioner according to the eleventh embodiment, as shown in FIG. 27, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioning load is applied. As the number of actuators increases, the actuators are sequentially controlled to be in the operating state.
  • the control of the air conditioner according to the eleventh embodiment will be described with reference to FIG. 28.
  • Step S1500 When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
  • Step S1501 The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S1502. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1500.
  • Step S1502 The control device puts only the sensor unit 7 in the operating state and starts detecting the state of the air-conditioned space.
  • the control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
  • Step S1503 The control device obtains the air conditioning load tendency.
  • the air-conditioning load tendency is obtained based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space as described above.
  • Step S1504 The control device determines whether the air conditioning load tendency is larger than the threshold value Qmin11-1. Here, it is determined whether or not the flap operation is necessary. If the control device determines that the air conditioning load tendency is larger than the threshold value Qmin11-1, the process proceeds to step S1505. On the other hand, when the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin11-1, the process returns to the process of step S1502.
  • Step S1505 The control device puts the flap into operation.
  • Step S1506 The control device determines whether the time after operating the flap has passed Time 11-1.
  • the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that the time 11-1 has elapsed, the process proceeds to step S1507. On the other hand, if the control device determines that the time has not elapsed, the process returns to the process of step S1504.
  • Step S1507 The control device puts the indoor blowers 6a and 6b into an operating state.
  • Step S1508 The control device determines whether the air conditioning load tendency is larger than the threshold value Qmin11-1. Here, it is determined whether or not the compressor 20 and other actuators (other than the compressor 20, the indoor blowers 6a and 6b, and the flap) need to be operated. If the control device determines that the air conditioning load tendency is larger than the threshold value Qmin11-1, the process proceeds to step S1509. On the other hand, when the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin11-1, the process returns to the process of step S1504.
  • Step S1509 The control device determines whether the time after operating the indoor blowers 6a and 6b has passed Time 11-2.
  • the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that Time 11-2 has elapsed, the process proceeds to step S1510. On the other hand, if the control device determines that the time has not elapsed for Time 11-2, the process returns to the process of step S1508.
  • Step S1510 The control device puts the compressor 20 and other actuators into operation.
  • each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
  • the threshold values of steps S1504 and S1508 may be the same or different. Further, the measurement timing of each elapsed time may be from each actuator operation as described above, or from the time when the condition of step S1504 is satisfied.
  • the control device puts a part of the actuators into the operating state, and after a preset time elapses, a part or all of the actuators in the other stopped state. Is to put the vehicle into an operating state.
  • each actuator is put into the operating state at an appropriate timing while having a safety factor according to time. By doing so, it is possible to avoid driving the actuator at unnecessary timings while maintaining the comfort of the air-conditioned space, reducing power consumption and improving energy saving.
  • Embodiment 12 Hereinafter, the twelfth embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • FIG. 29 is a time chart of control of the air conditioner according to the twelfth embodiment.
  • FIG. 30 is a diagram showing a control flow of the air conditioner according to the twelfth embodiment.
  • the air conditioner according to the twelfth embodiment as shown in FIG. 29, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioner is heated and cooled. As the numerical value of the feeling increases, the actuators are sequentially controlled to be in the operating state.
  • the control of the air conditioner according to the twelfth embodiment will be described with reference to FIG.
  • Step S1600 When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
  • Step S1601 The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S1602. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1600.
  • Step S1602 The control device puts only the sensor unit 7 in the operating state and starts detecting the indoor situation.
  • the control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
  • Step S1603 The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the indoor condition detected by the indoor condition detection sensor 8 of the sensor unit 7.
  • Step S1604 The control device determines whether the value of the feeling of warmth and coldness is larger than the threshold value Tonrei12-1. Here, it is determined whether or not the flap operation is necessary.
  • the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei12-1
  • the process proceeds to step S1605.
  • the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei12-1
  • the process returns to the process of step S1602.
  • Step S1605 The control device puts the flap into operation.
  • Step S1606 The control device determines whether the time after operating the flap has passed Time12-1.
  • the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that the time has elapsed, the process proceeds to step S1607. On the other hand, if the control device determines that the time has not elapsed, the process returns to the process of step S1604.
  • Step S1607 The control device puts the indoor blowers 6a and 6b into an operating state.
  • Step S1608 The control device determines whether the value of the feeling of warmth and coldness is larger than the threshold value Tonrei12-1. Here, it is determined whether or not the compressor 20 and other actuators (other than the compressor 20, the indoor blowers 6a and 6b, and the flap) need to be operated. When the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei12-1, the process proceeds to step S1609. On the other hand, when the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei12-1, the process returns to the process of step S1604.
  • Step S1609 The control device determines whether the time after operating the indoor blowers 6a and 6b has passed Time12-2.
  • the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that the time has elapsed, the process proceeds to step S1610. On the other hand, if the control device determines that the time has not elapsed for Time12-2, the process returns to the process of step S1608.
  • Step S1610 The control device puts the compressor 20 and other actuators into operation.
  • step S1604 and S1608 the above is as described in the case of cooling operation, but in the case of heating operation, the sign of the threshold value is reversed and the direction of> is also reversed. That is, in the case of the heating operation, the numerical value of the feeling of warm / cold ⁇ Tonrei12-2 in step S1604, and the same applies to step S1608. Further, the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different. Further, each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
  • the threshold values of steps S1604 and S1608 may be the same or different. Further, the measurement timing of each elapsed time may be from the stop of each actuator as described above, or from the time when the condition of step S1604 is satisfied.
  • each actuator is stopped at an appropriate timing while having a safety factor according to time.
  • the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
  • each actuator is put into the operating state at an appropriate timing while having a safety factor according to time. By doing so, it is possible to avoid driving the actuator at unnecessary timings while maintaining the comfort of the air-conditioned space, reducing power consumption and improving energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioner is equipped with at least a compressor, a flap, an indoor blower, and an outdoor blower as actuators, and the operation or stop is instructed by an operating means. This air conditioner comprises a control device that calculates an air-conditioning load trend, which is a slope indicating the trend of the air-conditioning load in the future, or a numerical value of hot/cold sensation indicating the sensation of a person in an air-conditioned space. Upon receiving an operation instruction by the operating means while the air conditioner is stopped, the control device calculates an air-conditioning load trend or a numerical value of hot/cold sensation, and operates or stops the actuators according to the air-conditioning load trend or the numerical value of hot/cold sensation.

Description

空気調和機Air conditioner
 本開示は、空気調和機に関し、特にアクチュエータの制御に関するものである。 This disclosure relates to an air conditioner, and particularly to an actuator control.
 従来、冷房運転、前記冷房運転より冷房能力が低い第一の除湿運転、および、前記第一の除湿運転より冷房能力が低い第二の除湿運転の運転モードを有し、空調空間の温度および湿度に応じて各運転モードを切り替えることで、空調空間の快適性を向上させた空気調和機が知られている(たとえば、特許文献1参照)。 Conventionally, it has an operation mode of cooling operation, a first dehumidifying operation having a lower cooling capacity than the cooling operation, and a second dehumidifying operation having a lower cooling capacity than the first dehumidifying operation, and the temperature and humidity of the air-conditioned space. There is known an air conditioner that improves the comfort of an air-conditioned space by switching each operation mode according to the above (see, for example, Patent Document 1).
特開2020-26944号公報Japanese Unexamined Patent Publication No. 2020-269444
 特許文献1は、空調空間の快適性を向上させる制御を行っているが、省エネ性に関してはあまり考慮されていない。しかしながら、従来より、空調空間の快適性を保ちつつ、省エネ性を向上させたいという要望があった。 Patent Document 1 controls to improve the comfort of the air-conditioned space, but does not give much consideration to energy saving. However, conventionally, there has been a demand for improving energy saving while maintaining the comfort of the air-conditioned space.
 本開示は、以上のような課題を解決するためになされたもので、空調空間の快適性を保ちつつ省エネ性を向上させた空気調和機を提供することを目的としている。 This disclosure is made to solve the above problems, and aims to provide an air conditioner with improved energy saving while maintaining the comfort of the air-conditioned space.
 本開示に係る空気調和機は、アクチュエータとして、少なくとも圧縮機、フラップ、室内送風機、および、室外送風機を備え、操作手段によって運転または停止の指示が行われる空気調和機であって、今後の空調負荷の傾向を示す傾きである空調負荷傾向、または、空調空間内に居る人の感覚を示す温冷感の数値を求める制御装置と、を備え、前記制御装置は、空気調和機の停止中において前記操作手段によって運転の指示を受けたら前記空調負荷傾向または前記温冷感の数値を求め、前記空調負荷傾向または前記温冷感の数値に応じて前記アクチュエータを運転または停止させるものである。 The air conditioner according to the present disclosure is an air conditioner including at least a compressor, a flap, an indoor blower, and an outdoor blower as actuators, and is instructed to be started or stopped by an operating means, and is a future air conditioning load. The control device comprises a control device for obtaining a numerical value of a feeling of warmth and coldness indicating a tendency of an air-conditioning load, which is an inclination indicating the tendency of the air-conditioning space, or a feeling of a person in the air-conditioning space. Upon receiving an operation instruction by the operating means, the numerical value of the air conditioning load tendency or the hot / cold feeling is obtained, and the actuator is started or stopped according to the numerical value of the air conditioning load tendency or the hot / cold feeling.
 本開示に係る空気調和機によれば、空調負荷傾向または温冷感の数値に応じてアクチュエータを運転または停止させる。そのため、快適性を保ちつつ省エネ性を向上させることができる。 According to the air conditioner according to the present disclosure, the actuator is operated or stopped according to the numerical value of the air conditioning load tendency or the feeling of warm / cold feeling. Therefore, it is possible to improve energy saving while maintaining comfort.
実施の形態1に係る空気調和機の全体構成を示す図である。It is a figure which shows the whole structure of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機の室内機の運転状態を示す斜視図である。It is a perspective view which shows the operating state of the indoor unit of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機の室内機の停止状態を示す斜視図である。It is a perspective view which shows the stopped state of the indoor unit of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機の室内機のセンサユニットのみ運転状態を示す斜視図である。FIG. 5 is a perspective view showing an operating state of only the sensor unit of the indoor unit of the air conditioner according to the first embodiment. 実施の形態1に係る空気調和機の室外機を示す斜視図である。It is a perspective view which shows the outdoor unit of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機の制御に関する入出力関係の概略を示す図である。It is a figure which shows the outline of the input / output relation about the control of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態2に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 2. FIG. 実施の形態2に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 2. FIG. 実施の形態3に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 3. FIG. 実施の形態3に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 3. FIG. 実施の形態4に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 4. FIG. 実施の形態4に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 4. 実施の形態5に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 5. 実施の形態5に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 5. 実施の形態6に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 6. 実施の形態6に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 6. 実施の形態7に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 7. 実施の形態7に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 7. 実施の形態8に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 8. 実施の形態8に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 8. 実施の形態9に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 9. FIG. 実施の形態9に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 9. 実施の形態10に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 10. 実施の形態10に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 10. 実施の形態11に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 11. 実施の形態11に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 11. 実施の形態12に係る空気調和機の制御のタイムチャートである。It is a time chart of the control of the air conditioner which concerns on Embodiment 12. 実施の形態12に係る空気調和機の制御フローを示す図である。It is a figure which shows the control flow of the air conditioner which concerns on Embodiment 12.
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the embodiments described below. Further, in the drawings below, the relationship between the sizes of the constituent members may differ from the actual one.
 また、以下の説明において、理解を容易にするために方向を表す用語、例えば「上」、「下」、「右」、「左」、「前」、「後」、などを適宜用いるが、これは説明のためのものであって、これらの用語は実施の形態を限定するものではない。また、実施の形態では、空気調和機の室内機および室外機を正面視した状態において、「上」、「下」、「右」、「左」、「前」、「後」などを使用する。 Further, in the following description, terms indicating directions, such as "top", "bottom", "right", "left", "front", and "rear", are appropriately used for ease of understanding. This is for illustration purposes only and these terms are not limiting the embodiments. Further, in the embodiment, "upper", "lower", "right", "left", "front", "rear", etc. are used in a state where the indoor unit and the outdoor unit of the air conditioner are viewed from the front. ..
 実施の形態1.
 図1は、実施の形態1に係る空気調和機の全体構成を示す図である。
Embodiment 1.
FIG. 1 is a diagram showing an overall configuration of an air conditioner according to the first embodiment.
 実施の形態1に係る空気調和機は、室内機100と室外機200とを備えている。また、空気調和機は、室内機100と室外機200とがガス冷媒配管300および液冷媒配管400で配管接続されることで構成された冷媒回路を有している。 The air conditioner according to the first embodiment includes an indoor unit 100 and an outdoor unit 200. Further, the air conditioner has a refrigerant circuit in which the indoor unit 100 and the outdoor unit 200 are connected by a gas refrigerant pipe 300 and a liquid refrigerant pipe 400.
 室内機100は、室内熱交換器12および室内送風機6a、6bを備えている。室内熱交換器12は、空調空間である室内の空気と冷媒との熱交換を行う。室内送風機6a、6bは、室内の空気を室内熱交換器12に通過させて、室内熱交換器12における熱交換を促す。 The indoor unit 100 includes an indoor heat exchanger 12 and indoor blowers 6a and 6b. The indoor heat exchanger 12 exchanges heat between the air in the room, which is an air-conditioned space, and the refrigerant. The indoor blowers 6a and 6b allow indoor air to pass through the indoor heat exchanger 12 to promote heat exchange in the indoor heat exchanger 12.
 また、室内機100は、制御系の機器として室内制御装置11を備えている。また、室内機100は、センサ類として、室内温度センサ14、室内湿度センサ15、および、室内熱交換器温度センサ13を備えている。室内温度センサ14は、例えば、空調空間の室温を検知し、室内制御装置11に信号を送る。室内熱交換器温度センサ13は、例えば、運転中における室内熱交換器12の温度を検知し、室内制御装置11に信号を送る。 Further, the indoor unit 100 includes an indoor control device 11 as a control system device. Further, the indoor unit 100 includes an indoor temperature sensor 14, an indoor humidity sensor 15, and an indoor heat exchanger temperature sensor 13 as sensors. The indoor temperature sensor 14 detects, for example, the room temperature of the air-conditioned space and sends a signal to the indoor control device 11. The indoor heat exchanger temperature sensor 13 detects, for example, the temperature of the indoor heat exchanger 12 during operation and sends a signal to the indoor control device 11.
 室外機200は、圧縮機20、室外送風機21、室外熱交換器22、流路切替装置23、および、絞り装置24を備えている。圧縮機20は、吸入した冷媒を圧縮して吐出する。特に限定するものではないが、圧縮機20は、たとえばインバータ回路などにより、運転周波数を任意に変化させることにより、圧縮機20の容量、つまり単位時間あたりの冷媒を送りだす量を変化させることができる。流路切替装置23は、たとえば四方弁などであり、冷房運転時および除霜運転時と暖房運転時とによって冷媒の流れを切り替える弁である。また、絞り装置24は、たとえば電子膨張弁などであり、室外制御装置25の指示に基づいて開度調整を行い、冷媒を減圧して膨張させる。室外熱交換器22は、室外の空気と冷媒との熱交換を行う。室外送風機21は、室外の空気を室外熱交換器22に通過させて、室外熱交換器22における熱交換を促す。 The outdoor unit 200 includes a compressor 20, an outdoor blower 21, an outdoor heat exchanger 22, a flow path switching device 23, and a throttle device 24. The compressor 20 compresses and discharges the sucked refrigerant. Although not particularly limited, the compressor 20 can change the capacity of the compressor 20, that is, the amount of the refrigerant delivered per unit time, by arbitrarily changing the operating frequency by, for example, an inverter circuit or the like. .. The flow path switching device 23 is, for example, a four-way valve or the like, and is a valve that switches the flow of the refrigerant depending on the cooling operation, the defrosting operation, and the heating operation. Further, the throttle device 24 is, for example, an electronic expansion valve, and the opening degree is adjusted based on the instruction of the outdoor control device 25 to reduce the pressure of the refrigerant and expand it. The outdoor heat exchanger 22 exchanges heat between the outdoor air and the refrigerant. The outdoor blower 21 passes the outdoor air through the outdoor heat exchanger 22 to promote heat exchange in the outdoor heat exchanger 22.
 室外機200は、制御系の機器として、室外制御装置25を備えている。また、室外機200は、センサ類として、外気温度センサ26を備えている。外気温度センサ26は、たとえば、部屋外の状況を表す外気温度を検知し、室外制御装置25に信号を送る。検知された外気温度は、室外制御装置25から室内制御装置11に信号が送られ、外気温度のデータが利用される。 The outdoor unit 200 includes an outdoor control device 25 as a control system device. Further, the outdoor unit 200 includes an outside air temperature sensor 26 as sensors. For example, the outside air temperature sensor 26 detects the outside air temperature indicating the situation outside the room and sends a signal to the outdoor control device 25. A signal is sent from the outdoor control device 25 to the indoor control device 11 for the detected outside air temperature, and the outside air temperature data is used.
 また、図1に示すように、空気調和機は、運転または停止などの指示を行う操作手段として、リモートコントローラ(以下、リモコンと呼ぶ)16を備えている。リモコン16は、室内機100の室内制御装置11に接続されている。接続方法は無線の場合もあれば、有線の場合もある。なお、操作手段は、空気調和機に同梱されている場合もあれば、スマートフォンあるいはHEMS機器の場合もある。そして、リモコン16は、ユーザーにより入力された指示、設定などを含む信号を、室内制御装置11に送る。 Further, as shown in FIG. 1, the air conditioner is provided with a remote controller (hereinafter referred to as a remote controller) 16 as an operating means for instructing operation or stop. The remote controller 16 is connected to the indoor control device 11 of the indoor unit 100. The connection method may be wireless or wired. The operating means may be bundled with the air conditioner, or may be a smartphone or a HEMS device. Then, the remote controller 16 sends a signal including instructions, settings, etc. input by the user to the indoor control device 11.
 図2は、実施の形態1に係る空気調和機の室内機100の運転状態を示す斜視図である。図3は、実施の形態1に係る空気調和機の室内機100の停止状態を示す斜視図である。図4は、実施の形態1に係る空気調和機の室内機100のセンサユニット7のみ運転状態を示す斜視図である。 FIG. 2 is a perspective view showing an operating state of the indoor unit 100 of the air conditioner according to the first embodiment. FIG. 3 is a perspective view showing a stopped state of the indoor unit 100 of the air conditioner according to the first embodiment. FIG. 4 is a perspective view showing an operating state of only the sensor unit 7 of the indoor unit 100 of the air conditioner according to the first embodiment.
 図2に示すように、室内機100は、室内熱交換器12(図2では図示せず)が搭載された室内機本体1を有している。室内機本体1の上部には吸込口2が形成され、室内機本体1の前面側下部には吹出口3が形成されている。室内機本体1の内部で吸込口2の下方には室内送風機6a、6bが設けられている。また、吹出口3が形成された位置には、空気の吹き出し方向の上下を調整する上下風向板4a、4bおよび前面風向板10が設けられている。また、上下風向板4bには、空気の吹き出し方向の左右を調整する左右風向板5が設けられている。なお、以下において、上下風向板4a、4b、左右風向板5、前面風向板10の総称をフラップとする。 As shown in FIG. 2, the indoor unit 100 has an indoor unit main body 1 on which an indoor heat exchanger 12 (not shown in FIG. 2) is mounted. A suction port 2 is formed in the upper part of the indoor unit main body 1, and an outlet 3 is formed in the lower part on the front side of the indoor unit main body 1. Indoor blowers 6a and 6b are provided below the suction port 2 inside the indoor unit main body 1. Further, at the position where the air outlet 3 is formed, the vertical wind direction plates 4a and 4b and the front wind direction plate 10 for adjusting the up and down in the air blowing direction are provided. Further, the vertical wind direction plate 4b is provided with a left and right wind direction plate 5 for adjusting the left and right in the air blowing direction. In the following, the vertical wind direction plates 4a and 4b, the left and right wind direction plates 5, and the front wind direction plate 10 are collectively referred to as flaps.
 ここで、実施の形態1に係る上下風向板4a、4bは2枚で構成されているが、これに限定されるものではなく、1枚もしくは3枚以上で構成されていてもよい。また、左右風向板5は上下風向板4bに設けられているが、これに限定されるものではなく、独立した位置、例えば上下風向板4aと4bの間、あるいは上下風向板4aに設けられていてもよい。また、実施の形態1に係る室内機100は、2つの室内送風機6a、6bを備えているが、これに限定されるものではなく、1つもしくは3つ以上備えていてもよい。 Here, the vertical wind direction plates 4a and 4b according to the first embodiment are composed of two sheets, but the present invention is not limited to this, and one or three or more sheets may be used. Further, the left and right wind direction plates 5 are provided on the upper and lower wind direction plates 4b, but are not limited to this, and are provided at independent positions, for example, between the upper and lower wind direction plates 4a and 4b, or on the upper and lower wind direction plates 4a. May be. Further, the indoor unit 100 according to the first embodiment includes two indoor blowers 6a and 6b, but the present invention is not limited to this, and one or three or more may be provided.
 室内機本体1の右側下部には、センサユニット7が設けられている。このセンサユニット7は、焦電型あるいは熱起電力型などの熱型赤外線検知センサ、可視光カメラ、測距センサ、ドップラーセンサ、光度センサ、マイク、ボロメータ、あるいはSOI(Silicon On Insulator)などの非接触型センサである室内状況検知センサ8を有している。 A sensor unit 7 is provided at the lower right side of the indoor unit main body 1. The sensor unit 7 is a non-thermal infrared detection sensor such as a pyroelectric type or a thermoelectromotive force type, a visible light camera, a distance measuring sensor, a Doppler sensor, a photometric sensor, a microphone, a borometer, or a SOI (Silicon On Insulator). It has an indoor condition detection sensor 8 which is a contact type sensor.
 図2に示すように、室内機100が運転状態では、上下風向板4a、4b、および、前面風向板10が運転位置に移動し、室内送風機6a、6bが回転し、吹出口3から送風される。このとき、吸込口2が外部に露出する。また、センサユニット7が室内機本体1から突出し、左右に回動する。 As shown in FIG. 2, when the indoor unit 100 is in the operating state, the vertical wind direction plates 4a and 4b and the front wind direction plate 10 move to the operating position, the indoor blowers 6a and 6b rotate, and the air is blown from the outlet 3. To. At this time, the suction port 2 is exposed to the outside. Further, the sensor unit 7 protrudes from the indoor unit main body 1 and rotates left and right.
 一方、図3に示すように、室内機100が停止状態では、上下風向板4a、4b、および、前面風向板10が停止位置に移動し、室内送風機6a、6bが停止する。このとき、吸込口2が上下風向板4a、4b、および、前面風向板10によって覆われる。また、センサユニット7が室内機本体1に収納される。 On the other hand, as shown in FIG. 3, when the indoor unit 100 is stopped, the vertical wind direction plates 4a and 4b and the front wind direction plate 10 move to the stop positions, and the indoor blowers 6a and 6b stop. At this time, the suction port 2 is covered with the vertical wind direction plates 4a and 4b and the front wind direction plate 10. Further, the sensor unit 7 is housed in the indoor unit main body 1.
 なお、図4に示すように、室内機100が運転状態の際に、センサユニット7は室内機本体1から突出し、左右に回動するようにするが、上下風向板4a、4b、および、前面風向板10は停止位置のままとし、室内送風機6a、6bは停止したままとしてもよい。 As shown in FIG. 4, when the indoor unit 100 is in the operating state, the sensor unit 7 protrudes from the indoor unit main body 1 and rotates left and right, but the vertical wind direction plates 4a and 4b and the front surface. The wind direction plate 10 may be left in the stopped position, and the indoor blowers 6a and 6b may be left stopped.
 なお、センサユニット7は、室内機100が運転状態では室内機本体1から突出し、停止状態では室内機本体1に収納されるとしたが、これに限定されるものではない。センサユニット7は、室内機100の状態に関わらず突出したままでもよいし、また、左右に回動せずに固定された状態で空調空間の状態を検知してもよい。 The sensor unit 7 is said to protrude from the indoor unit main body 1 when the indoor unit 100 is in an operating state and is housed in the indoor unit main body 1 when the indoor unit 100 is stopped, but the present invention is not limited to this. The sensor unit 7 may remain protruding regardless of the state of the indoor unit 100, or may detect the state of the air-conditioned space in a fixed state without rotating left and right.
 図5は、実施の形態1に係る空気調和機の室外機200を示す斜視図である。 FIG. 5 is a perspective view showing the outdoor unit 200 of the air conditioner according to the first embodiment.
 図5に示すように、室外機200は、外郭を形成する室外機本体51を備えている。室外機本体51の前面には、円形状の吹出口52が形成されている。また、室外機本体51の前面には、吹出口52を覆うファンガード53が取り付けられている。室外機本体51は、前面側から背面側に向かって配置された仕切り板(図示せず)によって、内部を送風機室と機械室とに区画されている。送風機室には、室外熱交換器22および室外送風機21などが設けられている。また、機械室には、圧縮機20、流路切替装置23、および、絞り装置24などが設けられている。 As shown in FIG. 5, the outdoor unit 200 includes an outdoor unit main body 51 that forms an outer shell. A circular outlet 52 is formed on the front surface of the outdoor unit main body 51. Further, a fan guard 53 covering the air outlet 52 is attached to the front surface of the outdoor unit main body 51. The inside of the outdoor unit main body 51 is divided into a blower room and a machine room by a partition plate (not shown) arranged from the front side to the back side. The blower room is provided with an outdoor heat exchanger 22, an outdoor blower 21, and the like. Further, the machine room is provided with a compressor 20, a flow path switching device 23, a throttle device 24, and the like.
 図6は、実施の形態1に係る空気調和機の制御に関する入出力関係の概略を示す図である。 FIG. 6 is a diagram showing an outline of the input / output relationship regarding the control of the air conditioner according to the first embodiment.
 実施の形態1に係る空気調和機は、上記の通り室内制御装置11と室外制御装置25とを備えている。室内制御装置11および室外制御装置25は、それぞれ、例えば、専用のハードウェア、またはメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、プロセッサともいう)で構成されている。室内制御装置11が、主として室内機100における室内側動作に関する処理を行う。また、室外制御装置25が、主として室外機200における室外側動作に関する処理を行う。室内制御装置11と室外制御装置25とは、互いに通信を行い、制御に関するデータを含む信号のやり取りをする。なお、以下において、室内制御装置11および室外制御装置25の総称を制御装置とする。 The air conditioner according to the first embodiment includes an indoor control device 11 and an outdoor control device 25 as described above. Each of the indoor control device 11 and the outdoor control device 25 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, processor) that executes a program stored in dedicated hardware or memory, respectively. Also known as). The indoor control device 11 mainly performs processing related to indoor operation in the indoor unit 100. Further, the outdoor control device 25 mainly performs processing related to outdoor operation in the outdoor unit 200. The indoor control device 11 and the outdoor control device 25 communicate with each other and exchange signals including data related to control. In the following, the indoor control device 11 and the outdoor control device 25 are collectively referred to as a control device.
 室外制御装置25は、室外入力部41、室外制御部42、および、室外出力部43を備えている。室外入力部41は、室外制御装置25の外部の機器などから送られる信号に含まれるデータを室外制御部42に送る。室外入力部41から室外制御部42に送るデータとしては、たとえば、外気温度センサ26の検知に関わる外気温度のデータがある。また、室外出力部43は、室外制御部42から制御指示に関わるデータを処理し、対応する機器に信号を送る。室外出力部43を介して、指示が送られる機器には、圧縮機20、室外送風機21、流路切替装置23、および、絞り装置24がある。 The outdoor control device 25 includes an outdoor input unit 41, an outdoor control unit 42, and an outdoor output unit 43. The outdoor input unit 41 sends data included in a signal transmitted from an external device of the outdoor control device 25 to the outdoor control unit 42. As the data sent from the outdoor input unit 41 to the outdoor control unit 42, for example, there is data on the outside air temperature related to the detection of the outside air temperature sensor 26. Further, the outdoor output unit 43 processes the data related to the control instruction from the outdoor control unit 42, and sends a signal to the corresponding device. Devices to which instructions are sent via the outdoor output unit 43 include a compressor 20, an outdoor blower 21, a flow path switching device 23, and a throttle device 24.
 室内制御装置11は、室内入力部31、室内制御部37、および、室内出力部38を備えている。室内入力部31は、室内制御装置11の外部の機器などから送られる信号に含まれるデータを、室内制御部37に送る。室内入力部31から室内制御部37に送るデータとしては、たとえば、ユーザーがリモコン16に指示した運転モード、設定温度などの運転内容のデータ、および、各種センサに係るデータがある。各種センサに係るデータは、室内熱交換器温度センサ13の検知に係る室内熱交換器温度のデータ、室内温度センサ14の検知に係る室温のデータ、室内湿度センサ15の検知に係る空調空間の湿度に関するデータ、および、室内状況検知センサ8の検知に係る空調空間の状況に関わるデータなどがある。また、室内出力部38は、室内制御部37からの制御指示に係るデータを処理し、対応する機器に信号を送る。 The indoor control device 11 includes an indoor input unit 31, an indoor control unit 37, and an indoor output unit 38. The indoor input unit 31 sends data included in a signal transmitted from an external device of the indoor control device 11 to the indoor control unit 37. The data sent from the indoor input unit 31 to the indoor control unit 37 includes, for example, operation content data such as an operation mode and a set temperature instructed by the user to the remote controller 16, and data related to various sensors. The data related to various sensors include the indoor heat exchanger temperature data related to the detection of the indoor heat exchanger temperature sensor 13, the room temperature data related to the detection of the indoor temperature sensor 14, and the humidity of the air conditioning space related to the detection of the indoor humidity sensor 15. There is data related to the condition of the air-conditioned space related to the detection of the indoor condition detection sensor 8. Further, the indoor output unit 38 processes the data related to the control instruction from the indoor control unit 37 and sends a signal to the corresponding device.
 室内制御部37は、室内機100内の機器を制御し、室内機100全体の制御を行う。室内制御部37は、演算処理部32、空調負荷判定部33、温冷感判定部34、判定処理部35、および、記憶部36を備えている。演算処理部32は、後述する様に、温度差の算出など判定処理部35の判定処理に用いる値の演算処理を行う。空調負荷判定部33は、空調空間内の空調負荷に関する判定を行う。また、空調負荷判定部33は、今後の空調負荷の傾向(以下、空調負荷傾向と称する)を求める。ここで、空調負荷傾向とは、傾きであり、今後の空調負荷が増加するか減少するか、そのままかを示すものである。また、空調負荷傾向は、現在と過去における、室内熱交換器温度、外気温度、空調空間の室温、空調能力、および、空調空間の窓を通過した日射量に基づいて求められる。なお、空調能力は、圧縮機20の回転数、室内送風機6a、6bの回転数、室外送風機21の回転数、および、室内熱交換器温度に基づいて求められる。また、空調空間の窓を通過した日射量に関しては、センサユニット7の室内状況検知センサ8によって検知される。空調負荷傾向の数値が正であれば、今後の空調負荷が増加し、空調負荷傾向の数値が負であれば今後の空調負荷が減少し、空調負荷傾向の数値が0であれば今後も空調負荷はそのままである。そして、空調負荷傾向の数値の値が大きければ大きいほど増減の度合いも大きくなる。 The indoor control unit 37 controls the equipment in the indoor unit 100 and controls the entire indoor unit 100. The indoor control unit 37 includes an arithmetic processing unit 32, an air conditioning load determination unit 33, a heating / cooling sensation determination unit 34, a determination processing unit 35, and a storage unit 36. As will be described later, the arithmetic processing unit 32 performs arithmetic processing of values used for the determination processing of the determination processing unit 35 such as calculation of temperature difference. The air conditioning load determination unit 33 determines the air conditioning load in the air conditioning space. Further, the air conditioning load determination unit 33 obtains a tendency of the air conditioning load in the future (hereinafter referred to as an air conditioning load tendency). Here, the air-conditioning load tendency is a slope, and indicates whether the air-conditioning load will increase, decrease, or remain as it is in the future. Further, the air-conditioning load tendency is obtained based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space in the present and the past. The air conditioning capacity is determined based on the rotation speed of the compressor 20, the rotation speeds of the indoor blowers 6a and 6b, the rotation speed of the outdoor blower 21, and the temperature of the indoor heat exchanger. Further, the amount of solar radiation that has passed through the window of the air-conditioned space is detected by the indoor condition detection sensor 8 of the sensor unit 7. If the numerical value of the air conditioning load tendency is positive, the future air conditioning load will increase, if the numerical value of the air conditioning load tendency is negative, the future air conditioning load will decrease, and if the numerical value of the air conditioning load tendency is 0, the air conditioning will continue. The load remains the same. The larger the numerical value of the air conditioning load tendency, the larger the degree of increase / decrease.
 温冷感判定部34は、室内状況検知センサ8が検知した人体の温度データおよび動作データ、空調空間の熱データおよび照度(光度センサで取得する光量)データなどから、空調空間内に居る人の温冷感の判定を行う。ここで、温冷感とは、空調空間内に居る人が暑いと感じているかあるいは寒いと感じているかの感覚のことである。この温冷感は数値で表現することができ、温冷感の値が正で値が大きければ大きいほど空調空間内に居る人が暑いと感じ、温冷感の値が負で値が小さければ小さいほど空調空間内に居る人が寒いと感じていることになる。判定処理部35は、判定に関する処理を行う。ここでは、特に、各アクチュエータを運転状態にするか、運転状態を継続するか、あるいは、停止状態にするかに関する判定処理を行う。ここで、各アクチュエータとは、圧縮機20、フラップ、室内送風機6a、6b、室外送風機21、および、センサユニット7であるが、それに限定されない。少なくとも圧縮機20、フラップ、室内送風機6a、6b、および、室外送風機21が含まれていれば、その他のものが含まれていてもよい。 The heating / cooling sensation determination unit 34 is based on the temperature data and operation data of the human body detected by the indoor condition detection sensor 8, the heat data of the air conditioning space, the illuminance (the amount of light acquired by the light intensity sensor) data, and the like, and the temperature data of the person in the air conditioning space. Judge the feeling of warmth and coldness. Here, the feeling of warmth and coldness is the feeling that the person in the air-conditioned space feels hot or cold. This feeling of warmth and coldness can be expressed numerically. If the value of feeling of warmth and coldness is positive and the larger the value, the person in the air-conditioned space feels hot, and if the value of feeling of warmth and coldness is negative and the value is small, The smaller it is, the colder the person in the air-conditioned space feels. The determination processing unit 35 performs processing related to determination. Here, in particular, a determination process is performed regarding whether to put each actuator in the operating state, continue the operating state, or put it in the stopped state. Here, the actuators are, but are not limited to, the compressor 20, the flap, the indoor blowers 6a and 6b, the outdoor blower 21, and the sensor unit 7. If at least the compressor 20, the flap, the indoor blowers 6a and 6b, and the outdoor blower 21 are included, others may be included.
 記憶部36は、室内制御部37が空調負荷傾向および温冷感の数値を求める際に必要となるデータなどを記憶する装置である。 The storage unit 36 is a device that stores data and the like required when the indoor control unit 37 obtains the numerical values of the air conditioning load tendency and the feeling of temperature and temperature.
 室内出力部38は、室内制御部37から制御指示に関わるデータを処理し、対応する機器に信号を送る。室内出力部38を介して指示が送られる機器には、室内送風機6a、6b、左右風向板5、上下風向板4a、4b、前面風向板10、および、センサユニット7などがある。 The indoor output unit 38 processes data related to control instructions from the indoor control unit 37 and sends a signal to the corresponding device. Equipment to which instructions are sent via the indoor output unit 38 includes indoor blowers 6a and 6b, left and right wind direction plates 5, vertical wind direction plates 4a and 4b, a front wind direction plate 10, a sensor unit 7, and the like.
 図7は、実施の形態1に係る空気調和機の制御のタイムチャートである。図8は、実施の形態1に係る空気調和機の制御フローを示す図である。 FIG. 7 is a time chart of control of the air conditioner according to the first embodiment. FIG. 8 is a diagram showing a control flow of the air conditioner according to the first embodiment.
 実施の形態1に係る空気調和機では、図7に示すように空調負荷の減少に伴い、空気調和機が運転中であっても、圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを停止状態にする制御を行う。以下、実施の形態1に係る空気調和機の制御について、図8を参照して説明する。 In the air conditioner according to the first embodiment, as shown in FIG. 7, as the air conditioning load decreases, even if the air conditioner is in operation, the compressor 20, the indoor blowers 6a, 6b, the flap, and the like are used. Controls to stop the actuator. Hereinafter, the control of the air conditioner according to the first embodiment will be described with reference to FIG.
(ステップS500)
 リモコン16などにより空気調和機の運転が指示されたら、制御装置は、空気調和機の運転を開始し、各アクチュエータを運転状態にする。
(Step S500)
When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
(ステップS501)
 制御装置は、空調負荷傾向を求める。空調負荷傾向は、上記の通り、現在と過去における、室内熱交換器温度、外気温度、空調空間の室温、空調能力、および、空調空間の窓を通過した日射量に基づいて求められる。
(Step S501)
The control device obtains the air conditioning load tendency. As described above, the air-conditioning load tendency is determined based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space, as described above.
(ステップS502)
 制御装置は、空調負荷傾向が閾値Qmin1-1以下であるかの判定を行う。制御装置が、空調負荷傾向が閾値Qmin1-1以下であると判定した場合、ステップS503の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin1-1より大きいと判定した場合、ステップS501の処理に戻る。
(Step S502)
The control device determines whether the air conditioning load tendency is the threshold value Qmin1-1 or less. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin1-1, the process proceeds to step S503. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin1-1, the process returns to the process of step S501.
(ステップS503)
 制御装置は、上下風向板4a、4b、左右風向板5、室内送風機6a、6b、前面風向板10、および、センサユニット7を、図3に示す停止状態にするとともに、圧縮機20および室外送風機21を停止状態にする。このとき、制御装置は、図4に示すようにセンサユニット7のみ停止状態にせず駆動させ、空調空間の状況を検知してもよい。
(Step S503)
The control device puts the vertical wind direction plates 4a and 4b, the left and right wind direction plates 5, the indoor blowers 6a and 6b, the front wind direction plates 10 and the sensor unit 7 in the stopped state shown in FIG. 3, and also puts the compressor 20 and the outdoor blower in the stopped state. Put 21 in the stopped state. At this time, as shown in FIG. 4, the control device may drive only the sensor unit 7 without stopping it to detect the state of the air-conditioned space.
(ステップS504)
 制御装置は、各アクチュエータ停止後、空調負荷傾向が閾値Qmin1-2より大きいかどうかの判定を行う。制御装置が、空調負荷傾向が閾値Qmin1-2より大きいと判定した場合、ステップS500の処理に戻る。一方、制御装置が、空調負荷傾向が閾値Qmin1-2以下であると判定した場合、ステップS505の処理に進む。ここで、閾値Qmin1-2は、前述の閾値Qmin1-1と同じでもよいし、異なっていてもよいものとする。また、空調負荷傾向との比較は、たとえば連続して行ってもよいし、30分に一度など定期的に行ってもよいし、一度のみでもよい。また、空調負荷傾向を判定する際に、正確な室内熱交換器12の温度、空調空間の温度、ないし、空調空間の湿度を検知するために、室内送風機6a、6bを駆動させてもよい。
(Step S504)
After stopping each actuator, the control device determines whether the air conditioning load tendency is larger than the threshold value Qmin1-2. When the control device determines that the air conditioning load tendency is larger than the threshold value Qmin1-2, the process returns to the process of step S500. On the other hand, if the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin1-2, the process proceeds to step S505. Here, the threshold value Qmin1-2 may be the same as or different from the above-mentioned threshold value Qmin1-1. Further, the comparison with the air conditioning load tendency may be performed continuously, for example, periodically, such as once every 30 minutes, or only once. Further, when determining the air conditioning load tendency, the indoor blowers 6a and 6b may be driven in order to accurately detect the temperature of the indoor heat exchanger 12, the temperature of the air conditioning space, or the humidity of the air conditioning space.
(ステップS505)
 制御装置は、各アクチュエータの停止状態を維持する。
(Step S505)
The control device maintains the stopped state of each actuator.
(ステップS506)
 制御装置は、リモコン16などにより空気調和機の停止が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の停止が指示されたと判定した場合、ステップS507の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の停止が指示されていないと判定した場合、ステップS504の処理に戻る。つまり、リモコン16などにより空気調和機の停止が指示されなければ、ステップS504の判定を繰り返す。
(Step S506)
The control device determines whether or not the stop of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines that the remote controller 16 or the like has instructed to stop the air conditioner, the process proceeds to step S507. On the other hand, when the control device determines that the stop of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S504. That is, if the remote controller 16 or the like does not instruct to stop the air conditioner, the determination in step S504 is repeated.
(ステップS507)
 制御装置は、空気調和機の運転を停止し、センサユニット7を駆動させていた場合はセンサユニット7も停止状態にする。
(Step S507)
The control device stops the operation of the air conditioner, and when the sensor unit 7 is driven, the sensor unit 7 is also stopped.
 なお、各閾値は設計時に一様としてもよいし、住宅の熱貫流率などから住宅ごと個別で設定されるものでもよい。 Note that each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
 以上、実施の形態1に係る空気調和機において、制御装置は、空気調和機の停止中において操作手段によって運転の指示を受けたらアクチュエータを全て運転状態にした後、空調負荷傾向を求め、空調負荷傾向が予め設定された閾値以下であると判定した場合、アクチュエータを全て停止状態にする。 As described above, in the air conditioner according to the first embodiment, the control device obtains the air conditioning load tendency after receiving the operation instruction by the operating means while all the actuators are in the operating state while the air conditioner is stopped, and obtains the air conditioning load. When it is determined that the tendency is equal to or less than the preset threshold value, all the actuators are stopped.
 実施の形態1に係る空気調和機によれば、運転開始した後、空調負荷傾向が予め設定された閾値以下であると判定した場合、つまり、今後の空調負荷が減少傾向である場合にアクチュエータを全て停止状態にする。そうすることで、空調空間の快適性は維持したまま、無駄なアクチュエータの運転が停止するので、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the first embodiment, when it is determined that the air conditioning load tendency is equal to or less than a preset threshold value after the start of operation, that is, when the air conditioning load tends to decrease in the future, the actuator is used. Put all in a stopped state. By doing so, the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Hereinafter, the second embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
 図9は、実施の形態2に係る空気調和機の制御のタイムチャートである。図10は、実施の形態2に係る空気調和機の制御フローを示す図である。 FIG. 9 is a time chart of control of the air conditioner according to the second embodiment. FIG. 10 is a diagram showing a control flow of the air conditioner according to the second embodiment.
 実施の形態2に係る空気調和機では、図9に示すように温冷感の数値の減少に伴い、空気調和機が運転中であっても、圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを停止状態にする制御を行う。以下、実施の形態2に係る空気調和機の制御について、図10を参照して説明する。 In the air conditioner according to the second embodiment, as shown in FIG. 9, the compressor 20, the indoor blowers 6a, 6b, and the air conditioner 20 are used even when the air conditioner is in operation due to the decrease in the numerical value of the feeling of heat and cold. Controls to stop actuators such as flaps. Hereinafter, the control of the air conditioner according to the second embodiment will be described with reference to FIG.
(ステップS600)
 リモコン16などにより空気調和機の運転が指示されたら、制御装置は、空気調和機の運転を開始し、各アクチュエータを運転状態にする。
(Step S600)
When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
(ステップS601)
 制御装置は、室内状況検知センサ8が検知した空調空間の状況に関わるデータに基づいて、空調空間内に居る人の温冷感の数値を求める。
(Step S601)
The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the state of the air-conditioned space detected by the indoor condition detection sensor 8.
(ステップS602)
 制御装置は、温冷感の数値が閾値Tonrei2-1以下かどうかの判定を行う。制御装置が、温冷感の数値が閾値Tonrei2-1以下であると判定した場合、ステップS603の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei2-1より大きいと判定した場合、ステップS601の処理に戻る。
(Step S602)
The control device determines whether or not the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei2-1. When the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei2-1, the process proceeds to step S603. On the other hand, when the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei2-1, the process returns to the process of step S601.
(ステップS603)
 制御装置は、上下風向板4a、4b、左右風向板5、室内送風機6a、6b、および、前面風向板10を図4に示す停止状態にするとともに、圧縮機20および室外送風機21を停止状態にする。このとき、制御装置は、図4に示すようにセンサユニット7のみ停止状態にせず駆動させ、空調空間の状況を検知し、温冷感の数値を求められるようにしておく。
(Step S603)
The control device puts the vertical wind direction plates 4a and 4b, the left and right wind direction plates 5, the indoor blower 6a and 6b, and the front wind direction plate 10 in the stopped state shown in FIG. 4, and puts the compressor 20 and the outdoor blower 21 in the stopped state. do. At this time, as shown in FIG. 4, the control device drives only the sensor unit 7 without stopping it, detects the state of the air-conditioned space, and obtains the numerical value of the feeling of warmth and coldness.
(ステップS604)
 制御装置は、各アクチュエータ停止後、温冷感の数値が閾値Tonrei2-2より大きいかどうかの判定を行う。制御装置が、温冷感の数値が閾値Tonrei2-2より大きいと判定した場合、ステップS600の処理に戻る。一方、制御装置が、温冷感の数値が閾値Tonrei2-2以下であると判定した場合、ステップS605の処理に進む。ここで、閾値Tonrei2-2は、前述の閾値Tonrei2-1と同じでもよいし、異なっていてもよいものとする。また、温冷感の数値との比較は、たとえば連続して行ってもよいし、30分に一度など定期的に行ってもよいし、一度のみでもよい。また、温冷感の数値を判定する際に、正確な熱交換器の温度、空調空間温度、および、空調空間湿度を検知するために、室内送風機6a、6bを駆動させてもよい。
(Step S604)
After stopping each actuator, the control device determines whether or not the value of the feeling of warmth and coldness is larger than the threshold value Tonrei2-2. When the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei2-2, the process returns to the process of step S600. On the other hand, when the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei2-2, the process proceeds to step S605. Here, the threshold value Tonrei2-2 may be the same as or different from the above-mentioned threshold value Tonrei2-1. Further, the comparison with the numerical value of the feeling of warmth and coldness may be performed continuously, for example, periodically, such as once every 30 minutes, or only once. Further, the indoor blowers 6a and 6b may be driven in order to accurately detect the temperature of the heat exchanger, the air-conditioning space temperature, and the air-conditioning space humidity when determining the numerical value of the feeling of heat and cold.
(ステップS605)
 制御装置は、各アクチュエータの停止状態を維持する。
(Step S605)
The control device maintains the stopped state of each actuator.
(ステップS606)
 制御装置は、リモコン16などにより空気調和機の停止が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の停止が指示されたと判定した場合、ステップS607の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の停止が指示されていないと判定した場合、ステップS604の処理に戻る。つまり、リモコン16などにより空気調和機の停止が指示されなければ、ステップS604の判定を繰り返す。
(Step S606)
The control device determines whether or not the stop of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines that the remote controller 16 or the like has instructed to stop the air conditioner, the process proceeds to step S607. On the other hand, when the control device determines that the stop of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S604. That is, if the remote controller 16 or the like does not instruct to stop the air conditioner, the determination in step S604 is repeated.
(ステップS607)
 制御装置は、空気調和機の運転を停止し、センサユニット7も停止状態にする。
(Step S607)
The control device stops the operation of the air conditioner, and also puts the sensor unit 7 in the stopped state.
 なお、ステップS602、S604の比較式に関して、冷房運転の場合は上記の通りであるが、暖房運転の場合には閾値の符号が逆になり、≦、>の向きも逆になる。つまり、暖房運転の場合、ステップS602では温冷感の数値≧Tonrei2-3となり、ステップS604では温冷感の数値<Tonrei2-4となる。また、冷房運転時の閾値と暖房運転時の閾値とは同じでもよいし、異なってもよい。また、各閾値は設計時に一様としてもよいし、各人体の体質ごと個別で設定されるものでもよい。 Regarding the comparative formulas of steps S602 and S604, the above is as described in the case of cooling operation, but in the case of heating operation, the sign of the threshold value is reversed and the directions of ≦ and> are also reversed. That is, in the case of heating operation, in step S602, the value of hot / cold feeling ≧ Tonrei2-3, and in step S604, the value of hot / cold feeling <Tonrei2-4. Further, the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different. Further, each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
 以上、実施の形態2に係る空気調和機において、制御装置は、空気調和機の停止中において操作手段によって運転の指示を受けたらアクチュエータを全て運転状態にした後、温冷感の数値を求め、冷房運転時は温冷感の数値が予め設定された第一閾値以下であると判定した場合、暖房運転時は温冷感の数値が予め設定された第二閾値以上であると判定した場合、アクチュエータを全て停止状態にする。 As described above, in the air conditioner according to the second embodiment, when the control device receives an operation instruction by the operating means while the air conditioner is stopped, all the actuators are put into the operating state, and then the numerical value of the feeling of warming and cooling is obtained. When it is determined that the warm / cold feeling value is equal to or less than the preset first threshold value during the cooling operation, and when it is determined that the hot / cold feeling value is equal to or higher than the preset second threshold value during the heating operation. Stop all actuators.
 実施の形態2に係る空気調和機によれば、運転開始した後、温冷感の数値が予め設定された閾値以下であると判定した場合、つまり、空調空間の人が冷房運転時は暑くないと感じ、暖房運転時は寒くないと感じている場合にアクチュエータを全て停止状態にする。そうすることで、空調空間の快適性は維持したまま、無駄なアクチュエータの運転が停止するので、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the second embodiment, when it is determined that the value of the feeling of heating and cooling is equal to or less than the preset threshold value after the start of operation, that is, the person in the air-conditioned space is not hot during the cooling operation. If you feel that it is not cold during heating operation, stop all actuators. By doing so, the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
 実施の形態3.
 以下、実施の形態3について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 3.
Hereinafter, the third embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
 図11は、実施の形態3に係る空気調和機の制御のタイムチャートである。図12は、実施の形態3に係る空気調和機の制御フローを示す図である。 FIG. 11 is a time chart of control of the air conditioner according to the third embodiment. FIG. 12 is a diagram showing a control flow of the air conditioner according to the third embodiment.
 実施の形態3に係る空気調和機では、図11に示すように空気調和機の運転開始直後には圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを運転状態にせず、空調負荷の増加に伴い、それらアクチュエータを運転状態にする制御を行う。以下、実施の形態3に係る空気調和機の制御について、図12を参照して説明する。 In the air conditioner according to the third embodiment, as shown in FIG. 11, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioning load is applied. As the number of actuators increases, the actuators are controlled to be in the operating state. Hereinafter, the control of the air conditioner according to the third embodiment will be described with reference to FIG.
(ステップS700)
 リモコン16などにより空気調和機の停止が指示されたら、制御装置は、空気調和機の運転を停止させる。
(Step S700)
When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
(ステップS701)
 制御装置は、リモコン16などにより空気調和機の運転が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の運転が指示されたかと判定した場合、ステップS702の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の運転が指示されていないと判定した場合、再度ステップS701の処理を行う。
(Step S701)
The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S702. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process of step S701 is performed again.
(ステップS702)
 制御装置は、センサユニット7のみ運転状態とし、空調空間の状況の検知を開始する。なお、制御装置は、室内送風機6a、6bを一定時間毎に予め設定された時間の間、運転状態にしてもよい。こうすることで、正確に空調空間の室温を取得することができる。
(Step S702)
The control device puts only the sensor unit 7 in the operating state and starts detecting the state of the air-conditioned space. The control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
(ステップS703)
 制御装置は、空調負荷傾向を求める。空調負荷傾向は、上記の通り、現在と過去における、室内熱交換器温度、外気温度、空調空間の室温、空調能力、および、空調空間の窓を通過した日射量に基づいて求められる。
(Step S703)
The control device obtains the air conditioning load tendency. As described above, the air-conditioning load tendency is obtained based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space as described above.
(ステップS704)
 制御装置は、空調負荷傾向が閾値Qmin3-1以上であるかの判定を行う。制御装置が、空調負荷傾向が閾値Qmin3-1以上であると判定した場合、ステップS705の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin3-1より小さいと判定した場合、ステップS702の処理に戻る。
(Step S704)
The control device determines whether the air conditioning load tendency is equal to or higher than the threshold value Qmin3-1. If the control device determines that the air conditioning load tendency is equal to or higher than the threshold value Qmin3-1, the process proceeds to step S705. On the other hand, when the control device determines that the air conditioning load tendency is smaller than the threshold value Qmin3-1, the process returns to the process of step S702.
(ステップS705)
 制御装置は、センサユニット7以外の各アクチュエータも運転状態にする。
(Step S705)
The control device also puts each actuator other than the sensor unit 7 into an operating state.
 なお、各閾値は設計時に一様としてもよいし、住宅の熱貫流率などから住宅ごと個別で設定されるものでもよい。 Note that each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
 以上、実施の形態3に係る空気調和機において、制御装置は、空気調和機の停止中において操作手段によって運転の指示を受けたら空調負荷傾向を求め、空調負荷傾向が予め設定された閾値以下であると判定した場合、アクチュエータを全て停止状態のままにし、空調負荷傾向が予め設定された閾値より大きいと判定した場合、アクチュエータを全て運転状態にするものである。 As described above, in the air conditioner according to the third embodiment, the control device obtains the air conditioning load tendency when receiving an operation instruction by the operating means while the air conditioner is stopped, and the air conditioning load tendency is equal to or less than a preset threshold value. If it is determined that there is, all the actuators are left in the stopped state, and if it is determined that the air conditioning load tendency is larger than the preset threshold value, all the actuators are put into the operating state.
 実施の形態3に係る空気調和機によれば、空気調和機の運転を開始した後であっても、空調空間が快適な状態の時はアクチュエータを停止状態のままとする。そうすることで、不要なタイミングでのアクチュエータの運転を回避でき、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the third embodiment, even after the operation of the air conditioner is started, the actuator is left in the stopped state when the air conditioning space is in a comfortable state. By doing so, it is possible to avoid the operation of the actuator at unnecessary timings, reduce power consumption, and improve energy saving.
 実施の形態4.
 以下、実施の形態4について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 4.
Hereinafter, the fourth embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
 図13は、実施の形態4に係る空気調和機の制御のタイムチャートである。図14は、実施の形態4に係る空気調和機の制御フローを示す図である。 FIG. 13 is a time chart of control of the air conditioner according to the fourth embodiment. FIG. 14 is a diagram showing a control flow of the air conditioner according to the fourth embodiment.
 実施の形態4に係る空気調和機では、図13に示すように空気調和機の運転開始直後には圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを運転状態にせず、温冷感の数値の増加に伴い、それらアクチュエータを運転状態にする制御を行う。以下、実施の形態4に係る空気調和機の制御について、図14を参照して説明する。 In the air conditioner according to the fourth embodiment, as shown in FIG. 13, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioner is heated and cooled. As the numerical value of the feeling increases, the actuators are controlled to be in the operating state. Hereinafter, the control of the air conditioner according to the fourth embodiment will be described with reference to FIG.
(ステップS800)
 リモコン16などにより空気調和機の停止が指示されたら、制御装置は、空気調和機の運転を停止させる。
(Step S800)
When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
(ステップS801)
 制御装置は、リモコン16などにより空気調和機の運転が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の運転が指示されたかと判定した場合、ステップS802の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の運転が指示されていないと判定した場合、再度ステップS801の処理を行う。
(Step S801)
The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S802. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process of step S801 is performed again.
(ステップS802)
 制御装置は、センサユニット7のみ運転状態とし、空調空間の状況の検知を開始する。なお、制御装置は、室内送風機6a、6bを一定時間毎に予め設定された時間の間、運転状態にしてもよい。こうすることで、正確に空調空間の室温を取得することができる。
(Step S802)
The control device puts only the sensor unit 7 in the operating state and starts detecting the state of the air-conditioned space. The control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
(ステップS803)
 制御装置は、室内状況検知センサ8が検知した空調空間の状況に関わるデータに基づいて、空調空間内に居る人の温冷感の数値を求める。
(Step S803)
The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the state of the air-conditioned space detected by the indoor condition detection sensor 8.
(ステップS804)
 制御装置は、温冷感の数値が閾値Tonrei4-1以上かどうかの判定を行う。制御装置が、温冷感の数値が閾値Tonrei4-1以上であると判定した場合、ステップS805の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei4-1より小さいと判定した場合、ステップS802の処理に戻る。
(Step S804)
The control device determines whether or not the value of the feeling of warmth and coldness is equal to or higher than the threshold value Tonrei4-1. When the control device determines that the value of the feeling of warm / cold is equal to or higher than the threshold value Tonrei4-1, the process proceeds to step S805. On the other hand, when the control device determines that the value of the feeling of warm / cold is smaller than the threshold value Tonrei4-1, the process returns to the process of step S802.
(ステップS805)
 制御装置は、センサユニット7以外の各アクチュエータも運転状態にする。
(Step S805)
The control device also puts each actuator other than the sensor unit 7 into an operating state.
 なお、ステップS804の比較式に関して、冷房運転の場合は上記の通りであるが、暖房運転の場合には閾値の符号が逆になり、≧の向きも逆になる。つまり、暖房運転の場合、ステップS804では温冷感の数値≦Tonrei4-2となる。また、冷房運転時の閾値と暖房運転時の閾値とは同じでもよいし、異なってもよい。また、各閾値は設計時に一様としてもよいし、各人体の体質ごと個別で設定されるものでもよい。 Regarding the comparative formula in step S804, in the case of cooling operation, it is as described above, but in the case of heating operation, the sign of the threshold value is reversed and the direction of ≧ is also reversed. That is, in the case of the heating operation, in step S804, the numerical value of the feeling of warm / cold ≦ Tonrei4-2. Further, the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different. Further, each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
 以上、実施の形態4に係る空気調和機において、制御装置は、空気調和機の停止中において操作手段によって運転の指示を受けたら温冷感の数値を求め、冷房運転時は温冷感の数値が予め設定された第一閾値以下であると判定した場合、暖房運転時は温冷感の数値が予め設定された第二閾値以上であると判定した場合、アクチュエータを全て停止状態のままにし、冷房運転時は温冷感の数値が予め設定された第一閾値より大きいと判定した場合、暖房運転時は温冷感の数値が予め設定された第二閾値より小さいと判定した場合、アクチュエータを全て運転状態にするものである。 As described above, in the air conditioner according to the fourth embodiment, the control device obtains a numerical value of a feeling of hot / cold feeling when receiving an operation instruction by an operating means while the air conditioner is stopped, and a numerical value of a feeling of hot / cold feeling during a cooling operation. If it is determined that is equal to or less than the preset first threshold value, and if it is determined that the warm / cool feeling value is equal to or higher than the preset second threshold value during the heating operation, all the actuators are left in the stopped state. If it is determined that the hot / cold feeling value is larger than the preset first threshold value during the cooling operation, or if it is determined that the hot / cold feeling value is smaller than the preset second threshold value during the heating operation, the actuator is operated. All are to be put into operation.
 実施の形態4に係る空気調和機によれば、空気調和機の運転を開始した後であっても、空調空間が快適な状態の時はアクチュエータを停止状態のままとする。そうすることで、不要なタイミングでのアクチュエータの運転を回避でき、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the fourth embodiment, even after the operation of the air conditioner is started, the actuator is left in the stopped state when the air conditioning space is in a comfortable state. By doing so, it is possible to avoid the operation of the actuator at unnecessary timings, reduce power consumption, and improve energy saving.
 実施の形態5.
 以下、実施の形態5について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 5.
Hereinafter, the fifth embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
 図15は、実施の形態5に係る空気調和機の制御のタイムチャートである。図16は、実施の形態5に係る空気調和機の制御フローを示す図である。 FIG. 15 is a time chart of control of the air conditioner according to the fifth embodiment. FIG. 16 is a diagram showing a control flow of the air conditioner according to the fifth embodiment.
 実施の形態5に係る空気調和機では、図15に示すように空調負荷の減少に伴い、空気調和機が運転中であっても、圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを順次停止状態にする制御を行う。以下、実施の形態5に係る空気調和機の制御について、図16を参照して説明する。 In the air conditioner according to the fifth embodiment, as shown in FIG. 15, as the air conditioning load decreases, even if the air conditioner is in operation, the compressor 20, the indoor blowers 6a, 6b, the flap, and the like are used. Controls the actuators to be sequentially stopped. Hereinafter, the control of the air conditioner according to the fifth embodiment will be described with reference to FIG.
(ステップS900)
 リモコン16などにより空気調和機の運転が指示されたら、制御装置は、空気調和機の運転を開始し、各アクチュエータを運転状態にする。
(Step S900)
When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
(ステップS901)
 制御装置は、空調負荷傾向を求める。空調負荷傾向は、上記の通り、現在と過去における、室内熱交換器温度、外気温度、空調空間の室温、空調能力、および、空調空間の窓を通過した日射量に基づいて求められる。
(Step S901)
The control device obtains the air conditioning load tendency. As described above, the air-conditioning load tendency is determined based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space, as described above.
(ステップS902)
 制御装置は、空調負荷傾向が閾値Qmin5-1以下であるかの判定を行う。なお、ここでは圧縮機20の運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin5-1以下であると判定した場合、ステップS903の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin5-1より大きいと判定した場合、ステップS900の処理に戻る。
(Step S902)
The control device determines whether the air conditioning load tendency is equal to or less than the threshold value Qmin5-1. Here, it is determined whether or not the compressor 20 needs to be operated. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin5-1, the process proceeds to step S903. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin5-1, the process returns to the process of step S900.
(ステップS903)
 制御装置は、圧縮機20を停止状態にする。
(Step S903)
The control device puts the compressor 20 in a stopped state.
(ステップS904)
 制御装置は、空調負荷傾向が閾値Qmin5-2以下であるかの判定を行う。なお、ここでは室内送風機6a、6bの運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin5-2以下であると判定した場合、ステップS905の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin5-2より大きいと判定した場合、ステップS902の処理に戻る。
(Step S904)
The control device determines whether the air conditioning load tendency is equal to or less than the threshold value Qmin5-2. Here, it is determined whether or not the indoor blowers 6a and 6b need to be operated. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin5-2, the process proceeds to step S905. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin5-2, the process returns to the process of step S902.
(ステップS905)
 制御装置は、室内送風機6a、6bを停止状態にする。
(Step S905)
The control device stops the indoor blowers 6a and 6b.
(ステップS906)
 制御装置は、空調負荷傾向が閾値Qmin5-3以下であるかの判定を行う。なお、ここではフラップの運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin5-3以下であると判定した場合、ステップS907の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin5-3より大きいと判定した場合、ステップS904の処理に戻る。
(Step S906)
The control device determines whether the air conditioning load tendency is the threshold value Qmin5-3 or less. Here, it is determined whether or not the flap operation is necessary. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin5-3, the process proceeds to step S907. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin5-3, the process returns to the process of step S904.
(ステップS907)
 制御装置は、フラップを停止状態にする。
(Step S907)
The control device puts the flap in a stopped state.
(ステップS908)
 制御装置は、空調負荷傾向が閾値Qmin5-4以下であるかの判定を行う。なお、ここではその他のアクチュエータ(圧縮機20、室内送風機6a、6b、および、フラップ以外)の運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin5-4以下であると判定した場合、ステップS909の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin5-4より大きいと判定した場合、ステップS906の処理に戻る。
(Step S908)
The control device determines whether the air conditioning load tendency is the threshold value Qmin5-4 or less. Here, it is determined whether or not it is necessary to operate other actuators (compressor 20, indoor blowers 6a, 6b, and flaps). If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin5-4, the process proceeds to step S909. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin5-4, the process returns to the process of step S906.
(ステップS909)
 制御装置は、その他のアクチュエータを停止状態にする。
(Step S909)
The control device puts the other actuators in a stopped state.
(ステップS910)
 制御装置は、リモコン16などにより空気調和機の停止が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の停止が指示されたと判定した場合、ステップS911の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の停止が指示されていないと判定した場合、ステップS908の処理に戻る。
(Step S910)
The control device determines whether or not the stop of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines that the remote controller 16 or the like has instructed to stop the air conditioner, the process proceeds to step S911. On the other hand, when the control device determines that the stop of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S908.
(ステップS911)
 制御装置は、空気調和機の運転を停止する。
(Step S911)
The control device stops the operation of the air conditioner.
 なお、各閾値は設計時に一様としてもよいし、住宅の熱貫流率などから住宅ごと個別で設定されるものでもよい。 Note that each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
 以上、実施の形態5に係る空気調和機において、制御装置は、空気調和機の停止中において操作手段によって運転の指示を受けたらアクチュエータを全て運転状態にした後、空調負荷傾向を求め、空調負荷傾向が予め設定された閾値以下であると判定した場合、アクチュエータのうち一部を停止状態にする処理を行い、該処理をアクチュエータの全てが停止状態となるまで繰り返すものである。 As described above, in the air conditioner according to the fifth embodiment, the control device obtains the air conditioning load tendency after receiving the operation instruction by the operating means while all the actuators are in the operating state while the air conditioner is stopped, and obtains the air conditioning load. When it is determined that the tendency is equal to or less than a preset threshold value, a process of putting a part of the actuators in the stopped state is performed, and the process is repeated until all the actuators are in the stopped state.
 実施の形態5に係る空気調和機によれば、空気調和機の運転を開始した後、適切なタイミングで各アクチュエータを停止状態とする。そうすることで、空調空間の快適性は維持したまま、無駄なアクチュエータの運転が停止するので、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the fifth embodiment, after the operation of the air conditioner is started, each actuator is stopped at an appropriate timing. By doing so, the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
 実施の形態6.
 以下、実施の形態6について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 6.
Hereinafter, the sixth embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
 図17は、実施の形態6に係る空気調和機の制御のタイムチャートである。図18は、実施の形態6に係る空気調和機の制御フローを示す図である。 FIG. 17 is a time chart of control of the air conditioner according to the sixth embodiment. FIG. 18 is a diagram showing a control flow of the air conditioner according to the sixth embodiment.
 実施の形態6に係る空気調和機では、図17に示すように温冷感の数値の減少に伴い、空気調和機が運転中であっても、圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを順次停止状態にする制御を行う。以下、実施の形態6に係る空気調和機の制御について、図18を参照して説明する。 In the air conditioner according to the sixth embodiment, as shown in FIG. 17, the compressor 20, the indoor blowers 6a and 6b, and the indoor blowers 6a and 6b are used even when the air conditioner is in operation due to the decrease in the numerical value of the feeling of heat and cold. Controls to sequentially stop actuators such as flaps. Hereinafter, the control of the air conditioner according to the sixth embodiment will be described with reference to FIG.
(ステップS1000)
 リモコン16などにより空気調和機の運転が指示されたら、制御装置は、空気調和機の運転を開始し、各アクチュエータを運転状態にする。
(Step S1000)
When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
(ステップS1001)
 制御装置は、室内状況検知センサ8が検知した空調空間の状況に関わるデータに基づいて、空調空間内に居る人の温冷感の数値を求める。
(Step S1001)
The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the state of the air-conditioned space detected by the indoor condition detection sensor 8.
(ステップS1002)
 制御装置は、温冷感の数値が閾値Tonrei6-1以下であるかの判定を行う。なお、ここでは圧縮機20の運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei6-1以下であると判定した場合、ステップS1003の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei6-1より大きいと判定した場合、ステップS1000の処理に戻る。
(Step S1002)
The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei6-1. Here, it is determined whether or not the compressor 20 needs to be operated. When the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei6-1, the process proceeds to step S1003. On the other hand, when the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei6-1, the process returns to the process of step S1000.
(ステップS1003)
 制御装置は、圧縮機20を停止状態にする。
(Step S1003)
The control device puts the compressor 20 in a stopped state.
(ステップS1004)
 制御装置は、温冷感の数値が閾値Tonrei6-2以下であるかの判定を行う。なお、ここでは室内送風機6a、6bの運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei6-2以下であると判定した場合、ステップS1005の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei6-2より大きいと判定した場合、ステップS1002の処理に戻る。
(Step S1004)
The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei6-2. Here, it is determined whether or not the indoor blowers 6a and 6b need to be operated. When the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei6-2, the process proceeds to step S1005. On the other hand, when the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei6-2, the process returns to the process of step S1002.
(ステップS1005)
 制御装置は、室内送風機6a、6bを停止状態にする。
(Step S1005)
The control device stops the indoor blowers 6a and 6b.
(ステップS1006)
 制御装置は、温冷感の数値が閾値Tonrei6-3以下であるかの判定を行う。なお、ここではフラップの運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei6-3以下であると判定した場合、ステップS1007の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei6-3より大きいと判定した場合、ステップS1004の処理に戻る。
(Step S1006)
The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei6-3. Here, it is determined whether or not the flap operation is necessary. When the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei6-3, the process proceeds to step S1007. On the other hand, when the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei6-3, the process returns to the process of step S1004.
(ステップS1007)
 制御装置は、フラップを停止状態にする。
(Step S1007)
The control device puts the flap in a stopped state.
(ステップS1008)
 制御装置は、温冷感の数値が閾値Tonrei6-4以下であるかの判定を行う。なお、ここではその他のアクチュエータ(圧縮機20、室内送風機6a、6b、および、フラップ以外)の運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei6-4以下であると判定した場合、ステップS1009の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei6-4より大きいと判定した場合、ステップS1006の処理に戻る。
(Step S1008)
The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei6-4. Here, it is determined whether or not it is necessary to operate other actuators (compressor 20, indoor blowers 6a, 6b, and flaps). When the control device determines that the numerical value of the feeling of warm / cold is equal to or less than the threshold value Tonrei6-4, the process proceeds to step S1009. On the other hand, when the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei6-4, the process returns to the process of step S1006.
(ステップS1009)
 制御装置は、その他のアクチュエータを停止状態にする。
(Step S1009)
The control device puts the other actuators in a stopped state.
(ステップS1010)
 制御装置は、リモコン16などにより空気調和機の停止が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の停止が指示されたと判定した場合、ステップS1011の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の停止が指示されていないと判定した場合、ステップS1008の処理に戻る。
(Step S1010)
The control device determines whether or not the stop of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines that the remote controller 16 or the like has instructed to stop the air conditioner, the process proceeds to step S1011. On the other hand, when the control device determines that the stop of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1008.
(ステップS1011)
 制御装置は、空気調和機の運転を停止する。
(Step S1011)
The control device stops the operation of the air conditioner.
 なお、ステップS1002、S1004、S1006、S1008の比較式に関して、冷房運転の場合は上記の通りであるが、暖房運転の場合には閾値の符号が逆になり、≦、>の向きも逆になる。つまり、暖房運転の場合、ステップS1002では温冷感の数値≧Tonrei6-5となり、ステップS1004、S1006、S1008に関しても同様となる。また、冷房運転時の閾値と暖房運転時の閾値とは同じでもよいし、異なってもよい。また、各閾値は設計時に一様としてもよいし、各人体の体質ごと個別で設定されるものでもよい。 Regarding the comparative formulas of steps S1002, S1004, S1006, and S1008, the above is as described in the case of cooling operation, but in the case of heating operation, the sign of the threshold value is reversed and the directions of ≦ and> are also reversed. .. That is, in the case of the heating operation, the numerical value of the feeling of warm / cold ≧ Tonrei6-5 in step S1002, and the same applies to steps S1004, S1006, and S1008. Further, the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different. Further, each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
 以上、実施の形態6に係る空気調和機において、制御装置は、空気調和機の停止中において操作手段によって運転の指示を受けたらアクチュエータを全て運転状態にした後、温冷感の数値を求め、冷房運転時は温冷感の数値が予め設定された第一閾値以下であると判定した場合、暖房運転時は温冷感の数値が予め設定された第二閾値以上であると判定した場合、アクチュエータのうち一部を停止状態にする処理を行い、該処理をアクチュエータの全てが停止状態となるまで繰り返すものである。 As described above, in the air conditioner according to the sixth embodiment, when the control device receives an operation instruction by the operating means while the air conditioner is stopped, all the actuators are put into the operating state, and then the numerical value of the feeling of warm / cold is obtained. When it is determined that the warm / cold feeling value is equal to or less than the preset first threshold value during the cooling operation, and when it is determined that the hot / cold feeling value is equal to or higher than the preset second threshold value during the heating operation. A process of putting a part of the actuator into a stopped state is performed, and the process is repeated until all of the actuators are in the stopped state.
 実施の形態6に係る空気調和機によれば、空気調和機の運転を開始した後、適切なタイミングで各アクチュエータを停止状態とする。そうすることで、空調空間の快適性は維持したまま、無駄なアクチュエータの運転が停止するので、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the sixth embodiment, after the operation of the air conditioner is started, each actuator is stopped at an appropriate timing. By doing so, the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
 実施の形態7.
 以下、実施の形態7について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 7.
Hereinafter, the seventh embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
 図19は、実施の形態7に係る空気調和機の制御のタイムチャートである。図20は、実施の形態7に係る空気調和機の制御フローを示す図である。 FIG. 19 is a time chart of control of the air conditioner according to the seventh embodiment. FIG. 20 is a diagram showing a control flow of the air conditioner according to the seventh embodiment.
 実施の形態7に係る空気調和機では、図19に示すように空調負荷の減少に伴い、空気調和機が運転中であっても、圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを順次停止状態にする制御を行う。以下、実施の形態7に係る空気調和機の制御について、図20を参照して説明する。 In the air conditioner according to the seventh embodiment, as shown in FIG. 19, as the air conditioning load decreases, even if the air conditioner is in operation, the compressor 20, the indoor blowers 6a, 6b, the flap, and the like are used. Controls the actuators to be sequentially stopped. Hereinafter, the control of the air conditioner according to the seventh embodiment will be described with reference to FIG. 20.
(ステップS1100)
 リモコン16などにより空気調和機の運転が指示されたら、制御装置は、空気調和機の運転を開始し、各アクチュエータを運転状態にする。
(Step S1100)
When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
(ステップS1101)
 制御装置は、空調負荷傾向を求める。空調負荷傾向は、上記の通り、現在と過去における、室内熱交換器温度、外気温度、空調空間の室温、空調能力、および、空調空間の窓を通過した日射量に基づいて求められる。
(Step S1101)
The control device obtains the air conditioning load tendency. As described above, the air-conditioning load tendency is determined based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space, as described above.
(ステップS1102)
 制御装置は、空調負荷傾向が閾値Qmin7-1以下であるかの判定を行う。なお、ここでは圧縮機20の運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin7-1以下であると判定した場合、ステップS1103の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin7-1より大きいと判定した場合、ステップS1100の処理に戻る。
(Step S1102)
The control device determines whether the air conditioning load tendency is equal to or less than the threshold value Qmin7-1. Here, it is determined whether or not the compressor 20 needs to be operated. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin7-1, the process proceeds to step S1103. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin7-1, the process returns to the process of step S1100.
(ステップS1103)
 制御装置は、圧縮機20を停止状態にする。
(Step S1103)
The control device puts the compressor 20 in a stopped state.
(ステップS1104)
 制御装置は、圧縮機20を停止後の時間がTime7-1を経過したかを判定する。ここで、時間の計測は、例えば制御装置が行うが、これに限定されない。制御装置が、上記時間がTime7-1を経過したと判定した場合、ステップS1105の処理に進む。一方、制御装置が、上記時間がTime7-1を経過していないと判定した場合、ステップS1102の処理に戻る。
(Step S1104)
The control device determines whether the time after stopping the compressor 20 has elapsed Time 7-1. Here, the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that the time 7-1 has elapsed, the process proceeds to step S1105. On the other hand, if the control device determines that the time has not elapsed for Time 7-1, the process returns to the process of step S1102.
(ステップS1105)
 制御装置は、室内送風機6a、6bを停止状態にする。
(Step S1105)
The control device stops the indoor blowers 6a and 6b.
(ステップS1106)
 制御装置は、空調負荷傾向が閾値Qmin7-1以下であるかの判定を行う。なお、ここではフラップの運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin7-1以下であると判定した場合、ステップS1107の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin7-1より大きいと判定した場合、ステップS1100の処理に戻る。
(Step S1106)
The control device determines whether the air conditioning load tendency is equal to or less than the threshold value Qmin7-1. Here, it is determined whether or not the flap operation is necessary. If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin7-1, the process proceeds to step S1107. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin7-1, the process returns to the process of step S1100.
(ステップS1107)
 制御装置は、室内送風機6a、6bを停止後の時間がTime7-2を経過したかを判定する。制御装置が、上記時間がTime7-2を経過したと判定した場合、ステップS1108の処理に進む。一方、制御装置が、上記時間がTime7-2を経過していないと判定した場合、ステップS1106の処理に戻る。
(Step S1107)
The control device determines whether the time after stopping the indoor blowers 6a and 6b has passed Time7-2. If the control device determines that Time7-2 has elapsed, the process proceeds to step S1108. On the other hand, if the control device determines that the time has not elapsed, the process returns to the process of step S1106.
(ステップS1108)
 制御装置は、フラップを停止状態にする。
(Step S1108)
The control device puts the flap in a stopped state.
(ステップS1109)
 制御装置は、空調負荷傾向が閾値Qmin7-1以下であるかの判定を行う。なお、ここではその他のアクチュエータ(圧縮機20、室内送風機6a、6b、および、フラップ以外)の運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin7-1以下であると判定した場合、ステップS1110の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin7-1より大きいと判定した場合、ステップS1100の処理に戻る。
(Step S1109)
The control device determines whether the air conditioning load tendency is equal to or less than the threshold value Qmin7-1. Here, it is determined whether or not it is necessary to operate other actuators (compressor 20, indoor blowers 6a, 6b, and flaps). If the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin7-1, the process proceeds to step S1110. On the other hand, when the control device determines that the air conditioning load tendency is larger than the threshold value Qmin7-1, the process returns to the process of step S1100.
(ステップS1110)
 制御装置は、その他のアクチュエータを停止状態にする。
(Step S1110)
The control device puts the other actuators in a stopped state.
(ステップS1111)
 制御装置は、リモコン16などにより空気調和機の停止が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の停止が指示されたと判定した場合、ステップS1112の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の停止が指示されていないと判定した場合、ステップS1109の処理に戻る。
(Step S1111)
The control device determines whether or not the stop of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines that the remote controller 16 or the like has instructed to stop the air conditioner, the process proceeds to step S1112. On the other hand, when the control device determines that the stop of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1109.
(ステップS1112)
 制御装置は、空気調和機の運転を停止する。
(Step S1112)
The control device stops the operation of the air conditioner.
 なお、各閾値は設計時に一様としてもよいし、住宅の熱貫流率などから住宅ごと個別で設定されるものでもよい。 Note that each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
 また、ステップS1102、S1106、S1109の閾値は、同じでもよいし、異なっていてもよい。また、各経過時間の計測タイミングは、上記の様に各アクチュエータ停止からでもよいし、ステップS1102の条件成立時からとしてもよい。 Further, the threshold values of steps S1102, S1106, and S1109 may be the same or different. Further, the measurement timing of each elapsed time may be from the stop of each actuator as described above, or from the time when the condition of step S1102 is satisfied.
 以上、実施の形態7に係る空気調和機において、制御装置は、アクチュエータのうち一部を停止状態にした後、予め設定された時間が経過後に、他のアクチュエータのうち一部または全てを停止状態にするものである。 As described above, in the air conditioner according to the seventh embodiment, in the control device, after a part of the actuators is stopped and a preset time elapses, a part or all of the other actuators is stopped. It is something to do.
 実施の形態7に係る空気調和機によれば、空気調和機の運転を開始した後、時間による安全率を持たせながら適切なタイミングで各アクチュエータを停止状態とする。そうすることで、空調空間の快適性は維持したまま、無駄なアクチュエータの運転が停止するので、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the seventh embodiment, after the operation of the air conditioner is started, each actuator is stopped at an appropriate timing while having a safety factor according to time. By doing so, the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
 実施の形態8.
 以下、実施の形態8について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 8.
Hereinafter, the eighth embodiment will be described, but the description thereof will be omitted for those overlapping with the first embodiment, and the same parts or the corresponding parts as those in the first embodiment will be designated by the same reference numerals.
 図21は、実施の形態8に係る空気調和機の制御のタイムチャートである。図22は、実施の形態8に係る空気調和機の制御フローを示す図である。 FIG. 21 is a time chart of control of the air conditioner according to the eighth embodiment. FIG. 22 is a diagram showing a control flow of the air conditioner according to the eighth embodiment.
 実施の形態8に係る空気調和機では、図21に示すように温冷感の数値の減少に伴い、空気調和機が運転中であっても、圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを順次停止状態にする制御を行う。以下、実施の形態8に係る空気調和機の制御について、図22を参照して説明する。 In the air conditioner according to the eighth embodiment, as shown in FIG. 21, the compressor 20, the indoor blowers 6a, 6b, and the air conditioner 20 are used even when the air conditioner is in operation due to the decrease in the numerical value of the feeling of heat and cold. Controls to sequentially stop actuators such as flaps. Hereinafter, the control of the air conditioner according to the eighth embodiment will be described with reference to FIG. 22.
(ステップS1200)
 リモコン16などにより空気調和機の運転が指示されたら、制御装置は、空気調和機の運転を開始し、各アクチュエータを運転状態にする。
(Step S1200)
When the operation of the air conditioner is instructed by the remote controller 16 or the like, the control device starts the operation of the air conditioner and puts each actuator into the operating state.
(ステップS1201)
 制御装置は、室内状況検知センサ8が検知した空調空間の状況に関わるデータに基づいて、空調空間内に居る人の温冷感の数値を求める。
(Step S1201)
The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the state of the air-conditioned space detected by the indoor condition detection sensor 8.
(ステップS1202)
 制御装置は、温冷感の数値が閾値Tonrei8-1以下であるかの判定を行う。なお、ここでは圧縮機20の運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei8-1以下であると判定した場合、ステップS1203の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei8-1より大きいと判定した場合、ステップS1200の処理に戻る。
(Step S1202)
The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei8-1. Here, it is determined whether or not the compressor 20 needs to be operated. When the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei8-1, the process proceeds to step S1203. On the other hand, when the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei8-1, the process returns to the process of step S1200.
(ステップS1203)
 制御装置は、圧縮機20を停止状態にする。
(Step S1203)
The control device puts the compressor 20 in a stopped state.
(ステップS1204)
 制御装置は、圧縮機20を停止後の時間がTime8-1を経過したかを判定する。ここで、時間の計測は、例えば制御装置が行うが、これに限定されない。制御装置が、上記時間がTime8-1を経過したと判定した場合、ステップS1205の処理に進む。一方、制御装置が、上記時間がTime8-1を経過していないと判定した場合、ステップS1202の処理に戻る。
(Step S1204)
The control device determines whether the time after stopping the compressor 20 has elapsed Time 8-1. Here, the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that the time has elapsed, the process proceeds to step S1205. On the other hand, if the control device determines that the time has not elapsed, the process returns to the process of step S1202.
(ステップS1205)
 制御装置は、室内送風機6a、6bを停止状態にする。
(Step S1205)
The control device stops the indoor blowers 6a and 6b.
(ステップS1206)
 制御装置は、温冷感の数値が閾値Tonrei8-1以下であるかの判定を行う。なお、ここではフラップの運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei8-1以下であると判定した場合、ステップS1207の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei8-11より大きいと判定した場合、ステップS1200の処理に戻る。
(Step S1206)
The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei8-1. Here, it is determined whether or not the flap operation is necessary. When the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei8-1, the process proceeds to step S1207. On the other hand, when the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei8-11, the process returns to the process of step S1200.
(ステップS1207)
 制御装置は、室内送風機6a、6bを停止後の時間がTime8-2を経過したかを判定する。制御装置が、上記時間がTime8-2を経過したと判定した場合、ステップS1208の処理に進む。一方、制御装置が、上記時間がTime8-2を経過していないと判定した場合、ステップS1206の処理に戻る。
(Step S1207)
The control device determines whether Time 8-2 has elapsed after the indoor blowers 6a and 6b are stopped. If the control device determines that the time has elapsed, the process proceeds to step S1208. On the other hand, if the control device determines that the time has not elapsed, the process returns to the process of step S1206.
(ステップS1208)
 制御装置は、フラップを停止状態にする。
(Step S1208)
The control device puts the flap in a stopped state.
(ステップS1209)
 制御装置は、温冷感の数値が閾値Tonrei8-1以下であるかの判定を行う。なお、ここではその他のアクチュエータ(圧縮機20、室内送風機6a、6b、および、フラップ以外)の運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei8-1以下であると判定した場合、ステップS1210の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei8-1より大きいと判定した場合、ステップS1200の処理に戻る。
(Step S1209)
The control device determines whether the value of the feeling of warmth and coldness is equal to or less than the threshold value Tonrei8-1. Here, it is determined whether or not it is necessary to operate other actuators (compressor 20, indoor blowers 6a, 6b, and flaps). When the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei8-1, the process proceeds to step S1210. On the other hand, when the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei8-1, the process returns to the process of step S1200.
(ステップS1210)
 制御装置は、その他のアクチュエータを停止状態にする。
(Step S1210)
The control device puts the other actuators in a stopped state.
(ステップS1211)
 制御装置は、リモコン16などにより空気調和機の停止が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の停止が指示されたと判定した場合、ステップS1212の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の停止が指示されていないと判定した場合、ステップS1209の処理に戻る。
(Step S1211)
The control device determines whether or not the stop of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines that the remote controller 16 or the like has instructed to stop the air conditioner, the process proceeds to step S1212. On the other hand, when the control device determines that the stop of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1209.
(ステップS1212)
 制御装置は、空気調和機の運転を停止する。
(Step S1212)
The control device stops the operation of the air conditioner.
 なお、ステップS1202、S1206、S1209の比較式に関して、冷房運転の場合は上記の通りであるが、暖房運転の場合には閾値の符号が逆になり、≦の向きも逆になる。つまり、暖房運転の場合、ステップS1202では温冷感の数値≧Tonrei8-2となり、ステップS1206、S1209に関しても同様となる。また、冷房運転時の閾値と暖房運転時の閾値とは同じでもよいし、異なってもよい。また、各閾値は設計時に一様としてもよいし、各人体の体質ごと個別で設定されるものでもよい。 Regarding the comparative formulas of steps S1202, S1206, and S1209, the above is as described in the case of cooling operation, but in the case of heating operation, the sign of the threshold value is reversed and the direction of ≦ is also reversed. That is, in the case of the heating operation, the numerical value of the feeling of warm / cold ≧ Tonrei8-2 in step S1202, and the same applies to steps S1206 and S1209. Further, the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different. Further, each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
 また、ステップS1202、S1206、S1209の閾値は、同じでもよいし、異なっていてもよい。また、各経過時間の計測タイミングは、上記の様に各アクチュエータ停止からでもよいし、ステップS1202の条件成立時からとしてもよい。 Further, the threshold values of steps S1202, S1206, and S1209 may be the same or different. Further, the measurement timing of each elapsed time may be from the stop of each actuator as described above, or from the time when the condition of step S1202 is satisfied.
 実施の形態8に係る空気調和機によれば、空気調和機の運転を開始した後、時間による安全率を持たせながら適切なタイミングで各アクチュエータを停止状態とする。そうすることで、空調空間の快適性は維持したまま、無駄なアクチュエータの運転が停止するので、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the eighth embodiment, after the operation of the air conditioner is started, each actuator is stopped at an appropriate timing while having a safety factor according to time. By doing so, the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
 実施の形態9.
 以下、実施の形態9について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 9.
Hereinafter, the ninth embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
 図23は、実施の形態9に係る空気調和機の制御のタイムチャートである。図24は、実施の形態9に係る空気調和機の制御フローを示す図である。 FIG. 23 is a time chart of control of the air conditioner according to the ninth embodiment. FIG. 24 is a diagram showing a control flow of the air conditioner according to the ninth embodiment.
 実施の形態9に係る空気調和機では、図23に示すように空気調和機の運転開始直後には圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを運転状態にせず、空調負荷の増加に伴い、それらアクチュエータを順次運転状態にする制御を行う。以下、実施の形態9に係る空気調和機の制御について、図24を参照して説明する。 In the air conditioner according to the ninth embodiment, as shown in FIG. 23, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioning load is applied. As the number of actuators increases, the actuators are sequentially controlled to be in the operating state. Hereinafter, the control of the air conditioner according to the ninth embodiment will be described with reference to FIG. 24.
(ステップS1300)
 リモコン16などにより空気調和機の停止が指示されたら、制御装置は、空気調和機の運転を停止させる。
(Step S1300)
When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
(ステップS1301)
 制御装置は、リモコン16などにより空気調和機の運転が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の運転が指示されたかと判定した場合、ステップS1302の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の運転が指示されていないと判定した場合、ステップS1300の処理に戻る。
(Step S1301)
The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S1302. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1300.
(ステップS1302)
 制御装置は、センサユニット7のみ運転状態とし、空調空間の状況の検知を開始する。なお、制御装置は、室内送風機6a、6bを一定時間毎に予め設定された時間の間、運転状態にしてもよい。こうすることで、正確に空調空間の室温を取得することができる。
(Step S1302)
The control device puts only the sensor unit 7 in the operating state and starts detecting the state of the air-conditioned space. The control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
(ステップS1303)
 制御装置は、空調負荷傾向を求める。空調負荷傾向は、上記の通り、現在と過去における、室内熱交換器温度、外気温度、空調空間の室温、空調能力、および、空調空間の窓を通過した日射量に基づいて求められる。
(Step S1303)
The control device obtains the air conditioning load tendency. As described above, the air-conditioning load tendency is determined based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space, as described above.
(ステップS1304)
 制御装置は、空調負荷傾向が閾値Qmin9-1より大きいかの判定を行う。なお、ここではフラップの運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin9-1より大きいと判定した場合、ステップS1305の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin9-1以下であると判定した場合、ステップS1302の処理に戻る。
(Step S1304)
The control device determines whether the air conditioning load tendency is larger than the threshold value Qmin9-1. Here, it is determined whether or not the flap operation is necessary. If the control device determines that the air conditioning load tendency is larger than the threshold value Qmin9-1, the process proceeds to step S1305. On the other hand, when the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin9-1, the process returns to the process of step S1302.
(ステップS1305)
 制御装置は、フラップを運転状態にする。
(Step S1305)
The control device puts the flap into operation.
(ステップS1306)
 制御装置は、空調負荷傾向が閾値Qmin9-2より大きいかの判定を行う。なお、ここでは室内送風機6a、6bの運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin9-2より大きいと判定した場合、ステップS1307の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin9-2以下であると判定した場合、ステップS1304の処理に戻る。
(Step S1306)
The control device determines whether the air conditioning load tendency is larger than the threshold value Qmin9-2. Here, it is determined whether or not the indoor blowers 6a and 6b need to be operated. If the control device determines that the air conditioning load tendency is larger than the threshold value Qmin9-2, the process proceeds to step S1307. On the other hand, when the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin9-2, the process returns to the process of step S1304.
(ステップS1307)
 制御装置は、室内送風機6a、6bを運転状態にする。
(Step S1307)
The control device puts the indoor blowers 6a and 6b into an operating state.
(ステップS1308)
 制御装置は、空調負荷傾向が閾値Qmin9-3より大きいかの判定を行う。なお、ここでは圧縮機20およびその他のアクチュエータ(圧縮機20、室内送風機6a、6b、および、フラップ以外)の運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin9-3より大きいと判定した場合、ステップS1309の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin9-3以下であると判定した場合、ステップS1306の処理に戻る。
(Step S1308)
The control device determines whether the air conditioning load tendency is larger than the threshold value Qmin9-3. Here, it is determined whether or not the compressor 20 and other actuators (other than the compressor 20, the indoor blowers 6a and 6b, and the flap) need to be operated. If the control device determines that the air conditioning load tendency is larger than the threshold value Qmin9-3, the process proceeds to step S1309. On the other hand, when the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin9-3, the process returns to the process of step S1306.
(ステップS1309)
 制御装置は、圧縮機20およびその他のアクチュエータを運転状態にする。
(Step S1309)
The control device puts the compressor 20 and other actuators into operation.
 なお、各閾値は設計時に一様としてもよいし、住宅の熱貫流率などから住宅ごと個別で設定されるものでもよい。 Note that each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
 以上、実施の形態9に係る空気調和機において、制御装置は、空気調和機の停止中において操作手段によってから運転の指示を受けたら空調負荷傾向を求め、空調負荷傾向が予め設定された閾値より大きいと判定した場合、アクチュエータのうち一部を運転状態にする処理を行い、該処理を前記アクチュエータの全てが運転状態となるまで繰り返すものである。 As described above, in the air conditioner according to the ninth embodiment, the control device obtains the air conditioning load tendency when receiving an operation instruction from the operating means while the air conditioner is stopped, and the air conditioning load tendency is set from a preset threshold value. If it is determined to be large, a process of putting a part of the actuator into the operating state is performed, and the process is repeated until all of the actuators are in the operating state.
 実施の形態9に係る空気調和機によれば、空気調和機の運転を開始した後は、まずはセンサユニット7のみ運転状態とし、空調空間が快適な状態の時は他のアクチュエータを運転状態にしない。そうすることで、不要なタイミングでのアクチュエータの運転を回避でき、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the ninth embodiment, after the operation of the air conditioner is started, only the sensor unit 7 is put into the operating state, and when the air conditioning space is comfortable, the other actuators are not put into the operating state. .. By doing so, it is possible to avoid the operation of the actuator at unnecessary timings, reduce power consumption, and improve energy saving.
 実施の形態10.
 以下、実施の形態10について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 10.
Hereinafter, the tenth embodiment will be described, but the description thereof will be omitted for those overlapping with the first embodiment, and the same parts or the corresponding parts as those in the first embodiment will be designated by the same reference numerals.
 図25は、実施の形態10に係る空気調和機の制御のタイムチャートである。図26は、実施の形態10に係る空気調和機の制御フローを示す図である。 FIG. 25 is a time chart of control of the air conditioner according to the tenth embodiment. FIG. 26 is a diagram showing a control flow of the air conditioner according to the tenth embodiment.
 実施の形態10に係る空気調和機では、図25に示すように空気調和機の運転開始直後には圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを運転状態にせず、温冷感の数値の増加に伴い、それらアクチュエータを順次運転状態にする制御を行う。以下、実施の形態10に係る空気調和機の制御について、図26を参照して説明する。 In the air conditioner according to the tenth embodiment, as shown in FIG. 25, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioner is heated and cooled. As the numerical value of the feeling increases, the actuators are sequentially controlled to be in the operating state. Hereinafter, the control of the air conditioner according to the tenth embodiment will be described with reference to FIG. 26.
(ステップS1400)
 リモコン16などにより空気調和機の停止が指示されたら、制御装置は、空気調和機の運転を停止させる。
(Step S1400)
When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
(ステップS1401)
 制御装置は、リモコン16などにより空気調和機の運転が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の運転が指示されたかと判定した場合、ステップS1402の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の運転が指示されていないと判定した場合、ステップS1400の処理に戻る。
(Step S1401)
The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S1402. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1400.
(ステップS1402)
 制御装置は、センサユニット7のみ運転状態とし、空調空間の状況の検知を開始する。なお、制御装置は、室内送風機6a、6bを一定時間毎に予め設定された時間の間、運転状態にしてもよい。こうすることで、正確に空調空間の室温を取得することができる。
(Step S1402)
The control device puts only the sensor unit 7 in the operating state and starts detecting the state of the air-conditioned space. The control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
(ステップS1403)
 制御装置は、室内状況検知センサ8が検知した空調空間の状況に関わるデータに基づいて、空調空間内に居る人の温冷感の数値を求める。
(Step S1403)
The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the state of the air-conditioned space detected by the indoor condition detection sensor 8.
(ステップS1404)
 制御装置は、温冷感の数値が閾値Tonrei10-1より大きいかの判定を行う。なお、ここではフラップの運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei10-1より大きいと判定した場合、ステップS1405の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei10-1以下であると判定した場合、ステップS1402の処理に戻る。
(Step S1404)
The control device determines whether the value of the feeling of warmth and coldness is larger than the threshold value Tonrei10-1. Here, it is determined whether or not the flap operation is necessary. When the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei10-1, the process proceeds to step S1405. On the other hand, when the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei10-1, the process returns to the process of step S1402.
(ステップS1405)
 制御装置は、フラップを運転状態にする。
(Step S1405)
The control device puts the flap into operation.
(ステップS1406)
 制御装置は、温冷感の数値が閾値Tonrei10-2より大きいかの判定を行う。なお、ここでは室内送風機6a、6bの運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei10-2より大きいと判定した場合、ステップS1407の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei10-2以下であると判定した場合、ステップS1404の処理に戻る。
(Step S1406)
The control device determines whether the value of the feeling of warmth and coldness is larger than the threshold value Tonrei10-2. Here, it is determined whether or not the indoor blowers 6a and 6b need to be operated. If the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei10-2, the process proceeds to step S1407. On the other hand, when the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei10-2, the process returns to the process of step S1404.
(ステップS1407)
 制御装置は、室内送風機6a、6bを運転状態にする。
(Step S1407)
The control device puts the indoor blowers 6a and 6b into an operating state.
(ステップS1408)
 制御装置は、温冷感の数値が閾値Tonrei10-3より大きいかの判定を行う。なお、ここでは圧縮機20およびその他のアクチュエータ(圧縮機20、室内送風機6a、6b、および、フラップ以外)の運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei10-3より大きいと判定した場合、ステップS1409の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei10-3以下であると判定した場合、ステップS1406の処理に戻る。
(Step S1408)
The control device determines whether the value of the feeling of warmth and coldness is larger than the threshold value Tonrei10-3. Here, it is determined whether or not the compressor 20 and other actuators (other than the compressor 20, the indoor blowers 6a and 6b, and the flap) need to be operated. If the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei10-3, the process proceeds to step S1409. On the other hand, when the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei10-3, the process returns to the process of step S1406.
(ステップS1409)
 制御装置は、圧縮機20およびその他のアクチュエータを運転状態にする。
(Step S1409)
The control device puts the compressor 20 and other actuators into operation.
 なお、ステップS1404、S1406、S1408の比較式に関して、冷房運転の場合は上記の通りであるが、暖房運転の場合には閾値の符号が逆になり、>の向きも逆になる。つまり、暖房運転の場合、ステップS1404では温冷感の数値<Tonrei10-4となり、ステップS1406、S1408に関しても同様となる。また、冷房運転時の閾値と暖房運転時の閾値とは同じでもよいし、異なってもよい。また、各閾値は設計時に一様としてもよいし、各人体の体質ごと個別で設定されるものでもよい。 Regarding the comparative formulas of steps S1404, S1406, and S1408, the above is as described in the case of cooling operation, but in the case of heating operation, the sign of the threshold value is reversed and the direction of> is also reversed. That is, in the case of the heating operation, the numerical value of the feeling of warm / cold <Tonrei10-4 in step S1404, and the same applies to steps S1406 and S1408. Further, the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different. Further, each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
 以上、実施の形態10に係る空気調和機において、制御装置は、空気調和機の停止中において操作手段によって運転の指示を受けたら温冷感の数値を求め、冷房運転時は温冷感の数値が予め設定された第一閾値より大きいと判定した場合、暖房運転時は温冷感の数値が予め設定された第二閾値より小さいと判定した場合、アクチュエータのうち一部を運転状態にする処理を行い、該処理を前記アクチュエータの全てが運転状態となるまで繰り返すものである。 As described above, in the air conditioner according to the tenth embodiment, the control device obtains a numerical value of a feeling of warming and cooling when receiving an operation instruction by an operating means while the air conditioner is stopped, and a numerical value of a feeling of warming and cooling during a cooling operation. If it is determined that is larger than the preset first threshold value, and if it is determined that the temperature / cooling feeling value is smaller than the preset second threshold value during heating operation, a process of putting a part of the actuator into the operating state is performed. Is performed, and the process is repeated until all of the actuators are in the operating state.
 実施の形態10に係る空気調和機によれば、空気調和機の運転を開始した後は、まずはセンサユニット7のみ運転状態とし、空調空間が快適な状態の時は他のアクチュエータを運転状態にしない。そうすることで、不要なタイミングでのアクチュエータの運転を回避でき、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the tenth embodiment, after the operation of the air conditioner is started, only the sensor unit 7 is put into the operating state first, and when the air conditioning space is comfortable, the other actuators are not put into the operating state. .. By doing so, it is possible to avoid the operation of the actuator at unnecessary timings, reduce power consumption, and improve energy saving.
 実施の形態11.
 以下、実施の形態11について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 11.
Hereinafter, the eleventh embodiment will be described, but the description thereof will be omitted for those overlapping with the first embodiment, and the same parts or the corresponding parts as those in the first embodiment will be designated by the same reference numerals.
 図27は、実施の形態11に係る空気調和機の制御のタイムチャートである。図28は、実施の形態11に係る空気調和機の制御フローを示す図である。 FIG. 27 is a time chart of control of the air conditioner according to the eleventh embodiment. FIG. 28 is a diagram showing a control flow of the air conditioner according to the eleventh embodiment.
 実施の形態11に係る空気調和機では、図27に示すように空気調和機の運転開始直後には圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを運転状態にせず、空調負荷の増加に伴い、それらアクチュエータを順次運転状態にする制御を行う。以下、実施の形態11に係る空気調和機の制御について、図28を参照して説明する。 In the air conditioner according to the eleventh embodiment, as shown in FIG. 27, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioning load is applied. As the number of actuators increases, the actuators are sequentially controlled to be in the operating state. Hereinafter, the control of the air conditioner according to the eleventh embodiment will be described with reference to FIG. 28.
(ステップS1500)
 リモコン16などにより空気調和機の停止が指示されたら、制御装置は、空気調和機の運転を停止させる。
(Step S1500)
When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
(ステップS1501)
 制御装置は、リモコン16などにより空気調和機の運転が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の運転が指示されたかと判定した場合、ステップS1502の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の運転が指示されていないと判定した場合、ステップS1500の処理に戻る。
(Step S1501)
The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S1502. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1500.
(ステップS1502)
 制御装置は、センサユニット7のみ運転状態とし、空調空間の状況の検知を開始する。なお、制御装置は、室内送風機6a、6bを一定時間毎に予め設定された時間の間、運転状態にしてもよい。こうすることで、正確に空調空間の室温を取得することができる。
(Step S1502)
The control device puts only the sensor unit 7 in the operating state and starts detecting the state of the air-conditioned space. The control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
(ステップS1503)
 制御装置は、空調負荷傾向を求める。空調負荷傾向は、上記の通り、現在と過去における、室内熱交換器温度、外気温度、空調空間の室温、空調能力、および、空調空間の窓を通過した日射量に基づいて求められる。
(Step S1503)
The control device obtains the air conditioning load tendency. As described above, the air-conditioning load tendency is obtained based on the indoor heat exchanger temperature, the outside air temperature, the room temperature of the air-conditioning space, the air-conditioning capacity, and the amount of solar radiation passing through the window of the air-conditioning space as described above.
(ステップS1504)
 制御装置は、空調負荷傾向が閾値Qmin11-1より大きいかの判定を行う。なお、ここではフラップの運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin11-1より大きいと判定した場合、ステップS1505の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin11-1以下であると判定した場合、ステップS1502の処理に戻る。
(Step S1504)
The control device determines whether the air conditioning load tendency is larger than the threshold value Qmin11-1. Here, it is determined whether or not the flap operation is necessary. If the control device determines that the air conditioning load tendency is larger than the threshold value Qmin11-1, the process proceeds to step S1505. On the other hand, when the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin11-1, the process returns to the process of step S1502.
(ステップS1505)
 制御装置は、フラップを運転状態にする。
(Step S1505)
The control device puts the flap into operation.
(ステップS1506)
 制御装置は、フラップを運転後の時間がTime11-1を経過したかを判定する。ここで、時間の計測は、例えば制御装置が行うが、これに限定されない。制御装置が、上記時間がTime11-1を経過したと判定した場合、ステップS1507の処理に進む。一方、制御装置が、上記時間がTime11-1を経過していないと判定した場合、ステップS1504の処理に戻る。
(Step S1506)
The control device determines whether the time after operating the flap has passed Time 11-1. Here, the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that the time 11-1 has elapsed, the process proceeds to step S1507. On the other hand, if the control device determines that the time has not elapsed, the process returns to the process of step S1504.
(ステップS1507)
 制御装置は、室内送風機6a、6bを運転状態にする。
(Step S1507)
The control device puts the indoor blowers 6a and 6b into an operating state.
(ステップS1508)
 制御装置は、空調負荷傾向が閾値Qmin11-1より大きいかの判定を行う。なお、ここでは圧縮機20およびその他のアクチュエータ(圧縮機20、室内送風機6a、6b、および、フラップ以外)の運転が必要かどうかの判定が行われている。制御装置が、空調負荷傾向が閾値Qmin11-1より大きいと判定した場合、ステップS1509の処理に進む。一方、制御装置が、空調負荷傾向が閾値Qmin11-1以下であると判定した場合、ステップS1504の処理に戻る。
(Step S1508)
The control device determines whether the air conditioning load tendency is larger than the threshold value Qmin11-1. Here, it is determined whether or not the compressor 20 and other actuators (other than the compressor 20, the indoor blowers 6a and 6b, and the flap) need to be operated. If the control device determines that the air conditioning load tendency is larger than the threshold value Qmin11-1, the process proceeds to step S1509. On the other hand, when the control device determines that the air conditioning load tendency is equal to or less than the threshold value Qmin11-1, the process returns to the process of step S1504.
(ステップS1509)
 制御装置は、室内送風機6a、6bを運転後の時間がTime11-2を経過したかを判定する。ここで、時間の計測は、例えば制御装置が行うが、これに限定されない。制御装置が、上記時間がTime11-2を経過したと判定した場合、ステップS1510の処理に進む。一方、制御装置が、上記時間がTime11-2を経過していないと判定した場合、ステップS1508の処理に戻る。
(Step S1509)
The control device determines whether the time after operating the indoor blowers 6a and 6b has passed Time 11-2. Here, the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that Time 11-2 has elapsed, the process proceeds to step S1510. On the other hand, if the control device determines that the time has not elapsed for Time 11-2, the process returns to the process of step S1508.
(ステップS1510)
 制御装置は、圧縮機20およびその他のアクチュエータを運転状態にする。
(Step S1510)
The control device puts the compressor 20 and other actuators into operation.
 なお、各閾値は設計時に一様としてもよいし、住宅の熱貫流率などから住宅ごと個別で設定されるものでもよい。 Note that each threshold value may be uniform at the time of design, or may be set individually for each house from the thermal transmission rate of the house.
 ここで、ステップS1504、S1508の閾値は、同じでもよいし、異なっていてもよい。また、各経過時間の計測タイミングは、上記の様に各アクチュエータ運転からでもよいし、ステップS1504の条件成立時からとしてもよい。 Here, the threshold values of steps S1504 and S1508 may be the same or different. Further, the measurement timing of each elapsed time may be from each actuator operation as described above, or from the time when the condition of step S1504 is satisfied.
 以上、実施の形態11に係る空気調和機において、制御装置は、アクチュエータのうち一部を運転状態にした後、予め設定された時間が経過後に、他の停止状態のアクチュエータのうち一部または全てを運転状態にするものである。 As described above, in the air conditioner according to the eleventh embodiment, the control device puts a part of the actuators into the operating state, and after a preset time elapses, a part or all of the actuators in the other stopped state. Is to put the vehicle into an operating state.
 実施の形態11に係る空気調和機によれば、空気調和機の運転を開始した後、時間による安全率を持たせながら適切なタイミングで各アクチュエータを運転状態とする。そうすることで、空調空間の快適性は維持したまま、不要なタイミングでのアクチュエータの駆動を回避でき、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the eleventh embodiment, after the operation of the air conditioner is started, each actuator is put into the operating state at an appropriate timing while having a safety factor according to time. By doing so, it is possible to avoid driving the actuator at unnecessary timings while maintaining the comfort of the air-conditioned space, reducing power consumption and improving energy saving.
 実施の形態12.
 以下、実施の形態12について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 12.
Hereinafter, the twelfth embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
 図29は、実施の形態12に係る空気調和機の制御のタイムチャートである。図30は、実施の形態12に係る空気調和機の制御フローを示す図である。 FIG. 29 is a time chart of control of the air conditioner according to the twelfth embodiment. FIG. 30 is a diagram showing a control flow of the air conditioner according to the twelfth embodiment.
 実施の形態12に係る空気調和機では、図29に示すように空気調和機の運転開始直後には圧縮機20、室内送風機6a、6b、および、フラップなどのアクチュエータを運転状態にせず、温冷感の数値の増加に伴い、それらアクチュエータを順次運転状態にする制御を行う。以下、実施の形態12に係る空気調和機の制御について、図30を参照して説明する。 In the air conditioner according to the twelfth embodiment, as shown in FIG. 29, immediately after the start of operation of the air conditioner, the compressor 20, the indoor blowers 6a and 6b, and the actuators such as flaps are not put into the operating state, and the air conditioner is heated and cooled. As the numerical value of the feeling increases, the actuators are sequentially controlled to be in the operating state. Hereinafter, the control of the air conditioner according to the twelfth embodiment will be described with reference to FIG.
(ステップS1600)
 リモコン16などにより空気調和機の停止が指示されたら、制御装置は、空気調和機の運転を停止させる。
(Step S1600)
When the remote controller 16 or the like instructs to stop the air conditioner, the control device stops the operation of the air conditioner.
(ステップS1601)
 制御装置は、リモコン16などにより空気調和機の運転が指示されたかどうかの判定を行う。制御装置が、リモコン16などにより空気調和機の運転が指示されたかと判定した場合、ステップS1602の処理に進む。一方、制御装置が、リモコン16などにより空気調和機の運転が指示されていないと判定した場合、ステップS1600の処理に戻る。
(Step S1601)
The control device determines whether or not the operation of the air conditioner is instructed by the remote controller 16 or the like. When the control device determines whether the operation of the air conditioner is instructed by the remote controller 16 or the like, the process proceeds to step S1602. On the other hand, when the control device determines that the operation of the air conditioner is not instructed by the remote controller 16 or the like, the process returns to the process of step S1600.
(ステップS1602)
 制御装置は、センサユニット7のみ運転状態とし、室内の状況の検知を開始する。なお、制御装置は、室内送風機6a、6bを一定時間毎に予め設定された時間の間、運転状態にしてもよい。こうすることで、正確に空調空間の室温を取得することができる。
(Step S1602)
The control device puts only the sensor unit 7 in the operating state and starts detecting the indoor situation. The control device may put the indoor blowers 6a and 6b into an operating state at regular time intervals for a preset time. By doing so, the room temperature of the air-conditioned space can be accurately obtained.
(ステップS1603)
 制御装置は、センサユニット7の室内状況検知センサ8が検知した室内の状況に関わるデータに基づいて、空調空間内に居る人の温冷感の数値を求める。
(Step S1603)
The control device obtains a numerical value of the feeling of warmth and coldness of a person in the air-conditioned space based on the data related to the indoor condition detected by the indoor condition detection sensor 8 of the sensor unit 7.
(ステップS1604)
 制御装置は、温冷感の数値が閾値Tonrei12-1より大きいかの判定を行う。なお、ここではフラップの運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei12-1より大きいと判定した場合、ステップS1605の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei12-1以下であると判定した場合、ステップS1602の処理に戻る。
(Step S1604)
The control device determines whether the value of the feeling of warmth and coldness is larger than the threshold value Tonrei12-1. Here, it is determined whether or not the flap operation is necessary. When the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei12-1, the process proceeds to step S1605. On the other hand, when the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei12-1, the process returns to the process of step S1602.
(ステップS1605)
 制御装置は、フラップを運転状態にする。
(Step S1605)
The control device puts the flap into operation.
(ステップS1606)
 制御装置は、フラップを運転後の時間がTime12-1を経過したかを判定する。ここで、時間の計測は、例えば制御装置が行うが、これに限定されない。制御装置が、上記時間がTime12-1を経過したと判定した場合、ステップS1607の処理に進む。一方、制御装置が、上記時間がTime12-1を経過していないと判定した場合、ステップS1604の処理に戻る。
(Step S1606)
The control device determines whether the time after operating the flap has passed Time12-1. Here, the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that the time has elapsed, the process proceeds to step S1607. On the other hand, if the control device determines that the time has not elapsed, the process returns to the process of step S1604.
(ステップS1607)
 制御装置は、室内送風機6a、6bを運転状態にする。
(Step S1607)
The control device puts the indoor blowers 6a and 6b into an operating state.
(ステップS1608)
 制御装置は、温冷感の数値が閾値Tonrei12-1より大きいかの判定を行う。なお、ここでは圧縮機20およびその他のアクチュエータ(圧縮機20、室内送風機6a、6b、および、フラップ以外)の運転が必要かどうかの判定が行われている。制御装置が、温冷感の数値が閾値Tonrei12-1より大きいと判定した場合、ステップS1609の処理に進む。一方、制御装置が、温冷感の数値が閾値Tonrei12-1以下であると判定した場合、ステップS1604の処理に戻る。
(Step S1608)
The control device determines whether the value of the feeling of warmth and coldness is larger than the threshold value Tonrei12-1. Here, it is determined whether or not the compressor 20 and other actuators (other than the compressor 20, the indoor blowers 6a and 6b, and the flap) need to be operated. When the control device determines that the value of the feeling of warm / cold is larger than the threshold value Tonrei12-1, the process proceeds to step S1609. On the other hand, when the control device determines that the value of the feeling of warm / cold is equal to or less than the threshold value Tonrei12-1, the process returns to the process of step S1604.
(ステップS1609)
 制御装置は、室内送風機6a、6bを運転後の時間がTime12-2を経過したかを判定する。ここで、時間の計測は、例えば制御装置が行うが、これに限定されない。制御装置が、上記時間がTime12-2を経過したと判定した場合、ステップS1610の処理に進む。一方、制御装置が、上記時間がTime12-2を経過していないと判定した場合、ステップS1608の処理に戻る。
(Step S1609)
The control device determines whether the time after operating the indoor blowers 6a and 6b has passed Time12-2. Here, the time measurement is performed by, for example, a control device, but the time is not limited to this. If the control device determines that the time has elapsed, the process proceeds to step S1610. On the other hand, if the control device determines that the time has not elapsed for Time12-2, the process returns to the process of step S1608.
(ステップS1610)
 制御装置は、圧縮機20およびその他のアクチュエータを運転状態にする。
(Step S1610)
The control device puts the compressor 20 and other actuators into operation.
 なお、ステップS1604、S1608の比較式に関して、冷房運転の場合は上記の通りであるが、暖房運転の場合には閾値の符号が逆になり、>の向きも逆になる。つまり、暖房運転の場合、ステップS1604では温冷感の数値<Tonrei12-2となり、ステップS1608に関しても同様となる。また、冷房運転時の閾値と暖房運転時の閾値とは同じでもよいし、異なってもよい。また、各閾値は設計時に一様としてもよいし、各人体の体質ごと個別で設定されるものでもよい。 Regarding the comparative formulas of steps S1604 and S1608, the above is as described in the case of cooling operation, but in the case of heating operation, the sign of the threshold value is reversed and the direction of> is also reversed. That is, in the case of the heating operation, the numerical value of the feeling of warm / cold <Tonrei12-2 in step S1604, and the same applies to step S1608. Further, the threshold value during the cooling operation and the threshold value during the heating operation may be the same or different. Further, each threshold value may be uniform at the time of design, or may be set individually for each constitution of the human body.
 また、ステップS1604、S1608の閾値は、同じでもよいし、異なっていてもよい。また、各経過時間の計測タイミングは、上記の様に各アクチュエータ停止からでもよいし、ステップS1604の条件成立時からとしてもよい。 Further, the threshold values of steps S1604 and S1608 may be the same or different. Further, the measurement timing of each elapsed time may be from the stop of each actuator as described above, or from the time when the condition of step S1604 is satisfied.
 実施の形態12に係る空気調和機によれば、空気調和機の運転を開始した後、時間による安全率を持たせながら適切なタイミングで各アクチュエータを停止状態とする。そうすることで、空調空間の快適性は維持したまま、無駄なアクチュエータの運転が停止するので、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the twelfth embodiment, after the operation of the air conditioner is started, each actuator is stopped at an appropriate timing while having a safety factor according to time. By doing so, the operation of the unnecessary actuator is stopped while maintaining the comfort of the air-conditioned space, so that the power consumption is reduced and the energy saving is improved.
 実施の形態12に係る空気調和機によれば、空気調和機の運転を開始した後、時間による安全率を持たせながら適切なタイミングで各アクチュエータを運転状態とする。そうすることで、空調空間の快適性は維持したまま、不要なタイミングでのアクチュエータの駆動を回避でき、消費電力が低減し、省エネ性が向上する。 According to the air conditioner according to the twelfth embodiment, after the operation of the air conditioner is started, each actuator is put into the operating state at an appropriate timing while having a safety factor according to time. By doing so, it is possible to avoid driving the actuator at unnecessary timings while maintaining the comfort of the air-conditioned space, reducing power consumption and improving energy saving.
 1 室内機本体、2 吸込口、3 吹出口、4a、4b 上下風向板、5 左右風向板、6a、6b 室内送風機、7 センサユニット、8 室内状況検知センサ、10 前面風向板、11 室内制御装置、12 室内熱交換器、13 室内熱交換器温度センサ、14 室内温度センサ、15 室内湿度センサ、16 リモートコントローラ、20 圧縮機、21 室外送風機、22 室外熱交換器、23 流路切替装置、24 絞り装置、25 室外制御装置、26 外気温度センサ、31 室内入力部、32 演算処理部、33 空調負荷判定部、34 温冷感判定部、35 判定処理部、36 記憶部、37 室内制御部、38 室内出力部、41 室外入力部、42 室外制御部、43 室外出力部、51 室外機本体、52 吹出口、53 ファンガード、100 室内機、200 室外機、300 ガス冷媒配管、400 液冷媒配管。 1 Indoor unit body, 2 Suction port, 3 Air outlet, 4a, 4b Vertical air direction plate, 5 Left and right air direction plates, 6a, 6b Indoor blower, 7 Sensor unit, 8 Indoor condition detection sensor, 10 Front air direction plate, 11 Indoor control device , 12 indoor heat exchanger, 13 indoor heat exchanger temperature sensor, 14 indoor temperature sensor, 15 indoor humidity sensor, 16 remote controller, 20 compressor, 21 outdoor blower, 22 outdoor heat exchanger, 23 flow path switching device, 24 Filter device, 25 outdoor control device, 26 outdoor air temperature sensor, 31 indoor input unit, 32 arithmetic processing unit, 33 air conditioning load determination unit, 34 hot / cold feeling determination unit, 35 judgment processing unit, 36 storage unit, 37 indoor control unit, 38 indoor output unit, 41 outdoor input unit, 42 outdoor control unit, 43 outdoor output unit, 51 outdoor unit body, 52 outlet, 53 fan guard, 100 indoor unit, 200 outdoor unit, 300 gas refrigerant pipe, 400 liquid refrigerant pipe ..

Claims (13)

  1.  アクチュエータとして、少なくとも圧縮機、フラップ、室内送風機、および、室外送風機を備え、操作手段によって運転または停止の指示が行われる空気調和機であって、
     今後の空調負荷の傾向を示す傾きである空調負荷傾向、または、空調空間内に居る人の感覚を示す温冷感の数値を求める制御装置と、を備え、
     前記制御装置は、
     空気調和機の停止中において前記操作手段によって運転の指示を受けたら前記空調負荷傾向または前記温冷感の数値を求め、
     前記空調負荷傾向または前記温冷感の数値に応じて前記アクチュエータを運転または停止させる
     空気調和機。
    An air conditioner including at least a compressor, a flap, an indoor blower, and an outdoor blower as an actuator, and instructed to start or stop by an operating means.
    It is equipped with a control device that obtains the air-conditioning load tendency, which is a slope indicating the tendency of the air-conditioning load in the future, or the numerical value of the feeling of warmth and coldness, which indicates the feeling of a person in the air-conditioned space.
    The control device is
    When an operation instruction is received by the operating means while the air conditioner is stopped, the numerical value of the air conditioning load tendency or the hot / cold feeling is obtained.
    An air conditioner that operates or stops the actuator according to the air conditioning load tendency or the numerical value of the feeling of temperature and temperature.
  2.  前記制御装置は、
     空気調和機の停止中において前記操作手段によって運転の指示を受けたら前記アクチュエータを全て運転状態にした後、前記空調負荷傾向を求め、
     前記空調負荷傾向が予め設定された閾値以下であると判定した場合、前記アクチュエータを全て停止状態にする
     請求項1に記載の空気調和機。
    The control device is
    When an operation instruction is received by the operating means while the air conditioner is stopped, all the actuators are put into the operating state, and then the air conditioning load tendency is obtained.
    The air conditioner according to claim 1, wherein when it is determined that the air conditioning load tendency is equal to or less than a preset threshold value, all the actuators are stopped.
  3.  前記制御装置は、
     空気調和機の停止中において前記操作手段によって運転の指示を受けたら前記アクチュエータを全て運転状態にした後、前記温冷感の数値を求め、
     冷房運転時は前記温冷感の数値が予め設定された第一閾値以下であると判定した場合、暖房運転時は前記温冷感の数値が予め設定された第二閾値以上であると判定した場合、
    前記アクチュエータを全て停止状態にする
     請求項1に記載の空気調和機。
    The control device is
    When an operation instruction is received by the operating means while the air conditioner is stopped, all the actuators are put into the operating state, and then the numerical value of the hot / cold feeling is obtained.
    When it is determined that the warm / cold feeling value is equal to or less than the preset first threshold value during the cooling operation, it is determined that the hot / cold feeling value is equal to or higher than the preset second threshold value during the heating operation. case,
    The air conditioner according to claim 1, wherein all the actuators are stopped.
  4.  前記制御装置は、
     空気調和機の停止中において前記操作手段によって運転の指示を受けたら前記空調負荷傾向を求め、
     前記空調負荷傾向が予め設定された閾値以下であると判定した場合、前記アクチュエータを全て停止状態のままにし、
     前記空調負荷傾向が予め設定された前記閾値より大きいと判定した場合、前記アクチュエータを全て運転状態にする
     請求項1に記載の空気調和機。
    The control device is
    When the operation instruction is received by the operation means while the air conditioner is stopped, the air conditioning load tendency is obtained.
    If it is determined that the air conditioning load tendency is equal to or less than a preset threshold value, all the actuators are left in the stopped state.
    The air conditioner according to claim 1, wherein when it is determined that the air conditioning load tendency is larger than the preset threshold value, all the actuators are put into an operating state.
  5.  前記制御装置は、
     空気調和機の停止中において前記操作手段によって運転の指示を受けたら前記温冷感の数値を求め、
     冷房運転時は前記温冷感の数値が予め設定された第一閾値以下であると判定した場合、暖房運転時は前記温冷感の数値が予め設定された第二閾値以上であると判定した場合、前記アクチュエータを全て停止状態のままにし、
     冷房運転時は前記温冷感の数値が予め設定された前記第一閾値より大きいと判定した場合、暖房運転時は前記温冷感の数値が予め設定された前記第二閾値より小さいと判定した場合、前記アクチュエータを全て運転状態にする
     請求項1に記載の空気調和機。
    The control device is
    When the operation instruction is received by the operating means while the air conditioner is stopped, the numerical value of the feeling of temperature and cooling is obtained.
    When it is determined that the warm / cold feeling value is equal to or less than the preset first threshold value during the cooling operation, it is determined that the hot / cold feeling value is equal to or higher than the preset second threshold value during the heating operation. If so, leave all the actuators in a stopped state.
    When it is determined that the warm / cold feeling value is larger than the preset first threshold value during the cooling operation, it is determined that the hot / cold feeling value is smaller than the preset second threshold value during the heating operation. The air conditioner according to claim 1, wherein all the actuators are put into an operating state.
  6.  前記制御装置は、
     空気調和機の停止中において前記操作手段によって運転の指示を受けたら前記アクチュエータを全て運転状態にした後、前記空調負荷傾向を求め、
     前記空調負荷傾向が予め設定された閾値以下であると判定した場合、前記アクチュエータのうち一部を停止状態にする処理を行い、該処理を前記アクチュエータの全てが停止状態となるまで繰り返す
     請求項1に記載の空気調和機。
    The control device is
    When an operation instruction is received by the operating means while the air conditioner is stopped, all the actuators are put into the operating state, and then the air conditioning load tendency is obtained.
    When it is determined that the air conditioning load tendency is equal to or less than a preset threshold value, a process of putting a part of the actuators into a stopped state is performed, and the process is repeated until all of the actuators are stopped. The air conditioner described in.
  7.  前記制御装置は、
     空気調和機の停止中において前記操作手段によって運転の指示を受けたら前記アクチュエータを全て運転状態にした後、前記温冷感の数値を求め、
     冷房運転時は前記温冷感の数値が予め設定された第一閾値以下であると判定した場合、暖房運転時は前記温冷感の数値が予め設定された第二閾値以上であると判定した場合、前記アクチュエータのうち一部を停止状態にする処理を行い、該処理を前記アクチュエータの全てが停止状態となるまで繰り返す
     請求項1に記載の空気調和機。
    The control device is
    When an operation instruction is received by the operating means while the air conditioner is stopped, all the actuators are put into the operating state, and then the numerical value of the hot / cold feeling is obtained.
    When it is determined that the warm / cold feeling value is equal to or less than the preset first threshold value during the cooling operation, it is determined that the hot / cold feeling value is equal to or higher than the preset second threshold value during the heating operation. In this case, the air conditioner according to claim 1, wherein a process of putting a part of the actuators into a stopped state is performed, and the process is repeated until all of the actuators are in a stopped state.
  8.  前記制御装置は、
     前記アクチュエータのうち一部を停止状態にした後、予め設定された時間が経過後に、他の前記アクチュエータのうち一部または全てを停止状態にする
     請求項6または7に記載の空気調和機。
    The control device is
    The air conditioner according to claim 6 or 7, wherein a part or all of the other actuators is stopped after a preset time elapses after a part of the actuators is stopped.
  9.  前記制御装置は、
     空気調和機の停止中において前記操作手段によってから運転の指示を受けたら前記空調負荷傾向を求め、
     前記空調負荷傾向が予め設定された閾値より大きいと判定した場合、前記アクチュエータのうち一部を運転状態にする処理を行い、該処理を前記アクチュエータの全てが運転状態となるまで繰り返す
     請求項1に記載の空気調和機。
    The control device is
    When the operation instruction is received from the operating means while the air conditioner is stopped, the air conditioning load tendency is obtained.
    When it is determined that the air conditioning load tendency is larger than a preset threshold value, a process of putting a part of the actuators into an operating state is performed, and the process is repeated until all of the actuators are in an operating state. The described air conditioner.
  10.  前記制御装置は、
     空気調和機の停止中において前記操作手段によって運転の指示を受けたら前記温冷感の数値を求め、
     冷房運転時は前記温冷感の数値が予め設定された第一閾値より大きいと判定した場合、暖房運転時は前記温冷感の数値が予め設定された第二閾値より小さいと判定した場合、前記アクチュエータのうち一部を運転状態にする処理を行い、該処理を前記アクチュエータの全てが運転状態となるまで繰り返す
     請求項1に記載の空気調和機。
    The control device is
    When the operation instruction is received by the operating means while the air conditioner is stopped, the numerical value of the feeling of temperature and cooling is obtained.
    When it is determined that the warm / cold feeling value is larger than the preset first threshold value during the cooling operation, and when it is determined that the hot / cold feeling value is smaller than the preset second threshold value during the heating operation. The air conditioner according to claim 1, wherein a process of putting a part of the actuator into an operating state is performed, and the process is repeated until all of the actuators are in an operating state.
  11.  前記制御装置は、
     前記アクチュエータのうち一部を運転状態にした後、予め設定された時間が経過後に、他の停止状態の前記アクチュエータのうち一部または全てを運転状態にする
     請求項9または10に記載の空気調和機。
    The control device is
    The air conditioning according to claim 9 or 10, wherein a part or all of the actuators in another stopped state is put into an operating state after a preset time elapses after a part of the actuators is put into an operating state. Machine.
  12.  空調空間の状況を検知するセンサユニットを備え、
     前記制御装置は、
     空気調和機の運転中において前記操作手段によって停止の指示を受けたら前記アクチュエータを全て停止状態にし、前記センサユニットは運転状態のままにする
     請求項1~11のいずれか一項に記載の空気調和機。
    Equipped with a sensor unit that detects the status of the air-conditioned space
    The control device is
    The air conditioner according to any one of claims 1 to 11, wherein when the operation means receives an instruction to stop the air conditioner while the air conditioner is in operation, all the actuators are stopped and the sensor unit is left in the operating state. Machine.
  13.  前記制御装置は、
     空気調和機の運転中において前記操作手段によって停止の指示を受けたら前記アクチュエータを全て停止状態にした後、前記室内送風機を一定時間毎に予め設定された時間の間、運転状態にする
     請求項1~12のいずれか一項に記載の空気調和機。
    The control device is
    Claim 1 that, when the operation means receives an instruction to stop the air conditioner while the air conditioner is in operation, all the actuators are stopped, and then the indoor blower is put into the operating state for a preset time at regular intervals. The air conditioner according to any one of 12 to 12.
PCT/JP2020/032309 2020-08-27 2020-08-27 Air conditioner WO2022044186A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/032309 WO2022044186A1 (en) 2020-08-27 2020-08-27 Air conditioner
CN202080007376.9A CN114521225B (en) 2020-08-27 2020-08-27 air conditioner
JP2021532202A JP7301133B2 (en) 2020-08-27 2020-08-27 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/032309 WO2022044186A1 (en) 2020-08-27 2020-08-27 Air conditioner

Publications (1)

Publication Number Publication Date
WO2022044186A1 true WO2022044186A1 (en) 2022-03-03

Family

ID=80352873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032309 WO2022044186A1 (en) 2020-08-27 2020-08-27 Air conditioner

Country Status (3)

Country Link
JP (1) JP7301133B2 (en)
CN (1) CN114521225B (en)
WO (1) WO2022044186A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668742A (en) * 1979-11-12 1981-06-09 Fuji Electric Co Ltd Air conditioner system
JPH01106847U (en) * 1988-01-09 1989-07-19
JP2019027757A (en) * 2017-08-03 2019-02-21 株式会社東芝 Air conditioning control device and air conditioning control method
JP2019148350A (en) * 2018-02-26 2019-09-05 株式会社奥村組 Air conditioning control system and air conditioning control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100074B2 (en) * 1991-06-26 2000-10-16 ダイキン工業株式会社 Cooling system
JPH09217953A (en) * 1996-02-09 1997-08-19 Toshiba Corp Air conditioning control equipment
CN105444482B (en) * 2015-12-11 2019-01-18 重庆美的通用制冷设备有限公司 Water cooled chiller and its saving-energy operation control method
CN108895717A (en) * 2018-06-28 2018-11-27 湖南湖大瑞格能源科技有限公司 A kind of energy-saving control method and system of soil source heat pump system
CN109780762A (en) * 2019-02-25 2019-05-21 广州捷邦节能设备制造有限公司 A kind of two-shipper shell condenser and its application method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668742A (en) * 1979-11-12 1981-06-09 Fuji Electric Co Ltd Air conditioner system
JPH01106847U (en) * 1988-01-09 1989-07-19
JP2019027757A (en) * 2017-08-03 2019-02-21 株式会社東芝 Air conditioning control device and air conditioning control method
JP2019148350A (en) * 2018-02-26 2019-09-05 株式会社奥村組 Air conditioning control system and air conditioning control method

Also Published As

Publication number Publication date
JP7301133B2 (en) 2023-06-30
JPWO2022044186A1 (en) 2022-03-03
CN114521225A (en) 2022-05-20
CN114521225B (en) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2019024825A1 (en) Wall-mounted air conditioning indoor unit and control method thereof
JP6375520B2 (en) Air conditioner
JP2007147120A (en) Air conditioner
JPH0635895B2 (en) Heat pump type air conditioner operation control method and heat pump type air conditioner
JP6905808B2 (en) Air conditioner
JP2006057908A (en) Air conditioner
JP2010048531A (en) Air conditioning control system
JP2931484B2 (en) Air conditioner
WO2022044186A1 (en) Air conditioner
EP0466431B1 (en) Air conditioner controller
JP3080179B2 (en) Control method of air conditioner
JP2017040407A (en) Air conditioner
JP2018017467A (en) Multiple air conditioner
JPH0566043A (en) Air direction control device of air conditioner
JP6259997B2 (en) Supply / exhaust ventilator
JPH1061998A (en) Air conditioner
JP2000230737A (en) Air-conditioner
JPH07145982A (en) Air-conditioner
JPH02187555A (en) Airconditioning apparatus
JP6178992B2 (en) Air conditioner
JPS6399449A (en) Air conditioner
JPS62276353A (en) Grill swing angle controller of air conditioner
JPS63148042A (en) Air conditioner
JPH07190468A (en) Control method of air conditioner
JP2013120052A (en) Air conditioner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021532202

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951439

Country of ref document: EP

Kind code of ref document: A1