WO2022044128A1 - 肺音分析システム - Google Patents
肺音分析システム Download PDFInfo
- Publication number
- WO2022044128A1 WO2022044128A1 PCT/JP2020/032056 JP2020032056W WO2022044128A1 WO 2022044128 A1 WO2022044128 A1 WO 2022044128A1 JP 2020032056 W JP2020032056 W JP 2020032056W WO 2022044128 A1 WO2022044128 A1 WO 2022044128A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lung sound
- auscultation
- lung
- subject
- time
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
- A61B7/003—Detecting lung or respiration noise
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B7/00—Instruments for auscultation
- A61B7/02—Stethoscopes
- A61B7/04—Electric stethoscopes
Definitions
- the present invention relates to a lung sound analysis system, a lung sound analysis method, and a recording medium for supporting the diagnosis of heart failure.
- Heart failure is some form of cardiac dysfunction, that is, dyspnea, malaise, and edema appear as a result of organic and / or functional abnormalities in the heart that disrupt the compensatory mechanism of cardiac pump function, resulting in exercise tolerance.
- a clinical syndrome in which the ability is reduced.
- Patients with heart failure are always at risk of exacerbation, even if they are in remission with treatment. If an acute exacerbation occurs in a patient due to excessive intake of water or salt, forgetting to take medicine, excessive exercise, etc., the patient will be forced to be re-hospitalized. Therefore, it is important to prevent acute exacerbations by detecting the exacerbation of heart failure in discharged patients at an early stage and intervening in treatment.
- One of the methods for diagnosing heart failure is auscultation of lung sounds.
- Such a medical examination is one of the safe and easy methods for diagnosing the health condition of the lungs and, by extension, heart failure.
- it is difficult to obtain detailed and accurate diagnostic results without a trained specialist. Therefore, it was not possible to make a detailed diagnosis at sites such as rounds and home-visit care by general nurses and long-term care workers.
- the order of a plurality of auscultation positions to which a stethoscope is applied may be fixed in advance (for example, Patent Document 1), or the order can be arbitrarily changed according to the tastes and habits of nurses and the like (for example, Patent Document 1).
- Patent Document 6 For example, Patent Document 6).
- the auscultation is interrupted at the time when the auscultation of some of the auscultation positions among the multiple auscultation positions is completed for some reason such as the patient's convenience, the exacerbation of heart failure may be overlooked. Was expensive.
- the present invention is to provide a lung sound analysis system that solves the above-mentioned problems.
- the lung sound analysis system is A storage means for storing the history of auscultatory findings for lung sound data for each auscultatory position of a subject who is a heart failure patient, and a storage means. Based on the history, a calculation means for calculating the appearance frequency of abnormal sounds for each auscultation position of the subject, and a calculation means. A determination means for determining the order of a plurality of auscultation positions for auscultating lung sounds from the subject based on the calculated frequency of appearance. An acquisition means for guiding the operator to the auscultation position of the subject according to the determined order and acquiring a time-series acoustic signal including lung sound from the auscultation position under the guidance. It is configured to be equipped with.
- the lung sound analysis method is: Memorize the history of auscultatory findings for lung sound data for each auscultatory position of a subject who is a heart failure patient. Based on the history, the frequency of appearance of abnormal sounds for each auscultation position of the subject was calculated. Based on the calculated frequency of appearance, the order of a plurality of auscultation positions for auscultating lung sounds from the subject is determined. According to the determined order, the operator is instructed on the auscultation position of the subject, and the time-series acoustic signal including the lung sound is acquired from the auscultation position in which the guidance is given. It is configured as follows.
- the computer-readable recording medium is On the computer Processing to store the history of auscultatory findings for lung sound data for each auscultatory position of a subject who is a heart failure patient, and Based on the history, the process of calculating the appearance frequency of abnormal sounds for each auscultation position of the subject, and A process of determining the order of a plurality of auscultation positions for auscultating lung sounds from the subject based on the calculated frequency of appearance. A process of guiding the operator to the auscultation position of the subject according to the determined order and acquiring a time-series acoustic signal including a lung sound from the auscultation position under the guidance. It is configured to record a program to make it do.
- the present invention exacerbates heart failure even if the auscultation is interrupted at the time when the auscultation of a part of the auscultation positions among the plurality of auscultation positions is completed for some reason such as the convenience of the patient.
- the probability of overlooking can be reduced.
- FIG. 1 It is a block diagram of the lung sound analyzer which concerns on 1st Embodiment of this invention. It is a figure which shows the structural example of the lung sound record stored in the lung sound analyzer which concerns on 1st Embodiment of this invention. It is explanatory drawing of the auscultation position (1)-(12) to auscultate with an electronic stethoscope in the lung sound analyzer which concerns on 1st Embodiment of this invention. It is a figure which shows the structural example of the analysis target lung sound information stored in the lung sound analyzer which concerns on 1st Embodiment of this invention. It is a flowchart which shows an example of the preliminary operation of the lung sound analyzer which concerns on 1st Embodiment of this invention.
- FIG. 1 is a block diagram of a lung sound analyzer 10 according to the first embodiment of the present invention.
- the lung sound analyzer 10 is an information processing device that acquires and analyzes lung sounds from a patient discharged from the hospital after receiving treatment for heart failure.
- the lung sound analyzer 10 may be, but is not limited to, a smartphone, a tablet terminal, a PDA (Personal Digital Assistant), a notebook computer, or the like.
- patient A the patient who analyzes the lung sound using the lung sound analyzer 10 is referred to as patient A.
- the lung sound analyzer 10 includes an electronic stethoscope 11, a communication I / F unit 12, an operation input unit 13, a screen display unit 14, a storage unit 15, and an arithmetic processing unit 16.
- the electronic stethoscope 11 is configured to apply the chest piece of the stethoscope to the chest or back of the patient A to convert the lung sound of the patient A into a digital signal and transfer it to the arithmetic processing unit 16 wirelessly or by wire. ing.
- the communication I / F unit 12 is composed of, for example, a dedicated data communication circuit, and is configured to perform data communication with various devices such as a server device connected via wired or wireless.
- the operation input unit 13 is composed of an operation input device such as a keyboard and a mouse, and is configured to detect an operator's operation and output it to the arithmetic processing unit 16.
- the operator is a person who performs the work of acquiring the lung sound of the patient A by using the lung sound analyzer 10.
- the operator may be, for example, a medical worker other than a doctor such as a nurse, a care worker such as a certified care worker, or a family member of patient A.
- the screen display unit 14 is composed of screen display devices such as an LCD (Liquid Crystal Display) and a PDP (Plasma Display Panel), and displays various information such as analysis results on the screen in response to an instruction from the arithmetic processing unit 16. It is configured in.
- screen display devices such as an LCD (Liquid Crystal Display) and a PDP (Plasma Display Panel)
- LCD Liquid Crystal Display
- PDP Plasma Display Panel
- the storage unit 15 is composed of a storage device such as a hard disk or a memory, and is configured to store processing information and a program 151 necessary for various processes in the arithmetic processing unit 16.
- the program 151 is a program that realizes various processing units by being read and executed by the arithmetic processing unit 16.
- the program 151 is read in advance from an external device (not shown) or a storage medium (not shown) via a data input / output function such as the communication I / F unit 12, and is stored in the storage unit 15.
- the main processing information stored in the storage unit 15 includes the lung sound record 152 and the analysis target lung sound information 153.
- the lung sound record 152 is a record of the lung sound of patient A.
- the lung sound record 152 is generated based on a record of medical treatment including auscultation performed for patient A who was hospitalized for the treatment of heart failure until discharge, and is stored in the storage unit 15 of the lung sound analyzer 10 at the time of discharge. Recorded.
- FIG. 2 is a configuration example of the lung sound recording 152.
- the lung sound record 152 is composed of the patient ID 1521, one or more auscultation information 1527, the discharge notification item 1525, and the contact email address 1526. In the item of patient ID 1521, an ID that uniquely identifies patient A is recorded.
- the items of auscultation information 1527 are composed of each item of auscultation date and time 1522, doctor in charge 1523, and lung sound information 1524.
- the item of auscultation date and time 1522 the date and time when the diagnosis including the auscultation was performed is recorded.
- the items of one or more auscultation information 1527 are arranged in ascending order of the auscultation date and time 1522.
- the auscultation information 1527 at the bottom is the one at the time of discharge of patient A.
- the name of the doctor who made the diagnosis is recorded.
- the item of lung sound information 1524 is provided for each auscultation position.
- the auscultation position is the location of the patient's body on which the stethoscope chestpiece is applied to hear the lung sounds. That is, the auscultation position is the acquisition site of the lung sound.
- a total of 12 auscultation positions from the auscultation position (1) to the auscultation position (12) are set (in FIG. 2, the auscultation positions (2) to (11) are omitted).
- FIG. 3 is a schematic diagram for explaining the auscultation positions (1) to (12).
- auscultation positions (1) and (2) are set to the left and right of the upper lung field of the precordium.
- Auscultation positions (3) and (4) are set to the left and right of the precordial mid-lung field.
- Auscultation positions (5) and (6) are set to the left and right of the lower lung field of the precordium.
- the auscultation positions (7) and (8) are set to the left and right of the upper lung field on the back.
- the auscultation positions (9) and (10) are set to the left and right of the middle lung field on the back.
- Auscultation positions (11) and (12) are set to the left and right of the lower lung field on the back.
- the auscultation position is not limited to the number and location mentioned above.
- auscultation positions may be set not only in the precordium and the back but also in the upper lung field, the middle lung field, and the lower lung field of the left and right lateral chests, and a total of 18 auscultation positions may be set.
- some of the above auscultation positions may be excluded.
- the auscultation positions (3) to (6), (9), and (10) are excluded, and the total of the auscultation positions (1), (2), (7), (8), (11), and (12). It may be limited to 6 places.
- the item of lung sound information 1524 for each auscultation position includes one or more sets composed of the item of lung sound data and the item of auscultation findings.
- a digital time-series acoustic signal including a lung sound acquired by an electronic stethoscope from the auscultation position of patient A is recorded.
- the posture of the patient at the time of auscultation is roughly divided into the recumbent position and the sitting position, but the precordial and back auscultation is usually performed in the sitting position.
- the signal length of one lung sound data (for example, lung sound data 1) is arbitrary.
- one lung sound data may be the signal of patient A's continuous N breaths.
- N is a positive integer of 1 or more.
- the lung sound data is a signal obtained by processing the time-series acoustic signal acquired from the electronic stethoscope, such as removing the time-series acoustic signal during the resting phase, removing noise, and imparting respiratory timing. It's okay.
- the auscultation findings item the auscultation findings of a specialist for lung sound data are recorded.
- the auscultatory findings the presence or absence of abnormal sound of lung sound, and if there is abnormal sound, the type of abnormal sound (such as la sound) are recorded.
- Many patients with heart failure are discharged after receiving treatment for heart failure and in remission. Therefore, the lung sounds of many patients at the time of discharge are normal. However, depending on the patient's convenience, the patient may be discharged from the hospital in a mild condition. In such cases, the lung sound at some auscultatory positions may be abnormal because the patient is mild but not in remission.
- the contact email address 1526 item one or more email addresses of the recipients to whom the analysis results are sent are recorded.
- the contact e-mail address may be, for example, the e-mail address of the hospital in which the patient A was hospitalized, a heart failure specialist, the family doctor of the patient A, or the like.
- the method of transmitting the analysis result is not limited to e-mail, and may be another communication method such as a message function of groupware or business chat.
- the lung sound information 153 to be analyzed records the lung sound information acquired from the patient A using the electronic stethoscope 11 after the discharge of the patient A and the analysis result thereof.
- FIG. 4 is a configuration example of the lung sound information 153 to be analyzed.
- the analysis target lung sound information 153 is composed of each item of patient ID 1531, analysis date / time 1532, person in charge 1533, lung sound information 1534, urgency 1535, and analysis communication item 1536.
- an ID that uniquely identifies the patient A recorded in the item of patient ID 1521 of the lung sound record 152 is recorded.
- the item of analysis date and time 1532 the date and time when the lung sound of patient A was acquired and analyzed is recorded.
- an ID that uniquely identifies the operator who performed the work of acquiring the lung sound of the patient A is recorded.
- the item of lung sound information 1534 is provided for each auscultation position.
- a total of 12 auscultation positions from the auscultation position (1) to the auscultation position (12) described with reference to FIG. 3 are set (in FIG. 4, the auscultation positions (2) to (2) to ( 11) is omitted).
- the item of lung sound information 1534 for each auscultation position includes one or more sets composed of the item of lung sound data and the item of analysis result.
- a digital time-series acoustic signal including a lung sound acquired by an electronic stethoscope 11 from the auscultation position of patient A is recorded.
- the signal length of one lung sound data (for example, lung sound data 1) is arbitrary.
- one lung sound data may be the signal of patient A's continuous N breaths.
- N is a positive integer of 1 or more.
- the lung sound data is a signal obtained by processing the time-series acoustic signal acquired from the electronic stethoscope 11 such as removal of the time-series acoustic signal during the resting phase, noise removal, and addition of respiratory timing. It may be there.
- the result of mechanical analysis of lung sound data is recorded.
- a numerical value indicating whether or not the lung sound data is abnormal lung sound data is recorded.
- two values of a value 0 indicating that the lung sound is normal and a value 1 indicating that the lung sound is abnormal may be recorded.
- a numerical value indicating the degree of abnormality of the lung sound data may be recorded.
- the degree of abnormality an abnormality degree below a preset threshold value indicates that the lung sound data is a normal lung sound, and an abnormality degree exceeding the threshold value indicates that the lung sound data is an abnormal lung sound.
- the urgency calculated by comprehensively judging each analysis result of the auscultation positions (1) to (12) is recorded.
- the degree of urgency is an index showing how urgent the patient's condition is.
- urgency is an indicator of the degree of time to avoid or reduce the risk of readmission due to acute exacerbations by providing appropriate treatment for heart failure within a certain period of time.
- Patient A's condition includes, for example, body weight, blood pressure, pulse, subjective symptoms (shortness of breath when going out, swelling, coughing, loss of appetite, etc.), medication status, water intake, and the like.
- the arithmetic processing unit 16 has a microprocessor such as a CPU and its peripheral circuits, and by reading the program 151 from the storage unit 15 and executing the program 151, the hardware and the program 151 cooperate with each other. It is configured to realize various processing units.
- the main processing units realized by the arithmetic processing unit 16 include lung sound recording acquisition means 161, analysis target lung sound acquisition means 162, lung sound abnormality detection means 163, and analysis result output means 164.
- the lung sound recording acquisition means 161 acquires the lung sound recording 152 related to the patient A from an external device (not shown) or a storage medium (not shown) via a data input / output function such as the communication I / F unit 12. , Is configured to be recorded in the storage unit 15.
- a data input / output function such as the communication I / F unit 12.
- Is configured to be recorded in the storage unit 15.
- the lung sound record acquisition means 161 extracts necessary information from the medical record including the auscultation of the patient A recorded on the medical server or the like, generates the lung sound record 152, and stores it in the storage unit 15. May be good.
- the analysis target lung sound acquisition means 162 is configured to acquire a digital time-series acoustic signal including the lung sound of patient A after discharge and other information.
- the analysis target lung sound acquisition means 162 acquires the digital time-series acoustic signal including the lung sound of the patient A from the electronic stethoscope 11 according to the instruction of the operator input from the operation input unit 13 or the like. Further, the analysis target lung sound acquisition means 162 stores the patient ID, the analysis date / time, the person in charge, and the information of the communication items at the time of analysis as other information from the operator through the operation input unit 13 or in the storage unit 15. Obtained from lung sound record 152.
- the analysis target lung sound acquisition means 162 generates the analysis target lung sound information 153 from the acquired digital time-series acoustic signal and other information, and stores it in the storage unit 15.
- the analysis target lung sound information 153 stored in the storage unit 15 by the analysis target lung sound acquisition means 162 is configured in a format as shown in FIG. 4, for example.
- the item of each analysis result of the lung sound information 1534 and the item of the urgency degree 1535 are NULL values.
- the lung sound abnormality detecting means 163 is configured to detect whether or not the lung sound data is an abnormal lung sound. There are various methods for detecting abnormal lung sound. In the present embodiment, the lung sound abnormality detecting means 163 uses an abnormality detecting method based on a normal model, which learns only normal sounds in advance and detects sounds that do not fall within the range as abnormal sounds. The lung sound abnormality detecting means 163 reads the lung sound record 152 from the storage unit 15, and based on the lung sound data for each auscultation position of patient A at the time of discharge recorded in the lung sound record 152, for each auscultation position of patient A. It is configured to generate and store a normal model for analyzing lung sound data.
- the lung sound abnormality detecting means 163 reads out the lung sound information 153 to be analyzed from the storage unit 15, and uses the above-mentioned normal model to obtain the lung sound data for each listening position of the patient A recorded in the lung sound information 153 to be analyzed. And the analysis result is recorded in the item of the analysis result of the lung sound record 152 for each hearing position. Further, the lung sound abnormality detecting means 163 is configured to calculate the urgency based on the analysis result of the lung sound data for each auscultation position and record it in the item of the urgency 1535.
- the analysis result output means 164 is configured to read the analysis target lung sound information 153 from the storage unit 15 and display the analysis target lung sound information 153 on the screen display unit 14. Further, the analysis result output means 164 sends an e-mail with the analysis target lung sound information 153 read from the storage unit 15 as a file according to the instruction from the operation input unit 13 or automatically through the communication I / F unit 12. It is configured to be sent to the contact email address 1526 of the lung sound record 152.
- the operation of the lung sound analyzer 10 is roughly classified into a pre-operation and a subsequent analysis operation.
- FIG. 5 is a flowchart showing an example of the preliminary operation.
- the pre-action is performed in the specialized hospital where the patient A is hospitalized on the day of discharge. Alternatively, it may be performed at the patient A's home or the like after being discharged from the hospital and before starting the first analysis operation.
- the pre-operation is started, for example, by activating the lung sound recording acquisition means 161 by operating the start button of the pre-operation displayed on the screen display unit 14.
- the lung sound recording acquisition means 161 when the lung sound recording acquisition means 161 is activated, it is transmitted from an external device (not shown) or a storage medium (not shown) via a data input / output function such as a communication I / F unit 12.
- the lung sound record 152 relating to the patient A is acquired and recorded in the storage unit 15 (step S1).
- FIG. 2 is a configuration example of the lung sound record 152 thus acquired.
- the lung sound record 152 contains at least the lung sound data and auscultatory findings at the time of discharge of patient A.
- the model learning function of the lung sound abnormality detecting means 163 is activated automatically or in accordance with the instruction from the operation input unit 13.
- the lung sound abnormality detecting means 163 reads the lung sound record 152 from the storage unit 15 and learns a normal model based on the lung sound data at the time of discharge of the patient A and the auscultatory findings.
- the normal model after training is stored internally (step S2).
- FIG. 6 is an explanatory diagram of the model learning function of the lung sound abnormality detecting means 163.
- the lung sound abnormality detecting means 163 reads out the auscultation information 1527 at the time of discharge of the patient A from the lung sound record 152, and first, the lung sound data at the auscultation position (1) is the lung sound data in a normal state. To create a normal model 171-1 corresponding to the auscultation position (1) by machine learning. Specifically, the lung sound abnormality detecting means 163 extracts a predetermined feature amount for identification from the lung sound data of the auscultation position (1).
- the feature quantity may be based on the energy of the lung sound signal, may be based on the spectrum, and may be MFCC (mel frequency cepstrum coefficient) or DCTC (discrete cosine transform coefficient) calculated from the spectrum. And so on.
- the lung sound abnormality detecting means 163 models the extracted feature amount.
- the generative model may be a mixed Gaussian distribution (GMM), a One-class SVM, a Denoising Auto-Encoder, which is a kind of DNN (Deep Neural Network), a Noise Reduction LSTM, a kNN (k-nearest neighbor method), or the like.
- the abnormality detection method using normal sound is not limited to the above.
- the methods described in Patent Documents 7 and 8 for detecting an abnormality from an acoustic signal generated by a generation mechanism accompanied by a state change may be used.
- the lung sound abnormality detecting means 163 manages the generated normal model 171-1 as a type 1 normal model when it is recorded that there is no abnormal sound of the lung sound in the auscultatory findings at the auscultatory position (1). do.
- the generated normal model 171-1 is managed as a type 2 normal model.
- the normal model 171-1 is generated as a type 1 normal model.
- the lung sound abnormality detecting means 163 generated a normal model 171-1 based on the auscultation data and auscultation findings of the auscultation positions (2) to (12) recorded in the auscultation information 1527 at the time of discharge of patient A.
- normal models 171-2 to 171-12 corresponding to auscultation positions (2) to (12) are generated.
- normal models 171-2 to 171-11 are generated as type 1 normal models
- normal models 171-12 are generated as type 2 normal models.
- the normal model for each auscultation position may be a single model or a plurality of models machine-learned from different viewpoints.
- the lung sound at the same listening position is divided into the lung sound part of the inspiratory phase, the lung sound part of the expiratory phase, and the rest (that is, the resting phase) based on the breathing timing, and the lung sound part of the inspiratory phase is used.
- the normal model learned by using the lung sound portion of the expiratory phase may be generated.
- one or more normal models common to a plurality of auscultatory positions in which auscultatory findings are recorded as having no abnormality in lung sound may be learned.
- the normal lung sound data used for training the normal model in addition to the normal lung sound data at the time of discharge of the patient A, the normal lung sound data of the patient A before that may be used.
- Normal lung sound data of persons other than patient A may be used.
- FIG. 7 is a flowchart showing an example of the analysis operation.
- the analysis operation is performed at a place other than the specialized hospital such as the home of patient A. However, the analysis operation may be used to assist the doctor's diagnosis in a specialized hospital or the like.
- the analysis operation is started, for example, by operating the analysis operation start button displayed on the screen display unit 14 to activate the analysis target lung sound acquisition means 162.
- the analysis target lung sound acquisition means 162 when the analysis target lung sound acquisition means 162 is activated, necessary items are described for each item of patient ID 1531, analysis date / time 1532, person in charge 1533, and analysis communication item 1535, and others.
- the lung sound information 153 to be analyzed is created as a NUML value and recorded in the storage unit 15 (step S11).
- the analysis target lung sound acquisition means 162 acquires the patient ID 1531 from the patient ID 1521 of the lung sound record 152 stored in the storage unit 15. Further, the analysis target lung sound acquisition means 162 acquires the analysis date / time 1532, the person in charge 1533, and the analysis communication item 153 from the operator through the operation input unit 13.
- the analysis target lung sound acquisition means 162 acquires a digital time-series acoustic signal including the lung sound for each auscultation position of the patient A from the electronic stethoscope 11 and associates it with the auscultation position to the analysis target lung sound information 153. Record (step S12).
- the method of acquiring the lung sound for each auscultation position of the patient with an electronic stethoscope and recording it in association with the auscultation position is arbitrary. For example, as described in Patent Documents 1, 4 or 6, a method of displaying a guidance screen for guiding the auscultation position to the operator using the electronic stethoscope 11 on the screen display unit 14 is optional. Method may be used.
- the lung sound abnormality detecting means 163 reads out the lung sound information 153 to be analyzed from the storage unit 15, and the lung for each auscultation position of the patient A recorded in the lung sound information 1534 of the lung sound information 153 to be analyzed. Sound data is analyzed using a normal model prepared in advance, and the analysis result is recorded in the item of analysis result for each auscultation position of lung sound information 1534. Further, in step S12, the analysis result output means 164 appropriately displays the analysis result of the lung sound abnormality detecting means 163 on the screen display unit 14.
- the lung sound abnormality detecting means 163 calculates the urgency level 1535 based on the analysis result of the lung sound data for each auscultation position, and records it in the item of the urgency level 1535 of the analysis target lung sound information 153 (step S13). ).
- the analysis result output means 164 reads the analysis target lung sound information 153 from the storage unit 15, displays the analysis target lung sound information 153 on the screen display unit 14, and attaches the analysis target lung sound information 153 as a file.
- the mail is sent to the contact mail address 1526 of the lung sound record 152 through the communication I / F unit 12 (step S14).
- the analysis result output means 164 may transmit the analysis target lung sound information 153 only when the urgency level 1535 exceeds a predetermined threshold value.
- step S12 for acquiring the lung sound to be analyzed and detecting the abnormality will be described with reference to the flowchart of FIG.
- FIG. 8 is a flowchart showing an example of the detailed procedure of step S12 of FIG.
- the analysis target lung sound acquisition means 162 is based on the presence or absence of abnormal sound recorded in the auscultation findings for each auscultation position in one or more auscultation information 1527 recorded in the lung sound record 152 of the patient A.
- the frequency of appearance of abnormal sounds for each auscultation position is calculated (step S21). Specifically, first, the analysis target lung sound acquisition means 162 initializes the frequency counter for each auscultation position (1) to (12) to 0. Next, the analysis target lung sound acquisition means 162 pays attention to the auscultation information 1527 in which the auscultation date and time recorded in the lung sound record 152 is the discharge date and time.
- the analysis target lung sound acquisition means 162 performs auscultation if at least one auscultation finding describing that there is an abnormal sound is present in one or more auscultation findings recorded at the auscultation position (1).
- the frequency count corresponding to the position (1) is incremented by 1.
- the analysis target lung sound acquisition means 162 has at least one auscultatory finding in which it is described that there is an abnormal sound among one or more auscultatory findings recorded at the auscultation positions (2) to (12). Then, the frequency count corresponding to the auscultation positions (2) to (12) is incremented by one.
- the analysis target lung sound acquisition means 162 pays attention to the auscultation information 1527 whose auscultation date and time is one before the discharge date and time, and performs the same operation as the operation performed using the auscultation information 1527 on the discharge date and time (the auscultation position ( It is carried out for the frequency count for each of 1) to (12).
- the analysis target lung sound acquisition means 162 either finishes processing up to a predetermined number of auscultation information 1527, or finishes processing up to the oldest auscultation information 1527 recorded in the lung sound record 152. The above operation is repeated until it is established quickly.
- the analysis target lung sound acquisition means 162 sets the value of the frequency count for each auscultation position (1) to (12) as the frequency of appearance of abnormal sounds at the auscultation positions (1) to (12).
- the analysis target lung sound acquisition means 162 determines the order (order) of the auscultation positions for auscultating the lung sounds from the patient A based on the abnormal frequency for each of the auscultation positions (1) to (12) of the patient A. (Step S22).
- the fact that there is a difference in the frequency of abnormal sounds such as rattling between the auscultation positions (1) to (12) of patient A means that patient A has auscultation positions where abnormal sounds are relatively likely to occur. It indicates that there is an auscultation position that is not.
- the auscultation is interrupted in the middle for some reason such as the convenience of the patient A. Even if the heart failure state of the patient A is determined based on the analysis result of the lung sound data of some of the auscultated positions so far, the probability of overlooking the exacerbation of the heart failure can be reduced.
- the analysis target lung sound acquisition means 162 may determine the order of auscultation positions based only on the abnormal frequency of each auscultation position of patient A. In that case, the analysis target lung sound acquisition means 162 may determine, for example, the result of sorting the auscultation positions in the descending order of the abnormal frequency (the order of proceeding from the most frequent to the least) in the order of the auscultation positions.
- the auscultation frequency for each auscultation position (1) to (12) of patient A is shown in FIG. 9, for example, an example of the order of auscultation positions based on the result of sorting the auscultation positions in descending order of the auscultation position is the auscultation order in FIG. It becomes as shown in 1.
- the auscultation position (11), which has the maximum abnormality frequency of 4, is auscultated.
- the auscultation positions with the next highest abnormality frequency are the auscultation positions (6) and (12) of the abnormality frequency 3. Since there is no difference in the frequency of abnormalities, in the auscultation sequence 1, the auscultation position (12) on the same back as the first is the second, and the auscultation position (6) on the precordium is the third.
- the order of auscultation positions (5), (9), (10), (7), (1), (2), (3), (4), and (8) is used.
- lung sound data can be acquired in order from the auscultation position having a higher probability of abnormal lung sound.
- the order of auscultation positions may be determined in consideration of not only the frequency of abnormalities for each auscultation position of the patient but also the reduction of the burden on the patient and the operator.
- the analysis target lung sound acquisition means 162 determines the side of the precordium and the back where the auscultation position with the highest auscultation frequency exists first as the site to be auscultated, and the site opposite to the site to be auscultated next. Further, the analysis target lung sound acquisition means 162 determines the result of sorting all the auscultation positions of the site in descending order of the abnormal frequency for each site in the order of the auscultation positions of the site. An example of the auscultation order by this determination method is shown in the auscultation order 2 of FIG.
- the back where the auscultation position (11) having the maximum abnormality frequency of 4 is present is determined as the site to be auscultated first, and the auscultation order of the auscultation positions (7) to (12) on the back is abnormal.
- the auscultation positions (11), (12), (9), (10), (7), and (8) are determined in the order of the results sorted in descending order of frequency.
- the auscultation order of the auscultation positions (1) to (6) of the anterior chest is in descending order of their abnormal frequencies. According to the sorted results, the auscultation positions (6), (5), (1), (2), (3), and (4) are determined in this order.
- the analysis target lung sound acquisition means 162 pays attention to the auscultation position in the first order (step S23).
- the analysis target lung sound acquisition means 162 acquires a digital time-series acoustic signal including the lung sound at the auscultation position of interest from the electronic stethoscope 11 (step S24).
- the analysis target lung sound acquisition means 162 displays a guidance screen for guiding the auscultation position of interest to the operator using the electronic stethoscope 11 on the screen display unit 14 to support the lung sound acquisition. You may do it.
- the analysis target lung sound acquisition means 162 supports the lung sound acquisition by reproducing the guidance voice for guiding the auscultation position of interest to the operator using the electronic stethoscope 11 from a speaker (not shown). You may do it.
- the analysis target lung sound acquisition means 162 should apply the electronic auscultation device 11 to the operator using the electronic auscultation device 11 based on the order of the auscultation positions for auscultating the lung sounds determined for the patient A.
- the auscultation position is guided using an image or voice, and a digital time-series acoustic signal including the lung sound of the auscultation position under the guidance is acquired from the electronic auscultation device 11.
- the analysis target lung sound acquisition means 162 measures the quality of the acquired lung sound (step S25).
- the time-series acoustic signal output from the electronic stethoscope 11 includes the lung sound of patient A in the frequency band of 100 Hz to about 2 kHz, and the background noise (stationary noise) in the same frequency band.
- the background noise stationary noise
- environmental sounds, human voices, metallic sounds, etc. that come in from the outside through the body of the patient A or through the gap between the skin of the patient A and the chestpiece are examples of background noise. If the intensity of the lung sound in the time-series acoustic signal is low and the intensity of the background noise is high, it becomes difficult to detect the abnormality of the lung sound.
- the analysis target lung sound acquisition means 162 first uses a bandpass filter to extract a time-series acoustic signal in a frequency band of 100 Hz to about 2 kHz from the time-series acoustic signal output from the electronic stethoscope 11. Next, the analysis target lung sound acquisition means 162 calculates the intensity of the lung sound and the intensity of the background noise in the extracted time-series acoustic signal, and calculates the degree of difference between them as an index value of the quality of the lung sound.
- a method of calculating an index value of lung sound quality will be described.
- FIG. 10 is a schematic diagram showing an example of a waveform of a time-series acoustic signal including a lung sound output from an electronic stethoscope 11.
- lung sounds there are three types of lung sounds: bronchial breath sounds, bronchial alveolar breath sounds, bronchial breath sounds, and alveolar breath sounds.
- It is a schematic diagram which shows an example of the alveolar breath sounds heard in (12).
- the amplitude of the time-series acoustic signal including the lung sound changes significantly at the start of inspiration. Also, at the start of exhalation, the amplitude changes significantly, though not as much as at the start of inspiration.
- the analysis target lung sound acquisition means 162 compares the time-series acoustic signal with the threshold value T1 capable of discriminating the amplitude change at the start of inspiration, and when the amplitude of the time-series acoustic signal becomes larger than the threshold value T1, the inspiration Detect as start time. Further, the analysis target lung sound acquisition means 162 has a section of one cycle of respiration from the start of one inspiration to the start of the next inspiration, and the amplitude of the time-series acoustic signal in that section and the amplitude change at the start of exhalation.
- the time when the amplitude of the time-series signal becomes larger than the threshold value T2 is detected as the start time of exhalation by comparing with the threshold value T2 ( ⁇ T1) capable of discriminating.
- T2 threshold value
- the start of exhalation is also detected in order to further divide the phase other than the resting phase into the inspiratory phase and the expiratory phase.
- human respiration generally consists of an inspiratory phase of about 1 second, an expiratory phase of about 1 second, and a resting phase of about 1 to 1.5 seconds until the next inspiration. That is, immediately before the start of inspiration, there is a dormant phase that is neither inspiring nor exhaling.
- the analysis target lung sound acquisition means 162 detects a predetermined period (for example, 1 second) immediately before the start time of the detected inspiration as a resting phase. Then, the analysis target lung sound acquisition means 162 calculates the intensity of the time-series acoustic signal in the resting phase as the intensity of the background noise.
- the intensity of the time-series acoustic signal can be, for example, the root mean square of the amplitude value, but is not limited to this, and may be an amplitude or the like.
- the analysis target lung sound acquisition means 162 calculates a value obtained by subtracting the background noise intensity from the intensity of the time-series acoustic signal in the inspiratory phase and / or the expiratory phase as the lung sound intensity. Then, the analysis target lung sound acquisition means 162 uses the ratio of the lung sound intensity to the calculated background noise intensity as an index value of the lung sound quality.
- the index value of the quality of the lung sound is not limited to the above, and the S / N ratio calculated from the intensity of the lung sound and the intensity of the background noise may be used as the index value.
- the method of detecting the resting phase by taking the alveolar respiration sound as an example has been described, but the bronchial alveolar respiration sound is heard together with the alveolar respiration sound at the auscultation position of the middle lung field and the upper lung field.
- the inspiratory amplitude of the bronchial alveolar breathing sound is greater than or equal to the expiratory amplitude, even if the bronchoalveolar breathing sound is heard together with the alveolar alveolar breathing sound, the inspiratory and expiratory sounds are described by the method described in FIG. The start timing of can be detected.
- the amplitude may be larger during exhalation than during inspiration. Therefore, when the bronchoalveolar breath sounds are close to the tracheal breath sounds, inspiration and expiration may be reversed in the method described with reference to FIG. Specifically, for example, it may be as follows. First, the frequency at which the amplitude of the frequency spectrum of the auscultated lung sound is maximized is compared with the preset threshold frequency.
- the frequency at which the amplitude of the frequency spectrum of the auscultated lung sound is maximum is equal to or higher than the threshold frequency, it is determined that the bronchial alveolar respiration sound contained in the lung sound is close to the tracheal respiration sound, which is described with reference to FIG.
- the inspiratory and expiratory are reversed to detect the start timing of inspiratory and expiratory.
- the frequency at which the maximum amplitude of the frequency spectrum of the auscultated lung sound is less than the threshold frequency, it is determined that the bronchial alveolar respiration sound contained in the lung sound is not close to the bronchial respiration sound, which is described with reference to FIG.
- the start timing of inspiration and expiration is detected by the above method.
- the above threshold frequency is a threshold at which it can be determined whether or not the bronchial alveolar respiration sound included in the lung sound is close to the bronchial respiration sound. It can be pre-determined from the frequency band between the frequency and the frequency at which the amplitude of the frequency spectrum of the high tracheal breathing sound is maximized. Further, instead of the above-mentioned "frequency at which the amplitude of the frequency spectrum is maximized", the "spectral centroid" used as a scale for expressing the shape of the spectrum may be used.
- the start time points of exhalation and inspiration were detected from the time-series acoustic signal output from the electronic stethoscope 11, and the predetermined period immediately before the start time of the detected inspiration was detected as the rest phase.
- the method for detecting the inspiratory phase, the expiratory phase, and the resting phase is not limited to the above.
- the analysis target lung sound acquisition means 162 is machine learning for estimating which section of the time-series acoustic signal including the lung sound output from the electronic stethoscope is the inspiratory phase, the expiratory phase, and the resting phase.
- the estimated probabilities of the inspiratory phase, the expiratory phase, and the resting phase are acquired from the trained model for each section. It may have been done.
- the learning model can be pre-generated by machine learning using a machine learning algorithm such as a neural network, for example, using a time-series acoustic signal including various lung sounds as training data.
- the lung sound acquisition means 162 to be analyzed may detect the timing of respiration such as the start of inspiration and expiration of patient A from other than the time-series acoustic signal output from the electronic stethoscope.
- the analysis target lung sound acquisition means 162 detects the breathing timing of the patient A by using a respiratory volume sensor such as a lung tachograph or a respiratory band that detects a change in the shape of the chest or abdomen due to respiratory activity by the sensor. You may.
- a respiratory volume sensor such as a lung tachograph or a respiratory band that detects a change in the shape of the chest or abdomen due to respiratory activity by the sensor. You may.
- the analysis target lung sound acquisition means 162 compares the index value of the lung sound quality with the preset quality threshold value (step S26). Then, if the index value of the quality of the lung sound is smaller than the threshold value, the analysis target lung sound acquisition means 162 issues an alarm to the effect that the quality of the lung sound at the auscultated position, which is auscultated by the electronic stethoscope 11, is poor. Is displayed in (step S27). The operator who recognizes this alarm takes measures to reduce the background noise and / or to increase the lung sound, and then performs the work of reacquiring the lung sound at the auscultation position of interest by the electronic stethoscope 11. That is (step S28).
- the analysis target lung sound acquisition means 162 returns to the process of step S25, and repeats the same process as the above-mentioned process.
- the analysis target lung sound acquisition means 162 removes the pause phase period and background noise from the digital time-series acoustic signal including the lung sound at the listening position of interest. Then, the period of the resting phase and the digital time-series acoustic signal after removing the background noise are recorded in the lung sound information 153 to be analyzed in association with the listening position of interest (step S29). The period of the rest phase and the removal of background noise are performed as follows.
- the analysis target lung sound acquisition means 162 sets a digital time-series acoustic signal including the lung sound at the auscultation position of interest as a section consisting of an inspiratory phase and an expiratory phase immediately after that (hereinafter referred to as an inspiratory / expiratory section). It is divided into two parts into a dormant phase section (hereinafter referred to as a dormant section).
- the analysis target lung sound acquisition means 162 calculates the frequency spectra of the inspiratory / expiratory section and the resting section by performing a fast Fourier transform (FFT) on the digital time-series acoustic signals of the inspiratory / expiratory section and the resting section, respectively.
- FFT fast Fourier transform
- the analysis target lung sound acquisition means 162 subtracts the frequency spectrum of the rest section from the frequency spectrum of the inspiratory / expiratory section. This subtraction suppresses background noise contained in the inspiratory and expiratory phases.
- the analysis target lung sound acquisition means 162 generates a digital time-series acoustic signal after noise removal in the inspiratory / expiratory section by reverse frequency converting the frequency spectrum of the inspiratory / expiratory section after the subtraction.
- the analysis target lung sound acquisition means 162 records the generated digital time-series acoustic signal after noise removal in the inspiratory / expiratory section in the analysis target lung sound information 153 in association with the auscultation position of interest.
- the lung sound acquisition means 162 to be analyzed may remove the period of the rest phase from the digital time-series acoustic signal including the lung sound at the auscultation position of interest, and may not remove the background noise.
- the analysis target lung sound acquisition means 162 divides the digital time-series acoustic signal including the lung sound at the auscultation position of interest into two into an inspiratory / expiratory section and a rest section, and the digital time-series of the inspiratory / expiratory section.
- the acoustic signal is associated with the auscultation position of interest and recorded in the lung sound information 153 to be analyzed.
- the lung sound abnormality detecting means 163 detects the lung sound abnormality from the lung sound data recorded in the analysis target lung sound information 153 in association with the listening position of interest, and the detection result is set to the listening position of interest. It is recorded in the lung sound information 153 to be analyzed in association with each other (step S30).
- the detection of abnormal lung sound is performed as follows.
- the lung sound abnormality detecting means 163 inputs the lung sound data into the normal model 171 that generates and stores the lung sound data in advance corresponding to the auscultation position of interest, and normalizes the probability that the lung sound data is an abnormal lung sound. Obtained from model 171.
- the lung sound abnormality detecting means 163 compares the probability of abnormal lung sound with a preset threshold value, and if the probability exceeds the threshold value, the lung is concerned. The sound data is determined to be an abnormal lung sound, and if it is below the threshold value, it is determined to be a normal lung sound.
- the lung sound abnormality detecting means 163 compares the probability of abnormal lung sound with a preset threshold, and if the probability is equal to or less than the threshold, the lung sound is concerned.
- the data is determined to be the same type of abnormal lung sound as at the time of discharge, and if the threshold is exceeded, the relevant lung sound data is determined to be either an abnormal lung sound of a different type from that at the time of discharge or a normal lung sound.
- the reason for including normal lung sound in the discrimination result is that the symptoms improve after discharge due to medication, etc., and even if the lung sound that was abnormal at the time of discharge becomes normal at the time of analysis, it deviates from the normal type 2 model. This is to become.
- the analysis result output means 164 displays the abnormality detection result on the screen display unit 14 every time the lung sound abnormality detecting means 163 detects an abnormality in the lung sound data of the auscultation position being watched (step S31). As a result, the operator can immediately recognize whether or not the lung sound data at the auscultation position is an abnormal lung sound at the time of auscultation.
- the analysis target lung sound acquisition means 162 determines whether or not the acquisition and analysis of the lung sound data of all the auscultation positions have been completed (step S32). .. When the auscultation position that has not been acquired remains, the analysis target lung sound acquisition means 162 shifts attention to the auscultation position in the next order (step S33), returns to step S24, and performs the same process as described above. repeat.
- the analysis target lung sound acquisition means 162 ends the process of FIG. Further, the analysis target lung sound acquisition means 162 may end the process of FIG. 8 before the acquisition and analysis of the lung sound data of all the auscultation positions are completed due to the convenience of the patient A or the like.
- the lung sound information 1534 in the analysis target lung sound information 153 corresponding to the auscultation position where the lung sound data is not acquired and analyzed remains the NUML value.
- step S13 in FIG. 7 for calculating the urgency level 1535 will be described.
- the lung sound abnormality detecting means 163 determines the severity of heart failure of patient A based on the analysis result of lung sound data for each auscultation position, and calculates the urgency 1535 based on the determined severity. In determining the severity of heart failure, the lung sound abnormality detecting means 163 determines the severity of heart failure by referring to a determination table for determining the severity of heart failure from the analysis results of lung sound data for each auscultation position. ..
- FIG. 11 is a diagram showing an example of the above determination table.
- the determination table shown in FIG. 11 has columns corresponding to one-to-one correspondence between auscultation positions (1) to (12) and rows corresponding to one-to-one correspondence to severity, and lung sounds at the intersections of rows and columns.
- a + symbol indicating that there is an abnormality and a-symbol indicating that there is no abnormality in lung sound are set.
- the severity is determined to be 0.
- the lung sound abnormality in at least one of the auscultation positions (11) and (12) set in the lower lung field on the back, and the lung sound abnormality is in the other auscultation positions (1) to (10). If not, the severity is determined to be 1. Further, in the judgment table, there is an abnormality in lung sound at both the auscultation positions (11) and (12), and the lungs are located in only one of the auscultation positions (5) and (6) set in the lower lung field of the anterior chest. If there is a sound abnormality and there is no lung sound abnormality at the other auscultation positions (1) to (4) and (7) to (10), the severity is determined to be 2. Severity N set in the last row is assumed to have abnormal lung sound at all auscultation positions (1) to (12).
- the auscultation position with lung sound abnormality and the auscultation position without lung sound abnormality are set for them as well.
- the number of auscultatory positions with lung sound abnormalities is 4 or more and less than 12, and the number increases as the severity N approaches. do.
- the severity of heart failure is classified into N + 1 classes from severity 0 to severity N according to the combination of the presence or absence of abnormal lung sound at the auscultation positions (1) to (12).
- the severity 0 is a state in which no abnormal lung sound is heard, and thus it can be said that the heart failure is in remission.
- severity 1 is a state in which abnormal lung sound can be heard only in the lower lung field of the back, it cannot be said that heart failure is in remission, but it is mild and some patients are discharged in such a state. It is in a state of doing.
- Severity 2 can be said to be more severe than severity 1 because abnormal lung sounds are produced in one of the lower lung fields in the precordium in addition to the lower lung field in the back. However, since it still belongs to mild illness, it can be said that there is a high probability that readmission can be prevented if appropriate measures are taken at this point.
- the determination table for determining the severity of heart failure from the analysis result of the auscultation position is not limited to that shown in FIG.
- the ra sound is mild when it is heard only at the end of inspiration, and it is severe when it is heard immediately after the start of inspiration. Therefore, in addition to the presence or absence of abnormal lung sound for each auscultation position, the timing at which abnormal lung sound is heard is set in the judgment table, and the combination of the auscultation position, the presence or absence of abnormal lung sound, and the timing at which abnormal lung sound is heard causes heart failure.
- the severity may be determined.
- the lung sound abnormality detecting means 163 may determine the severity of heart failure of patient A from the number of auscultation positions where abnormal lung sound has occurred, regardless of where the auscultation position is. For example, the lung sound abnormality detecting means 163 has a severity of 0, 1, and when the number of auscultatory positions resulting in abnormal lung sound is 0, 1 or more and 2 or less, 3 or more and 4 or less, 5 or more and 8 or less, and 9 or more, respectively. It may be 2, 3, 4 (maximum).
- the lung sound abnormality detecting means 163 has the process shown in FIG. 8 terminated in the middle due to the convenience of the patient A or the like, and the analysis result of at least a part of the lung sound information 1534 for each auscultation position is a NULL value. Perform the following processing. First, the lung sound abnormality detecting means 163 sets in advance the number of auscultation positions where the analysis result is the NUML value, that is, the lung sound data is not acquired and the analysis of whether or not the lung sound is abnormal is not performed. It is determined whether or not the condition that the value is less than the first threshold value is satisfied.
- the lung sound abnormality detecting means 163 is required to have the condition that the number of auscultation positions where the lung sound data is acquired and whether or not the lung sound is abnormal is equal to or more than a preset second threshold value. Is determined whether or not the above is satisfied.
- the first threshold value and the second threshold value may be fixed values or variable values according to the state at the time of discharge of the patient. When it is a fixed value, for example, the first threshold value may be 4 or less and the second threshold value may be 8 or more. In the case of a variable value, for a patient discharged from the hospital without abnormal lung sound at any auscultation position, for example, the first threshold value may be 10 or less, the second threshold value may be 2 or more, and other patients.
- the lung sound abnormality detecting means 163 does not satisfy the above conditions, the severity is not calculated (and therefore the urgency is not calculated), the lung sound analysis this time is terminated with an error, and the screen display unit 14 indicates that fact. Display on. The reason is to prevent incorrect information from being given to the operator or the like.
- the lung sound abnormality detecting means 163 calculates the severity on the assumption that the lung sound abnormality is not detected at the auscultation position where the analysis of whether or not the lung sound is abnormal is not performed. .. Then, the lung sound abnormality detecting means 163 holds the calculated severity as the most optimistic value. That is, when the calculated severity is severity 1, it is retained as "severity 1 or higher” or “at least severity 1" instead of "severity 1". For example, assuming that patient A is discharged from the hospital without abnormal lung sound at any auscultation position, lung sound data is acquired and analyzed only at two auscultation positions (11) and (12), and as a result, at least the lung sound data is acquired and analyzed.
- the lung sound abnormality detecting means 163 assumes that the lung sound abnormality is not detected at the other auscultation positions (1) to (10), and determines the severity 1 based on the determination table of FIG. Based on the above, it is determined that the severity is 1 or higher.
- the urgency 1535 is determined from the determined severity.
- the lung sound abnormality detecting means 163 may determine the urgency level 1535 based on the severity 0 to N of heart failure and the condition of patient A. For example, as the condition of patient A, whether or not the body weight has increased by a certain amount in a unit period (for example, an increase of 3 kg or more in one week), the presence or absence of subjective symptoms such as swelling, coughing, and loss of appetite, and the pulse exceeding a predetermined number. Whether or not it is possible. Then, the lung sound abnormality detecting means 163 may set the urgency determined based on the severity of heart failure to be corrected so as to be larger according to the condition of the patient A as the final urgency. For example, the lung sound abnormality detecting means 163 may increase the urgency to 1 or 2 if there is weight gain, even if the urgency determined from the severity of heart failure is 0 or 1. .. However, the upper limit of the urgency after correction is N.
- the analysis target lung sound information 153 stored in the attached file is analyzed by a heart failure specialist.
- the lung sound information 153 to be analyzed is not limited to the attachment of a file, and may be shared with a heart failure specialist in a SaaS format such as link entry.
- a specialist reproduces the lung sound data for each auscultation position recorded in the lung sound information 153 to be analyzed by a personal computer or the like, and diagnoses whether or not secondary noise such as a rattling sound is heard from the lung sound of patient A. .. Then, the specialist creates auscultatory findings for the auscultation data for each auscultation position and records them in the analysis target lung sound information 153.
- the analysis target lung sound information 153 in which the auscultation findings of the specialist are recorded is returned to the transmission source lung sound analyzer 10 by a communication means such as an email.
- the analysis target lung sound information in which the auscultatory findings of a specialist are recorded will be referred to as the analysis target lung sound information with auscultatory findings.
- FIG. 12 shows a configuration example of the lung sound information 153 to be analyzed with auscultatory findings.
- the lung sound abnormality detecting means 163 obtains the original analysis target lung sound information 153 recorded in the storage unit 15 by the analysis target lung sound information 153 with auscultatory findings received through the communication I / F unit 12 of the lung sound analyzer 10. Update. Next, when the normal model of type 2 is present in the normal model of patient A, the lung sound abnormality detecting means 163 records the auscultatory findings in the auscultatory sound information of the hearing position corresponding to the normal model of type 2. It is confirmed whether or not it is recorded that the lung sound data is normal lung sound data that does not include secondary noise such as auscultation. Next, the lung sound abnormality detecting means 163 learns a type 1 normal model using the normal lung sound data confirmed to be normal.
- the type 1 normal model obtained by this learning is used hereafter in place of the type 2 normal model that has been used so far.
- the original normal model is used promptly when the symptoms improve. It becomes possible to detect abnormal lung sound.
- the time-series acoustic signal including the lung sound of the patient A is divided into an inspiratory phase period, an expiratory phase period, and a resting phase period, and the resting phase period is excluded. Since the lung sound abnormality is detected from the time-series acoustic signals during the remaining inspiratory and expiratory phases, the lung sound abnormality can be detected without being affected by the noise contained in the resting phase.
- the background noise is detected from the time-series acoustic signal during the resting phase, and the background noise is removed from the time-series acoustic signal including the lung sound of the patient A during the inspiratory phase and the expiratory phase.
- the lung sound abnormality is detected from the time-series acoustic signals during the period of the inspiratory phase and the expiratory phase after the background noise is removed, the lung sound abnormality can be detected without being affected by the background noise.
- the lung sound abnormality detecting means 163 uses an abnormality detecting method in which only normal sounds are learned in advance and sounds that do not fall within the range are detected as abnormal sounds.
- the lung sound abnormality detecting means 163 may detect the lung sound abnormality by using a method other than the above-mentioned abnormality detecting method.
- the lung sound abnormality detecting means 163 may have intermittent crackles such as water crackles, fine crackles, continuous crackles such as whistles and rhonchi.
- An abnormality detection method by supervised learning that learns an abnormal sound in advance and detects that the sound is made may be used.
- the lung sound abnormality detecting means 163 is a model in which the characteristics and discrimination criteria of input sound data (input data) are learned by using deep learning, for example, for a database that collects abnormal sounds as supervised learning. Is created, and at the time of detection, detection may be performed by checking whether the input data fits the model.
- the lung sound abnormality detecting means 163 uses, for example, a spectrogram in which voices are arranged in chronological order by FFT (Fast Fourier Transform) or log-FFT at regular intervals for learning and input data, and RNN (recurrent) for deep learning. Neural network) or CNN (convolutive neural network) can be used.
- the lung sound abnormality detecting means 163 may use a method of converting the lung sound wave form into a short-time feature such as a zero crossing coefficient or MFCC (mel frequency cepstrum coefficient) and detecting the abnormal sound by machine learning. good.
- the lung sound abnormality detecting means 163 may be modeled by GMM (mixed Gaussian distribution) at the time of learning, and it may be examined whether or not it fits the model at the time of detection.
- the lung sound abnormality detecting means 163 learns the discriminant surface of a discriminator such as an SVM (support vector machine), and uses the discriminating surface to discriminate whether the input data corresponds to the abnormal sound. May be good.
- the lung sound abnormality detecting means 163 uses the data itself as a feature amount such as NMF (non-negative matrix factorization) and PCA (principal component analysis). May be generated.
- the lung sound abnormality detecting means 163 uses statistical characteristics of the input waveform, such as the long-term power distribution of the input signal and the distribution of the component amount / component ratio in the specific frequency bin range, to generate an abnormal sound by a decision tree or the like. It may be detected. In that case, the lung sound abnormality detecting means 163 has a direct value (for example, when the power exceeds 20 mW for 3 consecutive frames) and a statistical feature (for example, Gauss approximation from 3 ⁇ ) as an item of the decision tree. (When a large processing frame occurs) may be used.
- a direct value for example, when the power exceeds 20 mW for 3 consecutive frames
- a statistical feature for example, Gauss approximation from 3 ⁇
- the lung sound abnormality detecting means 163 models not the input signal itself but an AR (autoregressive) process, and even if some of the model parameters exceed the threshold value, the abnormal sound is detected. good. Although these methods may not include the learning process, they are included in the supervised learning for convenience because they include the observation of the abnormal sound which is the target signal in the determination of the decision tree and the threshold value.
- FIG. 13 is a block diagram of the lung sound analysis system 20 according to the second embodiment of the present invention.
- the lung sound analysis system 20 includes a plurality of lung sound analysis devices 21 and a server device 22. Further, the plurality of lung sound analyzers 21 and the server device 22 are connected to each other so as to be able to communicate with each other through a network such as the Internet.
- the lung sound analyzer 21 is an information processing device that acquires and analyzes lung sounds from a patient discharged from the hospital after receiving treatment for heart failure.
- the lung sound analyzer 21 may be, but is not limited to, a smartphone, a tablet terminal, a PDA, a notebook computer, or the like.
- the lung sound analyzer 21 includes an electronic stethoscope (not shown), a communication I / F unit, an operation input unit, a screen display unit, a storage unit, and an arithmetic processing unit.
- the server device 22 is a computer that provides various services necessary for lung sound analysis to a plurality of lung sound analyzers 21 through the network 23.
- the server device 22 stores at least a part of the lung sound record 152, the analysis target lung sound information 153, and the program 151 shown in FIG. 1, and provides them to the lung sound analyzer 21 through the network 23. Therefore, the lung sound analyzer 21 needs to store at least a part of the lung sound record 152, the lung sound information 153 to be analyzed, and the program 151 in the storage unit 15 as compared with the lung sound analyzer 10 of FIG. It is possible to reduce the storage capacity.
- the server device 22 provides at least a part of the functions of the lung sound recording acquisition means 161, the analysis target lung sound acquisition means 162, the lung sound abnormality detection means 163, and the analysis result output means 164 shown in FIG. 1 in the network 23. It is provided to the lung sound analyzer 21 through. That is, the server device 22 executes at least a part of the processes of steps S1 to S2 in FIG. 5, steps S11 to S14 in FIG. 7, and steps S21 to S33 in FIG. 8 on behalf of the lung sound analyzer 21. Therefore, the lung sound analyzer 21 can simplify the configuration of the arithmetic processing unit 16 as compared with the lung sound analyzer 10 of FIG.
- FIG. 14 is a block diagram of the lung sound analysis system 30 according to the third embodiment of the present invention.
- the lung sound analysis system 30 includes a storage means 31, a calculation means 32, a determination means 33, and an acquisition means 34.
- the storage means 31 is configured to store the history of auscultatory findings for lung sound data for each auscultatory position of a subject who is a heart failure patient.
- the storage means 31 can be configured in the same manner as, for example, the lung sound recording 152 of FIG. 1, but is not limited thereto.
- the calculation means 32 is configured to calculate the appearance frequency of abnormal sounds for each auscultation position of the subject based on the above history.
- the calculation means 32 can be configured, for example, as described in step S21 of FIG. 8, but is not limited thereto.
- the determination means 33 is configured to determine the order of a plurality of auscultation positions for auscultating lung sounds from a subject based on the calculated frequency of appearance.
- the determining means 33 can be configured, for example, as described in step S22 of FIG. 8, but is not limited thereto.
- the acquisition means 34 is configured to guide the operator to the auscultation position of the subject in accordance with the determined order, and to acquire the time-series acoustic signal including the lung sound from the auscultation position being guided.
- the acquisition means 34 can be configured, for example, as described in step S24 of FIG. 8, but is not limited thereto.
- the lung sound analysis system 30 configured as described above functions as follows. That is, first, the storage means 31 stores the history of auscultatory findings for lung sound data for each auscultatory position of a subject who is a heart failure patient. Next, the calculation means 32 calculates the appearance frequency of abnormal sounds for each auscultation position of the subject based on the above history. Next, the determining means 33 determines the order of a plurality of auscultation positions for auscultating lung sounds from the subject based on the calculated frequency of appearance. Next, the acquisition means 34 guides the operator to the auscultation position of the subject according to the determined order, and acquires a time-series acoustic signal including the lung sound from the auscultation position being guided.
- the lung sound analysis system 30 configured and operating in this way, even if the auscultation is interrupted at the time when the auscultation of a part of the auscultation positions of the plurality of auscultation positions is completed for some reason such as the patient's convenience, heart failure It is possible to reduce the probability of overlooking the exacerbation of.
- the reason is that the frequency of occurrence of abnormal sounds for each auscultatory position of the subject is calculated based on the history of past auscultatory findings of the lung sound of the subject who is a heart failure patient, and based on the calculated frequency of auscultation. This is to determine the order of multiple auscultation positions for auscultating lung sounds from the subject.
- the abnormality detection by the normal model is based on the fact that it is statistically out of order. Therefore, even if the lung sound data contains rales with different properties (rough intermittent crackles, fine crackles), it is detected that the lung sounds are abnormal, but the properties are not detected. Similarly, in the abnormality detection by the normal model, it is detected that the lung sound is abnormal regardless of whether the number of occurrences of the ra sound is small or large, but the number of appearances of the la sound is not detected. On the other hand, in the above-mentioned abnormality detection method by supervised learning, it is possible to detect the type and number of abnormal sounds of lung sounds.
- the type and number of abnormal sounds are set in the determination table shown in FIG. 11, and the severity of heart failure is also taken into consideration in consideration of the type and number of abnormal sounds. May be determined.
- the analysis target lung sound acquisition means may instruct the subject to take a larger breath when it is determined that the lung sound cannot be recorded correctly.
- the analysis target lung sound acquisition means may indicate the position to be auscultated to the operator by AR (Augmented Reality) display.
- the analysis target lung sound acquisition means may change the auscultation position based on the pre-registration information such as the gender of the subject.
- the analysis target lung sound acquisition means may start the breathing instruction when it detects that the stethoscope is applied, that is, the chest piece comes into contact with the subject's body.
- the analysis target lung sound acquisition means may give a breathing instruction by displaying or voice of an avatar designated by the subject.
- the analysis target lung sound acquisition means may be configured to urge the acquisition of lung sound by the display or voice of the avatar designated by the subject when the acquisition of lung sound is not performed within a predetermined period. ..
- the lung sound abnormality detecting means may use the detected abnormal sound as learning data of the lung sound abnormality detecting means. Further, the lung sound abnormality detecting means may be a learning data in which a doctor makes a judgment based on the abnormal sound data sent to the server and the final judgment result (normal or abnormal) by the doctor is registered in the system. .. Further, the lung sound abnormality detecting means may acquire a normal reference sound for each subject in advance and detect the abnormal sound based on the reference sound. Further, the lung sound abnormality detecting means may change the model used for abnormality detection based on the subject's pre-registration information (including body weight and medication history data) and the auscultation position.
- pre-registration information including body weight and medication history data
- the analysis result output means may display the analysis result, the lung sound record used for the analysis, and the stored information including the analysis target lung sound information on the screen display unit or the like in chronological order. Further, the analysis result output means may transmit information to the server even when an abnormality is not detected.
- the present invention can be used in a system for analyzing human lung sound, and in particular, in a system for early detection of exacerbation of heart failure in a patient discharged from the hospital after receiving treatment for heart failure and preventing readmission.
- a storage means for storing the history of auscultatory findings for lung sound data for each auscultatory position of a subject who is a heart failure patient, and a storage means. Based on the history, a calculation means for calculating the appearance frequency of abnormal sounds for each auscultation position of the subject, and a calculation means.
- a determination means for determining the order of a plurality of auscultation positions for auscultating lung sounds from the subject based on the calculated frequency of appearance.
- An acquisition means for guiding the operator to the auscultation position of the subject according to the determined order and acquiring a time-series acoustic signal including lung sound from the auscultation position under the guidance.
- the lung sound analysis system equipped with.
- the lung sound analysis system according to Appendix 1 further comprising a detection means for detecting an abnormality in lung sound from a time-series acoustic signal including lung sound for each auscultation position.
- the detection means is the lung sound analysis system according to Appendix 2, which determines the severity of heart failure of the subject based on the detection result of the lung sound abnormality at each auscultation position.
- the detection means determines the severity of heart failure of the subject on the assumption that no lung sound abnormality is detected at the auscultation position that was not auscultated, and outputs the determination result as the most optimistic value.
- the acquisition means determines the resting phase of the subject's respiration, and according to the result of the determination, divides the time-series acoustic signal into a period of the resting phase of the subject and a period other than the resting phase.
- the lung sound analysis system according to any one of Supplementary note 1 to 4.
- the acquisition means detects background noise from the time-series acoustic signal during the period of the rest phase after the division, and the detected background noise from the time-series acoustic signal during a period other than the rest phase after the division.
- the lung sound analysis system according to Appendix 5 for removing.
- the lung sound analysis system according to Appendix 7 further comprising a detection means for detecting a lung sound abnormality from the time-series acoustic signal in a period other than the rest phase after the background noise is removed.
- the acquisition means is based on the intensity of the time-series acoustic signal during the period of the resting phase after the division and the intensity of the time-series acoustic signal during the period other than the resting phase, and the time series of the period other than the resting phase.
- the lung sound analysis system according to Appendix 5 which calculates an index value indicating the quality of an acoustic signal.
- the acquisition means issues an alarm based on the calculated index value.
- [Appendix 11] Memorize the history of auscultatory findings for lung sound data for each auscultatory position of a subject who is a heart failure patient.
- the frequency of appearance of abnormal sounds for each auscultation position of the subject was calculated. Based on the calculated frequency of appearance, the order of a plurality of auscultation positions for auscultating lung sounds from the subject is determined. According to the determined order, the operator is instructed on the auscultation position of the subject, and the time-series acoustic signal including the lung sound is acquired from the auscultation position in which the guidance is given. Lung sound analysis method.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
肺音分析システムは、心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する記憶手段と、履歴に基づいて、被験者の聴診位置毎の異常音の出現頻度を算出する算出手段と、算出した出現頻度に基づいて、被験者から肺音を聴診する複数の聴診位置の順序を決定する決定手段と、決定した順序に従って、操作者に対して被験者の聴診位置をガイダンスし、ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する取得手段と、を備える。
Description
本発明は、心不全の診断を支援するための肺音分析システム、肺音分析方法、および記録媒体に関する。
心不全とは、何らかの心臓機能障害、すなわち、心臓に器質的および/あるいは機能的異常が生じて心ポンプ機能の代償機転が破綻した結果、呼吸困難・倦怠感や浮腫が出現し、それに伴い運動耐容能が低下する臨床症候群のことをいう。心不全を患った患者は、治療により寛解しても、常に増悪のリスクがある。水分・塩分の過剰摂取、薬の服用忘れ、過度な運動などが原因で、患者に急性増悪が生じると、再入院を余儀なくされる。そのため、退院した患者の心不全増悪を早期に発見して治療介入することにより、急性増悪を防ぐことが重要である。
心不全を診断する方法の一つに、聴診による肺音の検診がある。かかる検診は、安全かつ簡便に肺の健康状態、ひいては心不全を診断できる方法の一つである。しかし、訓練を積んだ専門医でなければ詳細かつ正確な診断結果を得ることは困難である。そのため、一般の看護師や介護従事者による回診や訪問介護などの現場では、詳細な診断を下すことはできなかった。
この問題に対処するため、電子聴診器により収集した肺音に対し、副雑音と呼ばれる異常音の有無を自動判別するシステムが提案されている(例えば特許文献1乃至6参照)。
ところで、聴診器を当てる複数の聴診位置の順序は、事前に固定されているものと(例えば特許文献1)、看護婦等の好みや習慣に応じて順序を任意に変更できるものとがある(例えば特許文献6)。しかしながら、何れの構成であっても、患者の都合など何らかの理由で複数の聴診位置のうちの一部の聴診位置の聴診を終えた時点で聴診を中断すると、心不全の増悪を見過ごしてしまう可能性が高かった。
本発明は、上述した課題を解決する肺音分析システムを提供することにある。
本発明の一形態に係る肺音分析システムは、
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する記憶手段と、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出する算出手段と、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定する決定手段と、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する取得手段と、
を備えるように構成されている。
また、本発明の他の形態に係る肺音分析方法は、
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶し、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出し、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定し、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する、
ように構成されている。
また、本発明の他の形態に係るコンピュータ読み取り可能な記録媒体は、
コンピュータに、
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する処理と、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出する処理と、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定する処理と、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する処理と、
を行わせるためのプログラムを記録するように構成されている。
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する記憶手段と、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出する算出手段と、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定する決定手段と、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する取得手段と、
を備えるように構成されている。
また、本発明の他の形態に係る肺音分析方法は、
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶し、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出し、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定し、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する、
ように構成されている。
また、本発明の他の形態に係るコンピュータ読み取り可能な記録媒体は、
コンピュータに、
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する処理と、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出する処理と、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定する処理と、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する処理と、
を行わせるためのプログラムを記録するように構成されている。
本発明は、上述したような構成を有することにより、患者の都合など何らかの理由で複数の聴診位置のうちの一部の聴診位置の聴診を終えた時点で聴診を中断しても、心不全の増悪を見過ごしてしまう確率を低減することができる。
次に、本発明の実施の形態について、図面を参照して詳細に説明する。
[第1の実施の形態]
図1は、本発明の第1の実施形態に係る肺音分析装置10のブロック図である。肺音分析装置10は、心不全治療を受けて退院した患者から肺音を取得して分析する情報処理装置である。肺音分析装置10は、スマートフォン、タブレット型端末、PDA(Personal Digital Assistant)、ノートパソコンなどであってよいが、それらに限定されない。以下、肺音分析装置10を使用して肺音を分析する患者を患者Aとする。
[第1の実施の形態]
図1は、本発明の第1の実施形態に係る肺音分析装置10のブロック図である。肺音分析装置10は、心不全治療を受けて退院した患者から肺音を取得して分析する情報処理装置である。肺音分析装置10は、スマートフォン、タブレット型端末、PDA(Personal Digital Assistant)、ノートパソコンなどであってよいが、それらに限定されない。以下、肺音分析装置10を使用して肺音を分析する患者を患者Aとする。
肺音分析装置10は、電子聴診器11、通信I/F部12、操作入力部13、画面表示部14、記憶部15、および、演算処理部16を備えている。
電子聴診器11は、聴診器のチェストピースを患者Aの胸部または背部に当てることにより、患者Aの肺音をディジタル信号に変換し、無線あるいは有線により演算処理部16へ転送するように構成されている。
通信I/F部12は、例えば、専用のデータ通信回路から構成され、有線または無線を介して接続されたサーバ装置などの各種装置との間でデータ通信を行うように構成されている。
操作入力部13は、キーボードやマウスなどの操作入力装置から構成され、操作者の操作を検出して演算処理部16に出力するように構成されている。操作者とは、肺音分析装置10を使用して患者Aの肺音を取得する作業を行う者である。操作者は、例えば、看護師などの医師以外の医療従事者、介護福祉士などの介護従事者、あるいは患者Aの家族などであってよい。
画面表示部14は、LCD(Liquid Crystal Display)やPDP(Plasma Display Panel)などの画面表示装置から構成され、演算処理部16からの指示に応じて、分析結果などの各種情報を画面表示するように構成されている。
記憶部15は、ハードディスクやメモリなどの記憶装置から構成され、演算処理部16における各種処理に必要な処理情報およびプログラム151を記憶するように構成されている。
プログラム151は、演算処理部16に読み込まれて実行されることにより各種処理部を実現するプログラムである。プログラム151は、通信I/F部12などのデータ入出力機能を介して外部装置(図示せず)や記憶媒体(図示せず)から予め読み込まれて記憶部15に保存される。
記憶部15に記憶される主な処理情報には、肺音記録152、および、分析対象肺音情報153がある。
肺音記録152は、患者Aの肺音の記録である。肺音記録152は、心不全治療のために入院した患者Aに対して退院するまでに行われた聴診を含む診療行為の記録に基づいて生成され、退院時に肺音分析装置10の記憶部15に記録される。図2は、肺音記録152の構成例である。この例では、肺音記録152は、患者ID1521、1以上の聴診情報1527、退院時連絡事項1525、および、連絡先メールアドレス1526の各項目から構成されている。患者ID1521の項目には、患者Aを一意に識別するIDが記録される。
聴診情報1527の項目は、聴診日時1522、担当医1523、および、肺音情報1524の各項目から構成されている。聴診日時1522の項目には、聴診を含む診断が行われた日時が記録される。1以上の聴診情報1527の項目は、聴診日時1522の昇順に並べられている。一番下の聴診情報1527(退院時連絡事項1525の直前の聴診時)が、患者Aの退院時のものである。担当医1523の項目には、診断を行った医師の氏名が記録される。
肺音情報1524の項目は、聴診位置毎に設けられている。聴診位置とは、肺音を聴診するために聴診器のチェストピースを当てる患者の体の場所である。すなわち、聴診位置は、肺音の取得部位である。図2の例では、聴診位置(1)から聴診位置(12)までの合計12箇所の聴診位置が設定されている(図2では、聴診位置(2)~(11)は省略されている)。図3は、聴診位置(1)~(12)を説明するための模式図である。
図3を参照すると、聴診位置(1)、(2)は、前胸部の上肺野の左右に設定される。聴診位置(3)、(4)は、前胸部の中肺野の左右に設定される。聴診位置(5)、(6)は、前胸部の下肺野の左右に設定される。聴診位置(7)、(8)は、背部の上肺野の左右に設定される。聴診位置(9)、(10)は、背部の中肺野の左右に設定される。聴診位置(11)、(12)は、背部の下肺野の左右に設定される。聴診位置は上述した個数と場所に限定されない。例えば、前胸部および背部だけでなく左右の側胸部の上肺野、中肺野、下肺野に聴診位置を設定し、合計18個としてもよい。或いは、上記の聴診位置のうちの一部を除外してもよい。例えば、聴診位置(3)~(6)、(9)、(10)を除外し、聴診位置(1)、(2)、(7)、(8)、(11)、(12)の合計6箇所に限定してもよい。
再び図2を参照すると、聴診位置毎の肺音情報1524の項目は、肺音データの項目と聴診所見の項目とから構成される組を1組以上含む。肺音データの項目には、患者Aの聴診位置から電子聴診器によって取得された肺音を含むディジタル時系列音響信号が記録される。聴診時の患者の姿勢は、臥位と座位に大別されるが、前胸部と背部聴診は通常、座位で行われる。1つの肺音データ(例えば肺音データ1)の信号長は任意である。例えば、1つの肺音データは、患者Aの連続するN呼吸分の信号であってよい。ここで、Nは1以上の正の整数である。また、肺音データは、電子聴診器から取得された時系列音響信号に対して、休止相の期間の時系列音響信号の除去、雑音除去、呼吸タイミングの付与などの加工を施した信号であってよい。
聴診所見の項目には、肺音データに対する専門医の聴診所見が記録される。聴診所見には、肺音の異常音の有無、および、異常音がある場合には異常音の種類(ラ音など)などが記録されている。心不全患者の多くは、心不全治療を受けて寛解した状態で退院する。そのため、多くの患者の退院時点の肺音は正常である。但し、患者の都合によっては、軽症の状態で退院するケースがある。そのようなケースでは、患者は軽症であるけれども寛解していないため、一部の聴診位置の肺音が異常であることがある。
退院時連絡事項1525の項目には、患者Aの退院時の体重などの情報が記録されている。
連絡先メールアドレス1526の項目には、分析結果を送信する相手先のメールアドレスが1以上記録されている。連絡先メールアドレスは、例えば、患者Aが入院していた病院、心不全の専門医、患者Aのかかりつけ医などのメールアドレスであってよい。なお、分析結果を送信する方法は、メールに限定されず、グループウェアのメッセージ機能、ビジネスチャットなどの他のコミュニケーション方法であってもよい。
再び図1を参照すると、分析対象肺音情報153は、患者Aの退院後に電子聴診器11を使用して患者Aから取得された肺音情報およびその分析結果が記録される。図4は、分析対象肺音情報153の構成例である。この例では、分析対象肺音情報153は、患者ID1531、分析日時1532、担当者1533、肺音情報1534、緊急度1535、および、分析時連絡事項1536の各項目から構成されている。
患者ID1531の項目には、肺音記録152の患者ID1521の項目に記録された患者Aを一意に識別するIDが記録される。分析日時1532の項目には、患者Aの肺音の取得と分析を行った日時が記録される。担当者1533の項目には、患者Aの肺音を取得する作業を行った操作者を一意に識別するIDが記録される。
肺音情報1534の項目は、聴診位置毎に設けられている。図4の例では、図3を参照して説明した聴診位置(1)から聴診位置(12)までの合計12箇所の聴診位置が設定されている(図4では、聴診位置(2)~(11)は省略されている)。聴診位置毎の肺音情報1534の項目は、肺音データの項目と分析結果の項目とから構成される組を1組以上含む。肺音データの項目には、患者Aの当該聴診位置から電子聴診器11によって取得された肺音を含むディジタル時系列音響信号が記録される。1つの肺音データ(例えば肺音データ1)の信号長は任意である。例えば、1つの肺音データは、患者Aの連続するN呼吸分の信号であってよい。ここで、Nは1以上の正の整数である。また、肺音データは、電子聴診器11から取得された時系列音響信号に対して、休止相の期間の時系列音響信号の除去、雑音除去、呼吸タイミングの付与などの加工を施した信号であってよい。
分析結果の項目には、肺音データを機械的に分析した結果が記録される。分析結果には、肺音データが異常な肺音データであるか否かを表す数値が記録される。例えば、分析結果の項目には、正常肺音であることを示す値0、異常肺音であることを示す値1の二値が記録されていてよい。あるいは、分析結果の項目には、肺音データの異常度を表す数値が記録されていてよい。異常度は、事前に設定された閾値以下の異常度は、肺音データが正常肺音であることを表し、閾値を超える異常度は、肺音データが異常肺音であることを表す。
緊急度1535の項目には、聴診位置(1)~(12)の各分析結果を総合的に判断して算出された緊急度が記録される。緊急度は、患者の状態がどれほど緊急を要するかを表す指標である。換言すれば、緊急度とは、ある時間内に適切な心不全治療を行うことで、急性増悪による再入院の危機を回避または減少できる時間的な余裕の程度を示す指標である。このような緊急度を分析結果に含めることにより、分析結果を認識した医療従事者などは、緊急度に応じた行動をとることが可能になる。
分析時連絡事項1536の項目には、分析当日の患者Aの状態などが記録される。患者Aの状態として、例えば、体重、血圧、脈拍、自覚症状(外出時などの息切れ、むくみ、せき、食欲低下など)、服薬状況、摂取水分量などがある。
再び図1を参照すると、演算処理部16は、CPUなどのマイクロプロセッサとその周辺回路を有し、記憶部15からプログラム151を読み込んで実行することにより、上記ハードウェアとプログラム151とを協働させて各種処理部を実現するように構成されている。演算処理部16で実現される主な処理部には、肺音記録取得手段161、分析対象肺音取得手段162、肺音異常検知手段163、および、分析結果出力手段164がある。
肺音記録取得手段161は、通信I/F部12などのデータ入出力機能を介して外部装置(図示せず)や記憶媒体(図示せず)から患者Aに係る肺音記録152を取得し、記憶部15に記録するように構成されている。この例では、患者Aの退院時に、病院の医療サーバなどに患者Aに係る肺音記録152が既に生成されていることを前提としている。しかし、肺音記録取得手段161は、医療サーバなどに記録された患者Aの聴診を含む診療記録から必要な情報を抽出して肺音記録152を生成し、記憶部15に保存するようにしてもよい。
分析対象肺音取得手段162は、退院後の患者Aの肺音を含むディジタル時系列音響信号およびその他の情報を取得するように構成されている。分析対象肺音取得手段162は、患者Aの肺音を含むディジタル時系列音響信号は操作入力部13などから入力される操作者の指示に従って、電子聴診器11から取得する。また、分析対象肺音取得手段162は、その他の情報として、患者ID、分析日時、担当者、分析時連絡事項の情報を、操作入力部13を通じて操作者から、或いは記憶部15に記憶された肺音記録152から取得する。また、分析対象肺音取得手段162は、取得したディジタル時系列音響信号およびその他の情報から分析対象肺音情報153を生成し、記憶部15に保存する。分析対象肺音取得手段162によって記憶部15に保存される分析対象肺音情報153は例えば図4に示したようなフォーマットで構成されている。分析対象肺音取得手段162による保存時点では、肺音情報1534の各分析結果の項目と緊急度1535の項目はNULL値である。
肺音異常検知手段163は、肺音データが異常な肺音か否かを検知するように構成されている。肺音異常を検知する手法は各種存在する。本実施形態では、肺音異常検知手段163は、正常音だけを予め学習してその範囲に入らない音を異常音として検知する、正常モデルに基づく異常検知手法を使用する。肺音異常検知手段163は、記憶部15から肺音記録152を読み出し、肺音記録152に記録された患者Aの退院時の聴診位置毎の肺音データに基づいて、患者Aの聴診位置毎の肺音データを分析するための正常モデルを生成し、記憶するように構成されている。また、肺音異常検知手段163は、記憶部15から分析対象肺音情報153を読み出し、分析対象肺音情報153に記録された患者Aの聴診位置毎の肺音データを、上記正常モデルを用いて分析し、分析結果を聴診位置毎の肺音記録152の分析結果の項目に記録するように構成されている。また、肺音異常検知手段163は、聴診位置毎の肺音データの分析結果に基づいて、緊急度を算出し、緊急度1535の項目に記録するように構成されている。
分析結果出力手段164は、記憶部15から分析対象肺音情報153を読み出し、画面表示部14に分析対象肺音情報153を表示するように構成されている。また、分析結果出力手段164は、操作入力部13からの指示に従って或いは自動的に、記憶部15から読み出した分析対象肺音情報153をファイルとして添付したメールを、通信I/F部12を通じて、肺音記録152の連絡先メールアドレス1526宛てに送信するように構成されている。
次に、肺音分析装置10の動作を説明する。肺音分析装置10の動作は、事前動作と、その後に行われる分析動作とに大別される。
先ず、事前動作を説明する。図5は事前動作の一例を示すフローチャートである。事前動作は、患者Aの退院当日に入院先の専門病院内で実施される。あるいは、退院した後、1回目の分析動作を開始する前に患者Aの自宅などで実施してもよい。事前動作は、例えば、画面表示部14に表示されている事前動作の開始ボタンの操作によって肺音記録取得手段161が起動されることにより開始される。
図5を参照すると、肺音記録取得手段161は、起動されると、通信I/F部12などのデータ入出力機能を介して外部装置(図示せず)や記憶媒体(図示せず)から患者Aに係る肺音記録152を取得し、記憶部15に記録する(ステップS1)。図2は、このようにして取得された肺音記録152の構成例である。肺音記録152には、少なくとも、患者Aの退院時の肺音データと聴診所見とが含まれている。
肺音記録取得手段161の上記動作が完了すると、自動的あるいは操作入力部13からの指示に従って、肺音異常検知手段163のモデル学習機能が起動される。肺音異常検知手段163は、モデル学習機能が起動されると、記憶部15から肺音記録152を読み出し、患者Aの退院時の肺音データと聴診所見とに基づいて正常モデルを学習し、学習後の正常モデルを内部的に記憶する(ステップS2)。
図6は、肺音異常検知手段163のモデル学習機能の説明図である。図6を参照すると、肺音異常検知手段163は、肺音記録152から患者Aの退院時の聴診情報1527を読み出し、先ず、聴診位置(1)の肺音データを正常な状態の肺音データとして使用して機械学習し、聴診位置(1)に対応する正常モデル171-1を作成する。具体的には、肺音異常検知手段163は、聴診位置(1)の肺音データから予め定められた識別のための特徴量を抽出する。特徴量は、肺音信号のエネルギーに基づくものであってもよいし、スペクトルに基づくものであってもよいし、スペクトルから計算されるMFCC(メル周波数ケプストラム係数)やDCTC(離散コサイン変換係数)などであってもよい。次に、肺音異常検知手段163は、抽出した特徴量をモデル化する。生成モデルとしては、混合ガウス分布(GMM)、One-class SVM、DNN(Deep Neural Network)の一種であるDenoising Auto-EncoderとBidirectional LSTM、kNN(k近傍法)などであってよい。なお、正常音を利用した異常検知手法は、上記に限定されない。例えば、状態変化を伴う発生機構の生成する音響信号から異常を検知する特許文献7,8などに記載された手法を用いてもよい。そして、肺音異常検知手段163は、聴診位置(1)の聴診所見に、肺音の異常音が無いことが記録されている場合、生成した正常モデル171-1をタイプ1の正常モデルとして管理する。一方、聴診位置(1)の聴診所見に、肺音の異常音が有ることが記録されている場合、生成した正常モデル171-1をタイプ2の正常モデルとして管理する。図6の例では、正常モデル171-1は、タイプ1の正常モデルとして生成されている。
肺音異常検知手段163は、患者Aの退院時の聴診情報1527に記録された聴診位置(2)~(12)の肺音データおよび聴診所見に基づいて、正常モデル171-1を生成した方法と同様の方法により、聴診位置(2)~(12)に対応する正常モデル171-2~171-12を生成する。図6の例では、正常モデル171-2~171-11がタイプ1の正常モデル、正常モデル171-12がタイプ2の正常モデルとして生成されている。
聴診位置毎の正常モデルは、単一のモデルであってもよいし、異なる観点で機械学習した複数のモデルであってもよい。例えば、同じ聴診位置の肺音を、呼吸タイミングに基づいて、吸気相の肺音部分と呼気相の肺音部分とそれ以外(即ち休止相)とに分割し、吸気相の肺音部分を使用して学習した正常モデルと、呼気相の肺音部分を使用して学習した正常モデルとを生成するようにしてもよい。また、聴診所見に肺音の異常がないことが記録されている複数の聴診位置に共通な1以上の正常モデルを学習するようにしてもよい。また、正常モデルの学習に使用する正常な肺音データには、患者Aの退院時点の正常な肺音データに加えて、それ以前の患者Aの正常な肺音データを使用してもよいし、患者A以外の人の正常な肺音データを使用してもよい。
次に、分析動作を説明する。図7は分析動作の一例を示すフローチャートである。分析動作は、患者Aの自宅など専門病院以外の場所で実施される。但し、分析動作は、専門病院などで医師の診断の補助に用いてもよい。分析動作は、例えば、画面表示部14に表示されている分析動作の開始ボタンの操作によって分析対象肺音取得手段162が起動されることにより開始される。
図7を参照すると、分析対象肺音取得手段162は、起動されると、患者ID1531、分析日時1532、担当者1533、および、分析時連絡事項1535の各項目に必要な事項を記載し、その他の項目はNULL値とした分析対象肺音情報153を作成し、記憶部15に記録する(ステップS11)。例えば、分析対象肺音取得手段162は、患者ID1531を記憶部15に記憶された肺音記録152の患者ID1521から取得する。また、分析対象肺音取得手段162は、分析日時1532、担当者1533、および、分析時連絡事項153を、操作入力部13を通じて操作者から取得する。
次に、分析対象肺音取得手段162は、患者Aの聴診位置毎の肺音を含むディジタル時系列音響信号を電子聴診器11から取得し、聴診位置に対応付けて分析対象肺音情報153に記録する(ステップS12)。患者の聴診位置毎の肺音を電子聴診器によって取得して聴診位置に対応付けて記録する方法は、任意である。例えば、特許文献1、4あるいは6などに記載されるように、電子聴診器11を用いる操作者に対して聴診位置をガイダンスためのガイダンス画面を画面表示部14に表示して行う方法など、任意の方法を使用してよい。また、ステップS12において、肺音異常検知手段163は、記憶部15から分析対象肺音情報153を読み出し、分析対象肺音情報153の肺音情報1534に記録された患者Aの聴診位置毎の肺音データを事前に作成してある正常モデルを用いて分析し、分析結果を肺音情報1534の聴診位置毎の分析結果の項目に記録する。また、ステップS12において、分析結果出力手段164は、肺音異常検知手段163の分析結果を、画面表示部14に適宜表示する。
次に、肺音異常検知手段163は、聴診位置毎の肺音データの分析結果に基づいて、緊急度1535を算出し、分析対象肺音情報153の緊急度1535の項目に記録する(ステップS13)。次に、分析結果出力手段164は、記憶部15から分析対象肺音情報153を読み出し、画面表示部14に分析対象肺音情報153を表示し、また、分析対象肺音情報153をファイルとして添付したメールを、通信I/F部12を通じて、肺音記録152の連絡先メールアドレス1526宛てに送信する(ステップS14)。なお、分析結果出力手段164は、緊急度1535が予め定められた閾値を超えた場合にのみ、分析対象肺音情報153を送信してもよい。
続いて、分析対象肺音の取得と異常検知を行うステップS12の詳細を、図8のフローチャートを参照して説明する。図8は図7のステップS12の詳細な手順の一例を示すフローチャートである。
図8を参照すると、分析対象肺音取得手段162は、患者Aの肺音記録152に記録された1以上の聴診情報1527における聴診位置毎の聴診所見に記録された異常音の有無に基づいて、聴診位置毎に異常音が出現した頻度を算出する(ステップS21)。具体的には、先ず、分析対象肺音取得手段162は、聴診位置(1)~(12)毎の頻度カウンタを0に初期化する。次に、分析対象肺音取得手段162は、肺音記録152に記録された聴診日時が退院日時である聴診情報1527に注目する。次に、分析対象肺音取得手段162は、聴診位置(1)に記録された1以上の聴診所見の中に、異常音が有ることが記載された聴診所見が少なくとも1件存在すれば、聴診位置(1)に対応する頻度カウントを1だけインクリメントする。分析対象肺音取得手段162は、同様に、聴診位置(2)~(12)に記録された1以上の聴診所見の中に、異常音が有ることが記載された聴診所見が少なくとも1件存在すれば、聴診位置(2)~(12)に対応する頻度カウントを1だけインクリメントする。次に、分析対象肺音取得手段162は、聴診日時が退院日時より1つ前の聴診情報1527に注目し、退院日時の聴診情報1527を使用して行った操作と同様の操作を聴診位置(1)~(12)毎の頻度カウントに対して実施する。以下、同様に、分析対象肺音取得手段162は、予め定められた数の聴診情報1527まで処理を終えるか、肺音記録152に記録された最も過去の聴診情報1527まで処理を終えるか、いずれか早く成立するまで、上記動作を繰り返す。そして、分析対象肺音取得手段162は、聴診位置(1)~(12)毎の頻度カウントの値を、聴診位置(1)~(12)の異常音出現頻度とする。
次に、分析対象肺音取得手段162は、患者Aの聴診位置(1)~(12)毎の異常頻度に基づいて、患者Aから肺音を聴診する聴診位置の順序(順番)を決定する(ステップS22)。患者Aの聴診位置(1)~(12)間にラ音などの異常音が発生した頻度に差があるということは、患者Aには、相対的に異常音が発生し易い聴診位置とそうでない聴診位置とが存在することを表している。そのため、患者Aの聴診位置(1)~(12)毎の過去の異常頻度に基づいて決定した聴診位置の順序に従って聴診を行うことにより、患者Aの都合など何らかの理由で聴診を途中で中断し、それまでに聴診した一部の聴診位置の肺音データの分析結果に基づいて患者Aの心不全状態を判断することになっても、心不全の増悪を見過ごす確率を低減することができる。
分析対象肺音取得手段162は、患者Aの聴診位置毎の異常頻度のみに基づいて聴診位置の順序を決定してもよい。その場合、分析対象肺音取得手段162は、例えば、異常頻度の降順(多いものから少ないものへ進む順序)に聴診位置をソートした結果を、聴診位置の順序に決定してよい。患者Aの聴診位置(1)~(12)毎の異常頻度が例えば図9に示される場合、異常頻度の降順に聴診位置をソートした結果に基づく聴診位置の順序の一例は図9の聴診順序1に示すようになる。聴診順序1では、1番目に、異常頻度が最大の4である聴診位置(11)を聴診する。異常頻度が次に大きい聴診位置は、異常頻度3の聴診位置(6)、(12)である。異常頻度に差がないので、聴診順序1では、1番目と同じ背部にある聴診位置(12)を2番目とし、前胸部にある聴診位置(6)を3番目としている。以下、同様に、聴診位置(5)、(9)、(10)、(7)、(1)、(2)、(3)、(4)、(8)の順序とされている。
上記のように患者の聴診位置毎の異常頻度のみに基づいて聴診位置の順序を決定することにより、異常肺音である確率がより高い聴診位置から順に肺音データを取得することができる。但し、異常頻度の分布状況によっては、背部の聴診と前胸部の聴診とを何度か切り替えなければならず、患者および操作者の負担が重くなる。
そのため、患者の聴診位置毎の異常頻度だけでなく患者および操作者の負担軽減を考慮して、聴診位置の順序を決定してもよい。例えば、分析対象肺音取得手段162は、前胸部および背部のうち異常頻度が最大の聴診位置が存在する側を最初に聴診する部位、その部位と反対側を次に聴診する部位に決定する。また、分析対象肺音取得手段162は、部位毎に、その部位の全ての聴診位置をそれらの異常頻度の降順にソートした結果を、その部位の聴診位置の順序に決定する。この決定方法による聴診順序の例を図9の聴診順序2に示す。
聴診順序2では、異常頻度が最大の4である聴診位置(11)が存在する背部を最初に聴診する部位に決定し、背部の聴診位置(7)~(12)の聴診順序をそれらの異常頻度の降順にソートした結果に従って、聴診位置(11)、(12)、(9)、(10)、(7)、(8)の順序に決定している。また、聴診順序2では、背部の全ての聴診位置の聴診を終えた後、前胸部の聴診に切り替え、前胸部の聴診位置(1)~(6)の聴診順序をそれらの異常頻度の降順にソートした結果に従って、聴診位置(6)、(5)、(1)、(2)、(3)、(4)の順序に決定している。
再び図8を参照すると、分析対象肺音取得手段162は、最初の順序の聴診位置に注目する(ステップS23)。次に、分析対象肺音取得手段162は、注目中の聴診位置の肺音を含むディジタル時系列音響信号を電子聴診器11から取得する(ステップS24)。このとき、分析対象肺音取得手段162は、電子聴診器11を用いる操作者に対して注目中の聴診位置をガイダンスするためのガイダンス画面を画面表示部14に表示して肺音取得のサポートを行うようにしてもよい。また、分析対象肺音取得手段162は、電子聴診器11を用いる操作者に対して注目中の聴診位置をガイダンスするためのガイダンス音声を図示しないスピーカから再生して肺音取得のサポートを行うようにしてもよい。このように、分析対象肺音取得手段162は、患者Aについて決定した肺音を聴診する聴診位置の順序に基づいて、電子聴診器11を用いる操作者に対して、電子聴診器11を当てるべき聴診位置を画像または音声を使用してガイダンスし、前記ガイダンスしている聴診位置の肺音を含むディジタル時系列音響信号を電子聴診器11から取得する。
次に、分析対象肺音取得手段162は、取得した肺音の品質を測定する(ステップS25)。通常、電子聴診器11から出力される時系列音響信号には、100Hz~約2kHzの周波数帯域に患者Aの肺音が含まれており、また同じ周波数帯域に背景雑音(定常雑音)が含まれている。例えば、患者Aの体を通じて或いは患者Aの皮膚とチェストピースの隙間を通じて外部から入ってくる環境音、人の声、金属音などが、背景雑音の一例である。時系列音響信号中の肺音の強度が小さく背景雑音の強度が大きいと、肺音異常を検出するのが難しくなる。そこで、分析対象肺音取得手段162は、先ず、帯域通過フィルタを使用して、電子聴診器11から出力される時系列音響信号から100Hz~約2kHzの周波数帯域の時系列音響信号を抽出する。次に、分析対象肺音取得手段162は、抽出した時系列音響信号中の肺音の強度と背景雑音の強度とを算出し、それらの相違度を肺音の品質の指標値として算出する。以下、肺音の品質の指標値を算出する方法について説明する。
図10は、電子聴診器11から出力される肺音を含む時系列音響信号の波形の一例を示す模式図である。一般に肺音には、気管呼吸音、気管支肺胞呼吸音、気管支呼吸音、肺胞呼吸音の種類があり、図10に示した肺音は大部分の胸壁上、従って全ての聴診位置(1)~(12)で聴こえる肺胞呼吸音の一例を示す模式図である。図10を参照すると、肺音を含む時系列音響信号は、吸気の開始時には、振幅が大きく変化する。また、呼気の開始時には、吸気の開始時ほどではないが、やはり振幅が大きく変化する。そのため、分析対象肺音取得手段162は、時系列音響信号と吸気の開始時の振幅変化を判別できる閾値T1とを比較し、時系列音響信号の振幅が閾値T1より大きくなった時点を吸気の開始時として検出する。また、分析対象肺音取得手段162は、ある吸気の開始時から次の吸気の開始までを呼吸の1周期の区間とし、その区間内の時系列音響信号の振幅と呼気の開始時の振幅変化を判別できる閾値T2(<T1)とを比較し、時系列信号の振幅が閾値T2より大きくなった時点を呼気の開始時として検出する。ここで、休止相とそれ以外の相とを区別するだけならば、吸気の開始のみ検出すればよい。但し、本実施形態では、休止相以外の相をさらに吸気相と呼気相に分割するために、呼気の開始も検出している。
また、一般に人の呼吸は、約1秒の吸気相と約1秒の呼気相と、次の吸気までの約1~1.5秒の休止相からなることが知られている。即ち、吸気の開始時点の直前には、吸気も呼気もしていない休止相がある。分析対象肺音取得手段162は、検出した吸気の開始時点の直前の所定期間(例えば1秒)を休止相として検出する。そして、分析対象肺音取得手段162は、休止相における時系列音響信号の強度を背景雑音の強度として算出する。時系列音響信号の強度は、例えば振幅値の二乗平均平方根を使用できるが、それに限定されず、振幅などであってもよい。また、分析対象肺音取得手段162は、吸気相または/および呼気相における時系列音響信号の強度から背景雑音の強度を減算した値を、肺音の強度として算出する。そして、分析対象肺音取得手段162は、算出した背景雑音の強度に対する肺音の強度の比を、肺音の品質の指標値とする。なお、肺音の品質の指標値は上記したものに限定されず、肺音の強度と背景雑音の強度とから算出されるS/N比を指標値としてもよい。
以上の例では、肺胞呼吸音を例にして休止相を検出する方法を説明したが、中肺野や上肺野の聴診位置では肺胞呼吸音とともに気管支肺胞呼吸音が聴取される。しかし、気管支肺胞呼吸音は吸気の振幅が呼気の振幅以上であるため、肺胞呼吸音とともに気管支肺胞呼吸音が聴取された場合であっても、図10で説明した方法で吸気および呼気の開始タイミングを検出することができる。但し、気管支肺胞呼吸音が気管呼吸音に近い場合は、呼気時の方が吸気時よりも振幅が大きくなる場合がある。そのため、気管支肺胞呼吸音が気管呼吸音に近い場合は、図10で説明した方法において吸気と呼気を逆にしてよい。具体的には、例えば、以下のようにしてよい。
先ず、聴診された肺音の周波数スペクトルの振幅が最大となる周波数と事前に設定された閾値周波数とを比較する。次に、聴診された肺音の周波数スペクトルの振幅が最大となる周波数が閾値周波数以上であれば、肺音に含まれる気管支肺胞呼吸音が気管呼吸音に近いと判定し、図10で説明した方法において吸気と呼気を逆にして吸気および呼気の開始タイミングを検出する。一方、聴診された肺音の周波数スペクトルの振幅が最大となる周波数が閾値周波数未満であれば、肺音に含まれる気管支肺胞呼吸音が気管呼吸音に近くないと判定し、図10で説明した方法で吸気および呼気の開始タイミングを検出する。上記閾値周波数は、肺音に含まれる気管支肺胞呼吸音が気管呼吸音に近いか否かを判別できる閾値であり、例えば、肺胞呼吸音の周波数スペクトルの振幅が最大となる周波数とそれより高い気管呼吸音の周波数スペクトルの振幅が最大となる周波数との間の周波数帯域から事前に決定することができる。また、上記の「周波数スペクトルの振幅が最大となる周波数」の代わりに、スペクトルの形状を表現する尺度として使用される「スペクトル重心」を使用してもよい。
また、以上の例では、電子聴診器11から出力されている時系列音響信号から呼気および吸気の開始時点を検出し、検出された吸気の開始時点の直前所定期間を休止相として検出した。しかし、吸気相、呼気相、および休止相を検出する方法は上記に限定されない。例えば、分析対象肺音取得手段162は、例えば、電子聴診器から出力される肺音を含む時系列音響信号のどの区間が吸気相、呼気相、休止相であるかを推定するための機械学習を行った学習済みの学習モデルに患者Aの肺音を含む時系列音響信号を入力することで、区間毎に吸気相、呼気相、休止相の推定確率を当該学習モデルから取得するように構成されていてもよい。学習モデルは、例えば、様々な肺音を含む時系列音響信号を教師データとしてニューラルネットワークなどの機械学習アルゴリズムを用いた機械学習によって、事前に生成することができる。また、分析対象肺音取得手段162は、電子聴診器から出力される時系列音響信号以外から患者Aの吸気および呼気の開始などの呼吸のタイミングを検出してもよい。例えば、分析対象肺音取得手段162は、肺タコグラフなどの呼吸量センサや、呼吸活動による胸部または腹部の形状変化をセンサによって検出する呼吸バンドなどを使用して、患者Aの呼吸のタイミングを検出してもよい。
先ず、聴診された肺音の周波数スペクトルの振幅が最大となる周波数と事前に設定された閾値周波数とを比較する。次に、聴診された肺音の周波数スペクトルの振幅が最大となる周波数が閾値周波数以上であれば、肺音に含まれる気管支肺胞呼吸音が気管呼吸音に近いと判定し、図10で説明した方法において吸気と呼気を逆にして吸気および呼気の開始タイミングを検出する。一方、聴診された肺音の周波数スペクトルの振幅が最大となる周波数が閾値周波数未満であれば、肺音に含まれる気管支肺胞呼吸音が気管呼吸音に近くないと判定し、図10で説明した方法で吸気および呼気の開始タイミングを検出する。上記閾値周波数は、肺音に含まれる気管支肺胞呼吸音が気管呼吸音に近いか否かを判別できる閾値であり、例えば、肺胞呼吸音の周波数スペクトルの振幅が最大となる周波数とそれより高い気管呼吸音の周波数スペクトルの振幅が最大となる周波数との間の周波数帯域から事前に決定することができる。また、上記の「周波数スペクトルの振幅が最大となる周波数」の代わりに、スペクトルの形状を表現する尺度として使用される「スペクトル重心」を使用してもよい。
また、以上の例では、電子聴診器11から出力されている時系列音響信号から呼気および吸気の開始時点を検出し、検出された吸気の開始時点の直前所定期間を休止相として検出した。しかし、吸気相、呼気相、および休止相を検出する方法は上記に限定されない。例えば、分析対象肺音取得手段162は、例えば、電子聴診器から出力される肺音を含む時系列音響信号のどの区間が吸気相、呼気相、休止相であるかを推定するための機械学習を行った学習済みの学習モデルに患者Aの肺音を含む時系列音響信号を入力することで、区間毎に吸気相、呼気相、休止相の推定確率を当該学習モデルから取得するように構成されていてもよい。学習モデルは、例えば、様々な肺音を含む時系列音響信号を教師データとしてニューラルネットワークなどの機械学習アルゴリズムを用いた機械学習によって、事前に生成することができる。また、分析対象肺音取得手段162は、電子聴診器から出力される時系列音響信号以外から患者Aの吸気および呼気の開始などの呼吸のタイミングを検出してもよい。例えば、分析対象肺音取得手段162は、肺タコグラフなどの呼吸量センサや、呼吸活動による胸部または腹部の形状変化をセンサによって検出する呼吸バンドなどを使用して、患者Aの呼吸のタイミングを検出してもよい。
次に、分析対象肺音取得手段162は、肺音の品質の指標値を事前に設定された品質の閾値と比較する(ステップS26)。そして、分析対象肺音取得手段162は、肺音の品質の指標値が閾値より小さければ、電子聴診器11で聴診された当該聴診位置の肺音の品質が悪い旨の警報を画面表示部14に表示する(ステップS27)。この警報を認識した操作者は、背景雑音を低減する対策または/および肺音を増大させる対策を講じた上で、注目中の聴診位置の肺音を電子聴診器11により再度取得する作業を行うことになる(ステップS28)。背景雑音を低減する対策としては、室内を静音にするために窓を閉める、患者Aの皮膚とチェストピースの隙間から環境音などが入らないように、チェストピースを患者Aの皮膚にピッタリ押し当てるなどが考えられる。また、肺音を増大させる対策としては、患者Aにより大きく呼吸するように指示するなどが考えられる。このとき、例えば特許文献9に記載されるような方法で、患者Aに対して呼吸タイミングを指示するようにしてもよい。そして、分析対象肺音取得手段162は、ステップS25の処理に戻り、上述した処理と同様の処理を繰り返す。
一方、分析対象肺音取得手段162は、肺音の品質の指標値が閾値以上であれば、注目中の聴診位置の肺音を含むディジタル時系列音響信号から休止相の期間および背景雑音を除去し、休止相の期間および背景雑音を除去した後のディジタル時系列音響信号を注目中の聴診位置に関連付けて分析対象肺音情報153に記録する(ステップS29)。休止相の期間および背景雑音の除去は、以下のように行われる。
先ず、分析対象肺音取得手段162は、注目中の聴診位置の肺音を含むディジタル時系列音響信号を、吸気相とその直後の呼気相からなる区間(以下、吸気・呼気区間と記す)と休止相の区間(以下、休止区間と記す)とに2分割する。次に、分析対象肺音取得手段162は、吸気・呼気区間と休止区間のディジタル時系列音響信号をそれぞれ高速フーリエ変換(FFT)して吸気・呼気区間と休止区間の周波数スペクトルを算出する。次に、分析対象肺音取得手段162は、吸気・呼気区間の周波数スペクトルから休止区間の周波数スペクトルを減算する。この減算により、吸気相と呼気相に含まれている背景雑音が抑制される。次に、分析対象肺音取得手段162は、上記減算後の吸気・呼気区間の周波数スペクトルを逆周波数変換することにより、吸気・呼気区間の雑音除去後のディジタル時系列音響信号を生成する。そして、分析対象肺音取得手段162は、上記生成した吸気・呼気区間の雑音除去後のディジタル時系列音響信号を注目中の聴診位置に関連付けて分析対象肺音情報153に記録する。なお、分析対象肺音取得手段162は、注目中の聴診位置の肺音を含むディジタル時系列音響信号から休止相の期間を除去し、背景雑音を除去しないようにしてもよい。その場合、分析対象肺音取得手段162は、注目中の聴診位置の肺音を含むディジタル時系列音響信号を、吸気・呼気区間と休止区間とに2分割し、吸気・呼気区間のディジタル時系列音響信号を注目中の聴診位置に関連付けて分析対象肺音情報153に記録する。
次に、肺音異常検知手段163は、注目中の聴診位置に関連付けて分析対象肺音情報153に記録されている肺音データから肺音異常を検知し、検知結果を注目中の聴診位置に関連付けて分析対象肺音情報153に記録する(ステップS30)。肺音異常の検知は、以下のように行われる。
先ず、肺音異常検知手段163は、肺音データを注目中の聴診位置に対応して事前に生成し記憶している正常モデル171に入力し、肺音データが異常肺音である確率を正常モデル171から取得する。次に、肺音異常検知手段163は、使用した正常モデル171がタイプ1であれば、異常肺音である確率を事前に設定された閾値と比較し、確率が閾値を超えていれば当該肺音データは異常肺音であると判別し、閾値以下であれば正常肺音でると判別する。一方、肺音異常検知手段163は、使用した正常モデル171がタイプ2であれば、異常肺音である確率を事前に設定された閾値と比較し、確率が閾値以下であれば、当該肺音データは退院時と同じ種類の異常肺音であると判別し、閾値を超えていれば当該肺音データは退院時と異なる種類の異常肺音あるいは正常肺音の何れかであると判別する。正常肺音を判別結果に含める理由は、服薬などにより退院後に症状が改善し、退院時点で異常であった肺音が分析時に正常になっている場合もタイプ2の正常モデルから逸脱することになるためである。
分析結果出力手段164は、肺音異常検知手段163によって注目中の聴診位置の肺音データの異常検知が行われる毎に、その異常検知結果を画面表示部14に表示する(ステップS31)。これにより、操作者は、聴診位置の肺音データが異常肺音であるか否かを聴診時に直ちに認識することができる。
注目中の聴診位置の肺音データの取得と分析を終えると、分析対象肺音取得手段162は、全ての聴診位置の肺音データの取得と分析を終えたか否かを判定する(ステップS32)。取得を終えていない聴診位置が残っている場合、分析対象肺音取得手段162は、次の順序の聴診位置に注目を移し(ステップS33)、ステップS24に戻って、上述した処理と同様の処理を繰り返す。
また、全ての聴診位置の肺音データの取得と分析を終えた場合、分析対象肺音取得手段162は図8の処理を終了する。また、分析対象肺音取得手段162は、患者Aの都合などにより、全ての聴診位置の肺音データの取得と分析が完了する前に図8の処理を終了することがある。図8の処理が途中終了した場合、肺音データの取得と分析が行われていない聴診位置に対応する分析対象肺音情報153中の肺音情報1534はNULL値のままである。
続いて、緊急度1535の算出を行う図7のステップS13の詳細を説明する。
肺音異常検知手段163は、聴診位置毎の肺音データの分析結果に基づいて、患者Aの心不全の重症度を判定し、その判定した重症度に基づいて緊急度1535を算出する。肺音異常検知手段163は、心不全の重症度の判定では、聴診位置毎の肺音データの分析結果から心不全の重症度を判定するための判定テーブルを参照して、心不全の重症度を判定する。
図11は、上記判定テーブルの一例を示す図である。図11に示す判定テーブルは、聴診位置(1)~(12)に1対1に対応する列と、重症度に1対1に対応する行とを有し、行と列の交点に肺音異常有りを示す+記号、および肺音異常無しを示す-記号を設定している。図11を参照すると、判定テーブルでは、何れの聴診位置にも肺音異常がない場合、重症度0と判定される。また、判定テーブルでは、背部の下肺野に設定された聴診位置(11)、(12)の少なくとも一方に肺音異常があり、それ以外の聴診位置(1)~(10)に肺音異常がない場合、重症度1と判定される。また、判定テーブルでは、聴診位置(11)、(12)の双方に肺音異常があり、前胸部の下肺野に設定された聴診位置(5)、(6)の何れか一方のみに肺音異常があり、それ以外の聴診位置(1)~(4)、(7)~(10)に肺音異常がない場合、重症度2と判定される。最終行に設定された重症度Nは、全ての聴診位置(1)~(12)に肺音異常があるものとされている。図11では、重症度2と重症度Nとの間の1以上の重症度は記載が省略されているが、それらに関しても肺音異常が有る聴診位置と肺音異常が無い聴診位置とが設定されている。重症度2と重症度Nとの間の1以上の重症度では、肺音異常があるとされる聴診位置の数は4以上、12未満であり、重症度Nに近づくにつれ、その数は増加する。
図11に示した判定テーブルでは、聴診位置(1)~(12)における肺音異常の有無の組み合わせにより、心不全の重症度を重症度0から重症度NまでN+1のクラスに分類している。ここで、重症度0は、異常肺音が全く聞こえない状態であるため、心不全が寛解している状態であると言える。また、重症度1は、背部の下肺野のみで肺音異常が聞こえる状態であるため、心不全は寛解しているとは言えないが、軽症であり、このような状態で退院する患者も存在する状態である。重症度2は、背部の下肺野に加えて前胸部の下肺野の一方にも異常肺音が出ているため、重症度1よりは重症であると言える。但し、いまだ軽症に属するため、この時点で適切な対応を取れば再入院を防止できる確率が高いと言える。
聴診位置の分析結果から心不全の重症度を判定する判定テーブルは、図11に示したものに限定されない。例えば、ラ音は、吸気の終末だけ聴こえるときは軽症、吸気開始直後から聞こえるときは重症といった知見がある。そのため、判定テーブルに、聴診位置毎の異常肺音の有無に加えて、異常肺音が聞こえるタイミングを設定し、聴診位置と異常肺音の有無と異常肺音が聞こえるタイミングの組み合わせによって、心不全の重症度を判定するようにしてもよい。
また、肺音異常検知手段163は、聴診位置がどこであるかを問わず、異常肺音となった聴診位置の数から患者Aの心不全の重症度を判定してもよい。例えば、肺音異常検知手段163は、異常肺音となった聴診位置の数が0、1以上2以下、3以上4以下、5以上8以下、9以上のとき、それぞれ重症度0、1、2、3、4(最大)としてよい。
また、肺音異常検知手段163は、患者Aの都合などにより図8に示す処理が途中終了したことにより、聴診位置毎の肺音情報1534の少なくとも一部の分析結果がNULL値である場合、次のような処理を行う。先ず、肺音異常検知手段163は、分析結果がNULL値になっている、即ち肺音データが取得されず異常肺音か否かの分析が行われていない聴診位置の数が、事前に設定された第1の閾値未満であるという条件を満足する否かを判定する。換言すれば、肺音異常検知手段163は、肺音データが取得されて異常肺音か否かの分析が行われた聴診位置の数が事前に設定された第2の閾値以上であるという条件を満足するか否かを判定する。ここで、第1の閾値および第2の閾値は固定値であっても患者の退院時の状態に応じた可変値であってもよい。固定値とする場合、例えば第1の閾値は4以下、第2の閾値は8以上としてよい。また、可変値とする場合、何れの聴診位置でも異常肺音のない状態で退院した患者の場合、例えば第1の閾値は10以下、第2の閾値は2以上としてよく、それ以外の患者の場合、固定値と同様としてよい。そして、肺音異常検知手段163は、上記条件を満足しない場合、重症度は算出せず(従って、緊急度も算出しない)、今回の肺音分析をエラー終了し、その旨を画面表示部14に表示する。その理由は、誤った情報を操作者などに与えないようにするためである。
一方、上記条件を満足する場合、肺音異常検知手段163は、異常肺音か否かの分析が行われていない聴診位置において肺音異常が検知されなかったと仮定して、重症度を算出する。そして、肺音異常検知手段163は、算出した重症度を最も楽観的な値として保持する。即ち、算出した重症度が重症度1であった場合、「重症度1」ではなく「重症度1以上」あるいは「最低でも重症度1」として保持する。例えば、患者Aが何れの聴診位置でも異常肺音のない状態で退院したとして、聴診位置(11)、(12)の2か所のみ肺音データの取得と分析が行われ、その結果、少なくとも一方の聴診位置で異常肺音が検出されたとする。この場合、肺音異常検知手段163は、その他の聴診位置(1)~(10)では肺音異常は検知されなかったと仮定し、図11の判定テーブルに基づいて重症度1と判定し、それを踏まえて、「重症度1以上」と判定する。
肺音異常検知手段163は、上述のようにして聴診位置毎の肺音データの分析結果から心不全の重症度を判定すると、その判定した重症度から緊急度1535を決定する。例えば、肺音異常検知手段163は、心不全の重症度0~Nのみに基づいて、緊急度1535を決定してよい。即ち、肺音異常検知手段163は、緊急度1535の取りえる範囲を緊急度0から緊急度NまでのN+1クラスとし、決定した心不全の重症度i(i=0~N)と1対1に対応する緊急度iを決定するようにしてもよい。
また、肺音異常検知手段163は、心不全の重症度0~Nと患者Aの状態とに基づいて、緊急度1535を決定してもよい。例えば、患者Aの状態として、単位期間で体重が一定量増加(例えば1週間で3kg以上増加)したか否か、むくみ、せき、食欲低下などの自覚症状の有無、脈拍が所定数を超えているか否かなどが考えられる。そして、肺音異常検知手段163は、心不全の重症度に基づいて決定した緊急度を、患者Aの状態に応じて、より大きくなるように補正したものを最終的な緊急度としてもよい。例えば、肺音異常検知手段163は、心不全の重症度から決定した緊急度が緊急度0あるいは1であっても、体重増加があれば、緊急度を1あるいは2に増大するようにしてもよい。但し、補正後の緊急度の上限はNである。
続いて、分析結果出力手段164が、分析対象肺音情報153をファイルとして添付したメールを、連絡先メールアドレス1526宛てに送信した後の動作について説明する。
上記メールを受信した病院などでは、添付されたファイルに格納された分析対象肺音情報153が心不全の専門医によって分析される。なお、分析対象肺音情報153は、ファイル添付に限らず、リンクの記入等のSaaS形式によって心不全の専門医と共有する形態であってもよい。例えば、専門医は、分析対象肺音情報153に記録された聴診位置毎の肺音データをパーソナルコンピュータなどによって再生し、患者Aの肺音からラ音などの副雑音が聴取されないか等を診断する。そして、専門医は、聴診位置毎の肺音データに対する聴診所見を作成し、分析対象肺音情報153に記録する。こうして専門医の聴診所見が記録された分析対象肺音情報153は、送信元の肺音分析装置10にメールなどの通信手段によって返送される。以下、専門医の聴診所見が記録された分析対象肺音情報を聴診所見付き分析対象肺音情報と記す。図12は、聴診所見付き分析対象肺音情報153の構成例を示す。
肺音異常検知手段163は、肺音分析装置10の通信I/F部12を通じて受信した聴診所見付き分析対象肺音情報153によって、記憶部15に記録された元の分析対象肺音情報153を更新する。次に、肺音異常検知手段163は、患者Aの正常モデルの中にタイプ2の正常モデルが存在する場合、そのタイプ2の正常モデルに対応する聴診位置の肺音情報に記録された聴診所見に、肺音データがラ音などの副雑音を含まない正常な肺音データである旨が記録されているか否かを確認する。次に、肺音異常検知手段163は、正常であると確認された正常な肺音データを使用してタイプ1の正常モデルを学習する。次に、この学習して得られたタイプ1の正常モデルを、それまで使っていたタイプ2の正常モデルの代わりに以後、使用する。このようにすることにより、退院時に正常な肺音がなかったために本来の正常モデルとして学習できなかった聴診位置についても、症状の改善が見られた場合に速やかに、本来の正常モデルを使用して肺音異常を検知できるようになる。
以上説明したように、本実施形態によれば、患者Aの肺音を含む時系列音響信号を吸気相の期間と呼気相の期間と休止相の期間とに分割し、休止相の期間を除外して残りの吸気相および呼気相の期間の時系列音響信号から肺音異常を検知するため、休止相の期間に含まれる雑音に影響を全く受けずに肺音異常を検知することができる。
また、本実施形態によれば、休止相の期間の時系列音響信号から背景雑音を検出し、吸気相および呼気相の期間の患者Aの肺音を含む時系列音響信号から上記背景雑音を除去し、この背景雑音除去後の吸気相および呼気相の期間の時系列音響信号から肺音異常を検知するため、背景雑音の影響を受けずに肺音異常を検知することができる。
以上の説明では、肺音異常検知手段163は、正常音だけを予め学習してその範囲に入らない音を異常音として検知する異常検知方法を使用した。しかし、肺音異常検知手段163は、上記異常検知方法以外の方法を用いて肺音異常を検知してもよい。例えば、肺音異常検知手段163は、断続性ラ音である水泡音(coarse crackles)や捻髪音(fine crackles)、連続性ラ音である笛音(wheezes)やいびき音(rhonchi)などの異常音を予め学習してその音がしたことを検知する教師有り学習による異常検知方法を使用してもよい。
例えば、肺音異常検知手段163は、教師有り学習として、例えば異常音を収集したデータベースを対象に、ディープラーニングを用いて、入力された音データ(入力データ)の特徴および判別基準を学習したモデルを作成し、検知時には入力データがそのモデルに適合するか否かを調べることで検知を行うようにしてよい。肺音異常検知手段163は、例えば学習および入力データには音声を一定の区間毎にFFT(高速フーリエ変換)やlog-FFTして時系列順に並べたスペクトログラムを用い、ディープラーニングにはRNN(リカレントニューラルネットワーク)やCNN(コンボリューティブニューラルネットワーク)を用いることができる。
また、肺音異常検知手段163は、肺音波形をゼロ交差係数やMFCC(メル周波数ケプストラム係数)などの短時間特徴量に変換して、機械学習によって異常音を検知する方法を使用してもよい。例えば肺音異常検知手段163は、学習時にGMM(混合ガウス分布)でモデル化して、検知時に該当モデルに適合するか否かを調べるようにしてよい。また肺音異常検知手段163は、SVM(サポートベクターマシン)のような識別器の識別面を学習して、その識別面を用いて、入力されたデータが異常音に該当するかを識別してもよい。肺音異常検知手段163は、こうした特徴量を、前述のような直接求める方法以外にも、NMF(非負値行列因子分解)やPCA(主成分分析)のように、データそのものを用いて特徴量を生成するようにしてもよい。
また、肺音異常検知手段163は、入力信号の長時間パワー分布や、特定周波数ビン範囲の成分量・成分比率の分布など、入力波形の統計的特徴を用いて、決定木などにより異常音を検知してもよい。その場合、肺音異常検知手段163は、決定木の項目としては、直接の値(例えばパワーが3フレーム連続して20mWを超えた場合)の他、統計的特徴(例えばガウス近似して3σより大きい処理フレームが発生した場合)を用いてもよい。また、肺音異常検知手段163は、入力信号そのものではなく、それをAR(自己回帰)過程などでモデル化し、そのモデルパラメータの幾つかが閾値を超えることなどによって、異常音を検知してもよい。これらの方法は学習過程を含まない場合があるが、決定木の構成や閾値の決定などに対象信号である異常音の観察を含むため、便宜上教師有り学習に含める。
[第2の実施の形態]
図13は、本発明の第2の実施形態に係る肺音分析システム20のブロック図である。図13を参照すると、肺音分析システム20は、複数の肺音分析装置21と、サーバ装置22とから構成されている。また、複数の肺音分析装置21とサーバ装置22とは、インターネットなどのネットワークを通じて相互に通信可能に接続されている。
図13は、本発明の第2の実施形態に係る肺音分析システム20のブロック図である。図13を参照すると、肺音分析システム20は、複数の肺音分析装置21と、サーバ装置22とから構成されている。また、複数の肺音分析装置21とサーバ装置22とは、インターネットなどのネットワークを通じて相互に通信可能に接続されている。
肺音分析装置21は、心不全治療を受けて退院した患者から肺音を取得して分析する情報処理装置である。肺音分析装置21は、スマートフォン、タブレット型端末、PDA、ノートパソコンなどであってよいが、それらに限定されない。肺音分析装置21は、図示しない電子聴診器、通信I/F部、操作入力部、画面表示部、記憶部、および、演算処理部を備えている。
サーバ装置22は、複数の肺音分析装置21に対して、肺音分析に必要な各種のサービスを、ネットワーク23を通じて提供するコンピュータである。例えば、サーバ装置22は、図1に示した肺音記録152、分析対象肺音情報153、およびプログラム151の少なくとも一部を記憶し、それらを、ネットワーク23を通じて肺音分析装置21に提供する。そのため、肺音分析装置21は、図1の肺音分析装置10と比較して、記憶部15に肺音記録152、分析対象肺音情報153、およびプログラム151の少なくとも一部を記憶する必要がなく、記憶容量を削減することができる。
また、サーバ装置22は、図1に示した肺音記録取得手段161、分析対象肺音取得手段162、肺音異常検知手段163、および分析結果出力手段164の少なくとも一部の機能を、ネットワーク23を通じて肺音分析装置21に提供する。即ち、サーバ装置22は、図5のステップS1~S2、図7のステップS11~S14、図8のステップS21~S33の処理の少なくとも一部を、肺音分析装置21に代わって実行する。そのため、肺音分析装置21は、図1の肺音分析装置10と比較して、演算処理部16の構成を簡素化することができる。
[第3の実施形態]
図14は、本発明の第3の実施形態に係る肺音分析システム30のブロック図である。図14を参照すると、肺音分析システム30は、記憶手段31と算出手段32と決定手段33と取得手段34とから構成されている。
図14は、本発明の第3の実施形態に係る肺音分析システム30のブロック図である。図14を参照すると、肺音分析システム30は、記憶手段31と算出手段32と決定手段33と取得手段34とから構成されている。
記憶手段31は、心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶するように構成されている。記憶手段31は、例えば図1の肺音記録152と同様に構成することができるが、それに限定されない。
算出手段32は、上記履歴に基づいて、被験者の聴診位置毎の異常音の出現頻度を算出するように構成されている。算出手段32は、例えば図8のステップS21で説明したように構成することができるが、それに限定されない。
決定手段33は、上記算出した出現頻度に基づいて、被験者から肺音を聴診する複数の聴診位置の順序を決定するように構成されている。決定手段33は、例えば図8のステップS22で説明したように構成することができるが、それに限定されない。
取得手段34は、上記決定した順序に従って、操作者に対して被験者の聴診位置をガイダンスし、ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得するように構成されている。取得手段34は、例えば図8のステップS24で説明したように構成することができるが、それに限定されない。
以上のように構成された肺音分析システム30は、以下のように機能する。即ち、先ず記憶手段31は、心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する。次に算出手段32は、上記履歴に基づいて、被験者の聴診位置毎の異常音の出現頻度を算出する。次に決定手段33は、上記算出した出現頻度に基づいて、被験者から肺音を聴診する複数の聴診位置の順序を決定する。次に取得手段34は、上記決定した順序に従って、操作者に対して被験者の聴診位置をガイダンスし、ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する。
このように構成され動作する肺音分析システム30によれば、患者の都合など何らかの理由で複数の聴診位置のうちの一部の聴診位置の聴診を終えた時点で聴診を中断しても、心不全の増悪を見過ごしてしまう確率を低減することができる。その理由は、心不全患者である被験者の肺音の過去の聴診位置毎の聴診所見の履歴に基づいて被験者の聴診位置毎の異常音の出現頻度を算出し、その算出した出現頻度に基づいて、被験者から肺音を聴診する複数の聴診位置の順序を決定するためである。
以上、上記各実施形態を参照して本発明を説明したが、本発明は、上述した実施形態に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解しうる様々な変更をすることができる。例えば、以下のような構成も本発明に含まれる。
正常モデルによる異常検知は、統計的に外れていることを、異常判定の根拠とする。そのため、肺音データに性状の異なるラ音(荒い断続性ラ音、細かい断続性ラ音)が存在していても、肺音異常であることは検知されるが、その性状までは検知されない。同様に、正常モデルによる異常検知は、ラ音の出現数が少なくても多くても、肺音異常であることは検知されるが、ラ音の出現数までは検知されない。これに対して、前述した教師有り学習による異常検知方法では、肺音の異常音の種別や数まで検知することができる。そして、同じラ音であっても性状が細かければ軽度、荒ければ重症であり、ラ音の出現数が多いほど重症であるという知見がある。そのため、前述した教師有り学習による異常検知方法を用いる場合、図11に示した判定テーブルに、異常音の種別や数を設定し、異常音の種別や数をも考慮して、心不全の重症度を判定するようにしてもよい。
例えば、分析対象肺音取得手段は、肺音が正しく録音できていないと判定した場合に、さらに大きく呼吸をするよう被験者に指示してよい。また、分析対象肺音取得手段は、聴診する位置をAR(Augmented Reality:拡張現実)表示によって操作者に指示してよい。また、分析対象肺音取得手段は、被験者の性別等の事前登録情報に基づいて、聴診する位置を変更してよい。また、分析対象肺音取得手段は、聴診器が当てられたこと、すなわちチェストピースが被験者の体に接触したことを検出すると、呼吸指示を開始するようにしてよい。また、分析対象肺音取得手段は、呼吸指示は、被験者が指定したアバターの表示または声によって行ってよい。また、分析対象肺音取得手段は、予め定められた期間内に肺音の取得が行われなかったときに、被験者が指定したアバターの表示又は声によって肺音の取得を督促するようにしてよい。
また、肺音異常検知手段は、検知した異常音を肺音異常検知手段の学習データとしてよい。また、肺音異常検知手段は、サーバに送った異常音データをもとに医師が判断して、その医師による最終的な判断結果(正常または異常)をシステムに登録したものを学習データとしてよい。また、肺音異常検知手段は、被験者毎に正常時の基準音を予め取得し、その基準音に基づいて異常音を検知してよい。また、肺音異常検知手段は、被験者の事前登録情報(体重や服薬履歴データを含む)や、聴診位置に基づいて、異常検知に用いるモデルを変更してよい。
また、分析結果出力手段は、分析結果や分析に使用した肺音記録、分析対象肺音情報を含む記憶情報を、画面表示部などに時系列に表示してよい。また、分析結果出力手段は、異常が検知されない場合でもサーバに情報を送信してよい。
本発明は、人の肺音を分析するシステムに利用でき、特に心不全治療を受けて退院した患者の心不全増悪を早期に検出し再入院を防止するシステムに利用できる。
上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
[付記1]
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する記憶手段と、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出する算出手段と、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定する決定手段と、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する取得手段と、
を備える肺音分析システム。
[付記2]
前記聴診位置毎の肺音を含む時系列音響信号から肺音異常を検知する検知手段を、さらに備える
付記1に記載の肺音分析システム。
[付記3]
前記検知手段は、前記聴診位置毎の肺音異常の検知結果に基づいて前記被験者の心不全の重症度を判定する
付記2に記載の肺音分析システム。
[付記4]
前記検知手段は、聴診されなかった聴診位置については肺音異常が検知されなかったと見做して前記被験者の心不全の重症度を判定し、該判定結果を最も楽観的な値として出力する、
付記3に記載の肺音分析システム。
[付記5]
前記取得手段は、前記被験者の呼吸の休止相を判定し、前記判定の結果に従って、前記時系列音響信号を前記被験者の休止相の期間と休止相以外の期間とに分割する、
付記1乃至4の何れかに記載の肺音分析システム。
[付記6]
前記分割後の前記休止相以外の期間の前記時系列音響信号から肺音異常を検知する検知手段を、さらに備える
付記5に記載の肺音分析システム。
[付記7]
前記取得手段は、前記分割後の前記休止相の期間の前記時系列音響信号から背景雑音を検出し、前記分割後の前記休止相以外の期間の前記時系列音響信号から前記検出された背景雑音を除去する
付記5に記載の肺音分析システム。
[付記8]
前記背景雑音除去後の前記休止相以外の期間の前記時系列音響信号から肺音異常を検知する検知手段を、さらに備える
付記7に記載の肺音分析システム。
[付記9]
前記取得手段は、前記分割後の前記休止相の期間の前記時系列音響信号の強度と前記休止相以外の期間の前記時系列音響信号の強度とから、前記休止相以外の期間の前記時系列音響信号の品質を表す指標値を算出する
付記5に記載の肺音分析システム。
[付記10]
前記取得手段は、前記算出された指標値に基づいて警報を発する、
付記9に記載の肺音分析システム。
[付記11]
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶し、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出し、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定し、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する、
肺音分析方法。
[付記12]
コンピュータに、
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する処理と、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出する処理と、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定する処理と、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する処理と、
を行わせるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
[付記1]
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する記憶手段と、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出する算出手段と、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定する決定手段と、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する取得手段と、
を備える肺音分析システム。
[付記2]
前記聴診位置毎の肺音を含む時系列音響信号から肺音異常を検知する検知手段を、さらに備える
付記1に記載の肺音分析システム。
[付記3]
前記検知手段は、前記聴診位置毎の肺音異常の検知結果に基づいて前記被験者の心不全の重症度を判定する
付記2に記載の肺音分析システム。
[付記4]
前記検知手段は、聴診されなかった聴診位置については肺音異常が検知されなかったと見做して前記被験者の心不全の重症度を判定し、該判定結果を最も楽観的な値として出力する、
付記3に記載の肺音分析システム。
[付記5]
前記取得手段は、前記被験者の呼吸の休止相を判定し、前記判定の結果に従って、前記時系列音響信号を前記被験者の休止相の期間と休止相以外の期間とに分割する、
付記1乃至4の何れかに記載の肺音分析システム。
[付記6]
前記分割後の前記休止相以外の期間の前記時系列音響信号から肺音異常を検知する検知手段を、さらに備える
付記5に記載の肺音分析システム。
[付記7]
前記取得手段は、前記分割後の前記休止相の期間の前記時系列音響信号から背景雑音を検出し、前記分割後の前記休止相以外の期間の前記時系列音響信号から前記検出された背景雑音を除去する
付記5に記載の肺音分析システム。
[付記8]
前記背景雑音除去後の前記休止相以外の期間の前記時系列音響信号から肺音異常を検知する検知手段を、さらに備える
付記7に記載の肺音分析システム。
[付記9]
前記取得手段は、前記分割後の前記休止相の期間の前記時系列音響信号の強度と前記休止相以外の期間の前記時系列音響信号の強度とから、前記休止相以外の期間の前記時系列音響信号の品質を表す指標値を算出する
付記5に記載の肺音分析システム。
[付記10]
前記取得手段は、前記算出された指標値に基づいて警報を発する、
付記9に記載の肺音分析システム。
[付記11]
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶し、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出し、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定し、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する、
肺音分析方法。
[付記12]
コンピュータに、
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する処理と、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出する処理と、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定する処理と、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する処理と、
を行わせるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
10 肺音分析装置
11 電子聴診器
12 通信I/F部
13 操作入力部
14 画面表示部
15 記憶部
16 演算処理部
151 プログラム
152 肺音記録
153 分析対象肺音情報
161 肺音記録取得手段
162 分析対象肺音取得手段
163 肺音異常検知手段
164 分析結果出力手段
11 電子聴診器
12 通信I/F部
13 操作入力部
14 画面表示部
15 記憶部
16 演算処理部
151 プログラム
152 肺音記録
153 分析対象肺音情報
161 肺音記録取得手段
162 分析対象肺音取得手段
163 肺音異常検知手段
164 分析結果出力手段
Claims (12)
- 心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する記憶手段と、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出する算出手段と、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定する決定手段と、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する取得手段と、
を備える肺音分析システム。 - 前記聴診位置毎の肺音を含む時系列音響信号から肺音異常を検知する検知手段を、さらに備える
請求項1に記載の肺音分析システム。 - 前記検知手段は、前記聴診位置毎の肺音異常の検知結果に基づいて前記被験者の心不全の重症度を判定する
請求項2に記載の肺音分析システム。 - 前記検知手段は、聴診されなかった聴診位置については肺音異常が検知されなかったと見做して前記被験者の心不全の重症度を判定し、該判定結果を最も楽観的な値として出力する、
請求項3に記載の肺音分析システム。 - 前記取得手段は、前記被験者の呼吸の休止相を判定し、前記判定の結果に従って、前記時系列音響信号を前記被験者の休止相の期間と休止相以外の期間とに分割する、
請求項1乃至4の何れかに記載の肺音分析システム。 - 前記分割後の前記休止相以外の期間の前記時系列音響信号から肺音異常を検知する検知手段を、さらに備える
請求項5に記載の肺音分析システム。 - 前記取得手段は、前記分割後の前記休止相の期間の前記時系列音響信号から背景雑音を検出し、前記分割後の前記休止相以外の期間の前記時系列音響信号から前記検出された背景雑音を除去する
請求項5に記載の肺音分析システム。 - 前記背景雑音除去後の前記休止相以外の期間の前記時系列音響信号から肺音異常を検知する検知手段を、さらに備える
請求項7に記載の肺音分析システム。 - 前記取得手段は、前記分割後の前記休止相の期間の前記時系列音響信号の強度と前記休止相以外の期間の前記時系列音響信号の強度とから、前記休止相以外の期間の前記時系列音響信号の品質を表す指標値を算出する
請求項5に記載の肺音分析システム。 - 前記取得手段は、前記算出された指標値に基づいて警報を発する、
請求項9に記載の肺音分析システム。 - 心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶し、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出し、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定し、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する、
肺音分析方法。 - コンピュータに、
心不全患者である被験者の聴診位置毎の肺音データに対する聴診所見の履歴を記憶する処理と、
前記履歴に基づいて、前記被験者の聴診位置毎の異常音の出現頻度を算出する処理と、
前記算出した出現頻度に基づいて、前記被験者から肺音を聴診する複数の聴診位置の順序を決定する処理と、
前記決定した順序に従って、操作者に対して前記被験者の聴診位置をガイダンスし、前記ガイダンスしている聴診位置から肺音を含む時系列音響信号を取得する処理と、
を行わせるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/032056 WO2022044128A1 (ja) | 2020-08-25 | 2020-08-25 | 肺音分析システム |
US18/020,793 US20230301616A1 (en) | 2020-08-25 | 2020-08-25 | Lung sound analysis system |
JP2022544940A JP7533589B2 (ja) | 2020-08-25 | 2020-08-25 | 肺音分析システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/032056 WO2022044128A1 (ja) | 2020-08-25 | 2020-08-25 | 肺音分析システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022044128A1 true WO2022044128A1 (ja) | 2022-03-03 |
Family
ID=80354802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/032056 WO2022044128A1 (ja) | 2020-08-25 | 2020-08-25 | 肺音分析システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230301616A1 (ja) |
JP (1) | JP7533589B2 (ja) |
WO (1) | WO2022044128A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114601492A (zh) * | 2022-03-10 | 2022-06-10 | 重庆大学 | 一种移动便携物联网心肺音听诊系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012504478A (ja) * | 2008-10-10 | 2012-02-23 | カーディアック ペースメイカーズ, インコーポレイテッド | 心不全患者管理用の複数センサ方式 |
JP2014004018A (ja) * | 2012-06-21 | 2014-01-16 | Sharp Corp | 情報処理装置、情報処理方法、制御プログラム、および、記録媒体 |
JP2015188511A (ja) * | 2014-03-27 | 2015-11-02 | 旭化成株式会社 | 心疾患診断装置、心音解析プログラムおよび媒体 |
US20190167205A1 (en) * | 2017-12-06 | 2019-06-06 | Cardiac Pacemakers, Inc. | Heart failure stratification based on respiratory pattern |
JP2020513914A (ja) * | 2016-12-28 | 2020-05-21 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 睡眠呼吸障害の特徴付け方法 |
-
2020
- 2020-08-25 US US18/020,793 patent/US20230301616A1/en active Pending
- 2020-08-25 JP JP2022544940A patent/JP7533589B2/ja active Active
- 2020-08-25 WO PCT/JP2020/032056 patent/WO2022044128A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012504478A (ja) * | 2008-10-10 | 2012-02-23 | カーディアック ペースメイカーズ, インコーポレイテッド | 心不全患者管理用の複数センサ方式 |
JP2014004018A (ja) * | 2012-06-21 | 2014-01-16 | Sharp Corp | 情報処理装置、情報処理方法、制御プログラム、および、記録媒体 |
JP2015188511A (ja) * | 2014-03-27 | 2015-11-02 | 旭化成株式会社 | 心疾患診断装置、心音解析プログラムおよび媒体 |
JP2020513914A (ja) * | 2016-12-28 | 2020-05-21 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 睡眠呼吸障害の特徴付け方法 |
US20190167205A1 (en) * | 2017-12-06 | 2019-06-06 | Cardiac Pacemakers, Inc. | Heart failure stratification based on respiratory pattern |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114601492A (zh) * | 2022-03-10 | 2022-06-10 | 重庆大学 | 一种移动便携物联网心肺音听诊系统 |
Also Published As
Publication number | Publication date |
---|---|
US20230301616A1 (en) | 2023-09-28 |
JPWO2022044128A1 (ja) | 2022-03-03 |
JP7533589B2 (ja) | 2024-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3363351B1 (en) | System for detection of coronary artery disease in a person using a fusion approach | |
US20210219925A1 (en) | Apparatus and method for detection of physiological events | |
CN108577830B (zh) | 一种面向用户的体征信息动态监护方法和动态监护系统 | |
US20040260188A1 (en) | Automated auscultation system | |
JP2018513727A (ja) | 心血管劣化の警告スコア | |
US20060161064A1 (en) | Computer-assisted detection of systolic murmurs associated with hypertrophic cardiomyopathy | |
US20060116878A1 (en) | Asthma diagnostic apparatus, asthma diagnostic method, and storage medium storing asthma diagnostic program | |
WO2022044129A1 (ja) | 肺音分析システム | |
US20220167856A1 (en) | Lung function monitoring from heart signals | |
US20240324950A1 (en) | Systems and Methods for Remote Patient Screening and Triage | |
WO2022044128A1 (ja) | 肺音分析システム | |
WO2022044127A1 (ja) | 肺音分析システム | |
Schmidt et al. | Noise and the detection of coronary artery disease with an electronic stethoscope | |
Athaya et al. | Evaluation of different machine learning models for photoplethysmogram signal artifact detection | |
WO2022044130A1 (ja) | 肺音分析システム | |
Hsiao et al. | Design and implementation of auscultation blood pressure measurement using vascular transit time and physiological parameters | |
WO2022044131A1 (ja) | 分析装置 | |
Narváez et al. | Classification of heart sounds using linear prediction coefficients and mel-frequency cepstral coefficients as acoustic features | |
Iskandar et al. | Design and implementation electronic stethoscope on smart chair for monitoring heart rate and stress levels driver | |
WO2022044126A1 (ja) | 肺音分析システム | |
US20220151582A1 (en) | System and method for assessing pulmonary health | |
US20230290506A1 (en) | Systems and methods for rapidly screening for signs and symptoms of disorders | |
WO2022044132A1 (ja) | 分析装置 | |
US20210282736A1 (en) | Respiration rate detection metholody for nebulizers | |
Giacomelli et al. | Using soft computer techniques on smart devices for monitoring chronic diseases: the chronious case |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20951382 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022544940 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20951382 Country of ref document: EP Kind code of ref document: A1 |