WO2022044089A1 - Optical fiber communications system and core wire checking system - Google Patents

Optical fiber communications system and core wire checking system Download PDF

Info

Publication number
WO2022044089A1
WO2022044089A1 PCT/JP2020/031897 JP2020031897W WO2022044089A1 WO 2022044089 A1 WO2022044089 A1 WO 2022044089A1 JP 2020031897 W JP2020031897 W JP 2020031897W WO 2022044089 A1 WO2022044089 A1 WO 2022044089A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical fiber
light
cavities
core portions
Prior art date
Application number
PCT/JP2020/031897
Other languages
French (fr)
Japanese (ja)
Inventor
信智 半澤
和秀 中島
泰志 坂本
隆 松井
則幸 荒木
真一 青笹
諒太 今田
陽子 山下
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/031897 priority Critical patent/WO2022044089A1/en
Publication of WO2022044089A1 publication Critical patent/WO2022044089A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • FIG. 1 shows an example of the system configuration of the present disclosure.
  • the system of the present disclosure is an optical fiber communication system in which a plurality of terminals 92-1 to 92-8 are connected to a station building 91 via an optical branching portion 93.
  • the optical fiber of the present disclosure is installed at an arbitrary position of the one-to-eight branch lines 96-1 to 96-8.
  • the optical fiber of the present disclosure has different reflection intensities for each branch line 96-1 to 96-8.
  • the system of the present disclosure performs an arbitrary line test capable of detecting a reflection intensity such as an OTDR (Optical Time Domain Reflectometer) from inside the station building 91, and the reflection intensity differs for each branch line 96-1 to 96-8. By observing, it is possible to identify which core line it is.
  • OTDR Optical Time Domain Reflectometer
  • the present embodiment relates to a method of applying a method of forming a cavity 83 in the core portion 81 of the optical fiber 101 shown in FIG. 3 to a multi-core fiber to identify a core.
  • the optical fiber 102 of the present embodiment is a multi-core fiber having a plurality of core portions 81-1 to 81-3 in the clad portion 82, and is described in the first embodiment and the second embodiment.
  • the configuration it is possible to identify each core 81-1 to 81-3.
  • the core portions 81-1 to 81-3 differ in at least one of the number of cavities 83 and the diameter a2 of the cavities 83, respectively.
  • 81, 81-1 to 81-3 Core part 82: Clad part 83: Cavity 91: Station building 92-1, 92-2, 92-3, 92-8: Terminal 93: Optical branch part 95: Optical transmission line 96-1 to 96-8: Branch line 101, 102: Optical fiber

Abstract

The purpose of the present disclosure is to enable identification of optical communications wiring without on-site measurement. The present disclosure is an optical fiber communications system comprising multiple core parts covered by cladding, wherein the multiple core parts include cavities and the core parts each have a different number of cavities and/or different cavity diameter.

Description

光ファイバ通信システム及び心線対照システムFiber optic communication system and core control system
 本開示は、光ファイバ通信システムにおけるコアの識別方法及びこれを可能にする光ファイバに関する。 The present disclosure relates to a method for identifying a core in an optical fiber communication system and an optical fiber that enables this.
 光ファイバの心線対照を行う方法として、光ファイバからの漏洩光を検出する方法がある。従来行われている漏洩光を検出する方法は、局舎から地理的に離れた現地での測定が必要である。また分岐線路に予めQRコード(登録商標)を設置しておくことも可能であるが、QRコードを確認する方法では設置作業等が発生する。また、特許文献1に記載の方法は、位相変化装置など既存設備のみでは心線を識別することが困難である。 There is a method of detecting leaked light from an optical fiber as a method of performing core wire control of an optical fiber. The conventional method for detecting leaked light requires measurement at a site geographically distant from the station building. It is also possible to install a QR code (registered trademark) on the branch line in advance, but the method of confirming the QR code requires installation work and the like. Further, in the method described in Patent Document 1, it is difficult to identify the core wire only with existing equipment such as a phase change device.
高橋央 他,「光通信配線の心線対照方法及び心線対照システム」、特開2019-152847号公報Hiroshi Takahashi et al., "Core Wire Control Method and Core Wire Control System for Optical Communication Wiring", JP-A-2019-152847.
 本開示は、現地での測定を行うことなく光通信配線の識別を可能にすることを目的とする。 The purpose of this disclosure is to enable identification of optical communication wiring without making on-site measurements.
 本開示は、複数の光通信配線(光ファイバなど)を識別する心線対照の可能なシステムであって、該光通信配線の端部に光通信配線ごとに異なる反射率で光を反射する空洞部を有する。 The present disclosure is a core-controllable system that identifies a plurality of optical communication wirings (optical fibers, etc.), and is a cavity at the end of the optical communication wirings that reflects light with a different reflectance for each optical communication wiring. Has a part.
 具体的には、本開示の光ファイバ通信システムは、
 クラッド部で覆われている複数のコア部を備えるシステムであって、
 前記複数のコア部は空洞を備え、
 各コア部に備わる前記空洞は、それぞれ、前記空洞の数又は直径の少なくともいずれかが異なる。
Specifically, the optical fiber communication system of the present disclosure is
A system with multiple cores covered by a clad
The plurality of core portions are provided with cavities.
The cavities provided in each core portion differ in at least one of the number or diameter of the cavities.
 本開示によれば、コア部での反射強度がコア部ごとに異なるため、コア部での反射強度に基づいて、複数のコア部のうちの試験光の入射されたコア部を判定することができる。このため、本開示は、現地での測定を行うことなく光通信配線の識別を可能にすることができる。 According to the present disclosure, since the reflection intensity at the core portion differs for each core portion, it is possible to determine the core portion to which the test light is incident among the plurality of core portions based on the reflection intensity at the core portion. can. Therefore, the present disclosure can enable identification of optical communication wiring without performing on-site measurement.
本開示のシステム構成の一例を示す。An example of the system configuration of the present disclosure is shown. 試験装置の構成例を示す。An example of the configuration of the test device is shown. 本開示に係る光ファイバの構成例を示す。An example of the configuration of the optical fiber according to the present disclosure is shown. コア部の直径に対する空洞の占有率に対する反射強度の変化の一例を示す。An example of the change in the reflection intensity with respect to the occupancy of the cavity with respect to the diameter of the core portion is shown. /aが10%の場合の空洞の数に対する反射強度の一例を示す。An example of the reflection intensity with respect to the number of cavities when a2 / a1 is 10 % is shown. /aに対する基本モード(LP01モード)と第1高次モード(LP11モード)の損失変化の一例を示す。An example of the loss change between the basic mode (LP01 mode) and the first higher-order mode (LP11 mode) with respect to a2 / a1 is shown. 空洞の数に対する各モードの損失の一例を示す。An example of the loss of each mode with respect to the number of cavities is shown. 本開示に係る光ファイバの構成例を示す。An example of the configuration of the optical fiber according to the present disclosure is shown.
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The present disclosure is not limited to the embodiments shown below. Examples of these implementations are merely examples, and the present disclosure can be implemented in various modified and improved forms based on the knowledge of those skilled in the art. In addition, the components having the same reference numerals in the present specification and the drawings shall indicate the same components.
(本開示のシステム構成)
 図1に、本開示のシステム構成の一例を示す。本開示のシステムは、複数の端末92-1~92-8が光分岐部93を介して局舎91と接続されている光ファイバ通信システムである。この1対8の分岐線路96-1~96-8の任意の位置に本開示の光ファイバを設置する。本開示の光ファイバは、分岐線路96-1~96-8ごとに異なる反射強度を有する。これにより、本開示のシステムは、局舎91内からOTDR(Optical Time Domain Reflectometry)などの反射強度を検出可能な任意の線路試験を行い、分岐線路96-1~96-8ごとに異なる反射強度を観測することにより、どの心線であるか識別することが出来る。
(System configuration of this disclosure)
FIG. 1 shows an example of the system configuration of the present disclosure. The system of the present disclosure is an optical fiber communication system in which a plurality of terminals 92-1 to 92-8 are connected to a station building 91 via an optical branching portion 93. The optical fiber of the present disclosure is installed at an arbitrary position of the one-to-eight branch lines 96-1 to 96-8. The optical fiber of the present disclosure has different reflection intensities for each branch line 96-1 to 96-8. As a result, the system of the present disclosure performs an arbitrary line test capable of detecting a reflection intensity such as an OTDR (Optical Time Domain Reflectometer) from inside the station building 91, and the reflection intensity differs for each branch line 96-1 to 96-8. By observing, it is possible to identify which core line it is.
 図2に、OTDRを用いた試験装置の構成例を示す。試験装置97は、光源11、受光部12及び判定部13を備える。光源11は、分岐線路96-1~96-8の少なくともいずれかに接続された光伝送線路95に試験光を入射する。受光部12は、試験光が反射された戻り光を受光する。判定部13は、受光部12で受光した戻り光の反射強度を用いて、分岐線路96-1~96-8のうちの試験光の入射された分岐線路を判定する。これにより、本開示のシステムは、分岐線路の心線対照を行う心線対照システムとして機能する。 FIG. 2 shows a configuration example of a test device using an OTDR. The test device 97 includes a light source 11, a light receiving unit 12, and a determination unit 13. The light source 11 incidents the test light on the optical transmission line 95 connected to at least one of the branch lines 96-1 to 96-8. The light receiving unit 12 receives the return light from which the test light is reflected. The determination unit 13 determines the branch line to which the test light is incident among the branch lines 96-1 to 96-8 by using the reflection intensity of the return light received by the light receiving unit 12. Thereby, the system of the present disclosure functions as a core line control system for performing core line control of the branch line.
(実施形態例1)
 図3に、本開示に係る光ファイバの構成例を示す。本実施形態例の光ファイバ101は、コア部81に直径a[μm]の空洞83を備え、空洞83での反射によって光ファイバ101に入力した光の反射強度を制御する。
(Embodiment Example 1)
FIG. 3 shows a configuration example of the optical fiber according to the present disclosure. The optical fiber 101 of the present embodiment is provided with a cavity 83 having a diameter of a2 [μm] in the core portion 81, and the reflection intensity of light input to the optical fiber 101 is controlled by reflection in the cavity 83.
 図3に示すように、本実施形態例に係る光ファイバ101は、直径a[μm]のコア部81とコア部81を包囲するクラッド部82とを有し、コア部81に空洞83が形成され、任意の反射強度を持つ。 As shown in FIG. 3, the optical fiber 101 according to the present embodiment has a core portion 81 having a diameter of a 1 [μm] and a clad portion 82 surrounding the core portion 81, and the core portion 81 has a cavity 83. It is formed and has arbitrary reflection intensity.
 空洞83を形成する方法は任意であるが、例えばレーザ加工を用いることができる。具体的には、波長800nm帯の光であって、出力されるレーザのパルス幅が500fs以下のフェムト秒レーザを使用し、光ファイバ101へパルス光を照射する回数によって、空洞83の数を制御し、照射強度によって空洞83の直径aを制御することができる。これにより、任意の反射強度を持つ光ファイバ101を作製することが可能である。 The method of forming the cavity 83 is arbitrary, but for example, laser processing can be used. Specifically, a femtosecond laser having a wavelength of 800 nm and an output laser pulse width of 500 fs or less is used, and the number of cavities 83 is controlled by the number of times the optical fiber 101 is irradiated with pulsed light. However, the diameter a2 of the cavity 83 can be controlled by the irradiation intensity. This makes it possible to manufacture an optical fiber 101 having an arbitrary reflection intensity.
 屈折率の異なる物質が接触している境界面に光を入射させると一部の光が反射される現象は、フレネル反射として知られており、境界面に光が垂直入射される場合には、nの屈折率からnの屈折率に入射される光は式(1)により、その反射強度が計算できる。
(数1)
 (入力光強度)×((n-n)/(n+n))  (1)
The phenomenon in which part of the light is reflected when light is incident on the interface where substances with different refractories are in contact is known as Fresnel reflection, and when light is vertically incident on the interface, it is known as Frenel reflection. The reflection intensity of the light incident on the refractive index of n 2 from the refractive index of n 1 can be calculated by the equation (1).
(Number 1)
(Input light intensity) × ((n 1 − n 2 ) / (n 1 + n 2 )) 2 (1)
 光ファイバと空気層との反射強度は、コア部81の屈折率1.449(波長1550nm)、空気の屈折率1より、約-14.7dBとして知られている。本開示においては、コア部81に対する空洞83の占有率と空洞83の数により反射強度を制御することが可能である。 The reflection intensity between the optical fiber and the air layer is known to be about -14.7 dB from the refractive index 1.449 (wavelength 1550 nm) of the core portion 81 and the refractive index 1 of air. In the present disclosure, it is possible to control the reflection intensity by the occupancy rate of the cavity 83 with respect to the core portion 81 and the number of the cavities 83.
 コア部81に対する空洞83の占有率に対する反射強度の変化を図4に示す。a/aが100%の時に-14.7dBの反射強度が得られるため、本開示では反射強度を制御するため、破線で示すように、-20dB以下の反射強度が実現されるa/aが30%以下の領域を用いることが有効である。ただし、反射光強度を細かく制御する必要が無ければ30%以上の領域を使うことも有効である。 FIG. 4 shows the change in the reflection intensity with respect to the occupancy rate of the cavity 83 with respect to the core portion 81. Since a reflection intensity of -14.7 dB is obtained when a 2 / a 1 is 100%, in this disclosure, in order to control the reflection intensity, a reflection intensity of -20 dB or less is realized as shown by a broken line. It is effective to use a region where / a1 is 30% or less. However, if it is not necessary to finely control the reflected light intensity, it is also effective to use a region of 30% or more.
 図5にa/aが10%の場合の空洞83の数に対する反射強度を示す。図5中に示した破線と数値は空洞83の数が1から5、7、9、12個それぞれの反射強度を示している。具体的には、空洞の数が1の場合の反射強度は-25.2dB、空洞の数が2の場合の反射強度は-22.2dB、空洞の数が3の場合の反射強度は-20.4dB、空洞の数が4の場合の反射強度は-19.2dB、空洞の数が5の場合の反射強度は-18.2dB、空洞の数が7の場合の反射強度は-16.7dB、空洞の数が9の場合の反射強度は-15.7dB、空洞の数が12の場合の反射強度は-14.4dBである。空洞83の個数に応じて反射強度が1dB以上異なっていることが確認できる。 FIG. 5 shows the reflection intensity with respect to the number of cavities 83 when a 2 / a 1 is 10%. The broken lines and numerical values shown in FIG. 5 indicate the reflection intensities of 1 to 5, 7, 9, and 12 cavities 83, respectively. Specifically, when the number of cavities is 1, the reflection intensity is -25.2 dB, when the number of cavities is 2, the reflection intensity is -22.2 dB, and when the number of cavities is 3, the reflection intensity is -20. When the number of cavities is 4.4, the reflection intensity is -19.2 dB, when the number of cavities is 5, the reflection intensity is -18.2 dB, and when the number of cavities is 7, the reflection intensity is -16.7 dB. When the number of cavities is 9, the reflection intensity is -15.7 dB, and when the number of cavities is 12, the reflection intensity is -14.4 dB. It can be confirmed that the reflection intensity differs by 1 dB or more depending on the number of cavities 83.
(実施形態例2)
 本実施形態例は、図3に示す光ファイバ101のコア部81に直径a[μm]の空洞83を形成する光ファイバによって、光ファイバ101に入力した光のモード間の損失を制御する方法に関する。
(Example 2)
In the present embodiment, a method of controlling a loss between modes of light input to the optical fiber 101 by an optical fiber forming a cavity 83 having a diameter of a2 [μm] in the core portion 81 of the optical fiber 101 shown in FIG. Regarding.
 図3に示すように、本実施形態例に係る光ファイバ101は、直径a[μm]のコア部81とコア部81を包囲するクラッド部82とを有し、コア部81に空洞83が形成され、任意のモード間損失差を持つ。 As shown in FIG. 3, the optical fiber 101 according to the present embodiment has a core portion 81 having a diameter of a 1 [μm] and a clad portion 82 surrounding the core portion 81, and the core portion 81 has a cavity 83. It is formed and has a loss difference between any modes.
 図6にa/aに対する基本モード(LP01モード)と第1高次モード(LP11モード)の損失変化を示す。図6より、a/aが20%以下であればLP01モードにのみ選択的に損失を付与することが出来る。 FIG. 6 shows the loss changes between the basic mode (LP01 mode) and the first higher-order mode (LP11 mode) with respect to a 2 / a 1 . From FIG. 6, if a 2 / a 1 is 20% or less, the loss can be selectively applied only to the LP01 mode.
 利用波長帯で、LP01モードとLP11モードを伝搬可能な光ファイバにおいて、a/aが10%となる空洞83を複数形成することにより、図7のような損失差を形成することができる。そのため、空洞83が無いものと1から3個形成された光ファイバを用いることで、LP01モードの損失をそれぞれ0dB、0.37dB、0.74dB、1.12dBと変化させることが可能であり、この損失差を与える光ファイバ101をケーブル内の心線に割り当てることで、所望のテープ心線を識別するなどモード間の損失差を利用して識別することが可能になる。 In an optical fiber capable of propagating between LP01 mode and LP11 mode in the wavelength band used, a loss difference as shown in FIG. 7 can be formed by forming a plurality of cavities 83 in which a2 / a1 is 10 %. .. Therefore, it is possible to change the loss in the LP01 mode to 0 dB, 0.37 dB, 0.74 dB, and 1.12 dB, respectively, by using the one without the cavity 83 and the optical fiber formed from 1 to 3. By allocating the optical fiber 101 that gives this loss difference to the core wire in the cable, it becomes possible to identify the desired tape core wire by using the loss difference between modes.
(実施形態例3)
 本実施形態例は、図3に示す光ファイバ101のコア部81に空洞83を形成する方法をマルチコアファイバに適用してコアを識別する方法に関する。本実施形態の光ファイバ102は、図8に示すように、クラッド部82内に複数のコア部81-1~81-3を有するマルチコアファイバにおいて、実施形態例1や実施形態例2に記載した構成を適用することで、各コア81-1~81-3の識別を可能とする。例えば、コア部81-1~81-3はそれぞれ、空洞83の数又は空洞83の直径aの少なくともいずれかが異なる。
(Embodiment Example 3)
The present embodiment relates to a method of applying a method of forming a cavity 83 in the core portion 81 of the optical fiber 101 shown in FIG. 3 to a multi-core fiber to identify a core. As shown in FIG. 8, the optical fiber 102 of the present embodiment is a multi-core fiber having a plurality of core portions 81-1 to 81-3 in the clad portion 82, and is described in the first embodiment and the second embodiment. By applying the configuration, it is possible to identify each core 81-1 to 81-3. For example, the core portions 81-1 to 81-3 differ in at least one of the number of cavities 83 and the diameter a2 of the cavities 83, respectively.
(本開示の効果)
 本開示により、一般的に利用されている光線路試験装置であるOTDRを用いて分岐線路における分岐後の心線を識別することが可能になる。また、敷設したマルチコアファイバの各コアを局舎内から識別することが可能になる。
(Effect of this disclosure)
According to the present disclosure, it becomes possible to identify a core wire after branching in a branch line by using an OTDR which is a generally used optical line test device. In addition, each core of the laid multi-core fiber can be identified from inside the station building.
(本開示のポイント)
 光ファイバの長手方向の中心に作製する空洞の直径と数を制御することで、反射強度およびモード間の損失を制御できる。これにより、本開示では、既存の線路試験技術で用いられているOTDRを利用することが可能であり、局舎91内から試験することでどの心線か判別することが可能になる。
(Points of this disclosure)
Reflection intensity and loss between modes can be controlled by controlling the diameter and number of cavities created in the longitudinal center of the optical fiber. Thereby, in the present disclosure, it is possible to use the OTDR used in the existing line test technique, and it is possible to determine which core line by testing from inside the station building 91.
 本開示は情報通信産業に適用することができる。 This disclosure can be applied to the information and communication industry.
81、81-1~81-3:コア部
82:クラッド部
83:空洞
91:局舎
92-1、92-2、92-3、92-8:端末
93:光分岐部
95:光伝送線路
96-1~96-8:分岐線路
101、102:光ファイバ
81, 81-1 to 81-3: Core part 82: Clad part 83: Cavity 91: Station building 92-1, 92-2, 92-3, 92-8: Terminal 93: Optical branch part 95: Optical transmission line 96-1 to 96-8: Branch line 101, 102: Optical fiber

Claims (5)

  1.  クラッド部で覆われている複数のコア部を備える光ファイバ通信システムであって、
     前記複数のコア部は空洞を備え、
     各コア部に備わる前記空洞は、それぞれ、前記空洞の数又は直径の少なくともいずれかが異なる、
     光ファイバ通信システム。
    An optical fiber communication system having a plurality of core parts covered with a clad part.
    The plurality of core portions are provided with cavities.
    The cavities provided in each core differ in at least one of the number or diameter of the cavities.
    Fiber optic communication system.
  2.  前記複数のコア部は、光分岐部で分岐された複数の分岐線路に備わるコア部であり、
     前記分岐線路に備わる各コア部が前記空洞を備える、
     請求項1に記載の光ファイバ通信システム。
    The plurality of core portions are core portions provided in a plurality of branch lines branched by an optical branch portion.
    Each core portion provided in the branch line includes the cavity.
    The optical fiber communication system according to claim 1.
  3.  前記複数のコア部は、マルチコアファイバに備わるコア部であり、
     前記マルチコアファイバに備わる各コア部が前記空洞を備える、
     請求項1に記載の光ファイバ通信システム。
    The plurality of core portions are core portions provided in the multi-core fiber.
    Each core portion provided in the multi-core fiber includes the cavity.
    The optical fiber communication system according to claim 1.
  4.  請求項1から3のいずれかに記載の光ファイバ通信システムにおいて、前記複数のコア部の心線対照を行う心線対照システムであって、
     前記複数のコア部の少なくともいずれかに接続された光ファイバに試験光を入射する光源と、
     前記試験光が反射された戻り光を受光する受光部と、
     前記受光部で受光した戻り光の反射強度を用いて、前記複数のコア部のうちの前記試験光の入射されたコア部を判定する判定部と、
     を備える心線対照システム。
    The optical fiber communication system according to any one of claims 1 to 3, wherein the core wire control system performs core wire control of the plurality of core portions.
    A light source that injects test light into an optical fiber connected to at least one of the plurality of core portions,
    A light receiving unit that receives the return light reflected by the test light, and a light receiving unit.
    A determination unit for determining the core portion to which the test light is incident among the plurality of core portions by using the reflection intensity of the return light received by the light receiving portion.
    A core line contrast system equipped with.
  5.  前記光源は、複数のモードの試験光を入射し、
     前記判定部は、戻り光におけるモード間の損失差を用いて、前記複数のコア部のうちの前記試験光の入射されたコア部を判定する、
     請求項4に記載の心線対照システム。
    The light source incidents test light in a plurality of modes and receives a plurality of modes of test light.
    The determination unit determines the core portion to which the test light is incident among the plurality of core portions by using the loss difference between modes in the return light.
    The core line control system according to claim 4.
PCT/JP2020/031897 2020-08-24 2020-08-24 Optical fiber communications system and core wire checking system WO2022044089A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031897 WO2022044089A1 (en) 2020-08-24 2020-08-24 Optical fiber communications system and core wire checking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031897 WO2022044089A1 (en) 2020-08-24 2020-08-24 Optical fiber communications system and core wire checking system

Publications (1)

Publication Number Publication Date
WO2022044089A1 true WO2022044089A1 (en) 2022-03-03

Family

ID=80352791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031897 WO2022044089A1 (en) 2020-08-24 2020-08-24 Optical fiber communications system and core wire checking system

Country Status (1)

Country Link
WO (1) WO2022044089A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136742A (en) * 1994-11-11 1996-05-31 Sumitomo Electric Ind Ltd Method for identifying optical line and light interference meter
US20070201793A1 (en) * 2006-02-17 2007-08-30 Charles Askins Multi-core optical fiber and method of making and using same
WO2010041564A1 (en) * 2008-10-09 2010-04-15 独立行政法人情報通信研究機構 Fiber fuse detector
US20170153387A1 (en) * 2015-12-01 2017-06-01 Rhode Island Board Of Education, State Of Rhode Island And Providence Plantations Weak reflection terahertz fiber optic devices for distributed sensing applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08136742A (en) * 1994-11-11 1996-05-31 Sumitomo Electric Ind Ltd Method for identifying optical line and light interference meter
US20070201793A1 (en) * 2006-02-17 2007-08-30 Charles Askins Multi-core optical fiber and method of making and using same
WO2010041564A1 (en) * 2008-10-09 2010-04-15 独立行政法人情報通信研究機構 Fiber fuse detector
US20170153387A1 (en) * 2015-12-01 2017-06-01 Rhode Island Board Of Education, State Of Rhode Island And Providence Plantations Weak reflection terahertz fiber optic devices for distributed sensing applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO ZHIYONG, TANG MING, LU CHAO: "Distributed multicore fiber sensors", OPTO-ELECTRONIC ADVANCES, vol. 3, no. 2, 1 January 2020 (2020-01-01), pages 19002401 - 19002417, XP055910331, ISSN: 2096-4579, DOI: 10.29026/oea.2020.190024 *

Similar Documents

Publication Publication Date Title
US20020101577A1 (en) Optical fiber test method and apparatus
US7469101B1 (en) Optoelectronic marker for determining ownership of fiber optic cable
Tomita et al. Design and performance of a novel automatic fiber line testing system with OTDR for optical subscriber loops
Iida et al. Design of identification fibers with individually assigned Brillouin frequency shifts for monitoring passive optical networks
WO2022044089A1 (en) Optical fiber communications system and core wire checking system
AU649540B2 (en) Optical coupler/splitter with a filter
US7415206B1 (en) Arrangement for characterizing and reducing multi-path interference (MPI) and/or optical return loss (ORL) in optical transmission links having multiple discrete reflection sources
JPH0728266B2 (en) Optical line test method
O'sullivan et al. Interpretation of SM fiber OTDR signatures
US6959131B2 (en) Achromatic fiber-optic power splitter and related methods
JPS5926711A (en) Axial aligning method of optical fiber cores
Szarka et al. A review of biconical taper couplers
JPH10160635A (en) Skew inspection method of multifiber optical fiber tape and skew measurement device
JP2758285B2 (en) Waveguide type optical coupler
JP7006537B2 (en) Raman gain efficiency distribution test method and Raman gain efficiency distribution test equipment
Mansuan et al. Designing Fiber Optic Network using Voronoi Diagram Approach
Avram et al. Quantification of scattering from fiber surface irregularities
JP4822868B2 (en) Optical fiber status judgment method
RU2815820C1 (en) Method of connecting construction lengths of optical cable into fibre-optic communication line
CN114257300B (en) Method and device for testing running state of Optical Network Unit (ONU) equipment
Katsuyama In-service fiber line identification based on high-resolution fiber length measurement
Burdin et al. Estimation of probability distribution of reflection attenuation at optical fibers fusion splices
JP5137640B2 (en) Optical fiber optical characteristic measuring method
JPH02176535A (en) Optical line monitoring device
Rasul PASSIVE ELEMENTS IN OPTICAL LINE TRACT AND DETERMINE THE VALUE OF ATTENUATION IN THE LINE TRACT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP