WO2022042580A1 - 梯度点阵吸能结构及其可编程刚度的手性胞元、3d打印方法 - Google Patents

梯度点阵吸能结构及其可编程刚度的手性胞元、3d打印方法 Download PDF

Info

Publication number
WO2022042580A1
WO2022042580A1 PCT/CN2021/114459 CN2021114459W WO2022042580A1 WO 2022042580 A1 WO2022042580 A1 WO 2022042580A1 CN 2021114459 W CN2021114459 W CN 2021114459W WO 2022042580 A1 WO2022042580 A1 WO 2022042580A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
ring
cell layer
connecting rod
included angle
Prior art date
Application number
PCT/CN2021/114459
Other languages
English (en)
French (fr)
Inventor
顾冬冬
高捷
马成龙
宋英杰
陈威
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Priority to US17/796,919 priority Critical patent/US11731389B2/en
Publication of WO2022042580A1 publication Critical patent/WO2022042580A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • B32B3/20Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side of hollow pieces, e.g. tubes; of pieces with channels or cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/56Damping, energy absorption

Definitions

  • the invention relates to a chiral cell with programmable stiffness, which is used to form a lattice structure.
  • the invention also relates to a gradient lattice energy absorbing structure, especially a gradient lattice energy absorbing structure based on programmable stiffness chiral cells.
  • the present invention also relates to a 3D printing method for forming the above-mentioned gradient lattice energy absorbing structure.
  • the lattice structure has excellent characteristics such as light weight, high specific stiffness, high specific strength, sound absorption and heat insulation, and is increasingly used in automobiles, ships, aerospace and other fields.
  • Functionally graded lattice structure (Functionally graded lattice structure) is a kind of structural optimization design of lattice structure for impact resistance applications. Level failure, compared with the uniform lattice structure (Uniform lattice structure) can absorb more energy under the same mass.
  • the existing buffer energy absorption gradient lattice structure generally realizes the performance gradient design through two methods:
  • One method is to adjust the rod diameter of the lattice cells, that is, to keep the external dimensions of each lattice cell unchanged, and only change the rod diameter of each cell, so as to realize the gradient design of the lattice structure performance.
  • Such as the published Chinese patent CN107498948A due to the existence of size effect, under the same load, lattice structures with different unit cell sizes show different mechanical behaviors; therefore, it is necessary to consider lattice structures while changing the cross-sectional dimensions of lattice unit cells. The effect of unit cell size on the overall performance of the structure.
  • Another method is to control the overall size of the lattice cells, that is, to change the overall size of each lattice cell, and to realize the transition between the large lattice cells and the small lattice cells through the design of the transition layer, and finally realize the Gradient design of lattice structure, such as the published invention patent CN109163212A.
  • stress concentration is easy to occur at the junction of cells. Therefore, it should be considered to improve the mechanical properties of cells without changing the size of the connection between cells. Gradient design of structural properties.
  • the present invention provides a chiral cell with programmable stiffness.
  • the chiral cell has good impact resistance and can produce torsional deformation during axial compression.
  • the chiral cell has It has the property of zero Poisson's ratio itself, that is, during the compression process, the overall structure of the chiral cell does not expand outward.
  • the chiral cell structure has high plateau stress in the compression process, and has good energy absorption and impact resistance performance.
  • a chiral cell with programmable stiffness comprising a cell structure, the cell structure includes an upper ring, a middle ring, a connecting rod, and a lower ring, and the connecting rod includes an upper connecting rod and a lower connecting rod;
  • the upper ring and the lower ring have the same geometric shape, the middle ring is located between the upper ring and the lower ring, and the axes of the upper ring, the middle ring and the lower ring all coincide with the central axis of the cell structure;
  • the upper connecting rod has several; the two ends of each upper connecting rod are respectively connected with the upper ring and the middle ring and are evenly distributed between the upper ring and the middle ring in an oblique manner, and each upper connecting rod is relative to the cell structure.
  • the central axis of the cell structure is arranged in different planes, and each upper connecting rod forms an included angle ⁇ with the central axis of the cell structure;
  • the lower connecting rod has several; the two ends of each lower connecting rod are respectively connected with the lower ring and the middle ring and are evenly distributed between the lower ring and the middle ring in an oblique manner, and each lower connecting rod is relative to the cell structure.
  • the central axes are arranged in different planes, and at the same time, each lower connecting rod forms an included angle - ⁇ with the central axis of the cell structure.
  • the number of the upper connecting rods is consistent with the number and size of the lower connecting rods, and the connection site of each upper connecting rod and the middle ring is located between the connection points of the adjacent two lower connecting rods and the middle ring. between.
  • the geometric shapes of the upper ring and the lower ring are circular rings.
  • Another technical object of the present invention is to provide a gradient lattice energy-absorbing structure constructed based on the above-mentioned programmable stiffness chiral cells, comprising more than two stacked cell layers;
  • Each cell layer includes several cell structures with the same stiffness; the stiffness of each cell layer arranged in a stack changes gradient from top to bottom;
  • the upper ring and the lower ring of two adjacent cell structures are connected by beams, and the middle rings of two adjacent cell structures are alternately arranged;
  • the upper cell layer is the upper cell layer
  • the lower cell layer is the lower cell layer
  • Each cell structure of the upper cell layer and each cell structure of the lower cell layer are coaxially arranged in a one-to-one correspondence, and the lower ring of each cell structure of the upper cell layer corresponds to the lower cell layer at the corresponding position.
  • the upper ring of the cell structure can be connected in one piece or provided in one piece.
  • the included angle ⁇ and included angle - ⁇ of each cell structure on the same axis are set in a gradient from top to bottom, while the connecting rod diameter and the inner diameter of the middle ring of each cell structure on the same axis All correspond to the same, so that the stiffness of each cell layer changes gradient from top to bottom;
  • the diameters of the connecting rods of each cell structure on the same axis are set in a gradient from top to bottom, and the included angle ⁇ , included angle - ⁇ , and inner diameter of the middle ring of each cell structure on the same axis correspond to The same, so that the stiffness of each cell layer changes gradient from top to bottom;
  • the inner diameter of the middle ring of each cell structure on the same axis is set in a gradient from top to bottom, and the included angle ⁇ , included angle - ⁇ , and connecting rod diameter of each cell structure on the same axis correspond to In order to realize the gradient change of the stiffness of each cell layer from top to bottom.
  • the cell layer includes three layers, which are an upper cell layer, a middle cell layer and a lower cell layer; wherein:
  • the diameter of the connecting rod and the inner diameter of the middle ring of any two cell structures are correspondingly the same.
  • the cell layer includes three layers, which are an upper cell layer, a middle cell layer and a lower cell layer; wherein:
  • the connecting rod diameter of each cell structure in the upper cell layer, the connecting rod diameter of each cell structure in the middle cell layer, and the connecting rod diameter of each cell structure in the lower cell layer are set in descending order;
  • the included angle ⁇ , included angle - ⁇ , and inner diameter of the middle ring of any two cell structures are correspondingly the same.
  • the cell layer includes three layers, which are an upper cell layer, a middle cell layer and a lower cell layer; wherein:
  • the inner diameter of the middle ring of each cell structure of the upper cell layer, the inner diameter of the middle ring of each cell structure of the middle cell layer, and the inner diameter of the middle ring of each cell structure of the lower cell layer are set in descending order;
  • the included angle ⁇ , included angle - ⁇ , and connecting rod diameter of any two cell structures are correspondingly the same.
  • Another technical purpose of the present invention is to provide a 3D printing method for a gradient lattice energy absorbing structure, using spherical nickel-titanium alloy powder with a diameter not exceeding 50 microns as a raw material, and adopting selective laser melting technology to integrally form the above-mentioned gradient lattice absorption structure.
  • the energy structure; the processing parameters are as follows: the laser power is 250W, the scanning speed is 1200mm/s, the scanning spacing is 50 microns, and the spot diameter is 50 microns.
  • the present invention has the following advantages:
  • the cell structure of the present invention has the deformation behavior of axial compression and torsion. During the compression process, it exhibits zero Poisson’s ratio, that is, during the compression process, the overall cell structure does not expand outward. Therefore, the The cell itself has high plateau stress and good impact resistance.
  • the cell structures with the same stiffness are connected by horizontal short beams to form a lattice layer (cell layer).
  • the lower loops of the cell layer are overlapped in order to form upwards. Therefore, under the condition of keeping the size of the connection unchanged, the cell design of programmable stiffness avoids stress concentration at the connection between the layers of the gradient lattice structure.
  • the example of this application proposes a design method for parametric design of cells. By adjusting the structural parameters, cells with different mechanical properties can be obtained while keeping the outer dimensions unchanged, and then the cells with different mechanical properties are applied to Lattice structure design, so as to realize the gradient design of lattice structure.
  • the examples of this application further consider the 3D printing method of the gradient lattice structure.
  • the self-supporting structure of the gradient lattice structure is optimized and designed, which can be integrally formed by selective laser melting technology.
  • the processing method is simple, the forming quality is excellent, and the processing time is short.
  • the optimal processing parameters are obtained as follows: the laser power is 250W, the scanning speed is 1200mm/s, the scanning spacing is 50 microns, and the spot diameter is 50 microns.
  • the gradient lattice structure can generate greater deformation and enhance its ability to absorb impact energy.
  • the gradient lattice structure can return to its original shape and can be reused.
  • Fig. 1 is the structural schematic diagram of the single cell body of the present invention
  • Figure 2 is a structural diagram of the deformation of a single cell body before and after axial compression of the present invention
  • Fig. 3 is the axial compression force displacement curve diagram of a single cell body with different inclination angles of the present invention
  • FIG. 4 is a schematic diagram of the arrangement of the unit cells of the gradient cell layer of the present invention.
  • Fig. 5 is a schematic diagram of the arrangement of the gradient cell layers of the present invention
  • Figure 6 shows the gradient lattice structure composed of the variable angle parameter ⁇ cell body
  • Figure 7 shows the gradient lattice structure composed of cell bodies with variable ring size parameter R 2
  • Fig. 8 is the gradient lattice structure composed of the diameter d cell body of the variable upper oblique rod 4 and the lower oblique rod 5
  • spatially relative terms such as “on”, “over”, “on the surface”, “above”, etc., may be used herein to describe what is shown in the figures.
  • spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “above” or “over” other devices or features would then be oriented “below” or “over” the other devices or features under other devices or constructions”.
  • the exemplary term “above” can encompass both an orientation of "above” and “below.”
  • the device can also be positioned in other different ways (rotated 90 degrees or at other orientations).
  • the programmable stiffness chiral cell of the present invention includes a cellular structure, and the cellular structure includes an upper ring, an upper connecting rod, a middle ring, a lower connecting rod, and a lower ring, wherein:
  • the upper ring and the lower ring have the same geometric shape.
  • the upper ring and the lower ring are both circular rings, and their radius is R 1 .
  • the middle ring can be of any shape, and is arranged between the upper ring and the lower ring, and the axes of the upper ring, the middle ring and the lower ring all coincide with the central axis of the cell structure.
  • the upper connecting rod has several; the two ends of each upper connecting rod are respectively connected with the upper ring and the middle ring, and are evenly distributed between the upper ring and the middle ring in an oblique manner, and each upper connecting rod is relative to the cell structure.
  • the central axis of the cell structure is arranged in different planes, and at the same time, each upper connecting rod forms an included angle ⁇ with the central axis of the cell structure.
  • the number of the upper connecting rods is not less than 14. In the accompanying drawings, the number of the upper connecting rods is 14, and the lower ring surface of the upper ring is evenly distributed with 14 connection points, which are respectively connection points A1, A2...
  • the lower connecting rods have several; the two ends of each lower connecting rod are respectively connected with the lower ring and the middle ring, and are evenly distributed between the lower ring and the middle ring obliquely, and each lower connecting rod is relative to the cell structure.
  • the central axes are arranged on different planes, and each lower connecting rod forms an included angle - ⁇ with the central axis of the cellular structure; the number of the lower connecting rods is consistent with the number of the upper connecting rods.
  • the number of the lower connecting rods is also There are 14 connection sites on the lower ring surface of the middle ring, which are connection sites C1, C2...
  • the position of the connection site B j on the middle ring is between two adjacent connection sites C m and C m+1 .
  • the upper connecting rod and the lower connecting rod can be straight rods and curved rods.
  • the diameter of the rods can be variable diameter and constant diameter rods.
  • the rod diameter is d.
  • the included angle ⁇ , the radius R 1 of the upper ring, the radius R 2 of the lower ring, and the diameter d of the upper connecting rod/lower connecting rod are cell structure parameters.
  • the three-dimensional chirality of the zero Poisson's ratio characteristic provided by this example is modeled in ANSYS software. The upper part of the cell is loaded with a uniformly distributed load.
  • the gradient lattice structure according to the present invention includes three cell layers arranged in layers, and from top to bottom are the upper cell layer, the middle cell layer, and the middle cell layer. cell layer and lower cell layer.
  • the cell layer described in the present invention has only two layers, or alternatively, the cell layer described in the present invention has four layers, five layers, . gradient to the bottom.
  • Each cell layer includes several cell structures with the same stiffness; for each cell structure in the same cell layer, the upper and lower rings of two adjacent cell structures are connected by beams , while the middle rings of two adjacent cell structures are alternately arranged.
  • the upper cell layer is the upper cell layer
  • the lower cell layer is the lower cell layer
  • the upper cell layer is the lower cell layer
  • Each cell structure of the layer is coaxially arranged in a one-to-one correspondence with each cell structure of the lower cell layer, and the lower ring of each cell structure of the upper cell layer corresponds to the cell structure of the lower cell layer at the corresponding position.
  • the upper ring can be connected into one piece or set in one piece.
  • the cell structures with the same stiffness are connected by horizontal short beams to form a lattice layer (cell layer).
  • the forms that overlap with the lower ring of the upper cell layer are stacked upward in turn.
  • the stiffnesses of the upper cell layer, the middle cell layer, and the lower cell layer are sequentially increased, that is, relatively speaking, the upper cell layer is a low-stiffness cell layer, and the middle cell layer is a medium-stiffness cell layer.
  • the cell layer, and the lower cell layer is the high stiffness cell layer.
  • the stiffness of the upper cell layer, the middle cell layer and the lower cell layer can also be decreased sequentially.
  • the included angle ⁇ and included angle - ⁇ of each cell structure on the same axis are set according to the gradient change from top to bottom, that is, the
  • of each cell structure of the lower cell layer are set in descending order;
  • of each cell structure in the lower cell layer are set in descending order; and each cell on the same axis
  • the upper connecting rod diameter, the lower connecting rod diameter, and the inner diameter of the middle ring of the cell structure are all correspondingly the same, that is, the upper connecting rod diameter, the lower connecting rod diameter, and the inner diameter of the middle ring of any two cell structures are correspondingly the same, so as to realize the uniformity
  • nickel-titanium memory alloy is selected as the base material of the gradient lattice structure, and the nickel-titanium memory alloy has the following characteristics:
  • the shape recovery of general engineering polycrystalline nickel-titanium alloy can be as high as 8% tensile strain, the shape recovery rate is as high as 100% within this deformation range, and the cycle stability is good. Its shape memory performance index can be adjusted by heat treatment and alloying within a certain range.
  • Nitinol has the best fatigue resistance.
  • the gradient lattice structure considers the forming angle constraint of selective laser melting, and is integrally formed by selective laser melting (3D printing) technology.
  • the optimized processing parameters are as follows: the laser power is 250W, the scanning speed is 1200mm/s, the scanning spacing is 50 microns, and the spot diameter is 50 microns.
  • selective laser melting has the characteristics of high precision, can form materials with a density close to 100%, and can ensure the consistency of the design size and the actual size.
  • the difference between this embodiment and Embodiment 2 lies in that the stiffness variation trend of each cell layer is implemented in different ways.
  • the diameters of the upper connecting rod and the lower connecting rod of each cell structure on the same axis are set according to an increasing gradient from top to bottom, that is, the upper cell Upper connecting rod/lower connecting rod diameter of each cell structure in the layer, upper connecting rod/lower connecting rod diameter of each cell structure in the middle cell layer, upper connecting rod/lower connecting rod diameter of each cell structure in the lower cell layer They are set in descending order; and the included angle ⁇ , included angle - ⁇ , and inner diameter of the middle ring of each cell structure on the same axis are correspondingly the same, so that the stiffness of each cell layer increases from top to bottom. Gradient change.
  • the cell structure keeps the size of the external connecting structure unchanged. In the case of change, the overall stiffness is reduced.
  • the difference between this embodiment and Embodiment 2 lies in that the stiffness variation trend of each cell layer is implemented in different ways.
  • the inner diameters of the middle rings of the cell structures on the same axis are set in a gradient from top to bottom, that is, the inner diameters of the middle rings of the cell structures of the upper cell layer .
  • the inner diameter of the middle ring of each cell structure in the middle cell layer and the inner diameter of the middle ring of each cell structure in the lower cell layer are set in descending order; - ⁇ , the diameter of the upper connecting rod and the diameter of the lower connecting rod are correspondingly the same, so as to realize the gradient change of the stiffness of each cell layer from top to bottom.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Prostheses (AREA)

Abstract

本发明公开了一种梯度点阵吸能结构及其可编程刚度的手性胞元、3D打印方法。手性胞元包括胞元结构,胞元结构包括上环、中环、下环、上部连接杆、下部连接杆;上环、下环具有相同的几何形状,中环位于上环、下环之间;上部连接杆具有若干根;各上部连接杆的两端分别与上环、中环对应连接并倾斜地均匀分布在上环、中环之间,下部连接杆具有若干根;各下部连接杆的两端分别与下环、中环对应连接并倾斜地均匀分布在下环、中环之间。因此,本发明所述胞元结构具有轴向受压扭转的变形行为,在压缩过程中,表现出零泊松比特性,即在压缩过程中,胞元整体结构不向外膨胀,因此,所述胞元本身具有较高平台应力,有良好的抗冲击性能。

Description

梯度点阵吸能结构及其可编程刚度的手性胞元、3D打印方法 技术领域
本发明涉及一种可编程刚度的手性胞元,用于构成点阵结构。
本发明还涉及一种梯度点阵吸能结构,尤其是一种基于可编程刚度手性胞元的梯度点阵吸能结构。
本发明还涉及一种用于成型上述梯度点阵吸能结构的3D打印方法。
背景技术
点阵结构具有轻质、比刚度高、比强度高、吸声隔热等优良特性,被越来越多地应用在在汽车、船舶、航空航天等领域。功能梯度点阵结构(Functionally graded lattice structure)是对点阵结构的一种针对于抗冲击应用的结构优化设计,在轴向冲击下,功能梯度点阵结构具有由低强度层到高强度层逐级失效,在相同质量情况下相较于均匀点阵结构(Uniform lattice structure)能够吸收更多的能量。现有的缓冲吸能梯度点阵结构,一般通过两种方法实现性能梯度设计:
一种方法是调整点阵胞元的杆件直径,即保持每个点阵胞元的外形尺寸不变,仅改变每个胞元的杆件直径,以此实现点阵结构性能的梯度设计,如已公开的中国专利CN107498948A。然而,由于尺寸效应的存在,同等载荷情况下,不同单胞尺寸的点阵结构所表现出来的力学行为并不相同;因此,需要在改变点阵单胞杆件截面尺寸的同时,考虑点阵单胞尺寸对结构整体性能的影响。
另一种方法是调控点阵胞元整体尺寸,即改变每个点阵胞元的整体尺寸,通过过渡层设计,从而实现大点阵胞元与小点阵胞元之间的过渡,最终实现点阵结构的梯度设计,如已公开的发明专利CN109163212A。然而,由于大胞元和小胞元尺寸存在差别,在胞元交界处易产生应力集中现象,因此,应考虑不改变胞元间连接处尺寸的情况下,提高胞元的力学性能,以实现结构性能的梯度设计。
发明内容
本发明针对现有技术的不足,提供一种可编程刚度的手性胞元,该手性胞元具有良好的抗冲击性能,并在轴向压缩时能够产生扭转变形,同时,手性胞元本身具有零泊松比特性,即在压缩过程中,手性胞元整体结构不向外膨胀。使得手性胞元结构在压缩过程中具有较高的平台应力,具有良好的吸能抗冲击的性能。
为实现上述的技术目的,本发明将采取如下的技术方案:
一种可编程刚度的手性胞元,包括胞元结构,该胞元结构包括上环、中环、连接杆、下环,连接杆包括上部连接杆、下部连接杆;其中:
所述的上环、下环具有相同的几何形状,中环位于上环、下环之间,且上环、中环、下环的轴线均与胞元结构的中轴线重合;
所述的上部连接杆,具有若干根;各上部连接杆的两端分别与上环、中环对应连接并倾斜地均匀分布在上环、中环之间,且各上部连接杆均相对于胞元结构的中轴线异面设置,同 时各上部连接杆均与胞元结构的中轴线形成夹角θ;
所述的下部连接杆,具有若干根;各下部连接杆的两端分别与下环、中环对应连接并倾斜地均匀分布在下环、中环之间,且各下部连接杆均相对于胞元结构的中轴线异面设置,同时各下部连接杆均与胞元结构的中轴线形成夹角-θ。
进一步地,所述上部连接杆的数量与下部连接杆的数量、尺寸一致,且每一根上部连接杆与中环的连接位点均处于相邻的两根下部连接杆与中环的连接位点之间。
进一步地,上环、下环的几何形状为圆环。
本发明的另一个技术目的是提供一种基于上述的可编程刚度的手性胞元构建的梯度点阵吸能结构,包括两层以上叠层布置的胞元层;
每一层胞元层均包括若干个刚度相同的胞元结构;叠层布置的各胞元层的刚度,从上到下呈梯度变化;
处于同一胞元层的各胞元结构,相邻的两个胞元结构的上环之间、下环之间均通过横梁连接,而相邻两个胞元结构的中环之间则相间设置;
相邻的两层胞元层之间,处于上方的胞元层为上方胞元层,处于下方的胞元层则为下方胞元层;
上方胞元层的各胞元结构与下方胞元层的各胞元结构一一对应地同轴设置,且上方胞元层的各胞元结构的下环,与对应位置处的下方胞元层胞元结构的上环能够连接成一体或者一体设置。
进一步地,处于同一轴线上的各胞元结构的夹角θ、夹角-θ,均按照从上到下呈梯度变化设置,而处于同一轴线上的各胞元结构的连接杆直径、中环内径均对应相同,以实现各胞元层的刚度从上到下呈梯度变化;
或者处于同一轴线上的各胞元结构的连接杆直径,均按照从上到下呈梯度变化设置,而处于同一轴线上的各胞元结构的夹角θ、夹角-θ、中环内径均对应相同,以实现各胞元层的刚度从上到下呈梯度变化;
或者处于同一轴线上的各胞元结构的中环内径,均按照从上到下呈梯度变化设置,而处于同一轴线上的各胞元结构的夹角θ、夹角-θ、连接杆直径均对应相同,以实现各胞元层的刚度从上到下呈梯度变化。
进一步地,所述的胞元层包括三层,分别为上胞元层、中胞元层以及下胞元层;其中:
上胞元层各胞元结构的|夹角θ|、中胞元层各胞元结构的|夹角θ|、下胞元层各胞元结构的|夹角θ|按照从大到小的顺序设置;
上胞元层各胞元结构的|夹角-θ|、中胞元层各胞元结构的|夹角-θ|、下胞元层各胞元结构的|夹角-θ|按照从大到小的顺序设置;
任意两个胞元结构的连接杆直径、中环内径均对应相同。
进一步地,所述的胞元层包括三层,分别为上胞元层、中胞元层以及下胞元层;其中:
上胞元层各胞元结构的连接杆直径、中胞元层各胞元结构的连接杆直径、下胞元层各胞元结构的连接杆直径按照从大到小的顺序设置;
任意两个胞元结构的夹角θ、夹角-θ、中环内径均对应相同。
进一步地,所述的胞元层包括三层,分别为上胞元层、中胞元层以及下胞元层;其中:
上胞元层各胞元结构的中环内径、中胞元层各胞元结构的中环内径、下胞元层各胞元结构的中环内径按照从大到小的顺序设置;
任意两个胞元结构的夹角θ、夹角-θ、连接杆直径均对应相同。
本发明的再一个技术目的是提供一种梯度点阵吸能结构的3D打印方法,以直径不超过50微米的球形镍钛合金粉末为原材料,采用选区激光熔化技术一体成型上述的梯度点阵吸能结构;加工工艺参数如下:激光功率为250W,扫描速度为1200mm/s,扫描间距为50微米,光斑直径50微米。
根据上述的技术方案,相对于现有技术,本发明具有如下的优点:
1、本发明所述胞元结构具有轴向受压扭转的变形行为,在压缩过程中,表现出零泊松比特性,即在压缩过程中,胞元整体结构不向外膨胀,因此,所述胞元本身具有较高平台应力,有良好的抗冲击性能。
2、本发明将相同刚度的胞元结构由水平短横梁相连形成点阵层(胞元层),将刚度呈梯度变化的点阵层的各胞元结构以下方胞元层的上环和上方胞元层的下环重叠的形式依次向上叠加构成,因此,本发明在保持连接处尺寸不变的情况下,可编程刚度的胞元设计避免梯度点阵结构层间结合处出现应力集中。
3、本申请实例提出一种参数化设计胞元的设计方法,通过调节结构参数,在保持外尺寸不变的情况下,可获得不同力学性能的胞元,而后将不同力学性能胞元应用于点阵结构设计,从而实现点阵结构的梯度设计。
4、本申请实例进一步考虑梯度点阵结构的3D打印方法。选用镍钛记忆合金为基材,对梯度点阵结构进行自支撑结构优化设计,可由选区激光熔化技术一体成形,加工方法简单,成形质量优异,加工时间短。通过工艺探索实验,获得最优加工工艺参数如下:激光功率为250W,扫描速度为1200mm/s,扫描间距为50微米,光斑直径50微米。
基于镍钛合金的超弹性,梯度点阵结构能够产生更大的形变,增强其冲击能量吸收的能力。同时,基于镍钛合金的记忆效应,梯度点阵结构在受冲击变形后,加热至相转变温度以上后,梯度点阵结构能够回复至初始形状,可重复利用。
附图说明
图1为本发明单个胞体的结构示意图
图2为本发明单个胞体轴向受压前后变形结构图
图3为本发明不同倾斜角单个胞体轴向压缩力位移曲线图
图4为本发明梯度胞元层单胞排列方式示意图
图5为本发明梯度胞元层排列方式示意图
图6为变角度参数θ胞体构成的梯度点阵结构
图7为变中环尺寸参数R 2胞体构成的梯度点阵结构
图8为变上部斜杆4和下部斜杆5直径d胞体构成的梯度点阵结构
图1至8中:上环1;中环2;下环3;上部连接杆4;下部连接杆5;上胞元层6-1;中胞元层6-2;下胞元层6-3。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位)。
实施例1
如图1、2所示,本发明所述的可编程刚度的手性胞元,包括胞元结构,该胞元结构包括上环、上部连接杆、中环、下部连接杆、下环,其中:
所述的上环、下环具有相同的几何形状,附图中,所述的上环、下环均为圆环,其半径为R 1。中环可以为任意形状,并设置在上环、下环之间,且上环、中环、下环的轴线均与胞元结构的中轴线重合。
所述的上部连接杆,具有若干根;各上部连接杆的两端分别与上环、中环对应连接并倾斜地均匀分布在上环、中环之间,且各上部连接杆均相对于胞元结构的中轴线异面设置,同时各上部连接杆均与胞元结构的中轴线形成夹角θ。所述上部连接杆的数量不少于14根,附图中,上部连接杆的数量为14根,上环的下环面均布14个连接位点,分别为连接位点A1、A2……A14;中环的上环面也均布有14个连接位点,分别为连接位点B1、B2……B14;连接位点A1-A14与连接位点B1-B14一一对应,各上部连接杆的两端分别与一组对应的连接位点A i(i=1,2……14)、连接位点B j(j=1,2……14)连接。
所述的下部连接杆,具有若干根;各下部连接杆的两端分别与下环、中环对应连接并倾斜地均匀分布在下环、中环之间,且各下部连接杆均相对于胞元结构的中轴线异面设置,同时各下部连接杆均与胞元结构的中轴线形成夹角-θ;所述下部连接杆的数量与上部连接杆的数量一致,附图中,下部连接杆的数量也为14根,中环的下环面均布14个连接位点,分别为连接位点C1、C2……C14;下环的上环面均布14个连接位点,分别为连接位点D1、D2……D14;连接位点C1-C14与连接位点D1-D14一一对应,各下部连接杆的两端分别与一组对应的连接位点C m(m=1,2……14)、连接位点Dn(n=1,2……14)连接。另外,还需要特别提及 的是,本实施例中,所述连接位点B j在中环上的位置处于相邻的两个连接位点C m、C m+1之间。
上部连接杆、下部连接杆,可为直杆与曲杆,为直杆时杆直径可为变直径和不变直径杆,当其为不变直径直杆时,其杆直径为d。所述夹角θ、上环的半径R 1、下环的半径R 2、上部连接杆/下部连接杆的直径d为胞元结构参数。
为了验证本实例提供的一种零泊松比特性的三维手性扭转胞元所具有的零泊松比特性及其大变形的能力,将本实例所提供的零泊松比特性的三维手性扭转胞元在ANSYS软件中建立有限元模型。所述胞元上部被加载一个均匀分布载荷。
仿真结果如下:
如图2所示,当胞元结构上部施加均匀载荷时,中环2产生旋转,胞元未发生横向膨胀,上部连接杆4和下部连接杆5在压缩过程中发生屈曲,胞元整体结构不向外膨胀,体现了零泊松比和手性结构受压发生扭转的特性,使得胞元结构在压缩过程中具有较高的平台应力,具有良好的吸能抗冲击的性能。单胞力学性能模拟如图3所示,单胞结构随倾斜角增加,整体刚度逐级下降。
实施例2
如图4-6所示,公开了本发明所述的梯度点阵结构的一种具体实施例,其中,包括三层叠层布置的胞元层,从上到下依次为上胞元层、中胞元层以及下胞元层。或者,本发明所述的胞元层只有两层,也或者,本发明所述的胞元层具有四层、五层……,此时,叠层布置的各胞元层的刚度,从上到下呈梯度变化。
每一层胞元层均包括若干个刚度相同的胞元结构;处于同一胞元层的各胞元结构,相邻的两个胞元结构的上环之间、下环之间均通过横梁连接,而相邻两个胞元结构的中环之间则相间设置。
所述的胞元层为多层时,相邻的两层胞元层之间,处于上方的胞元层为上方胞元层,处于下方的胞元层则为下方胞元层;上方胞元层的各胞元结构与下方胞元层的各胞元结构一一对应地同轴设置,且上方胞元层的各胞元结构的下环,与对应位置处的下方胞元层胞元结构的上环能够连接成一体或者一体设置。
换句话来讲,将相同刚度的胞元结构由水平短横梁相连形成点阵层(胞元层),将刚度呈梯度变化的点阵层的各胞元结构以下方胞元层的上环和上方胞元层的下环重叠的形式依次向上叠加构成。
本实施例中,上胞元层、中胞元层以及下胞元层的刚度依次增加,即相对而言,所述的上胞元层为低刚度胞元层,中胞元层为中刚度胞元层,而下胞元层,则为高刚度胞元层。当然,上胞元层、中胞元层以及下胞元层的刚度也可以依次降低。
处于同一轴线上的各胞元结构的夹角θ、夹角-θ,均按照从上到下呈增加的梯度变化设置,即上胞元层各胞元结构的|夹角θ|、中胞元层各胞元结构的|夹角θ|、下胞元层各胞元结构的|夹角θ|按照从大到小的顺序设置;上胞元层各胞元结构的|夹角-θ|、中胞元层各胞元结构的|夹角-θ|、下胞元层各胞元结构的|夹角-θ|按照从大到小的顺序设置;而处于同一轴线上的各胞元结构的上部连接杆直径、下部连接杆直径、中环内径均对应相同,即任意两个胞元结构的上部连接杆直径、下部连接杆直径、中环内径均对应相同,以实现各胞元层的刚度从上到下呈递减的梯度变化。
本实施例在保持其他结构参数不变的情况下,随夹角θ的值增加,胞元在保持外 部连接结构尺寸不变的情况下,实现整体刚度下降。
为提高所述梯度点阵结构的抗冲击能力,选用镍钛记忆合金为所述梯度点阵结构基材,镍钛记忆合金具有以下特性:
(1)优良的形状记忆效应与超弹性。普通工程用多晶镍钛合金的形状可回复拉伸应变高达8%,在此形变范围内形状回复率高达100%,并且循环稳定性较好。其形状记忆性能指标可在一定范围内通过热处理及合金化调整。
(2)良好的力学性能。近等原子比的镍钛合金的力学强度及韧性与低-中碳钢的同类性能相近,其力学性能可在很大的范围内通过金属热冷加工及热处理控制。在现有的形状记忆合金中,镍钛合金具有最佳的抗疲劳特性。
(3)优良的抗腐蚀性能与生物相容性。
(4)具有高阻尼特性
(5)具有高反应性和高塑性,不易机加工
因此,所述梯度点阵结构考虑选区激光熔化成形角约束,采用选区激光熔化(3D打印)技术一体成型。通过工艺实验测试,优化后的加工工艺参数如下:激光功率为250W,扫描速度为1200mm/s,扫描间距为50微米,光斑直径50微米。在优化后的激光工艺参数下,选区激光熔化具有高精度的特点,能够成型致密度接近100%的材料,能够保证设计尺寸与实际尺寸的一致性。
实施例3
本实施例与实施例2的不同,在于通过不同的方式来实现各胞元层的刚度变化趋势。具体地,本实施例中,如图7所示,处于同一轴线上的各胞元结构的上部连接杆、下部连接杆直径,均按照从上到下呈递增的梯度变化设置,即上胞元层各胞元结构的上部连接杆/下部连接杆直径、中胞元层各胞元结构的上部连接杆/下部连接杆直径、下胞元层各胞元结构的上部连接杆/下部连接杆直径按照从大到小的顺序设置;而处于同一轴线上的各胞元结构的夹角θ、夹角-θ、中环内径均对应相同,以实现各胞元层的刚度从上到下呈递增的梯度变化。
本实施例在保持所述胞元结构的其他结构参数不变的情况下,随着连接杆(上部连接杆以及下部连接杆)直径d减小,所述胞元结构在保持外部连接结构尺寸不变的情况下,实现整体刚度下降。
实施例4
本实施例与实施例2的不同,在于通过不同的方式来实现各胞元层的刚度变化趋势。具体地,本实施例中,如图8所示,处于同一轴线上的各胞元结构的中环内径,均按照从上到下呈梯度变化设置,即上胞元层各胞元结构的中环内径、中胞元层各胞元结构的中环内径、下胞元层各胞元结构的中环内径按照从大到小的顺序设置;而处于同一轴线上的各胞元结构的夹角θ、夹角-θ、上部连接杆直径、下部连接杆直径均对应相同,以实现各胞元层的刚度从上到下呈梯度变化。
即本实施例中,保持所述胞元结构的其他结构参数不变,随着中环半径R 2减小,所述胞元结构在保持外部连接结构尺寸不变的情况下,实现整体刚度增加。

Claims (9)

  1. 一种可编程刚度的手性胞元,其特征在于,包括胞元结构,该胞元结构包括上环、中环、连接杆、下环,连接杆包括上部连接杆、下部连接杆;其中:
    所述的上环、下环具有相同的几何形状,中环位于上环、下环之间,且上环、中环、下环的轴线均与胞元结构的中轴线重合;
    所述的上部连接杆,具有若干根;各上部连接杆的两端分别与上环、中环对应连接并倾斜地均匀分布在上环、中环之间,且各上部连接杆均相对于胞元结构的中轴线异面设置,同时各上部连接杆均与胞元结构的中轴线形成夹角θ;
    所述的下部连接杆,具有若干根;各下部连接杆的两端分别与下环、中环对应连接并倾斜地均匀分布在下环、中环之间,且各下部连接杆均相对于胞元结构的中轴线异面设置,同时各下部连接杆均与胞元结构的中轴线形成夹角-θ。
  2. 根据权利要求1所述的可编程刚度的手性胞元,其特征在于,所述上部连接杆的数量与下部连接杆的数量、尺寸一致,且每一根上部连接杆与中环的连接位点均处于相邻的两根下部连接杆与中环的连接位点之间。
  3. 根据权利要求1所述的可编程刚度的手性胞元,其特征在于,上环、下环的几何形状为圆环。
  4. 一种基于权利要求1所述的可编程刚度的手性胞元构建的梯度点阵吸能结构,其特征在于,包括两层以上叠层布置的胞元层;
    每一层胞元层均包括若干个刚度相同的胞元结构;叠层布置的各胞元层的刚度,从上到下呈梯度变化;
    处于同一胞元层的各胞元结构,相邻的两个胞元结构的上环之间、下环之间均通过横梁连接,而相邻两个胞元结构的中环之间则相间设置;
    相邻的两层胞元层之间,处于上方的胞元层为上方胞元层,处于下方的胞元层则为下方胞元层;
    上方胞元层的各胞元结构与下方胞元层的各胞元结构一一对应地同轴设置,且上方胞元层的各胞元结构的下环,与对应位置处的下方胞元层胞元结构的上环能够连接成一体或者一体设置。
  5. 根据权利要求4所述的梯度点阵吸能结构,其特征在于,处于同一轴线上的各胞元结构的夹角θ、夹角-θ,均按照从上到下呈梯度变化设置,而处于同一轴线上的各胞元结构的连接杆直径、中环内径均对应相同,以实现各胞元层的刚度从上到下呈梯度变化;
    或者处于同一轴线上的各胞元结构的连接杆直径,均按照从上到下呈梯度变化设置,而处于同一轴线上的各胞元结构的夹角θ、夹角-θ、中环内径均对应相同,以实现各胞元层的刚度从上到下呈梯度变化;
    或者处于同一轴线上的各胞元结构的中环内径,均按照从上到下呈梯度变化设置,而处于同一轴线上的各胞元结构的夹角θ、夹角-θ、连接杆直径均对应相同,以实现各胞元层的刚度从上到下呈梯度变化。
  6. 根据权利要求4所述的梯度点阵吸能结构,其特征在于,所述的胞元层包括三层,分别为上胞元层、中胞元层以及下胞元层;其中:
    上胞元层各胞元结构的|夹角θ|、中胞元层各胞元结构的|夹角θ|、下胞元层各胞元结构的|夹角θ|按照从大到小的顺序设置;
    上胞元层各胞元结构的|夹角-θ|、中胞元层各胞元结构的|夹角-θ|、下胞元层各胞元结构的|夹角-θ|按照从大到小的顺序设置;
    任意两个胞元结构的连接杆直径、中环内径均对应相同。
  7. 根据权利要求4所述的梯度点阵吸能结构,其特征在于,所述的胞元层包括三层,分别为上胞元层、中胞元层以及下胞元层;其中:
    上胞元层各胞元结构的连接杆直径、中胞元层各胞元结构的连接杆直径、下胞元层各胞元结构的连接杆直径按照从大到小的顺序设置;
    任意两个胞元结构的夹角θ、夹角-θ、中环内径均对应相同。
  8. 根据权利要求4所述的梯度点阵吸能结构,其特征在于,所述的胞元层包括三层,分别为上胞元层、中胞元层以及下胞元层;其中:
    上胞元层各胞元结构的中环内径、中胞元层各胞元结构的中环内径、下胞元层各胞元结构的中环内径按照从大到小的顺序设置;
    任意两个胞元结构的夹角θ、夹角-θ、连接杆直径均对应相同。
  9. 一种梯度点阵吸能结构的3D打印方法,其特征在于:以直径不超过50微米的球形镍钛合金粉末为原材料,采用选区激光熔化技术一体成型权利要求4所述的梯度点阵吸能结构;加工工艺参数如下:激光功率为250W,扫描速度为1200mm/s,扫描间距为50微米,光斑直径50微米。
PCT/CN2021/114459 2020-08-29 2021-08-25 梯度点阵吸能结构及其可编程刚度的手性胞元、3d打印方法 WO2022042580A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/796,919 US11731389B2 (en) 2020-08-29 2021-08-25 Graded lattice energy-absorbing structure, chiral cell thereof having programmable stiffness, and 3D printing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010890835.4 2020-08-29
CN202010890835.4A CN112356523B (zh) 2020-08-29 2020-08-29 基于可编程刚度的手性胞元构建的梯度点阵吸能结构及其3d打印方法

Publications (1)

Publication Number Publication Date
WO2022042580A1 true WO2022042580A1 (zh) 2022-03-03

Family

ID=74516483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114459 WO2022042580A1 (zh) 2020-08-29 2021-08-25 梯度点阵吸能结构及其可编程刚度的手性胞元、3d打印方法

Country Status (3)

Country Link
US (1) US11731389B2 (zh)
CN (1) CN112356523B (zh)
WO (1) WO2022042580A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114962518A (zh) * 2022-05-17 2022-08-30 中国电子科技集团公司第十研究所 具有吸能减振特性的点阵胞元结构、平面结构及立体结构
CN115157821A (zh) * 2022-07-14 2022-10-11 北京理工大学 一种薄壁与杆结合的锥形抗弹点阵夹芯板及其制备方法
CN115195225A (zh) * 2022-07-14 2022-10-18 北京理工大学 一种抗爆炸冲击点阵夹芯板及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112356523B (zh) * 2020-08-29 2021-12-07 南京航空航天大学 基于可编程刚度的手性胞元构建的梯度点阵吸能结构及其3d打印方法
CN113027972B (zh) * 2021-02-26 2022-05-20 复旦大学 一种圆台形双稳态吸能阵列结构
CN113685472B (zh) * 2021-08-10 2022-06-07 西安交通大学 一种多稳态压扭复合吸能结构
US11981268B2 (en) * 2021-10-13 2024-05-14 GM Global Technology Operations LLC Energy absorbing material for a vehicle
CN114055080B (zh) * 2021-11-12 2024-06-21 吉林大学 一种基于梯度多胞点阵结构的加工方法
CN114151489B (zh) * 2021-12-14 2024-04-05 长沙理工大学 多胞吸能体及多胞吸能体设计方法
CN114396447B (zh) * 2022-01-25 2023-07-21 广州大学 一种具有零泊松比特性的减振结构
CN116505137B (zh) * 2023-06-28 2023-09-01 吉林大学 一种仿生抗冲击轻量化新能源汽车电池包

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3033518A1 (fr) * 2015-03-13 2016-09-16 C T I F Centre Technique Des Ind De La Fond Milieux architectures en metal ou en alliage
CN107498948A (zh) * 2017-08-21 2017-12-22 哈尔滨工程大学 一种多层梯度点阵夹芯板及其制备方法
CN109163212A (zh) * 2018-09-28 2019-01-08 西北工业大学 带过渡层的变单胞尺寸对金字塔梯度点阵结构
US20200023584A1 (en) * 2017-10-03 2020-01-23 California Institute Of Technology Fabrication and design of composites with architected layers
CN110929358A (zh) * 2020-01-21 2020-03-27 中国人民解放军国防科技大学 一种参数化功能梯度立方点阵结构设计方法及材料
CN112356523A (zh) * 2020-08-29 2021-02-12 南京航空航天大学 梯度点阵吸能结构及其可编程刚度的手性胞元、3d打印方法

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2167029A (en) * 1936-11-19 1939-07-25 Joel E Mclafferty Reinforcing member for heterogeneous beams
US2212481A (en) * 1936-12-12 1940-08-20 American Rolling Mill Co Multicellular expanded material and process of manufacturing same
US2690074A (en) * 1952-03-27 1954-09-28 Cable B Jones Earthquake resistant concrete structure
US3200489A (en) * 1957-06-18 1965-08-17 George F Keeleric Method of making honeycomb core
FR876M (zh) * 1960-10-12 1961-10-16
US3376684A (en) * 1963-10-16 1968-04-09 Gen Dynamics Corp Double reverse corrugated material
US3407560A (en) * 1965-10-21 1968-10-29 Hanns U. Baumann Expanded, trussed structural assemblance and method of assembly
US3664906A (en) * 1970-01-26 1972-05-23 Du Pont Structural panel of ribbed structures of thermoplastic resin
US3925941A (en) * 1972-01-10 1975-12-16 Synestructics Inc Modular curved surface space structures
BE859468A (nl) * 1977-10-07 1978-04-07 Poppe Willy Schuimveer
US4292375A (en) * 1979-05-30 1981-09-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Superplastically formed diffusion bonded metallic structure
US4495237A (en) * 1983-06-10 1985-01-22 Patterson Fred R Pyramidal core structure
US4711057A (en) * 1984-12-17 1987-12-08 Jung G. Lew Subassembly for geodesically reinforced honeycomb structures
JPH02199338A (ja) * 1989-01-25 1990-08-07 Bridgestone Corp 免震支持装置
CH681950A5 (zh) * 1989-06-08 1993-06-30 Superba Sa
US5736221A (en) * 1995-07-21 1998-04-07 Hardigg Industries, Inc. Welded plastic panels and method of making same
US6704960B1 (en) * 1998-08-26 2004-03-16 George D. Lumgair Support device
US6767619B2 (en) * 2001-05-17 2004-07-27 Charles R. Owens Preform for manufacturing a material having a plurality of voids and method of making the same
WO2003002827A1 (en) * 2001-06-28 2003-01-09 Tamnor Management & Consulting Ltd. Modular marine structures
US7469513B2 (en) * 2002-06-28 2008-12-30 Eagle Development Corporation Foldable support structure with locking wall members and hinge locks
WO2004022869A2 (en) * 2002-09-03 2004-03-18 University Of Virginia Patent Foundation Method for manufacture of truss core sandwich structures and related structures thereof
US7404223B2 (en) * 2004-08-28 2008-07-29 Sealy Technology Llc Innerspring coils and innersprings with non-helical segments
US20070243408A1 (en) * 2005-11-22 2007-10-18 Straza George C P Formed core sandwich structure and method and system for making same
US9890827B2 (en) * 2007-05-10 2018-02-13 Hrl Laboratories, Llc Energy absorbing truss structures for mitigation of injuries from blasts and impacts
US9375864B2 (en) * 2007-05-10 2016-06-28 Hrl Laboratories, Llc Architected materials for enhanced energy absorption
US8185988B2 (en) * 2008-04-11 2012-05-29 Somnium, Inc. Grid spring mattress
US8815038B2 (en) * 2008-10-01 2014-08-26 The Boeing Company Joining curved composite sandwich panels
US8828311B2 (en) * 2009-05-15 2014-09-09 Board Of Regents, The University Of Texas System Reticulated mesh arrays and dissimilar array monoliths by additive layered manufacturing using electron and laser beam melting
KR101155267B1 (ko) * 2009-08-27 2012-06-18 전남대학교산학협력단 3차원 다공질 경량 구조체의 제조 방법
FR2975575B1 (fr) * 2011-05-24 2014-09-05 Tournadre Sa Standard Gum Element de suspension de coussin ou de matelas
WO2013130327A1 (en) * 2012-02-27 2013-09-06 California Institute Of Technology Method and apparatus for wave generation and detection using tensegrity structures
US10553875B2 (en) * 2013-04-16 2020-02-04 California Institute Of Technology Use and fabrication of microscaffolds and nanoscaffolds
WO2015006421A1 (en) * 2013-07-09 2015-01-15 United Technologies Corporation Metal-encapsulated polymeric article
WO2015053940A1 (en) * 2013-10-07 2015-04-16 United Technologies Corporation Additively grown enhanced impact resistance features for improved structure and joint protection
CN106232348B (zh) * 2014-05-09 2019-06-14 克拉迪劳斯国际有限公司 用于生产包层钢产品的方法
US9162416B1 (en) * 2014-08-18 2015-10-20 Hrl Laboratories, Llc Basal plane reinforced microlattice
US9915036B2 (en) * 2014-09-23 2018-03-13 Quality Mat Company Stackable mat construction
US10527362B2 (en) * 2015-09-21 2020-01-07 Lockheed Martin Corporation Integrated multi-chamber heat exchanger
US11248071B2 (en) * 2016-04-01 2022-02-15 Arkema Inc. 3-D printed fluoropolymer structures
PE20190951A1 (es) * 2016-10-31 2019-07-04 Zhang Yue Una estructura de limite del panel compuesto de sandwich de soldadura fuerte
US10549505B2 (en) * 2017-01-12 2020-02-04 Massachusetts Institute Of Technology Active lattices
US20180299066A1 (en) * 2017-04-17 2018-10-18 General Electric Company Apparatus for isotropic shell structure unit cells for structural lightweighting
US10828869B2 (en) * 2017-08-30 2020-11-10 Ultra Conductive Copper Company, Inc. Graphene-copper structure and manufacturing method
CA3119617A1 (en) * 2018-11-13 2020-05-22 John Cagle Microlattice layers
US11440097B2 (en) * 2019-02-12 2022-09-13 General Electric Company Methods for additively manufacturing components using lattice support structures
CA3224065A1 (en) * 2019-05-21 2020-11-26 Bauer Hockey Ltd. Articles comprising additively-manufactured components and methods of additive manufacturing
US11498250B2 (en) * 2019-11-19 2022-11-15 Massachusetts Institute Of Technology Method for discrete assembly of cuboctahedron lattice materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3033518A1 (fr) * 2015-03-13 2016-09-16 C T I F Centre Technique Des Ind De La Fond Milieux architectures en metal ou en alliage
CN107498948A (zh) * 2017-08-21 2017-12-22 哈尔滨工程大学 一种多层梯度点阵夹芯板及其制备方法
US20200023584A1 (en) * 2017-10-03 2020-01-23 California Institute Of Technology Fabrication and design of composites with architected layers
CN109163212A (zh) * 2018-09-28 2019-01-08 西北工业大学 带过渡层的变单胞尺寸对金字塔梯度点阵结构
CN110929358A (zh) * 2020-01-21 2020-03-27 中国人民解放军国防科技大学 一种参数化功能梯度立方点阵结构设计方法及材料
CN112356523A (zh) * 2020-08-29 2021-02-12 南京航空航天大学 梯度点阵吸能结构及其可编程刚度的手性胞元、3d打印方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG LIANG, SHI JIANXIONG, YANG CHEN, GAO TONG, HOU YULIANG, SONG LONGLONG, GU DONGDONG, ZHU JIHONG, BREITKOPF PIOTR, ZHANG WEIHON: "An emerging class of hyperbolic lattice exhibiting tunable elastic properties and impact absorption through chiral twisting", EXTREME MECHANICS LETTERS, ELSEVIER, NL, vol. 40, 1 October 2020 (2020-10-01), NL , pages 100869, XP055885409, ISSN: 2352-4316, DOI: 10.1016/j.eml.2020.100869 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114962518A (zh) * 2022-05-17 2022-08-30 中国电子科技集团公司第十研究所 具有吸能减振特性的点阵胞元结构、平面结构及立体结构
CN114962518B (zh) * 2022-05-17 2023-05-26 中国电子科技集团公司第十研究所 具有吸能减振特性的点阵胞元结构、平面结构及立体结构
CN115157821A (zh) * 2022-07-14 2022-10-11 北京理工大学 一种薄壁与杆结合的锥形抗弹点阵夹芯板及其制备方法
CN115195225A (zh) * 2022-07-14 2022-10-18 北京理工大学 一种抗爆炸冲击点阵夹芯板及其制备方法
CN115157821B (zh) * 2022-07-14 2023-10-17 北京理工大学 一种薄壁与杆结合的锥形抗弹点阵夹芯板及其制备方法
CN115195225B (zh) * 2022-07-14 2024-02-13 北京理工大学 一种抗爆炸冲击点阵夹芯板及其制备方法

Also Published As

Publication number Publication date
CN112356523A (zh) 2021-02-12
US11731389B2 (en) 2023-08-22
CN112356523B (zh) 2021-12-07
US20230053918A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
WO2022042580A1 (zh) 梯度点阵吸能结构及其可编程刚度的手性胞元、3d打印方法
Bai et al. Improved mechanical properties and energy absorption of Ti6Al4V laser powder bed fusion lattice structures using curving lattice struts
US20160025344A1 (en) Low porosity auxetic sheet
Xiao et al. Compressive performance and energy absorption of additively manufactured metallic hybrid lattice structures
JP6417388B2 (ja) 繰り返しの細長い開口パターンを有するボイド構造
Wang et al. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability
Kou et al. High‐strength and high‐ductility nanostructured and amorphous metallic materials
CN108895108A (zh) 一种拉胀多胞构型及吸能结构部件
CN110589031B (zh) 一种螺旋仿生抗冲击结构及其制备方法
WO2021008603A1 (zh) 一种仿生多功能热防护结构及其成形方法
Li et al. Axial compression performance of a bamboo-inspired porous lattice structure
Lee et al. Compressive strength of tube-woven Kagome truss cores
CN111042422B (zh) 一种零弯矩等轴力弦支穹顶结构及其计算方法
Liu et al. Uniaxial tensile stress–strain behavior of entangled steel wire material
Arshad et al. Design and performance evaluation of multi-helical springs fabricated by Multi Jet Fusion additive manufacturing technology
Sur et al. Applications, manufacturing and thermal characteristics of micro-lattice structures: current state of the art
Gu et al. Laser powder bed fusion of bio-inspired reticulated shell structure: Optimization mechanisms of structure, process, and compressive property
Baroutaji et al. Metamaterial for crashworthiness applications
Sha et al. Shear band control for improved strength-ductility synergy in metallic glasses
Kang et al. Self-adaptive 3D lattice for curved sandwich structures
Rohani Nejad et al. Experimental and simulation investigation on energy absorption of Cu casting lattice structure during compression
Jeon et al. Molecular dynamics study of temperature and heating rate–dependent sintering of titanium nanoparticles and its influence on the sequent tension tests of the formed particle-chain products
Zhou et al. Buckling-controlled braces for seismic resistance inspired by origami patterns
Luo et al. Effect of aspect ratio on mechanical anisotropy of lattice structures
Zhu et al. Quasi-static compression response of the origami thin-walled structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21860415

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21860415

Country of ref document: EP

Kind code of ref document: A1