WO2022042528A1 - 一种智能的无线接入网络 - Google Patents
一种智能的无线接入网络 Download PDFInfo
- Publication number
- WO2022042528A1 WO2022042528A1 PCT/CN2021/114255 CN2021114255W WO2022042528A1 WO 2022042528 A1 WO2022042528 A1 WO 2022042528A1 CN 2021114255 W CN2021114255 W CN 2021114255W WO 2022042528 A1 WO2022042528 A1 WO 2022042528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- task
- information
- base station
- ric
- layer
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 461
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 344
- 238000004891 communication Methods 0.000 claims abstract description 137
- 238000012549 training Methods 0.000 claims description 144
- 238000013480 data collection Methods 0.000 claims description 87
- 238000005259 measurement Methods 0.000 claims description 36
- 230000011664 signaling Effects 0.000 claims description 30
- 238000013528 artificial neural network Methods 0.000 claims description 13
- 230000004913 activation Effects 0.000 claims description 12
- 230000009849 deactivation Effects 0.000 claims description 12
- 238000004590 computer program Methods 0.000 claims description 5
- 230000006870 function Effects 0.000 description 201
- 230000008569 process Effects 0.000 description 97
- 238000012545 processing Methods 0.000 description 39
- 238000012790 confirmation Methods 0.000 description 30
- 238000013461 design Methods 0.000 description 29
- 208000036357 GUCY2D-related recessive retinopathy Diseases 0.000 description 27
- 230000005540 biological transmission Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 20
- 239000013256 coordination polymer Substances 0.000 description 17
- 238000000926 separation method Methods 0.000 description 17
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 238000007726 management method Methods 0.000 description 13
- 238000004422 calculation algorithm Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 12
- 238000005457 optimization Methods 0.000 description 12
- 238000010801 machine learning Methods 0.000 description 11
- 230000004044 response Effects 0.000 description 10
- 238000010295 mobile communication Methods 0.000 description 9
- 230000009471 action Effects 0.000 description 8
- 241000894007 species Species 0.000 description 8
- 230000001960 triggered effect Effects 0.000 description 8
- 102100022734 Acyl carrier protein, mitochondrial Human genes 0.000 description 7
- 101000678845 Homo sapiens Acyl carrier protein, mitochondrial Proteins 0.000 description 7
- 238000013459 approach Methods 0.000 description 6
- 241000700159 Rattus Species 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000013507 mapping Methods 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000003066 decision tree Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 108700010388 MIBs Proteins 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0247—Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/10—Machine learning using kernel methods, e.g. support vector machines [SVM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/098—Distributed learning, e.g. federated learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/16—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using machine learning or artificial intelligence
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0083—Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/085—Access point devices with remote components
Definitions
- the present application relates to communication technologies, and in particular, to an intelligent wireless access network.
- a wireless communication network for example, in a mobile communication network
- the services supported by the network are more and more diverse, and therefore the demands that need to be met are more and more diverse.
- the network needs to be able to support ultra-high speed, ultra-low latency, and/or ultra-large connections.
- This feature makes network planning, network configuration, and/or resource scheduling increasingly complex.
- MIMO multiple input multiple output
- supporting beamforming supporting beamforming
- new features such as beam management technology
- the embodiment of the present application provides a communication method, aiming to introduce artificial intelligence AI into a radio access network RAN, so as to realize network intelligence and provide an efficient RAN.
- a communication method is provided.
- the execution body of the method may be a wireless intelligent controller RIC or a device capable of supporting the RIC to implement this function, such as a chip, etc., which is not limited.
- the method includes: sending first task configuration information to the base station, where the first task configuration information is used to indicate configuration information of one or more tasks; wherein, the execution subject of each task in the one or more tasks is the terminal device or the base station.
- the execution subjects of different tasks may be the same or different, which is not limited.
- the first task configuration information indicates configuration information of X1 tasks, wherein the execution subject of X2 tasks is the base station, and the execution subject of X3 tasks is the terminal device.
- X1 is a positive integer greater than or equal to 1
- X2 is an integer greater than or equal to 0 and less than or equal to X1
- X3 is an integer greater than or equal to 0 and less than or equal to X1.
- the sum of X2 and X3 is equal to X1.
- the execution subject of each task is a base station, including: the execution subject of each task is a centralized unit CU of the base station or a distributed unit DU of the base station.
- the execution subject of each task in the one or more tasks is the terminal device, the CU or the DU;
- the execution subject is the terminal device or the CU; or, the execution subject of each task in the one or more tasks is the terminal device or the DU.
- the execution subject of each task is a CU of the base station, including: the execution subject of each task is a centralized unit of the base station-control plane CU-CP or a centralized unit of the base station- User plane CU-UP.
- the execution subject of each task in the one or more tasks is the terminal device, the CU-CP, the CU-UP, or the DU; the one The execution subject of each task in the one or more tasks is the terminal device, the CU-CP, or the CU-UP; the execution subject of each task in the one or more tasks is the terminal device, the CU-CP or the DU; the execution subject of each task in the one or more tasks is the terminal or the CU-CP; the execution subject of each task in the one or more tasks is the terminal device or the CU-UP; or, the execution subject of each task in the one or more tasks is the terminal device, the CU-UP or the DU.
- the RIC can send AI tasks to the base station, and/or send AI tasks to the terminal through the base station, to implement the AI function in the RAN, so that AI can be effectively introduced into the RAN and an efficient RAN can be realized. For example, the efficiency of network planning, network configuration, and/or resource scheduling, etc. can be improved.
- AI is introduced into the RAN through this method, it can be better compatible with the existing network and facilitate the introduction of new AI functions.
- the configuration information of the task is used to indicate one or more of the following contents of the task: task identification ID, task type , task content, task execution subject, and task status.
- task information can be configured for the executing subject of the AI task, so that the executing subject of the task can know how to execute the corresponding AI task.
- AI functions can be implemented in the network.
- the task type is data collection, inference result release, model release or model training.
- the configuration information of a task when the configuration information of a task is not used to indicate the task type, it can be agreed in the protocol or indicated in advance through other signaling that the task type is data collection, inference result release, model release or model training.
- the task type when the configuration information of a task is used to indicate the task type, the task type may be indicated from multiple task types, and the multiple task types may include at least data collection, inference result release, model release, and model training. A sort of.
- the multiple task types may also include other task types, which are not limited.
- the task type when the task type is model training, the task type is further used to indicate that the task type is distributed model training or centralized model training.
- the task type is data collection, inference result release, model release or model training, including: the task type is data collection, inference result release, model release, distributed model training or centralized model training.
- the inference result inferred by the RIC using the AI model may be the parameter configuration on the RAN side and/or the parameter configuration on the terminal side.
- the parameter value on the RAN side includes the parameter configuration of the cell and/or the parameter configuration of the base station.
- the release of the inference result can also be described as a configuration parameter, and the inference result can be described as a parameter value.
- data can be collected to assist in the realization of model training and/or inference functions in the AI function
- the results obtained by RIC inference can be released to the base station or terminal device
- the AI model can be released to the base station or terminal device, and /or may instruct the base station or terminal device to perform model training.
- various possible AI functions can be introduced into the RAN to obtain an efficient RAN.
- the content of the task indicates one or more of the following: measurement type of data, measurement conditions, and measurement result report (or described as a data report) )Way.
- the task content indicates one or more of the following: data type and data reporting method;
- the type of the task is that when the inference result is released, the task content indicates the inference result
- the task content indicates model information, or,
- the content of the task indicates one or more of the following: conditions for reporting model parameter information or reporting model parameter gradient information, reference neural network information, and neural network training data sets .
- the specific content of the AI task can be instructed to the executing subject of the AI task, so that the executing subject can execute the corresponding task according to the instruction of the task content, so that the AI function can be implemented in the network.
- the task state includes activation or deactivation, or the task state includes activation, deactivation or release.
- the execution of tasks can be flexibly controlled.
- the task can be configured to be activated for a partial period of time, or the task that has been configured can be released, so that the power consumption of the task executing subject can be saved.
- the method further includes: receiving a first interface establishment request message from the CU of the base station.
- the first interface establishment request message is used to indicate one or more of the following: message type, ID of the CU, capability information of the CU, configuration information of the CU , and the state information of the CU.
- CU information can be obtained, which can be used for AI model training and/or inference in RIC.
- the method further includes: receiving a second interface establishment request message from the DU of the base station.
- an interface between RIC and DU can be established. Thereby communication can be performed between the RIC and the DU.
- the second interface establishment request message is used to indicate one or more of the following: message type, ID of the DU, capability information of the DU, configuration information of the DU , and the status information of the DU.
- the information of DU can be obtained, which can be used for AI model training and/or inference in RIC.
- the method further includes: receiving information of the terminal device from the base station, where the information of the terminal device includes one or more of the following: capability information of the terminal device, the terminal device configuration information of the device, and state information of the terminal device.
- receiving the information of the terminal device from the base station includes: receiving the information of the terminal device from a CU of the base station.
- terminal information can be obtained, which can be used for AI model training and/or inference in RIC.
- the one or more tasks include at least one data collection task
- the method further includes: receiving the collected data from the base station.
- Receiving the collected data from the base station includes receiving the collected data from a CU of the base station.
- the data is collected by the base station.
- the execution subject of the at least one data collection task is the CU
- the data is collected by the CU.
- the execution subject of the at least one data collection task is the DU
- the data is collected by the DU.
- the data collected by the DU may be sent by the DU to the CU and sent by the CU to the RIC.
- the execution subject of the at least one data collection task is the CU-CP
- the data is collected by the CU-CP.
- the execution subject of the at least one data collection task is CU-UP
- the data is collected by CU-UP.
- the data collected by the CU-UP may be sent by the CU-UP to the CU-CP and sent by the CU-CP to the RIC.
- the executing subject of the at least one data collection task is a terminal device
- the data is collected by the terminal device and sent by the terminal device to the base station.
- the data you want to collect can be obtained, which can be used to assist in model training and/or inference functions.
- the method further includes: publishing an inference result to the base station.
- Publishing the inference result to the base station includes: publishing the inference result to the CU of the base station.
- the inference result can be released to the base station or the terminal device.
- the RIC can use the data to perform inference, so that the parameter configuration of the RAN side and/or the parameter configuration of the terminal can be obtained.
- the RIC can publish the parameter values to the base station and/or the terminal equipment, so that the base station and/or the terminal equipment can update the corresponding parameter values, thereby improving the performance of the network.
- the one or more tasks include at least one model training task
- the method further includes: receiving model parameter information or model parameter gradient information from the base station.
- Receiving model parameter information or model parameter gradient information from the base station includes: receiving model parameter information or model parameter gradient information from a CU of the base station.
- the parameter information or parameter gradient information may be sent by the terminal device to the base station.
- a communication method is provided.
- the execution body of the method may be a base station, a CU, or a device capable of supporting the base station or CU to implement the function, such as a chip, etc., which is not limited.
- the method includes: receiving first task configuration information from the wireless intelligent controller RIC, where the first task configuration information is used to indicate configuration information of one or more tasks; wherein each of the one or more tasks
- the execution subject of the task is the terminal device or the base station.
- the execution subject of the at least one task is the terminal device, and the method further includes: controlling RRC signaling through radio resources, A system information block SIB, a master information block MIB or a paging message to indicate to the terminal device information about each task in the at least one task.
- the execution subject of the at least one task is a DU
- the method further includes: sending the at least one task to the DU The content of each task.
- the execution subject of the at least one task is a CU-UP
- the method further includes: sending the CU-UP the The content of each task in at least one task.
- the method further includes: sending a first interface establishment request message to the RIC.
- sending a first interface establishment request message to the RIC.
- the method further includes: sending the information of the terminal device to the RIC.
- sending the information of the terminal device to the RIC For a description of the information about the terminal, refer to the first aspect, and details are not repeated here.
- the method further includes: the one or more tasks include at least one data collection task, and the method further includes: sending the collected data to the RIC.
- the method further includes receiving the data from the terminal device, DU or CU-UP.
- the method further includes: receiving an inference result from the RIC.
- the method further includes: sending the inference result to the terminal device, DU or CU-UP.
- sending the inference result to the terminal device it includes: sending the inference result to the terminal through RRC signaling, SIB, MIB or paging message.
- the one or more tasks include at least one model training task
- the method further includes: receiving model parameter information or model parameter gradient information from a terminal device, and sending the model parameter information to the RIC Model parameter information or model parameter gradient information.
- a communication method is provided.
- the execution body of the method may be a terminal device or a device capable of supporting the terminal device to implement the function, such as a chip, etc., which is not limited.
- the method includes: receiving information of one or more tasks from the base station through radio resource control RRC signaling, system information block SIB, master information block MIB or paging message; wherein, the information of one or more tasks , the information of each task is used to indicate one or more of the following contents of each task: task identification ID, task type, task content, task execution subject, and task status.
- the method further includes: sending information of the terminal device to the base station, where the information of the terminal device includes one or more of the following: capability information of the terminal device, the Configuration information of the terminal device, and state information of the terminal device.
- the one or more tasks include at least one data collection task, and the method further includes: sending the collected data to the base station.
- the method further includes: receiving an inference result from the base station.
- the one or more tasks include at least one model training task, and the method further includes: sending model parameter information or model parameter gradient information to the base station.
- an apparatus in a fourth aspect, is provided, and the apparatus may be an RIC or other apparatus capable of implementing the method described in the first aspect.
- the other device can be installed in the RIC, or can be used in conjunction with the RIC.
- the apparatus may include modules corresponding to one-to-one execution of the methods/operations/steps/actions described in the first aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software.
- the apparatus may include a processing module and a communication module.
- the communication module is configured to send the first task configuration information to the base station, where the first task configuration information is used to indicate the configuration information of one or more tasks; wherein, each of the one or more tasks
- the execution subject of each task is the terminal device or the base station.
- the configuration information of the task may be generated by the processing module.
- the communication module can receive and/or send, please refer to the description of the first aspect, and details are not repeated here.
- an apparatus in a fifth aspect, is provided, and the apparatus may be a base station or other apparatus capable of implementing the method described in the second aspect.
- the other device can be installed in the base station, or can be used in conjunction with the base station.
- the apparatus may include a one-to-one module for performing the methods/operations/steps/actions described in the second aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software.
- the apparatus may include a processing module and a communication module.
- the communication module is configured to receive first task configuration information from the wireless intelligent controller RIC, where the first task configuration information is used to indicate the configuration information of one or more tasks; wherein the one or more tasks
- the execution subject of each task in each task is a terminal device or a base station.
- the processing module may be configured to receive the first task configuration information from the communication module, and process the first task configuration information.
- the communication module can receive and/or send, please refer to the description of the second aspect, and details are not repeated here.
- an apparatus in a sixth aspect, is provided, and the apparatus may be a terminal device or other apparatus capable of implementing the method described in the third aspect.
- the other device can be installed in the terminal equipment, or can be used in combination with the terminal equipment.
- the apparatus may include modules corresponding to one-to-one execution of the methods/operations/steps/actions described in the third aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software.
- the apparatus may include a processing module and a communication module.
- the communication module is configured to receive information of one or more tasks from the base station through radio resource control RRC signaling, system information block SIB, master information block MIB or paging message; wherein the one or In the information of multiple tasks, the information of each task is used to indicate one or more of the following contents of each task: task identification ID, task type, task content, task execution subject, and task status.
- the processing module may be configured to receive information for the one or more tasks from the communication module and process the information.
- the communication module can receive and/or send, please refer to the description of the third aspect, which will not be repeated here.
- an embodiment of the present application provides an apparatus, where the apparatus includes a processor, configured to implement the method described in the first aspect above.
- the apparatus may also include a memory for storing the instructions.
- the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the first aspect can be implemented.
- the apparatus may also include a communication interface for the apparatus to communicate with other devices.
- the communication interface may be a transceiver, a circuit, a bus, a module, a pin, or other types of communication interfaces.
- the device includes:
- the processor is configured to use the communication interface to send first task configuration information to the base station, where the first task configuration information is used to indicate the configuration information of one or more tasks; wherein, the configuration information of each task in the one or more tasks is
- the execution subject is the terminal device or the base station.
- an embodiment of the present application provides an apparatus, where the apparatus includes a processor, configured to implement the method described in the foregoing second aspect.
- the apparatus may also include a memory for storing the instructions.
- the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the second aspect above can be implemented.
- the apparatus may also include a communication interface for the apparatus to communicate with other devices.
- the device includes:
- a processor configured to receive first task configuration information from the wireless intelligent controller RIC using a communication interface, where the first task configuration information is used to indicate the configuration information of one or more tasks; wherein, among the one or more tasks
- the execution subject of each task is a terminal device or a base station.
- an embodiment of the present application provides an apparatus, where the apparatus includes a processor, configured to implement the method described in the third aspect.
- the apparatus may also include a memory for storing the instructions.
- the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the third aspect can be implemented.
- the apparatus may also include a communication interface for the apparatus to communicate with other devices.
- the device includes:
- a processor configured to receive information of one or more tasks from the base station through radio resource control RRC signaling, system information block SIB, master information block MIB or paging message by using a communication interface; wherein, the one or more tasks In the information of each task, the information of each task is used to indicate one or more of the following contents of each task: task identification ID, task type, task content, task execution subject, and task status.
- a tenth aspect provides a communication method.
- the execution body of the method may be a wireless intelligent controller RIC or a device capable of supporting the RIC to implement this function, such as a chip, etc., which is not limited.
- the method includes: sending second task configuration information to the terminal device through the first protocol layer, where the second task configuration information is used to indicate the configuration information of one or more tasks; wherein, the one or more tasks
- the execution body of each task includes one or more terminal devices.
- the execution subjects of different tasks may be the same or different, which is not limited.
- the first protocol layer is a protocol layer other than the RRC protocol layer, or the first protocol layer is described as a non-RRC layer, or the first protocol layer is described as not an RRC layer.
- the configuration information of the task is used to indicate one or more of the following contents of the task: task identification ID, task type , task content, task execution subject, and task status.
- the RIC can send the AI task to the terminal device to implement the AI function in the RAN, so that the AI can be effectively introduced into the RAN and an efficient RAN can be realized.
- the efficiency of network planning, network configuration, and/or resource scheduling, etc. can be improved.
- AI is introduced into the RAN through this method, it can be better compatible with the existing network and facilitate the introduction of new AI functions.
- the method further includes: sending third task configuration information to the base station, where the third task configuration information is used to indicate configuration information of one or more tasks, wherein the third task configuration information
- the execution subject of each task in the indicated one or more tasks includes a centralized unit CU of the base station or a distributed unit DU of the base station.
- the configuration information of each task in the one or more tasks indicated by the third task configuration information is used to indicate one or more of the following contents of the task: task identification ID, task Type, task content, task execution body, and task status.
- the RIC can send AI tasks to the base station to implement the AI function in the RAN, so that AI can be effectively introduced into the RAN and an efficient RAN can be realized. For example, the efficiency of network planning, network configuration, and/or resource scheduling, etc. can be improved.
- AI is introduced into the RAN through this method, it can be better compatible with the existing network and facilitate the introduction of new AI functions.
- the method further includes: receiving a first interface establishment request message from the CU of the base station.
- the method further includes: receiving a second interface establishment request message from the DU of the base station.
- the method further includes: receiving information of the terminal device from the base station, where the information of the terminal device includes one or more of the following: capability information of the terminal device, the terminal device configuration information of the device, and state information of the terminal device.
- receiving the information of the terminal device from the base station includes: receiving the information of the terminal device from a CU of the base station.
- terminal information can be obtained, which can be used for AI model training and/or inference in RIC.
- the one or more tasks include at least one data collection task
- the method further includes: receiving the collected data from the base station.
- Receiving the collected data from the base station includes receiving the collected data from a CU of the base station.
- the data is collected by the base station.
- the execution subject of the at least one data collection task is the CU
- the data is collected by the CU.
- the execution subject of the at least one data collection task is the DU
- the data is collected by the DU.
- the data collected by the DU may be sent by the DU to the CU and sent by the CU to the RIC.
- the execution subject of the at least one data collection task is the CU-CP
- the data is collected by the CU-CP.
- the execution subject of the at least one data collection task is CU-UP
- the data is collected by CU-UP.
- the data collected by the CU-UP may be sent by the CU-UP to the CU-CP and sent by the CU-CP to the RIC.
- the data you want to collect can be obtained, which can be used to assist in model training and/or inference functions.
- the method further includes: publishing an inference result to the base station.
- Publishing the inference result to the base station includes: publishing the inference result to the CU of the base station.
- the inference result can be released to the base station.
- the RIC collects the data, it can use the data to perform inference, so as to obtain the parameter configuration on the RAN side.
- the RIC can publish parameter values to the base station, so that the base station can update the corresponding parameter values, thereby improving the performance of the network.
- the one or more tasks indicated by the second task configuration information include at least one data collection task
- the method further includes: through the first protocol layer, from the terminal device Receive the collected data. Through this method, the data you want to collect can be obtained, which can be used to assist in model training and/or inference functions.
- the one or more tasks indicated by the second task configuration information include at least one model training task
- the method further includes: receiving from the terminal through the first protocol layer Model parameter information or model parameter gradient information.
- the first protocol layer is the artificial intelligence control AIC layer above the packet data convergence layer protocol PDCP layer, the first protocol layer is the AIC layer above the radio resource control RRC layer, or, The first protocol layer is an application layer.
- the first protocol layer is the artificial intelligence control AIC layer above the PDCP layer of the packet data convergence layer protocol, including: at the transmitting end, the data of the AIC layer is sequentially delivered to the PDCP layer, the RLC layer, the MAC layer and the physical layer; After the physical layer of the receiving end receives the data, it is handed over to the MAC layer, the RLC layer, the PDCP layer and the AIC layer in turn.
- the first protocol layer is the AIC layer above the radio resource control RRC layer, including: at the transmitting end, the data of the AIC layer is sequentially delivered to the RRC layer, the PDCP layer, the RLC layer, the MAC layer and the physical layer; After the physical layer receives the data, it is sequentially delivered to the MAC layer, RLC layer, PDCP layer, RRC layer and AIC layer.
- a new protocol layer can be introduced for publishing tasks, and/or a model can be published through the application layer, so as to realize the effectiveness and scalability of task publishing.
- a communication method is provided.
- the execution body of the method may be a base station, a CU, or a device capable of supporting the base station or CU to implement the function, such as a chip, etc., which is not limited.
- the method includes: receiving third task configuration information from the wireless intelligent control RIC, where the third task configuration information is used to indicate configuration information of one or more tasks, wherein one or more tasks indicated by the third task configuration information
- the execution subject of each task in the multiple tasks includes a centralized unit CU of the base station or a distributed unit DU of the base station.
- the execution subject of the at least one task is the DU
- the method further includes: sending the at least one task to the DU content of each task in .
- the execution subject of the at least one task is the CU-UP
- the method further includes: sending the CU-UP all the information. Describe the content of each task in at least one task.
- the method further includes: sending a first interface establishment request message to the RIC.
- the method further includes: the one or more tasks include at least one data collection task, and the method further includes: sending the collected data to the RIC.
- the data is received from the DU of the base station or from the CU-UP of the base station.
- the method further includes: receiving an inference result from the RIC.
- a twelfth aspect provides a communication method.
- the execution body of the method may be a terminal device or a device capable of supporting the terminal device to implement the function, such as a chip, etc., which is not limited.
- the method includes: receiving second task configuration information from a wireless intelligent control RIC through a first protocol layer, where the second task configuration information is used to indicate configuration information of one or more tasks; wherein, the one or more tasks
- the execution body of each task in the tasks includes one or more terminal devices.
- the method further includes: sending information of the terminal device to the base station, where the information of the terminal device includes one or more of the following: capability information of the terminal device, configuration information of the terminal device , and the status information of the terminal device.
- the one or more tasks include at least one data collection task, and the method further includes: sending the collected data to the RIC through the first protocol layer.
- the one or more tasks include at least one model training task, and the method further includes: sending model parameter information or model parameter information gradient information to the RIC through the first protocol layer. .
- the method further includes: receiving an inference result from the RIC through the first protocol layer.
- the first protocol layer is the intelligent control AIC layer above the PDCP layer of the packet data convergence layer protocol, the first protocol layer is the AIC layer above the radio resource control RRC layer, or, The first protocol layer is an application layer.
- a thirteenth aspect provides an apparatus, and the apparatus may be a RIC or other apparatus capable of implementing the method described in the tenth aspect.
- the other device can be installed in the RIC, or can be used in conjunction with the RIC.
- the device may include modules corresponding to one-to-one execution of the methods/operations/steps/actions described in the tenth aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software.
- the apparatus may include a processing module and a communication module.
- the processing module uses the communication module to send second task configuration information to the terminal device through the first protocol layer, where the second task configuration information is used to indicate the configuration of one or more tasks information; wherein, the execution subject of each task in the one or more tasks includes one or more terminal devices.
- the communication module is configured to send third task configuration information to the base station, where the third task configuration information is used to indicate the configuration information of one or more tasks, wherein the third task configuration information
- the execution subject of each task in the indicated one or more tasks includes a centralized unit CU of the base station or a distributed unit DU of the base station.
- the third task configuration information is generated by the processing module.
- the communication module can receive and/or send, please refer to the description of the tenth aspect, which will not be repeated here.
- a fourteenth aspect provides an apparatus, which may be a base station or other apparatus capable of implementing the method described in the eleventh aspect.
- the other device can be installed in the base station, or can be used in conjunction with the base station.
- the device may include modules that perform one-to-one correspondence with the methods/operations/steps/actions described in the eleventh aspect.
- the modules may be hardware circuits, software, or hardware circuits combined with software.
- the apparatus may include a processing module and a communication module.
- the communication module is configured to receive third task configuration information from the wireless intelligent controller RIC, where the third task configuration information is used to indicate the configuration information of one or more tasks, wherein the third task The execution subject of each of the one or more tasks indicated by the configuration information includes a centralized unit CU of the base station or a distributed unit DU of the base station.
- the processing module is configured to receive third task configuration information from the communication module, and process the third task configuration information.
- the communication module can receive and/or send, please refer to the description of the eleventh aspect, which will not be repeated here.
- a fifteenth aspect provides an apparatus, and the apparatus may be a terminal device or other apparatus capable of implementing the method described in the twelfth aspect.
- the other device can be installed in the terminal equipment, or can be used in combination with the terminal equipment.
- the device may include modules that perform one-to-one correspondence with the methods/operations/steps/actions described in the twelfth aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software.
- the apparatus may include a processing module and a communication module.
- the processing module is configured to use the communication module to receive second task configuration information from the wireless intelligent control RIC through the first protocol layer, where the second task configuration information is used to indicate the configuration of one or more tasks information; wherein, the execution subject of each task in the one or more tasks includes one or more terminal devices.
- the communication module can receive and/or send, please refer to the description of the twelfth aspect, which will not be repeated here.
- an embodiment of the present application provides an apparatus, where the apparatus includes a processor, configured to implement the method described in the tenth aspect above.
- the apparatus may also include a memory for storing the instructions.
- the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the tenth aspect can be implemented.
- the apparatus may also include a communication interface for the apparatus to communicate with other devices.
- the communication interface may be a transceiver, a circuit, a bus, a module, a pin, or other types of communication interfaces.
- the device includes:
- the processor is configured to use the communication interface to send second task configuration information to the terminal device through the first protocol layer, where the second task configuration information is used to indicate the configuration information of one or more tasks; wherein the one or The execution body of each task in the multiple tasks includes one or more terminal devices.
- the processor uses the communication interface to send third task configuration information to the base station, where the third task configuration information is used to indicate the configuration information of one or more tasks, wherein the third task configuration information
- the execution subject of each task in the indicated one or more tasks includes a centralized unit CU of the base station or a distributed unit DU of the base station.
- the processor can receive and/or send by using the communication interface, please refer to the description of the tenth aspect, and details are not repeated here.
- an embodiment of the present application provides an apparatus, where the apparatus includes a processor, configured to implement the method described in the eleventh aspect above.
- the apparatus may also include a memory for storing the instructions.
- the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the eleventh aspect above can be implemented.
- the apparatus may also include a communication interface for the apparatus to communicate with other devices.
- the device includes:
- the processor is configured to use the communication interface to receive third task configuration information from the wireless intelligent control RIC, where the third task configuration information is used to indicate the configuration information of one or more tasks, wherein the third task configuration information indicates
- the execution subject of each of the one or more tasks includes a centralized unit CU of the base station or a distributed unit DU of the base station.
- an embodiment of the present application provides an apparatus, where the apparatus includes a processor, configured to implement the method described in the twelfth aspect above.
- the apparatus may also include a memory for storing the instructions.
- the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the twelfth aspect can be implemented.
- the apparatus may also include a communication interface for the apparatus to communicate with other devices.
- the device includes:
- a processor configured to use the communication interface to receive second task configuration information from the wireless intelligent controller RIC through the first protocol layer, where the second task configuration information is used to indicate the configuration information of one or more tasks; wherein, the The execution body of each task in the one or more tasks includes one or more terminal devices.
- the processor can receive and/or send by using the communication interface, please refer to the description of the twelfth aspect, and details are not repeated here.
- a nineteenth aspect provides a communication method.
- the execution body of the method may be a base station, a CU, or a device capable of supporting the base station or CU to implement the function, such as a chip, etc., which is not limited.
- the method includes: controlling the AIC layer through the application layer, artificial intelligence, radio resource control RRC signaling, system information block SIB, main information block MIB, paging message, medium access control MAC control element CE or physical layer information, Send the information of one or more tasks to the terminal device, wherein the AIC layer is located above the PDCP layer of the packet data convergence layer protocol, or the AIC layer is located above the RRC layer; wherein, the one or more The execution subject of each task in the task is one or more terminal devices.
- the AI function can be implemented in the RAN, for example, in the base station, so that AI can be effectively introduced into the RAN and an efficient RAN can be realized. For example, the efficiency of network planning, network configuration, and/or resource scheduling, etc. can be improved.
- AI is introduced into the RAN through this method, it can be better compatible with the existing network and facilitate the introduction of new AI functions.
- the information of the task is used to indicate one or more of the contents of the following tasks: task identification ID, task type, Task content, task execution subject, and task status.
- the method further includes: receiving information of the terminal device from the terminal device, wherein the information of the terminal device includes one or more of the following: capability information of the terminal device, Configuration information of the terminal device, and state information of the terminal device.
- the information of the terminal device can be obtained, which can be used for AI model training and/or reasoning at the base station side.
- the one or more tasks include at least one data collection task, and the method further includes: receiving the collected data from the terminal device.
- the method further includes: sending an inference result to the terminal.
- the one or more tasks include at least one model training task, and the method further includes: receiving gradient information of model parameters from the terminal device.
- a communication method is provided.
- the execution body of the method may be a terminal device or a device capable of supporting the terminal device to implement the function, such as a chip, etc., which is not limited.
- the method includes: receiving one or more tasks from the base station through the application layer, artificial intelligence control AIC layer, radio resource control RRC signaling, system message, main information block MIB, paging message, MAC CE or physical layer information information, wherein, the AIC layer is located above the PDCP layer of the packet data convergence layer protocol, or the AIC layer is located above the RRC layer; wherein, the execution subject of each task in the one or more tasks is one or more terminal devices.
- the method further includes: sending information of the terminal device to the base station, wherein the information of the terminal device includes one or more of the following: capability information of the terminal device, the terminal device configuration information of the device, and state information of the terminal device.
- the one or more tasks include at least one data collection task, and the method further includes: sending the collected data to the base station.
- the method further includes: receiving an inference result from the base station.
- the one or more tasks include at least one model training task, and the method further includes: sending gradient information of model parameters to the base station.
- a twenty-first aspect provides an apparatus, which may be a base station or other apparatus capable of implementing the method described in the nineteenth aspect.
- the other device can be installed in the base station, or can be used in conjunction with the base station.
- the device may include modules corresponding to the methods/operations/steps/actions described in the nineteenth aspect, and the modules may be hardware circuits, software, or hardware circuits combined with software.
- the apparatus may include a processing module and a communication module.
- the communication module utilizes the processing module to control the AIC layer, the radio resource control RRC signaling, the system information block SIB, the main information block MIB, the paging message, the media interface through the application layer, artificial intelligence control Incoming control MAC control element CE or physical layer information, and sending information of one or more tasks to the terminal device, wherein the AIC layer is located above the PDCP layer of the packet data convergence layer protocol, or the AIC layer is located in the RRC layer above; wherein, the execution subject of each task in the one or more tasks is one or more terminal devices.
- the communication module can receive and/or send, please refer to the description of the nineteenth aspect, which will not be repeated here.
- an apparatus in a twenty-second aspect, is provided, and the apparatus may be a terminal device or other apparatus capable of implementing the method described in the twentieth aspect.
- the other device can be installed in the terminal equipment, or can be used in combination with the terminal equipment.
- the device may include modules corresponding to the methods/operations/steps/actions described in the twentieth aspect.
- the modules may be hardware circuits, software, or hardware circuits combined with software.
- the apparatus may include a processing module and a communication module.
- the communication module utilizes the processing module to control the AIC layer through the application layer, artificial intelligence, radio resource control RRC signaling, system information block SIB, main information block MIB, paging message, MAC CE or physical layer information, receiving information of one or more tasks from the base station, wherein the AIC layer is located above the PDCP layer of the Packet Data Convergence Layer Protocol, or the AIC layer is located above the RRC layer; wherein the AIC layer is located above the RRC layer;
- the execution subject of each task in the one or more tasks is one or more terminal devices.
- the communication module can receive and/or send, please refer to the description of the twentieth aspect, which will not be repeated here.
- an embodiment of the present application provides an apparatus, where the apparatus includes a processor, configured to implement the method described in the nineteenth aspect above.
- the apparatus may also include a memory for storing the instructions.
- the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the nineteenth aspect above can be implemented.
- the apparatus may also include a communication interface for the apparatus to communicate with other devices.
- the device includes:
- the processor is used to utilize the communication interface to control the AIC layer through the application layer, artificial intelligence, radio resource control RRC signaling, system information block SIB, master information block MIB, paging message, medium access control MAC control element CE or physical layer information, sending information of one or more tasks to the terminal device, wherein the AIC layer is located above the PDCP layer of the Packet Data Convergence Layer Protocol, or the AIC layer is located above the RRC layer; wherein the one The execution subject of each task in the or multiple tasks is one or more terminal devices.
- an embodiment of the present application provides an apparatus, where the apparatus includes a processor, configured to implement the method described in the twentieth aspect above.
- the apparatus may also include a memory for storing the instructions.
- the memory is coupled to the processor, and when the processor executes the instructions stored in the memory, the method described in the twentieth aspect above can be implemented.
- the apparatus may also include a communication interface for the apparatus to communicate with other devices.
- the device includes:
- the processor is used to use the communication interface to receive from the base station a or information of multiple tasks, wherein the AIC layer is located above the PDCP layer of the packet data convergence layer protocol, or the AIC layer is located above the RRC layer; wherein, each task in the one or more tasks
- the execution subject is one or more terminal devices.
- a twenty-fifth aspect provides an apparatus, including: an artificial intelligence application AIA module, a model and policy information base MPIR, an operation state information base OSIB, and an artificial intelligence process management AIPM module; wherein,
- the AIA module includes at least one application, wherein one application is used to perform model training or model update by using one or more of the following contents: model information corresponding to the one application, policy information of the one application, Operation status information of terminal equipment and operation status information of radio access network RAN;
- the MPIR is used to store policy information and corresponding model information of each application in the at least one application
- the OSIB is used to store the operation state information of the terminal device and the operation state information of the RAN;
- the AIPM is used to manage the model training or model update process.
- the above modules may be software modules, hardware circuits, or software models + hardware circuits, which are not limited.
- a twenty-sixth aspect provides an apparatus, including: an artificial intelligence application AIA module, a model and policy information base MPIR, an operation state information base OSIB, and an artificial intelligence process management AIPM module; wherein,
- the AIA module includes at least one application, wherein one application is used for inference by using one or more of the following: model information corresponding to the one application, policy information of the one application, operation of the terminal device Status information, and operational status information of the radio access network RAN;
- the MPIR is used to store policy information and corresponding model information of each application in the at least one application
- the OSIB is used to store the operation state information of the terminal device and the operation state information of the RAN;
- the AIPM is used to manage the inference process.
- the subject for example, the RIC or the base station
- the subject that publishes the task configuration information or the task information may include the methods of the twenty-sixth aspect and/or the twenty-seventh aspect.
- the acquired information may be stored in the OSIB accordingly.
- the publishing process of tasks may be triggered or managed by the AIPM.
- a twenty-seventh aspect provides a method, comprising: for an application, using one or more of the following to perform model training or model update:
- the above modules may be software modules, hardware circuits, or software models + hardware circuits, which are not limited.
- a twenty-eighth aspect provides a method, comprising: for an application, reasoning using one or more of the following:
- a twenty-ninth aspect provides a communication system, comprising:
- a computer-readable storage medium including instructions, which when executed on a computer, cause the computer to execute the method described in any of the foregoing method embodiments.
- a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the method described in any of the method embodiments.
- a thirty-second aspect provides a chip system, where the chip system includes a processor and may further include a memory, for implementing the method described in any of the above method embodiments.
- the system-on-chip may consist of chips, or may include chips and other discrete devices.
- FIG. 1(a) and FIG. 1(b) show example diagrams of the protocol stack provided by the embodiment of the present application
- FIG. 2 shows an example diagram of a RAN structure provided by an embodiment of the present application
- FIG. 3 is a diagram showing an example structure of a gNB provided by an embodiment of the present application.
- FIG. 4 shows an example diagram of an air interface protocol stack provided by an embodiment of the present application
- FIG. 5 shows an example structure diagram of the RIC module provided by the embodiment of the present application
- FIG. 6(a)-FIG. 6(c) show example diagrams of network architectures provided by the embodiments of the present application.
- FIG. 7(a)-FIG. 7(d) show example diagrams of the protocol stacks provided by the embodiments of the present application.
- FIG. 8(a) shows the first example of the architecture provided by the embodiment of the present application
- FIG. 8(b) shows an example flowchart of information interaction using the architecture of FIG. 8(a);
- FIG. 9(a) shows the second architecture example provided by the embodiment of the present application
- FIG. 9(b) shows an example flow chart of information interaction using the architecture of FIG. 9(a);
- FIG. 10 shows the third architecture example provided by the embodiment of the present application.
- FIG. 11 shows the fourth example of the architecture provided by the embodiment of the present application.
- FIG. 12 and FIG. 13 are schematic diagrams of device structures provided by the embodiments of the present application.
- LTE long term evolution
- 5G fifth generation
- wireless-fidelity wireless-fidelity
- WiFi wireless-fidelity
- NR new radio
- enhanced Mobile Broadband eMBB
- ultra-reliable low-latency communication ultra-reliable low-latency communication
- URLLC ultra-reliable low-latency communication
- MTC machine type communication
- mMTC massive machine type communication
- D2D device-to-device
- V2X Vehicle-to-everything
- V2V vehicle-to-vehicle
- IoT internet of things
- the technical solutions provided in the embodiments of the present application can be applied to the communication between communication devices, and especially can be applied to the communication between the communication devices in a mobile communication network.
- the communication between communication devices may include: communication between a network device and a terminal device, communication between a network device and a network device, and/or communication between a terminal device and a terminal device.
- the term “communication” may also be described as "transmission”, “information transmission”, “data transmission”, or “signal transmission” and the like. Transmission can include sending and/or receiving.
- the technical solution is described by taking the communication between the network device and the terminal device as an example.
- the scheduling entity may perform radio resource management (RRM) on the subordinate entities.
- RRM radio resource management
- the multiple (number) species may be two (one) species, three (one) species, four (one) species, or more (one) species, which are not limited in this embodiment of the present application.
- the at least one (species) may be one (species) or multiple (species), which are not limited in this embodiment of the present application.
- the communication between the network device and the terminal device includes: the network device sends downlink data, signals or information to the terminal device, and/or the terminal device sends uplink data, signals or information to the network device.
- "/" may indicate that the objects associated before and after are an "or” relationship, for example, A/B may indicate A or B; “and/or” may be used to describe that there are three types of associated objects A relationship, eg, A and/or B, can mean that A exists alone, A and B exist simultaneously, and B exists alone. where A and B can be singular or plural.
- words such as “first”, “second”, “A”, and “B” may be used to distinguish technical features with the same or similar functions. The words “first”, “second”, “A”, “B” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like do not limit the difference.
- words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations, and the embodiments or designs described as “exemplary” or “for example” should not be construed as More preferred or advantageous over other embodiments or designs.
- the use of words such as “exemplary” or “such as” is intended to present the relevant concepts in a specific manner to facilitate understanding.
- the terminal device involved in the embodiments of the present application may also be referred to as a terminal, which may be a device with a wireless transceiver function.
- Terminals can be deployed on land, including indoors, outdoors, handheld, and/or vehicle; can also be deployed on water (such as ships, etc.); and can also be deployed in the air (such as aircraft, balloons, and satellites, etc.).
- the terminal equipment may be user equipment (user equipment, UE).
- UEs include handheld devices, in-vehicle devices, wearable devices, or computing devices with wireless communication capabilities.
- the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
- the terminal device can also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, intelligent A wireless terminal in a power grid, a wireless terminal in a smart city, and/or a wireless terminal in a smart home, and so on.
- VR virtual reality
- AR augmented reality
- a wireless terminal in a power grid a wireless terminal in a smart city
- a wireless terminal in a smart home and so on.
- the apparatus for implementing the function of the terminal device may be a terminal device; it may also be an apparatus capable of supporting the terminal device to implement the function, such as a chip system.
- the device can be installed in the terminal equipment or used in combination with the terminal equipment.
- the chip system may be composed of chips, or may include chips and other discrete devices.
- the device for implementing the functions of the terminal device is a terminal device, and the terminal device is a UE as an example to describe the technical solutions provided by the embodiments of the present application.
- the network device involved in the embodiments of the present application includes a base station (base station, BS), which may be a device that is deployed in a radio access network (radio access network, RAN) and can communicate with a terminal device.
- the wireless access network may also be referred to as an access network for short.
- the base station may have various forms, such as macro base station, micro base station, relay station or access point.
- the base station involved in the embodiments of the present application may be a base station in a 5G system, a base station in an LTE system, or a base station in other systems, which is not limited.
- the base station in the 5G system can also be called a transmission reception point (TRP) or a next generation Node B (generation Node B, gNB or gNodeB).
- TRP transmission reception point
- gNB next generation Node B
- the apparatus for implementing the function of the network device may be a network device; it may also be an apparatus capable of supporting the network device to implement the function, such as a chip system.
- the apparatus can be installed in network equipment or used in combination with network equipment.
- the device for implementing the functions of the network equipment is the network equipment, and the network equipment is a base station as an example to describe the technical solutions provided by the embodiments of the present application.
- the gNB and the UE may communicate using an air interface.
- the network architecture and/or protocol stack when other types of base stations communicate with the UE are similar or the same as the network architecture and/or protocol stack when the gNB communicates with the UE, and will not be described again.
- Figure 1(a) shows an example diagram of the protocol stack used by the gNB and the UE for user plane data exchange.
- service data adaptation protocol service data adaptation protocol
- packet data convergence protocol packet data convergence protocol
- PDCP packet data convergence protocol
- RLC radio link control
- RLC radio link control
- MAC media access control
- PHY physical layer
- Figure 1(b) shows an example diagram of the protocol stack used when the gNB and the UE perform control plane data exchange.
- the respective radio resource control (radio resource control, RRC) layer, PDCP layer, RLC layer, MAC layer, and PHY layer of the gNB side and the UE side are involved.
- the RRC layer may be used to control air interface radio resources and air interface connections.
- the SDAP layer can be used for quality of service (QoS)-flow and data radio bearer (DRB) mapping.
- QoS-flow is a service data flow with specific QoS requirements.
- the control plane and the user plane include protocol layers with the same name, such as PDCP layer, RLC layer, MAC layer, or PHY layer, the corresponding protocol layer is described. Both user plane functions and control plane functions are supported.
- the base station is part of the RAN and is used for wireless communication with UEs.
- FIG. 2 shows a possible example diagram of a RAN structure (eg, in a 5G system).
- the RAN in the 5G system may be referred to as a next generation radio access network (NG-RAN).
- NG-RAN next generation radio access network
- the RAN can communicate or exchange data with the core network (CN) through the NG interface.
- CN core network
- gNB the name of the base station
- one or more gNBs may be included in the RAN. Communication or data exchange can be performed between different gNBs through the Xn-C interface.
- the gNB may be an integrated gNB, that is, the gNB is a complete module, entity, network element or device; or the gNB may include multiple modules, entities, network elements or devices.
- a gNB may include two parts, a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU). This design may be referred to as CU and DU separation, or CU/DU separation.
- the CU of the gNB may also be denoted as gNB-CU, and the DU of the gNB may also be denoted as gNB-DU.
- the CU and DU of the gNB can communicate, exchange data, or exchange information through the F1 port.
- a gNB may include one or more CUs.
- a gNB may include one or more DUs.
- One DU can be connected to one CU.
- a CU can be connected to one or more DUs.
- the components of a gNB together can be regarded as the one gNB.
- the CUs and DUs of the gNB can be regarded as the gNB together.
- the form of the interface between any two network elements or any two entities in the RAN may be wired or wireless, that is, the interface may be a wired interface, such as an optical fiber or a cable, or a wireless interface
- the interface is not limited in this embodiment of the present application.
- the forms of different interfaces may be the same or different, and are not limited.
- the interface between any two network elements or any two entities in the RAN is used for exchanging data or information between the two network elements or the two entities, and the embodiment of the present application does not refer to the interface between the two network elements or the two entities.
- the name is limited, for example, the interface can be called the zth interface, and z is a positive integer. The value of z for different interfaces is different.
- the CU may be a complete module, entity, network element or device, or the CU may include multiple modules, entities, network elements or devices.
- the CU may include CU-CP (control plane, control plane) and CU-UP (user plane, user plane).
- This design may be referred to as CP and UP separation, or CP/UP separation.
- the CU-CP of the gNB may also be denoted as gNB-CU-CP, and the CU-UP of the gNB may also be denoted as gNB-CU-UP.
- FIG. 3 is a diagram showing an example structure of a gNB. As shown in FIG. 3, one gNB may include one CU-CP.
- a gNB may include one or more CU-UPs.
- One CU-UP can be connected to one CU-CP, and one CU-CP can be connected to one or more CU-UPs.
- the interface between CU-UP and CU-CP can be called E1 port.
- One DU can be connected to one CU-CP, and one CU-CP can be connected to one or more DUs.
- the interface between DU and CU-CP can be called F1-C port.
- a DU can be connected to one or more CU-UPs.
- a CU-UP can be connected to one or more DUs.
- the interface between DU and CU-UP can be called F1-U interface.
- Figure 4 shows an example diagram of the air interface protocol stack on the gNB side when the CP/UP is separated.
- the two RLC layers located in the DU respectively implement the control plane function and the user plane function;
- the MAC layer and the PHY layer located in the DU can implement the control plane function and the user plane function at the same time
- the RRC layer and the control plane PDCP Layers are located in CU-CP
- SDAP and user plane PDCP layers are located in CU-UP.
- AI artificial intelligence
- the goal of AI technology is to give machines the ability to learn, accumulate experience, and solve problems such as natural language understanding, image recognition, and/or chess that humans can solve through experience.
- machine learning is mainly involved.
- Machine learning can be thought of as an approach that empowers machines to do things that cannot be done by direct programming alone.
- machines can train or learn from training data to obtain AI models.
- the AI model can be used to make predictions on test samples to obtain prediction results.
- the AI model may be simply referred to as a model, a machine learning (ML) model, an AI/ML model, an AI network, or other names, which are not limited in the embodiments of the present application.
- using a model to perform prediction may also be referred to as using a model to perform inference, etc., which is not limited in this embodiment of the present application.
- AI technology can be introduced into the RAN to improve the efficiency of network planning, network configuration, and/or resource scheduling, etc., so as to realize network intelligence and achieve an efficient RAN.
- MIMO multiple input multiple output
- the commonly used MIMO algorithm mainly includes the linear operation of the matrix, and is based on assumptions such as Gaussian distribution.
- the actual channel environment is complex and changeable, and these commonly used algorithms have limited ability to adapt to the actual channel environment. For example, they cannot simulate complex nonlinear environments, and it is difficult to achieve the upper limit of theoretical performance.
- AI technology can simulate nonlinear models, which can effectively adapt to the actual channel environment and approach the performance limit.
- machines can obtain training data, use machine learning algorithms and the training data for model training, and use the trained model to infer the inference data to obtain inference results.
- AI technology can predict or reason about the amount of business data over a period of time in the future.
- the embodiment of this application provides the following four parts: the first part: a functional module for implementing the AI function; the second part: the network architecture when the functional module is applied to the RAN ; The third part: the protocol stack for realizing the AI function; the fourth part: the communication method for realizing the AI function between the RAN and the UE.
- the first part a functional module for implementing the AI function
- the second part the network architecture when the functional module is applied to the RAN
- the third part the protocol stack for realizing the AI function
- the fourth part the communication method for realizing the AI function between the RAN and the UE.
- supervised learning may include one or more of the following specific algorithms: support vector machine (SVM), decision tree (decision tree), naive bayesian classification (naive bayesian classification), and k-nearest neighbor algorithm (k-nearest neighbor, KNN).
- Unsupervised learning may include one or more of the following specific algorithms: principal component analysis (PCA), singular value decomposition (SVD), and k-means clustering.
- the learning of the AI model may be implemented in the RAN.
- the method can save processing resources on the UE side and reduce power consumption on the UE side.
- the learning of the AI model may use federated learning.
- Federated learning can be seen as a distributed AI training method.
- the training process of the AI model can be carried out on multiple UEs instead of being aggregated on the base station or server on the RAN side. This method can save learning time and signaling overhead.
- federated learning algorithms are beneficial to protect user privacy.
- the specific process of federated learning is: the central node (such as a base station or other network element in the RAN) sends an AI model to multiple participating nodes (such as UE), and the participating nodes are based on the AI model and data collected or measured by themselves.
- the central node Carry out AI model training, and report the AI model trained by yourself to the central node in a gradient manner.
- the central node processes the gradient information fed back by the participating nodes (for example, averages or other operations) to obtain a new AI model.
- the central node can send the new AI model to multiple participating nodes, so that the multiple participating nodes can perform AI model training based on the AI model and data collected or measured by itself.
- the central node can obtain the updated AI model again according to the gradient information fed back by the participating nodes.
- the participating nodes in each training process may be the same or may be different, which is not limited in this embodiment of the present application.
- the learning methods of different AI models may be the same or different, which are not limited.
- Part 1 Introduction to modules used to implement AI functions.
- a module for implementing an AI function may be called a radio intelligence control (RIC) module, an AI module, an intelligent module, a machine learning module, or other names, which are not limited in this embodiment of the present application.
- RIC radio intelligence control
- the description is given by taking as an example that the name of the module for implementing the AI function is the RIC module.
- the AI function may also be referred to as the RIC function, and the AI function includes but is not limited to one or more of the following functions: data collection, model download, model training, model update, model release, and reasoning.
- the collected data can be used to perform one or more of the following functions: model training, model updating, and inference.
- the data used for model training or model update may also be referred to as training data, training samples, or other names, which are not limited in this embodiment of the present application.
- the data used for inference may also be called a test sample, a prediction sample, or other names, which are not limited in this embodiment of the present application.
- information may be transmitted between different network elements.
- the information may be referred to as AI data, AI information, RIC data, RIC information or other names without limitation.
- AI information the information stored in the RIC module described below may be collectively referred to as AI information.
- the RIC module can be an integrated module or can include multiple modules.
- FIG. 5 shows a structural example diagram in which the RIC module includes multiple modules.
- the RIC module includes a first module and a second module.
- the first module in the RIC module is used for model training, model updating and/or inference, etc.
- model training and model updating may be collectively referred to as model training below.
- the output of the first module is at least one of the information of the model obtained by training, the information of the updated model obtained by training, and the inference result.
- the first module may also be called other names, which are not limited in this embodiment of the present application.
- the first module may be called an artificial intelligence application (artificial intelligence application, AIA) module.
- AIA artificial intelligence application
- the embodiment of the present application may be described by taking the name of the first module as an AIA module as an example.
- the AIA module may include one or more application instances (instances), and one application instance corresponds to (used to implement or assist in implementing) one or more network functions.
- an application instance may correspond to one or more of the following network functions: radio access technology (RAT) selection, load balancing, mobility management, network energy saving, coverage optimization, flow control, scheduling, Channel coding, modulation, etc., are not limited in this embodiment of the present application.
- RAT radio access technology
- an application instance may also correspond to multiple network functions, and based on a certain strategy, the goal is to achieve comprehensive optimization of multiple network functions.
- the application instances may also be collectively referred to as applications, AI application instances, AI applications, RAN applications, or other names, which are not limited.
- the specific name of the application is not limited.
- the application for implementing RAT selection may be called a RAT selection application, or an rth application.
- r is a positive integer, and the value of r can be different for different applications.
- the difference between different application instances may be: implementing different network functions; or, implementing the same type of functions for different nodes, such as different UEs, different base stations, different DUs, different CUs, or one For the UE and the other for the base station, etc., there is no restriction.
- an application in the AIA module When an application in the AIA module implements network functions, it needs to obtain model information, policy information and/or AI operation status information of the application, and use these information as input parameters for model training or inference. The acquisition and storage of these information can be implemented by the second module in the RIC module.
- the model of an application may be referred to as a model corresponding to the application.
- An application may be configured to be able to perform model training but not inference, capable of inference but not capable of model training, or capable of both model training and inference, which is not limited in this embodiment of the present application.
- model information For different applications, one or more of the following information is different: model information, policy information, AI operation status information, and targeted nodes.
- An application corresponds to a model.
- a model can correspond to an application.
- one module may correspond to multiple different applications at the same time, but one or more of the following information of different applications are different: policy information, AI operation status information, and targeted nodes.
- the second module in the RIC module is used to store AI information, and/or manage AI-related processes, and the like.
- the second module may also be called other names, which are not limited in this embodiment of the present application.
- the second module may be called an artificial intelligence platform (artificial intelligence platform, AIP) module.
- AIP artificial intelligence platform
- the embodiment of the present application may be described by taking the name of the second module as an AIP module as an example.
- the AIP module may be an integrated module, or may include multiple functional modules, which is not limited in this embodiment of the present application.
- the AIP module includes a first submodule, a second submodule and a third submodule.
- the first sub-module of the AIP module is used to store model information of one or more models.
- the model information of a model can be acquired by the above-mentioned AIA module and used for model training and/or inference by the corresponding application in the AIA module.
- the first submodule may also be called other names, which are not limited in this embodiment of the present application, such as a model repository (model repository, MR), or a model information repository (model information repository, MIR), and the like.
- model repository model repository
- MIR model information repository
- the RIC module obtains model information of one or more models from CN, network management (also referred to as operation management and maintenance (OAM, operation, administration and maintenance)) or a third-party application, and the model information can be stored in the MIR. middle.
- OAM operation management and maintenance
- the model information is stored in the MIR.
- the MIR can also be used to store policy information.
- the policy information may also be referred to as decision information, parameters, conditions, auxiliary information, or other names, which are not limited in this embodiment of the present application.
- MIR can also be called model and policy information repository (model and policy information repository, MPIR) or other names.
- MPIR model and policy information repository
- the above-mentioned AIA module can obtain relevant policy information stored in MPIR, and use it for model training or inference for the application.
- the relevant policy information may also be referred to as policy information of the application.
- the policy information of the application can be used as an input parameter of the model for updating the training and/or inference of the model.
- MPIR may store policy information specific to each of the one or more applications.
- the MPIR may store information on one or more of the following policies: handover decision policies for mobility load balancing applications, priority information among multiple RATs for RAT applications, and multiple RATs for network energy saving applications shutdown priority information between.
- MPIR can store common policy information for multiple applications.
- the MPIR stores a plurality of application optimization goal conflict handling strategies, which are used for conflict resolution when the optimization goals of the multiple applications conflict.
- the policy information may be stored in another module of the RIC module that is different from the MIR, which is not limited in this embodiment of the present application.
- the second sub-module of the AIP module is used to store the state information of the UE and/or RAN (eg, base station).
- the status information may also be called operation status information, parameters, or other names, which are not limited in this embodiment of the present application.
- the second submodule may also be called other names, which are not limited in this embodiment of the present application, such as a status information base (status information base, SIB), or an operation status information base (operation status information base, OSIB), and the like.
- a status information base status information base
- SIB status information base
- OSIB operation status information base
- FIG. 5 the embodiment of the present application may be described by taking the name of the second submodule as OSIB as an example.
- the RIC obtains the operation state information of the UE and/or the RAN from the CN, the OAM, a third-party application, the UE and/or the RAN, and the operation state information may be stored in the OSIB.
- the above-mentioned AIA module can obtain the operation status information stored in the OSIB, and use it for model training and/or inference of the application.
- the operation status information of the UE or RAN may include one or more of the following information of the UE or RAN: AI capability information, AI configuration information, and AI status information.
- AI capability information (capability information):
- the AI capability information of the UE may include one or more of the following information of the UE: AI application support capability information, AI data collection capability information, and AI result application capability.
- the AI application support capability information of the UE includes one or more of the following information: the computing capability of the UE, the storage capability of the UE, and the AI applications supported by the UE (for example, in this embodiment of the present application, it may be expressed as an application identifier, application name, application index, or application type), AI/ML models supported by the UE (for example, in this embodiment of the present application, it may be represented as a model identifier, model name, model index or model type), and AI working modes supported by the UE, etc.
- the AI work mode includes one or more of the following: performing AI training, performing AI inference, performing centralized AI training or distributed AI training, and performing centralized AI training or distributed AI training .
- centralized AI training means that a single node (such as a UE or a base station) performs AI training
- distributed AI training means that a single node performs part of an AI training process.
- the distributed AI training process may include multiple training segments, where each node in multiple different nodes performs a part of training respectively, and the multiple nodes complete the complete training process together.
- the training process of these nodes can be serial or parallel, or a combination of serial and parallel, which is not limited.
- federated training is a type of distributed training.
- centralized AI reasoning means that a single node performs AI reasoning
- distributed AI reasoning means that a single node performs part of an AI reasoning process.
- the distributed AI reasoning process may include multiple reasoning segments, each of the multiple different nodes performs a part of the reasoning respectively, and the multiple nodes complete the complete reasoning process together.
- the reasoning process of these nodes can be serial or parallel, or a combination of serial and parallel, which is not limited.
- the AI data collection capability information of the UE includes one or more of the following information: UE type, slice type supported by the UE, measurement type or method related to data collection supported by the UE (refer to the relevant description in the 3GPP protocol TS37.320). , but not limited to the measurement type defined by the protocol), the positioning method supported by the UE, the RAT type supported by the UE (that is, which RAT data the UE supports to collect), the clock type supported by the UE, the clock accuracy supported by the UE, the experience supported by the UE Quality of experience (QoE) measurement type or method, power control method supported by the UE, Layer 1 (physical layer) measurement method supported by the UE, frequency range supported by the UE, delay measurement method supported by the UE, and supported by the UE Delay measurement granularity or step size, etc.
- the measurement type defined by the protocol the positioning method supported by the UE, the RAT type supported by the UE (that is, which RAT data the UE supports to collect), the clock type supported by
- the AI result application capability information of the UE includes one or more of the following information: power saving schemes supported by the UE, mobility schemes supported by the UE, RATs supported by the UE (that is, to which RATs the UE supports applying AI results), The maximum transmit power supported, and the number of multiple input multiple output (MIMO) layers supported by the UE.
- the AI capability information of the RAN includes one or more of the following information: supported network slice types, supported measurement types (refer to the relevant description in the 3GPP protocol TS37.320, but are not limited to the measurement types defined by this protocol), Supported positioning methods, supported RAT types, clock types, clock accuracy, supported measurement types for QoE measurement, supported layer 1 measurement methods, supported power control methods, frequency range, frequency, and delay measurement types , and delay measurement granularity, etc.
- the layer 1 measurement method includes: whether to support measurement of beam granularity, such as RSRP measurement and/or RSRQ measurement; and/or whether to support zero-power interference measurement, etc.
- the types of delay measurement include: RLC/MAC segment delay measurement, and/or total delay measurement, etc.
- the granularity of delay measurement includes: data packets (packets), QoS flows (flows), and/or bearer RBs.
- the RAT may be a global system for mobile communications (GSM), a universal mobile telecommunications system (UMTS), LTE, 5G, WiFi, or Bluetooth (bluetooth), etc., This embodiment of the present application does not limit it.
- GSM global system for mobile communications
- UMTS universal mobile telecommunications system
- LTE Long Term Evolution
- 5G Fifth Generation
- WiFi Wireless Fidelity
- Bluetooth Bluetooth
- AI configuration information (configuration information):
- the AI configuration information of the UE may include one or more of the following information configured for the UE: AI application (for example, in this embodiment of the present application, it may be represented as a configured application identifier, application name, application index, or application type), AI/ML models corresponding to AI applications (for example, in this embodiment of the present application, it may be represented as a model identifier, model name, model index, or model type), AI working mode, power saving solution, and service parameters (for example, in the present embodiment of this application, It may include a data radio bearer (DRB) configuration, a protocol data unit (protocol data unit, PDU) session (session configuration, etc.), a serving base station, and/or a serving cell, and the like.
- DRB data radio bearer
- the AI configuration information of the RAN may include one or more of the following information: the network slice type used by the base station, the operating frequency of the subordinate cell, the bandwidth of the subordinate cell, the synchronization signal of the subordinate cell, and the PBCH block (synchronization signal and PBCH block, SSB) downlink transmit power, SSB cycle of subordinate cells, private network configuration in RAN, RAN sharing related configuration, nodes in RAN (such as WiFi access point (AP), non-independent base station, information of small stations, IAB nodes, and/or relay nodes, etc.).
- the SSB may also be replaced with a synchronization signal, a broadcast channel, or a downlink reference signal, or the like.
- AI status information (status information):
- the corresponding AI state information can be regarded as training data.
- the corresponding AI state information can be regarded as test data, prediction data or inference data.
- the AI state information of the UE may include one or more of the following information of the UE: service state information, resource usage state information, wireless channel state information, location information, moving speed, motion trajectory, RRC connection state of the UE, and user /UE preference information, etc.
- the service status information may include one or more of the following information: a running service, an average data rate, an average air interface transmission delay, a packet loss rate, a QoE satisfaction level, and a service model (traffic model). pattern), etc.
- the resource usage status information may include one or more of the following information: used computing resources, used storage resources, and air interface resource usage percentage, and the like.
- the wireless channel state information may include one or more of the following information: reference signal received power (reference signal received power, RSRP) of the serving cell measured by the UE, RSRP of the serving cell measured by the UE Reference signal received quality (RSRQ), uplink reception interference measured by the base station or integration of access and backhaul (IAB) node, and downlink shared spectrum resource conflict measured by the base station or IAB node probability etc.
- RSRP reference signal received power
- RSRQ Reference signal received quality
- IAB access and backhaul
- a UE may have one or more serving cells, which is not limited in this embodiment of the present application.
- the UE-related uplink reception interference may be measured at the network side.
- the preferences of the user/UE include one or more of the following: preferences for power saving mode, preferences for RAT selection, preferences for operator selection, and preferences for AI work modes.
- User/UE preference information can be set by the user using the UE. For example, the user can set one or more of the following: power saving mode, operator network selection order, and RAT selection order, etc.
- the UE or RAN node may set different preferences according to the change of its own equipment power.
- user/UE preference information may be stored in MPIR as policy information; or, a part of user/UE preference information (such as preference information set in subscription information, etc., because such preference information rarely changes) is stored In MPIR, another part of the information is stored in OSIB.
- the user/UE preference information obtained by the RIC from the CN, OAM or a third-party application is stored in the MPIR, and the user/UE preference information reported by the UE or the RAN node to the RIC is stored in the OSIB.
- the AI status information of the RAN may include one or more of the following information: traffic status information, resource usage status information, wireless channel status information, location information of RAN nodes (such as base stations, IABs, or relay nodes), moving speed , motion trajectory, etc., the load of the subordinate cell, the cell shutdown condition of the subordinate cell, the service QoS guarantee of the subordinate cell, and the type of network slice used by the base station, etc.
- the third sub-module of the AIP module is used to manage or implement one or more of the following AI functions: initialization, model publishing, data collection, model training, inference, and inference result publishing.
- the third submodule may also be called other names, which are not limited in this embodiment of the present application, such as a process management (procedure management, PM) module, an AI process management (AI procedure management, AIPM) module, or an AI processing module, and the like.
- a process management procedure management, PM
- AI process management AI procedure management
- AIPM AI processing module
- the AIPM may trigger or manage the initialization process of the RIC module. This process can occur when the RIC module is SETUP (eg, powered on). At this time, the RIC module may obtain the AI capability information and AI configuration information of the UE from the CN, the UE, and/or the base station. The RIC module can obtain the AI capability information and AI configuration information of the RAN from the CN and/or the base station. Optionally, when the AI capability information or AI configuration information of the UE changes, the UE may notify the RIC module of the updated AI capability information or AI configuration information through the base station or the CN.
- the RAN can notify the RIC module of the updated AI capability information or AI configuration information through the base station or CN.
- the RIC module can store the obtained AI capability information and AI configuration information in the OSIB.
- the AIPM may trigger or manage the data collection process. This process can occur while the RIC module is running.
- the AIPM may trigger the RIC module to obtain the UE and/or RAN AI status information periodically, event-triggered, and/or upon request.
- the UE and/or the RAN can be made aware of the type of AI state information that the RIC module wants to collect by means of a protocol or by a way of issuing a data collection task by the RIC module.
- the RIC module can store the obtained AI state information in the OSIB.
- the AIPM may trigger or manage the model publishing function. This process can occur while the RIC module is running. Used by the RIC module to publish model information to the base station and/or UE.
- the model information is stored in MPIR.
- the AIPM may trigger or manage the model training (including model update) process. This process can occur while the RIC module is running.
- the AIPM can trigger the AIA module to obtain from the RIC module one or more of the following information used by the application for model training: model information, policy information, and UE and/or RAN operational status information .
- the app trains the model based on this information.
- the AIA module can store the model information obtained by training or the updated model information in the above MPIR.
- the AIPM may trigger or manage the reasoning process. This process can occur while the RIC module is running.
- the AIPM may trigger the AIA module to obtain from the RIC module one or more of the following information used by the application for inference: model information, policy information, and UE and/or RAN operational status information. The app makes inferences based on this information.
- the AIPM may trigger an inference result release process, and release the inference result of the application to the RAN and/or the UE.
- the inference result may also be released to CN, OAM, and/or third-party applications, which is not limited in this embodiment of the present application.
- any two of the above-mentioned first sub-module, second sub-module and third sub-module may be combined into one sub-module.
- the first submodule and the second submodule may be combined into one submodule.
- the information stored in the first submodule and the information stored in the second submodule may be collectively referred to as AI information.
- AI information includes, but is limited to, the above-mentioned related information.
- the RIC module may be an entity network element or a functional module, which is not limited in the embodiment of the present application.
- the functional module may be a software module, a hardware circuit, or a software module combined with a hardware circuit.
- the RIC module may also be called a radio intelligence controller (radio intelligence controller, RIC).
- the RIC module may also be referred to as RIC for short in this embodiment of the present application.
- the RIC module may exist in the RAN but not in the UE, or the RIC may exist in both the RAN and the UE. Below, the RIC module is introduced from the network side and the UE side respectively.
- Figure 6(a) Standalone RIC architecture.
- the RIC module and the base station are separate network elements.
- the network architecture can be applied to an integrated base station, a CU/DU split base station, and a CP/UP split base station.
- the RIC module is logically a network element or logical entity independent of the base station.
- the RIC module may be an independent RIC node, an RIC network element, an AI node or an AI network element, or a software module and/or hardware circuit included in at least one node, the at least one node being a node separate from the base station, This embodiment of the present application does not limit it.
- Figure 6(b) Embedded RIC network architecture.
- the RIC module is an integral part of the base station.
- the network architecture can be applied to an integrated base station, a CU/DU split base station, and a CP/UP split base station.
- the RIC module may be included in the CU but not in the DU; or included in the DU but not included in the CU; or may be partially included in the CU and partially included in the DU.
- the RIC module in the CU may be called a non-real time wireless intelligent control (non-real time RIC, nrt-RIC) module, module A, CU intelligent module, CU AI module, or other names, which are not limited in the embodiments of the present application.
- the nrt-RIC module may be included in the CU-CP but not in the CU-UP; or in the CU-UP but not in the CU-CP; or may be partially included in the CU- In the UP, a part is included in the CU-CP, which is not limited in this embodiment of the present application.
- the nrt-RIC module may be an integrated module, or may include multiple separate sub-modules, which is not limited.
- the nrt-RIC module includes an AIA module, and applications in the AIA module are used to implement or assist in implementing a radio resource management (radio resource management, RRM) function.
- RRM radio resource management
- the RRM function can be considered as a network function or a network optimization function with relatively low real-time requirements, that is, a non-real-time function.
- Layer 3 functions can be seen as RRM functions.
- the model information and policy information corresponding to the application in the nrt-RIC module are stored in the MPIR in the nrt-RIC module, and the operation status information to be used by the application in the nrt-RIC module is stored in the OSIB in the nrt-RIC module.
- the AIPM module is also included in the nrt-RIC module, which is used to manage one or more of the following AI processes applied in the AIA module of the nrt-RIC module: data collection, model training, model download, model publishing, inference, and Inference results are released.
- the nrt-RIC module may be a software module, a hardware circuit, or a combination of a software module and a hardware module, which is not limited in this embodiment of the present application.
- the RIC module in the DU may be called a real-time wireless intelligent control (real time RIC, rt-RIC) module, module B, DU intelligent module, DU AI module, or other names, which are not limited in the embodiments of the present application.
- the rt-RIC module may be an integrated module, or may include multiple separate sub-modules, which is not limited.
- the rt-RIC module includes an AIA module, and the application in the AIA module is used to realize or assist in realizing the functions of layer 1 and/or layer 2, which are functions that require relatively strong real-time performance, that is, real-time functions.
- the application in the AIA module is used to implement or assist in implementing one or more of the following functions: channel status information (CSI) compression, power control, precoding, modulation, and channel coding.
- CSI channel status information
- Model information and policy information corresponding to the application in the rt-RIC module are stored in the MPIR in the rt-RIC module, and operation status information to be used by the application in the rt-RIC module is stored in the OSIB in the rt-RIC module.
- the rt-RIC module further includes an AIPM module, and the AIPM module is used to manage the following processes of the application in the AIA module of the rt-RIC module: data collection, model download, model training, model release, and inference result release.
- at least one of the following processes applied in the AIA module of the rt-RIC module may be managed by the AIPM module in the nrt-RIC module described above: model training, model download, and model publishing.
- layer 1 is the physical layer
- layer 2 is the SDAP layer
- PDCP layer is the SDAP layer
- RLC layer is the RRC layer
- the rt-RIC module may be a software module, a hardware circuit, or a combination of a software module and a hardware module, which is not limited in this embodiment of the present application.
- a part of the RIC module and the base station are separate network elements, and the other RIC module is an integral part of the base station.
- the network architecture can be applied to an integrated base station, a CU/DU split base station, and a CP/UP split base station.
- the nrt-RIC module is independent of the base station, and the rt-RIC is included in the base station.
- the rt-RIC module is independent of the base station, and the nrt-RIC is included in the base station.
- the RIC module may or may not exist in the UE.
- the RIC module may be a software module, a hardware circuit, or a combination of a software module and a hardware module, which is not limited in this embodiment of the present application.
- the UE can implement one or more of the following AI functions: data collection, model download, model training, model update, model release, inference, and inference result release.
- the UE can be triggered for data collection and inference result application. For example, the UE may report the collected data to the network side for the network side to implement the AI function. As another example, the UE may receive and apply inference results published by the network, and/or may receive and apply network reconfigurations triggered by the inference results.
- the RAN and the UE communicate based on a protocol architecture.
- the protocol architecture after the introduction of AI functions will be introduced.
- Part 3 Protocol stack for implementing AI functions.
- each protocol stack is applicable to any one of the network architectures shown in Fig. 6(a) to Fig. 6(c).
- the AI function of the non-real-time network (optimization) function is realized by the RRC layer.
- the non-real-time network (optimization) function may be referred to as a non-real-time function for short, and the specific introduction is the same as the above-mentioned second part, and details are not repeated here.
- IE information element
- the method of defining new RRC messages or adding new cells to RRC messages can also be used to implement one or more of the following AI functions for real-time network (optimization) functions: model training, model download, and model release.
- AI functions for real-time network (optimization) functions model training, model download, and model release.
- the real-time network (optimization) function may be referred to as a real-time function for short, and the specific introduction is the same as the above-mentioned second part, and details are not repeated here.
- These newly added RRC messages or newly added cells may be referred to as nrt-AI data.
- the nrt-AI data of the RRC layer is sequentially handed over to the PDCP layer, RLC layer, MAC layer and physical layer for processing, and sent by the transmitting end to the receiving end at the physical layer; after receiving the data at the physical layer of the receiving end , the data is sequentially submitted to the MAC layer, the RLC layer, the PDCP layer and the RRC layer for processing, so that the receiving end can interpret the nrt-AI data at the RRC layer.
- the AI function of the real-time function is realized by layer 1 and/or layer 2.
- layer 1 and/or layer 2 For example, carrying information through a physical layer data channel, physical layer control channel, or MAC control element (CE) to implement one or more of the following AI functions for real-time functions: data collection, model training, inference, and inference result publishing .
- this information may be referred to as rt-AI data.
- the rt-AI data of layer 1 is sent to the receiver, and the receiver interprets the rt-AI data at layer 1.
- the rt-AI data of layer 2 is submitted to the physical layer for processing, and sent by the sending end to the receiving end at the physical layer; after the data is received at the physical layer of the receiving end, the data is submitted to layer 2 for processing , so that the receiver can interpret the rt-AI data at layer 2.
- FIG. 7(b) A new artificial intelligence control (AIC) layer is added in parallel with the RRC layer.
- AIC artificial intelligence control
- the parallel of the AIC layer and the RRC layer can also be described as the data of the AIC layer does not pass through the RRC layer, or described as the AIC layer is above the PDCP layer.
- the parallel of the AIC layer and the RRC layer can also be described as the data of the AIC layer does not pass through the RRC layer, or described as the AIC layer is above the PDCP layer.
- the AIC layer is used to implement one or more of the following AI functions that are not real-time functions: data collection, model training, model download, model release, inference, and inference result release.
- the AIC layer may also be used to implement one or more of the following AI functions for real-time functionality: model training, model download, and model publishing.
- Information or data used to implement these two types of functions may be referred to as nrt-AI data or AIC (layer) messages.
- the nrt-AI data is sequentially submitted to the PDCP layer, RLC layer, MAC layer and physical layer for processing, and is sent by the transmitting end to the receiving end at the physical layer; after the data is received at the physical layer of the receiving end, the data is It is sequentially submitted to the MAC layer, the RLC layer, the PDCP layer and the AIC layer for processing, so that the receiving end can interpret the nrt-AI data at the AIC layer.
- layer 1 and/or layer 2 implements one or more of the following AI functions for real-time functions: data collection, model training, inference, and inference result publishing.
- the information or data used to implement this function may be referred to as rt-AI data.
- the details are the same as those described in Figure 7(a).
- the AIC layer implements one or more of the following AI functions for real-time functions: data collection, model training, inference, and inference result publishing.
- Information or data used to implement this function may be referred to as rt-AI data or AIC (layer) messages.
- the rt-AI data is sequentially submitted to the PDCP layer, RLC layer, MAC layer and physical layer for processing, and is sent by the sending end to the receiving end at the physical layer; after the data is received at the physical layer of the receiving end, the data It is sequentially submitted to the MAC layer, RLC layer, PDCP layer and AIC layer for processing, so that the receiving end can interpret the rt-AI data at the AIC layer.
- the transmission mode of the PDCP layer and the RLC layer of the radio bearer (RB) for carrying the rt-AI data can be configured as transparent mode. (transparent mode, TM).
- transparent mode TM
- the sender sends the rt-AI data
- the PDCP layer and the RLC layer do not perform any processing on the exchange information, and directly submit it to the subsequent protocol layer. See below for details on RB.
- protocol layers there may be no other protocol layers between the AIC layer and the RRC layer, or there may be other protocol layers, such as protocol layers introduced in the future.
- the AIC layer as a newly added control plane protocol layer, is located above the RRC layer.
- One or more of the following AI functions that are not real-time functions implemented by the AIC layer data collection, model training, model download, model publishing, inference, and inference result publishing.
- the AIC layer may also implement one or more of the following AI functions for real-time functions: model training, model download, and model publishing.
- Information or data used to implement these two types of functions may be referred to as nrt-AI data or AIC (layer) messages.
- the nrt-AI data is sequentially submitted to the RRC layer, PDCP layer, RLC layer, MAC layer and physical layer for processing, and is sent by the sending end to the receiving end at the physical layer; after receiving the data at the physical layer of the receiving end , the data is sequentially submitted to the MAC layer, the RLC layer, the PDCP layer, the RRC layer and the AIC layer for processing, so that the receiving end can interpret the nrt-AI data at the AIC layer.
- layer 1 and/or layer 2 implements one or more of the following AI functions for real-time functions: data collection, model training, inference, and inference result publishing. The details are the same as those described in Figure 7(a).
- Figure 7(d) Part of the AI function is performed by the application layer.
- the application layer is the user plane protocol layer, and the application layer can perform the model publishing function.
- the data related to the model publishing function are sequentially submitted to the SDAP layer (optional), PDCP layer, RLC layer, MAC layer and physical layer for processing, and are sent by the sending end to the receiving end at the physical layer;
- the data is sequentially submitted to the MAC layer, RLC layer, PDCP layer, SDAP layer (optional) and application layer for processing, so that the receiving end can interpret the data related to the model publishing function at the application layer.
- Figure 7(d) + Figure 7(a) The first possible implementation ( Figure 7(d) + Figure 7(a): the application layer performs the model publishing function of real-time functions and non-real-time functions, and the implementation of other AI functions is the same as that described in Figure 7(a) above .
- FIG. 7(d) + Fig. 7(c) A third possible implementation (Fig. 7(d) + Fig. 7(c)): Real-time functional and non-real-time functional model publishing functions are performed by the application layer. The implementation of other AI functions is the same as that described in Figure 7(c) above.
- the RB is used to carry data exchanged between the RAN and the UE through the air interface. Different types of data can be mapped to different RBs and sent from the sender to the receiver.
- the RB between the RAN and the UE includes two types of RBs: a signaling radio bearer (SRB) and a data radio bearer (DRB).
- SRB mainly carries control plane data, and the carried data passes through the RRC layer, PDCP layer, RLC layer, MAC layer and physical layer.
- the DRB mainly carries user plane data, and the carried data passes through the SDAP layer, the PDCP layer, the RLC layer, the MAC layer and the physical layer.
- RRC layer messages or non-access stratum (NAS) messages can be carried on the SRB, and data from the application layer can be carried on the DRB.
- One RB may correspond to one QoS requirement.
- One or more SRBs may exist between a UE and the RAN, and/or one or more DRBs may exist.
- AI information may be carried on the SRB (for example, for carrying the nrt-AI data in FIG. 7(a) and the nrt-AI data in FIG. 7(b) ( optional), and the nrt-AI data in Figure 7(c)) and/or DRB (for example, used to carry the data used for the model publishing function in Figure 7(d) above, and the nrt-AI data in Figure 7(b) AI data (optional)).
- a new RB may be defined for AI information, that is, an RB dedicated to carrying AI information may be established between the RAN and the UE.
- AI information includes common AI information and AI information specific to a specific UE.
- a common RB may be established between the RAN and the UE to carry the common AI information broadcast or multicast by the RAN to multiple UEs.
- the public RB may also be called an artificial intelligence public radio bearer (artificial intelligence-common radio bearer, AI-CRB) or other names, which are not limited in this embodiment of the present application.
- AI-CRB configuration information may be notified to the corresponding UE through system information or L1/L2/L3 dedicated signaling, where the dedicated signaling is signaling dedicated to the UE.
- the base station sends system information to the UE, where the system information is used to indicate configuration information of the AI-CRB.
- the configuration information of the AI-CRB may indicate a radio network temporary identifier (RNTI) for scrambling the PDCCH, and/or time-frequency location information of the PDCCH (eg, the search space and/or the control resource set of the PDCCH). (control resource set, CORESET)), etc.
- the PDCCH is used for scheduling AI information carried on the AI-CRB.
- the base station sends a PDCCH to the UE, and the control information on the PDCCH is scrambled by artificial intelligence (AI)-radio network temporary identifier (RNTI).
- AI artificial intelligence
- RNTI artificial intelligence-radio network temporary identifier
- the control information schedules the PDSCH, and the PDSCH carries the configuration information of the AI-CRB.
- an AI-CRB when public AI information needs to be transmitted, for example, when transmitting information for implementing an AI model update function of federated learning, an AI-CRB may be configured, and the AI-CRB will carry the public AI information. If there are multiple types of public AI information and thus multiple QoS requirements, multiple AI-CRBs can be configured to respectively carry RIC public data with different QoS requirements.
- One or more AI-CRBs can be established between the RAN and the UE.
- Each AI-CRB may have corresponding QoS requirements.
- the QoS requirement includes scheduling priority information.
- a specific RB may be established between the RAN and a UE for carrying the AI information sent by the RAN to the specific UE.
- the specific RB may also be called an artificial intelligence data radio bearer (AI-DRB) or other names, which are not limited in this embodiment of the present application.
- AI-DRB artificial intelligence data radio bearer
- the above-mentioned nrt-AI data in FIG. 7(d) can be carried on the AI-DRB.
- One or more AI-DRBs can be established between the RAN and a UE.
- Each AI-DRB may have corresponding QoS requirements.
- the establishment of the above-mentioned RB between the RAN and the UE may be triggered by the RAN, or may be triggered by the RIC instructing the RAN, which is not limited in this embodiment of the present application.
- Part 4 Communication method between RAN and UE.
- Example 1 Independent RIC architecture (Figure 6(a)) + RRC layer enhancement ( Figure 7(a))
- Figure 8(a) shows the first example of the architecture (network architecture + protocol stack) between the base station and the UE.
- Figure 8(b) shows an example flow chart of information exchange between the RAN and the UE using the architecture shown in Figure 8(a).
- Example 1 there is no independent AIC protocol layer, and the RRC layer performs the non-real-time function, the AI initialization function of rt-RIC, and/or the AI model distribution function.
- the execution order of each operation in the interaction process is not limited.
- an RIC module independent of the base station exists in the RAN.
- the RIC module of the RAN performs at least one of the following operations: model download, model training, data collection, inference, and publishing inference results.
- the RIC module of the RAN can request the base station to collect data and/or publish the inference result to the base station.
- the RIC module of the RAN can also instruct the UE to collect data or send an inference result to the UE through the RRC layer of the base station, for example, through the base station to send a newly added RRC message or a newly added IE to the UE.
- the data required to be collected by the UE may be RRC layer data, layer 2 data or physical layer data, which is not limited.
- the model used for inference may be the downloaded original model, or may be an updated model trained according to the training data, which is not limited.
- the training data for the model training performed by the RIC module may be collected from the base station and/or the UE, or obtained from the CN, which is not limited.
- the reasoning data for the reasoning by the RIC module may be collected from the base station and/or the UE.
- the fact that the UE does not support the RIC function may be described as no RIC module in the UE.
- the following RIC module refers to the RIC module on the RAN side.
- the RIC module of the RAN can request the base station to collect data and/or publish inference results to the base station.
- the RIC module of the RAN can also send a new RRC message or a new IE to the UE through the RRC layer of the base station, for example, through the base station to instruct the UE to collect data, instruct the UE to perform federated learning, and publish the model to the UE (for the UE to perform inference. or federated learning), instruct the UE to perform inference, or send the inference result to the UE.
- the data required to be collected by the UE may be RRC layer data, layer 2 data or physical layer data, which is not limited.
- the model used for inference may be the downloaded original model, or may be an updated model trained according to the training data, which is not limited.
- the training data for the model training performed by the RIC module may be collected from the base station and/or the UE, or obtained from the CN, which is not limited.
- the reasoning data for the reasoning by the RIC module may be collected from the base station and/or the UE.
- the base station may be an integrated base station, or may be a base station with CU/DU separated, which is not limited in this embodiment of the present application.
- the CU/DU separation form is used as an example to illustrate the base station.
- the base station may be a CP/UP separated base station.
- the base station and the RIC module can communicate through an interface.
- the interface between the base station and the RIC module includes one or more of the following interfaces: the interface between the integrated base station and the RIC module, the interface between the CU and the RIC module, the interface between the CU-CP and the RIC module Interface, interface between CU-UP and RIC module, and interface between DU and RIC module.
- the interface between the base station and the RIC module may be recorded as a G1 interface, or an interface with other names, such as the first interface, which is not limited in this embodiment of the present application.
- the G1 interface is used as an example in this embodiment of the present application.
- the G1 interface may be a wired connection interface, or may be a wireless connection interface, or may be an interface connected in other forms, which is not limited in this embodiment of the present application.
- the wired connection may be a connection through a cable, light, or other medium, which is not limited.
- the RIC module implements the AI function of the non-real-time function through the RRC layer in the base station, and implements the real-time function through Layer 1 and/or Layer 2 in the base station.
- the AI function some configuration information of the AI function of the part of the real-time function can be sent by the base station to the UE through RRC layer signaling.
- the base station implements at least one of the following through a newly added RRC message or a newly added network element: instructing the UE to collect RRC layer data, instructing the UE to collect layer 2 data (for example, two pairs of the PDCP layer of the base station and the PDCP layer of the UE) data transmission delay between protocol layers), instructing the UE to collect physical layer data, instructing the configuration information of RBs carrying AI data or AI information, publishing the inference results (parameter values) of the RRC layer to the UE, and publishing the physical layer to the UE Inference results (parameter values), instructing layer 1 and/or layer 2 AI function-related parameter configurations, publishing model information to the UE, and instructing the UE to perform model training (eg, federated training).
- the base station implements at least one of the following through the physical layer channel and/or the MAC CE: instructing the UE to collect physical layer data, and publishing the inference result (parameter value) of the physical layer to the UE.
- the RRC layer signaling may be a message carried on a broadcast channel (such as a master information block (MIB)), a system message (such as a system information block (SIB)), or
- MIB master information block
- SIB system information block
- the RRC message is not limited in this embodiment of the present application.
- UE side correspondingly, according to the information received from the base station, assist in realizing the AI function of the non-real-time function and the AI function of the real-time function.
- the information received from the base station assist in realizing the AI function of the non-real-time function and the AI function of the real-time function.
- the base station instructs the UE to collect RRC layer data
- the UE reports the collected data to the base station through an RRC message.
- the UE reports the collected data to the base station through the RRC message, the MAC CE or the physical layer channel.
- the UE reports the collected data to the base station through the MAC CE or the physical layer channel.
- the UE reports the collected data to the base station through the MAC CE or the physical layer channel.
- the UE If the base station indicates to the UE the configuration information of the RB carrying AI data or AI information, the UE establishes the RB with the base station according to the configuration information of the RB.
- the UE can apply the inference result to the UE side.
- the UE sets these function-related parameters according to the parameter configuration.
- the UE can use the model for inference.
- the UE may apply the inference result and/or report the inference result to the RAN side.
- the UE may report the gradient information of the model parameters obtained by training to the RIC module.
- Figure 8(b) shows an example flow chart of the information exchange between the RAN and the UE using the architecture shown in Figure 8(a). It mainly includes: the RIC module issues tasks to the base station, and/or the RIC module issues tasks to the UE through the base station; the UE and/or the base station perform the corresponding tasks.
- the task published by the RIC module includes data collection
- the base station reports the collected data to the RIC module
- the UE reports the collected data to the RIC module through the base station.
- the model can be used for inference.
- the inference result may be released to the UE and/or the base station.
- the RIC module sends the first task configuration information to the base station; the base station receives the first task configuration information.
- the first task configuration information is used for the RIC module to issue a new task to the base station, or for the RIC module to issue a new task to the UE through the base station.
- the name of the message carrying the configuration information of the first task is not limited.
- the message carrying the configuration information of the first task may be referred to as the yth message, the RIC TASK ADDITION message, or the RIC TASK ADDITION REQUEST message.
- y is a positive integer.
- the value of y is different.
- the embodiment of the present application is illustrated by taking the name of the message as RIC TASK ADDITION REQUEST as an example.
- a task may also be called an operation, a transaction, a project, or other names, which are not limited in this application.
- the type of one task may be one of at least two task types.
- the at least two task types may be at least two of the following: collecting data (or referred to as data collection), model publishing, model training, inference, and inference result publishing.
- the type of the task may also be referred to as the name of the task, etc., which is not limited in the embodiment of the present application.
- the first task configuration information is used when the RIC module publishes a new task to the base station, and the base station can execute the corresponding task according to the instruction of the configuration information.
- the first task configuration information is used when the RIC module publishes a new task to the UE through the base station.
- the base station sends one or more tasks published to the UE to the UE in the form of RRC layer signaling, and/or sends the new task to the UE.
- One or more tasks issued to the UE are sent to the UE in the form of MAC CE signaling.
- the UE may report the collected data to the RIC module through the base station according to the instruction of the base station.
- the RIC TASK ADDITION REQUEST message includes the information shown in the first column of Table 1.
- the second column of Table 1 shows the description of each IE in the first column.
- the IE in a message may be explicitly included in the message, or may be indicated implicitly through the message, which is not limited in this embodiment of the present application.
- This embodiment of the present application does not limit the name of each IE in the message, for example, a certain IE may be replaced by the xth IE, where x is a positive integer. The value of x can be different for different IEs.
- the configuration information of this IE may be stipulated in the protocol.
- the above-mentioned TASK CONFIGURATION INFORMATION message includes one or more of the IEs described in the first column of Table 2.
- S801 may further include: the base station sends the first task confirmation information to the RIC module; and the RIC receives the first task confirmation information.
- the first task confirmation information is used by the base station to confirm the RIC TASK ADDITION REQUEST message to the RIC module.
- the name of the message carrying the first task confirmation information is not limited.
- the message carrying the first task confirmation information may be called the RIC TASK ADDITION RESPONSE message, the yth message, or other names. where y is a positive integer.
- S801 may be called a task adding process, a task configuration process, or other names.
- an interface between the RIC module and the base station may be established.
- the interface between the RIC module and the base station has the following possible scenarios:
- the base station is an integrated base station, and there is an interface between the base station and the RIC module.
- establishing an interface between the RIC module and the base station includes: establishing an interface between the RIC module and the integrated base station.
- the base station is a CU/DU separation base station, there is an interface between the CU and the RIC module, and an interface between the DU and the RIC module.
- establishing the interface between the RIC module and the base station includes: establishing the interface between the RIC module and the CU, and establishing the interface between the RIC module and the DU.
- Sub-scenario 1 of Scenario 2 The base station is a CP/UP split base station, an interface exists between the CU-CP and the RIC module, and an interface exists between the CU-UP and the RIC module.
- establishing the interface between the RIC module and the CU includes: establishing the interface between the RIC module and the CU-CP, and establishing the interface between the RIC module and the CU-UP.
- Sub-scenario 2 of scenario 2 The base station is a CP/UP split base station, there is an interface between the CU-CP and the RIC module, and there is no interface between the CU-UP and the RIC module.
- establishing the interface between the RIC module and the CU includes: establishing the interface between the RIC module and the CU-CP. Data can be exchanged between the RIC module and the CU-UP through the forwarding function of the CU-CP.
- forwarding the data includes: transparently forwarding the data (without processing the data), or forwarding the processed data after processing the data.
- the base station is a CU/DU separation base station, there is an interface between the CU and the RIC module, and there is no interface between the DU and the RIC module.
- establishing the interface between the RIC module and the base station includes: establishing the interface between the RIC module and the CU. Data can be exchanged between the RIC module and the DU through the forwarding function of the CU.
- Sub-scene 1 of scene 3 same as sub-scene 1 of scene 2.
- Sub-scene 2 of scene 3 The same as sub-scene 1 of scene 2.
- the base station is a CU/DU separation base station, and both the CU and DU have interfaces with the RIC module.
- the method shown in FIG. 8(b) may further include: S802: The CU sends a G1 interface establishment request message to the RIC module.
- the G1 interface establishment request message may be referred to as a first G1 interface establishment request message, or a first interface establishment request message.
- the method of S802 further includes: the RIC module returns a G1 interface establishment confirmation message to the CU.
- the G1 interface setup confirmation message may be referred to as a first G1 interface setup confirmation message or a first interface setup confirmation message.
- the G1 interface establishment request message is used to establish a connection with the RIC module, and its name is not limited.
- the message may be called the yth message, the G1 SETUP REQUEST message, or other names. where y is a positive integer.
- the G1 interface establishment confirmation message is used for the RIC module to confirm the establishment of the connection with the RIC, and its name is not limited.
- the message may be called the yth message, the G1 SETUP RESPONSE message, the G1 interface setup response message, or other names.
- y is a positive integer.
- S802 may be referred to as a G1 interface establishment process between the CU and the RIC module. After this process, the G1 interface between the RIC module and the CU is established.
- the CU may report the AI operation status information of the base station to the RIC module through the G1 interface.
- the AI operation status information of the base station, or the AI operation status information related to the CU of the base station may be reported.
- the AI operation state information of the base station is a part of the AI operation state information of the RAN. In this operation, in addition to reporting the AI operation status information of the base station where the CU is located, optionally, the AI operation status information of other base stations in the RAN may also be reported.
- the CU can control multiple DUs, and has subordinate IABs and non-standalone base stations, the CU, the DUs controlled by the CU, the IABs subordinate to the CU, and the non-standalone base stations subordinate to the CU can be viewed
- the CU can report part or all of the AI operation status information of the RAN.
- the G1 SETUP REQUEST message sent by the CU to the RIC includes one or more of the IEs shown in the first column of Table 3.
- the capability information, configuration information and/or status information of the CU may be reported through other messages after the interface between the CU and the RIC is established, which is not limited in this embodiment of the present application.
- the other message may include one or more of the IEs shown in the first column of Table 3, which is not limited.
- the message type is the type of the other message.
- the method shown in FIG. 8(b) further includes: S803:
- the DU sends a G1 interface establishment request message to the RIC module.
- the G1 interface establishment request message may be referred to as a second G1 interface establishment request message or other names, or a second interface establishment request message.
- the method of S803 further includes: the RIC module returns a G1 interface establishment confirmation message to the DU.
- the G1 interface setup confirmation message may be referred to as a second G1 interface setup confirmation message or a second interface setup confirmation message.
- S803 may be referred to as a G1 interface establishment process between the DU and the RIC module. After this process, the G1 interface between the RIC module and the DU is established.
- the G1 SETUP REQUEST message sent by the DU to the RIC includes one or more of the IEs shown in the first column of Table 4.
- the capability information, configuration information and/or status information of the above-mentioned DU may be reported through other messages after the interface between the DU and the RIC is established, which is not limited in this embodiment of the present application.
- the other message may include one or more of the IEs shown in the first column of Table 4, which is not limited.
- the message type is the type of the other message.
- the base station When the base station is an integrated base station, the base station sends a G1 SETUP REQUEST message to the RIC, which specifically includes the functions of the G1 SETUP REQUEST message shown in Table 3 and Table 4, such as shown in Table 5.
- the capability information, configuration information and/or status information of the base station may be reported through other messages after the interface between the base station and the RIC is established, which is not limited in this embodiment of the present application.
- the other message may include one or more items of the IEs shown in the first column of Table 5, which is not limited.
- the message type is the type of the other message.
- the RIC module obtains the above-mentioned AI capability information of the base station, or after the RIC module obtains the AI capability information of the CU and/or DU, it can trigger the AI-CRB establishment process of the air interface.
- the base station can send broadcast or multicast type data collection to the UE through the air interface.
- a possible implementation of the AI-CRB establishment process triggered by the RIC module on the air interface is: the RIC module instructs the CU and/or DU to establish one or more AI-CRBs on the air interface; The task instructs all UEs or a group of UEs in the cell to establish one or more AI-CRBs on the air interface when data collection is performed.
- the method shown in FIG. 8(b) may include establishing a connection between the CU and the DU.
- the interface between the CU and the DU is called the F1 interface
- the F1 interface establishment process between the CU and the DU is used to establish the connection between the CU and the DU, and then information can be exchanged between the CU and the DU.
- the F1 interface establishment process between the CU and the DU includes: the DU sends an F1 establishment request message to the CU, and the CU returns an F1 establishment response message to the DU.
- the F1 setup request message is used to indicate one or more of the following information: message type, DU identity, and DU subordinate cell list information.
- the F1 setup response message is used to indicate one or more of the following information: message type, active cell list, and system information.
- the RIC module can send to the base station the tasks to be performed by the UE.
- the RIC module can learn the operation status information of the UE in a manner agreed in the protocol, so that the RIC module can determine the task of the UE for the UE.
- the RIC module needs to obtain the operation status information of the UE through the base station or the CN, so that the RIC module determines the task of the UE for the UE.
- the method shown in FIG. 8(b) includes: S804: the CU sends the operation status information of the UE to the RIC module.
- the operation status information may be included in the above-mentioned G1 SETUP REQUEST message, or may be included in another message, which is not limited in this embodiment of the present application.
- the operational status information is included in the UE context establishment request message.
- the base station is an integrated base station
- the CU can be replaced with a base station. If it is a CP/UP separation scenario, the CU in this method can also be replaced by a CU-CP.
- the UE context establishment request message is used to trigger the establishment of an AI context corresponding to the UE in the RIC, so that the RIC can perform AI-related operations on the UE, and its name is not limited.
- the message may be called the yth message, the UE AI CONTEXT SETUP REQUEST message, or other names. where y is a positive integer.
- the UE context establishment request message includes one or more of the IEs shown in the first column of Table 6.
- the UE context establishment request sent by the CU to the RIC module may include information of one or more UEs.
- the method of S804 further includes: the RIC module returns a UE context establishment confirmation message to the CU.
- the UE context establishment confirmation message is used for the RIC to confirm that the AI context of the corresponding UE is established in the RIC or to determine the above-mentioned UE AI CONTEXT SETUP REQUEST message, and its name is not limited.
- the message may be called the yth message, the UE AI CONTEXT SETUP RESPONSE message, or other names. where y is a positive integer.
- S804 may be referred to as a UE context establishment process, or a UE AI context establishment process, etc., which is not limited in this embodiment of the present application.
- the method shown in FIG. 8( a ) further includes S805 : the CU sends the updated operation state information of the UE to the RIC module.
- the base station is an integrated base station
- the CU can be replaced with a base station. If it is a CP/UP separation scenario, the CU in this method can also be replaced with CP and/or UP.
- the name of the message including the above-mentioned update operation state information may be a UE context establishment request message or a UE context update request message, which is not limited in this embodiment of the present application.
- the UE context update request message is used to inform the RIC module of the updated operation status information of the UE, and its name is not limited.
- the message may be called the yth message, the UE AI CONTEXT MODIFICATION REQUEST message, or other names. where y is a positive integer.
- the message structure of the UE context update request message may be the same as that of the UE context establishment request message, or it may include updated information instead of unupdated information (such as including one or more of the IEs shown in Table 7), which is implemented in this application. Examples are not limited.
- S805 may further include: the RIC module sends a UE context update confirmation message to the CU.
- the UE context update confirmation message is used by the RIC module to respond to the UE context update request message, and its name is not limited.
- the message may be called the yth message, the UE AI CONTEXT MODIFICATION RESPONSE message, or other names. where y is a positive integer.
- S805 may be referred to as a UE context update process or a UE AI context modification process, which is not limited in this embodiment of the present application.
- the method shown in FIG. 8(a) further includes: the CU sends the UE operation to the RIC module. Status information release request message.
- the method may further include: the RIC module sends a UE operation status information release confirmation message to the CU.
- the CU can be replaced with a base station. If it is a CP/UP separation scenario, the CU in this method can also be replaced with CP and/or UP.
- the UE operation state information release request message is used to notify the operation state information of the released or deleted UE, and its name is not limited.
- the message may be referred to as the yth message, UE context release message, UE AI CONTEXT RELEASE REQUEST message, or other names.
- y is a positive integer.
- the UE operation state information release request message may include one or more of the IEs shown in Table 8, which are not limited in this embodiment of the present application.
- the UE operation state information release confirmation message is used by the RIC module to respond to the UE operation state information release request message, and its name is not limited.
- the message may be referred to as the yth message, the UE context release confirmation message, the UE AI CONTEXT RELEASE RESPONSE message, or other names.
- y is a positive integer.
- the above method may be referred to as a UE context release process, a UE operation state information release process, or a UE AI context release process, which is not limited in this embodiment of the present application.
- the CU In order for the CU to report the operation state information of the UE to the RIC module, the CU needs to obtain the operation state information of the UE.
- the operation status information of the UE may include one or more of the following information of the UE: AI capability information, AI configuration information, and AI status information.
- the AI capability information of the UE may be reported by the UE to the base station or the CU.
- the reporting method includes: the UE sends the AI capability information of the UE to the CU, where the AI capability information indicates the AI capability of the UE.
- the reporting method may be triggered by the CU sending a UE Capability Enquiry (UECapabilityEnquiry) message to the UE.
- UECapabilityEnquiry UE CapabilityEnquiry
- the UE reports the capability information of the UE to the CU.
- This process may be referred to as UE capability acquisition process S806.
- the reporting method may be embedded in the RRC connection establishment process between the UE and the CU, for example, the UE reports the UE's AI capability information to the CU during the RRC connection establishment process.
- the UE switches from the source base station to the target base station. If the target base station has obtained the UE's AI capability information from the core network or the source base station, the UE does not need to report the UE's AI capability information to the target base station. , that is, the target base station and the UE do not need to perform a capability acquisition process; or, during the RRC connection establishment process with the target base station, the UE reports the UE's AI capability information to the target base station.
- the AI configuration information of the UE may be configured for the UE by the RAN (eg, the CU), so the CU may not need to obtain the configuration information of the UE from the UE.
- the CU itself knows the AI configuration information of the UE, or can obtain the AI configuration information of the UE from other network elements or nodes (eg, DU or other CUs) in the RAN.
- the AI state information of the UE is information in the operation process.
- the AI state information of the UE may be reported by the UE for the CU, or monitored or measured by the CU, or notified to the CU after monitoring or testing by other network elements (eg, DU or other CUs) in the RAN.
- other network elements eg, DU or other CUs
- the RIC module may execute S801 multiple times to issue multiple first tasks to the base station.
- the RIC module can also delete tasks or update tasks.
- the RIC module can also delete or terminate the tasks that have been issued to the base station through the task deletion process.
- the method includes: the RIC module issues a task release message to the base station.
- the task release message is used to release or terminate one or more tasks, and the name of the message is not limited, such as a task release request message, which may be called the yth message, where y is a positive integer.
- the method may further include: the base station sends a task release confirmation message to the RIC module.
- the task release confirmation message is used to confirm the release or termination of one or more tasks, and the name of the message is not limited, for example, it can be called the yth message, where y is a positive integer.
- the task release message includes one or more of the following information:
- Task ID ---- used to indicate one or more tasks to be released, the ID is similar to the task ID shown in Table 2.
- the task release message includes one or more of the following information:
- Transaction identifier ---- used to indicate the task to be released, the identifier is similar to the transaction identifier shown in Table 1, and is used to release one or more tasks configured in the process carrying the transaction identifier.
- the message may include one or more transaction identifiers
- the RIC module may also issue the added, modified and/or deleted tasks to the base station through the task update process.
- the RIC module issues a task update message to the base station for adding one or more tasks, modifying one or more tasks, and/or for releasing one or more tasks.
- This embodiment of the present application does not limit the name of the task update message, such as a task update request (TASK MODIFICATION REQUEST) message and the yth message, where y is a positive integer.
- the method may further include: the base station sends a task update confirmation message to the RIC module.
- the task update confirmation message is used to confirm the update of one or more tasks, and the name of the message is not limited, for example, it can be called the yth message, where y is a positive integer.
- the task update message includes one or more of the following information:
- the IDs of one or more tasks to release are the IDs of one or more tasks to release.
- the information of each task is the same as that shown in the TASK CONFIGURATION INFORMATION message above, and will not be repeated here.
- the information of each task is the same as that shown in the preceding TASK CONFIGURATION INFORMATION message, or the information of each task includes the updated parameters in the preceding TASK CONFIGURATION INFORMATION message, which will not be repeated here.
- the above RIC TASK ADDITION REQUEST message can be regarded as a special task update message.
- the identifier of one or more tasks to be released may be a task ID similar to that shown in Table 2, or a transaction identifier similar to that shown in Table 1, which is used to release one or more tasks configured with the information carrying the transaction identifier.
- the above describes in detail the processes of the RIC module releasing newly added tasks, releasing updated tasks, and instructing to release tasks to the base station. If the base station is an all-in-one base station, for each task in the first task:
- the base station executes the task.
- the RIC module instructs the base station to collect the uplink data packet loss rate of the UE.
- the base station publishes the task to the UE through an RRC layer message.
- the base station or CU may establish, with the UE, PDCP and RLC protocol examples corresponding to SRB, AI-CRB or AI-DRB according to the QoS information of the task, through the SRB, AI-CRB or AI -
- the DRB instance carries the task information.
- the CU/DU of the base station If the CU/DU of the base station is separated, it is the CU that receives the configuration information. For each task in the first task:
- the CU forwards the task to the DU, and the DU executes the task.
- the task for the DU can be sent to the DU by the RIC module through the G1 interface without the CU forwarding.
- the RIC module instructs the CU to collect the uplink data packet loss rate of the UE.
- the CU may instruct the DU to collect the UE's uplink data packet loss rate by performing a UE context modification (UE context modification) process with the DU (S807).
- the DU can send the collected data to the CU.
- the UE context update process between the CU and the DU may be used to update the information of the UE.
- the inference result released by the RIC module to the DU or the base station indicates at least one of the following information: handover threshold configuration information, RACH configuration information of the cell, downlink reference signal transmit power of the cell, The uplink maximum transmit power information, the configuration of the serving cell of the UE, the DRX configuration of the UE, and the DRB configuration of the UE, etc.
- the RIC module indicates the downlink reference signal transmit power of the cell
- the CU may carry the downlink reference signal transmit power value of the cell by sending a CU configuration update message (CU CONFIGURATION UPDATE) to the DU. That is, the CU and the DU can apply the inference result to the DU through the CU configuration update process S808.
- the CU configuration update process between the CU and the DU may be used to update the information of the cell.
- the CU executes the task.
- the inference result released by the RIC module to the CU or the base station indicates at least one of the following: downlink synchronization signal transmit power of the cell, threshold for handover decision, and RRC connection state of the UE.
- the CU issues the task to the UE through the RRC layer.
- the CU may establish a PDCP and RLC protocol instance corresponding to the SRB, AI-CRB or AI-DRB with the UE according to the QoS information of the task, and carry the task information through the SRB, AI-CRB or AI-DRB instance.
- the corresponding module may apply the result.
- the base station will also indicate the inference result to the UE in the form of a parameter through signaling.
- the content of the task is to adjust the time-frequency resource position of the sounding reference signal (SRS) of the UE, and to adjust the maximum uplink transmit power of the UE.
- SRS sounding reference signal
- the method shown in FIG. 8(b) further includes S809, for releasing the task to the UE.
- the base station or the CU may send the task to the UE in the form of broadcast, multicast or unicast.
- the base station may directly send the task content to the UE, or send it to the UE after processing, which is not limited.
- the base station may directly send the task content to the UE, or send it to the UE after processing. If the task issued by the RIC module to the UE is an inference result, the base station may indicate the inference result to the UE in the form of a parameter.
- the CU can pass the system information, paging message or AI-CRB. , broadcast the task to the UE.
- the execution subject of the task is a specific UE, and the CU may issue the task to the specific UE through a specific RRC message, paging message or AI-DRB.
- the CU may, according to the condition and the corresponding information of the UE, such as the following information: One or more of: AI capability, service status, location, and RRC connection status, etc., to determine which UE or UEs perform the task.
- the execution subject of the above-mentioned one AI task is a UE that satisfies a certain condition, such as the condition that is satisfied by the UE that performs the task indicated in Table 2 above
- the CU may indicate the condition to the UE in the cell in the form of broadcasting
- Each UE can determine whether each UE performs the AI task according to the condition and one or more of the following information: AI capability, service status, location, and RRC connection status.
- the CU may issue one or more tasks to the UE through any one of the following manners A1 to A3.
- Manner A1 The CU publishes or indicates the content of one or more tasks to the UE through a system message or MIB.
- This approach may be applicable when the execution subject of the one or more tasks is all UEs or multiple UEs in the cell.
- the CU may broadcast an updated system message to the UE through a system message update process, where the system message is used to indicate the content of one or more tasks to the UE.
- the CU indicates the content of one or more tasks to the UE, which can be regarded as the CU configuring parameters for the UE.
- the system message includes one or more items of the IEs shown in the first column of Table 9.
- Manner A2 The CU publishes or indicates the content of one or more tasks to the UE through a paging message.
- This approach is applicable when the execution subject of the one or more tasks is multiple UEs or a specific UE in the cell.
- Manner A3 The CU publishes or indicates the content of one or more tasks to the UE through an RRC message.
- This approach is applicable when the execution subject of the one or more tasks is multiple UEs or a specific UE in the cell.
- the CU uses an RRC reconfiguration message to indicate the task content to the UE through the RRC reconfiguration process.
- the UE may reply to the CU with an RRC reconfiguration complete message.
- the CU indicates the task content to the UE through a newly added RRC message, such as a newly added RIC reconfiguration message.
- the UE may reply to the CU with a response message of the newly added RRC message, such as a newly added RIC reconfiguration complete message.
- the paging message or RRC message sent by the CU to the UE includes one or more of the IEs shown in the first column of Table 10.
- the CU may issue different tasks to the UE in the same or different manners, which is not limited in this embodiment of the present application.
- the CU can determine the RB configuration information of the high-level messages, and notify the DU of the RB configuration through a downlink RRC message forwarding (DL RRC MESSAGE TRANSFER) message or a CU reconfiguration (CU CONFIGURATION UPDATE) message, for example. information.
- the DU sends the higher layer message to the corresponding UE through the physical channel corresponding to the RB.
- the DU can feed back the CU CONFIGURATION UPDATE ACK message to the CU.
- the base station will also report the collected information to the RIC. Specifically, the following scenarios are included:
- Scenario B1 For a data collection task, if the execution subject of the task is a base station, and the base station is an integrated base station. The received data is reported to the RIC by the base station.
- Scenario B2 For a data collection task, if the execution subject of the task is the CU, and there is a G1 interface between the RIC module and the CU, the CU reports the collected data to the RIC module through the G1 interface.
- Scenario B3 For a data collection task, if the execution subject of the task is the CU-CP, and there is a G1 interface between the RIC module and the CU-CP, the CU-CP reports the collected data to the RIC module through the G1 interface.
- Scenario B4 For a data collection task, if the execution subject of the task is CU-UP, and there is a G1 interface between the RIC module and the CU-UP, the CU-UP reports the collected data to the RIC module through the G1 interface.
- Scenario B5 For a data collection task, if the execution subject of the task is CU-UP, there is no G1 interface between the RIC module and CU-UP, and there is a G1 interface between the RIC and CU-CP, then CU-UP will The collected data is forwarded to the CU-CP, and the CU-CP reports the data collected by the CU-UP to the RIC module through the G1 interface.
- Scenario B6 For a data collection task, if the execution subject of the task is a DU, and a G1 interface exists between the RIC module and the DU, the DU reports the collected data to the RIC module through the G1 interface.
- Scenario B7 For a data collection task, if the execution subject of the task is DU, there is no G1 interface between the RIC module and the DU, and there is a G1 interface between the RIC module and the CU, the DU forwards the collected data through the F1 interface To the CU, the CU reports the data collected by the DU to the RIC module through the G1 interface.
- the base station When the above-mentioned base station reports the collected data to the RIC module, it may report the collected data through a task report message S810.
- the task report message is used to report the collected data to the RIC module.
- the data may be operational status information.
- the task report message may be called a RIC TASK REPORT message, a data report message, a yth message, or other names. where y is a positive integer.
- the task report message may include one or more of the IEs shown in the first column of Table 11 or Table 12.
- the DU executes the task according to the task content and sends a RIC TASK REPORT message to the CU when the reporting condition is met (S811).
- the CU can report the data collected by the DU to the RIC module through the RIC TASK REPORT message.
- the condition may be a period, an event or other, which is not limited. This message contains the RIC task execution result.
- the base station will also report the information collected by the UE to the RIC.
- the UE can use the method described above to report the UE operation state information to the CU, and the CU uses S804 and/or S805 to forward the operation state of the UE to the RIC module. information.
- the operation status information includes data that the RIC module requires the UE to collect.
- the UE executes the task according to the task content, and sends a RIC TASK REPORT message to the DU when the task reporting conditions are met (S812).
- the UE determines the RB that bears the message according to the protocol agreement or task priority information, and sends the RIC TASK REPORT to the DU through the RB.
- the DU receives the message and forwards it to the CU through the UL RRC MESSAGE TRANSFER message.
- the RIC module After receiving the data collected by the base station and/or the UE from the CU, the RIC module can use the data to perform inference, and publish the inference result to the base station and/or the UE.
- the RIC module uses the RIC TASK ADDITION REQUEST message or the task update message in the above S801 to publish the inference result.
- the task type of the task for publishing the inference result in the message is inference result publishing.
- other types of tasks may also be included in the message, which is not limited.
- the RIC module uses the inference result indication process S813 to send an inference result indication message to the base station, CU or DU, thereby publishing the inference result to the base station.
- the reasoning result indication message is used to publish the reasoning result, and its name is not qualified, for example, it is called RIC RESULT INDICATION message, yth message. where y is a positive integer.
- the inference result indication message includes one or more of the IEs shown in Table 13.
- the relevant AI application will output an inference result (operation result) after a period of AI operation.
- the AI calculation result needs to configure parameters for the RAN or UE, such as adjusting the threshold of handover decision, adjusting the downlink synchronization signal transmission power of a certain cell, or changing the RRC connection state of the UE, the RIC sends the AI inference result to the RIC RESULT INDICATION message through the RIC RESULT INDICATION message.
- CU When the RIC has a G1 interface with the CU-UP, the AI inference results of the RIC may be directly released to the CU-UP. When the RIC and the DU have a G1 interface, the AI inference results of the RIC may be directly released to the DU.
- the RIC module can send a RIC TASK MODIFICATION REQUEST message to the CU through the task update process described above, which contains the new AI data collection task. AI models or newer AI data collection tasks.
- the RIC and the CU-UP have a G1 interface
- the RIC can directly send the RIC TASK MODIFICATION REQUEST for the CU-UP to the CU-UP.
- the RIC and the DU have a G1 interface
- the RIC can directly send the RIC TASK MODIFICATION REQUEST for the DU to the DU.
- the relevant nodes After receiving the AI inference results published to themselves, the relevant nodes apply the results, such as adjusting the handover decision threshold, adjusting the downlink synchronization signal transmission power of a certain cell, and so on.
- the base station may publish the inference result to the UE through system messages, MIBs, or paging messages, etc.
- the UE uses this inference result.
- the application object of the inference result is a base station, and the corresponding network element in the base station uses the inference result.
- the RIC module when the RIC module publishes the inference result applied by the base station to the base station, the following scenarios exist.
- the inference results in the following scenarios can be replaced with indications of the inference results.
- Scenario C1 If the base station is an integrated base station. The inference result is applied by the base station.
- Scenario C2 If the base station is a CU/DU separation base station, the application object of the inference result is the CU, and there is a G1 interface between the RIC module and the CU, and the CU receives the inference result through the G1 interface and applies the inference result.
- Scenario C3 If the base station is a CU/DU split base station, the application object of the inference result is the CU-CP, and there is a G1 interface between the RIC module and the CU-CP, then the CU-CP receives the inference result through the G1 interface, and applies the inference result. inference result.
- Scenario C4 If the base station is a CU/DU separation base station, the application object of the inference result is CU-UP, and there is a G1 interface between the RIC module and CU-UP, then CU-UP receives the inference result through the G1 interface, and applies the inference result. inference result.
- Scenario C5 If the base station is a CU/DU separation base station, the application object of the inference result is CU-UP, and there is no G1 interface between the RIC module and CU-UP, then the CU-CP receives the inference result through the G1 interface, and the inference result is The result is forwarded to the CU-UP, which applies the inference result.
- Scenario C6 If the base station is a CU/DU separation base station, the application object of the inference result is the DU, and there is a G1 interface between the RIC module and the DU, and the DU receives the inference result through the G1 interface and applies the inference result.
- Scenario C7 If the base station is a CU/DU separation base station, the application object of the inference result is the DU, and there is no G1 interface between the RIC module and the DU, the CU receives the inference result through the G1 interface, and forwards the inference result to the DU. DU applies this inference result.
- Figure 9(a) shows the second example of the architecture (network architecture + protocol stack) between the base station and the UE.
- Fig. 9(b) shows an example flow chart of information exchange between the RAN and the UE using the architecture shown in Fig. 9(a).
- Example 2 has an independent AIC protocol layer, as described above in the description of FIG. 7(b), the AIC layer performs AI functions that are not real-time functions.
- the AIC layer may also perform AI initialization of rt-RIC, and/or part of AI functions of real-time functions, such as at least one of model training, model download, and model publishing.
- the RIC module of the RAN performs at least one of the following operations: model download, model training, data collection, inference, and publishing inference results.
- the RIC module of the RAN can request the base station to collect data and/or publish the inference result to the base station.
- the RIC module of the RAN can also instruct the UE to collect data or send an inference result to the UE through AIC layer signaling (or called AIC layer message).
- AIC layer is a protocol layer parallel to the RRC layer. As described in the above description of FIG. 7(b), the AIC layer signaling can be sequentially sent to the UE through the lower protocol layers in the base station.
- the data that the RIC module requires the UE to collect may be RRC layer data or physical layer data, which is not limited.
- the model used for inference may be the downloaded original model, or may be an updated model trained according to the training data, which is not limited.
- the training data for the model training performed by the RIC module may be collected from the base station and/or the UE.
- Inference data for inference by the RIC module may be collected from the base station and/or the UE.
- the RIC module of the RAN can request the base station to collect data and/or publish inference results to the base station.
- the RIC module of the RAN can also instruct the UE to collect data, instruct the UE to perform federated learning, publish the model to the UE (for the UE to perform inference), or send the inference result to the UE through the AIC layer.
- the data required to be collected by the UE may be RRC layer data or physical layer data, which is not limited.
- the model used for inference may be the downloaded original model, or may be an updated model trained according to the training data, which is not limited.
- the training data for the model training performed by the RIC module may be collected from the base station and/or the UE.
- the reasoning data for the reasoning by the RIC module may be collected from the base station and/or the UE.
- the following RIC module refers to the RIC module on the RAN side.
- the RIC module implements the AI function of the non-real-time function through the AIC layer, and implements part of the AI function of the real-time function through Layer 1 and/or Layer 2 in the base station. , some configuration information of the AI function of this part of the real-time function can be sent to the UE through AIC layer signaling.
- the RIC module implements at least one of the following through AIC layer messages: instructing the UE to collect data, instructing the configuration information of AI-related RBs, publishing inference results (parameter values) to the UE, instructing layer 1 and/or layer 2 AI functions related Parameter configuration, publishing model information to UE, and instructing UE to perform model training (eg federated training).
- the UE side correspondingly, according to the information received from the RAN side, assist in realizing the AI function of the non-real-time function and the AI function of the real-time function.
- Figure 9(b) shows an example flow chart of the information exchange between the RAN and the UE using the architecture shown in Figure 9(a). It mainly includes: the RIC module issues tasks to the UE; the UE executes the corresponding tasks.
- the UE reports the collected data to the RIC module.
- the model can be used for inference.
- the inference result may be released to the UE.
- the UE receives the information of the model. The UE can use this model for inference.
- the UE reports the gradient information of the model parameters obtained by training to the RIC module.
- the RIC sends the second task configuration information to the UE; the UE receives the second task configuration information.
- the second task configuration information is used by the RIC module to issue a new task to the UE.
- This information is carried through AIC layer messages or signaling.
- the name of the message carrying the configuration information of the second task is not limited.
- the message carrying the configuration information of the second task may be referred to as the yth message, the RIC TASK ADDITION message, or the RIC TASK ADDITION REQUEST message.
- y is a positive integer.
- the embodiment of the present application is illustrated by taking the name of the message as RIC TASK ADDITION REQUEST as an example.
- the UE may perform corresponding tasks according to the indication of the configuration information.
- S901 includes: the UE returns a confirmation message of the second task configuration information to the RIC module.
- the second task confirmation information is used by the UE to confirm the RIC TASK ADDITION REQUEST message in the above S901 to the RIC module.
- the name of the message carrying the second task confirmation information is not limited.
- the message carrying the confirmation information of the second task may be called the RIC TASK ADDITION RESPONSE message, the yth message, or other names. where y is a positive integer.
- the RIC TASK ADDITION REQUEST message includes the IE shown in the first column of Table 14. one or more of.
- S901 may be called a task adding process, a task configuration process, or other names.
- the RIC module may execute S901 multiple times to issue multiple second tasks to the UE. Additionally, as described below, the RIC module can also delete tasks or update tasks.
- the RIC module can delete or terminate the task that has been released to the UE through the task deletion process.
- the method includes: the RIC module publishes the above task release message to the UE.
- the task release message May be called RIC TASK RELEASE REQUEST message.
- the specific content of the RIC TASK RELEASE REQUEST message reference may be made to the method shown in Figure 8(b), which will not be repeated here.
- the RIC module may also issue the added, modified and/or deleted tasks to the UE through the task update process S902.
- the RIC module issues a task update message to the UE for adding one or more tasks, modifying one or more tasks, and/or for releasing one or more tasks.
- the task update message may be called a RIC TASK MODIFICATION REQUEST message.
- the specific content of the RIC TASK MODIFICATION REQUEST message may be similar to the method shown in Figure 8(b), and will not be repeated here.
- the AIC layer messages sent by the RIC module to the UE can be sent to the UE through the base station.
- the AIC layer message can pass through the PDCP layer, RLC layer, MAC layer, and physical layer of the base station in sequence, and is sent from the physical layer of the base station to the physical layer of the UE, and sent to the physical layer of the UE at the UE layer.
- the CU receives the message from the RIC module through the G1 interface, and can determine the RB that carries the message according to the priority information corresponding to the message, and according to the configuration of each protocol layer of the RB, the DU sends the message to the UE.
- the method shown in Fig. 9(b) may include S802 (referred to as S903 in this method), S803 (referred to as S904 in this method), and S804/S805 (referred to in this method as S904) For S905/S906), and F1 interface establishment process.
- S907 may be included: the CU can obtain the AI capability information of the UE through the capability acquisition process of the UE; or, the CU can obtain the AI capability information of the UE from the core network or The source base station obtains the AI capability information of the UE.
- the CU may send the information to the RIC module through the above-mentioned S905 and/or S906 process.
- the RIC module can initiate the establishment of one or more air interface RBs according to QoS requirements, so as to carry the uplink and downlink AIC layer data of AI-related processes such as AI data collection, AI model download, and AI model update. or signaling.
- the method shown in FIG. 9(b) may further include S902: the RIC module issues a task to the base station, and the content of the task is: data collection or inference result.
- the specific configuration method is similar to the corresponding method in Figure 8(b). The difference from the method in FIG. 8( b ) is that the task released by the RIC module to the base station in S902 does not include the task released by the RIC module to the UE. The reason for this is that, as described above, in the method shown in FIG. 9( b ), the AIC layer of the RIC module issues the task to the AIC layer of the UE.
- the RIC module may issue tasks to at least one of CU, DU, CU-CP, and CU-UP.
- the data collection task issued by the RIC module to the CU or DU is: request to measure the uplink transmission delay of the UE.
- the method shown in FIG. 9(b) may further include: the RIC and the base station perform a configuration update process.
- the RIC module publishes tasks to the UE or the base station, and the RIC module may require the CU and/or DU to perform corresponding operations to cooperate or assist in completing the published tasks RIC tasks.
- the process for doing this may be referred to as a configuration update process.
- the RIC module instructs multiple UEs to collect data
- the RIC module can configure uplink transmission parameters such as uplink resources for the base station. collected data.
- the RIC module instructs the UE to perform federated learning
- the RIC module can configure uplink transmission parameters such as uplink resources for the base station, and the base station can indicate the uplink transmission parameters to the UE through the air interface for the UE to use the uplink transmission parameters to report model parameters.
- the base station configures the time-frequency resources, dedicated preambles, etc. for the UE to send anonymous data collection or federated learning uplink reports through the system information on the air interface, so that the UE uses these radio resources for uplink transmission when the data is reported.
- the RIC module can send a configuration update (CONFIGURATION UPDATE) message to the CU, requesting the CU to perform corresponding operations, and after the CU accepts it, returns a configuration update confirmation (CONFIGURATION UPDATE ACK) message to the RIC module.
- a configuration update process can be performed between the RIC module and the DU.
- a configuration update process can be performed between the RIC module and the CU-UP.
- the UE executes the task according to the task content, and sends a RIC TASK REPORT message to the RIC module when the task reporting condition is met (S908).
- This message is an AIC layer message.
- the UE determines the RB that carries the message according to the protocol agreement or task priority information, and sends information to the base station through the RB, where the information includes the RIC TASK REPORT message, and the base station or the CU of the base station can The information is submitted to the RIC module, and the RIC module interprets the RIC TASK REPORT message sent by the UE at the AIC layer.
- the RIC module may return an acknowledgement message to the UE, which may be called a RIC TASK REPORT ACKNOWLEDGE message.
- This message is an AIC layer message.
- the CU and/or DU execute the task according to the task content, and send a RIC TASK REPORT message to the RIC module when the task reporting condition is met (S909).
- the RIC module may return an acknowledgement message to the CU and/or DU, and the message may be referred to as a RIC TASK REPORT ACKNOWLEDGE message.
- the RIC module After receiving the data collected by the base station and/or the UE from the CU, the RIC module can use the data to perform inference, and publish the inference result to the base station and/or the UE.
- the method shown in FIG. 9(b) may include S910: the RIC module publishes the inference result to the base station.
- the RIC module can publish AI inference results to the base station (CU, DU, CU-CP, and/or CU-UP).
- the RIC module can use the above-described S902 to publish the updated model, the inference result, and/or the updated data collection task to the UE through the RIC TASK MODIFICATION REQUEST message.
- Figure 10 shows the third example of the architecture (network architecture + protocol stack) between the base station and the UE.
- Example 3 has an independent AIC protocol layer, eg, an AI function that performs non-real-time functions by the AIC layer.
- the AIC layer may also perform AI initialization of rt-RIC, and/or part of AI functions of real-time functions, such as at least one of model training, model download, and model publishing.
- Example 2 the information exchange process between RAN and UE is different in that:
- the AIC layer message sent by the RIC module in Example 2 is delivered by the AIC layer to the PDCP layer of the CU.
- mapping the AIC layer message to the RB can be done in G1 The interface is performed according to the application layer protocol; in Example 3, the AIC layer message sent by the RIC module is delivered by the AIC layer to the RRC layer, and in this architecture, the mapping of the AIC layer message to the RB is performed at the RRC layer.
- Figure 11 shows the fourth example of the architecture (network architecture + protocol stack) between the base station and the UE.
- the functional description of each protocol layer is shown in FIG. 7(d) in detail, and details are not repeated here.
- Example diagram of the information exchange flow between the RAN and the UE is the same as that of Example 1, Example 2, or Example 3, and which example is the same as the one shown in Fig. 7(d) above. description, which will not be repeated here. The similarities between the two will not be repeated here.
- the RIC TASK ADDITION REQUEST message is not used to publish the model, that is, the task type indicated by the RIC TASK ADDITION REQUEST does not include model publishing.
- the RIC module publishes tasks to the UE publishing module, the function is implemented through the application layer of the RIC module and the application layer of the UE.
- the model information is carried on the data RB, such as AI-CRB, and sent to the UE.
- a general packet radio service general packet radio service, GPRS
- tunnel protocol-user plane tunnel protocol-user plane
- GTP tunnel protocol-user plane
- GTP-u public tunnel Between the RIC module and the UE, only one GTP-u public tunnel can be established, and the GTP-u header carries the priority information to distinguish the data with different QoS requirements, which is used to correspond the data to the corresponding AI-CRB on the air interface; or , one GTP-u public tunnel can be established for each priority, one GTU-u public tunnel corresponds to one AI-CRB, and the data of different GTP-u public tunnels are directly carried on the corresponding AI-CRB.
- Example 4 if the task received by the UE is model training, the UE sends the gradient information of the model parameters to the application layer of the RIC module through the application layer. For example, the UE sends the gradient of the AI model parameters to the CU through the AI-CRB, and then the CU sends the gradient of the AI model parameters to the RIC module through the GTP-u public tunnel of the G1 interface.
- Example 5 Embedded RIC architecture (Fig. 6(b)) + various possible protocol layers (Fig. 7(a)-Fig. 7(d))
- Example 5 an embedded RIC architecture is adopted, that is, the RIC module is a part of the base station, and there is no RIC module independent of the base station.
- Example 5 The transmission process using this architecture is similar to Example 1 to Example 4 described above, the difference is that in Example 5, the process and operation involving the G1 port are changed to the corresponding process and operation inside the base station, and the implementation of Example 5 can be obtained. .
- Example 6 Hybrid RIC architecture (Fig. 6(c)) + various possible protocol layers (Fig. 7(a)-Fig. 7(d))
- Example 6 a hybrid RIC architecture is adopted, that is, the nrt-RIC module is a part of the base station, and the rt-RIC module is independent of the base station.
- the transmission process using this architecture is similar to Example 1 to Example 4 described above.
- the transmission process using this architecture is compared with the examples 1 to 4 described above. The difference is that the process of publishing the model to the UE and reporting the gradient of the AI model parameters to the UE is carried by the AI-CRB of the air interface.
- Corresponding AI information can be carried through MAC CE, DCI, or uplink control information (UCI).
- each network element may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
- FIG. 12 is a diagram showing an example structure of an apparatus 300 according to an embodiment of the present application.
- the apparatus 300 is used to implement the function of the RIC in the above method.
- the device may be an RIC, or may be other devices capable of realizing the functions of the RIC.
- the other device can be installed in the RIC or can be matched and used with the RIC.
- the apparatus 300 is configured to implement the function of the base station in the above method.
- the apparatus may be a base station, or may be another apparatus capable of realizing the functions of the base station.
- the other device can be installed in the base station or can be matched and used with the base station.
- the apparatus 300 is used to implement the function of the terminal device in the above method.
- the device may be a terminal device, or may be another device capable of realizing the functions of the terminal device.
- the other device can be installed in the terminal device or can be matched and used with the terminal device.
- the apparatus 300 includes a receiving module 301 for receiving signals or information.
- the apparatus 300 includes a sending module 302 for sending signals or information.
- the apparatus 300 includes a processing module 303 for processing the received signal or information, for example, for decoding the signal or information received by the receiving module 301 .
- the processing module 303 may also generate a signal or information to be sent, eg for generating a signal or information to be sent by the sending module 302 .
- the division of modules in the embodiments of the present application is schematic, which is a logical function division, and there may be other division manners in actual implementation.
- the receiving module 301 and the sending module 302 may also be integrated into a transceiver module or a communication module.
- each functional module in each embodiment of the present application may be integrated into one module, or may exist physically alone, or two or more modules may be integrated into one module.
- the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
- FIG. 13 is a diagram showing an example structure of the apparatus 400 provided in this embodiment of the present application.
- the apparatus 400 is used to implement the function of the RIC in the above method.
- the device may be an RIC, or may be other devices capable of realizing the functions of the RIC.
- the other device can be installed in the RIC or can be matched and used with the RIC.
- apparatus 400 may be a system-on-a-chip.
- the chip system may be composed of chips, or may include chips and other discrete devices.
- the apparatus 400 includes at least one processor 420, configured to implement the function of the RIC in the method provided in the embodiment of the present application.
- the apparatus 400 is used to implement the function of the base station in the above method.
- the apparatus may be a base station, or may be another apparatus capable of realizing the functions of the base station.
- the other device can be installed in the base station or can be matched and used with the base station.
- apparatus 400 may be a system-on-a-chip.
- the apparatus 400 includes at least one processor 420, configured to implement the function of the base station in the method provided in the embodiment of the present application.
- the apparatus 400 is used to implement the function of the terminal device in the above method.
- the device may be a terminal device, or may be another device capable of realizing the functions of the terminal device.
- the other device can be installed in the terminal device or can be matched and used with the terminal device.
- apparatus 400 may be a system-on-a-chip.
- the apparatus 400 includes at least one processor 420, configured to implement the function of the terminal device in the method provided in the embodiment of the present application.
- the apparatus 400 may also include at least one memory 430 for storing program instructions and/or data.
- Memory 430 and processor 420 are coupled.
- the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
- the processor 420 may cooperate with the memory 430 to implement the functions described in the above method embodiments.
- Processor 420 may execute program instructions stored in memory 430 . At least one of the at least one memory may be included in the processor 420 .
- the apparatus 400 may also include a communication interface 410 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 400 may communicate with other devices.
- the processor 420 uses the communication interface 410 to send and receive signals, so as to implement the functions described in the foregoing method embodiments.
- the communication interface may be a transceiver, a circuit, a bus, a module, a pin, or other types of communication interfaces.
- connection medium between the communication interface 410 , the processor 420 , and the memory 430 is not limited in the embodiments of the present application.
- the memory 430, the processor 420, and the transceiver 410 are connected through a bus 440 in FIG. 13, and the bus is represented by a thick line in FIG. 13.
- the connection between other components is only for schematic illustration. , is not limited.
- the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
- the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or
- a general purpose processor may be a microprocessor or any conventional processor or the like.
- the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
- the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or may also be a volatile memory (volatile memory), for example Random-access memory (RAM).
- Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
- the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
- the technical solutions provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
- software When implemented in software, it can be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device, a RIC, or other programmable devices.
- the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
- the computer-readable storage medium can be any available media that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
- the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital video discs (DVDs)), or semiconductor media, and the like.
- the embodiments may refer to each other.
- the methods and/or terms between the method embodiments may refer to each other, such as the functions and/or the device embodiments.
- terms may refer to each other, eg, functions and/or terms between an apparatus embodiment and a method embodiment may refer to each other.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Medical Informatics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Security & Cryptography (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Algebra (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种通信方法和装置,用于在无线接入网RAN中引入人工智能AI。该方法包括:无线智能控制器RIC向基站发送一个或多个AI任务的配置信息。其中,每个AI任务的配置信息用于指示该AI任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体和任务状态。其中,该AI任务的执行主体可以是基站或者终端。
Description
本申请要求于2020年08月24日提交中国国家知识产权局、申请号为202010858139.5、申请名称为“一种智能的无线接入网络”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术,尤其涉及一种智能的无线接入网络。
在无线通信网络中,例如在移动通信网络中,网络支持的业务越来越多样,因此需要满足的需求越来越多样。例如,网络需要能够支持超高速率、超低时延、和/或超大连接。该特点使得网络规划、网络配置、和/或资源调度越来越复杂。此外,由于网络的功能越来越强大,例如支持的频谱越来越高、支持高阶多入多出技术(multiple input multiple output,MIMO)、支持波束赋形、和/或支持波束管理等新技术,使得网络节能成为了热门研究课题。这些新需求、新场景和新特性给网络规划、运维和高效运营带来了前所未有的挑战。
发明内容
本申请实施例提供了一种通信方法,旨在无线接入网RAN中引入人工智能AI,从而可以实现网络智能化,提供一种高效的RAN。
第一方面,提供了一种通信方法。该方法的执行主体可以是无线智能控制器RIC或者能够支持RIC实现该功能的装置,例如芯片等,不予限制。其中,该方法包括:向基站发送第一任务配置信息,所述第一任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体是终端设备或所述基站。
可选地,不同任务的执行主体可以相同或者不同,不予限制。例如,第一任务配置信息指示了X1个任务的配置信息,其中X2个任务的执行主体是基站,X3个任务的执行主体是终端设备。X1为大于等于1的正整数,X2为大于等于0且小于等于X1的整数,X3为大于等于0且小于等于X1的整数。X2和X3的和等于X1。
可选地,所述每个任务的执行主体是基站,包括:所述每个任务的执行主体是所述基站的集中单元CU或所述基站的分布单元DU。此时,一种可能的实现中,所述一个或多个任务中每个任务的执行主体为所述终端设备、所述CU或所述DU;所述一个或多个任务中每个任务的执行主体为所述终端设备或所述CU;或者,所述一个或多个任务中每个任务的执行主体为所述终端设备或所述DU。
可选地,所述每个任务的执行主体是所述基站的CU,包括:所述每个任务的执行主体是所述基站的集中单元-控制面CU-CP或所述基站的集中单元-用户面CU-UP。此时,一种可能的实现中,所述一个或多个任务中每个任务的执行主体为所述终端设备、所述CU-CP、所述CU-UP、或所述DU;所述一个或多个任务中每个任务的执行主体为所述终端设备、所述CU-CP、或所述CU-UP;所述一个或多个任务中每个任务的执行主体为所述终端设备、所述CU-CP、或所述DU;所述一个或多个任务中每个任务的执行主体为所述终端或所述CU-CP;所述一 个或多个任务中每个任务的执行主体为所述终端设备或所述CU-UP;或者,所述一个或多个任务中每个任务的执行主体为所述终端设备、所述CU-UP或所述DU。
通过上述方法,RIC可以向基站发送AI任务,和/或通过基站向终端发送AI任务,用于在RAN中实现AI功能,从而可以有效地在RAN中引入AI,实现一种高效的RAN。例如,可以提升网络规划、网络配置、和/或资源调度等的效率。通过该方法在RAN中引入AI时,可以更好地兼容现有网络,又便于引入新的AI功能。
一种可能的实现中,对于所述一个或多个任务中的每个任务,所述任务的配置信息用于指示所述任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态。
通过该方法,可以为AI任务的执行主体配置任务信息,使得任务的执行主体能够知道如何执行相应的AI任务。从而可以在网络中实现AI功能。
一种可能的实现中,所述任务类型为数据收集、推理结果发布、模型发布或模型训练。例如,当一个任务的配置信息不用于指示任务类型时,可以在协议中约定或者通过其他信令提前指示该任务的类型是数据收集、推理结果发布、模型发布或模型训练。再例如,当一个任务的配置信息用于指示任务类型时,可以从多种任务类型中指示该任务的类型,该多种任务类型可以包括数据收集、推理结果发布、模型发布和模型训练中至少一种。可选地,该多种任务类型中还可以包括其他任务类型,不予限制。
可选地,所述任务类型为模型训练时,所述任务类型还用于指示所述任务类型为分布式模型训练或集中式模型训练。或者,所述任务类型为数据收集、推理结果发布、模型发布或模型训练,包括:所述任务类型为数据收集、推理结果发布、模型发布、分布式模型训练或集中式模型训练。
本申请实施例中,RIC利用AI模型推理出的推理结果可以是RAN侧的参数配置和/或终端侧的参数配置。例如,RAN侧的参数值包括小区的参数配置和/或基站的参数配置。此时,推理结果发布还可以描述为配置参数,推理结果可以描述为参数值。
通过该方法,可以收集数据,用于辅助实现AI功能中的模型训练和/或推理功能,可以将RIC推理得到的结果发布给基站或终端设备,可以将AI模型发布给基站或终端设备,和/或可以指示基站或终端设备进行模型训练。从而,可以将各种可能的AI功能引入RAN,获得高效的RAN。
一种可能的实现中,所述任务的类型是数据收集时,所述任务内容指示以下内容中的一种或多种:数据的测量类型、测量条件、和测量结果报告(或描述为数据报告)方式。或者,所述任务内容指示以下内容中的一种或多种:数据类型和数据上报方式;
所述任务的类型是推理结果发布时,所述任务内容指示推理结果,
所述任务的类型是模型发布时,所述任务内容指示模型信息,或,
所述任务的类型是模型训练时,所述任务内容指示以下内容中的一种或多种:上报模型参数信息或上报模型参数梯度信息的条件、参考神经网络的信息、和神经网络训练数据集。
通过该方法,可以将AI任务的具体内容指示给AI任务的执行主体,使得执行主体可以根据任务内容的指示执行相应的任务,从而可以在网络中实现AI功能。
一种可能的实现中,所述任务状态包括激活或去激活,或者所述任务状态包括激活、去激活或释放。
通过该方法,可以灵活控制任务的执行。例如,可以配置在部分时间段激活该任务,或者可以释放已经配置的任务,从而可以节省任务执行主体的功耗。
一种可能的实现中,所述方法还包括:从所述基站的CU接收第一接口建立请求消息。
通过该方法,可以建立RIC和CU之间的接口。从而可以在RIC和CU之间进行通信。
一种可能的实现中,所述第一接口建立请求消息用于指示以下内容中的一种或多种:消息类型、所述CU的ID、所述CU的能力信息、所述CU的配置信息、和所述CU的状态信息。
通过该方法,可以获得CU的信息,从而可以用于在RIC中进行AI模型训练和/或推理。
一种可能的实现,所述方法还包括:从所述基站的DU接收第二接口建立请求消息。
通过该方法,可以建立RIC和DU之间的接口。从而可以在RIC和DU之间进行通信。
一种可能的实现中,所述第二接口建立请求消息用于指示以下内容中的一种或多种:消息类型、所述DU的ID、所述DU的能力信息、所述DU的配置信息、和所述DU的状态信息。
通过该方法,可以获得DU的信息,从而可以用于在RIC中进行AI模型训练和/或推理。
一种可能的实现中,所述方法还包括:从所述基站接收所述终端设备的信息,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。可选地,从所述基站接收所述终端设备的信息,包括:从所述基站的CU接收所述终端设备的信息。
通过该方法,可以获得终端的信息,从而可以用于在RIC中进行AI模型训练和/或推理。
一种可能的实现中,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:从所述基站接收所收集的数据。从所述基站接收所收集的数据,包括:从所述基站的CU接收所收集的数据。可选地,该至少一个数据收集任务的执行主体是基站时,该数据是基站收集的。可选地,该至少一个数据收集任务的执行主体是CU时,该数据是CU收集的。可选地,该至少一个数据收集任务的执行主体是DU时,该数据是DU收集的。DU收集的数据可以是DU发送给CU,由CU发送给RIC的。可选地,该至少一个数据收集任务的执行主体是CU-CP时,该数据是CU-CP收集的。可选地,该至少一个数据收集任务的执行主体是CU-UP时,该数据是CU-UP收集的。CU-UP收集的数据可以是CU-UP发送给CU-CP,由CU-CP发送给RIC的。可选地,该至少一个数据收集任务的执行主体是终端设备时,该数据是终端设备收集的,并且是终端设备发送给基站的。
通过该方法,可以获得想要收集的数据,从而可以用于辅助实现模型训练和/或推理功能。
一种可能的实现中,所述方法还包括:向所述基站发布推理结果。向所述基站发布推理结果包括:向所述基站的CU发布推理结果。
通过该方法,可以将推理结果发布给基站或终端设备。例如,RIC收集到数据后,可以利用该数据进行推理,从而可以得到RAN侧的参数配置和/或终端的参数配置。RIC可以将参数值发布给基站和/或终端设备,使得基站和/或终端设备可以更新相应的参数值,从而可以改善网络的性能。
一种可能的实现中,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:从所述基站接收模型参数信息或模型参数梯度信息。从所述基站接收模型参数信息或模型参数梯度信息,包括:从所述基站的CU接收模型参数信息或模型参数梯度信息。该参数信息或参数梯度信息可以是终端设备发送给基站的。
通过该方法,可以在终端侧实现联邦学习。提高AI模型训练的效率。
第二方面,提供了一种通信方法。该方法的执行主体可以是基站、CU、或者是能够支持基站或CU实现该功能的装置,例如芯片等,不予限制。其中,该方法包括:从无线智能控 制器RIC接收第一任务配置信息,所述第一任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体是终端设备或基站。
关于任务的配置信息的介绍可以参考第一方面,这里不再赘述。
在一种可能的实现中,对于所述一个或多个任务中的至少一个任务,所述至少一个任务的执行主体是所述终端设备,所述方法还包括:通过无线资源控制RRC信令、系统信息块SIB、主信息块MIB或寻呼消息,向所述终端设备指示所述至少一个任务中每个任务的信息。
在一种可能的实现中,对于所述一个或多个任务中的至少一个任务,所述至少一个任务的执行主体是DU,所述方法还包括:向所述DU发送所述至少一个任务中每个任务的内容。
在一种可能的实现中,对于所述一个或多个任务中的至少一个任务,所述至少一个任务的执行主体是CU-UP,所述方法还包括:向所述CU-UP发送所述至少一个任务中每个任务的内容。
在一种可能的实现中,所述方法还包括:向所述RIC发送第一接口建立请求消息。关于第一接口建立请求消息的描述参见第一方面,这里不再赘述。
在一种可能的实现中,所述方法还包括:向所述RIC发送所述终端设备的信息。关于终端的信息的描述参见第一方面,这里不再赘述。
在一种可能的实现中,所述方法还包括:所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:向所述RIC发送所收集的数据。关于该数据的介绍可以见第一方面的具体描述,这里不再赘述。例如,该方法还包括:从所述终端设备、DU或CU-UP接收所述数据。
在一种可能的实现中,所述方法还包括:从所述RIC接收推理结果。可选地,所述方法还包括:向所述终端设备、DU或CU-UP发送所述推理结果。可选地,向终端设备发送推理结果时,包括:通过RRC信令、SIB、MIB或寻呼消息,向所述终端发送推理结果。
在一种可能的实现中,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:从终端设备接收模型参数信息或模型参数梯度信息,并向所述RIC发送所述模型参数信息或模型参数梯度信息。
第三方面,提供了一种通信方法。该方法的执行主体可以是终端设备或者是能够支持终端设备实现该功能的装置,例如芯片等,不予限制。其中,该方法包括:通过无线资源控制RRC信令、系统信息块SIB、主信息块MIB或寻呼消息,从基站接收一个或多个任务的信息;其中,所述一个或多个任务的信息中,每个任务的信息用于指示所述每个任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态。
关于任务标识ID、任务类型、任务内容、任务执行主体、和任务状态的介绍请参见第一方面或第二方面,这里不再赘述。
在一种可能的实现中,所述方法还包括:向所述基站发送终端设备的信息,其中,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。
在一种可能的实现中,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:向基站发送所收集的数据。
在一种可能的实现中,所述方法还包括:从基站接收推理结果。
在一种可能的实现中,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:向所述基站发送模型参数信息或模型参数梯度信息。
第四方面,提供一种装置,该装置可以是RIC,也可以是能够实现第一方面描述的方法 的其它装置。该其它装置能够安装在RIC中,或能够和RIC匹配使用。一种设计中,该装置可以包括执行第一方面所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的实现中,通信模块用于向基站发送第一任务配置信息,所述第一任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体是终端设备或所述基站。所述任务的配置信息可以是所述处理模块生成的。
通信模块能够接收和/或发送的其它信息请参见第一方面的描述,这里不再赘述。
第五方面,提供一种装置,该装置可以是基站,也可以是能够实现第二方面描述的方法的其它装置。该其它装置能够安装在基站中,或能够和基站匹配使用。一种设计中,该装置可以包括执行第二方面所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的实现中,通信模块用于从无线智能控制器RIC接收第一任务配置信息,所述第一任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体是终端设备或基站。所述处理模块可以用于从通信模块接收第一任务配置信息,并处理第一任务配置信息。
通信模块能够接收和/或发送的其它信息请参见第二方面的描述,这里不再赘述。
第六方面,提供一种装置,该装置可以是终端设备,也可以是能够实现第三方面描述的方法的其它装置。该其它装置能够安装在终端设备中,或能够和终端设备匹配使用。一种设计中,该装置可以包括执行第三方面所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的实现中,通信模块用于通过无线资源控制RRC信令、系统信息块SIB、主信息块MIB或寻呼消息,从基站接收一个或多个任务的信息;其中,所述一个或多个任务的信息中,每个任务的信息用于指示所述每个任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态。所述处理模块可以用于从通信模块接收所述一个或多个任务的信息,并处理该信息。
通信模块能够接收和/或发送的其它信息请参见第三方面的描述,这里不再赘述。
第七方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。本申请实施例中,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口向基站发送第一任务配置信息,所述第一任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体是终端设备或所述基站。
处理器利用通信接口能够接收和/或发送的其它信息请参见第一方面的描述,这里不再赘述。
第八方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第二方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第二方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口从无线智能控制器RIC接收第一任务配置信息,所述第一任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体是终端设备或基站。
处理器利用通信接口能够接收和/或发送的其它信息请参见第二方面的描述,这里不再赘述。
第九方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第三方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第三方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口通过无线资源控制RRC信令、系统信息块SIB、主信息块MIB或寻呼消息,从基站接收一个或多个任务的信息;其中,所述一个或多个任务的信息中,每个任务的信息用于指示所述每个任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态。
处理器利用通信接口能够接收和/或发送的其它信息请参见第三方面的描述,这里不再赘述。
第十方面,提供了一种通信方法。该方法的执行主体可以是无线智能控制器RIC或者能够支持RIC实现该功能的装置,例如芯片等,不予限制。其中,该方法包括:通过第一协议层,向终端设备发送第二任务配置信息,所述第二任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体包括一个或多个终端设备。
可选地,不同任务的执行主体可以相同或者不同,不予限制。可选地,第一协议层是RRC协议层之外的协议层,或者描述为第一协议层是非RRC层,或者描述为第一协议层不是RRC层。
一种可能的实现中,对于所述一个或多个任务中的每个任务,所述任务的配置信息用于指示所述任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态。
通过上述方法,RIC可以向终端设备发送AI任务,用于在RAN中实现AI功能,从而可以有效地在RAN中引入AI,实现一种高效的RAN。例如,可以提升网络规划、网络配置、和/或资源调度等的效率。通过该方法在RAN中引入AI时,可以更好地兼容现有网络,又便于引入新的AI功能。
一种可能的实现中,所述方法还包括:向基站发送第三任务配置信息,所述第三任务配置信息用于指示一个或多个任务的配置信息,其中,所述第三任务配置信息指示的一个或多个任务中每个任务的执行主体包括所述基站的集中单元CU或所述基站的分布单元DU。
一种可能的实现中,所述第三任务配置信息指示的一个或多个任务中每个任务的配置信 息用于指示所述任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态。
通过上述方法,RIC可以向基站发送AI任务,用于在RAN中实现AI功能,从而可以有效地在RAN中引入AI,实现一种高效的RAN。例如,可以提升网络规划、网络配置、和/或资源调度等的效率。通过该方法在RAN中引入AI时,可以更好地兼容现有网络,又便于引入新的AI功能。
关于任务类型、任务内容和任务状态的描述可以参考第一方面的描述,这里不再赘述。
一种可能的实现中,所述方法还包括:从所述基站的CU接收第一接口建立请求消息。具体信息和有益效果可以参考第一方面的描述,这里不再赘述。
一种可能的实现中,所述方法还包括:从所述基站的DU接收第二接口建立请求消息。具体信息和有益效果可以参考第一方面的描述,这里不再赘述。
一种可能的实现中,所述方法还包括:从所述基站接收所述终端设备的信息,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。可选地,从所述基站接收所述终端设备的信息,包括:从所述基站的CU接收所述终端设备的信息。
通过该方法,可以获得终端的信息,从而可以用于在RIC中进行AI模型训练和/或推理。
一种可能的实现中,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:从所述基站接收所收集的数据。从所述基站接收所收集的数据,包括:从所述基站的CU接收所收集的数据。可选地,该至少一个数据收集任务的执行主体是基站时,该数据是基站收集的。可选地,该至少一个数据收集任务的执行主体是CU时,该数据是CU收集的。可选地,该至少一个数据收集任务的执行主体是DU时,该数据是DU收集的。DU收集的数据可以是DU发送给CU,由CU发送给RIC的。可选地,该至少一个数据收集任务的执行主体是CU-CP时,该数据是CU-CP收集的。可选地,该至少一个数据收集任务的执行主体是CU-UP时,该数据是CU-UP收集的。CU-UP收集的数据可以是CU-UP发送给CU-CP,由CU-CP发送给RIC的。
通过该方法,可以获得想要收集的数据,从而可以用于辅助实现模型训练和/或推理功能。
一种可能的实现中,所述方法还包括:向所述基站发布推理结果。向所述基站发布推理结果包括:向所述基站的CU发布推理结果。
通过该方法,可以将推理结果发布给基站。例如,RIC收集到数据后,可以利用该数据进行推理,从而可以得到RAN侧的参数配置。RIC可以将参数值发布给基站,使得基站可以更新相应的参数值,从而可以改善网络的性能。
一种可能的实现中,所述第二任务配置信息指示的所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:通过所述第一协议层,从所述终端设备接收所收集的数据。通过该方法,可以获得想要收集的数据,从而可以用于辅助实现模型训练和/或推理功能。
一种可能的实现中,所述第二任务配置信息指示的所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:通过所述第一协议层,从所述终端接收模型参数信息或模型参数梯度信息。通过该方法,可以在终端侧实现联邦学习。提高AI模型训练的效率。
一种可能的实现中,所述第一协议层为分组数据汇聚层协议PDCP层之上的人工智能控制AIC层,所述第一协议层为无线资源控制RRC层之上的AIC层,或,所述第一协议层为应用层。
所述第一协议层为分组数据汇聚层协议PDCP层之上的人工智能控制AIC层,包括:在 发送端,AIC层的数据被依次递交至PDCP层、RLC层、MAC层和物理层;在接收端的物理层收到数据后,被依次递交至MAC层、RLC层、PDCP层和AIC层。
所述第一协议层为无线资源控制RRC层之上的AIC层,包括:在发送端,AIC层的数据被依次递交至RRC层、PDCP层、RLC层、MAC层和物理层;在接收端的物理层收到数据后,被依次递交至MAC层、RLC层、PDCP层、RRC层和AIC层。
通过该方法,可以引入新的协议层用于发布任务,和/或通过应用层发布模型,从而实现任务发布的有效性以及可扩展性。
第十一方面,提供了一种通信方法。该方法的执行主体可以是基站、CU、或者是能够支持基站或CU实现该功能的装置,例如芯片等,不予限制。其中,该方法包括:从无线智能控制RIC接收第三任务配置信息,所述第三任务配置信息用于指示一个或多个任务的配置信息,其中,所述第三任务配置信息指示的一个或多个任务中每个任务的执行主体包括所述基站的集中单元CU或所述基站的分布单元DU。
关于任务配置信息的具体介绍可以参见第十方面的描述,这里不再赘述。
一种可能的实现中,对于所述一个或多个任务中的至少一个任务,所述至少一个任务的执行主体是所述DU,所述方法还包括:向所述DU发送所述至少一个任务中每个任务的内容。
一种可能的实现中,对于所述一个或多个任务中的至少一个任务,所述至少一个任务的执行主体是所述CU-UP,所述方法还包括:向所述CU-UP发送所述至少一个任务中每个任务的内容。
一种可能的实现中,所述方法还包括:向所述RIC发送第一接口建立请求消息。具体信息和有益效果可以参考第十方面的描述,这里不再赘述。
一种可能的实现中,所述方法还包括:所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:向所述RIC发送所收集的数据。可选地,所述数据是从所述基站的DU接收的,或者是从所述基站的CU-UP接收的。
一种可能的实现中,所述方法还包括:从所述RIC接收推理结果。
第十二方面,提供了一种通信方法。该方法的执行主体可以是终端设备或者是能够支持终端设备实现该功能的装置,例如芯片等,不予限制。其中,该方法包括:通过第一协议层,从无线智能控制RIC接收第二任务配置信息,所述第二任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体包括一个或多个终端设备。
关于任务配置信息的具体介绍可以参见第十方面的描述,这里不再赘述。
一种可能的实现中,所述方法还包括:向基站发送终端设备的信息,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。
一种可能的实现中,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:通过所述第一协议层,向所述RIC发送所收集的数据。
一种可能的实现中,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:通过所述第一协议层,向所述RIC发送模型参数信息或模型参数信息梯度信息。
一种可能的实现中,所述方法还包括:通过所述第一协议层,从RIC接收推理结果。
一种可能的实现中,所述第一协议层为分组数据汇聚层协议PDCP层之上的智能控制AIC层,所述第一协议层为无线资源控制RRC层之上的AIC层,或,所述第一协议层为应用层。
第十三方面,提供一种装置,该装置可以是RIC,也可以是能够实现第十方面描述的方法的其它装置。该其它装置能够安装在RIC中,或能够和RIC匹配使用。一种设计中,该装 置可以包括执行第十方面所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的实现中,所述处理模块利用所述通信模块:通过第一协议层,向终端设备发送第二任务配置信息,所述第二任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体包括一个或多个终端设备。
一种可能的实现中,所述通信模块用于向基站发送第三任务配置信息,所述第三任务配置信息用于指示一个或多个任务的配置信息,其中,所述第三任务配置信息指示的一个或多个任务中每个任务的执行主体包括所述基站的集中单元CU或所述基站的分布单元DU。所述第三任务配置信息是由所述处理模块生成的。
通信模块能够接收和/或发送的其它信息请参见第十方面的描述,这里不再赘述。
第十四方面,提供一种装置,该装置可以是基站,也可以是能够实现第十一方面描述的方法的其它装置。该其它装置能够安装在基站中,或能够和基站匹配使用。一种设计中,该装置可以包括执行第十一方面所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的实现中,通信模块用于从无线智能控制器RIC接收第三任务配置信息,所述第三任务配置信息用于指示一个或多个任务的配置信息,其中,所述第三任务配置信息指示的一个或多个任务中每个任务的执行主体包括所述基站的集中单元CU或所述基站的分布单元DU。处理模块用于从通信模块接收第三任务配置信息,并处理该第三任务配置信息。
通信模块能够接收和/或发送的其它信息请参见第十一方面的描述,这里不再赘述。
第十五方面,提供一种装置,该装置可以是终端设备,也可以是能够实现第十二方面描述的方法的其它装置。该其它装置能够安装在终端设备中,或能够和终端设备匹配使用。一种设计中,该装置可以包括执行第十二方面所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的实现中,处理模块用于利用通信模块:通过第一协议层,从无线智能控制RIC接收第二任务配置信息,所述第二任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体包括一个或多个终端设备。
通信模块能够接收和/或发送的其它信息请参见第十二方面的描述,这里不再赘述。
第十六方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第十方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第十方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。本申请实施例中,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,通过第一协议层,向终端设备发送第二任务配置信息,所述第二任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体包括一个或多个终端设备。
一种可能的实现中,处理器利用通信接口,向基站发送第三任务配置信息,所述第三任 务配置信息用于指示一个或多个任务的配置信息,其中,所述第三任务配置信息指示的一个或多个任务中每个任务的执行主体包括所述基站的集中单元CU或所述基站的分布单元DU。
处理器利用通信接口能够接收和/或发送的其它信息请参见第十方面的描述,这里不再赘述。
第十七方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第十一方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第十一方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口从无线智能控制RIC接收第三任务配置信息,所述第三任务配置信息用于指示一个或多个任务的配置信息,其中,所述第三任务配置信息指示的一个或多个任务中每个任务的执行主体包括所述基站的集中单元CU或所述基站的分布单元DU。
处理器利用通信接口能够接收和/或发送的其它信息请参见第十一方面的描述,这里不再赘述。
第十八方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第十二方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第十二方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口通过第一协议层,从无线智能控制器RIC接收第二任务配置信息,所述第二任务配置信息用于指示一个或多个任务的配置信息;其中,所述一个或多个任务中每个任务的执行主体包括一个或多个终端设备。
处理器利用通信接口能够接收和/或发送的其它信息请参见第十二方面的描述,这里不再赘述。
第十九方面,提供了一种通信方法。该方法的执行主体可以是基站、CU、或者是能够支持基站或CU实现该功能的装置,例如芯片等,不予限制。其中,该方法包括:通过应用层、人工智能控制AIC层、无线资源控制RRC信令、系统信息块SIB、主信息块MIB、寻呼消息、媒体接入控制MAC控制元素CE或物理层信息,向终端设备发送一个或多个任务的信息,其中,所述AIC层位于分组数据汇聚层协议PDCP层之上,或者所述AIC层位于所述RRC层之上;其中,所述一个或多个任务中每个任务的执行主体是一个或多个终端设备。
通过上述方法,可以在RAN中,例如基站中,实现AI功能,从而可以有效地在RAN中引入AI,实现一种高效的RAN。例如,可以提升网络规划、网络配置、和/或资源调度等的效率。通过该方法在RAN中引入AI时,可以更好地兼容现有网络,又便于引入新的AI功能。
一种可能的实现中,对于所述一个或多个任务中的每个任务,所述任务的信息用于指示以下所述任务的内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态。关于该方法的详细介绍可以参考第一方面的描述,这里不再赘述。
一种可能的实现中,所述方法还包括:从所述终端设备接收所述终端设备的信息,其中, 所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。
通过该方法,可以获得终端设备的信息,从而可以用于在基站侧进行AI模型训练和/或推理。
一种可能的实现中,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:从所述终端设备接收所收集的数据。
一种可能的实现中,所述方法还包括:向所述终端发送推理结果。
一种可能的实现中,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:从所述终端设备接收模型参数的梯度信息。
第二十方面,提供了一种通信方法。该方法的执行主体可以是终端设备或者是能够支持终端设备实现该功能的装置,例如芯片等,不予限制。其中,该方法包括:通过应用层、人工智能控制AIC层、无线资源控制RRC信令、系统消息、主信息块MIB、寻呼消息、MAC CE或物理层信息,从基站接收一个或多个任务的信息,其中,所述AIC层位于分组数据汇聚层协议PDCP层之上,或者所述AIC层位于所述RRC层之上;其中,所述一个或多个任务中每个任务的执行主体是一个或多个终端设备。
一种可能的实现中,所述方法还包括:向所述基站发送终端设备的信息,其中,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。
一种可能的实现中,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:向所述基站发送所收集的数据。
一种可能的实现中,所述方法还包括:从所述基站接收推理结果。
一种可能的实现中,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:向所述基站发送模型参数的梯度信息。
第二十一方面,提供一种装置,该装置可以是基站,也可以是能够实现第十九方面描述的方法的其它装置。该其它装置能够安装在基站中,或能够和基站匹配使用。一种设计中,该装置可以包括执行第十九方面所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的实现中,所述通信模块利用所述处理模块,通过应用层、人工智能控制AIC层、无线资源控制RRC信令、系统信息块SIB、主信息块MIB、寻呼消息、媒体接入控制MAC控制元素CE或物理层信息,向终端设备发送一个或多个任务的信息,其中,所述AIC层位于分组数据汇聚层协议PDCP层之上,或者所述AIC层位于所述RRC层之上;其中,所述一个或多个任务中每个任务的执行主体是一个或多个终端设备。
通信模块能够接收和/或发送的其它信息请参见第十九方面的描述,这里不再赘述。
第二十二方面,提供一种装置,该装置可以是终端设备,也可以是能够实现第二十方面描述的方法的其它装置。该其它装置能够安装在终端设备中,或能够和终端设备匹配使用。一种设计中,该装置可以包括执行第二十方面所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
一种可能的实现中,所述通信模块利用所述处理模块,通过应用层、人工智能控制AIC层、无线资源控制RRC信令、系统信息块SIB、主信息块MIB、寻呼消息、MAC CE或物理 层信息,从基站接收一个或多个任务的信息,其中,所述AIC层位于分组数据汇聚层协议PDCP层之上,或者所述AIC层位于所述RRC层之上;其中,所述一个或多个任务中每个任务的执行主体是一个或多个终端设备。
通信模块能够接收和/或发送的其它信息请参见第二十方面的描述,这里不再赘述。
第二十三方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第十九方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第十九方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口,通过应用层、人工智能控制AIC层、无线资源控制RRC信令、系统信息块SIB、主信息块MIB、寻呼消息、媒体接入控制MAC控制元素CE或物理层信息,向终端设备发送一个或多个任务的信息,其中,所述AIC层位于分组数据汇聚层协议PDCP层之上,或者所述AIC层位于所述RRC层之上;其中,所述一个或多个任务中每个任务的执行主体是一个或多个终端设备。
处理器利用通信接口能够接收和/或发送的其它信息请参见第十九方面的描述,这里不再赘述。
第二十四方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第二十方面描述的方法。所述装置还可以包括存储器,用于存储指令。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的指令时,可以实现上述第二十方面描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信。
在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于利用通信接口通过应用层、人工智能控制AIC层、无线资源控制RRC信令、系统信息块SIB、主信息块MIB、寻呼消息、MAC CE或物理层信息,从基站接收一个或多个任务的信息,其中,所述AIC层位于分组数据汇聚层协议PDCP层之上,或者所述AIC层位于所述RRC层之上;其中,所述一个或多个任务中每个任务的执行主体是一个或多个终端设备。
处理器利用通信接口能够接收和/或发送的其它信息请参见第二十方面的描述,这里不再赘述。
第二十五方面,提供了一种装置,包括:人工智能应用AIA模块、模型与策略信息库MPIR、运营状态信息库OSIB、和人工智能过程管理AIPM模块;其中,
所述AIA模块中包括至少一个应用,其中,一个应用用于利用以下内容中的一项或多项进行模型训练或模型更新:所述一个应用对应的模型信息、所述一个应用的策略信息、终端设备的运营状态信息、和无线接入网RAN的运营状态信息;
所述MPIR用于存储所述至少一个应用中每个应用的策略信息和对应的模型信息;
所述OSIB用于存储所述终端设备的运营状态信息和所述RAN的运营状态信息;
所述AIPM用于管理所述模型训练或模型更新过程。
上述各模块可以是软件模块、硬件电路、或软件模型+硬件电路,不予限制。
第二十六方面,提供了一种装置,包括:人工智能应用AIA模块、模型与策略信息库MPIR、运营状态信息库OSIB、和人工智能过程管理AIPM模块;其中,
所述AIA模块中包括至少一个应用,其中,一个应用用于利用以下内容中的一项或多项进行推理:所述一个应用对应的模型信息、所述一个应用的策略信息、终端设备的运营状态信息、和无线接入网RAN的运营状态信息;
所述MPIR用于存储所述至少一个应用中每个应用的策略信息和对应的模型信息;
所述OSIB用于存储所述终端设备的运营状态信息和所述RAN的运营状态信息;
所述AIPM用于管理所述推理过程。
在上述第一方面至第二十四方面的方法实施例中,发布任务配置信息或者任务的信息的主体(例如RIC或者基站)中可以包括第二十六方面和/或第二十七方面的装置。例如,所获取的信息可以相应地存储在所述OSIB中。任务的发布过程可以是由所述AIPM触发或管理的。
第二十七方面,提供了一种方法,包括:对于一个应用,利用以下内容中的一项或多项进行模型训练或模型更新:
所述一个应用对应的模型信息;
所述一个应用的策略信息;
终端设备的运营状态信息;和,
无线接入网RAN的运营状态信息。
上述各模块可以是软件模块、硬件电路、或软件模型+硬件电路,不予限制。
第二十八方面,提供了一种方法,包括:对于一个应用,利用以下内容中的一项或多项进行推理:
所述一个应用对应的模型信息;
所述一个应用的策略信息;
终端设备的运营状态信息;和,
无线接入网RAN的运营状态信息。
第二十九方面,提供了一种通信系统,包括:
第四方面的装置、第五方面的装置和第六方面的装置;
第四方面的装置、第五方面的装置、第六方面的装置和第二十一方面的装置;
第七方面的装置、第八方面的装置和第九方面的装置;
第七方面的装置、第八方面的装置、第九方面的装置和第二十三方面的装置;
第七方面的装置、第九方面的装置和第二十三方面的装置;
第十三方面的装置、第十四方面的装置和第十五方面的装置;
第十三方面的装置、第十四方面的装置、第十五方面的装置和第二十一方面的装置;
第十六方面的装置、第十七方面的装置和第十八方面的装置;
第十六方面的装置、第十七方面的装置、第十八方面的装置和第二十三方面的装置;
第二十一方面的装置和第二十二方面的装置;或者,
第二十三方面的装置和第二十四方面的装置。
第三十方面,,提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述任一方法实施例所述的方法。
第三十一方面,提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行任一方法实施例所述的方法。
第三十二方面,提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述任一方法实施例所述的方法。该芯片系统可以由芯片构成,也可以包含芯片 和其他分立器件。
图1(a)和图1(b)所示为本申请实施例提供的协议栈示例图;
图2所示为本申请实施例提供的RAN结构示例图;
图3所示为本申请实施例提供的gNB的结构示例图;
图4所示为本申请实施例提供的空口协议栈示例图;
图5所示为本申请实施例提供的RIC模块的结构示例图;
图6(a)-图6(c)所示为本申请实施例提供的网络架构示例图;
图7(a)-图7(d)所示为本申请实施例提供的协议栈示例图;
图8(a)所示为本申请实施例提供的架构示例一,图8(b)所示为利用图8(a)的架构进行信息交互的流程示例图;
图9(a)所示为本申请实施例提供的架构示例二,图9(b)所示为利用图9(a)的架构进行信息交互的流程示例图;
图10所示为本申请实施例提供的架构示例三;
图11所示为本申请实施例提供的架构示例四;
图12和图13所示为本申请实施例提供的装置结构示例图。
本申请实施例提供的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、无线保真(wireless-fidelity,WiFi)系统、未来的第六代移动通信系统、或者多种通信系统融合的系统等,本申请实施例不做限定。其中,5G还可以称为新无线(new radio,NR)。
本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced Mobile Broadband,eMBB)通信、超可靠低时延通信(ultra-reliable low-latency communication,URLLC)、机器类型通信(machine type communication,MTC)、大规模机器类型通信(massive machine type communications,mMTC)、设备到设备(device-to-device,D2D)通信、车辆外联(vehicle to everything,V2X)通信、车辆到车辆(vehicle to vehicle,V2V)通信、和物联网(internet of things,IoT)等。
本申请实施例提供的技术方案可以应用于通信设备间的通信,尤其可以用于移动通信网络中通信设备间的通信。其中,通信设备间的通信可以包括:网络设备和终端设备间的通信、网络设备和网络设备间的通信、和/或终端设备和终端设备间的通信。在本申请实施例中,术语“通信”还可以描述为“传输”、“信息传输”、“数据传输”、或“信号传输”等。传输可以包括发送和/或接收。本申请实施例中,以网络设备和终端设备间的通信为例描述技术方案。本领域技术人员也可以将该技术方案用于进行其它调度实体和从属实体间的通信,例如宏基站和微基站之间的通信,和/或例如第一终端设备和第二终端设备间的通信等。例如,调度实体可以对从属实体进行无线资源管理(radio resource management,RRM)。在本申请实施例中,多(个)种可以是两(个)种、三(个)种、四(个)种或者更多(个)种,本申请实施例不做限制。至少一个(种)可以是一个(种)或多个(种),本申请实施例不做限制。
在本申请实施例中,网络设备和终端设备间的通信包括:网络设备向终端设备发送下行数据、信号或信息,和/或终端设备向网络设备发送上行数据、信号或信息。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中A,B可以是单数或者复数。在本申请实施例中,可以采用“第一”、“第二”、“A”、“B”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”、“A”、“B”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例涉及到的终端设备还可以称为终端,可以是一种具有无线收发功能的设备。终端可以被部署在陆地上,包括室内、室外、手持、和/或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、和/或智慧家庭(smart home)中的无线终端等等。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统。该装置可以被安装在终端设备中或者和终端设备匹配使用。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备,以终端设备是UE为例,描述本申请实施例提供的技术方案。
本申请实施例涉及到的网络设备包括基站(base station,BS),可以是一种部署在无线接入网(radio access network,RAN)中能够和终端设备进行通信的设备。可选地,无线接入网还可以简称为接入网。基站可能有多种形式,比如宏基站、微基站、中继站或接入点等。本申请实施例涉及到的基站可以是5G系统中的基站、LTE系统中的基站或其它系统中的基站,不做限制。其中,5G系统中的基站还可以称为发送接收点(transmission reception point,TRP)或下一代节点B(generation Node B,gNB或gNodeB)。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统。该装置可以被安装在网络设备中或者和网络设备匹配使用。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。
示例性地,以基站是gNB为例,gNB和UE可以利用空口进行通信。其他类型的基站和UE通信时的网络架构和/或协议栈与gNB和UE通信时的网络架构和/或协议栈是类似的或者相同的,不再赘述。
图1(a)所示为gNB和UE进行用户面(user plane)数据交互时使用的协议栈示例图。其中,gNB和UE进行用户面数据交互时,涉及到gNB侧和UE侧各自的业务数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层、和物理层(physical layer,PHY)层。
图1(b)所示为gNB和UE进行控制面(control plane)数据交互时使用的协议栈示例图。其中,gNB和UE进行控制面数据交互时,涉及到gNB侧和UE侧各自的无线资源控制(radio resource control,RRC)层、PDCP层、RLC层、MAC层、和PHY层。
在本申请实施例中,RRC层可以用于控制空口无线资源和空口连接。SDAP层可以用于进行服务质量(quality of service,QoS)-流(flow)与数据无线承载(data radio bearer,DRB)之间的映射。其中,QoS-flow为具有特定QoS要求的业务数据流。
本申请实施例中,对于网络侧(如gNB侧)或UE侧,当控制面和用户面包括相同名称的协议层时,例如PDCP层、RLC层、MAC层或PHY层,说明对应的协议层同时支持用户面功能和控制面功能。
基站是RAN的一部分,用于与UE进行无线通信。示例性地,图2所示为一种可能的(例如,5G系统中的)RAN结构示例图。可选地,5G系统中的RAN可以称为下一代无线接入网(next generation radio access network,NG-RAN)。如图2所示,RAN可以通过NG接口和核心网(core network,CN)进行通信或者数据交换。以基站的名称是gNB为例,RAN中可以包括一个或多个gNB。不同gNB之间可以通过Xn-C接口进行通信或者数据交换。对于任意一个gNB,该gNB可以是一体化gNB,即该gNB是一个完整的模块、实体、网元或者装置;或者该gNB可以包括多个模块、实体、网元或者装置。例如,gNB可以包括集中单元(central unit,CU)和分布单元(distributed unit,DU)两部分。该设计可以称为CU和DU分离、或CU/DU分离。gNB的CU还可以记为gNB-CU,gNB的DU还可以记为gNB-DU。gNB的CU和DU可以通过F1口进行通信、数据交换、或者信息交互。一个gNB可以包括一个或多个CU。一个gNB可以包括一个或多个DU。一个DU可以连接一个CU。一个CU可以连接一个或多个DU。对于其他gNB、核心网、和/或UE,一个gNB的组成部分合起来可以看做该一个gNB。例如,一个gNB如果由CU和DU组成,则对于其他gNB、核心网和/或UE来说,该gNB的CU和DU合起来可以看做该gNB。
在本申请实施例中,RAN中任意两个网元或者任意两个实体之间的接口的形式可以是有线或无线,即该接口可以是有线接口,例如是光纤或电缆等,或者可以是无线接口,本申请实施例不做限制。不同接口的形式可以相同,也可以不同,不予限制。
在本申请实施例中,RAN中任意两个网元或者任意两个实体之间的接口用于该两个网元或者该两个实体之间交互数据或者信息,本申请实施例不对该接口的名称进行限制,例如可以称该接口为第z接口,z为正整数。不同接口的z的取值不同。
可选地,对于gNB中的一个CU,该CU可以是一个完整的模块、实体、网元或者装置,或者该CU可以包括多个模块、实体、网元或者装置。例如,该CU可以包括CU-CP(control plane,控制面)和CU-UP(user plane,用户面)。该设计可以称为CP和UP分离、或CP/UP分离。gNB的CU-CP还可以记为gNB-CU-CP,gNB的CU-UP还可以记为gNB-CU-UP。示例性地,图3所示为gNB的结构示例图。如图3所示,一个gNB可以包括一个CU-CP。一个gNB可以包括一个或多个CU-UP。一个CU-UP可以连接一个CU-CP,一个CU-CP可以连接一个或多个CU-UP。CU-UP和CU-CP之间的接口可以称为E1口。一个DU可以连接一个CU-CP,一个CU-CP可以连接一个或多个DU。DU和CU-CP之间的接口可以称为F1-C口。一个DU可以和一个或多个CU-UP连接。一个CU-UP可以和一个或多个DU连接。DU和CU-UP之间的接口可以称为F1-U口。
图4所示为CP/UP分离时,gNB侧的空口协议栈示例图。如图4所示,位于DU中的两个RLC层分别实现控制面功能和用户面功能;位于DU中的MAC层和PHY层可以同时实 现控制面功能和用户面功能,RRC层和控制面PDCP层位于CU-CP中,SDAP和用户面PDCP层位于CU-UP中。
移动通信网络的新需求、新场景和新特性给网络规划、运维和运营带来了前所未有的挑战。此时,如果依然将人工经验或将简单的算法应用于通信网络,可能无法实现高效运行的移动通信网络。例如,会使得网络规划、网络配置的优化、和/或网络中的资源调度存在以下弊端中的一种或多种:耗时长、成本高、优化算法适应性差、和调度算法适应性差。从而,可能无法应对移动通信网络的新挑战。
为了解决上述问题,可以将人工智能(artificial intelligence,AI)技术引入移动通信网络。AI技术的目标是让机器具有学习能力,能积累经验,解决人类通过经验可以解决的诸如自然语言理解、图像识别和/或下棋等问题。在本申请实施例涉及的AI技术中,主要涉及机器学习。机器学习可被认为是一种方法,该方法能够赋予机器学习能力,以此让机器完成仅靠直接编程无法完成的功能。机器学习中,机器可以对训练数据进行训练或者学习,得到AI模型。该AI模型可以用于对测试样本进行预测,得到预测结果。本申请实施例中,AI模型可以简称为模型、机器学习(machine learning,ML)模型、AI/ML模型、AI网络、或其它名称,本申请实施例不做限制。本申请实施例中,利用模型进行预测还可以被称为利用模型进行推理等,本申请实施例不做限制。
为了使RAN能够应对新挑战,可以将AI技术引入RAN,用于提升网络规划、网络配置、和/或资源调度等的效率,从而可以实现网络智能化,实现高效的RAN。例如,以RAN中的多入多出技术(multiple input multiple output,MIMO)算法为例,常用的MIMO算法主要包括矩阵的线性运算,并且是基于高斯分布等假设。然而,实际信道环境是复杂多变的,这些常用的算法适应实际信道环境的能力有限,例如无法模拟复杂的非线性环境,很难达到理论性能上限。但是,AI技术可以模拟非线性模型,从而可以有效适应实际信道环境,逼近性能极限。例如,使用AI技术,机器可以获得训练数据,并利用机器学习算法和该训练数据进行模型训练,利用训练出的模型对推理数据进行推理,得到推理结果。比如,AI技术可以预测或推理未来一段时间内的业务数据量。
基于上述考虑,如何在RAN中引入AI技术是需要重点解决的问题。在RAN相关的协议中,包括但不限于第三代合作伙伴计划(3rd generation partnership project,3GPP)相关协议中,可以采用打补丁的方式在RAN中引入新增的功能,从而满足新增的网络优化需求。然而,这种方式的缺点是扩展性差。
为了在RAN中引入易于扩展的AI功能,本申请实施例提供了以下四部分内容:第一部分:一种功能模块,用于实现AI功能;第二部分:该功能模块应用于RAN时的网络架构;第三部分:用于实现AI功能的协议栈;第四部分:RAN和UE之间实现AI功能的通信方法。下面将分别进行详细介绍。
本申请实施例提供的方法不限于特定的机器学习算法,例如可以是监督学习、非监督学习、神经网络和/或强化学习等。其中,监督学习可以包括以下一种或多种具体的算法:支持向量机(support vector machine,SVM)、决策树(decision tree)、朴素贝叶斯分类(naive bayesian classification)、和k-近邻算法(k-nearest neighbor,KNN)。非监督学习可以包括以下一种或多种具体的算法:主成分分析(principal component analysis,PCA)、奇异值分解(singular value decomposition,SVD)、和k-均值聚类。
可选地,在本申请实施例中,对于一个AI模型,该AI模型的学习可以在RAN中实现。该方法可以节省UE侧的处理资源,降低UE侧的功耗。
或者,可选地,在本申请实施例中,对于一个AI模型,该AI模型的学习可以使用联邦学习。联邦学习可以看做分布式AI训练方法。联邦学习中,可以将AI模型的训练过程放在多个UE上进行,而不是聚合到RAN侧的基站或服务器上,该方法可以节省学习时长和信令开销。在一些特定场景中,联邦学习算法有利于保护用户隐私。示例性地,联邦学习的具体过程为:中心节点(例如RAN中的基站或其它网元)向多个参与节点(例如UE)发送AI模型,参与节点基于该AI模型和自己收集或测量的数据进行AI模型训练,并将自己训练的AI模型以梯度的方式上报给中心节点。中心节点对参与节点反馈的梯度信息进行处理(例如进行平均或其它运算),得到新的AI模型。可选地,中心节点可以将该新的AI模型发送给多个参与节点,使得该多个参与节点可以基于该AI模型和自己收集或测量的数据进行AI模型训练。中心节点可以根据参与节点反馈的梯度信息再次得到更新的AI模型。联邦学习中,每次训练过程中的参与节点可能相同,也可能不同,本申请实施例不做限制。
在本申请实施例中,不同AI模型的学习方式可以相同,也可以不同,不予限制。
第一部分:用于实现AI功能的模块介绍。
在本申请实施例中,用于实现AI功能的模块可以称为无线智能控制(radio intelligence control,RIC)模块、AI模块、智能模块、机器学习模块或者其它的名称,本申请实施例不做限制。为了便于描述,以用于实现AI功能的模块的名称是RIC模块为例进行描述。在本申请实施例中,AI功能还可以称为RIC功能,AI功能包括但不限于以下功能中的一种或多种:数据收集、模型下载、模型训练、模型更新、模型发布、和推理。其中,所收集的数据可以用于进行以下功能中的一种或多种:模型训练、模型更新、和推理。用于进行模型训练或模型更新的数据还可以称为训练数据、训练样本、或其它名称,本申请实施例不做限制。用于进行推理的数据还可以称为测试样本、预测样本、或其它名称,本申请实施例不做限制。
在本申请实施例中,为了在RAN中实现AI功能,不同网元之间可以传输信息。该信息可以称为AI数据、AI信息、RIC数据、RIC信息或者其他名称,不做限制。例如,下述RIC模块中存储的信息可以统称为AI信息。
RIC模块可以是一个集成的模块,也可以包括多个模块。一种可能的实现中,图5所示为RIC模块包括多个模块的结构示例图。
RIC模块中包括第一模块和第二模块。
RIC模块中的第一模块用于进行模型训练、模型更新和/或推理等。为了便于描述,下文可以将模型训练和模型更新统称为模型训练。第一模块的输出为训练得到的模型的信息、训练得到的更新模型的信息、和推理结果中的至少一种。该第一模块还可以称为其他名称,本申请实施例不做限制。例如图5所示,第一模块可以被称为人工智能应用(artificial intelligence application,AIA)模块。为了便于描述,本申请实施例可以以第一模块的名称是AIA模块为例进行描述。
在本申请实施例中,AIA模块中可以包括一个或多个应用实例(instance),一个应用实例对应于(用于实现或辅助实现)一种或多种网络功能。例如,一个应用实例可以对应于以下网络功能中的一种或多种:无线接入技术(radio access technology,RAT)选择、负载均衡、移动性管理、网络节能、覆盖优化、流控、调度、信道编码、或调制等,本申请实施例不做限制。例如,一个应用实例也可以对应于多种网络功能,基于一定策略,以实现多种网络功能的综合最优为目标。本申请实施例中,应用实例还可以被统称为应用、AI应用实例、AI应用、RAN应用或其它名称,不做限制。本申请实施例中,对于一个特定功能的应用,不限制该应用的具体名称,例如用于实现RAT选择的应用可以称为RAT选择应用、或第r应用等。 其中,r为正整数,对于不同的应用,r的取值可以不同。
本申请实施例中,不同应用实例的区别可以是:实现不同网络功能;或,针对不同节点实现相同类型的功能,如针对不同的UE、不同的基站、不同的DU、不同的CU、或一个针对UE另一个针对基站等,不予限制。
AIA模块中的应用在实现网络功能时,需要获得该应用的模型信息、策略信息和/或AI运营状态信息,并将这些信息作为输入参数,进行模型训练或推理。这些信息的获取和存储可以由RIC模块中的第二模块实现。其中,一个应用的模型可以称为该应用对应的模型。一个应用可以被配置为:能够进行模型训练但不能进行推理,能够进行推理但不能进行模型训练,或者既能够进行模型训练也能够进行推理,本申请实施例不做限制。
对于不同的应用,以下信息中的一种或多种不同:模型的信息、策略信息、AI运营状态信息、和针对的节点。一个应用对应于一个模型。一个模型可以对应一个应用。或者,一个模块可以同时对应多个不同的应用,但是不同应用的以下信息中的一项或多项不同:策略信息、AI运营状态信息、和针对的节点。
RIC模块中的第二模块用于存储AI信息、和/或管理AI相关的过程等。该第二模块还可以称为其他名称,本申请实施例不做限制。例如图5所示,第二模块可以称为人工智能平台(artificial intelligence platform,AIP)模块。为了便于描述,本申请实施例可以以第二模块的名称是AIP模块为例进行描述。
AIP模块可以是一个集成的模块,也可以包括多个功能模块,本申请实施例不做限制。一种可能的实现中,AIP模块中包括第一子模块、第二子模块和第三子模块。
AIP模块的第一子模块用于存储一个或多个模型的模型信息。一个模型的模型信息可以被上述AIA模块获取,用于AIA模块中相应的应用进行模型训练和/或推理。第一子模块还可以称为其他名称,本申请实施例不做限制,例如模型库(model repository,MR)、或模型信息库(model information repository,MIR)等。为了便于描述,本申请实施例可以以第一子模块的名称是MIR为例进行描述。示例性地,RIC模块从CN、网管(还可以称为操作管理和维护(OAM,operation,administration nd maintenance))或第三方应用获得一个或多个模型的模型信息,该模型信息可以存储在MIR中。再示例性地,上述AIA模块中的应用进行模型训练或模型更新后,将模型信息存储在MIR中。
可选地,MIR还可以用于存储策略信息。其中,策略信息还可以被称为决策信息、参数、条件、辅助信息或其它名称,本申请实施例不做限制。此时,MIR还可以被称为模型与策略信息库(model and policy information repository,MPIR)或者其他名称。如上所述,对于一个应用,上述AIA模块可以获取MPIR中存储的相关策略信息,用于该应用进行模型训练或推理。此时,该相关策略信息还可以称为该应用的策略信息。该应用的策略信息可以作为模型的输入参数,用于进行模型的更新训练和/或进行推理。可选地,MPIR可以存储一个或多个应用中每个应用的特定的策略信息。示例性地,MPIR可以存储以下策略中的一种或多种的信息:移动性负载均衡应用的切换决策策略、RAT应用的多个RAT之间的优先级信息、和网络节能应用的多个RAT之间的关断优先级信息。可选地,MPIR可以存储多个应用的公共策略信息。示例性地,MPIR存储多个应用优化目标冲突处理策略,用于在多个应用的优化目标发生冲突时进行冲突解决。
可选地,策略信息可以被存放于RIC模块中不同于MIR的另一个模块中,本申请实施例不做限制。
AIP模块的第二子模块用于存储UE和/或RAN(例如基站)的状态信息。其中,该状态 信息还可以称为运营状态信息、参数、或其它名称,本申请实施例不做限制。第二子模块还可以称为其他名称,本申请实施例不做限制,例如状态信息库(status information base,SIB)、或运营状态信息库(operation status information base,OSIB)等。为了便于描述,如图5所示,本申请实施例可以以第二子模块的名称是OSIB为例进行描述。示例性地,RIC从CN、OAM、第三方应用、UE和/或RAN处获得UE和/或RAN的运营状态信息,该运营状态信息可以存储在OSIB中。如上所述,对于一个应用,上述AIA模块可以获取OSIB中存储的运营状态信息,用于该应用进行模型训练和/或推理。
UE或RAN的运营状态信息可以包括UE或RAN的以下信息中的一种或多种:AI能力信息、AI配置信息、和AI状态信息。
AI能力信息(能力信息):
UE的AI能力信息可以包括UE的以下信息中的一种或多种:AI应用支持能力信息、AI数据收集能力信息和AI结果应用能力。
具体地,UE的AI应用支持能力信息包括以下信息中的一种或多种:UE的计算能力、UE的存储能力、UE支持的AI应用(例如,本申请实施例中可以表示为应用标识、应用名称、应用索引或应用类型)、UE支持的AI/ML模型(例如,本申请实施例中可以表示为模型标识、模型名称、模型索引或模型类型)、和UE支持的AI工作模式等。
本申请实施例中,AI工作模式包括以下内容中的一种或多种:进行AI训练、进行AI推理、进行集中式AI训练还是分布式AI训练、和进行集中式AI训练还是分布式AI训练。
在本申请实施例中,集中式AI训练表示单个节点(如UE或基站)进行AI训练,分布式AI训练表示单个节点进行一个AI训练过程的一部分。例如,分布式AI训练过程可以包括多个训练分段,由多个不同节点中的每个节点分别进行一部分训练,该多个节点一起完成完整的训练过程。这些节点的训练过程可以是串行的,也可以是并行的,或者串行和并行结合的,不予限制。例如,联邦训练为分布式训练的一种。
本申请实施例中,集中式AI推理表示单个节点进行AI推理,分布式AI推理表示单个节点进行一个AI推理过程的一部分。例如,分布式AI推理过程可以包括多个推理分段,由多个不同节点中的每个节点分别进行一部分推理,该多个节点一起完成完整的推理过程。这些节点的推理过程可以是串行的,也可以是并行的,或者串行和并行结合的,不予限制。
UE的AI数据收集能力信息包括以下信息中的一种或多种:UE类型、UE支持的切片类型、UE支持的数据收集相关的测量类型或方法(可参看3GPP协议TS37.320中的相关描述,但不限于该协议定义的测量类型)、UE支持的定位方法、UE支持的RAT类型(即UE支持收集哪些RAT的数据)、UE支持的时钟类型、UE支持的时钟精度、UE支持的体验质量(quality of experience,QoE)测量类型或方法、UE支持的功率控制方法、UE支持的层1(物理层)测量方法、UE支持的频段范围、UE支持的时延测量方式、和UE支持的时延测量粒度或步长等。
UE的AI结果应用能力信息包括以下信息中的一种或多种:UE支持的省电方案、UE支持的移动性方案、UE支持的RAT(即UE支持将AI结果应用于哪些RAT)、UE支持的最大发射功率、和UE支持的多入多出技术(multiple input multiple output,MIMO)层数等。
RAN的AI能力信息包括以下信息中的一种或多种:支持的网络切片类型、支持的测量类型(可参看3GPP协议TS37.320中的相关描述,但不限于该协议定义的测量类型)、支持的定位方法、支持的RAT的种类、时钟的类型、时钟的精度、进行QoE测量时支持的测量类型、支持的层1测量方法、支持的功率控制方法、频段范围、频率、时延测量种类、和时 延测量粒度等。其中,层1测量方法包括:是否支持波束粒度的测量,如RSRP测量和/或RSRQ测量;和/或是否支持零功率干扰测量等。时延测量种类包括:RLC/MAC分段时延测量、和/或总时延测量等。时延测量粒度包括:数据包(packet)、QoS流(flow)、和/或承载RB。
在本申请实施例中,RAT可以是全球移动通信系统(global system for mobile communications,GSM)、通用移动通讯系统(universal mobile telecommunications system,UMTS)、LTE、5G、WiFi、或蓝牙(bluetooth)等,本申请实施例不做限制。RAN或者UE支持的RAT的种类包括该多种RAT中的至少一种。
AI配置信息(配置信息):
UE的AI配置信息可以包括为该UE配置的以下信息中的一种或多种:AI应用(例如,本申请实施例中可以表示为配置的应用标识、应用名称、应用索引或应用类型)、AI应用对应的AI/ML模型(例如,本申请实施例中可以表示为模型标识、模型名称、模型索引或模型类型)、AI工作模式、省电方案、业务参数(例如,本申请实施例中可以包括数据无线承载(data radio bearer,DRB)配置、协议数据单元(protocol data unit,PDU)会话(session)配置等)、服务基站、和/或服务小区等。
RAN的AI配置信息可以包括以下信息中的一种或多种:基站使用的网络切片类型、下属小区的工作频率、下属小区的带宽、下属小区的同步信号和PBCH块(synchronization signal and PBCH block,SSB)下行发射功率、下属小区的SSB周期、RAN中的私网配置、网络共享配置(RAN sharing related configuration)、RAN中的节点(如WiFi接入点(access point,AP)、非独立基站、小站、IAB节点、和/或中继节点等)的信息等。其中,SSB还可以被替换为同步信号、广播信道或者下行参考信号等。
AI状态信息(状态信息):
当AIA模块的应用使用相应的AI状态信息进行模型训练时,该相应的AI状态信息可以看做训练数据。当AIA模块的应用使用相应的AI状态信息进行推理时,该相应的AI状态信息可以看做测试数据、预测数据或推理数据。
UE的AI状态信息可以包括UE的以下信息中的一种或多种:业务状态信息、资源使用状态信息、无线信道状态信息、位置信息、移动速度、运动轨迹、UE的RRC连接状态、和用户/UE喜好信息等。
在本申请实施例中,业务状态信息可以包括以下信息中的一种或多种:在运行的业务、平均数据速率、空口平均传输时延、丢包率、QoE满足等级、和业务模型(traffic pattern)等。
在本申请实施例中,资源使用状态信息可以包括以下信息中的一种或多种:使用的计算资源、使用的存储资源、和空口资源使用百分比等。
在本申请实施例中,无线信道状态信息可以包括以下信息中的一种或多种:UE测量到的服务小区的参考信号接收功率(reference signal received power,RSRP)、UE测量到的服务小区的参考信号接收质量(reference signal received quality,RSRQ)、基站或接入回程一体化(integration of access and backhaul,IAB)节点测量到的上行接收干扰、和基站或IAB节点测量到的下行共享频谱资源冲突概率等。一个UE可以有一个或多个服务小区,本申请实施例不做限制。UE相关的上行接收干扰可以是在网络侧测量得到的。
在本申请实施例中,用户/UE的喜好包括以下内容中的一项或多项:省电模式的喜好、RAT选择喜好、运营商选择喜好、和AI工作模式的喜好等。用户/UE喜好信息可以通过使用该UE的用户进行设置。例如,用户可以设置以下内容中的一项或多项:省电模式、运营商网络选择顺序、和RAT选择顺序等。UE或RAN节点可能根据自身设备电量的变化而设置不 同的喜好。可替代地,用户/UE喜好信息可以作为策略信息存储在MPIR中;或者,用户/UE喜好信息中的一部分信息(例如签约信息中设置的喜好信息等,因为这种喜好信息很少改变)存储在MPIR中,另一部分信息存储在OSIB中。示例性地,RIC从CN、OAM或第三方应用获得的用户/UE喜好信息存储在MPIR中,由UE或RAN节点向RIC上报的用户/UE喜好信息存储在OSIB中。
RAN的AI状态信息可以包括以下信息中的一种或多种:业务状态信息、资源使用状态信息、无线信道状态信息、RAN节点(比如基站、IAB、或中继节点)的位置信息、移动速度、运动轨迹等、下属小区的负荷、下属小区的小区关断情况、下属小区的业务QoS保障情况、和基站使用的网络切片类型等。
AIP模块的第三子模块用于管理或实现以下AI功能中的一种或多种:初始化、模型发布、数据收集、模型训练、推理和推理结果发布。第三子模块还可以称为其他名称,本申请实施例不做限制,例如过程管理(procedure management,PM)模块、AI过程管理(AI procedure management,AIPM)模块、或AI处理模块等。为了便于描述,本申请实施例可以该第三子模块的名称是AIPM为例进行描述。
示例性地,AIPM可以触发或管理RIC模块的初始化过程。该过程可以发生于RIC模块SETUP(例如上电)时。此时,RIC模块可以从CN、UE和/或基站等获得UE的AI能力信息和AI配置信息。RIC模块可以从CN和/基站获得RAN的AI能力信息和AI配置信息。可选地,当UE的AI能力信息或AI配置信息发生改变时,UE可以通过基站或CN把更新后的AI能力信息或AI配置信息告知RIC模块。当RAN的AI能力信息或AI配置信息发生改变时,RAN可以通过基站或CN把更新后的AI能力信息或AI配置信息告知RIC模块。RIC模块可以将所获得的AI能力信息和AI配置信息存放于OSIB中。
示例性地,AIPM可以触发或管理数据收集过程。该过程可以发生于RIC模块运行时。AIPM可以触发RIC模块周期性地、事件触发地、和/或基于请求,获得UE和/或RAN的AI状态信息。可选地,可以通过协议约定的方式,或者通过RIC模块下达数据收集任务的方式,使得UE和/或RAN知晓RIC模块想要收集的AI状态信息的类型。RIC模块可以将所获得的AI状态信息存放于OSIB中。
示例性地,AIPM可以触发或管理模型发布功能。该过程可以发生于RIC模块运行时。用于RIC模块向基站和/或UE发布模型信息。该模型信息存放于MPIR中。
示例性地,AIPM可以触发或管理模型训练(包括模型更新)过程。该过程可以发生于RIC模块运行时。例如,对于一个应用,AIPM可以触发AIA模块从RIC模块中获得该应用进行模型训练时使用的以下信息中的一种或多种:模型信息、策略信息、和UE和/或RAN的运营状态信息。该应用根据这些信息进行模型训练。AIA模块可以将训练得到的模型信息或更新的模型信息存放于上述MPIR中。
示例性地,AIPM可以触发或管理推理过程。该过程可以发生于RIC模块运行时。例如,对于一个应用,AIPM可以触发AIA模块从RIC模块中获得该应用进行推理时使用的以下信息中的一种或多种:模型信息、策略信息、和UE和/或RAN的运营状态信息。该应用根据这些信息进行推理。可选地,AIPM可以触发推理结果发布过程,将该应用的推理结果发布给RAN和/或UE。推理结果也可能发布给CN、OAM、和/或第三方应用,本申请实施例不做限制。
可选地,上述第一子模块、第二子模块和第三子模块中的任意两个可以合成一个子模块。例如,第一子模块和第二子模块可以合成为一个子模块。第一子模块中存储的信息和第二子 模块中存储的信息可以统称为AI信息。这些AI信息包括但限于上述相关信息。
第二部分:RIC模块应用于RAN时的网络架构。
本申请实施例中,RIC模块可以是实体网元或功能模块,本申请实施例不做限制。其中,功能模块可以是软件模块、硬件电路、或软件模块结合硬件电路。RIC模块是实体网元、硬件电路、或软件模块结合硬件电路时,RIC模块还可以被称为无线智能控制器(radio intelligence controller,RIC)。为了便于描述,本申请实施例中还可以把RIC模块简称为RIC。RIC模块可以存在于RAN中但是不存在于UE中,或者RIC可以同时存在于RAN中和UE中。下面,分别从网络侧和UE侧介绍RIC模块。
当RIC模块存在于网络侧时,可以有图6(a)-图6(c)所示的三种网络架构。
图6(a):独立RIC架构。
该网络架构中,RIC模块和基站是分离的网元(network element)。该网络架构可以适用于一体化基站、CU/DU分离基站、和CP/UP分离基站。
该架构中,RIC模块在逻辑上是一个独立于基站的网元或逻辑实体(logical entity)。例如,RIC模块可以是独立的RIC节点、RIC网元、AI节点或AI网元,或者是包括于至少一个节点中的软件模块和/或硬件电路,该至少一个节点是分离于基站的节点,本申请实施例不做限制。
图6(b):嵌入式RIC网络架构。
该网络架构中,RIC模块是基站的组成部分。该网络架构可以适用于一体化基站、CU/DU分离基站、和CP/UP分离基站。
对于CU/DU分离基站,RIC模块可以包括在CU中但不包括在DU中;或者包括在DU中但不包括在CU中;或者可以部分包括在CU中,部分包括在DU中。
CU中的RIC模块可以称为非实时无线智能控制(non-real time RIC,nrt-RIC)模块、模块A、CU智能模块、CU AI模块或者其他名称,本申请实施例不做限制。对于CP/UP分离场景,nrt-RIC模块可以包括在CU-CP中但不包括在CU-UP中;或者包括在CU-UP中但不包括在CU-CP中;或者可以部分包括在CU-UP中,部分包括在CU-CP中,本申请实施例不做限制。
在本申请实施例中,nrt-RIC模块可以是一个集成的模块,也可以包括多个分离的子模块,不做限制。例如,nrt-RIC模块中包括AIA模块,AIA模块中的应用用于实现或者辅助实现无线资源管理(radio resource management,RRM)功能。RRM功能可以被认为是实时性要求相对不强的网络功能或网络优化功能,即非实时功能。层3的功能可以看做是RRM功能。nrt-RIC模块中的应用对应的模型信息和策略信息存储在nrt-RIC模块中的MPIR中,nrt-RIC模块中的应用待使用的运营状态信息存储在nrt-RIC模块中的OSIB中。nrt-RIC模块中还包括AIPM模块,AIPM模块用于管理nrt-RIC模块的AIA模块中的应用的以下AI过程的一项或多项:数据收集、模型训练、模型下载、模型发布、推理和推理结果发布。
nrt-RIC模块可以是软件模块、硬件电路、或者软件模块和硬件模块的组合,本申请实施例不做限制。
DU中的RIC模块可以称为实时无线智能控制(real time RIC,rt-RIC)模块、模块B、DU智能模块、DU AI模块或者其他名称,本申请实施例不做限制。
在本申请实施例中,rt-RIC模块可以是一个集成的模块,也可以包括多个分离的子模块,不做限制。例如,rt-RIC模块中包括AIA模块,AIA模块中的应用用于实现或者辅助实现层 1和/或层2的功能,这些功能是实时性要求相对较强的功能,即实时功能。例如,AIA模块中的应用用于实现或者辅助实现以下功能中的一种或多种:信道状态信息(channel status information,CSI)压缩、功率控制、预编码、调制、和信道编码等。rt-RIC模块中的应用对应的模型信息和策略信息存储在rt-RIC模块中的MPIR中,rt-RIC模块中的应用待使用的运营状态信息存储在rt-RIC模块中的OSIB中。可选地,rt-RIC模块中还包括AIPM模块,AIPM模块用于管理rt-RIC模块的AIA模块中的应用的以下过程:数据收集、模型下载、模型训练、模型发布、和推理结果发布。可替代地,rt-RIC模块的AIA模块中的应用的以下过程中的至少一个可以由上述nrt-RIC模块中的AIPM模块管理:模型训练、模型下载和模型发布。
本申请实施例中,层1是物理层,层2是SDAP层、PDCP层、RLC层和/或MAC层,层3是RRC层。
rt-RIC模块可以是软件模块、硬件电路、或者软件模块和硬件模块的组合,本申请实施例不做限制。
图6(c):混合RIC架构。
该架构中,一部分RIC模块和基站是分离的网元,另一部RIC模块是基站的组成部分。该网络架构可以适用于一体化基站、CU/DU分离基站、和CP/UP分离基站。一种可能的实现中,如图6(c)所示,nrt-RIC模块独立于基站,rt-RIC包括在基站中。另一种可能的实现中,rt-RIC模块独立于基站,nrt-RIC包括在基站中。
RIC模块可以存在于UE中,也可以不存在于UE中。
RIC模块存在于UE中时,可以是软件模块、硬件电路、或者软件模块和硬件模块的组合,本申请实施例不做限制。此时,UE可以实现以下AI功能中的一种或多种:数据收集、模型下载、模型训练、模型更新、模型发布、推理和推理结果发布。
RIC模块不存在于UE中时,UE可以被触发进行数据收集和推理结果应用。例如,UE可以将所收集的数据上报给网络侧,用于网络侧实现AI功能。再例如,UE可以接收并应用网络发布的推理结果,和/或可以接收并应用由推理结果触发的网络重配。
在通信系统中,RAN和UE是基于协议架构进行通信。下面,将介绍引入AI功能后的协议架构。
第三部分:用于实现AI功能的协议栈。
在RAN中或UE中实现AI功能时,可以有图7(a)-图7(d)所示的四种协议栈。其中,RAN中的协议栈和UE侧的协议栈是对应的。即,RAN和UE可以采用图7(a)-图7(d)中一种相同的协议栈进行通信。其中,每种协议栈均适用于图6(a)至图6(c)的任一种网络架构。
图7(a):RRC层增强。
该协议架构中,由RRC层实现非实时网络(优化)功能的AI功能。其中,本申请实施例中,非实时网络(优化)功能可以简称为非实时功能,具体介绍同上述第二部分,这里不再赘述。例如,定义新的RRC消息或在RRC消息中增加新的信元(information element,IE),用于触发或管理非实时功能的以下AI过程的一项或多项:数据收集、模型训练、模型下载、模型发布、推理和推理结果发布。此外,定义新的RRC消息或在RRC消息中增加新的信元这一方法还可以用于实现实时网络(优化)功能的以下AI功能的一项或多项:模型训练、模型下载、和模型发布。其中,本申请实施例中,实时网络(优化)功能可以简称为实时功能,具体介绍同上述第二部分,这里不再赘述。上述这些新增的RRC消息或新增的信元可以被称为nrt-AI数据。
在发送端,RRC层的nrt-AI数据被依次递交至PDCP层、RLC层、MAC层和物理层进行处理,并由发送端在物理层发送至接收端;在接收端的物理层接收到数据后,该数据被依次递交至MAC层、RLC层、PDCP层和RRC层进行处理,从而接收端可以在RRC层解读出nrt-AI数据。
该协议架构中,由层1和/或层2实现实时功能的AI功能。例如,通过物理层数据信道、物理层控制信道或者MAC控制元素(control element,CE)携带信息,实现实时功能的以下AI功能的一项或多项:数据收集、模型训练、推理和推理结果发布。其中,该信息可以称为rt-AI数据。
在发送端,层1的rt-AI数据被发送至接收端,接收端在层1解读出rt-AI数据。在发送端,层2的rt-AI数据被递交至物理层进行处理,并由发送端在物理层发送至接收端;在接收端的物理层接收到数据后,该数据被递交至层2进行处理,从而接收端可以在层2解读出rt-AI数据。
图7(b):新增与RRC层并行的人工智能控制(artificial intelligence control,AIC)层。
其中,AIC层与RRC层并行还可以描述为AIC层的数据不经过RRC层、或者描述为AIC层在PDCP层之上。不限制地是,AIC层和PDCP层之间可以不存在其他协议层,或者可以存在其他协议层,例如将来引入的协议层。
该协议架构中,AIC层用于实现非实时功能的以下AI功能的一项或多项:数据收集、模型训练、模型下载、模型发布、推理和推理结果发布。此外,AIC层还可以用于实现实时功能的以下AI功能的一项或多项:模型训练、模型下载、和模型发布。用于实现这两类功能的信息或数据可以称为nrt-AI数据或AIC(层)消息。
在发送端,nrt-AI数据被依次递交至PDCP层、RLC层、MAC层和物理层进行处理,由发送端在物理层发送至接收端;在接收端的物理层接收到数据后,该数据被依次递交至MAC层、RLC层、PDCP层和AIC层进行处理,从而接收端可以在AIC层解读出nrt-AI数据。
一种可能的实现中,该协议架构中,由层1和/或层2实现实时功能的以下AI功能的一项或多项:数据收集、模型训练、推理和推理结果发布。用于实现该功能的信息或数据可以称为rt-AI数据。具体同图7(a)中相应的描述。
一种可能的实现中,该协议架构中,由AIC层实现实时功能的以下AI功能的一项或多项:数据收集、模型训练、推理和推理结果发布。用于实现该功能的信息或数据可以称为rt-AI数据或AIC(层)消息。在发送端,该rt-AI数据被依次递交至PDCP层、RLC层、MAC层和物理层进行处理,由发送端在物理层发送至接收端;在接收端的物理层接收到数据后,该数据被依次递交至MAC层、RLC层、PDCP层和AIC层进行处理,从而接收端可以在AIC层解读出rt-AI数据。
可选地,该实现中,为了保证该rt-AI数据的实时性,可以配置用于承载该rt-AI数据的无线承载(radio bear,RB)的PDCP层和RLC层的传输模式为透明模式(transparent mode,TM)。例如,当发送端发送该rt-AI数据时,在PDCP层和RLC层不对该交互信息做任何处理,直接递交至后续协议层。关于RB的详细介绍请见下文。
图7(c):新增RRC层之上的AIC层。
不限制地是,AIC层和RRC层之间可以不存在其他协议层,或者可以存在其他协议层,例如将来引入的协议层。
该协议架构中,AIC层作为新增的控制面协议层,位于RRC层之上。由AIC层实现非实时功能的以下AI功能的一项或多项:数据收集、模型训练、模型下载、模型发布、推理、和 推理结果发布。可选地,AIC层还可以实现实时功能的以下AI功能的一项或多项:模型训练、模型下载、和模型发布。用于实现这两类功能的信息或数据可以称为nrt-AI数据或AIC(层)消息。在发送端,该nrt-AI数据被依次递交至RRC层、PDCP层、RLC层、MAC层和物理层进行处理,由发送端在物理层发送至接收端;在接收端的物理层接收到数据后,该数据被依次递交至MAC层、RLC层、PDCP层、RRC层和AIC层进行处理,从而接收端可以在AIC层解读出nrt-AI数据。
该协议架构中,由层1和/或层2实现实时性功能的以下AI功能的一项或多项:数据收集、模型训练、推理和推理结果发布。具体同图7(a)中相应的描述。
图7(d):由应用层执行部分AI功能。
该协议架构中,应用层为用户面协议层,应用层可以执行模型发布功能。在发送端,模型发布功能相关的数据被依次递交至SDAP层(可选)、PDCP层、RLC层、MAC层和物理层进行处理,由发送端在物理层发送至接收端;在接收端的物理层接收到数据后,该数据被依次递交至MAC层、RLC层、PDCP层、SDAP层(可选)和应用层进行处理,从而接收端可以在应用层解读出模型发布功能相关的数据。
除了模型发布功能之外的其他AI功能可以采用上述图7(a)-图7(c)中的任一种方式。例如:
第一种可能的实现(图7(d)+图7(a)):由应用层执行实时功能的和非实时功能的模型发布功能,其它AI功能的实现同上述图7(a)所述。
第二种可能的实现(图7(d)+图7(b)):由应用层执行实时功能的和非实时功能的模型发布功能。其它AI功能的实现同上述图7(b)所述。
第三种可能的实现(图7(d)+图7(c)):由应用层执行实时功能的和非实时功能的模型发布功能。其它AI功能的实现同上述图7(c)所述。
基于上述协议层,RAN和UE之间可以交互AI信息,以实现RAN的智能化。在RAN和UE之间传输AI信息时,可以通过RB来承载AI信息。对于一个RB,可以配置该RB对应的各协议层的参数或信息。
在本申请实施例中,RB用于承载RAN和UE之间通过空口交互的数据。不同类型的数据可以映射至不同的RB中,由发送端发送至接收端。
在一种可能的实现中,RAN和UE之间的RB包括信令无线承载(signal radio bearer,SRB)和数据无线承载(data radio bearer,DRB)两种类型的RB。其中。SRB主要承载控制面数据,所承载的数据会经过RRC层、PDCP层、RLC层、MAC层和物理层。DRB主要承载用户面数据,所承载的数据会经过SDAP层、PDCP层、RLC层、MAC层和物理层。例如,RRC层消息或者非接入层NAS(non-access stratum,NAS)消息可以承载于SRB上,来自应用层的数据可以承载于DRB上。一个RB可以对应一种QoS要求。一个UE和RAN之间可以存在一个或多个SRB,和/或可以存在一个或多个DRB。
本申请实施例中,根据AI信息的QoS要求,AI信息可以被承载于SRB(例如用于承载上述图7(a)中的nrt-AI数据、图7(b)中的nrt-AI数据(可选)、和图7(c)的nrt-AI数据)和/或DRB(例如用于承载上述图7(d)中用于模型发布功能的数据、和图7(b)中的nrt-AI数据(可选))中。或者,可以为AI信息定义新的RB,即可以在RAN和UE之间建立专用于承载AI信息的RB。
AI信息(或数据)包括公共的AI信息和专用于特定UE的AI信息。
一种可能的实现中,可以在RAN和UE之间建立公共RB,用于承载RAN向多个UE广播或组播的公共的AI信息。其中,该公共RB还可以称为人工智能公共无线承载(artificial intelligence-common radio bearer,AI-CRB)或其它名称,本申请实施例不做限制。可以通过系统信息或L1/L2/L3专用信令将AI-CRB的配置信息通知对应UE,其中,该专用信令为专用于该UE的信令。例如,基站向UE发送系统信息,该系统信息用于指示AI-CRB的配置信息。AI-CRB的配置信息可以指示用于加扰PDCCH的无线网络临时标识(radio network temporary identifier,RNTI)、和/或该PDCCH的时频位置信息(例如该PDCCH的搜索空间和/或控制资源集(control resource set,CORESET))等。其中,该PDCCH用于调度AI-CRB上承载的AI信息。又例如,基站向UE发送PDCCH,该PDCCH上的控制信息是通过人工智能(AI)-无线网络临时标识(radio network temporary identifier,RNTI)加扰的。该控制信息调度PDSCH,该PDSCH上承载了AI-CRB的配置信息。
示例性地,当需要传输公共AI信息时,例如传输用于实现联邦学习的AI模型更新功能的信息时,可以配置AI-CRB,由AI-CRB承载该公共AI信息。如果存在多种公共AI信息从而存在多种QoS要求时,可以配置多个AI-CRB来分别承载不同QoS要求的RIC公共数据。
RAN和UE间可以建立一个或多个AI-CRB。每个AI-CRB可以有对应的QoS要求。本申请实施例中,QoS要求包括调度优先级信息。
示例性地,可以在RAN和一个UE之间建立特定RB,用于承载RAN向该特定UE发送的AI信息。其中,该特定RB还可以称为人工智能数据无线承载(artificial inteligence data radio bearer,AI-DRB)或其它名称,本申请实施例不做限制。
AI-DRB上可以承载上述图7(d)中的nrt-AI数据。
RAN和一个UE间可以建立一个或多个AI-DRB。每个AI-DRB可以有对应的QoS要求。
上述RAN和UE间的RB的建立可以是RAN触发的,也可以是RIC指示RAN触发的,本申请实施例不做限制。
第四部分:RAN和UE之间的通信方法。
结合前文介绍,下面将详细介绍RAN和UE之间的AI信息交互流程。
示例一:独立RIC架构(图6(a))+RRC层增强(图7(a))
图8(a)所示为基站和UE之间的架构(网络架构+协议栈)示例一。图8(b)所示为采用图8(a)所示的架构,RAN和UE之间的信息交互流程示例图。示例一中没有独立的AIC协议层,由RRC层执行非实时功能、rt-RIC的AI初始化功能、和/或AI模型分发功能。
本申请实施例中,不限制交互流程中各操作的执行顺序。
图8(a)所示的架构中,RAN中存在独立于基站的RIC模块。该架构中,由RAN的RIC模块进行以下操作中至少一项:模型下载、模型训练、数据收集、推理和发布推理结果。
当UE不支持RIC功能时(还可以描述为无RIC模块),RAN的RIC模块可以请求基站收集数据和/或向基站发布推理结果。RAN的RIC模块还可以通过基站的RRC层,例如通过基站向UE发送新增的RRC消息或者新增的IE,指示UE收集数据或者向UE发送推理结果。其中,要求UE收集的数据可以是RRC层数据、层2数据或者物理层数据,不做限制。本申请实施例中,用于进行推理的模型可以是下载的原始模型,也可以是根据训练数据训练后的更新模型,不做限制。RIC模块进行模型训练的训练数据可以是从基站和/或UE收集的,或者从CN获得的,不做限制。RIC模块进行推理的推理数据可以是从基站和/或UE收集的。
在本申请实施例中,UE不支持RIC功能可以描述为UE中无RIC模块。为了便于描述, 如无特殊说明,下述RIC模块指RAN侧的RIC模块。
当UE支持RIC功能时,RAN的RIC模块可以请求基站收集数据和/或向基站发布推理结果。RAN的RIC模块还可以通过基站的RRC层,例如通过基站向UE发送新增的RRC消息或者新增的IE,指示UE收集数据、指示UE进行联邦学习、向UE发布模型(用于UE进行推理或联邦学习)、指示UE进行推理或者向UE发送推理结果。其中,要求UE收集的数据可以是RRC层数据、层2数据或者物理层数据,不做限制。本申请实施例中,用于进行推理的模型可以是下载的原始模型,也可以是根据训练数据训练后的更新模型,不做限制。RIC模块进行模型训练的训练数据可以是从基站和/或UE收集的,或者从CN获得的,不做限制。RIC模块进行推理的推理数据可以是从基站和/或UE收集的。
本申请实施例中,基站可以是一体化基站,或者可以是CU/DU分离的基站,本申请实施例不做限制。下述架构图中以CU/DU分离的形式为例示出基站。可选地,当基站的CU/DU分离时,该基站可以是CP/UP分离的基站。
在本申请实施例中,当RIC模块和基站分离时,即RIC模块不包括在基站中时,基站和RIC模块可以通过接口进行通信。其中,基站和RIC模块之间的接口包括以下接口中的一项或多项:一体化基站和RIC模块之间的接口、CU和RIC模块之间的接口、CU-CP和RIC模块之间的接口、CU-UP和RIC模块之间的接口、和DU和RIC模块之间的接口。在本申请实施例中,可以将基站和RIC模块之间的接口记为G1接口,或者其它名称的接口,如第一接口等,本申请实施例不做限制。为了便于描述,本申请实施例以G1接口为例示出。G1接口可以是有线连接的接口,或者可以是无线连接的接口,或者可以是其它形式连接的接口,本申请实施例不做限制。在本申请实施例中,有线连接可以是通过电缆、光线或者其他介质连接,不予限制。
示例性地,基于图8(a)所示的架构,在RAN侧:RIC模块通过基站中的RRC层实现非实时功能的AI功能,通过基站中的层1和/或层2实现实时功能的部分AI功能,该部分实时功能的AI功能的一些配置信息可以通过RRC层信令由基站发送至UE。例如,基站通过新增的RRC消息或者新增的网元,实现以下至少一项:指示UE收集RRC层数据、指示UE收集层2数据(比如基站的PDCP层与UE的PDCP层这两个对等协议层之间的数据传输时延)、指示UE收集物理层数据、指示承载AI数据或AI信息的RB的配置信息、向UE发布RRC层的推理结果(参数值)、向UE发布物理层的推理结果(参数值)、指示层1和/或层2AI功能相关的参数配置、向UE发布模型信息、和指示UE进行模型训练(如联邦训练)。再例如,基站通过物理层信道、和/或MAC CE,实现以下至少一项:指示UE收集物理层数据、和向UE发布物理层的推理结果(参数值)。
在本申请实施例中,RRC层信令可以是广播信道上携带的消息(如主信息块(master information block,MIB))、系统消息(如系统信息块(system information block,SIB))、或RRC消息,本申请实施例不做限制。
示例性地,在UE侧:相应地,根据从基站接收的信息,辅助实现非实时功能的AI功能和实时功能的AI功能。例如:
如果基站指示UE收集RRC层数据,则UE通过RRC消息将所收集的数据上报给基站。
如果基站通过RRC消息指示UE收集物理层数据,则UE通过RRC消息、MAC CE或物理层信道将所收集的数据上报给基站。
如果基站通过MAC CE指示UE收集物理层数据,则UE通过MAC CE或物理层信道将所收集的数据上报给基站。
如果基站通过物理层信道指示UE收集物理层数据,则UE通过MAC CE或物理层信道将所收集的数据上报给基站。
如果基站向UE指示承载AI数据或AI信息的RB的配置信息,则UE根据该RB的配置信息和基站间建立该RB。
如果基站向UE发布RRC层和/或物理层的推理结果(参数值),则UE可以将该推理结果应用至UE侧。
如果基站向UE指示层1和/或层2AI功能相关的参数配置,则UE根据该参数配置对这些功能相关的参数进行设置。
如果基站向UE发布模型的信息,则UE可以利用该模型进行推理。UE可以应用该推理结果,和/或将该推理结果上报给RAN侧。
如果基站指示UE进行联邦训练,UE可以进行将训练得到的模型参数的梯度信息上报给RIC模块。
图8(b)所示为RAN和UE使用图8(a)所示的架构进行信息交互的流程示例图。主要包括:RIC模块向基站发布任务,和/或RIC模块通过基站向UE发布任务;UE和/或基站执行相应的任务。可选地,当RIC模块发布的任务包括数据收集时,基站向RIC模块上报收集的数据,和/或UE通过基站向RIC模块上报收集的数据。可选地,当RIC模块根据收集到的数据训练或更新了模型后,可以利用该模型进行推理。可选地,当RIC模块根据收集到的数据执行了推理功能后,可以将推理结果发布给UE和/或基站。下面,将详细介绍图8(b)所示的方法。
S801,RIC模块向基站发送第一任务配置信息;基站接收第一任务配置信息。
该方法中,第一任务配置信息用于RIC模块向基站发布新的任务,或者用于RIC模块通过基站向UE发布新的任务。本申请实施例中,不限制携带第一任务配置信息的消息的名称。例如,本申请实施例中,可以将携带第一任务配置信息的消息称为第y消息、RIC TASK ADDITION消息、或RIC TASK ADDITION REQUEST消息。其中,y为正整数。在本申请实施例中,对于不同的消息,y的取值不同。本申请实施例以该消息的名称是RIC TASK ADDITION REQUEST为例示出。
本申请实施例中,任务还可以称为操作、事务、项目或者其他名称,本申请不做限制。在本申请实施例中,一个任务的类型可以是至少两种任务类型中的一种。该至少两种任务类型可以是以下多种中的至少两种:收集数据(或称为数据收集)、模型发布、模型训练、推理和推理结果发布。本申请实施例中,任务的类型还可以称为任务的名称等,本申请实施例不做限制。
第一任务配置信息用于RIC模块向基站发布新的任务时,基站可以根据该配置信息的指示执行相应的任务。第一任务配置信息用于RIC模块通过基站向UE发布新的任务时,如前文所述,基站将发布给UE的一个或多个任务以RRC层信令的形式发送至UE,和/或将发布给UE的一个或多个任务以MAC CE信令的形式发送至UE。相应地,如上所述,UE可以根据基站的指示,通过基站向RIC模块上报所收集的数据。
可选地,当第一任务配置信息能够配置多个任务时(此时,实际发送的消息中可以包括一个或多个任务),RIC TASK ADDITION REQUEST消息中包括表1第一列所示的信元(information element,IE)中的一项或多种。其中,表1的第二列所示为第一列中各IE的说明。
在本申请实施例中,一个消息中的IE可以是显示地包括在该消息中,或者可以是隐式地通过该消息指示,本申请实施例不做限制。本申请实施例不限制该消息中各IE的名称,例如某个IE可以被替换为第x IE,其中,x为正整数。对于不同的IE,x的值可以不同。本申请实施例中,当某个表格中的某个IE不包括在相应的消息时,这个IE配置的信息可以是协议约定的。
表1
上述TASK CONFIGURATION INFORMATION的消息中包括表2第一列所述的IE中的一项或多项。
表2
可选地,S801还可以包括:基站向RIC模块发送第一任务确认信息;RIC接收第一任务确认信息。
第一任务确认信息用于基站向RIC模块确认RIC TASK ADDITION REQUEST消息。本申请实施例中,不限制携带第一任务确认信息的消息的名称。例如,本申请实施例中,可以将携带第一任务确认信息的消息称为RIC TASK ADDITION RESPONSE消息、第y消息或其它名称。其中,y为正整数。
本申请实施例中,S801可以被称作任务添加过程、任务配置过程或其它名称。
可选地,为了在RIC模块和基站之间交互信息,可以建立RIC模块和基站之间的接口。在本申请实施例中,RIC模块和基站之间的接口存在以下几种可能的场景:
场景1:基站是一体化基站,基站和RIC模块之间存在接口。该场景中,建立RIC模块和基站之间的接口包括:建立RIC模块和该一体化基站之间的接口。
场景2:基站是CU/DU分离基站,CU和RIC模块之间存在接口,DU和RIC模块之间存在接口。该场景中,建立RIC模块和基站之间的接口包括:建立RIC模块和CU之间的接口,且建立RIC模块和DU之间的接口。
场景2的子场景1:基站是CP/UP分离基站,CU-CP和RIC模块之间存在接口,CU-UP和RIC模块之间存在接口。则该场景中,建立RIC模块和CU之间的接口包括:建立RIC模块和CU-CP之间的接口,且建立RIC模块和CU-UP之间的接口。
场景2的子场景2:基站是CP/UP分离基站,CU-CP和RIC模块之间存在接口,CU-UP和RIC模块之间没有接口。则该场景中,建立RIC模块和CU之间的接口包括:建立RIC模块和CU-CP之间的接口。RIC模块和CU-UP之间可以通过CU-CP的转发功能交互数据。
本申请实施例中,对数据进行转发包括:透明转发该数据(对数据不做处理),或者对该数据进行处理后转发处理后的数据。
场景3:基站是CU/DU分离基站,CU和RIC模块之间存在接口,DU和RIC模块之间没有接口。该场景中,建立RIC模块和基站之间的接口包括:建立RIC模块和CU之间的接口。RIC模块和DU之间可以通过CU的转发功能交互数据。
场景3的子场景1:同场景2的子场景1。
场景3的子场景2:同场景2的子场景1。
为了简化描述,图8(b)中以基站是CU/DU分离基站,且CU和DU均和RIC模块存在接口为例。其他场景的方法是类似的,不再赘述。如上所述,为了建立CU和RIC模块之间的接口,图8(b)所示的方法还可以包括:S802:CU向RIC模块发送G1接口建立请求消息。该G1接口建立请求消息可以被称为第一G1接口建立请求消息、或第一接口建立请求消息。可选地,S802的方法还包括:RIC模块向CU返回G1接口建立确认消息。该G1接口建立确认消息可以被称为第一G1接口建立确认消息或第一接口建立确认消息。
在本申请实施例中,G1接口建立请求消息用于建立和RIC模块之间的连接,不限制其名称。例如,该消息可以被称为第y消息、G1 SETUP REQUEST消息或其它名称。其中,y为正整数。
在本申请实施例中,G1接口建立确认消息用于RIC模块确认建立和RIC之间的连接,不 限制其名称。例如,该消息可以被称为第y消息、G1 SETUP RESPONSE消息、G1接口建立响应消息、或其它名称。其中,y为正整数。
S802可以被称为CU和RIC模块之间的G1接口建立过程。经过该过程,建立了RIC模块和CU之间的G1接口。
本申请实施例中,CU可以通过G1接口向RIC模块上报基站的AI运营状态信息。可以上报该基站的AI运营状态信息,或者该基站的CU相关的AI运营状态信息。该基站的AI运营状态信息是RAN的AI运营状态信息的一部分。该操作除了上报该CU所在的基站的AI运营状态信息,可选地,还可以上报RAN中其他基站的AI运营状态信息。例如,该CU可以控制多个DU,并且有下属IAB和非独立(non-standalone)基站,该CU、该CU控制的DU、该CU下属的IAB、和该CU下属的非独立基站可以被看做一个RAN,该CU可以上报这个RAN的部分或全部AI运营状态信息。
示例性地,CU向RIC发送的G1 SETUP REQUEST消息中包括表3第一列所示的IE中的一项或多项。
表3
可选地,上述CU的能力信息、配置信息和/或状态信息可以是CU和RIC之间的接口建立后,通过其他消息上报的,本申请实施例不做限制。该其他消息中可以包括表3第一列所示的IE中的一项或多项,不予限制。此时,消息类型是该其他消息的类型。
可选地,图8(b)所示的方法还包括:S803:DU向RIC模块发送G1接口建立请求消息。该G1接口建立请求消息可以被称为第二G1接口建立请求消息或其他名称、或第二接口建立请求消息。可选地,S803的方法还包括:RIC模块向DU返回G1接口建立确认消息。该G1接口建立确认消息可以被称为第二G1接口建立确认消息或第二接口建立确认消息。
S803可以被称为DU和RIC模块之间的G1接口建立过程。经过该过程,建立了RIC模块和DU之间的G1接口。
DU向RIC发送的G1 SETUP REQUEST消息中包括表4第一列所示的IE中的一项或多项。
表4
可选地,上述DU的能力信息、配置信息和/或状态信息可以是DU和RIC之间的接口建立后,通过其他消息上报的,本申请实施例不做限制。该其他消息中可以包括表4第一列所 示的IE中的一项或多项,不予限制。此时,消息类型是该其他消息的类型。
当基站为一体化基站时,基站向RIC发送一个G1 SETUP REQUEST消息,该消息具体包括表3和表4所示的G1 SETUP REQUEST消息的功能,例如表5所示。
表5
可选地,上述基站的能力信息、配置信息和/或状态信息可以是基站和RIC之间的接口建立后,通过其他消息上报的,本申请实施例不做限制。该其他消息中可以包括表5第一列所示的IE中的一项或多项,不予限制。此时,消息类型是该其他消息的类型。
RIC模块获得上述基站的AI能力信息,或者描述为RIC模块获得CU和/或DU的AI能力信息后,可以触发空口的AI-CRB建立过程。利用该AI-CRB,基站可以通过空口向UE发送广播或组播类型的数据收集。其中,RIC模块触发空口的AI-CRB建立过程的一种可能的实现为:RIC模块指示CU和/或DU在空口建立一个或多个AI-CRB;或者CU和/或DU收到RIC模块下发的任务,该任务指示小区中所有UE或者一组UE进行数据收集时,在空口建立一个或多个AI-CRB。
在本申请实施例中,对于CU/DU分离的基站,CU和DU之间可以存在接口,可以进行数据交互。因此,图8(b)所示的方法可以包括建立CU和DU之间的连接。示例性地,CU和DU之间的接口称为F1接口,CU和DU之间的F1接口建立过程用于建立CU和DU之间的连接,随后CU和DU之间可以交互信息。CU和DU之间的F1接口建立过程包括:DU向CU发送F1建立请求消息,CU向DU返回F1建立响应消息。F1建立请求消息用于指示以下信息中的一种或多种:消息类型、DU标识、和DU下属小区列表信息。F1建立响应消息用于指示以下信息中的一种或多种:消息类型、激活小区列表、和系统信息。
上述描述了RIC模块可以向基站发送将由UE执行的任务。在一些场景中,RIC模块可以通过协议约定的方式了解UE的运营状态信息,以便RIC模块为UE确定UE的任务。在一些场景中,RIC模块需要通过基站或CN获取UE的运营状态信息,以便RIC模块为UE确定UE的任务。
因此,可选地,图8(b)所示的方法包括:S804:CU向RIC模块发送UE的运营状态信息。该运营状态信息可以包括在上述G1 SETUP REQUEST消息中,或者可以包括在另一个消息中,本申请实施例不做限制。例如,该运营状态信息包括在UE上下文建立请求消息中。该方法中,如果基站是一体化基站,CU可以被替换为基站。如果是CP/UP分离场景,该方法中的CU还可以被替换为CU-CP。
在本申请实施例中,UE上下文建立请求消息用于触发在RIC中建立对应UE的AI上下 文,以便RIC对该UE进行AI相关操作,不限制其名称。例如,该消息可以被称为第y消息、UE AI CONTEXT SETUP REQUEST消息或其它名称。其中,y为正整数。
UE上下文建立请求消息中包括表6中第一列所示的IE中的一项或多项。
表6
可选地,CU发送给RIC模块的UE上下文建立请求中可以包括一个或多个UE的信息。
可选地,S804的方法还包括:RIC模块向CU返回UE上下文建立确认消息。
在本申请实施例中,UE上下文建立确认消息用于RIC确认在RIC建立了对应UE的AI上下文或者用于确定上述UE AI CONTEXT SETUP REQUEST消息,不限制其名称。例如,该消息可以被称为第y消息、UE AI CONTEXT SETUP RESPONSE消息、或其它名称。其中,y为正整数。
S804可以被称为UE上下文建立过程、或UE AI上下文建立过程等,本申请实施例不做限制。
可选地,当UE的运营状态信息改变后,图8(a)所示的方法还包括S805:CU向RIC模块发送UE的更新运营状态信息。该方法中,如果基站是一体化基站,CU可以被替换为基站。如果是CP/UP分离场景,该方法中的CU还可以被替换为CP和/或UP。
在本申请实施例中,包括上述更新运营状态信息的消息的名称可以是UE上下文建立请求消息或UE上下文更新请求消息,本申请实施例不做限制。UE上下文更新请求消息用于向RIC模块告知UE的更新的运营状态信息,不限制其名称。例如,该消息可以被称为第y消息、UE AI CONTEXT MODIFICATION REQUEST消息或其它名称。其中,y为正整数。UE上下文更新请求消息的消息结构可以同UE上下文建立请求消息,或者是包括更新的信息而不包括没有更新的信息(如包括表7所示的IE中的一项或多项),本申请实施例不做限制。
可选地,S805还可以包括:RIC模块向CU发送UE上下文更新确认消息。在本申请实施例中,UE上下文更新确认消息用于RIC模块响应UE上下文更新请求消息,不限制其名称。例如,该消息可以被称为第y消息、UE AI CONTEXT MODIFICATION RESPONSE消息、或其它名称。其中,y为正整数。
可选地,S805可以称为UE上下文更新过程、或UE AI context modification过程,本申请实施例不做限制。
表7
可选地,当UE进入RRC空闲态、RRC非激活态、UE掉线后、或UE切换到其他基站的小区后,图8(a)所示的方法还包括:CU向RIC模块发送UE运营状态信息释放请求消息。可选地,该方法还可以包括:RIC模块向CU发送UE运营状态信息释放确认消息。
该方法中,如果基站是一体化基站,CU可以被替换为基站。如果是CP/UP分离场景,该方法中的CU还可以被替换为CP和/或UP。
在本申请实施例中,UE运营状态信息释放请求消息用于告知释放或删除的UE的运营状态信息,不限制其名称。例如,该消息可以被称为第y消息、UE上下文释放消息、UE AI CONTEXT RELEASE REQUEST消息或其它名称。其中,y为正整数。UE运营状态信息释放请求消息中可以包括表8所示的IE中的一项或多项,本申请实施例不做限制。
在本申请实施例中,UE运营状态信息释放确认消息用于RIC模块响应UE运营状态信息释放请求消息,不限制其名称。例如,该消息可以被称为第y消息、UE上下文释放确认消息、UE AI CONTEXT RELEASE RESPONSE消息、或其它名称。其中,y为正整数。
可选地,上述方法可以被称为UE上下文释放过程、UE运营状态信息释放过程、或UE AI context release过程,本申请实施例不做限制。
表8
CU为了向RIC模块上报UE的运营状态信息,CU需要获得UE的运营状态信息。如前文所述,UE的运营状态信息可以包括UE的以下信息中的一种或多种:AI能力信息、AI配置信息、和AI状态信息。
一种可能的实现中,UE的AI能力信息可以是由UE上报给基站或CU的。以UE上报给CU为例,该上报方法包括:UE向CU发送UE的AI能力信息,该AI能力信息指示了UE的AI能力。可选地,该上报方法可以是由CU向UE发送UE能力查询(UECapabilityEnquiry)消息触发的。UE接收到UE能力查询消息后,向CU上报该UE的能力信息。该过程可以称为UE的能力获取过程S806。可选地,该上报方法可以是嵌入在UE和CU之间的RRC连接建立过程中进行的,例如UE在RRC连接建立过程中向CU上报UE的AI能力信息。
一种可能的实现中,UE从源基站切换到目标基站,如果目标基站已经从核心网或者已经从源基站获得了该UE的AI能力信息,则不需要UE向目标基站上报UE的AI能力信息,即目标基站和UE不需要进行能力获取过程;或者,UE在和目标基站的RRC连接建立过程中,向目标基站上报UE的AI能力信息。
可选地,UE的AI配置信息可以是由RAN(例如CU)为UE配置的,所以CU可以不需要从UE获得该UE的配置信息。该CU本身就知晓该UE的AI配置信息,或者可以从RAN中其他网元或节点(如DU或其它CU)获得该UE的AI配置信息。
可选地,UE的AI状态信息是运营过程中的信息。UE的AI状态信息可以是由UE为CU上报,或者是由该CU监控或测量到,或者是由RAN中其他网元(如DU或其它CU)监控或测试后告知该CU。
上述描述了RIC模块通过S801向基站发布任务的详细过程。可选地,图8(b)所示的方法中,RIC模块可以多次执行S801,向基站发布多个第一任务。此外,如下所述,RIC模 块还可以删除任务或更新任务。
图8(b)所示的方法中,RIC模块还可以通过任务删除过程,删除或终止已经向基站发布的任务。例如,该方法包括:RIC模块向基站发布任务释放消息。任务释放消息用于释放或终止一个或者多个任务,不限制该消息的名称,例如任务释放请求消息、可以称为第y消息,y为正整数。可选地,该方法还可以包括:基站向RIC模块发送任务释放确认消息。任务释放确认消息用于确认释放或终止一个或者多个任务,不限制该消息的名称,例如可以称为第y消息,y为正整数。
一种可能的实现中,任务释放消息中包括以下信息中的一种或多种:
消息类型;
消息ID;和
任务标识;----用于指示要释放的一个或多个任务,该标识类似表2所示的任务ID。
另一种可能的实现中,任务释放消息中包括以下信息中的一种或多种:
消息类型;
消息ID;和
事务(transaction)标识;----用于指示要释放的任务,该标识类似表1所示的transaction标识,用于释放携带该transaction标识的过程所配置的一个或多个任务。该消息中可以包括一个或多个transaction标识
图8(b)所示的方法中,RIC模块还可以通过任务更新过程,向基站发布所增加、修改和/或删除的任务。例如,RIC模块向基站发布任务更新消息,用于增加一个或者多个任务、修改一个或多个任务、和/或用于释放一个或多个任务。本申请实施例不限制任务更新消息的名称,例如任务更新请求(TASK MODIFICATION REQUEST)消息、第y消息,y为正整数。可选地,该方法还可以包括:基站向RIC模块发送任务更新确认消息。任务更新确认消息用于确认更新一个或者多个任务,不限制该消息的名称,例如可以称为第y消息,y为正整数。
示例性,任务更新消息中包括以下信息中的一种或多种:
消息类型;
消息ID;
要增加的一个或多个任务的信息;
要修改的一个和多个任务的信息;和,
要释放的一个或多个任务的标识。
其中,要增加的一个或多个任务的信息中,每个任务的信息同前文TASK CONFIGURATION INFORMATION消息所示,此处不再赘述。要增加的一个或多个任务的信息中,每个任务的信息同前文TASK CONFIGURATION INFORMATION消息所示,或者每个任务的信息包括前文TASK CONFIGURATION INFORMATION消息中被更新的参数,此处不再赘述。可选地,上述RIC TASK ADDITION REQUEST消息可以看做一种特殊的任务更新消息。
要释放的一个或多个任务的标识可以是类似表2所示的任务ID,或者是类似表1所示的transaction标识,用于释放携带该transaction标识的信息所配置的一个或多个任务。
上述详细描述了RIC模块向基站发布新增的任务、发布更新的任务、指示释放任务等过程。如果基站是一体化基站,对于第一任务中的每个任务:
(1)当该任务的执行主体是基站时,基站执行该任务。本申请实施例中,示例性地,RIC 模块指示基站收集UE的上行数据丢包率。
(2)当该任务的执行主体是UE时,基站通过RRC层消息向UE发布该任务。本申请实施例中,示例性地,基站或CU可以根据任务的QoS信息,和UE建立对应于SRB、AI-CRB或AI-DRB的PDCP和RLC协议示例,通过该SRB、AI-CRB或AI-DRB实例承载该任务信息。
如果基站的CU/DU分离,接收到该配置信息的是CU,对于第一任务中的每个任务:
(1)当该任务的执行主体是DU时,CU将该任务转发给DU,由DU执行该任务。可选地,如果DU和RIC之间存在G1接口,则针对DU的任务可以由RIC模块通过G1接口发送给DU,而无需CU转发。
本申请实施例中,示例性地,RIC模块指示CU收集UE的上行数据丢包率。CU可以通过和DU之间进行UE上下文更新(UE context modification)过程(S807),指示DU收集UE的上行数据丢包率。DU可以将收集到的数据发送给CU。本申请实施例中,CU和DU之间的UE上下文更新过程可用于更新UE的信息。
本申请实施例中,示例性地,RIC模块发布给DU或基站的推理结果指示以下信息中的至少一项:切换门限配置信息、小区的RACH配置信息、小区的下行参考信号发射功率、小区的上行最大发射功率信息、UE的服务小区的配置、UE的DRX配置、和UE的DRB配置等。
示例性地,RIC模块指示小区的下行参考信号发射功率,CU可以通过向DU发送CU配置更新消息(CU CONFIGURATION UPDATE),携带该小区的下行参考信号发射功率值。即CU和DU可以通过CU配置更新过程S808,将推理结果应用于DU。本申请实施例中,CU和DU之间的CU配置更新过程可用于更新小区的信息。
(2)当该任务的执行主体是CU时,CU执行该任务。在本申请实施例中,示例性地,RIC模块发布给CU或基站的的推理结果指示以下至少一项:小区的下行同步信号发射功率、切换判决的门限、和UE的RRC连接状态。
(3)当该任务的执行主体是UE时,CU通过RRC层向UE发布该任务。可选地,CU可以根据任务的QoS信息,和UE建立对应于SRB、AI-CRB或AI-DRB的PDCP和RLC协议示例,通过该SRB、AI-CRB或AI-DRB实例承载该任务信息。
(4)当该基站的CP/UP分离时,且接收到该配置信息的CU-CP,则:如果该任务的执行主体是CU-CP,则CU-CP执行该任务;如果该任务的执行主体是CU-UP,则CU-CP将该任务转发给CU-UP,由CU-UP执行该任务。其中,可选地,如果CU-UP和RIC模块之间存在接口,则针对CU-UP的任务可以由RIC模块通过该接口发送给CU-UP,而无需CU-CP转发。
在本申请实施例中,如果RIC模块发布给基站、CU、DU、CU-CP、和/或CU-UP的任务是推理结果,则相应模块应用该结果即可。可选地,如果该推理结果是需要基站告知UE,基站还会将该推理结果以参数的形式,通过信令指示给UE。比如任务内容为调整UE的探测参考信号(sounding reference signal,SRS)的时频资源位置、调整UE的上行最大发射功率等。
对于RIC模块发布的任一个AI任务,如果该任务的执行主体是UE,则图8(b)所示的方法还包括S809,用于将该任务发布给UE。例如,基站或CU(图8(b)以CU为例介绍)可以通过广播、组播或单播的形式将该任务发送给UE。其中,基站可以把任务内容直接发送给UE,或者经过处理后发送给UE,不予限制。
在本申请实施例中,如果RIC模块发布给UE的任务是数据收集,则基站可以把任务内容直接发送给UE,或者经过处理后发送给UE。如果RIC模块发布给UE的任务是推理结果, 则基站可以把推理结果以参数的形式指示给UE。
一种可能的实现中,对于一个AI任务,如果该AI任务的执行主体为小区中的所有UE、一组UE或者满足一定条件的UE,则CU可以通过系统信息、寻呼消息或AI-CRB,向UE广播该任务。一种可能的实现中,该任务的执行主体为特定UE,则CU可以通过特定的RRC消息、寻呼消息或AI-DRB,向该特定UE发布该任务。
可选地,当上述一个AI任务的执行主体为满足一定条件的UE时,例如上述表2所指示执行任务的UE满足的条件,CU可以根据该条件以及UE的对应信息,如以下信息中的一种或多种:AI能力、业务状态、位置、和RRC连接状态等,确定具体由哪个或哪些UE执行该任务。
可选地,当上述一个AI任务的执行主体为满足一定条件的UE时,例如上述表2所指示执行任务的UE满足的条件,CU可以将该条件通过广播的形式指示给小区中的UE,各UE可以根据该条件和自身的以下信息中的一种或多种:AI能力、业务状态、位置、和RRC连接状态等,确定各UE自己是否执行该AI任务。
S809中,CU可以通过以下方式A1-方式A3中的任一种,将一个或多个任务发布给UE。
方式A1:CU通过系统消息或MIB将一个或多个任务的内容发布或指示给UE。
该方式可以适用于该一个或多个任务的执行主体为小区中的所有UE或多个UE。
示例性地,CU可以通过系统消息更新过程,向UE广播更新的系统消息,该系统消息用于向UE指示一个或多个任务的内容。本申请实施例中,从空口的角度,CU向UE指示一个或多个任务的内容,可以看做是CU为UE配置参数。示例性地,该系统消息中包括表9中第一列所示的IE中的一项或多项。
表9
方式A2:CU通过寻呼消息将一个或多个任务的内容发布或指示给UE。
该方式适用于该一个或多个任务的执行主体为小区中的多个UE或特定UE。
方式A3:CU通过RRC消息将一个或多个任务的内容发布或指示给UE。
该方式适用于该一个或多个任务的执行主体为为小区中的多个UE或特定UE。
一种可能的实现中,CU通过RRC重配置过程,利用RRC重配置消息将任务内容指示给UE。可选地,UE可以向CU回复RRC重配置完成消息。
另一种可能的实现中,CU通过新增的RRC消息,例如新增的RIC重配置消息,将任务内容指示给UE。可选地,UE可以向CU回复该新增的RRC消息的响应消息,例如新增的RIC重配置完成消息。
示例性地,方式A2或A3中,CU发送给UE的寻呼消息或RRC消息中包括表10中第一列所示的IE中的一项或多项。
表10
CU可以通过相同或不同的方式向UE发布不同的任务,本申请实施例不做限制。
针对上述方式A3中交互的高层消息,CU可以确定该高层消息的RB配置信息,并例如通过下行RRC消息转发(DL RRC MESSAGE TRANSFER)消息或CU重配置(CU CONFIGURATION UPDATE)消息告知DU该RB配置信息。DU根据该RB配置信息,以该RB对应的物理信道将该高层消息发送至相应的UE。该方法中,可选地,DU收到CU CONFIGURATION UPDATE消息后,可以向CU反馈CU CONFIGURATION UPDATE ACK消息。
图8(b)所示的方法中,对于任一个任务,如果该任务的类型是数据收集时,基站还会向RIC上报所收集的信息。具体包括以下场景:
场景B1:对于一个数据收集任务,如果该任务的执行主体是基站,且基站是一体化基站。由基站向RIC上报所收据的数据。
场景B2:对于一个数据收集任务,如果该任务的执行主体是CU,RIC模块和CU之间存在G1接口,则CU通过G1接口向RIC模块上报所收集的数据。
场景B3:对于一个数据收集任务,如果该任务的执行主体是CU-CP,RIC模块和CU-CP之间存在G1接口,则CU-CP通过G1接口向RIC模块上报所收集的数据。
场景B4:对于一个数据收集任务,如果该任务的执行主体是CU-UP,RIC模块和CU-UP之间存在G1接口,则CU-UP通过G1接口向RIC模块上报所收集的数据。
场景B5:对于一个数据收集任务,如果该任务的执行主体是CU-UP,RIC模块和CU-UP之间不存在G1接口,RIC和CU-CP之间存在G1接口,则CU-UP将所收集的数据转发给CU-CP,CU-CP通过G1接口向RIC模块上报CU-UP所收集的数据。
场景B6:对于一个数据收集任务,如果该任务的执行主体是DU,RIC模块和DU之间存在G1接口,则DU通过G1接口向RIC模块上报所收集的数据。
场景B7:对于一个数据收集任务,如果该任务的执行主体是DU,RIC模块和DU之间不存在G1接口,RIC模块和CU之间存在G1接口,则DU通过F1接口将所收集的数据转发给CU,CU通过G1接口向RIC模块上报DU所收集的数据。
上述基站向RIC模块上报所收集的数据时,可以通过任务上报消息进行上报S810。该任务上报消息用于向RIC模块上报所收集的数据。该数据可以是运营状态信息。例如,可以将该任务上报消息称为RIC TASK REPORT消息、数据上报消息、第y消息或其它名称。其中,y为正整数。示例性地,任务上报消息中可以包括表11或表12中第一列所示的IE中的一个或多个。
可选地,任务的执行对象是DU时,且DU和RIC模块之间无接口,接收到任务后,DU根据任务内容执行任务并在满足上报条件时向CU发送RIC TASK REPORT消息(S811)。CU可以将DU收集的数据通过RIC TASK REPORT消息上报给RIC模块。其中,该条件可以是周期、事件或其它,不予限制。该消息包含RIC任务执行结果。
表11
表12
图8(b)所示的方法中,对于任一个任务,如果该任务的类型是数据收集,且执行主体是UE时,基站还会向RIC上报UE所收集的信息。
一种可能的实现中,以基站是CU/DU分离基站为例,UE可以利用前文描述的方法将UE运营状态信息上报给CU,由CU利用S804和/或S805向RIC模块转发UE的运营状态信息。该运营状态信息中包括RIC模块要求UE收集的数据。
另一种可能的实现中,UE接收到任务内容后,或接收到任务内容且确定自己要执行RIC任务时,UE根据任务内容执行任务,并在满足任务上报条件时向DU发送RIC TASK REPORT消息(S812)。可选地,UE在发送该消息前,根据协议约定或任务优先级信息确定承载该消息的RB,通过该RB向DU发送RIC TASK REPORT。DU收到该消息并通过上行RRC消息转发(UL RRC MESSAGE TRANSFER)消息将其转交给CU。
从CU接收到基站和/或UE收集的数据后,RIC模块可以利用该数据进行推理,并将该推理结果发布给基站和/或UE。
一种可能的实现中,RIC模块利用上述S801中的RIC TASK ADDITION REQUEST消息或任务更新消息发布推理结果。其中,该消息中用于发布推理结果的任务的任务类型为推理结果发布。可选地,该消息中还可以包括其他类型的任务,不做限制。
另一种可能的实现中,RIC模块利用推理结果指示过程S813,向基站、CU或DU发送推理结果指示消息,从而向基站发布推理结果。推理结果指示消息用于发布推理结果,不限定其名称,例如称为RIC RESULT INDICATION消息、第y消息。其中,y为正整数。如,推理结果指示消息包括表13中所示的IE中的一项或多项。
例如,RIC接收到UE和/或gNB收集的数据后,相关AI应用经过一段时间的AI运算,将输出推理结果(运算结果)。如果AI运算结果需要对RAN或UE进行参数配置,比如调整切换判决的门限、调整某小区的下行同步信号发射功率或更改UE的RRC连接状态,则RIC通过RIC RESULT INDICATION消息将AI推理结果发送给CU。在RIC与CU-UP有G1接口的时候,RIC的AI推理结果可能直接发布给CU-UP。在RIC与DU有G1接口的时候,RIC的AI推理结果可能直接发布给DU。
表13
可选地,如果AI推理结果是新的AI模型或对原来的AI数据收集任务进行修改,则RIC模块可以通过前文描述的任务更新过程,向CU发送RIC TASK MODIFICATION REQUEST消息,该消息包含新的AI模型或更新的AI数据收集任务。在RIC与CU-UP有G1接口的时候,RIC可以将面向CU-UP的RIC TASK MODIFICATION REQUEST直接发给CU-UP。在 RIC与DU有G1接口的时候,RIC可以将面向DU的RIC TASK MODIFICATION REQUEST直接发给DU。
相关节点接收到发布给自己的AI推理结果后,对结果进行应用,比如调整切换判决的门限、调整某小区的下行同步信号发射功率等。
示例性地,上述方法中,如果一个推理结果的应用对象为UE,则类似前文S807中描述的方法,基站可以通过系统消息、MIB、或寻呼消息等,将该推理结果发布给UE,由UE使用该推理结果。示例性地,该推理结果的应用对象为基站,则基站中相应的网元使用该推理结果。
示例性地,上述方法,RIC模块向基站发布由基站应用的推理结果时,存在以下场景。下述场景中的推理结果可以被替换为推理结果的指示信息。
场景C1:如果基站是一体化基站。由基站应用该推理结果。
场景C2:如果基站是CU/DU分离基站,该推理结果的应用对象是CU,RIC模块和CU之间存在G1接口,则CU通过G1接口接收该推理结果,并应用该推理结果。
场景C3:如果基站是CU/DU分离基站,该推理结果的应用对象是CU-CP,RIC模块和CU-CP之间存在G1接口,则CU-CP通过G1接口接收该推理结果,并应用该推理结果。
场景C4:如果基站是CU/DU分离基站,该推理结果的应用对象是CU-UP,RIC模块和CU-UP之间存在G1接口,则CU-UP通过G1接口接收该推理结果,并应用该推理结果。
场景C5:如果基站是CU/DU分离基站,该推理结果的应用对象是CU-UP,RIC模块和CU-UP之间没有G1接口,则CU-CP通过G1接口接收该推理结果,将该推理结果转发给CU-UP,由CU-UP应用该推理结果。
场景C6:如果基站是CU/DU分离基站,该推理结果的应用对象是DU,RIC模块和DU之间存在G1接口,则DU通过G1接口接收该推理结果,并应用该推理结果。
场景C7:如果基站是CU/DU分离基站,该推理结果的应用对象是DU,RIC模块和DU之间没有G1接口,则CU通过G1接口接收该推理结果,将该推理结果转发给DU,由DU应用该推理结果。
示例二:独立RIC架构(图6(a))+RRC层并行的AIC层(图7(b))
图9(a)所示为基站和UE之间的架构(网络架构+协议栈)示例二。图9(b)所示为采用图9(a)所示的架构,RAN和UE之间的信息交互流程示例图。示例二中具有独立的AIC协议层,如上述对图7(b)的描述中所述,AIC层执行非实时功能的AI功能。此外,AIC层还可以执行rt-RIC的AI初始化、和/或实时功能的部分AI功能,如模型训练、模型下载和模型发布中至少一种。
图8(a)所示的架构中,RAN中存在RIC模块。该架构中,由RAN的RIC模块进行以下操作中至少一项:模型下载、模型训练、数据收集、推理和发布推理结果。
当UE不支持RIC功能时(还可以描述为无RIC模块),RAN的RIC模块可以请求基站收集数据和/或向基站发布推理结果。RAN的RIC模块还可以通过AIC层信令(或称为AIC层消息),指示UE收集数据或者向UE发送推理结果。其中,AIC层是和RRC层并行的协议层,如上述对图7(b)的描述中所述,该AIC层信令可以依次通过基站中的较低协议层发送至UE。RIC模块要求UE收集的数据可以是RRC层数据或者物理层数据,不做限制。本申请实施例中,用于进行推理的模型可以是下载的原始模型,也可以是根据训练数据训练后的更新模型,不做限制。RIC模块进行模型训练的训练数据可以是从基站和/或UE收集的。RIC 模块进行推理的推理数据可以是从基站和/或UE收集的。
当UE支持RIC功能时,RAN的RIC模块可以请求基站收集数据和/或向基站发布推理结果。RAN的RIC模块还可以通过AIC层,指示UE收集数据、指示UE进行联邦学习、向UE发布模型(用于UE进行推理)或者向UE发送推理结果。其中,要求UE收集的数据可以是RRC层数据或者物理层数据,不做限制。本申请实施例中,用于进行推理的模型可以是下载的原始模型,也可以是根据训练数据训练后的更新模型,不做限制。RIC模块进行模型训练的训练数据可以是从基站和/或UE收集的。RIC模块进行推理的推理数据可以是从基站和/或UE收集的。
为了便于描述,如无特殊说明,下述RIC模块指RAN侧的RIC模块。
示例性地,基于图9(a)所示的架构,在RAN侧:RIC模块通过AIC层实现非实时功能的AI功能,通过基站中的层1和/或层2实现实时功能的部分AI功能,该部分实时功能的AI功能的一些配置信息可以通过AIC层信令发送至UE。例如,RIC模块通过AIC层消息,实现以下至少一项:指示UE收集数据、指示AI相关的RB的配置信息、向UE发布推理结果(参数值)、指示层1和/或层2AI功能相关的参数配置、向UE发布模型信息、和指示UE进行模型训练(如联邦训练)。
示例性地,在UE侧:相应地,根据从RAN侧接收的信息,辅助实现非实时功能的AI功能和实时功能的AI功能。
图9(b)所示为RAN和UE使用图9(a)所示的架构进行信息交互的流程示例图。主要包括:RIC模块向UE发布任务;UE执行相应的任务。可选地,当RIC模块发布的任务包括数据收集时,UE向RIC模块上报收集的数据。可选地,当RIC模块根据收集到的数据训练或更新了模型后,可以利用该模型进行推理。可选地,当RIC模块根据收集到的数据执行了推理功能后,可以将推理结果发布给UE。可选地,当RIC模块发布的任务为模型发布时,UE接收该模型的信息。UE可以利用该模型进行推理。可选地,当RIC模块发布的任务为模型训练时,UE向RIC模块上报训练得到的模型参数的梯度信息。下面,将详细介绍图9(b)所示的方法。
S901,RIC向UE发送第二任务配置信息;UE接收第二任务配置信息。
该方法中,第二任务配置信息用于RIC模块向UE发布新的任务。该信息是通过AIC层消息或信令承载的。本申请实施例中,不限制携带第二任务配置信息的消息的名称。例如,本申请实施例中,可以将携带第二任务配置信息的消息称为第y消息、RIC TASK ADDITION消息、或RIC TASK ADDITION REQUEST消息。其中,y为正整数。本申请实施例以该消息的名称是RIC TASK ADDITION REQUEST为例示出。UE可以根据该配置信息的指示执行相应的任务。
可选地,S901包括:UE向RIC模块返回第二任务配置信息的确认消息。第二任务确认信息用于UE向RIC模块确认上述S901中的RIC TASK ADDITION REQUEST消息。本申请实施例中,不限制携带第二任务确认信息的消息的名称。例如,本申请实施例中,可以将携带第二任务确认信息的消息称为RIC TASK ADDITION RESPONSE消息、第y消息或其它名称。其中,y为正整数。
可选地,当第二任务配置信息能够配置多个任务时(此时,实际发送的消息中可以包括一个或多个任务),RIC TASK ADDITION REQUEST消息中包括表14第一列所示的IE中的一项或多种。
表14
表15
本申请实施例中,S901可以被称作任务添加过程、任务配置过程或其它名称。
类似图8(b)所示的方法,在图9(b)的方法中,RIC模块可以多次执行S901,向UE发布多个第二任务。此外,如下所述,RIC模块还可以删除任务或更新任务。
示例性地的,RIC模块可以通过任务删除过程,删除或终止已经向UE发布的任务。例如,该方法包括:RIC模块向UE发布上述任务释放消息。其中,任务释放消息。可以称为RIC TASK RELEASE REQUEST消息。关于RIC TASK RELEASE REQUEST消息的具体内容可以参见图8(b)所示的方法,这里不再赘述。
示例性地,RIC模块还可以通过任务更新过程S902,向UE发布所增加、修改和/或删除的任务。例如,RIC模块向UE发布任务更新消息,用于增加一个或者多个任务、修改一个或多个任务、和/或用于释放一个或多个任务。其中,任务更新消息可以称为RIC TASK MODIFICATION REQUEST消息。关于RIC TASK MODIFICATION REQUEST消息的具体内容可类似图8(b)所示的方法,这里不再赘述。
图9(b)的方法中,RIC模块发送给UE的AIC层消息,如RIC模块发送给UE的RIC TASK ADDITION REQUEST消息、RIC TASK RELEASE REQUEST消息和RIC TASK MODIFICATION REQUEST消息等,可以通过基站发送给UE。如上述针对图7(b)的描述所述,该AIC层消息可以依次通过基站的PDCP层、RLC层、MAC层和物理层,由基站的物理层发送至UE的物理层,并在UE层依次通过MAC层、RLC层、PDCP层和AIC层,由UE的AIC层进行解读。例如,CU通过G1接口从RIC模块收到该消息,可以根据该消息对应的优先级信息确定承载该消息的RB,根据该RB的各协议层配置,然后DU向UE发送该消息。
类似图8(b)的方法,图9(b)所示的方法中,可以包括S802(该方法中称为S903)、S803(该方法中称为S904)、S804/S805(该方法中称为S905/S906)、和F1接口建立过程。
类似图8(b)的方法中的S806,在图9(b)的方法中,可以包括S907,:CU可以通过UE的能力获取过程,得到UE的AI能力信息;或者,CU从核心网或者源基站获得UE的AI能力信息。CU可以通过上述S905和/或S906过程将该信息发送至RIC模块。RIC模块在获得UE AI能力信息后,可以根据QoS要求等发起一个或多个空口的RB的建立过程,以便承载AI数据收集和AI模型下载、AI模型更新等AI相关过程的上下行AIC层数据或信令。
可选地,图9(b)所示的方法中,还可以包括S902:RIC模块向基站发布任务,该任务的内容是:数据收集或推理结果。具体的配置方法类似图8(b)中相应的方法。和图8(b)的方法的区别是,S902中RIC模块发布给基站的任务不包括RIC模块发布给UE的任务。其原因在于,如上所述,图9(b)所示的方法中,由RIC模块的AIC层向UE的AIC层发布任务。
RIC模块可以向CU、DU、CU-CP、和CU-UP中的至少一种发布任务。比如,RIC模块向CU或DU发布的数据收集任务为:请求测量UE的上行传输时延。
可选地,图9(b)所示的方法中,还可以包括:RIC和基站进行配置更新过程。
上述描述了RIC模块向UE或基站发布任务,RIC模块可能需要CU和/或DU进行相应的操作以配合或辅助完成所发布的任务RIC任务。用于进行该操作的过程可以称为配置更新过程。比如RIC模块指示了多个UE进行数据收集,则RIC模块可以为基站配置上行资源等上行传输参数,基站可以将该上行传输参数通过空口指示给UE,用于UE利用该上行传输参数匿名上报所收集的数据。再比如,RIC模块指示UE进行联邦学习,则RIC模块可以为基站配置上行资源等上行传输参数,基站可以将该上行传输参数通过空口指示给UE,用于UE利用该上行传输参数上报模型参数的梯度信息。比如基站在空口通过系统信息配置UE发送匿名数据收集或联邦学习上行报告使用的时频资源、专用前导(preamble)等,以便UE有所述数据上报时采用这些无线资源进行上行发送。RIC模块可以向CU发送配置更新(CONFIGURATION UPDATE)消息,请求CU进行相应的操作,CU接受后向RIC模块返回配置更新确认(CONFIGURATION UPDATE ACK)消息。类似地,可选地,RIC模块和DU之间可以进行配置更新过程。可选地,RIC模块和CU-UP之间可以进行配置更新过程。
在图9(b)所示的方法中,UE接收到RIC模块发布的任务后,根据任务内容执行任务,并在满足任务上报条件时向RIC模块发送RIC TASK REPORT消息(S908)。该消息为AIC层消息。可选地,UE在发送该消息前,根据协议约定或任务优先级信息确定承载该消息的RB,通过该RB向基站发送信息,该信息中包括了RIC TASK REPORT消息,基站或基站的 CU可以将该信息递交至RIC模块,RIC模块在AIC层解读出UE发送的RIC TASK REPORT消息。其中,RIC TASK REPORT消息的介绍请参考表11,这里不再赘述。可选地,RIC模块成功接收到该RIC TASK REPORT消息后,可以向UE返回确认消息,该消息可以称为RIC TASK REPORT ACKNOWLEDGE消息。该消息为AIC层消息。
类似图8(b)中的方法,CU和/或DU接收到RIC模块发布的任务后,根据任务内容执行任务,并在满足任务上报条件时向RIC模块发送RIC TASK REPORT消息(S909)。可选地,RIC模块成功接收到该RIC TASK REPORT消息后,可以向CU和/或DU返回确认消息,该消息可以称为RIC TASK REPORT ACKNOWLEDGE消息。
从CU接收到基站和/或UE收集的数据后,RIC模块可以利用该数据进行推理,并将该推理结果发布给基站和/或UE。
一种可能的实现中,同图8(b)所示的方法,在图9(b)所示的方法中,可以包括S910:RIC模块将推理结果发布给基站。RIC模块可以向基站(CU、DU、CU-CP、和/或CU-UP)发布AI推理结果。
一种可能的实现中,RIC模块可以利用上述描述的S902,通过RIC TASK MODIFICATION REQUEST消息,向UE发布更新的模型、发布推理结果、和/或发布更新的数据收集任务。
示例三:独立RIC架构(图6(a))+RRC层之上的AIC层(图7(c))
图10所示为基站和UE之间的架构(网络架构+协议栈)示例三。示例三中具有独立的AIC协议层,如,由AIC层执行非实时功能的AI功能。此外,AIC层还可以执行rt-RIC的AI初始化、和/或实时功能的部分AI功能,如模型训练、模型下载和模型发布中至少一种。
利用图10所示的架构时,除了下述不同点,RAN和UE之间的信息交互流程示例图同图9(b)。二者之间的相同点不再赘述。
示例二和示例三中,RAN和UE之间的信息交互流程不同的地方在于:
如图7(b)和图7(c)的描述,示例二中RIC模块发送的AIC层消息是由AIC层递交至CU的PDCP层,该架构中将AIC层消息映射至RB可以是在G1接口根据应用层协议进行的;示例三中RIC模块发送的AIC层消息是由AIC层递交至RRC层,该架构中将AIC层消息映射至RB是在RRC层进行的。
示例四:独立RIC架构(图6(a))+应用层(图7(d))
图11所示为基站和UE之间的架构(网络架构+协议栈)示例四。示例四中,各协议层的功能描述具体见图7(d)所示,这里不再赘述。
利用图10所示的架构时,除了下述不同点,RAN和UE之间的信息交互流程示例图同示例一、示例二或示例三,具体和哪个示例相同见上述图7(d)中相应的描述,此处不再赘述。二者之间的相同点不再赘述。
示例四中,RIC TASK ADDITION REQUEST消息中不用于发布模型,即RIC TASK ADDITION REQUEST指示的任务类型中不包括模型发布。RIC模块向UE发布模块发布任务时,通过RIC模块的应用层和UE的应用层实现该功能。RIC模块发布模型时,模型信息承载在数据RB,例如AI-CRB,上发送至UE。
进一步地,与上述示例中F1接口建立过程不同的是,示例四的F1接口建立过程中,创 建通用分组无线业务(general packet radio service,GPRS)隧道协议-用户面(tunnel protocol-user plane,GTP-u)公共隧道,用于RIC模块和UE之间的AI公共信令/数据的传输。比如该隧道用于承载RIC模块向UE发布的AI模型、发布更新的AI模型、或UE向RIC模块上报的AI模型梯度。在RIC模块和UE之间,可以只建立一个GTP-u公共隧道,通过GTP-u报头携带优先级信息来区分不同QoS要求的数据,用于将数据在空口对应到相应的AI-CRB;或者,可以为每种优先级建立一个GTP-u公共隧道,一个GTU-u公共隧道对应一个AI-CRB,不同的GTP-u公共隧道的数据直接承载在对应的AI-CRB上。
与上述示例不同的是,示例四中,如果UE接收到的任务是模型训练,UE通过应用层将模型参数的梯度信息发送给RIC模块的应用层。例如,UE通过AI-CRB将AI模型参数的梯度发送给CU,再由CU通过G1接口的GTP-u公共隧道将该AI模型参数的梯度发送给RIC模块。
示例五:嵌入RIC架构(图6(b))+各种可能的协议层(图7(a)-图7(d))
示例五中,采用嵌入式RIC架构,即RIC模块是基站的一部分,没有独立于基站的RIC模块。
利用该架构进行传输的过程分别类似前文描述的示例一至示例四,区别在于:示例五中,将涉及G1口的过程和操作改为基站内部的相应过程和操作,就可以得到示例五的实施方式。
示例六:混合RIC架构(图6(c))+各种可能的协议层(图7(a)-图7(d))
示例六中,采用混合RIC架构,即nrt-RIC模块是基站的一部分,rt-RIC模块独立于基站。
对于非实时功能的AI功能,利用该架构进行传输的过程分别类似前文描述的示例一至示例四。对于实时功能的AI功能,利用该架构进行传输的过程相比前文描述的示例一至示例四,区别在于:向UE发布模型、和UE上报AI模型参数的梯度等过程,通过空口的AI-CRB承载相应的AI信息。对其它AI过程,可以通过MAC CE、DCI、或上行控制信息(uplink control information,UCI)来承载相应的AI信息。
上述本申请提供的实施例中,分别从各网元、以及不同网元之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,各网元中可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图12所示为本申请实施例提供的装置300的结构示例图。
在一种可能的实现中,装置300用于实现上述方法中RIC的功能。该装置可以是RIC,也可以是能够实现RIC的功能的其他装置。其中,该其他装置能够安装在RIC中或者能够和RIC匹配使用。
在一种可能的实现中,装置300用于实现上述方法中基站的功能。该装置可以是基站,也可以是能够实现基站的功能的其他装置。其中,该其他装置能够安装在基站中或者能够和基站匹配使用。
在一种可能的实现中,装置300用于实现上述方法中终端设备的功能。该装置可以是终端设备,也可以是能够实现终端设备的功能的其他装置。其中,该其他装置能够安装在终端设备中或者能够和终端设备匹配使用。
装置300中包括接收模块301,用于接收信号或者信息。装置300中包括发送模块302, 用于发送信号或信息。装置300中包括处理模块303,用于处理所接收到的信号或者信息,例如用于解码接收模块301接收到的信号或者信息。处理模块303还可以生成要发送的信号或者信息,例如用于生成要通过发送模块302发送的信号或信息。
本申请实施例中对模块的划分是示意性的,为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如接收模块301和发送模块302还可以集成为收发模块或通信模块。另外,在本申请各个实施例中的各功能模块可以集成在一个模块中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图13所示为本申请实施例提供的装置400的结构示例图。
在一种可能的实现中,装置400用于实现上述方法中RIC的功能。该装置可以是RIC,也可以是能够实现RIC的功能的其他装置。其中,该其他装置能够安装在RIC中或者能够和RIC匹配使用。例如,装置400可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。例如,装置400包括至少一个处理器420,用于实现本申请实施例提供的方法中RIC的功能。
在一种可能的实现中,装置400用于实现上述方法中基站的功能。该装置可以是基站,也可以是能够实现基站的功能的其他装置。其中,该其他装置能够安装在基站中或者能够和基站匹配使用。例如,装置400可以为芯片系统。例如,装置400包括至少一个处理器420,用于实现本申请实施例提供的方法中基站的功能。
在一种可能的实现中,装置400用于实现上述方法中终端设备的功能。该装置可以是终端设备,也可以是能够实现终端设备的功能的其他装置。其中,该其他装置能够安装在终端设备中或者能够和终端设备匹配使用。例如,装置400可以为芯片系统。例如,装置400包括至少一个处理器420,用于实现本申请实施例提供的方法中终端设备的功能。
装置400还可以包括至少一个存储器430,用于存储程序指令和/或数据。存储器430和处理器420耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器420可能和存储器430协同操作,用于实现上述方法实施例中描述的功能。处理器420可能执行存储器430中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器420中。
装置400还可以包括通信接口410,用于通过传输介质和其它设备进行通信,从而用于装置400中的装置可以和其它设备进行通信。处理器420利用通信接口410收发信号,用于实现上述方法实施例中描述的功能。本申请实施例中,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口。
本申请实施例中不限定上述通信接口410、处理器420以及存储器430之间的具体连接介质。本申请实施例在图13中以存储器430、处理器420以及收发器410之间通过总线440连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备、RIC或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (77)
- 一种通信方法,其特征在于,包括:向基站发送第一任务配置信息,所述第一任务配置信息用于指示一个或多个任务的配置信息;其中,对于所述一个或多个任务中的每一个任务,所述任务的配置信息用于指示所述任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态,其中,所述任务的执行主体是终端设备或所述基站。
- 根据权利要求1所述的方法,其特征在于,所述任务类型为数据收集、推理结果发布、模型发布或模型训练。
- 根据权利要求1或2所述的方法,其特征在于,所述任务的类型是数据收集时,所述任务内容指示以下内容中的一种或多种:数据的测量类型、测量条件、和测量结果报告方式;所述任务的类型是推理结果发布时,所述任务内容指示推理结果;所述任务的类型是模型发布时,所述任务内容指示模型信息;或,所述任务的类型是模型训练时,所述任务内容指示以下内容中的一种或多种:上报模型参数信息或上报模型参数梯度信息的条件、参考神经网络的信息、和神经网络训练数据集。
- 根据权利要求1-3任一项所述的方法,其特征在于,所述任务状态包括激活或去激活,或者所述任务状态包括激活、去激活或释放。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:从所述基站的集中单元CU接收第一接口建立请求消息,其中,所述第一接口建立请求消息用于指示以下内容中的一种或多种:消息类型;所述CU的ID;所述CU的能力信息;所述CU的配置信息;和所述CU的状态信息。
- 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:从所述基站的分布单元DU接收第二接口建立请求消息,其中,所述第二接口建立请求消息用于指示以下内容中的一种或多种:消息类型;所述DU的ID;所述DU的能力信息;所述DU的配置信息;和所述DU的状态信息。
- 根据权利要求1-6任一项所述的方法,其特征在于,从所述基站接收所述终端设备的信息,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。
- 根据权利要求1-7任一项所述的方法,其特征在于,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:从所述基站接收所收集的数据。
- 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:向所述基站发布推理结果。
- 根据权利要求1-9任一项所述的方法,其特征在于,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:从所述基站接收模型参数信息或模型参数梯度信息。
- 一种通信方法,其特征在于,包括:从无线智能控制器RIC接收第一任务配置信息,所述第一任务配置信息用于指示一个或多个任务的配置信息;其中,对于所述一个或多个任务中的每一个任务,所述任务的配置信息用于指示所述任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态,其中,所述任务的执行主体是终端设备或基站。
- 根据权利要求11所述的方法,其特征在于,所述任务类型为数据收集、推理结果发布、模型发布或模型训练。
- 根据权利要求11或12所述的方法,其特征在于,所述任务的类型是数据收集时,所述任务内容指示以下内容中的一种或多种:数据的测量类型、测量条件、和测量结果报告方式;所述任务的类型是推理结果发布时,所述任务内容指示推理结果;所述任务的类型是模型发布时,所述任务内容指示模型信息;或,所述任务的类型是模型训练时,所述任务内容指示以下内容中的一种或多种:上报模型参数信息或上报模型参数梯度信息的条件、参考神经网络的信息、和神经网络训练数据集。
- 根据权利要求11-13任一项所述的方法,其特征在于,所述任务状态包括激活或去激活,或者所述任务状态包括激活、去激活或释放。
- 根据权利要求11-14任一项所述的方法,其特征在于,对于所述一个或多个任务中的至少一个任务,所述至少一个任务的执行主体是所述终端设备,所述方法还包括:通过无线资源控制RRC信令、系统信息块SIB、主信息块MIB或寻呼消息,向所述终端设备指示所述至少一个任务中每个任务的信息。
- 根据权利要求11-15任一项所述的方法,其特征在于,所述方法还包括:向所述RIC发送第一接口建立请求消息,其中,所述第一接口建立请求消息用于指示以下内容中的一种或多种:消息类型;所述基站的集中单元CU的ID;所述CU的能力信息;所述CU的配置信息;和所述CU的状态信息。
- 根据权利要求11-16任一项所述的方法,其特征在于,所述方法还包括:向所述RIC发送所述终端设备的信息,其中,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。
- 根据权利要求11-17任一项所述的方法,其特征在于,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:向所述RIC发送所收集的数据。
- 根据权利要求18所述的方法,其特征在于,所述数据是从所述基站的分布单元DU或所述终端设备接收的。
- 根据权利要求11-19任一项所述的方法,其特征在于,所述方法还包括:从所述RIC接收推理结果。
- 根据权利要求20所述的方法,其特征在于,所述方法还包括:向所述终端设备发送所述推理结果。
- 根据权利要求11-21任一项所述的方法,其特征在于,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:向所述RIC发送模型参数信息或模型参数梯度信息,所述模型参数信息或模型参数梯度信息来自所述终端设备。
- 一种通信方法,其特征在于,包括:通过无线资源控制RRC信令、系统信息块SIB、主信息块MIB或寻呼消息,从基站接收一个或多个任务的信息;其中,对于所述一个或多个任务中的每一个任务,所述任务信息用于指示所述任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态,其中,所述任务的执行主体包括一个或多个终端设备。
- 根据权利要求23所述的方法,其特征在于,所述任务的类型是数据收集时,所述任务内容指示以下内容中的一种或多种:数据的测量类型、测量条件、和测量结果报告方式;所述任务的类型是推理结果发布时,所述任务内容指示推理结果;所述任务的类型是模型发布时,所述任务内容指示模型信息;或,所述任务的类型是模型训练时,所述任务内容指示以下内容中的一种或多种:上报模型参数信息或上报模型参数梯度信息的条件、参考神经网络的信息、和神经网络训练数据集。
- 根据权利要求23或24所述的方法,其特征在于,所述任务状态包括激活或去激活,或者所述任务状态包括激活、去激活或释放。
- 根据权利要求23-25任一项所述的方法,其特征在于,所述方法还包括:向所述基站发送终端设备的信息,其中,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。
- 根据权利要求23-26任一项所述的方法,其特征在于,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:向基站发送所收集的数据。
- 根据权利要求23-27任一项所述的方法,其特征在于,所述方法还包括:从基站接收推理结果。
- 根据权利要求23-28任一项所述的方法,其特征在于,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:向所述基站发送模型参数信息或模型参数梯度信息。
- 一种通信方法,其特征在于,包括:通过第一协议层,向终端设备发送第二任务配置信息,所述第二任务配置信息用于指示一个或多个任务的配置信息;其中,对于所述一个或多个任务中的每一个任务,所述任务的配置信息用于指示所述任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态,其中,所述任务的执行主体包括一个或多个终端设备。
- 根据权利要求30所述的方法,其特征在于,所述方法还包括:向基站发送第三任务配置信息,所述第三任务配置信息用于指示一个或多个任务的配置信息;其中,所述第三任务配置信息指示的所述一个或多个任务中每个任务的配置信息用于指示所述每个任务的以下内容中的一种或多种:任务ID、任务类型、任务内容、任务执行主体、和任务状态,其中,所述任务的执行主体包括所述基站的集中单元CU或所述基站的分布单元DU。
- 根据权利要求30或31所述的方法,其特征在于,所述任务类型为数据收集、推理结果发布、模型发布或模型训练。
- 根据权利要求30-32任一项所述的方法,其特征在于,所述任务的类型是数据收集时,所述任务内容指示以下内容中的一种或多种:数据的测量类型、测量条件、和测量结果报告方式;所述任务的类型是推理结果发布时,所述任务内容指示推理结果;所述任务的类型是模型发布时,所述任务内容指示模型信息;或,所述任务的类型是模型训练时,所述任务内容指示以下内容中的一种或多种:上报模型参数信息或上报模型参数梯度信息的条件、参考神经网络的信息、和神经网络训练数据集。
- 根据权利要求30-33任一项所述的方法,其特征在于,所述任务状态包括激活或去激活,或者所述任务状态包括激活、去激活或释放。
- 根据权利要求30-34任一项所述的方法,其特征在于,所述方法还包括:从所述基站的CU接收第一接口建立请求消息,其中,所述第一接口建立请求消息用于指示以下内容中的一种或多种:消息类型;所述CU的ID;所述CU的能力信息;所述CU的配置信息;和所述CU的状态信息。
- 根据权利要求30-35任一项所述的方法,其特征在于,所述方法还包括:从所述基站的DU接收第二接口建立请求消息,其中,所述第二接口建立请求消息用于指示以下内容中的一种或多种:消息类型;所述DU的ID;所述DU的能力信息;所述DU的配置信息;和所述DU的状态信息。
- 根据权利要求30-36任一项所述的方法,其特征在于,从所述基站接收所述终端设备的信息,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。
- 根据权利要求31-37任一项所述的方法,其特征在于,所述第三任务配置信息指示的所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:从所述基站接收所收集的数据。
- 根据权利要求31-38任一项所述的方法,其特征在于,所述方法还包括:向所述基站发布推理结果。
- 根据权利要求30-39任一项所述的方法,其特征在于,所述第二任务配置信息指示的所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:通过所述第一协议层,从所述终端设备接收所收集的数据。
- 根据权利要求30-40任一项所述的方法,其特征在于,所述方法还包括:通过所述第一协议层,向所述终端设备发布推理结果。
- 根据权利要求30-41任一项所述的方法,其特征在于,所述第二任务配置信息指示的所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:通过所述第一协议层,从所述终端设备接收模型参数信息或模型参数梯度信息。
- 根据权利要求30-42任一项所述的方法,其特征在于,所述第一协议层为分组数据汇聚层协议PDCP层之上的人工智能控制AIC层,所述第一协议层为无线资源控制RRC层之上的AIC层,或,所述第一协议层为应用层。
- 一种通信方法,其特征在于,包括:从无线智能控制器RIC接收第三任务配置信息,所述第三任务配置信息用于指示一个或多个任务的配置信息;对于所述一个或多个任务中的每一个任务,所述任务的配置信息用于指示所述任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态,其中,所述任务的执行主体包括所述基站的集中单元CU或所述基站的分布单元DU。
- 根据权利要求44所述的方法,其特征在于,对于所述一个或多个任务中的至少一个任务,所述至少一个任务的执行主体是所述DU,所述方法还包括:向所述DU发送所述至少一个任务中每个任务的信息。
- 根据权利要求44或45所述的方法,其特征在于,所述方法还包括:向所述RIC发送第一接口建立请求消息,其中,所述第一接口建立请求消息用于指示以下内容中的一种或多种:消息类型;所述CU的ID;所述CU的能力信息;所述CU的配置信息;和所述CU的状态信息。
- 根据权利要求44-46任一项所述的方法,其特征在于,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:向所述RIC发送所收集的数据。
- 根据权利要求47所述的方法,其特征在于,所述数据是从所述基站的DU接收的。
- 根据权利要求44-48任一项所述的方法,其特征在于,所述方法还包括:从所述RIC接收推理结果。
- 一种通信方法,其特征在于,包括:通过第一协议层,从无线智能控制器RIC接收第二任务配置信息,所述第二任务配置信息用于指示一个或多个任务的配置信息;其中,对于所述一个或多个任务中的每一个任务,所述任务的配置信息用于指示所述任务的以下内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态,其中,所述任务的执行主体包括一个或多个终端设备。
- 根据权利要求50所述的方法,其特征在于,所述方法还包括:通过基站向所述RIC发送终端设备的信息,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。
- 根据权利要求50或51所述的方法,其特征在于,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:通过所述第一协议层,向所述RIC发送所收集的数据。
- 根据权利要求50-52任一项所述的方法,其特征在于,所述方法还包括:通过所述第一协议层,从所述RIC接收推理结果。
- 根据权利要求50-53任一项所述的方法,其特征在于,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:通过所述第一协议层,向所述RIC发送模型参数信息或模型参数梯度信息。
- 根据权利要求50-54任一项所述的方法,其特征在于,所述第一协议层为分组数据汇聚层协议PDCP层之上的人工智能控制AIC层,所述第一协议层为无线资源控制RRC层之上的AIC层,或,所述第一协议层为应用层。
- 一种通信方法,其特征在于,包括:通过应用层、人工智能控制AIC层、无线资源控制RRC信令、系统信息块SIB、主信息块MIB、寻呼消息、媒体接入控制MAC控制元素CE或物理层信息,向终端设备发送一个或多个任务的信息,其中,所述AIC层位于分组数据汇聚层协议PDCP层之上,或者所述AIC层位于所述RRC层之上;其中,对于所述一个或多个任务中的每个任务,所述任务的信息用于指示以下所述任务的内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态。
- 根据权利要求56所述的方法,其特征在于,所述任务类型为数据收集、推理结果发布、模型发布或模型训练。
- 根据权利要求56或57所述的方法,其特征在于,所述任务的类型是数据收集时,所述任务内容指示以下内容中的一种或多种:数据的测量类型、测量条件、和测量结果报告方式;所述任务的类型是推理结果发布时,所述任务内容指示推理结果;所述任务的类型是模型发布时,所述任务内容指示模型信息;或,所述任务的类型是模型训练时,所述任务内容指示以下内容中的一种或多种:上报模型参数信息或上报模型参数梯度信息的条件、参考神经网络的信息、和神经网络训练数据集。
- 根据权利要求56-58任一项所述的方法,其特征在于,所述任务状态包括激活或去激活,或者所述任务状态包括激活、去激活或释放。
- 根据权利要求56-59任一项所述的方法,其特征在于,所述方法还包括:从所述终端设备接收所述终端设备的信息,其中,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。
- 根据权利要求56-60任一项所述的方法,其特征在于,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:从所述终端设备接收所收集的数据。
- 根据权利要求56-61任一项所述的方法,其特征在于,所述方法还包括:向所述终端设备发送推理结果。
- 根据权利要求56-62任一项所述的方法,其特征在于,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:从所述终端设备接收模型参数信息或模型参数梯度信息。
- 一种通信方法,其特征在于,包括:通过应用层、人工智能控制AIC层、无线资源控制RRC信令、系统信息块SIB、主信息块MIB、寻呼消息、媒体接入控制MAC控制元素CE或物理层信息,从基站接收一个或多个任务的信息,其中,所述AIC层位于分组数据汇聚层协议PDCP层之上,或者所述AIC层位于所述RRC层之上;其中,对于所述一个或多个任务中的每个任务,所述任务的信息用于指示以下所述任务的内容中的一种或多种:任务标识ID、任务类型、任务内容、任务执行主体、和任务状态。
- 根据权利要求64所述的方法,其特征在于,所述方法还包括:向所述基站发送终端设备的信息,其中,所述终端设备的信息包括以下一项或多项:所述终端设备的能力信息、所述终端设备的配置信息、和所述终端设备的状态信息。
- 根据权利要求64或65所述的方法,其特征在于,所述一个或多个任务中包括至少一个数据收集任务,所述方法还包括:向所述基站发送所收集的数据。
- 根据权利要求64-66任一项所述的方法,其特征在于,所述方法还包括:从所述基站接收推理结果。
- 根据权利要求64-67任一项所述的方法,其特征在于,所述一个或多个任务中包括至少一个模型训练任务,所述方法还包括:向所述基站发送模型参数信息或模型参数梯度信息。
- 一种通信装置,其特征在于,用于实现权利要求1-10和30-43任一项所述的方法。
- 一种通信装置,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求1-10和30-43任一项所述的方法。
- 一种通信装置,其特征在于,用于实现权利要求11-22、44-49和56-63任一项所述的方法。
- 一种通信装置,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求11-22、44-49和56-63任一项所述的方法。
- 一种通信装置,其特征在于,用于实现权利要求23-29、50-55和64-68任一项所述的方法。
- 一种通信装置,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行权利要求23-29、50-55和64-68任一项所述的方法。
- 一种通信系统,其特征在于,包括:权利要求69或70所述的通信装置和权利要求71或72所述的通信装置;或,权利要求71或72所述的通信装置和权利要求73或74所述的通信装置;或,权利要求69或70所述的通信装置和权利要求73或74所述的通信装置;或,权利要求69或70所述的通信装置、权利要求71或72所述的通信装置和权利要求73或74所述的通信装置。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-68任一项所述的方法。
- 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得 计算机执行权利要求1-68任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21860363.7A EP4192093A4 (en) | 2020-08-24 | 2021-08-24 | INTELLIGENT RADIO ACCESS NETWORK |
US18/173,391 US20230209390A1 (en) | 2020-08-24 | 2023-02-23 | Intelligent Radio Access Network |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010858139.5 | 2020-08-24 | ||
CN202010858139.5A CN114095969A (zh) | 2020-08-24 | 2020-08-24 | 一种智能的无线接入网络 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/173,391 Continuation US20230209390A1 (en) | 2020-08-24 | 2023-02-23 | Intelligent Radio Access Network |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022042528A1 true WO2022042528A1 (zh) | 2022-03-03 |
Family
ID=80295549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/114255 WO2022042528A1 (zh) | 2020-08-24 | 2021-08-24 | 一种智能的无线接入网络 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230209390A1 (zh) |
EP (1) | EP4192093A4 (zh) |
CN (1) | CN114095969A (zh) |
WO (1) | WO2022042528A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023179801A1 (zh) * | 2022-03-24 | 2023-09-28 | 北京邮电大学 | 数据处理方法、装置、通信系统、电子设备及存储介质 |
WO2023179458A1 (zh) * | 2022-03-22 | 2023-09-28 | 华为技术有限公司 | 通信方法和通信装置 |
WO2023193579A1 (zh) * | 2022-04-08 | 2023-10-12 | 华为技术有限公司 | 数据传输的方法和装置 |
WO2023208322A1 (en) * | 2022-04-26 | 2023-11-02 | Nokia Technologies Oy | Federated learning methods applicable for radio access network performance optimization |
WO2023213994A1 (en) * | 2022-05-05 | 2023-11-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Controlling the collection of data for use in training a model |
GB2621019A (en) * | 2022-07-06 | 2024-01-31 | Samsung Electronics Co Ltd | Artificial intelligence and machine learning models management and/or training |
WO2024092748A1 (zh) * | 2022-11-04 | 2024-05-10 | Oppo广东移动通信有限公司 | 一种无线通信方法及设备、存储介质 |
WO2024098181A1 (en) * | 2022-11-07 | 2024-05-16 | Shenzhen Tcl New Technology Co., Ltd. | Communication devices and methods for alignment of generalized ai/ml model |
EP4398653A1 (en) * | 2023-01-09 | 2024-07-10 | Nokia Solutions and Networks Oy | Apparatus and method for a distributed unit of a communication system |
US12143932B2 (en) | 2023-01-09 | 2024-11-12 | Nokia Solutions And Networks Oy | Apparatus and method for a distributed unit of a communication system |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12101206B2 (en) * | 2021-07-26 | 2024-09-24 | Qualcomm Incorporated | Signaling for additional training of neural networks for multiple channel conditions |
CN116017763A (zh) * | 2021-10-22 | 2023-04-25 | 大唐移动通信设备有限公司 | 内生业务的传输方法、装置及存储介质 |
CN116744375A (zh) * | 2022-03-01 | 2023-09-12 | 维沃移动通信有限公司 | 小区切换方法、装置及用户设备 |
WO2023184452A1 (zh) * | 2022-03-31 | 2023-10-05 | 北京小米移动软件有限公司 | 终端设备使用的模型的确定方法和装置 |
CN116996453A (zh) * | 2022-04-26 | 2023-11-03 | 华为技术有限公司 | 通信方法和通信装置 |
WO2023236124A1 (zh) * | 2022-06-08 | 2023-12-14 | 北京小米移动软件有限公司 | 一种人工智能ai模型训练方法/装置/设备及存储介质 |
CN115278792B (zh) * | 2022-06-23 | 2024-05-24 | 重庆邮电大学 | 超密集异构无线网络中感知终端接入偏好的切换判决方法 |
CN117882088A (zh) * | 2022-08-11 | 2024-04-12 | 北京小米移动软件有限公司 | 一种通信方法、装置、设备及存储介质 |
WO2024040476A1 (en) * | 2022-08-24 | 2024-02-29 | Apple Inc. | Rrc procedure design for wireless ai/ml |
WO2024082274A1 (zh) * | 2022-10-21 | 2024-04-25 | 华为技术有限公司 | Ai任务指示的方法、通信装置和系统 |
CN117998579A (zh) * | 2022-11-07 | 2024-05-07 | 大唐移动通信设备有限公司 | 一种数据处理方法及装置 |
CN118118921A (zh) * | 2022-11-30 | 2024-05-31 | 华为技术有限公司 | 一种通信方法及装置 |
WO2024138332A1 (zh) * | 2022-12-26 | 2024-07-04 | 华为技术有限公司 | 一种信息传输方法和装置 |
WO2024082447A1 (en) * | 2022-12-29 | 2024-04-25 | Lenovo (Beijing) Limited | Method and apparatus of supporting artificial intelligence |
CN118283670A (zh) * | 2022-12-30 | 2024-07-02 | 华为技术有限公司 | 信息传输方法及通信装置 |
WO2024152200A1 (en) * | 2023-01-17 | 2024-07-25 | Nec Corporation | Devices and methods of communication |
CN118524433A (zh) * | 2023-02-17 | 2024-08-20 | 华为技术有限公司 | 测量数据的管理方法、系统及相关设备 |
WO2024207461A1 (en) * | 2023-04-07 | 2024-10-10 | Shenzhen Tcl New Technology Co., Ltd. | Data transfer method and wireless communication device |
WO2024109110A1 (en) * | 2023-07-13 | 2024-05-30 | Lenovo (Beijing) Limited | Assistance information provision for lcm |
WO2024207850A1 (en) * | 2023-12-29 | 2024-10-10 | Lenovo (Beijing) Limited | Data collection for model training or monitoring |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6459881B1 (en) * | 1996-12-02 | 2002-10-01 | T. Mobile Deutschland Gmbh | Repeater for radio signals |
CN102932751A (zh) * | 2012-10-17 | 2013-02-13 | 中国联合网络通信集团有限公司 | 物联网数据传输方法和物联网 |
CN108476536A (zh) * | 2016-03-29 | 2018-08-31 | Oppo广东移动通信有限公司 | 无线通信的方法和装置 |
CN109644387A (zh) * | 2016-09-05 | 2019-04-16 | 华为技术有限公司 | 一种无线通信的方法和装置 |
CN111522669A (zh) * | 2020-04-29 | 2020-08-11 | 深圳前海微众银行股份有限公司 | 横向联邦学习系统优化方法、装置、设备及可读存储介质 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200065712A1 (en) * | 2018-08-23 | 2020-02-27 | Microsoft Technology Licensing, Llc | Efficient configuration selection for automated machine learning |
US10673546B2 (en) * | 2018-09-27 | 2020-06-02 | Nokia Solutions And Networks Oy | Scell selection and optimization for telecommunication systems |
US11170335B2 (en) * | 2018-09-28 | 2021-11-09 | Accenture Global Solutions Limited | Adaptive artificial intelligence for user training and task management |
WO2020131128A1 (en) * | 2018-12-22 | 2020-06-25 | Nokia Solutions And Networks Oy | Connection behavior identification for wireless networks |
-
2020
- 2020-08-24 CN CN202010858139.5A patent/CN114095969A/zh active Pending
-
2021
- 2021-08-24 WO PCT/CN2021/114255 patent/WO2022042528A1/zh unknown
- 2021-08-24 EP EP21860363.7A patent/EP4192093A4/en active Pending
-
2023
- 2023-02-23 US US18/173,391 patent/US20230209390A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6459881B1 (en) * | 1996-12-02 | 2002-10-01 | T. Mobile Deutschland Gmbh | Repeater for radio signals |
CN102932751A (zh) * | 2012-10-17 | 2013-02-13 | 中国联合网络通信集团有限公司 | 物联网数据传输方法和物联网 |
CN108476536A (zh) * | 2016-03-29 | 2018-08-31 | Oppo广东移动通信有限公司 | 无线通信的方法和装置 |
CN109644387A (zh) * | 2016-09-05 | 2019-04-16 | 华为技术有限公司 | 一种无线通信的方法和装置 |
CN111522669A (zh) * | 2020-04-29 | 2020-08-11 | 深圳前海微众银行股份有限公司 | 横向联邦学习系统优化方法、装置、设备及可读存储介质 |
Non-Patent Citations (2)
Title |
---|
3GPP PROTOCOL TS 37.320 |
See also references of EP4192093A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023179458A1 (zh) * | 2022-03-22 | 2023-09-28 | 华为技术有限公司 | 通信方法和通信装置 |
WO2023179801A1 (zh) * | 2022-03-24 | 2023-09-28 | 北京邮电大学 | 数据处理方法、装置、通信系统、电子设备及存储介质 |
WO2023193579A1 (zh) * | 2022-04-08 | 2023-10-12 | 华为技术有限公司 | 数据传输的方法和装置 |
WO2023208322A1 (en) * | 2022-04-26 | 2023-11-02 | Nokia Technologies Oy | Federated learning methods applicable for radio access network performance optimization |
WO2023213994A1 (en) * | 2022-05-05 | 2023-11-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Controlling the collection of data for use in training a model |
GB2621019A (en) * | 2022-07-06 | 2024-01-31 | Samsung Electronics Co Ltd | Artificial intelligence and machine learning models management and/or training |
WO2024092748A1 (zh) * | 2022-11-04 | 2024-05-10 | Oppo广东移动通信有限公司 | 一种无线通信方法及设备、存储介质 |
WO2024098181A1 (en) * | 2022-11-07 | 2024-05-16 | Shenzhen Tcl New Technology Co., Ltd. | Communication devices and methods for alignment of generalized ai/ml model |
EP4398653A1 (en) * | 2023-01-09 | 2024-07-10 | Nokia Solutions and Networks Oy | Apparatus and method for a distributed unit of a communication system |
US12143932B2 (en) | 2023-01-09 | 2024-11-12 | Nokia Solutions And Networks Oy | Apparatus and method for a distributed unit of a communication system |
Also Published As
Publication number | Publication date |
---|---|
US20230209390A1 (en) | 2023-06-29 |
EP4192093A1 (en) | 2023-06-07 |
EP4192093A4 (en) | 2024-02-21 |
CN114095969A (zh) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022042528A1 (zh) | 一种智能的无线接入网络 | |
Maeder et al. | A scalable and flexible radio access network architecture for fifth generation mobile networks | |
WO2022206513A1 (zh) | 模型处理的方法、通信装置和系统 | |
US20230422004A1 (en) | Updating a background data transfer policy negotiated between an application function and a core network | |
US20240298225A1 (en) | Using ai-based models for network energy savings | |
US20230262490A1 (en) | Data transmission method and apparatus | |
US20240106764A1 (en) | Computing power resource scheduling method and related apparatus | |
US20230262478A1 (en) | Model configuration method and apparatus | |
US20220303836A1 (en) | Method and apparatus for handover | |
US12035173B2 (en) | Application adaptation with exposure of network capacity | |
Li et al. | Opportunistic computing offloading in edge clouds | |
US20210112386A1 (en) | Vehicle terminal for controlling v2x message transmission between vehicle terminals through v2x service in wireless communication system and communication control method thereof | |
EP3935886B1 (en) | Predictive, cached, and cost-efficient data transfer | |
US11924287B2 (en) | Method for managing session | |
WO2023280143A1 (zh) | Ai任务的控制方法、终端、基站及存储介质 | |
US20240292198A1 (en) | Proximity service for ai/ml capable devices | |
CN117222054A (zh) | 状态转换方法、装置、设备及存储介质 | |
WO2024169651A1 (zh) | 一种侧行链路通信方法、装置及系统 | |
WO2023246267A1 (zh) | 通信方法、通信装置和系统 | |
EP4387293A1 (en) | Machine learning configuration information transfer to ue using proximity services (prose)/sidelink wireless communication | |
WO2024208213A1 (zh) | 通信方法和装置 | |
WO2024187479A1 (zh) | 一种算力资源调度方法及装置 | |
WO2024212517A1 (zh) | 通信方法及装置 | |
WO2023221059A1 (zh) | 无线通信方法、装置、设备、存储介质及程序产品 | |
KR20240113453A (ko) | 무선 통신 시스템에서 통신을 수행하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21860363 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021860363 Country of ref document: EP Effective date: 20230301 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |