WO2022042323A1 - 预编码矩阵索引确定方法、终端设备及存储介质 - Google Patents

预编码矩阵索引确定方法、终端设备及存储介质 Download PDF

Info

Publication number
WO2022042323A1
WO2022042323A1 PCT/CN2021/112327 CN2021112327W WO2022042323A1 WO 2022042323 A1 WO2022042323 A1 WO 2022042323A1 CN 2021112327 W CN2021112327 W CN 2021112327W WO 2022042323 A1 WO2022042323 A1 WO 2022042323A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
target
dimension
downsampling
codebook set
Prior art date
Application number
PCT/CN2021/112327
Other languages
English (en)
French (fr)
Inventor
马钰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21860162.3A priority Critical patent/EP4207621A4/en
Publication of WO2022042323A1 publication Critical patent/WO2022042323A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a method for determining a precoding matrix index, a terminal device, and a storage medium.
  • Channel State Information Reference Signal for short
  • CSI-RS is a reference signal used to detect Channel State Information (CSI-RS)
  • the mobile terminal can perform channel state information detection to obtain channel Status information reference signal, and according to the channel status information reference signal, the precoding matrix index (Precoding Matrix Indicator, referred to as: PMI) that best matches the channel conditions and its own demodulation performance can be sent to the base station for scheduling and downlink by the base station.
  • PMI Precoding Matrix Indicator
  • the channel state information reference signal is based on the detection of the codebook.
  • the codebook is a conjugate transposed matrix used to represent different characteristics of the wireless channel. Both the base station and the mobile terminal can obtain the codebook. The most time-consuming part of the detection of the channel state information reference signal lies in the traversal of the codebook.
  • 5G 5th generation mobile networks
  • An embodiment of the present application provides a method for determining a precoding matrix index, including: performing downsampling on an original codebook set in a preset dimension to obtain a downsampling codebook set, wherein the codes included in the original codebook set All of the downsampling codebooks correspond to preset dimensions; a downsampling codebook that meets preset channel conditions is determined from the downsampling codebook set; a target codebook is determined from the original codebook set according to the downsampling codebook, and a target codebook is determined from the original codebook set according to the downsampling codebook.
  • the target codebook determines a target precoding matrix index.
  • An embodiment of the present application further provides a terminal device, including: a memory and a processor; the memory is used to store a computer program; the processor is used to execute the computer program and implement the following when executing the computer program.
  • a terminal device including: a memory and a processor; the memory is used to store a computer program; the processor is used to execute the computer program and implement the following when executing the computer program.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the processor enables the processor to determine the precoding matrix index as described above. method.
  • FIG. 1 is a schematic flowchart 1 of a method for determining a precoding matrix index provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart 2 of a method for determining a precoding matrix index provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart 1 of another method for determining a precoding matrix index provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart 2 of another method for determining a precoding matrix index provided by an embodiment of the present application
  • FIG. 5 is a schematic flowchart 3 of another method for determining a precoding matrix index provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural block diagram of a terminal device provided by an embodiment of the present application.
  • the embodiments of the present application provide a method for determining a precoding matrix index, a terminal device, and a storage medium, which can improve the efficiency and accuracy of determining the precoding matrix index.
  • Embodiments of the present application provide a method for determining a precoding matrix index, a terminal device, and a storage medium.
  • FIG. 1 is a schematic flowchart of a method for determining a precoding matrix index provided by an embodiment of the present application. The method can be applied to a terminal device. As shown in FIG. 1, the method for determining a precoding matrix index Specifically, it includes steps S101 to S103.
  • the original codebook set may be a preset codebook set, the original codebook set includes multiple codebooks, and the codebooks in the original codebook set may be defined according to multiple dimensions, so each codebook Each codebook corresponds to several preset dimensions. For example, if the codebook is defined according to four dimensions, each codebook corresponds to four dimensions, that is, the preset dimension includes four dimensions.
  • the preset dimensions include a horizontal (Horizontal) dimension, a vertical (Vertical) dimension, a phase value (Phase) dimension, and a phase difference (PhaseDiff) dimension of the dual-polarized antenna.
  • the codebook has corresponding index values in the preset dimension, and the corresponding codebook can be obtained according to the index value of the preset dimension.
  • the index value can be address information of the codebook.
  • the downsampling may be an operation of sampling from the original codebook set to determine part of the codebook.
  • the codebooks in the original codebook set correspond to preset dimensions. If the preset dimensions include multiple dimensions, the The original codebook set is down-sampled in all dimensions, and the down-sampling codebook set can be obtained after downsampling the original codebook set in all dimensions.
  • the codebooks included in the downsampling codebook set belong to the original codebook set. For example, the codebook may be obtained by sampling at fixed intervals on a preset dimension.
  • the down-sampling may be performed for each preset dimension, and the original codebook set is down-sampled on the preset dimension according to the preset downsampling coefficient corresponding to the preset dimension.
  • the down-sampling codebook set can be obtained by down-sampling the original codebook set by setting the dimension.
  • the preset downdraft coefficient may be preset, for example, the preset downdraft factor may be 1/2, 1/3, or 1/4, and so on.
  • the downsampling codebook set includes codebooks sampled from the original codebook set, and the number of codebooks in the downsampling codebook set is less than the original codebook set, so the downsampling codebook set can be traversed.
  • the channel capacity corresponding to each codebook is calculated respectively, and the codebook whose channel capacity meets the preset channel conditions is determined as the downsampling codebook.
  • the preset channel condition may be a condition used to reflect that the channel transmission condition meets the transmission requirement. If the channel capacity corresponding to the codebook meets the preset channel condition, the terminal device can use the codebook to obtain a relatively high level of performance when performing communication transmission. The best channel transmission effect is obtained, that is, the down-sampling codebook that meets the preset channel conditions can obtain a better channel transmission effect.
  • the determining a downsampling codebook that meets a preset channel condition from the downsampling codebook set includes: determining a channel capacity corresponding to the codebooks included in the downsampling codebook set, The codebook with the largest channel capacity is determined as the downsampling codebook.
  • the maximum channel capacity indicates that the channel corresponding to the codebook has the best transmission effect
  • the maximum channel capacity may be grouped as a preset channel condition. Traverse all codebooks included in the set of downsampling codebooks, calculate the channel capacity corresponding to each codebook, and determine the codebook with the largest channel capacity as the downsampling codebook, that is, the downsampling codebook is the downsampling codebook The codebook with the best transmission effect for the corresponding channel in the set.
  • the downsampling codebook is the codebook with the best channel transmission effect in the downsampling codebook set. It is not necessarily the codebook with the best channel transmission effect in the original codebook set, but the downsampling codebook is the codebook with the best channel transmission effect in the downsampling codebook set, that is, the downsampling codebook will be in the original codebook set. It is closer to the codebook with the best channel transmission effect in the original codebook set, so the codebook range that needs to be traversed in the original codebook set can be narrowed according to the down-sampling codebook.
  • the range of traversal codebooks that can be traversed can be determined according to the downsampling codebook, and the target codebook can be determined from the range of traversal codebooks in the original codebook set, and the target codebook can be a channel transmission effect selected from the original codebook set
  • the codebook that meets the transmission requirements can be, for example, the codebook with the largest channel capacity in the original codebook set.
  • the precoding matrix index (PMI, Precoding Matrix Indicator) is used to indicate the codebook, that is, the terminal device can obtain the corresponding codebook according to the precoding matrix index.
  • PMI Precoding Matrix Indicator
  • the precoding matrix index of the target codebook can be determined and determined as the target precoding matrix index, and the terminal device can obtain the corresponding target codebook according to the target precoding matrix index.
  • the embodiment of the present application reduces the number of codebooks that need to be traversed by performing downsampling operations on the original codebook set on a preset dimension, thereby improving the detection efficiency. In addition, it is determined from the downsampling codebook set that the channel transmission effect is better.
  • the down-sampling codebook, and determining the target codebook from the original codebook set according to the down-sampling codebook can improve the accuracy of the target codebook, thereby improving the accuracy of determining the precoding matrix index.
  • the operation of performing downsampling on the original codebook set on the preset dimension to obtain the downsampling codebook set may be implemented in the following manner:
  • the downsampling coefficient corresponding to each preset dimension may include multiple coefficients, and each coefficient is used for downsampling the original codebook set for each preset dimension, and downsampling is completed on all preset dimensions. After the operation, the corresponding first downsampling codebook set can be obtained. Different coefficients correspond to different first downsampling codebook sets, from which the most reasonable first downsampling codebook set can be selected as the downsampling codebook set.
  • the determining of the first precoding matrix index corresponding to the first downsampling codebook set may be implemented in the following manner: determining a codebook with the largest channel capacity in the first downsampling codebook set, and The precoding matrix index corresponding to the codebook with the largest channel capacity is determined as the first precoding matrix index.
  • the first precoding matrix index may be determined according to the first downsampling codebook set, and the degree of matching between the first precoding matrix index and the original precoding matrix index may be used to determine whether the first downsampling codebook set is reasonable basis.
  • the original precoding matrix index may be the precoding matrix index corresponding to the codebook with the largest channel capacity determined in the original codebook set, and the first precoding matrix index may be the code with the largest channel capacity determined in the first downsampling codebook set. This corresponds to the precoding matrix index.
  • the higher the matching degree between the first precoding matrix index and the original precoding matrix index the higher the degree of matching between the first downsampling codebook set and the codebook with the largest channel capacity and the one with the largest channel capacity in the original precoding matrix index.
  • the codebooks are closer, so the first downsampling codebook set is a relatively reasonable codebook set obtained by downsampling, so the first downsampling codebook set can be determined as the downsampling codebook set.
  • the preset matching condition may be a condition for judging that the codebook with the largest channel capacity determined in the first downsampling codebook set is sufficiently close to the codebook with the largest channel capacity in the original codebook set.
  • the preset dimension corresponds to a plurality of different reduction coefficients
  • the method further includes the following operation: determining a matching degree corresponding to the plurality of different reduction coefficients, wherein the reduction coefficient The corresponding matching degree is: the first precoding matrix index of the first downsampling codebook set obtained by downsampling the original codebook set according to the downsampling coefficient, and the matching degree of the original precoding matrix index;
  • the operation of determining the first downsampling codebook set corresponding to the first precoding matrix index whose matching degree meets the preset matching condition as the downsampling codebook set may be implemented in the following manner: determining that the matching degree satisfies the predetermined matching condition.
  • the first downsampling codebook set indexed by the first precoding matrix is determined as the downsampling codebook set.
  • the matching degree of the first precoding matrix index corresponding to a certain downsampling coefficient and the original precoding matrix index is higher than the matching degree corresponding to other downsampling coefficients, it means that the first downsampling code corresponding to the downsampling coefficient
  • the codebook with the largest channel capacity determined in this set is closest to the codebook with the largest channel capacity in the original codebook set, so it can be determined that the preset matching condition is met, and the first downsampling codebook set can be determined as the downsampling code
  • the down-sampling codebook according to the preset channel conditions determined from the down-sampling codebook set will be closer to the codebook with the largest channel capacity in the original codebook set, which can further improve the determination of the precoding matrix index. accuracy.
  • the present application can also monitor the change of service flow in the subsequent actual measurement of the environment.
  • the service flow is the amount of data transmitted in the base station and terminal equipment in the wireless communication system.
  • the mining reduction coefficient can be adjusted according to the change of the service flow. The coefficient with the largest business flow will be used as the reduction coefficient to further obtain better reduction results.
  • the operation of determining a target codebook from the original codebook set according to the downsampling codebook may be implemented in the following manner:
  • the first dimension may be one or more of the preset dimensions, and may be a dimension with a lower number of directions among the preset dimensions.
  • the first dimension includes a vertical dimension and a phase value dimension. and the phase difference dimension of the dual polarized antenna.
  • the downsampling codebook is a codebook with a larger channel capacity in the downsampling codebook set, so the index value corresponding to the downsampling codebook in the preset dimension will be closer to the code with the largest channel capacity in the original codebook set
  • the index value of the downsampling codebook by determining the first index value corresponding to the downsampling codebook in the first dimension, the first index value of the downsampling codebook is also closer to the first index of the codebook with the largest channel capacity in the original codebook set value. Further, the codebook range to be traversed can be narrowed from the original codebook set according to the first index value of the downsampling codebook.
  • the index value corresponding to the first dimension is determined as the codebook corresponding to the original codebook set from which the first index value of the downsampling codebook is derived, and the downsampling codebook has a corresponding first index value in the first dimension.
  • An index value but includes all index values corresponding to the second dimension in the second dimension.
  • the preset codebook further includes a second dimension, and the second dimension is another dimension in the preset dimensions except the first dimension.
  • the second dimension includes a horizontal dimension.
  • the downsampling codebook is obtained by downsampling the original codebook set, so the downsampling codebook also discards some codebooks in the second dimension, and the downsampling codebook includes the first codebook set from the first codebook set. All codebooks corresponding to the two dimensions, so the codebook with the largest channel capacity in the first codebook set is selected as the first codebook. Compared with the downsampling codebook, the index value of the first codebook is closer to the original codebook in the second dimension. The index value of the codebook with the largest channel capacity in the set.
  • the target codebook can be determined from the original codebook set according to the first codebook, which can not only narrow the range of codebooks to be traversed in the original codebook set, but also further improve the accuracy of the target codebook, thereby further improving the determination prediction Accuracy of encoding matrix indices.
  • the operation of determining a target codebook from the original codebook set according to the first codebook may be implemented in the following manner:
  • the first codebook is a codebook with the largest channel capacity determined from the first codebook set, and the first codebook set corresponds to all index values in the second dimension, so it is determined from the first codebook set
  • the index value of the first codebook in the second dimension is closer to the index value of the codebook with the largest channel capacity in the original codebook set. Therefore, a second index value corresponding to the first codebook in the second dimension can be determined, so that an accurate target codebook can be found according to the second index value.
  • the codebook corresponding to the value is determined to be the second codebook set, wherein the first dimension includes a first target dimension, and the first index value includes a first target index value corresponding to the first target dimension.
  • the first target dimension may be any dimension in the first dimension, and may be a dimension except the highest number of directions and the lowest number of directions in the first dimension.
  • the first target The dimension includes the phase difference dimension of the dual-polarized antenna, and the first target index value corresponding to the first target dimension is an index value corresponding to the phase difference dimension of the dual-polarized antenna.
  • the index value corresponding to the second dimension is determined as the second index value of the first codebook
  • the index value of the first target dimension is determined as the first target index value of the downsampling codebook.
  • the corresponding codebook in this set has a corresponding second index value in the second dimension with the first codebook, and has a corresponding first target index value in the first target dimension with the downsampling codebook, but in the first
  • the second target dimension includes all index values corresponding to the second target dimension.
  • the second target dimension is another dimension in the first dimension except the first target dimension.
  • the second target dimension includes a vertical dimension and a phase value dimension.
  • the codebooks included in the first codebook set correspond to all index values corresponding to the second dimension in the second dimension
  • the codebooks included in the second codebook set correspond to the second target dimension in the second target dimension. All index values of , that is, the first codebook set and the second codebook set are more likely to be close to the codebook with the largest channel capacity in the original codebook set, so it can be determined according to the first codebook set and the second codebook set.
  • a codebook set, and a target codebook is determined from the original codebook set.
  • the operation of determining a target codebook from the original codebook set according to the first codebook set and the second codebook set may be implemented in the following manner :
  • the first target codebook set is a codebook set with better channel transmission conditions in the first codebook set, and the first target codebook set excludes codebooks with poor channel transmission conditions in the first codebook set.
  • the second target codebook set is a codebook set with better transmission conditions in the second codebook set, and the second target codebook set excludes codebooks with poor channel transmission conditions in the second codebook set.
  • the specific values of the first quantity and the second quantity can be set according to actual conditions, which are not limited here.
  • S133 Determine the second index value corresponding to the codebook included in the first target codebook set in the second dimension, and determine that the codebook included in the second target codebook set corresponds to the second target dimension
  • the second target index value of wherein the first dimension further includes a second target dimension, and the first index value includes a second target index value corresponding to the second target dimension.
  • the first target codebook set is a codebook set with better channel transmission conditions determined from the first target codebook, and the codebooks in the first target codebook include all indexes corresponding to the second dimension Therefore, the second index value corresponding to the first target codebook set in the second dimension is closer to the codebook with the largest channel capacity in the original codebook set than the downsampling codebook or the first codebook.
  • the second target codebook set is a codebook set with better channel transmission conditions determined from the second target codebook, and the codebooks in the second target codebook include all the corresponding Therefore, the second target index value corresponding to the second target codebook set in the second target dimension is closer to the codebook with the largest channel capacity in the original codebook set than the downsampling codebook or the first codebook. Therefore, the second index value corresponding to the first target codebook set in the second dimension can be determined, and the second target index value corresponding to the second target codebook set in the second target dimension can be determined. Determine the codebook range that needs to be traversed in the original codebook set.
  • the index value corresponding to the second dimension is determined as the second index value of the codebooks included in the first target codebook set, and the index value of the second target dimension is determined as the second target codebook set.
  • the codebook corresponding to the second target index value of the codebook included in the original codebook set is closer to the codebook with the largest channel capacity in the original codebook set than the down-sampling codebook or the first codebook.
  • each codebook can correspond to different channel capacities under different rank indications, so it can be determined from the channel capacities corresponding to the codebooks in the third codebook set under different rank indications that the channel transmission effect is the best
  • the rank indication corresponding to the good codebook is used as the target rank indication, and then the target codebook can be determined from the original codebook set according to the target rank indication.
  • the operation of determining the target rank indication according to the third codebook set may be implemented in the following manner: determining the channel capacity of the codebooks included in the third codebook set under the preset rank indication , and the preset rank indication corresponding to the maximum channel capacity is determined as the target rank indication.
  • the channel capacity of each codebook in the third codebook set under each preset rank indication may be calculated separately, the largest channel capacity among them may be determined, and the preset rank indication corresponding to the largest channel capacity may be determined as the target rank indication.
  • the preset rank indications include 1, 2, 3 and 4, respectively calculate the channel capacity of each codebook in the four cases where the rank indications are 1, 2, 3 and 4, and determine that all codebooks are in all preset For the channel capacity corresponding to the rank indication, the preset rank indication corresponding to the largest channel capacity is determined as the target rank indication.
  • the operation of determining the target codebook from the original codebook set according to the target rank indication may be implemented by: combining the original codebook set with the second dimension in the second dimension the second index value of the codebook included in the first target codebook set corresponds to the second target index value of the codebook included in the second target codebook set in the second target dimension, and the codebook corresponding to the third target index value on the first target dimension is determined as the fourth codebook set, wherein the third target index value includes: dividing all index values corresponding to the first target dimension by The index values other than the first target index value of the down-sampling codebook are determined; the channel capacity corresponding to the target rank indication of the codebook included in the fourth codebook set is determined, and the code with the largest channel capacity is determined. This book is determined as the target codebook.
  • the first target index value of the downsampling codebook has been calculated, so the downsampling code can be divided from all index values corresponding to the first target dimension
  • the index values other than the first target index value of the present invention are determined as the third target index value.
  • the index value corresponding to the second dimension is determined as the second index value of the codebook included in the first target codebook set, and the index value of the second target dimension is determined as the codebook included in the second target codebook set
  • the second target index value of , and the index value of the first target dimension is determined as the third target index value, and the corresponding codebook from the original codebook set has a corresponding second index value with the first target codebook set , and the second target codebook set has a corresponding second target index value, and includes other index values except the first target index value of the downsampling codebook in all the index values included in the first target dimension;
  • the codebook included in the first target codebook set is closer to the codebook with the largest channel capacity in the original codebook set in the second dimension, and the codebook included in the second target codebook set is closer to the second target codebook set. It is close to the codebook with the largest channel capacity in the original codebook set, and the third target index value of the first target dimension includes all index values corresponding to the first target dimension except the first target index value of the downsampling codebook.
  • Other index values of that is, the traversal range involving all preset dimensions and the codebook with the largest channel capacity in the original codebook set can be obtained as the fourth codebook set, and then the target code can be determined from the fourth codebook set Book.
  • the channel capacity corresponding to the target rank indication of the codebooks in the fourth codebook set can be traversed, and then the codebook with the largest channel capacity can be selected as the target codebook.
  • the target codebook with the best channel transmission effect is the target codebook with the best channel transmission effect.
  • the first dimension includes a vertical dimension, a phase value dimension, and a phase difference dimension of a dual-polarized antenna
  • the first target dimension includes a phase difference dimension of a dual-polarized antenna
  • the second dimension includes a horizontal dimension
  • the second target dimension includes a vertical dimension and a phase value dimension.
  • the original codebook set includes 5120 codebooks, the number of directions of the codebooks included in the original codebook set is 32 in the horizontal dimension, the number of directions in the vertical dimension is 8, and the number of directions in the phase value dimension is 1 and dual polarization.
  • the direction of the phase difference dimension of the antenna is 4.
  • the obtained downsampling codebook set includes (32/8) ⁇ (8/4) ⁇ 1 ⁇ 4 codebooks, that is, 32 codebooks;
  • the determined first codebook set includes 32 ⁇ 1 ⁇ 1 ⁇ 1 codebooks, that is, 32 codebooks;
  • the determined second codebook set includes 1 ⁇ 8 ⁇ 1 ⁇ 1 codebooks, that is, 8 codebooks;
  • the first number is 8, the second number is 4, and the third codebook set determined correspondingly includes 8 ⁇ 4 ⁇ 1 codebooks, that is, 32 codebooks; that is, under the indication of a target rank, a total of 32+32 codebooks have been traversed. +8+32 codebooks, that is, 104 codebooks.
  • the target rank indication it is necessary to traverse all four rank indications. It is assumed that the rank indication corresponding to the 104 codebooks above is 1. When the rank indication is 2, a total of 256 codebooks have been traversed, and the rank indication is 3. A total of 208 codebooks have been traversed, and a total of 208 codebooks have been traversed when the rank indication is 4; the determined fourth codebook set includes 8 ⁇ 4 ⁇ (4-1) codebooks, that is, 96 codebooks; therefore, finally When determining the target codebook, a total of 104+256+208+208+96 codebooks are traversed, that is, 872 codebooks, which reduces the number of codebooks to be traversed by a large amount compared to the 5120 codebooks in the original codebook set.
  • the method for determining a precoding matrix index performs downsampling on the original codebook set in a preset dimension, so as to traverse fewer codebooks to determine a codebook with better channel transmission effect, and for different presets
  • the codebook sets corresponding to different preset dimensions are traversed dimension by dimension to reduce the inaccuracy of the codebook caused by the downsampling operation, which can improve the accuracy of the target codebook while improving the detection efficiency, and further improve the determination of the precoding matrix.
  • the accuracy of the index is a method for determining a precoding matrix index.
  • FIG. 6 is a schematic structural block diagram of a terminal device provided by an embodiment of the present application.
  • the terminal equipment may be a user terminal equipment.
  • the terminal device 100 includes a processor 110 and a memory 120 connected through a system bus, wherein the memory 120 may include a non-volatile storage medium and an internal memory.
  • the nonvolatile storage medium can store operating systems and computer programs.
  • the computer program includes program instructions which, when executed, can cause the processor to perform any method for determining the index of the precoding matrix.
  • the processor is used to provide computing and control capabilities to support the operation of the entire terminal equipment.
  • the internal memory provides an environment for running the computer program in the non-volatile storage medium, and when the computer program is executed by the processor, the processor can cause the processor to execute any method for determining the index of the precoding matrix.
  • FIG. 6 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the terminal equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • the processor may be a central processing unit (Central Processing Unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (Application Specific Integrated circuits) Circuit, ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor or the like.
  • the processor is configured to run a computer program stored in the memory, so as to implement the following steps: performing downsampling on the original codebook set in a preset dimension to obtain a downsampling codebook set, wherein the The codebooks included in the original codebook set all correspond to preset dimensions; a downsampling codebook that meets preset channel conditions is determined from the downsampling codebook set; A target codebook is determined in the target codebook, and a target precoding matrix index is determined according to the target codebook.
  • the processor when implementing the downsampling of the original codebook set in the preset dimension to obtain the downsampling codebook set, is configured to implement: in the preset dimension, according to the performing downsampling on the original codebook set with the downsampling coefficient corresponding to the preset dimension to obtain a first downsampling codebook set; determining a first precoding matrix index corresponding to the first downsampling codebook set; determining the first downsampling codebook set A matching degree between the precoding matrix index and the original precoding matrix index, wherein the original precoding matrix index is the precoding matrix index corresponding to the original codebook set; The first downsampling codebook set corresponding to a precoding matrix index is determined as the downsampling codebook set.
  • the processor when implementing the determining of the first precoding matrix index corresponding to the first downsampling codebook set, is configured to implement: determining a channel in the first downsampling codebook set The codebook with the largest capacity is determined, and the precoding matrix index corresponding to the codebook with the largest channel capacity is determined as the first precoding matrix index.
  • the preset dimension corresponds to a plurality of different mining reduction coefficients
  • the processor is further configured to: determine the matching degree corresponding to the plurality of different mining reduction coefficients, wherein the mining reduction coefficient is The matching degree corresponding to the coefficient is: the first precoding matrix index of the first downsampling codebook set obtained by downsampling the original codebook set according to the downsampling coefficient, and the matching degree of the original precoding matrix index;
  • the processor is configured to: determine, from the plurality of different reduction coefficients, a target reduction coefficient whose matching degree satisfies a preset matching condition, wherein the matching degree of the target reduction coefficient is greater than the matching degree corresponding to other downsampling coefficients in the multiple different downsampling coefficients; determining the first downsampling codebook set of the first precoding matrix index corresponding to the target downsampling coefficient as the downsampling codebook gather.
  • the processor when implementing the determining of the downsampling codebook that meets the preset channel condition from the downsampling codebook set, is configured to: determine that the downsampling codebook set includes: The channel capacity corresponding to the codebook is determined, and the codebook with the largest channel capacity is determined as the downsampling codebook.
  • the processor when implementing the determining of the target codebook from the original codebook set according to the downsampling codebook, is configured to: determine that the downsampling codebook is in the first dimension The first index value corresponding to the above, wherein the preset dimension includes the first dimension; the code corresponding to the first index value of the downsampling codebook in the original codebook set in the first dimension Determine the first codebook set as the first codebook set; determine the codebook with the largest channel capacity in the first codebook set as the first codebook; determine the target code from the original codebook set according to the first codebook Book.
  • the processor when implementing the determining of the target codebook from the original codebook set according to the first codebook, is configured to implement: determining that the first codebook is in the second dimension The second index value corresponding to the above, wherein the preset dimension further includes a second dimension; the second dimension in the original codebook set corresponds to the second index value of the first codebook, And the codebook corresponding to the first target index value of the downsampling codebook on the first target dimension is determined as the second codebook set, wherein the first dimension includes the first target dimension, the first index value A first target index value corresponding to the first target dimension is included; and a target codebook is determined from the original codebook set according to the first codebook set and the second codebook set.
  • the processor when the processor determines the target codebook from the original codebook set according to the first codebook set and the second codebook set, the processor is configured to: determine the channel capacity corresponding to the codebooks included in the first codebook set, and determining a first number of codebooks with larger channel capacity as the first target codebook set; determining that the second codebook set includes The channel capacity corresponding to the codebook is determined, and the second number of codebooks with larger channel capacity are determined as the second target codebook set; it is determined that the codebooks included in the first target codebook set are in the second dimension the corresponding second index value, and determine the second target index value corresponding to the codebook included in the second target codebook set on the second target dimension, wherein the first dimension also includes the second target dimension, The first index value includes a second target index value corresponding to the second target dimension; comparing the original codebook set with the code included in the first target codebook set on the second dimension The codebook corresponding to the second index value of the book, and the codebook corresponding to the second target index value of
  • the first dimension includes a vertical dimension, a phase value dimension, and a phase difference dimension of a dual-polarized antenna
  • the first target dimension includes a phase difference dimension of a dual-polarized antenna
  • the second dimension includes The horizontal dimension
  • the second target dimension includes a vertical dimension and a phase value dimension.
  • the processor when implementing the determining of the target rank indication according to the third codebook set, is configured to implement: determining that the codebooks included in the third codebook set are in a preset rank indication and determine the preset rank indication corresponding to the maximum channel capacity as the target rank indication.
  • the processor when implementing the determining of the target codebook from the original codebook set according to the target rank indication, is configured to implement: converting the original codebook set into the second dimension in the second dimension The above corresponds to the second index value of the codebook included in the first target codebook set, and the second target dimension corresponds to the second target index value of the codebook included in the second target codebook set.
  • the codebook corresponding to the third target index value on the first target dimension is determined as the fourth codebook set, wherein the third target index value includes: among all the index values corresponding to the first target dimension other index values except the first target index value of the downsampling codebook; determine the channel capacity corresponding to the target rank indication of the codebook included in the fourth codebook set, and set the channel capacity to the largest The codebook is determined as the target codebook.
  • the embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, the computer program includes program instructions, and the processor executes the program instructions to implement the present application Any one of the methods for determining a precoding matrix index provided in the embodiment.
  • the computer-readable storage medium may be an internal storage unit of the terminal device described in the foregoing embodiments, such as a hard disk or a memory of the terminal device.
  • the computer-readable storage medium may also be an external storage device of the terminal device, such as a plug-in hard disk equipped on the terminal device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) ) card, Flash Card, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本申请实施例提供了一种预编码矩阵索引确定方法、终端设备及存储介质。该预编码矩阵索引确定方法包括:在预设维度上对原始码本集合进行降采以得到降采码本集合,其中,所述原始码本集合中包括的码本均对应预设维度;从所述降采码本集合中确定符合预设信道条件的降采码本;根据所述降采码本从所述原始码本集合中确定目标码本,并根据所述目标码本确定目标预编码矩阵索引。

Description

预编码矩阵索引确定方法、终端设备及存储介质
交叉引用
本申请基于申请号为“202010880423.2”、申请日为2020年08月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种预编码矩阵索引确定方法、终端设备及存储介质。
背景技术
信道状态信息参考信号(Channel State Information Reference Signal,简称:CSI-RS)是作为用于检测信道状态信息(Channel State Information,简称:CSI)的参考信号,移动终端可以进行信道状态信息检测以获取信道状态信息参考信号,并可以根据信道状态信息参考信号,将与信道条件和自身解调性能最匹配的预编码矩阵索引(Precoding Matrix Indicator,简称:PMI)发送给基站,以供基站进行调度和下行波束赋形使用,因此信道状态信息参考信号的检测在无线通信的下行波束赋形中意义重大,并直接影响下行业务流量。
信道状态信息参考信号是基于对码本的检测,码本(codebook)是用于表示无线信道的不同特征的共轭转置矩阵,基站和移动终端均可以获取码本。信道状态信息参考信号的检测的耗时最大的部分在于码本的遍历,在第五代移动通信(5th generation mobile networks,简称:5G)网络中,码本的数量变得更多,检测运算量增大,由此会影响确定预编码矩阵索引的效率以及准确性。
发明内容
本申请实施例提供了一种预编码矩阵索引确定方法,包括:在预设维度上对原始码本集合进行降采以得到降采码本集合,其中,所述原始码本集合中包括的码本均对应预设维度;从所述降采码本集合中确定符合预设信道条件的降采码本;根据所述降采码本从所述原始码本集合中确定目标码本,并根据所述目标码本确定目标预编码矩阵索引。
本申请实施例还提供了一种终端设备,包括:存储器和处理器;所述存储器用于存储计算机程序;所述处理器,用于执行所述计算机程序并在执行所述计算机程序时实现如上述的预编码矩阵索引确定方法。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如上述的预编码矩阵索引确定方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种预编码矩阵索引确定方法的示意流程图一;
图2是本申请实施例提供的一种预编码矩阵索引确定方法的示意流程图二;
图3是本申请实施例提供的另一种预编码矩阵索引确定方法的示意流程图一;
图4是本申请实施例提供的另一种预编码矩阵索引确定方法的示意流程图二;
图5是本申请实施例提供的另一种预编码矩阵索引确定方法的示意流程图三;
图6是本申请的实施例提供的一种终端设备的结构示意性框图。
具体实施方式
本申请实施例提供了一种预编码矩阵索引确定方法、终端设备及存储介质,可以提高确定预编码矩阵索引的效率和准确性。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
本申请的实施例提供了一种预编码矩阵索引确定方法、终端设备及存储介质。下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请的一个实施例提供的一种预编码矩阵索引确定方法的示意流程图,该方法可以应用于终端设备,如图1所示,该预编码矩阵索引确定方法具体包括步骤S101至步骤S103。
S101、在预设维度上对原始码本集合进行降采以得到降采码本集合,其中,所述原始码本集合中包括的码本均对应预设维度。
具体而言,原始码本集合可以是预设的码本集合,原始码本集合中包括多个码本,原始码本集合中的码本可以是根据多个维度进行定义的,因此每个码本都对应若干个预设维度,例如,如果码本是根据四个维度定义的,则每个码本都对应四个维度,即预设维度包括四个维度。
在一个实施例中,所述预设维度包括水平(Horizontal)维度、垂直(Vertical)维度、相位值(Phase)维度和双极化天线的相位差(PhaseDiff)维度。码本在预设维度上有对应的索引值,可以根据预设维度的索引值获取到对应的码本,例如,索引值可以是码本的地址信息。
具体而言,降采可以是原始码本集合中进行抽样以确定部分码本的操作,原始码本集合中的码本对应预设维度,如果预设维度包括多个维度,可以分别在每个维度上都对原始码本集合进行降采,在所有维度上对原始码本集合进行降采后可以得到降采码本集合。降采码本 集合中包括的码本均属于原始码本集合。例如,可以是在预设维度上以固定间隔抽样获取码本。
在一个实施例中,降采可以是针对每个预设维度,根据所述预设维度对应的预设降采系数在所述预设维度上对原始码本集合进行降采,在针对所有预设维度对原始码本集合进行降采后可以得到降采码本集合。预设降采系数可以是预先设置好的,例如,预设降采系数可以是1/2、1/3或1/4,等等。
S102、从所述降采码本集合中确定符合预设信道条件的降采码本。
具体而言,降采码本集合中包括从原始码本集合中抽样得到的码本,降采码本集合中的码本的数量相对原始码本集合要更少,因此可以遍历所述降采马本集合中包括的所有码本,分别计算每个码本对应的信道容量,并将信道容量符合预设信道条件的码本确定为降采码本。
在具体实现中,预设信道条件可以是用于体现信道传输状况符合传输需求的条件,如果码本对应的信道容量符合预设信道条件,终端设备在进行通信传输时使用该码本可以获得较佳的信道传输效果,即符合预设信道条件的降采码本可以获得较佳的信道传输效果。
在一个实施例中,所述从所述降采码本集合中确定符合预设信道条件的降采码本,包括:确定所述降采码本集合中包括的码本所对应的信道容量,将信道容量最大的码本确定为降采码本。
在具体实现中,信道容量最大表示码本对应的信道传输效果最好,可以将信道容量最大组为预设信道条件。遍历所述降采码本集合中包括的所有码本,分别计算每个码本对应的信道容量,并确定信道容量最大的码本作为降采码本,即降采码本是降采码本集合中对应的信道传输效果最好的码本。
S103、根据所述降采码本从所述原始码本集合中确定目标码本,并根据所述目标码本确定目标预编码矩阵索引。
具体而言,降采码本是降采码本集合中信道传输效果最好的码本,降采码本集合是从原始码本集合中降采确定的部分码本,虽然降采码本并不一定是原始码本集合中信道传输效果最好的码本,但是降采码本作为降采码本集合中信道传输效果最好的码本,即降采码本在原始码本集合中会比较靠近原始码本集合中信道传输效果最好的码本,因此可以根据降采码本缩小在原始码本集合中需要遍历的码本范围。例如,可以根据降采码本确定可以进行遍历的遍历码本范围,从原始码本集合的遍历码本范围中确定目标码本,目标码本可以是从原始码本集合中选择的信道传输效果符合传输需求条件的码本,例如,可以是原始码本集合中信道容量最大的码本。
具体而言,预编码矩阵索引(PMI,Precoding Matrix Indicator)是用于指示码本,即终端设备可以根据预编码矩阵索引获取到对应的码本。在确定目标码本后,可以确定目标码本的预编码矩阵索引,并确定为目标预编码矩阵索引,终端设备可以根据目标预编码矩阵索引获取对应的目标码本。
本申请实施例通过对原始码本集合在预设维度上进行降采操作,降低了需要遍历的码本数量,进而提高了检测效率,另外从降采码本集合中确定信道传输效果较好的降采码本,并根据降采码本从原始码本集合中确定目标码本,可以提高目标码本的准确性,进而提高确定预编码矩阵索引的准确性。
在一个实施例中,如图2所示,所述在预设维度上对原始码本集合进行降采以得到降采 码本集合的操作可以通过如下方式实施:
S201、在预设维度上,根据与所述预设维度对应的降采系数对原始码本集合进行降采,以得到第一降采码本集合;
S202、确定所述第一降采码本集合对应的第一预编码矩阵索引;
S203、确定所述第一预编码矩阵索引和原始预编码矩阵索引的匹配度,其中,所述原始预编码矩阵索引为所述原始码本集合对应的预编码矩阵索引;
S204、将所述匹配度符合预设匹配条件的第一预编码矩阵索引对应的第一降采码本集合确定为降采码本集合。
具体而言,每个预设维度对应的降采系数均可以包括多个系数,针对每个预设维度分别使用每个系数对原始码本集合进行降采,在所有预设维度上完成降采操作后可以得到对应的第一降采码本集合。不同的系数对应不同的第一降采码本集合,可以从中选择最合理的第一降采码本集合作为降采码本集合。
具体而言,所述确定所述第一降采码本集合对应的第一预编码矩阵索引,可以通过如下方式实施:确定所述第一降采码本集合中信道容量最大的码本,并将所述信道容量最大的码本对应的预编码矩阵索引确定为第一预编码矩阵索引。
在一个实施例中,可以根据第一降采码本集合确定第一预编码矩阵索引,并将第一预编码矩阵索引和原始预编码矩阵索引的匹配度作为判断第一降采码本集合是否合理的依据。原始预编码矩阵索引可以是原始码本集合中确定的信道容量最大的码本对应的预编码矩阵索引,第一预编码矩阵索引可以是第一降采码本集合中确定的信道容量最大的码本对应的预编码矩阵索引。
具体而言,第一预编码矩阵索引和原始预编码矩阵索引的匹配度越高,则表示第一降采码本集合确定的信道容量最大的码本和原始预编码矩阵索引中信道容量最大的码本更接近,因此该第一降采码本集合是比较合理的降采得到的码本集合,因此可以将该第一降采码本集合确定为降采码本集合。
在一个例子中,预设匹配条件可以是用于判断第一降采码本集合中确定的信道容量最大的码本和原始码本集合中信道容量最大的码本足够接近的条件。
在一个实施例中,所述预设维度对应多个不同的降采系数,所述方法还包括如下操作:确定所述多个不同的降采系数对应的匹配度,其中,所述降采系数对应的匹配度为:根据所述降采系数对原始码本集合进行降采得到的第一降采码本集合的第一预编码矩阵索引,和原始预编码矩阵索引的匹配度;
相应地,所述将所述匹配度符合预设匹配条件的第一预编码矩阵索引对应的第一降采码本集合确定为降采码本集合的操作可以通过如下方式实施:确定匹配度满足预设匹配条件的目标降采系数,其中,所述目标降采系数的匹配度大于所述多个不同的降采系数中其他降采系数对应的匹配度;将所述目标降采系数所对应的第一预编码矩阵索引的第一降采码本集合确定为降采码本集合。
具体而言,如果某降采系数对应的第一预编码矩阵索引和原始预编码矩阵索引的匹配度高于其他降采系数对应的匹配度,则表示该降采系数对应的第一降采码本集合中确定的信道容量最大的码本和原始码本集合中信道容量最大的码本最接近,因此可以确定符合预设匹配条件,可以及将第一降采码本集合确定为降采码本集合,进而从该降采码本集合中确定的扶 额预设信道条件按的降采码本会和原始码本集合中信道容量最大的码本更接近,可以进一步提高确定预编码矩阵索引的准确性。
在一个实施例中,本申请还可以在后续环境实测中监测业务流量的变化,业务流量为无线通信系统中基站和终端设备中传输的数据量,可以根据业务流量的变化调整降采系数,可以将使业务流量最大的系数作为降采系数,以进一步获取效果更好的降采结果。
在一个实施例中,如图3所示,所述根据所述降采码本从所述原始码本集合中确定目标码本的操作可以通过如下方式实施:
S111、确定所述降采码本在第一维度上对应的第一索引值,其中,所述预设维度包括第一维度。
具体而言,第一维度可以是预设维度中一个或多个维度,可以是预设维度中方向数较低的维度,在一个实施例中,所述第一维度包括垂直维度、相位值维度和双极化天线的相位差维度。
具体而言,降采码本是降采码本集合中信道容量较大的码本,因此降采码本在预设维度上对应的索引值会更接近原始码本集合中信道容量最大的码本的索引值,通过确定降采码本在第一维度上对应的第一索引值,降采码本的第一索引值也更接近原始码本集合中信道容量最大的码本的第一索引值。进而可以根据降采码本的第一索引值从原始码本集合中缩小需要遍历的码本范围。
S112、将所述原始码本集合中在所述第一维度上与所述降采码本的第一索引值对应的码本,确定为第一码本集合。
S113、将所述第一码本集合中信道容量最大的码本确定为第一码本。
S114、根据所述第一码本从所述原始码本集合中确定目标码本。
具体而言,,将第一维度对应的索引值确定为降采码本的第一索引值所从原始码本集合中对应的码本,和降采码本在第一维度上有相应的第一索引值,但是在第二维度上包括第二维度对应的所有索引值。其中,预设码本还包括第二维度,第二维度为预设维度中除第一维度之外的其他维度,在一个实施例中,所述第二维度包括水平维度。
本申请的实施例,降采码本是通过对原始码本集合降采操作得到,因此降采码本在第二维度上也放弃了一些码本,而通过从第一码本集合中包括第二维度对应的所有码本,因此第一码本集合中选择信道容量最大的码本作为第一码本,第一码本相比降采码本在第二维度上索引值更接近原始码本集合中信道容量最大的码本的索引值。因此可以根据第一码本从原始码本集合中确定目标码本,不仅可以缩小在原始码本集合中需要遍历的码本范围,还可以进一步提高目标码本的准确性,进而进一步提高确定预编码矩阵索引的准确性。
在一个实施例中,如图4所示,所述根据所述第一码本从所述原始码本集合中确定目标码本的操作可以通过如下方式实施:
S121、确定所述第一码本在第二维度上对应的第二索引值,其中,所述预设维度还包括第二维度。
具体而言,第一码本是从第一码本集合中确定的信道容量最大的码本,而第一码本集合对应第二维度上所有的索引值,因此从第一码本集合中确定的第一码本在第二维度上的索引值更接近原始码本集合中信道容量最大的码本的索引值。所以,可以确定第一码本在第二维度上对应的第二索引值,以便可以根据第二索引值找到准确的目标码本。
S122、将所述原始码本集合中在所述第二维度上与所述第一码本的第二索引值对应,以及在第一目标维度上与所述降采码本的第一目标索引值对应的码本,确定为第二码本集合,其中,所述第一维度包括第一目标维度,第一索引值包括与所述第一目标维度对应的第一目标索引值。
具体而言,第一目标维度可以是第一维度中的任一维度,可以是第一维度中除方向数最高以及除方向数最低之外的维度,在一个实施例中,所述第一目标维度包括双极化天线的相位差维度,第一目标维度对应的第一目标索引值即和双极化天线的相位差维度对应的索引值。
具体而言,将第二维度对应的索引值确定为第一码本的第二索引值,以及将第一目标维度的索引值确定为降采码本的第一目标索引值,所从原始码本集合中对应的码本,和第一码本在第二维度上有相应的第二索引值,以及和降采码本在第一目标维度上有相应的第一目标索引值,但是在第二目标维度上包括第二目标维度对应的所有索引值。其中,第二目标维度为第一维度中除第一目标维度外的其他维度,在一个实施例中,所述第二目标维度包括垂直维度和相位值维度。
S123、根据所述第一码本集合和所述第二码本集合,从所述原始码本集合中确定目标码本。
具体而言,第一码本集合中包括的码本在第二维度上对应第二维度对应的所有索引值,第二码本集合包括的码本在第二目标维度上对应第二目标维度对应的所有索引值,即第一码本集合和第二码本集合中更大概率地接近原始码本集合中信道容量最大的码本,因此可以根据所述第一码本集合和所述第二码本集合,从所述原始码本集合中确定目标码本。
在一个实施例中,如图5所示,所述根据所述第一码本集合和所述第二码本集合,从所述原始码本集合中确定目标码本的操作可以通过如下方式实施:
S131、确定所述第一码本集合中包括的码本所对应的信道容量,并将信道容量较大的第一数量的码本确定为第一目标码本集合。
S132、确定所述第二码本集合中包括的码本所对应的信道容量,并将信道容量较大的第二数量的码本确定为第二目标码本集合。
具体而言,通过遍历第一码本集合中的码本,并分别计算每个码本对应的信道容量,从中选择信道容量较大的第一数量的码本作为第一目标码本集合,即第一目标码本集合是第一码本集合中信道传输情况更好的码本集合,第一目标码本集合将第一码本集合中信道传输情况不好的码本排除在外。
具体而言,通过遍历第二码本集合中的码本,并分别计算每个码本对应的信道容量,从中选择信道容量较大的第二数量的码本作为第二目标码本集合,即第二目标码本集合是第二码本集合中传输情况更好的码本集合,第二目标码本集合将第二码本集合中信道传输情况不好的码本排除在外。第一数量和第二数量的具体数值可以根据实际情况进行设置,在此不作限定。
S133、确定所述第一目标码本集合中包括的码本在第二维度上对应的第二索引值,以及确定所述第二目标码本集合中包括的码本在第二目标维度上对应的第二目标索引值,其中,所述第一维度还包括第二目标维度,所述第一索引值包括与所述第二目标维度对应的第二目标索引值。
具体而言,第一目标码本集合是从第一目标码本中确定的信道传输情况更好的码本集合, 而第一目标码本中的码本包括了第二维度上对应的所有索引值,因此第一目标码本集合在第二维度上对应的第二索引值比降采码本或第一码本要更接近原始码本集合中信道容量最大的码本。
具体而言,第二目标码本集合是从第二目标码本中确定的信道传输情况更好的码本集合,而第二目标码本中的码本包括了第二目标维度上对应的所有索引值,因此第二目标码本集合在第二目标维度上对应的第二目标索引值比降采码本或第一码本要更接近原始码本集合中信道容量最大的码本。因此可以确定第一目标码本集合在第二维度上对应的第二索引值,以及确定第二目标码本集合在第二目标维度上对应的第二目标索引值,进而可以根据两组索引值确定原始码本集合中需要遍历的码本范围。
S134、将所述原始码本集合中在所述第二维度上与所述第一目标码本集合中包括的码本的第二索引值对应,以及在所述第二目标维度上与所述第二目标码本集合中包括的码本的第二目标索引值对应的码本,确定为第三码本集合。
具体而言,将第二维度对应的索引值确定为所述第一目标码本集合中包括的码本的第二索引值,以及将第二目标维度的索引值确定为第二目标码本集合中包括的码本的第二目标索引值,所从原始码本集合中对应的码本,比降采码本或第一码本更接近原始码本集合中信道容量最大的码本。
S135、根据所述第三码本集合确定目标秩指示,根据所述目标秩指示从所述原始码本集合中确定目标码本。
具体而言,每个码本在不同的秩指示下可以对应不同的信道容量,因此可以从第三码本集合中的码本在不同的秩指示下对应的信道容量中,确定信道传输效果最好的码本所对应的秩指示作为目标秩指示,进而可以根据目标秩指示从原始码本集合中确定目标码本。
在一个实施例中,所述根据所述第三码本集合确定目标秩指示的操作可以通过如下方式实施:确定所述第三码本集合中包括的码本在预设秩指示下的信道容量,并将最大的信道容量对应的预设秩指示确定为目标秩指示。
其中,可以分别计算第三码本集合中的每个码本在每个预设秩指示下的信道容量,确定其中最大的信道容量,并将最大的信道容量对应的预设秩指示确定为目标秩指示。示例性地,预设秩指示包括1,2,3和4,分别计算每个码本在秩指示为1,2,3和4四种情况下的信道容量,确定所有码本在所有预设秩指示下对应的信道容量,将其中最大的信道容量对应的预设秩指示确定为目标秩指示。
在一个实施例中,所述根据所述目标秩指示从所述原始码本集合中确定目标码本的操作可以通过如下方式实施:将所述原始码本集合中在所述第二维度上与所述第一目标码本集合中包括的码本的第二索引值对应,在所述第二目标维度上与所述第二目标码本集合中包括的码本的第二目标索引值对应,以及在第一目标维度上与第三目标索引值对应的码本确定为第四码本集合,其中,所述第三目标索引值包括:所述第一目标维度对应的所有索引值中除所述降采码本的第一目标索引值之外的其他索引值;确定所述第四码本集合中包括的码本在所述目标秩指示上对应的信道容量,并将信道容量最大的码本确定为目标码本。
其中,在确定第一目标码本和第二目标码本时,已经计算过降采码本的第一目标索引值,因此可以将第一目标维度对应的所有索引值中除所述降采码本的第一目标索引值之外的其他索引值确定为第三目标索引值。
将第二维度对应的索引值确定为所述第一目标码本集合中包括的码本的第二索引值,将第二目标维度的索引值确定为第二目标码本集合中包括的码本的第二目标索引值,以及将第一目标维度的索引值确定为第三目标索引值,所从原始码本集合中对应的码本,和第一目标码本集合有相应的第二索引值,和第二目标码本集合有相应的第二目标索引值,以及包括第一目标维度中包括的所有索引值中除所述降采码本的第一目标索引值之外的其他索引值;
而第一目标码本集合中包括的码本在第二维度上更接近原始码本集合中信道容量最大的码本,第二目标码本集合包括的码本在第二目标码本集合上更接近原始码本集合中信道容量最大的码本,第一目标维度的第三目标索引值包括了第一目标维度对应的所有索引值中除所述降采码本的第一目标索引值之外的其他索引值,即可以得到涉及所有预设维度以及足够接近原始码本集合中信道容量最大的码本的遍历范围,作为第四码本集合,进而可以从第四码本集合中确定目标码本。
其中,根据确定的目标秩指示,可以遍历第四码本集合中的码本在目标秩指示上对应的信道容量,进而选择信道容量最大的码本作为目标码本,如此可以确定在原始码本集合中在所有预设维度以及在秩指示上信道传输效果最好的目标码本,根据该目标码本确定目标预编码矩阵索引,可以使终端设备根据目标预编码矩阵索引获取原始码本集合中信道传输效果最好的目标码本。
示例性地,所述第一维度包括垂直维度、相位值维度和双极化天线的相位差维度,所述第一目标维度包括双极化天线的相位差维度,所述第二维度包括水平维度,所述第二目标维度包括垂直维度和相位值维度。原始码本集合包括5120个码本,原始码本集合中包括的码本在水平维度上的方向数为32,垂直维度的方向数为8,相位值维度上的方向数为1和双极化天线的相位差维度的方向是4。
在预设维度上对原始码本集合进行降采,例如,水平维度上的降采系数是1/8,垂直维度上的降采系数是1/4,相位值维度上的降采系数是1和双极化天线的相位差维度上的降采系数是1,因此得到降采码本集合包括(32/8)×(8/4)×1×4个码本,即32个码本;确定的第一码本集合包括32×1×1×1个码本,即32个码本;确定的第二码本集合包括1×8×1×1个码本,即8个码本;第一数量为8,第二数量为4,对应确定的第三码本集合包括8×4×1个码本,即32个码本;即在一个目标秩指示下,一共遍历了32+32+8+32个码本,即104个码本。
而确定目标秩指示需要在四个秩指示上都遍历,假设上文的104个码本对应的秩指示为1,而在秩指示为2时一共遍历了256个码本,秩指示为3时一共遍历了208个码本,秩指示为4时一共遍历了208个码本;确定的第四码本集合包括8×4×(4-1)个码本,即96个码本;因此最终确定目标码本时一共遍历了104+256+208+208+96个码本,即872个码本,相比原始码本集合的5120个码本降低了较多的需要遍历的码本数量。
本申请实施例提供的预编码矩阵索引确定方法通过在预设维度上对原始码本集合进行降采,以遍历更少的码本来确定信道传输效果较好的码本,并针对不同的预设维度逐个遍历不同的预设维度对应的码本集合,以降低降采操作带来的码本的不准确性,可以在提高检测效率的同时提高目标码本的准确性,进一步提高确定预编码矩阵索引的准确性。
请参阅图6,图6是本申请的实施例提供的一种终端设备的结构示意性框图。该终端设 备可以是用户终端设备。
参阅图6,该终端设备100包括通过系统总线连接的处理器110和存储器120,其中,存储器120可以包括非易失性存储介质和内存储器。
非易失性存储介质可存储操作系统和计算机程序。该计算机程序包括程序指令,该程序指令被执行时,可使得处理器执行任意一种预编码矩阵索引确定方法。
处理器用于提供计算和控制能力,支撑整个终端设备的运行。
内存储器为非易失性存储介质中的计算机程序的运行提供环境,该计算机程序被处理器执行时,可使得处理器执行任意一种预编码矩阵索引确定方法。
本领域技术人员可以理解,图6中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的终端设备的限定,具体的终端设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
应当理解的是,处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在一个实施例中,所述处理器用于运行存储在存储器中的计算机程序,以实现如下步骤:在预设维度上对原始码本集合进行降采以得到降采码本集合,其中,所述原始码本集合中包括的码本均对应预设维度;从所述降采码本集合中确定符合预设信道条件的降采码本;根据所述降采码本从所述原始码本集合中确定目标码本,并根据所述目标码本确定目标预编码矩阵索引。
在一个实施例中,所述处理器在实现所述在预设维度上对原始码本集合进行降采以得到降采码本集合时,用于实现:在预设维度上,根据与所述预设维度对应的降采系数对原始码本集合进行降采,以得到第一降采码本集合;确定所述第一降采码本集合对应的第一预编码矩阵索引;确定所述第一预编码矩阵索引和原始预编码矩阵索引的匹配度,其中,所述原始预编码矩阵索引为所述原始码本集合对应的预编码矩阵索引;将所述匹配度符合预设匹配条件的第一预编码矩阵索引对应的第一降采码本集合确定为降采码本集合。
在一个实施例中,所述处理器在实现所述确定所述第一降采码本集合对应的第一预编码矩阵索引时,用于实现:确定所述第一降采码本集合中信道容量最大的码本,并将所述信道容量最大的码本对应的预编码矩阵索引确定为第一预编码矩阵索引。
在一个实施例中,所述预设维度对应多个不同的降采系数,所述处理器还用于实现:确定所述多个不同的降采系数对应的匹配度,其中,所述降采系数对应的匹配度为:根据所述降采系数对原始码本集合进行降采得到的第一降采码本集合的第一预编码矩阵索引,和原始预编码矩阵索引的匹配度;
相应地,所述处理器在实现时,用于:从所述多个不同的降采系数中确定匹配度满足预设匹配条件的目标降采系数,其中,所述目标降采系数的匹配度大于所述多个不同的降采系数中其他降采系数对应的匹配度;将所述目标降采系数所对应的第一预编码矩阵索引的第一降采码本集合确定为降采码本集合。
在一个实施例中,所述处理器在实现所述从所述降采码本集合中确定符合预设信道条件的降采码本时,用于实现:确定所述降采码本集合中包括的码本所对应的信道容量,将信道容量最大的码本确定为降采码本。
在一个实施例中,所述处理器在实现所述根据所述降采码本从所述原始码本集合中确定目标码本时,用于实现:确定所述降采码本在第一维度上对应的第一索引值,其中,所述预设维度包括第一维度;将所述原始码本集合中在所述第一维度上与所述降采码本的第一索引值对应的码本,确定为第一码本集合;将所述第一码本集合中信道容量最大的码本确定为第一码本;根据所述第一码本从所述原始码本集合中确定目标码本。
在一个实施例中,所述处理器在实现所述根据所述第一码本从所述原始码本集合中确定目标码本时,用于实现:确定所述第一码本在第二维度上对应的第二索引值,其中,所述预设维度还包括第二维度;将所述原始码本集合中在所述第二维度上与所述第一码本的第二索引值对应,以及在第一目标维度上与所述降采码本的第一目标索引值对应的码本,确定为第二码本集合,其中,所述第一维度包括第一目标维度,第一索引值包括与所述第一目标维度对应的第一目标索引值;根据所述第一码本集合和所述第二码本集合,从所述原始码本集合中确定目标码本。
在一个实施例中,所述处理器在实现所述根据所述第一码本集合和所述第二码本集合,从所述原始码本集合中确定目标码本时,用于实现:确定所述第一码本集合中包括的码本所对应的信道容量,并将信道容量较大的第一数量的码本确定为第一目标码本集合;确定所述第二码本集合中包括的码本所对应的信道容量,并将信道容量较大的第二数量的码本确定为第二目标码本集合;确定所述第一目标码本集合中包括的码本在第二维度上对应的第二索引值,以及确定所述第二目标码本集合中包括的码本在第二目标维度上对应的第二目标索引值,其中,所述第一维度还包括第二目标维度,所述第一索引值包括与所述第二目标维度对应的第二目标索引值;将所述原始码本集合中在所述第二维度上与所述第一目标码本集合中包括的码本的第二索引值对应,以及在所述第二目标维度上与所述第二目标码本集合中包括的码本的第二目标索引值对应的码本,确定为第三码本集合;根据所述第三码本集合确定目标秩指示,根据所述目标秩指示从所述原始码本集合中确定目标码本。
在一个实施例中,所述第一维度包括垂直维度、相位值维度和双极化天线的相位差维度,所述第一目标维度包括双极化天线的相位差维度,所述第二维度包括水平维度,所述第二目标维度包括垂直维度和相位值维度。
在一个实施例中,所述处理器在实现所述根据所述第三码本集合确定目标秩指示时,用于实现:确定所述第三码本集合中包括的码本在预设秩指示下的信道容量,并将最大的信道容量对应的预设秩指示确定为目标秩指示。
在一个实施例中,所述处理器在实现所述根据所述目标秩指示从所述原始码本集合中确定目标码本时,用于实现:将原始码本集合中在所述第二维度上与所述第一目标码本集合中包括的码本的第二索引值对应,在所述第二目标维度上与所述第二目标码本集合中包括的码本的第二目标索引值对应,以及在第一目标维度上与第三目标索引值对应的码本确定为第四码本集合,其中,所述第三目标索引值包括:所述第一目标维度对应的所有索引值中除所述降采码本的第一目标索引值之外的其他索引值;确定所述第四码本集合中包括的码本在所述目标秩指示上对应的信道容量,并将信道容量最大的码本确定为目标码本。
本申请的实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述处理器执行所述程序指令,实现本申请实施例提供的任一项预编码矩阵索引确定方法。
其中,所述计算机可读存储介质可以是前述实施例所述的终端设备的内部存储单元,例如所述终端设备的硬盘或内存。所述计算机可读存储介质也可以是所述终端设备的外部存储设备,例如所述终端设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种预编码矩阵索引确定方法,所述方法包括:
    在预设维度上对原始码本集合进行降采以得到降采码本集合,其中,所述原始码本集合中包括的码本均对应预设维度;
    从所述降采码本集合中确定符合预设信道条件的降采码本;
    根据所述降采码本从所述原始码本集合中确定目标码本,并根据所述目标码本确定目标预编码矩阵索引。
  2. 根据权利要求1所述的预编码矩阵索引确定方法,其中,所述在预设维度上对原始码本集合进行降采以得到降采码本集合,包括:
    在预设维度上,根据与所述预设维度对应的降采系数对原始码本集合进行降采,以得到第一降采码本集合;
    确定所述第一降采码本集合对应的第一预编码矩阵索引;
    确定所述第一预编码矩阵索引和原始预编码矩阵索引的匹配度,其中,所述原始预编码矩阵索引为所述原始码本集合对应的预编码矩阵索引;
    将所述匹配度符合预设匹配条件的第一预编码矩阵索引对应的第一降采码本集合确定为降采码本集合。
  3. 根据权利要求2所述的预编码矩阵索引确定方法,其中,所述确定所述第一降采码本集合对应的第一预编码矩阵索引,包括:
    确定所述第一降采码本集合中信道容量最大的码本,并将所述信道容量最大的码本对应的预编码矩阵索引确定为第一预编码矩阵索引。
  4. 根据权利要求2或3所述的预编码矩阵索引确定方法,其中,所述预设维度对应多个不同的降采系数,所述方法还包括:
    确定所述多个不同的降采系数对应的匹配度,其中,所述降采系数对应的匹配度为:根据所述降采系数对原始码本集合进行降采得到的第一降采码本集合的第一预编码矩阵索引,和原始预编码矩阵索引的匹配度;
    所述将所述匹配度符合预设匹配条件的第一预编码矩阵索引对应的第一降采码本集合确定为降采码本集合,包括:
    从所述多个不同的降采系数中确定匹配度满足预设匹配条件的目标降采系数,其中,所述目标降采系数的匹配度大于所述多个不同的降采系数中其他降采系数对应的匹配度;
    将所述目标降采系数所对应的第一预编码矩阵索引的第一降采码本集合确定为降采码本集合。
  5. 根据权利要求1至4任一项所述的预编码矩阵索引确定方法,其中,所述从所述降采码本集合中确定符合预设信道条件的降采码本,包括:
    确定所述降采码本集合中包括的码本所对应的信道容量,将信道容量最大的码本确定为降采码本。
  6. 根据权利要求1至5任一项所述的预编码矩阵索引确定方法,其中,所述预设维度包 括第一维度,所述根据所述降采码本从所述原始码本集合中确定目标码本,包括:
    确定所述降采码本在第一维度上对应的第一索引值;
    将所述原始码本集合中在所述第一维度上与所述降采码本的第一索引值对应的码本,确定为第一码本集合;
    将所述第一码本集合中信道容量最大的码本确定为第一码本;
    根据所述第一码本从所述原始码本集合中确定目标码本。
  7. 根据权利要求6所述的预编码矩阵索引确定方法,其中,所述预设维度还包括第二维度,所述根据所述第一码本从所述原始码本集合中确定目标码本,包括:
    确定所述第一码本在第二维度上对应的第二索引值;
    将所述原始码本集合中在所述第二维度上与所述第一码本的第二索引值对应,以及在第一目标维度上与所述降采码本的第一目标索引值对应的码本,确定为第二码本集合,其中,所述第一维度包括第一目标维度,所述第一索引值包括与所述第一目标维度对应的第一目标索引值;
    根据所述第一码本集合和所述第二码本集合,从所述原始码本集合中确定目标码本。
  8. 根据权利要求7所述的预编码矩阵索引确定方法,其中,所述根据所述第一码本集合和所述第二码本集合,从所述原始码本集合中确定目标码本,包括:
    确定所述第一码本集合中包括的码本所对应的信道容量,并将信道容量较大的第一数量的码本确定为第一目标码本集合;
    确定所述第二码本集合中包括的码本所对应的信道容量,并将信道容量较大的第二数量的码本确定为第二目标码本集合;
    确定所述第一目标码本集合中包括的码本在第二维度上对应的第二索引值,以及确定所述第二目标码本集合中包括的码本在第二目标维度上对应的第二目标索引值,其中,所述第一维度还包括第二目标维度,所述第一索引值包括与所述第二目标维度对应的第二目标索引值;
    将所述原始码本集合中在所述第二维度上与所述第一目标码本集合中包括的码本的第二索引值对应,以及在所述第二目标维度上与所述第二目标码本集合中包括的码本的第二目标索引值对应的码本,确定为第三码本集合;
    根据所述第三码本集合确定目标秩指示,根据所述目标秩指示从所述原始码本集合中确定目标码本。
  9. 根据权利要求8所述的预编码矩阵索引确定方法,其中,所述第一维度包括垂直维度、相位值维度和双极化天线的相位差维度,所述第一目标维度包括双极化天线的相位差维度,所述第二维度包括水平维度,所述第二目标维度包括垂直维度和相位值维度。
  10. 根据权利要求8所述的预编码矩阵索引确定方法,其中,所述根据所述第三码本集合确定目标秩指示,包括:
    确定所述第三码本集合中包括的码本在预设秩指示下的信道容量,并将最大的信道容量对应的预设秩指示确定为目标秩指示。
  11. 根据权利要求8或9所述的预编码矩阵索引确定方法,其中,所述根据所述目标秩指 示从所述原始码本集合中确定目标码本,包括:
    将所述原始码本集合中在所述第二维度上与所述第一目标码本集合中包括的码本的第二索引值对应,在所述第二目标维度上与所述第二目标码本集合中包括的码本的第二目标索引值对应,以及在第一目标维度上与第三目标索引值对应的码本,确定为第四码本集合,其中,所述第三目标索引值包括:所述第一目标维度对应的所有索引值中除所述降采码本的第一目标索引值之外的其他索引值;
    确定所述第四码本集合中包括的码本在所述目标秩指示上对应的信道容量,并将信道容量最大的码本确定为目标码本。
  12. 一种终端设备,所述终端设备包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器,用于执行所述计算机程序并在执行所述计算机程序时实现如权利要求1至11中任一项所述的预编码矩阵索引确定方法。
  13. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1至11中任一项所述的预编码矩阵索引确定方法。
PCT/CN2021/112327 2020-08-27 2021-08-12 预编码矩阵索引确定方法、终端设备及存储介质 WO2022042323A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21860162.3A EP4207621A4 (en) 2020-08-27 2021-08-12 METHOD FOR DETERMINING A PRECODING MATRIX INDICATOR, TERMINAL DEVICE AND STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010880423.2 2020-08-27
CN202010880423.2A CN114124181A (zh) 2020-08-27 2020-08-27 预编码矩阵索引确定方法、终端设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022042323A1 true WO2022042323A1 (zh) 2022-03-03

Family

ID=80354553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112327 WO2022042323A1 (zh) 2020-08-27 2021-08-12 预编码矩阵索引确定方法、终端设备及存储介质

Country Status (3)

Country Link
EP (1) EP4207621A4 (zh)
CN (1) CN114124181A (zh)
WO (1) WO2022042323A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110075746A1 (en) * 2009-09-30 2011-03-31 Rheinschmitt Rupert J Transmission of precoding codebook over an air interface
CN102594502A (zh) * 2010-05-04 2012-07-18 华为技术有限公司 发送预编码矩阵索引及进行预编码的方法和装置
CN106559111A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 获取码本的方法、装置及系统
CN106856413A (zh) * 2015-12-07 2017-06-16 电信科学技术研究院 一种码本生成方法和传输预编码指示信息的方法、装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096056B (zh) * 2011-11-08 2015-11-25 华为技术有限公司 矩阵编码方法与装置及解码方法与装置
CN104919798B (zh) * 2012-04-16 2018-12-14 华为技术有限公司 量化矩阵编码的方法和装置
CN104579586B (zh) * 2013-10-22 2018-03-20 电信科学技术研究院 信道状态信息的反馈方法和装置、以及接收方法和装置
WO2016015225A1 (zh) * 2014-07-29 2016-02-04 华为技术有限公司 一种信道状态信息的反馈和接收方法、设备
WO2017030429A1 (ko) * 2015-08-20 2017-02-23 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 정보 피드백 방법 및 장치
CN107888246B (zh) * 2016-09-29 2023-04-28 华为技术有限公司 基于码本的信道状态信息反馈方法及设备
CN110535496B (zh) * 2018-08-10 2022-05-03 中兴通讯股份有限公司 Csi处理及获取方法、装置、设备、系统及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110075746A1 (en) * 2009-09-30 2011-03-31 Rheinschmitt Rupert J Transmission of precoding codebook over an air interface
CN102594502A (zh) * 2010-05-04 2012-07-18 华为技术有限公司 发送预编码矩阵索引及进行预编码的方法和装置
CN106559111A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 获取码本的方法、装置及系统
CN106856413A (zh) * 2015-12-07 2017-06-16 电信科学技术研究院 一种码本生成方法和传输预编码指示信息的方法、装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207621A4 *

Also Published As

Publication number Publication date
EP4207621A1 (en) 2023-07-05
CN114124181A (zh) 2022-03-01
EP4207621A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
CN107409152B (zh) 用于压缩通过网络接收的数据的方法和装置
CN110768701B (zh) 信道状态处理方法及装置、系统、终端、基站、存储介质
BR112020009897B1 (pt) Método e aparelho de envio de sinal de referência de rastreamento de fase
US9094872B2 (en) Enhanced resource management for a network system
WO2021004193A1 (zh) 能力信息以及信道状态信息的反馈方法和装置
CN113485649B (zh) 数据存储方法、系统、装置、介质与电子设备
CN109286402B (zh) 一种Polar码编码方法及装置
CN110611626A (zh) 信道估计方法、装置及设备
JP5674954B2 (ja) ストリームデータの異常検知方法および装置
CN112583716A (zh) 基于物联网数据传输的路径选择方法及装置
WO2017152750A1 (zh) 一种反馈信息的传输方法和装置
WO2022042323A1 (zh) 预编码矩阵索引确定方法、终端设备及存储介质
US20210367621A1 (en) Systems and methods for selecting a communication channel
US20200290410A1 (en) System and method for assigning a protocol to a sensor
CN106850822B (zh) 负载均衡方法、设备及分布式系统
CN110535514A (zh) 信道状态信息反馈方法、装置及终端设备
US20180227108A1 (en) Communication data rate selection for an electronic device
CN113169775B (zh) 通信方法及装置
CN113765966A (zh) 一种负载均衡方法和装置
CN113726885B (zh) 一种流量配额的调整方法和装置
US10104571B1 (en) System for distributing data using a designated device
WO2020221041A1 (zh) 传输信道状态的发送方法及装置、传输信道状态的接收方法及装置、存储介质
CN115079929A (zh) 路径调度方法及装置、存储介质和电子设备
US10177929B1 (en) System for distributing data to multiple devices
CN110855577A (zh) 边缘计算任务卸载的判定方法、服务器及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021860162

Country of ref document: EP

Effective date: 20230327