WO2022042209A1 - 一种镜头模组、摄像模组及终端 - Google Patents

一种镜头模组、摄像模组及终端 Download PDF

Info

Publication number
WO2022042209A1
WO2022042209A1 PCT/CN2021/109802 CN2021109802W WO2022042209A1 WO 2022042209 A1 WO2022042209 A1 WO 2022042209A1 CN 2021109802 W CN2021109802 W CN 2021109802W WO 2022042209 A1 WO2022042209 A1 WO 2022042209A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
area
module
camera
Prior art date
Application number
PCT/CN2021/109802
Other languages
English (en)
French (fr)
Inventor
陈实
李坤宜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21860049.2A priority Critical patent/EP4206778A4/en
Priority to JP2023513586A priority patent/JP2023539266A/ja
Priority to KR1020237010166A priority patent/KR20230058111A/ko
Publication of WO2022042209A1 publication Critical patent/WO2022042209A1/zh
Priority to US18/174,696 priority patent/US20230221537A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • G02B13/007Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror the beam folding prism having at least one curved surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0808Catadioptric systems using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/02Focusing arrangements of general interest for cameras, projectors or printers moving lens along baseboard
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details

Definitions

  • the present application relates to the technical field of cameras, and in particular, to a lens module, a camera module and a terminal.
  • the telephoto lens is very helpful for shooting distant scenes, such as concerts and landscape photos.
  • distant scenes such as concerts and landscape photos.
  • the telephoto lens enriches mobile phone imaging functions and improves imaging quality, and at the same time greatly expands the user's usage scenarios and creative space, helps users break through space and physical limitations and shorten the distance with the world, bringing more playful operations for Life brings more convenience and fun.
  • the telephoto lens in the prior art adopts an optical zoom, which relies on an optical lens to achieve zooming, and its zooming method mainly depends on the focal length of the lens.
  • the camera lens moves to zoom in and out of the scene, which is the so-called optical zoom.
  • Ultra-long-distance zoom imaging actually has a certain difficulty in shooting.
  • a telephoto lens is applied to a mobile phone, due to the design of the mobile phone body, the camera is composed of multiple small-sized lenses.
  • the thickness of the interior space of the mobile phone is very thin, and there is no physical space for stacking telephoto lenses. Therefore, the telephoto lenses applied to mobile phones in the prior art can no longer meet the needs of mobile phones.
  • the present application provides a lens module, a camera module and a terminal, which reduce the size of the lens module and improve the adaptability of the lens module.
  • a lens module in a first aspect, includes a first lens and a second lens, the first lens and the second lens are arranged along the optical axis, and the first lens is close to the object side, and the second lens is close to the image. side.
  • the first lens is used to achieve telephoto
  • the second lens is used to achieve focus.
  • the first lens includes a first lens, and the light incident side surface of the first lens includes a light transmission area and a first reflection area; the light exit side surface of the first lens includes a second reflection area and a light exit area; wherein , the first reflection area and the second reflection area are used to return the light entering the first lens from the light transmission area.
  • the second lens includes at least one second lens, and the at least one second lens is a focusing lens.
  • the optical path is folded back through the first lens, thereby realizing the effect of a telephoto lens.
  • a smaller-sized upright lens module can be used, which reduces the size of the camera module.
  • the camera module can be adapted to the thinning development of the terminal.
  • the first reflection area is located at the center of the light incident side surface, the light transmission area surrounds the first reflection area; the light exit area is located on the light exit side surface At the center position, the second reflection area is arranged around the light exit area.
  • the first reflection area and the light exit area are arranged opposite to each other, and the light transmission area is arranged opposite to the second reflection area, so that the light can be folded back in the first lens.
  • the light-transmitting area is a plane; the first reflecting area is a concave spherical area.
  • the concave spherical area facilitates the refraction of light to the light-emitting area.
  • the light exit side surface is a convex spherical surface.
  • the use of a spherical surface is convenient for the second reflection area to reflect the light to the first reflection area, and at the same time, it is also convenient for the light exit side to gather the light.
  • the first reflection area and the second reflection area are respectively attached with a reflection film layer.
  • the reflection effect is improved by the reflective film layer.
  • the first lens further includes a first lens barrel, the first lens is fixed in the first lens barrel;
  • the second lens further includes a second lens barrel, the The number of the second lenses is multiple, and the multiple second lenses are arranged along the optical axis and fixed in the second lens barrel.
  • the lenses are supported by separately arranged lens barrels, and in addition, the lenses can be respectively arranged in different lens barrels as required.
  • the first lens further includes a first lens barrel, the first lens is fixed in the first lens barrel, and the first lens further includes a first lens barrel fixed in the first lens barrel
  • the at least one third lens is a focusing lens
  • the second lens further includes a second lens barrel, the number of the second lens is one, and the one second lens is fixed in the second lens barrel.
  • the lenses are supported by separately arranged lens barrels, and in addition, the lenses can be respectively arranged in different lens barrels as required.
  • a bracket is further included, and among the first lens and the second lens, at least one lens can slide relative to the bracket along the direction of the optical axis.
  • the first lens and the second lens are supported by the bracket.
  • the second lens is fixedly connected to the bracket, and the first lens is connected to the bracket through a first elastic member. Focus is achieved by fixing one lens and sliding the other lens.
  • the first lens is connected to the bracket through a first elastic member; the second lens is connected to the bracket through a second elastic member.
  • the focus can be adjusted by sliding the two lenses with the bracket respectively.
  • a shaft extending along the direction of the optical axis is provided in the bracket; the first lens and the second lens are respectively slidably assembled on the shaft.
  • the focus can be adjusted by sliding the two lenses with the bracket respectively.
  • a driving mechanism is further included, and the driving mechanism is used for driving the first lens or the second lens to move to realize focusing.
  • the driving mechanism may be a focus AF (Auto Focus) driving motor, and different driving mechanisms are used to drive the lens module to focus.
  • focus AF Auto Focus
  • a camera module in a second aspect, includes a base and any one of the above-mentioned lens modules connected to the base.
  • the optical path is folded back through the first lens, thereby realizing the effect of a telephoto lens.
  • a smaller-sized upright lens module can be used, which reduces the size of the camera module.
  • the camera module can be adapted to the thinning development of the terminal.
  • the base is connected to the bracket through the third elastic member;
  • the camera module further includes an anti-shake motor for compensating for the shake of the lens module.
  • the anti-shake effect of the camera module is changed by the third elastic member for the cooperation of the anti-shake motor.
  • the third elastic member is a spring or a suspension wire.
  • Can support brackets are a spring or a suspension wire.
  • a terminal in a third aspect, includes a housing and the camera module described in any one of the above-mentioned housings provided with the housing.
  • the optical path is folded back through the first lens, thereby realizing the effect of a telephoto lens.
  • a smaller-sized upright lens module can be used, which reduces the size of the camera module.
  • the camera module can be adapted to the thinning development of the terminal.
  • FIG. 1 is a schematic diagram of an application scenario of a camera module
  • FIG. 2 is an exploded schematic view of a lens module provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a first lens provided by an embodiment of the present application.
  • Fig. 4 is the sectional view at A-A place in Fig. 3;
  • FIG. 5 is a schematic structural diagram of a first lens
  • FIG. 6 is a schematic structural diagram of a second lens provided by an embodiment of the present application.
  • Fig. 7 is the sectional view at B-B place in Fig. 6;
  • FIG. 8 is a schematic diagram of the cooperation of the first lens and the second lens
  • FIG. 9 is a schematic diagram of the structure and application of the lens module provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another lens module provided by an embodiment of the application.
  • FIG. 11 is a cross-sectional view of another first lens provided by an embodiment of the application.
  • FIG. 12 is a cross-sectional view of another second lens provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of the structure and application of the lens module provided by the embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a camera module provided by an embodiment of the application.
  • 15 is a schematic diagram of a simulation result of a camera module provided by an embodiment of the application.
  • 16 is a schematic structural diagram of another camera module provided by an embodiment of the application.
  • FIG. 17 is a schematic structural diagram of another camera module provided by an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of another camera module provided by an embodiment of the present application.
  • the lens modules provided by the embodiments of the present application are applied to the camera modules, and the lens modules are used to gather light into the image signals of the camera modules. On the processor, the object can be photographed.
  • the above camera module is applied to a terminal, such as a common terminal such as a notebook computer, a tablet computer or a mobile phone.
  • 1 is a schematic structural diagram of the camera module 2 fixed on the mobile phone, the camera module 2 is fixed in the casing 1 of the mobile phone, and the lens module of the camera module 2 is exposed outside the casing 1 .
  • the camera module 2 can be used to realize the camera or photograph function of the mobile phone.
  • the embodiments of the present application provide a lens module for reducing the size of the camera module 2, and the structure thereof will be described in detail below with reference to the specific drawings.
  • FIG. 2 shows an exploded schematic diagram of the lens module 100 provided by the embodiment of the present application.
  • the lens module 100 provided in the embodiment of the present application is applied to an upright camera module.
  • the lens module 100 mainly includes a first lens 10 , a second lens 20 and a bracket 30 for supporting the first lens 10 and the second lens 20 .
  • the first lens 10 and the second lens 20 are arranged along the optical axis, and the first lens 10 is close to the object side, and the second lens 20 is close to the image side.
  • bracket 30 is a specific implementation form for supporting the first lens 10 and the second lens 20, and the lens module 100 provided in the embodiment of the present application may also adopt other structures to support the first lens 10 and the second lens. 20, such as a casing or other similar structures, which will not be listed one by one here.
  • the light passes through the first lens 10 and the second lens 20 in sequence, and the first lens 10 can realize the return of the light to achieve the telephoto effect of the lens; the second lens 20 is used to focus the light to achieve The focusing effect of the lens module 100 .
  • FIG. 3 shows a schematic structural diagram of the first lens 10 .
  • the first lens 10 includes a first lens 12 , a first lens barrel 11 and a cover plate 13 .
  • the first lens barrel 11 serves as a support structure for the first lens 12 , and the first lens 12 can be fixed in the first lens barrel 11 .
  • both ends of the first lens barrel 11 are open so that light can penetrate the first lens barrel 11 .
  • the cover plate 13 covers the opening at one end of the first lens barrel 11 and is fixedly connected with the end of the first lens barrel 11 to cooperate with the first lens barrel 11 to define the first lens 12 in the first lens barrel 11 .
  • the first lens barrel 11 can be a structural device made of plastic or other molding materials, and the first lens barrel 11 can support and fix the first lens 12, reduce the stress of the first lens 12, and ensure the first lens 12. The position and positioning accuracy of a lens 12 .
  • the first lens barrel 11 adopts a cylindrical structure to reduce the space occupied by the first lens 10 . It should be understood that the first lens barrel 11 shown in FIG. 3 is only an example, and other shapes, such as elliptical cylinders, square cylinders, etc., may also be used when the first lens barrel 11 is specifically arranged.
  • FIG. 4 shows a cross-sectional view at A-A in FIG. 3 .
  • the cavity in the first lens barrel 11 is a stepped cavity.
  • two ends of the first lens barrel 11 are defined as the first end and the second end, wherein the first end is the end close to the object side of the first lens barrel 11, and the second end is the first end.
  • One end of the lens barrel 11 close to the image side ie, the end close to the second lens).
  • the inner side wall of the first lens barrel 11 changes in steps along the direction from the first end to the second end, and gradually decreases in size, thereby forming a cavity with step changes.
  • the first lens 12 is fixed in the cavity near the first end.
  • the side wall of the first lens 12 is fixedly connected with the side wall of the first lens barrel 11 .
  • the cover plate 13 covers the first end of the first lens barrel 11 and cooperates with the stepped surface on the inner side wall of the first lens barrel 11 to limit the first lens 12 .
  • the cover plate 13 is provided with a through hole which is matched with the light incident surface of the first lens 12 , so that the light can be irradiated to the first lens 12 .
  • the area of the first lens 12 blocked by the cover plate 13 is a non-functional area of the first lens 12 and does not affect the function of the first lens 12 .
  • the first lens 12 can be fixedly connected with the first lens barrel 11 through interference fit; or the first lens 12 can be fixedly bonded in the first lens barrel 11 by using glue, resin or other adhesive materials , the first lens 12 can also be directly molded and fixed by means of secondary molding in the injection molding cavity.
  • the outer side wall of the first lens barrel 11 also changes in steps, and the trend of the step change is the same as that of the inner side wall of the first lens barrel 11 .
  • FIG. 5 shows a schematic structural diagram of the first lens 12 .
  • the first lens 12 is a circular lens, but the first lens 12 provided in this embodiment of the present application is not limited to the circle shown in FIG. 5 , but can also be an oval, rectangular or other shaped lens.
  • the first lens 12 has two opposite surfaces, namely a light incident side surface 121 and a light exit side surface 122 .
  • the light incident side surface 121 is the surface of the first lens 12 close to the object side
  • the light exit side surface 122 is the surface of the first lens 12 close to the image side.
  • the light can be injected into the first lens 12 through the light-incident side surface 121 , and emitted from the first lens 12 through the light-exit side surface 122 .
  • the light incident side surface 121 and the light exit side surface 122 are respectively divided into different regions according to functions.
  • the light incident side surface 121 is divided into a light transmission area 1211 and a first reflection area 1212
  • the light exit side surface 122 is divided into a light exit area 1221 and a second reflection area 1222 .
  • the light-transmitting area 1211 and the light-emitting area 1221 are the areas where light enters and exits the first lens 12 respectively
  • the first reflecting area 1212 and the second reflecting area 1222 are the paths for returning the light propagating in the first lens 12 Area.
  • the first reflection area 1212 is located at the center of the light incident side surface 121, and the light transmission area 1211 surrounds the first reflection area 1212. .
  • the light exit area 1221 is located at the center of the light exit side surface 122 , and the second reflection area 1222 is disposed around the light exit area 1221 . Therefore, along the direction of the optical axis, the light-transmitting area 1211 and the second reflecting area 1222 are disposed opposite to each other, and the light-emitting area 1221 and the first reflecting area 1212 are disposed opposite to each other.
  • the light entering the first lens 12 forms a ring shape, so that the lens module has a ring-shaped dispersion spot when the camera is defocused, and the final image quality is good , in addition, no chromatic aberration will be formed, and excellent image quality can be achieved.
  • the arrowed line represents the path of the light.
  • the light When the light irradiates the light incident side surface 121 , the light only enters the first lens 12 from the light-transmitting area 1211 , and the first reflecting area 1212 is a non-light-transmitting area and cannot transmit the light.
  • the light entering the first lens 12 is reflected by the second reflection area 1222 to the first reflection area 1212 , and then reflected by the first reflection area 1212 to the light exit area 1221 , and finally exits from the light exit area 1221 .
  • the light After transmission, the light enters the air layer through refraction, and enters the second lens along the direction of the optical axis. It can be seen from the light path shown in FIG.
  • the principle of light refraction is used, so that when the light passes through the first lens 12, it does not directly reach the image signal processor, but passes through the image signal processor. It reaches the image signal processor only after two reflections. Therefore, the length of the first lens can be shortened, the volume and weight can be reduced to the maximum extent, and the cost can also be reduced.
  • a reflective film layer may be attached to the first reflective region 1212 and the second reflective region 1222, respectively.
  • the reflective surface of the reflective film layer faces into the lens, so as to reflect the light in the first lens 12 .
  • the above-mentioned attached reflective film layer is only a specific example of forming the first reflective region 1212 and the second reflective region 1222.
  • the reflective region may also be formed by other methods, such as spraying a reflective material to form a reflective region.
  • the first lens 12 uses reflective surfaces without dispersion (the first reflection area 1212 and the second reflection area 1222 ) instead of the refractive surfaces with dispersion, which can better control dispersion.
  • the light-transmitting area 1211 is flat to facilitate the incidence of light. It should be understood that the light-transmitting region 1211 may also adopt other surfaces. Exemplarily, the light-transmitting area 1211 may also adopt a convex curved surface, a concave curved surface, or other types of surfaces, as long as the light incident from the light-transmitting area 1211 into the first lens 12 can propagate. It is enough to reach the second reflection area 1222 .
  • the first reflection area 1212 is a concave spherical area of the light incident side surface 121 .
  • the first reflection area 1212 is a spherical area recessed in the first lens 12 .
  • the first reflective area 1212 is not limited to the spherical area shown in FIG. 5 , and other surface shapes that can condense light may also be used.
  • the first reflection area 1212 can also be of different surface shapes such as a conical surface, an elliptical surface, or a parabolic surface, which can also achieve the effect of converging light.
  • the light-emitting side surface 122 is a convex spherical surface.
  • the surface of the second reflection area 1222 for reflecting light is a concave surface, and the concave surface faces the first reflection area 1212, so that the light-transmitting area 1211 The light irradiated to the second reflection area 1222 is reflected to the first reflection area 1212 .
  • the light emitting area 1221 is a spherical surface, which is also convenient to gather the light reflected by the first reflection area 1212 again.
  • the spherical surface used for the light-emitting side surface 122 is a specific example of the present application, and the light-emitting side surface 122 may also use other surface shapes.
  • the light exit side surface 122 may also adopt a tapered surface, and both the second reflection area 1222 and the light exit area 1221 are planar structures.
  • the light exit side surface 122 can also be a composite surface, for example, the second reflection area 1222 is an annular plane, and the plane is inclined relative to the optical axis to reflect the light to the first reflection area 1212; the light exit area 1221 is a spherical surface.
  • the ratio of the first reflective area 1212 to the light-transmitting area 1211 and the ratio of the second reflective area 1222 to the light-emitting area 1221 are not specifically limited.
  • the proportional relationship only needs to be able to realize the light path shown in FIG. 5 .
  • FIG. 6 shows a schematic structural diagram of the second lens 22 provided in an embodiment of the present application.
  • the function of the second lens 20 is to further converge the imaging light gathered by the first lens, adjust the imaging focal length, reduce chromatic aberration, distortion and aberration, adjust and improve the imaging quality, and reduce the curvature of the field of view in each field of view, Ensure the image quality on the image signal processor.
  • the structure of the second lens 20 will be described in detail below with reference to FIG. 6 .
  • the second lens 20 includes a second lens 22 and a second lens barrel 21 .
  • the second lens barrel 21 serves as a support structure for the second lens 22 , and the second lens 22 can be fixed in the second lens barrel 21 during assembly.
  • both ends of the second lens barrel 21 are open so that light can penetrate the cavity in the second lens barrel 21 .
  • the material of the second lens barrel 21 may be plastic or other easy-to-shape materials, which are not specifically limited in the embodiments of the present application.
  • the material of the second lens 22 is an optical white plastic material, or a common lens material such as an optical glass material, which is not specifically limited in the embodiments of the present application.
  • FIG. 7 shows a cross-sectional view at B-B in FIG. 6 .
  • the cavity in the second lens barrel 21 is a stepped cavity.
  • two ends of the second lens barrel 21 are defined as the third end and the fourth end, wherein the third end is the end close to the object side of the second lens barrel 21, and the fourth end is the first end.
  • One end of the second lens barrel 21 close to the image side ie, the end close to the image signal processor).
  • the inner side wall in the second lens barrel 21 changes in steps along the direction from the third end to the fourth end, and the size gradually increases, thereby forming a cavity with step changes.
  • the second lens 22 can be fixedly connected to the side wall of the second lens barrel 21 through interference fit; or the side wall of the second lens 22 can be adhered to the side wall of the second lens barrel 21 through adhesive glue connect.
  • the number of the second lenses 22 is four, and the four second lenses 22 are arranged in the second lens barrel 21 along the optical axis, and the four lenses can be selected from spherical mirrors or aspherical mirrors as required.
  • the four lenses only need to be able to achieve focus adjustment, and the specific structure and size of each lens are not specifically limited in the embodiments of the present application.
  • the four second lenses 22 shown in FIG. 7 are only a specific example, and the number of the second lenses 22 provided in the embodiment of the present application is not limited to the four shown in FIG.
  • the number of the second lenses 22 such as two, three, five, six, etc. any number of lenses. All the second lenses 22 need to be combined to adjust the imaging focal length, reduce chromatic aberration, distortion and aberration, adjust and improve the imaging quality, and reduce the effect of field curvature in each field of view.
  • the second lens 20 further includes a spacer 23 for adjusting the distance between the second lenses 22 .
  • the spacer 23 can be arranged between different second lenses 22, so that the thickness of the spacer 23 can be adjusted according to actual needs, which is not limited herein.
  • the second lens barrel 21 adopts a cylindrical structure to reduce the space occupied by the second lens 20 .
  • the lens barrel exemplified in FIG. 7 is only an example, and other shapes, such as elliptical cylinders, square cylinders, etc., may also be used when the second lens barrel 21 is specifically arranged.
  • FIG. 8 shows a schematic diagram of the cooperation of the first lens and the second lens.
  • the first lens P1, the second lens P2, the second lens P3, the second lens P4, the second lens P5, the filter (not marked in the figure) and the image signal processor (the figure is shown) are shown not marked).
  • the filter not marked in the figure
  • the image signal processor the figure is shown
  • the lens P2, the second lens P3, the second lens P4 and the second lens P5, and the second lens is used to adjust the imaging focal length, reduce chromatic aberration, distortion and aberration, adjust and improve the imaging quality, reduce the field of view curvature. After that, the light is imaged on the image signal processor after passing through the filter. It can be seen from FIG. 8 that when the first lens adopts the first lens that can return the light path, the length of the lens module can be shortened, and in addition, the volume and weight can be reduced to the maximum extent, and the cost is also reduced.
  • FIG. 9 shows a schematic diagram of the structure and application of the lens module 100 provided by the embodiment of the present application.
  • the numbers of some components in FIG. 9 may refer to the numbers of the same components in FIG. 2 .
  • the lens module 100 is applied to the camera module, the lens module 100 is fixed in the camera module.
  • the bracket 30 of the lens module 100 is located in the casing 200 of the camera module, and the camera module further includes a circuit board 300 , an image signal processor 400 disposed on the circuit board 300 , and the image signal processor 400 , the second lens 20 and the first lens 10 are arranged along the optical axis.
  • the light can pass through the first lens and the second lens in sequence and then irradiate to the image signal processor 400, and the image signal processor 400 converts the optical signal into an electrical signal.
  • the optical path is turned back, so that the upright lens module 100 can also be used in the camera module, and can be extremely Greatly reduces the size of the camera module.
  • FIG. 10 shows a schematic structural diagram of another lens module 100 provided by an embodiment of the present application.
  • the numbers of some components in FIG. 10 may refer to the numbers of the same components in FIG. 2 .
  • the lens module 100 shown in FIG. 10 includes a bracket 30 , a first lens 10 and a second lens 20 , and some components in FIG. 10 may refer to the same reference numerals in FIG. 2 .
  • the difference between the lens module 100 shown in FIG. 10 and the first lens 10 and the second lens 20 shown in FIG. 2 lies in the arrangement of the lenses.
  • FIG. 11 shows a cross-sectional view of the first lens 10 .
  • the first lens 10 includes a first lens barrel 11 and a first lens 12 , the first lens barrel 11 and the first lens 12 may refer to the corresponding descriptions above.
  • the first lens 10 further includes a first lens barrel 11, the first lens 12 is fixed in the first lens barrel 11, the first lens 10 further includes at least one third lens 14, the first lens 12 and the at least one third lens 14 are The optical axes are arranged, and at least one third lens 14 is located on the image side of the first lens 12 .
  • the at least one third lens 14 is a focusing lens, and FIG. 10 illustrates that the number of the third lenses 14 is three, but the number of the third lenses 14 in this embodiment of the present application is not specifically limited here.
  • the first lens 10 further includes a spacer, through which the distance between the third lenses 14 can be adjusted, and the thickness of the spacer can be set according to actual needs.
  • FIG. 12 shows a cross-sectional view of the second lens 20 .
  • the second lens 20 includes a second lens barrel 21 and a second lens 22 .
  • the number of the second lenses 22 is one, and one second lens 22 is fixed in the second lens barrel 21 .
  • the above-mentioned third lens and second lens 22 work together to adjust the imaging focal length, reduce chromatic aberration, distortion and aberration, adjust and improve the imaging quality, reduce the field of view curvature in each field of view, and ensure that the image signal processor is on the Image quality lens group.
  • the above four lenses can be selected from spherical mirrors or aspherical mirrors as required. In the specific setting, the four lenses only need to be able to achieve focus adjustment, and the specific structure and size of each lens are not specifically limited in the embodiments of the present application.
  • FIG. 13 shows a schematic diagram of the structure and application of the lens module 100 provided by the embodiment of the present application.
  • the numbers of some components in FIG. 13 may refer to the numbers of the same components in FIG. 2 .
  • the lens module 100 is applied to the camera module, the lens module 100 is fixed in the camera module.
  • the bracket 30 of the lens module 100 is located in the casing 200 of the camera module, and the camera module further includes a circuit board 300 , an image signal processor 400 disposed on the circuit board 300 , and the image signal processor 400 , the second lens 20 and the first lens 10 are arranged along the optical axis.
  • the light can pass through the first lens and the second lens in sequence and then irradiate to the image signal processor 400, and the image signal processor 400 converts the optical signal into an electrical signal.
  • the length of the lens module can be shortened, and in addition, the volume and weight are reduced to the maximum extent, and the cost is also reduced.
  • FIG. 14 shows a schematic structural diagram of a camera module provided by an embodiment of the present application. Part numbers in FIG. 14 may refer to the same numbers in FIG. 13 .
  • the camera module includes a base 800 and any one of the above-mentioned lens modules 100 connected to the base 800 .
  • the second lens 20 is fixedly connected to the bracket 30 , and the first lens 10 is connected to the bracket 30 through the first elastic member 600 .
  • the first lens 10 and the second lens 20 are sheathed in the bracket 30 , the first lens 10 is connected to the bracket 30 through two or more first elastic members 600 , and the second lens 20 is fixedly connected to the bracket 30 .
  • the elastic deformation of the first elastic member 600 can cause the first lens to move along the optical axis, so as to adjust the relative positions of the first lens 10 and the second lens 20, thereby achieving focus adjustment.
  • the driving mechanism is used to drive the first lens 10 to move, so as to realize focusing.
  • the drive mechanism may be an AF drive motor.
  • the first lens 10 is named as a G1 lens
  • the second lens 20 is named as a G2 lens.
  • the function of the AF drive motor is to move the G1 lens or G2 lens to achieve focusing after the motor is powered on, and the image is clearly imaged on the image signal processor.
  • 14 only illustrates that the G1 lens is movable, the camera module provided by the embodiment of the present application can also be fixed by using the G1 lens, and the G2 lens is connected to the bracket 30 through an elastic member. That is, at least one of the G1 lens and the G2 lens can be moved to achieve focus adjustment.
  • the AF drive motor calculates the distance the lens moves according to the Hall sensor signal, the drive chip or the gyroscope signal, and the drive chip calculates the relative position of the G1 lens and G2 according to a certain algorithm to achieve clear imaging.
  • the AF drive motor can be implemented by a voice coil motor, a piezoelectric motor or a shape memory alloy wire. It should be understood that the manner of driving the first lens 10 according to the Hall sensor signal, the driving IC or the gyroscope signal is a relatively common driving manner, which will not be repeated here.
  • the lens module 100 provided by the embodiment of the present application also has an anti-shake function.
  • the base 800 is connected to the bracket 30 through a third elastic member 500 , and the camera module further includes an anti-shake motor 700 for compensating for the shake of the lens module 100 .
  • the third elastic member 500 can be a spring or a suspension wire, and the lens module 100 forms a suspended elastic structure through the third elastic member 500 . It should be understood that although two third elastic members 500 are shown in FIG. 14 , in this embodiment of the present application, a plurality of third elastic members 500 may be provided, such as two, three, four and other different numbers. The third elastic member 500 only needs to be able to support the bracket 30 .
  • the anti-shake motor 700 can use an OIS (Optical image stabilization, optical image stabilization) motor.
  • the OIS motor is generated by the magnetic field generated by the magnet (not shown in the figure) at the bottom of the bracket 30 and the electromagnet on the base 800. This force pushes the third elastic member 500 to generate displacement, so as to realize anti-shake movement of the entire lens group.
  • the gyroscope in the camera module detects the slight movement of the lens, it will transmit the signal to the microprocessor.
  • the microprocessor will immediately calculate the displacement amount that needs to be compensated according to the shaking direction and displacement, and then drive the G1 through the OIS motor.
  • the lens and the G2 lens are moved to compensate for the offset, which effectively overcomes image blur caused by camera vibration.
  • the OIS motor can be in the form of a voice coil motor, a piezoelectric motor, or a shape memory alloy to achieve anti-shake displacement compensation.
  • the structure and working principle of the above-mentioned anti-shake motor 700 are relatively common driving methods, and are not repeated here.
  • the camera module for telephoto shooting requires high focus position accuracy.
  • the drive motor of the G1 lens needs to use a Hall sensor to sense the lens position and implement closed-loop control. At the same time, it needs to use the gyroscope signal on the module to sense the motion state. , through software algorithm calculation to compensate for the amount of jitter, to achieve OIS anti-shake.
  • the camera module uses the axial movement of the G1 lens to perform AF (Auto Focus) focusing, and achieves a good imaging effect at a close object distance (such as imaging at a distance of 1.0 meters to infinity).
  • the G2 lens is fixed to the bracket 30 and does not need to be moved in the direction of the optical axis.
  • the G1 lens is driven by the AF motor to achieve focus imaging.
  • the camera module structure is relatively simple, the control method is easy to implement, and the cost is advantageous.
  • the lens module realizes focusing through the combination of 2 lenses, which can achieve more than 5 times the telephoto shooting effect on the mobile phone module.
  • the simulation result is shown in Figure 15. It can be seen from Figure 15 that when the camera module shown in Figure 14 is used for simulation, the imaging effect is The field of view with an MTF value of 0.8 has reached 55, and the curvature of the field of view has been significantly improved.
  • the OIS motor and the AF drive motor can be controlled separately, improving the control effect.
  • FIG. 16 shows a schematic structural diagram of another camera module. Some components in FIG. 16 may refer to the same reference numerals in FIG. 14 .
  • both the first lens 10 and the second lens 20 are connected to the bracket 30 in a floating manner. Specifically, the first lens 10 is connected to the bracket 30 through the first elastic member 600 ; the second lens 20 is connected to the bracket 30 through the second elastic member 900 .
  • the first lens 10 is named as a G1 lens
  • the second lens 20 is named as a G2 lens.
  • the G1 lens and the G2 lens are respectively suspended on the bracket 30 through elastic parts, so that both the G1 lens and the G2 lens can move, and the optimal matching distance of the G1 lens and the G2 lens is calculated through an algorithm when shooting distant scenes. It can also reduce the curvature of field in different fields of view and improve the image quality of the image.
  • the G1 lens and G2 lens are driven by a separate voice coil motor or other motor (shape memory alloy wire or piezoelectric motor) to move along the optical axis.
  • the OIS motor uses the magnetic field generated by the magnet at the bottom of the bracket 30 and the Lorentz force generated by the coil on the base to push four or more springs and suspension wires to generate displacement, so as to realize the overall lens group movement and anti-shake.
  • Both the G2 lens and the G1 lens are driven by a motor to generate displacement.
  • the G1 lens and the G2 lens are closed-loop controlled by two independent control motors.
  • the focusing algorithm is used to let the G1 lens and the G2 lens adjust the focusing distance along the optical axis respectively, and work together.
  • the AF function is implemented in combination, for example, the AF of the G1 lens is used for coarse focusing, and the G2 lens is used for axial AF movement for fine focus, which can reduce the requirements for the position accuracy of the motor on the optical components, and it is easier to achieve a good close object distance (achieving 1.0 meters to 1.0 meters). Imaging at infinite distance) imaging effect.
  • the use of two elastic parts reduces the difficulty of assembling complicated processes and facilitates mass production.
  • the G1 lens and the G2 lens are connected with the bracket 30 by elastic parts, which makes it easier to achieve displacement and has a faster response speed.
  • FIG. 17 shows another specific schematic diagram of the cooperation between the bracket 30 and the first lens 10 and the second lens 20 .
  • Some components in FIG. 17 may refer to the same reference numerals in FIG. 14 .
  • both the first lens 10 and the second lens 20 are connected to the bracket 30 in a floating manner.
  • the difference from the camera module shown in FIG. 14 is that when the first lens 10 and the second lens 20 are connected to the bracket 30 , the bracket 30 is provided with a shaft 1000 extending in the direction of the optical axis 1000 .
  • the second lenses 20 are respectively slidably assembled on the shafts 1000 .
  • the algorithm calculates the best matching distance between the G1 lens and the G2 lens to focus on imaging, achieving higher-quality imaging effects, reducing image field curvature in different fields of view, and improving image quality.
  • the G1 lens and the G2 lens are driven by a separate voice coil motor or other motor (SMA or piezoelectric motor) to move along the optical axis 1000.
  • the anti-shake motor 700 is the same as the camera module shown in FIG. 14 and FIG. 16, and is driven by the magnetic field generated by the magnet at the bottom of the bracket 30 and the Lorentz force generated by the electrification of the electromagnet on the base 800 to push four or more springs,
  • the suspension wire is used to generate displacement, and the overall lens group movement and anti-shake can be realized.
  • This embodiment is further optimized on the basis of the vertical folding structure.
  • the G1 lens and the G2 lens are closed-loop controlled by two independent control motors.
  • the focus algorithm is used to adjust the focus of the G1 lens and the G2 lens along the optical axis.
  • Distance, combined action and combination to implement AF function for example, G1 lens AF for coarse focus, G2 lens for axial AF movement for fine focus, which can reduce the requirements of optical components on motor position accuracy, and it is easier to achieve good close-range imaging Effect.
  • both the G1 lens and the G2 lens are involved in focusing, which reduces the requirement for the repeatability accuracy of the lens position hardware detection.
  • the existing Hall sensor hardware detection circuit is easy to implement; it does not rely on the more difficult TMR and other high-precision position detection components;
  • the G1 lens and G2 are moved on the sliding shaft to achieve focusing, which can effectively eliminate the eccentricity and the optical axis offset.
  • FIG. 18 shows another specific schematic diagram of the cooperation between the bracket 30 and the first lens 10 and the second lens 20 .
  • Some components in FIG. 18 may refer to the same reference numerals in FIG. 14 .
  • both the first lens 10 and the second lens 20 are connected to the bracket 30 by a ball motor.
  • the ball motor includes a chute arranged on the bracket, and the longitudinal direction of the chute is parallel to the optical axis.
  • Rolling balls 2000 mounted on the first lens 10 and the second lens 20 the balls 2000 can roll in the chute, and also include an electromagnet set in the bracket, and a permanent magnet set in the first lens and the second lens .
  • the first lens 10 and the second lens 20 are driven to move along the optical axis by the action of the electromagnet and the permanent magnet, and the movement direction of the first lens and the second lens is defined by the cooperation of the ball 2000 and the sliding groove.
  • the algorithm calculates the best matching distance between the G1 lens and the G2 lens to focus on imaging, achieving higher-quality imaging results, reducing the curvature of the image field in different fields of view, and improving the focus of image imaging quality. Way.
  • the anti-shake motor 700 is the same as the camera module shown in FIG. 14 and FIG. 16, and is driven by the magnetic field generated by the magnet at the bottom of the bracket 30 and the Lorentz force generated by the electrification of the electromagnet on the base 800 to push four or more springs,
  • the suspension wire is used to generate displacement, and the overall lens group movement and anti-shake can be realized.
  • This embodiment is further optimized on the basis of the vertical folding structure.
  • the G1 lens and the G2 lens are closed-loop controlled by two independent control motors.
  • the focus algorithm is used to adjust the focus of the G1 lens and the G2 lens along the chute respectively.
  • Distance, combined action and combination to implement AF function for example, G1 lens AF for coarse focus, G2 lens for axial AF movement for fine focus, which can reduce the requirements of optical components on motor position accuracy, and it is easier to achieve good close-range imaging Effect.
  • both the G1 lens and the G2 lens are involved in focusing, which reduces the requirement for the repeatability accuracy of the lens position hardware detection.
  • the existing Hall sensor hardware detection circuit is easy to implement; it does not rely on the more difficult TMR and other high-precision position detection components;
  • the G1 lens and G2 are moved on the sliding shaft to achieve focusing, which can effectively eliminate the eccentricity and the optical axis offset.
  • the lens module is connected with the camera module through the third elastic member, and then cooperates with the anti-shake motor to realize the anti-shake effect.
  • the embodiment of the present application also provides a terminal, and the terminal may be a common terminal such as a mobile phone, a tablet computer, and a notebook computer.
  • the terminal may be a common terminal such as a mobile phone, a tablet computer, and a notebook computer.
  • the terminal may be a common terminal such as a mobile phone, a tablet computer, and a notebook computer.
  • the optical path is folded back through the first lens, thereby realizing the effect of a telephoto lens.
  • a smaller-sized upright lens module can be used, which reduces the size of the camera module.
  • the camera module can be adapted to the thinning development of the terminal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

本申请提供了一种镜头模组、摄像模组及终端,镜头模组包括第一镜头和第二镜头,第一镜头和第二镜头沿光轴排列。第一镜头用于实现长焦,第二镜头用于实现对焦。在具体设置时,第一镜头包括第一透镜,第一透镜的入光侧表面包括透光区和第一反射区;第一透镜的出光侧表面包括第二反射区和出光区;第一反射区和第二反射区用于折返射入到第一透镜内的光线。第二镜头包括至少一个第二透镜,至少一个第二透镜为调焦透镜。在上述技术方案中,通过第一透镜实现折返光路,从而实现长焦镜头的效果,另外,由于光路进行折返,从而可采用较小尺寸的直立式镜头模组,降低了摄像模组的尺寸,使得摄像模组可适应终端的薄型化发展。

Description

一种镜头模组、摄像模组及终端
相关申请的交叉引用
本申请要求在2020年08月31日提交中国专利局、申请号为202010901470.0、申请名称为“一种镜头模组、摄像模组及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及到摄像头技术领域,尤其涉及到一种镜头模组、摄像模组及终端。
背景技术
长焦镜头对于拍摄远景有很大的帮助,例如演唱会、风景照,通过传感器上的长焦镜头,我们自己不需要机械移动,就可以拍摄远处的场景。在同样的拍摄距离内,拍同样的景物可以就某个局部拍得比普通镜头大且清晰。长焦镜头让手机影像功能丰富化、成像优质化的同时极大地拓展了用户的使用场景和创作空间,帮助用户突破空间、物理限制拉近与世界的距离,带来更多玩味的操作,为生活带来更多便利以及乐趣。
现有技术中的长焦镜头采用光学变焦,光学变焦是依靠光学镜头来实现变焦,它的变焦方式主要取决于镜头的焦距,通过相机镜片移动来放大和缩小景物,这就是所谓的光学变焦。超远距离的变焦成像其实有一定的拍摄难度。在长焦镜头应用在手机上时,受限于手机机身设计原因,摄像头采用多片小尺寸的镜片组成。另外,随着手机的薄型化发展,手机内部空间的厚度很薄,没有堆叠长焦镜头的物理空间,因此现有技术中手机上应用的长焦镜头已经无法适应手机的需求。
发明内容
本申请提供了一种镜头模组、摄像模组及终端,降低镜头模组的尺寸,提高镜头模组的适应性。
第一方面,提供了一种镜头模组,该镜头模组包括第一镜头和第二镜头,第一镜头和第二镜头沿光轴排列,且第一镜头靠近物侧,第二镜头靠近像侧。其中,第一镜头用于实现长焦,第二镜头用于实现对焦。在具体设置时,第一镜头包括第一透镜,第一透镜的入光侧表面包括透光区和第一反射区;所述第一透镜的出光侧表面包括第二反射区和出光区;其中,所述第一反射区和第二反射区用于折返从透光区射入到所述第一透镜内的光线。第二镜头包括至少一个第二透镜,所述至少一个第二透镜为调焦透镜。在设置时,至少一个第二透镜与所述第一透镜沿所述光轴排列。在上述技术方案中,通过第一透镜实现折返光路,从而实现长焦镜头的效果,另外,由于光路进行折返,从而可采用较小尺寸的直立式镜头模组,降低了摄像模组的尺寸,使得摄像模组可适应终端的薄型化发展。
在一个具体的可实施方案中,所述第一反射区位于所述入光侧表面的中心位置,所述透光区环绕所述第一反射区;所述出光区位于所述出光侧表面的中心位置,所述第二反射区环绕所述出光区设置。通过第一反射区和出光区相对设置,透光区与第二反射区相对设 置,从而使得光线可在第一透镜中折返。
在一个具体的可实施方案中,所述透光区为平面;所述第一反射区为内凹的球形区。通过内凹的球形区方便光线折射到出光区。
在一个具体的可实施方案中,所述出光侧表面为外凸的球形面。采用球形面方便第二反射区将光线反射到第一反射区,同时也方便出光侧对光线进行汇聚。
在一个具体的可实施方案中,所述第一反射区和所述第二反射区分别贴附有反射膜层。通过反射膜层提高了反射效果。
在一个具体的可实施方案中,所述第一镜头还包括第一镜筒,所述第一透镜固定在所述第一镜筒内;所述第二镜头还包括第二镜筒,所述第二透镜的个数为多个,所述多个第二透镜沿所述光轴排列并固定在所述第二镜筒内。通过分别设置的镜筒支撑透镜,另外,透镜可根据需要分别设置在不同的镜筒内。
在一个具体的可实施方案中,所述第一镜头还包括第一镜筒,所述第一透镜固定在所述第一镜筒内,所述第一镜头还包括固定在第一镜筒内的至少一个第三透镜,所述至少一个第三透镜为调焦透镜;所述第二镜头还包括第二镜筒,所述第二透镜的个数为一个,且所述一个第二透镜固定在所述第二镜筒内。通过分别设置的镜筒支撑透镜,另外,透镜可根据需要分别设置在不同的镜筒内。
在一个具体的可实施方案中,还包括支架,所述第一镜头和所述第二镜头中,至少一个镜头可相对所述支架沿所述光轴方向滑动。通过支架支撑第一镜头和第二镜头。
在一个具体的可实施方案中,所述第二镜头与所述支架固定连接,所述第一镜头通过第一弹性件与所述支架连接。通过一个镜头固定,另一个镜头滑动的方式实现调焦。
在一个具体的可实施方案中,所述第一镜头通过第一弹性件与所述支架连接;所述第二镜头通过第二弹性件与所述支架连接。通过两个镜头可分别与支架滑动的方式实现调焦。
在一个具体的可实施方案中,所述支架内设置有沿所述光轴方向延伸的轴;所述第一镜头和所述第二镜头分别滑动装配在所述轴上。通过两个镜头可分别与支架滑动的方式实现调焦。
在一个具体的可实施方案中,还包括驱动机构,所述驱动机构用于驱动第一镜头或第二镜头运动,实现调焦。
在一个具体的可实施方案中,驱动机构可为对焦AF(Auto Focus,自动对焦)驱动马达,采用不同的驱动机构驱动镜头模组对焦。
第二方面,提供了一种摄像模组,该摄像模组包括底座以及与所述底座连接的上述任一项所述的镜头模组。在上述技术方案中,通过第一透镜实现折返光路,从而实现长焦镜头的效果,另外,由于光路进行折返,从而可采用较小尺寸的直立式镜头模组,降低了摄像模组的尺寸,使得摄像模组可适应终端的薄型化发展。
在一个具体的可实施方案中,所述底座通过所述第三弹性件与所述支架连接;所述摄像模组还包括补偿所述镜头模组抖动的防抖马达。通过第三弹性件用于防抖马达的配合改摄像模组的防抖效果。
在一个具体的可实施方案中,第三弹性件为弹簧或者悬丝。均可支撑支架。
第三方面,提供了一种终端,该终端包括壳体以及设置子所述壳体的上述任一项所述的摄像模组。在上述技术方案中,通过第一透镜实现折返光路,从而实现长焦镜头的效果,另外,由于光路进行折返,从而可采用较小尺寸的直立式镜头模组,降低了摄像模组的尺 寸,使得摄像模组可适应终端的薄型化发展。
附图说明
图1为摄像模组的应用场景示意图;
图2为本申请实施例提供的镜头模组的分解示意图;
图3为本申请实施例提供的第一镜头的结构示意图;
图4为图3中的A-A处的剖视图;
图5为第一透镜的结构示意图;
图6为本申请实施例提供的第二透镜的结构示意图;
图7为图6中B-B处的剖视图;
图8为第一镜头和第二镜头配合的示意图;
图9为本申请实施例提供的镜头模组的结构应用示意图;
图10为本申请实施例提供的另一镜头模组的结构示意图;
图11为本申请实施例提供的另一种第一镜头的剖视图;
图12为本申请实施例提供的另一种第二镜头的剖视图;
图13为本申请实施例提供的镜头模组的结构应用示意图;
图14为本申请实施例提供的一种摄像模组的结构示意图;
图15为本申请实施例提供的摄像模组的仿真结果示意图;
图16为本申请实施例提供的另一种摄像模组的结构示意图;
图17为本申请实施例提供的另一种摄像模组的结构示意图;
图18为本申请实施例提供的另一种摄像模组的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步描述。
为方便理解本申请实施例提供的镜头模组,首先说明其应用场景,本申请实施例提供的镜头模组应用于摄像模组中,镜头模组用于将光线汇聚到摄像模组的图像信号处理器上,实现对物体进行拍照。上述摄像模组应用于终端中,如笔记本电脑、平板电脑或者手机等常见的终端。如图1所示的摄像模组2固定在手机上的结构示意图,摄像模组2固定在手机的壳体1内,摄像模组2的镜头模组外露在壳体1外。在使用时,该摄像模组2可用于实现手机的摄像或拍照功能。但由于终端的逐渐薄型化发展,限制了摄像模组2的尺寸不易过大,现有技术中的长焦镜头已经无法适应手机的薄型化发展。为此本申请实施例提供了一种降低摄像模组2尺寸的镜头模组,下面结合具体的附图对其结构进行详细说明。
如图2所示,图2示出了本申请实施例提供的镜头模组100的分解示意图。本申请实施例提供的镜头模组100应用于直立式摄像模组中。
镜头模组100主要包括第一镜头10、第二镜头20以及用于支撑第一镜头10和第二镜头20的支架30。第一镜头10和第二镜头20沿光轴排列,且第一镜头10靠近物侧,第二镜头20靠近像侧。应理解上述支架30为支撑第一镜头10和第二镜头20的一种具体的实现形式,本申请实施例提供的镜头模组100还可采用其他的结构来支撑第一镜头10和第二镜头20,如壳体或者其他相似的结构,在此不再一一列举。
在摄像时,光线依次经过第一镜头10和第二镜头20,且通过第一镜头10可实现对光线的折返,以实现镜头的长焦效果;通过第二镜头20对光线进行对焦,以实现镜头模组100的对焦效果。
图3示出了第一镜头10的结构示意图,第一镜头10包括第一透镜12、第一镜筒11及盖板13。其中,第一镜筒11作为第一透镜12的支撑结构,第一透镜12可固定在第一镜筒11内。另外,第一镜筒11的两端开口,以便于光线可穿透第一镜筒11。盖板13盖合在第一镜筒11的一端开口,并与第一镜筒11的端部固定连接,以与第一镜筒11配合将第一透镜12限定在第一镜筒11内。
作为一个可选的方案,第一镜筒11可采用塑胶或其他成型材料做成的结构器件,通过第一镜筒11可支撑和固定第一透镜12,减少第一透镜12的应力,保证第一透镜12的位置和定位精度。
作为一个可选的方案,第一镜筒11采用圆筒形结构,以降低第一镜头10占用的空间。应理解,图3中示例的第一镜筒11仅为一个示例,在具体设置第一镜筒11时,还可采用其他的形状,如椭圆筒、方形筒等不同的形状的结构。
图4示出了图3中的A-A处的剖视图。第一镜筒11内的腔体为阶梯腔体。为方便描述,定义了第一镜筒11的两个端部,分别为第一端和第二端,其中,第一端为靠近第一镜筒11靠近物侧的一端,第二端为第一镜筒11靠近像侧的一端(即靠近第二镜头的一端)。第一镜筒11内的内侧壁沿第一端指向第二端的方向,呈阶梯变化,且尺寸逐渐降低,从而形成阶梯变化的腔体。
第一透镜12在装配时,固定在腔体中靠近第一端的位置。第一透镜12的侧壁与第一镜筒11的侧壁固定连接。盖板13盖合在第一镜筒11的第一端,并与第一镜筒11的内侧壁上的阶梯面一起配合,限位第一透镜12。应理解,盖板13上设置有与第一透镜12的入光面配合的通孔,以便于光线可照射到第一透镜12。另外盖板13遮挡的第一透镜12的区域为第一透镜12的非功能区,不影响第一透镜12的功能。
作为一个可选的方案,第一透镜12可通过过盈配合与第一镜筒11固定连接;或者第一透镜12可以采用胶水、树脂或其他粘接材料固定粘接在第一镜筒11内,也可以采用第一透镜12在注塑成型模腔内二次成型的方式直接成型固定。
作为一个可选的方案,第一镜筒11的外侧壁也呈阶梯变化,且阶梯变化的趋势与第一镜筒11的内侧壁相同。
参考图5,图5示出了第一透镜12的结构示意图。第一透镜12采用圆形的透镜,但本申请实施例提供的第一透镜12不仅限于图5所示的圆形,还可为椭圆形、矩形或者其他形状的透镜。
第一透镜12具有相对的两个表面,分别为入光侧表面121和出光侧表面122。入光侧表面121为第一透镜12靠近物侧的表面,出光侧表面122为第一透镜12靠近像侧的表面。在使用时,光线可通过入光侧表面121射入到第一透镜12中,并通过出光侧表面122从第一透镜12中射出。
入光侧表面121和出光侧表面122按照功能分别划分为不同的区域。示例性的,入光侧表面121划分为透光区1211和第一反射区1212;出光侧表面122划分为出光区1221和第二反射区1222。其中,透光区1211和出光区1221分别为光线射入和射出第一透镜12的区域,第一反射区1212和第二反射区1222为用于折返在第一透镜12内传播的光线的 路径的区域。
在具体设置入光侧表面121和出光侧表面122的不同区域时,作为一个可选的方案,第一反射区1212位于入光侧表面121的中心位置,透光区1211环绕第一反射区1212。出光区1221位于出光侧表面122的中心位置,第二反射区1222环绕出光区1221设置。从而使得沿光轴方向,透光区1211与第二反射区1222相对设置,出光区1221与第一反射区1212相对设置。另外,通过在光路的中心设置一个反射面(第一反射区1212),射入第一透镜12的光线成环状,使得镜头模组在拍照离焦时弥散斑成环状,最终成像质量好,另外不会形成色差,可以实现优良的成像画质。
参考图5中带箭头的直线,带箭头的直线表示光线的路径。光线在照射到入光侧表面121时,光线仅从透光区1211射入到第一透镜12中,第一反射区1212为非透光区,无法透过光线。射入到第一透镜12内的光线经第二反射区1222反射到第一反射区1212,再通过第一反射区1212反射到出光区1221,并最终从出光区1221射出。透射后光经过折射进入空气层,沿光轴方向进入第二镜头。由图5中所示的光线路径可看出,光线在第一透镜12中传播时,利用光线折反的原理,使光线通过第一透镜12时,不是直接到达图像信号处理器,而是经过两次反射后才到达图像信号处理器。从而可使得第一镜头的长度缩短,最大限度得缩小了体积、重量,同时也降低了成本。
在具体形成第一反射区1212和第二反射区1222时,可通过在第一反射区1212和第二反射区1222分别贴附反射膜层。反射膜层的反射面朝向透镜内,以便于对第一透镜12内的光线进行反射。应理解,上述贴附反射膜层仅为形成第一反射区1212和第二反射区1222的一个具体示例,在本申请实施例中,还可采用其他的方式形成反射区,如喷涂反射材料形成第一反射区1212和第二反射区1222。此外,第一透镜12采用无色散的反射面(第一反射区1212和第二反射区1222)代替有色散的折射面,能够更好的控制色散。
作为一个可选的方案,透光区1211为平面,以方便光线的入射。应理解透光区1211还可采用其他的表面。示例性的,透光区1211还可采用外凸的弧形面,或者内凹的弧形面,或者其他类型的面,只需从透光区1211入射到第一透镜12内的光线可传播到第二反射区1222即可。
作为一个可选的方案,第一反射区1212为入光侧表面121的内凹的球形区。如图5中所示,第一反射区1212为凹陷在第一透镜12内的球形区。在采用球形区时,从第二反射区1222反射到第一反射区1212的光线可具有不同的入射角,且光线可通过第一反射区1212的球形区汇聚到出光区1221。应理解,第一反射区1212不仅限于图5中所示的球形区,还可采用其他的可汇聚光线的面型。如第一反射区1212还可为锥形面、椭圆面或者抛物面等不同的面型,同样可实现对光线的汇聚效果。
作为一个可选的方案,出光侧表面122为外凸的球形面。在出光侧表面122采用外凸的球形面时,第二反射区1222用于反射光线的表面为一个内凹的面,且该内凹的面朝向第一反射区1212,可将透光区1211照射到第二反射区1222的光线反射到第一反射区1212。另外,出光区1221为一个球形面,也方便将第一反射区1212反射的光线再次汇聚。应理解,上述出光侧表面122采用球形面为本申请的一个具体示例,出光侧表面122还可采用其他面型。示例性的,出光侧表面122还可采用锥形面,第二反射区1222和出光区1221均为平面结构。或者出光侧表面122还可采用组合面,如第二反射区1222为环形的平面,且平面相对光轴倾斜,以将光线反射到第一反射区1212;出光区1221采用球形面。
应理解,在本申请实施例中,并不具体限定第一反射区1212和透光区1211的比例,以及第二反射区1222和出光区1221的比例。在具体设置上述区域时,其比例关系只需可实现图5所示光线路径即可。
如图6所示,图6示出了本申请实施例提供的第二透镜22的结构示意图。第二镜头20的作用是对第一镜头汇聚过来的成像光线进一步汇聚,调整成像焦距,减少色差、畸变和像差,对成像质量进行调整和改善,减小各个视场下的视场弯曲,保证图像信号处理器上成像质量。下面结合图6详细说明第二镜头20的结构。
第二镜头20包括第二透镜22及第二镜筒21。其中,第二镜筒21作为第二透镜22的支撑结构,在装配时,第二透镜22可固定在第二镜筒21内。另外,第二镜筒21的两端开口,以便于光线可穿透第二镜筒21内的腔体。
第二镜筒21的材质可以采用塑胶或其他易成型材料,在本申请实施例中不做具体限定。
第二透镜22的材料为光学白料塑胶材料,或者光学玻璃材料等常见的透镜材料,在本申请实施例中不做具体限定。
参考图7,图7示出了图6中B-B处的剖视图。第二镜筒21内的腔体为阶梯腔体。为方便描述,定义了第二镜筒21的两个端部,分别为第三端和第四端,其中,第三端为靠近第二镜筒21靠近物侧的一端,第四端为第二镜筒21靠近像侧的一端(即靠近图像信号处理器的一端)。第二镜筒21内的内侧壁沿第三端指向第四端的方向,呈阶梯变化,且尺寸逐渐增大,从而形成阶梯变化的腔体。
作为一个可选的方案,第二透镜22可通过过盈配合与第二镜筒21的侧壁固定连接;或者第二透镜22的侧壁通过粘接胶与第二镜筒21的侧壁粘接连接。
作为一个可选的方案,第二透镜22的个数为四个,且四个第二透镜22沿光轴排布在第二镜筒21中,四个透镜可根据需要选择球面镜或者非球面镜。在具体设置时,四个透镜只需可实现调焦即可,对于每个透镜的具体结构以及尺寸在本申请实施例中不做具体限定。应理解,图7中所示的四个第二透镜22仅为一个具体的示例,本申请实施例提供的第二透镜22的个数不仅限于图7中所示的四个,还可选用其他个数的第二透镜22,如两个、三个、五个、六个等任意个数的透镜。只需要各个第二透镜22在组合后,可实现调整成像焦距,减少色差、畸变和像差,对成像质量进行调整和改善,减小各个视场下的视场弯曲的效果即可。
作为一个可选的方案,第二镜头20还包括垫片23,该垫片23用于调整第二透镜22之间的间距。垫片23可设置在不同的第二透镜22之间,从而可根据实际的需要调整垫片23的厚度,在此不做具体限定。
作为一个可选的方案,第二镜筒21采用圆筒形结构,以降低第二镜头20占用的空间。应理解,图7中示例的镜筒仅为一个示例,在具体设置第二镜筒21时,还可采用其他的形状,如椭圆筒、方形筒等不同的形状的结构。
参考图8,图8示出了第一镜头和第二镜头配合的示意图。在图8中仅示出了第一透镜P1、第二透镜P2、第二透镜P3、第二透镜P4及第二透镜P5、滤光片(图中未标示)以及图像信号处理器(图中未标示)。光线在传播时,从第一透镜P1的入光侧表面入射,并经第二反射区和第一反射区反射后,从第一透镜P1的出光侧表面射出,射出后的光线依次镜头第二透镜P2、第二透镜P3、第二透镜P4及第二透镜P5,并经过上述第二透镜调 整成像焦距、减少色差、畸变和像差,对成像质量进行调整和改善,减小各个视场下的视场弯曲。之后光线经过滤光片后在图像信号处理器上成像。由图8可看出,在第一镜头采用可折返光线路径的第一透镜时,镜头模组的长度可以缩短,另外,最大限度得缩小了体积、重量,同时也降低了成本。
参考图9,图9示出了本申请实施例提供的镜头模组100的结构应用示意图,图9中的部分部件的标号可参考图2中的相同部件的标号。在镜头模组100应用到摄像模组中时,镜头模组100固定在摄像模组内。如图9所示,镜头模组100的支架30位于摄像模组的壳体200内,摄像模组还包括电路板300,设置在电路板300上的图像信号处理器400,图像信号处理器400、第二镜头20和第一镜头10沿光轴排列。在拍摄时,光线可依次穿过第一透镜、第二透镜后照射到图像信号处理器400,并通过图像信号处理器400将光信号转换成电信号。
由图9可看出,在本申请实施例提供的镜头模组100采用第一透镜折返光线后,使得光路折返,从而使得直立式镜头模组100也可应用于摄像模组中,并可极大的降低摄像模组的尺寸。
参考图10,图10示出了本申请实施例提供的另一镜头模组100的结构示意图,图10中的部分部件的标号可参考图2中的相同部件的标号。
图10所示的镜头模组100包括支架30、第一镜头10和第二镜头20,图10中的部分部件可参考图2中的相同标号。图10所示的镜头模组100与图2中所述的第一镜头10及第二镜头20的区别在于透镜的设置方式。
图11示出了第一镜头10的剖视图。第一镜头10包括第一镜筒11以及第一透镜12,第一镜筒11和第一透镜12可参考上述的相应描述。第一镜头10还包括第一镜筒11,第一透镜12固定在第一镜筒11内,第一镜头10还包括至少一个第三透镜14,第一透镜12、至少一个第三透镜14沿光轴排列,且至少一个第三透镜14位于第一透镜12的像侧。上至少一个第三透镜14为调焦透镜,在图10中示例出第三透镜14的个数为三个,但本申请实施例中的第三透镜14的个数在此不做具体限定。
作为一个可选的方案,第一镜头10还包括垫片,通过垫片可调整第三透镜14之间的间距,垫片的厚度可根据实际需要设定。
图12示出了,第二镜头20的剖视图。第二镜头20包括第二镜筒21以及第二透镜22。第二透镜22的个数为一个,且一个第二透镜22固定在第二镜筒21内。上述的第三透镜和第二透镜22共同作用组成调整成像焦距,减少色差、畸变和像差,对成像质量进行调整和改善,减小各个视场下的视场弯曲,保证图像信号处理器上成像质量的透镜组。上述四个透镜可根据需要选择球面镜或者非球面镜。在具体设置时,四个透镜只需可实现调焦即可,对于每个透镜的具体结构以及尺寸在本申请实施例中不做具体限定。
参考图13,图13示出了本申请实施例提供的镜头模组100的结构应用示意图,图13中的部分部件的标号可参考图2中的相同部件的标号。在镜头模组100应用到摄像模组中时,镜头模组100固定在摄像模组内。如图13所示,镜头模组100的支架30位于摄像模组的壳体200内,摄像模组还包括电路板300,设置在电路板300上的图像信号处理器400,图像信号处理器400、第二镜头20和第一镜头10沿光轴排列。在拍摄时,光线可依次穿过第一透镜、第二透镜后照射到图像信号处理器400,并通过图像信号处理器400将光信号转换成电信号。
由图13可看出,在本申请实施例提供的镜头模组采用第一透镜折返光线后,镜头模组的长度可以缩短,另外,最大限度得缩小了体积、重量,同时也降低了成本。
参考图14,图14示出了本申请实施例提供的一种摄像模组的结构示意图。图14中的部分标号可参考图13中的相同标号。摄像模组包括底座800以及与底座800连接的上述任一项的镜头模组100。
第二镜头20与支架30固定连接,第一镜头10通过第一弹性件600与支架30连接。第一镜头10和第二镜头20套装在支架30内,第一镜头10通过两个或两个以上的第一弹性件600与支架30连接,第二镜头20与支架30固定连接。在上述结构中,通过第一弹性件600发生的弹性形变可使得第一透镜沿光轴运动,从而调整第一镜头10与第二镜头20的相对位置,进而实现调焦。
在具体驱动第一镜头10运动时,可选择不同的驱动机构实现。该驱动机构用于驱动第一镜头10运动,以实现调焦。示例性的,驱动机构可为AF驱动马达。
为方便面描述将第一镜头10命名为G1镜头,第二镜头20命名为G2镜头。AF驱动马达的作用是通电马达后移动G1镜头或G2镜头来实现的对焦,在图像信号处理器上清晰成像。在图14中仅示例出G1镜头可移动,本申请实施例提供的摄像模组还可采用G1镜头固定,G2镜头通过弹性件与支架30连接。即G1镜头和G2镜头中至少一个镜头可移动即可实现调焦。
在驱动时,AF驱动马达根据霍尔传感器信号、驱动芯片或陀螺仪信号来计算镜头移动的距离,驱动芯片会根据一定的算法来计算G1镜头和G2的相对位置,实现清晰成像。作为一个可选的方案,AF驱动马达可以采用音圈马达、压电马达或者形状记忆合金丝来实现。应理解达根据霍尔传感器信号、驱动IC或陀螺仪信号来驱动第一镜头10的方式为比较常见的驱动方式,在此不再赘述。
本申请实施例提供的镜头模组100还具有防抖功能。如图14所示,底座800通过第三弹性件500与支架30连接,摄像模组还包括补偿镜头模组100抖动的防抖马达700,通过第三弹性件500配合防抖马达700的配合改摄像模组的防抖效果。其中第三弹性件500可为弹簧或者悬丝,并通过第三弹性件500使得镜头模组100形成一个悬浮的弹性结构。应理解在图14中虽然示出了两个第三弹性件500,但是在本申请实施例中,可设置多个第三弹性件500,如两个、三个、四个等不同个数的第三弹性件500,只需可支撑支架30即可。
防抖马达700可采用OIS(Optical image stabilization,光学影像防抖)马达,OIS马达是通过支架30底部的磁铁(图中未示出)产生的磁场和底座800上的电磁铁通电产生的洛伦兹力推动第三弹性件500来产生位移,实现整体镜头组移动防抖。当摄像模组内的陀螺仪侦测到镜头微小的移动后,并且会将信号传至微处理器,微处理器根据抖动方向及位移,立即计算需要补偿的位移量,然后通过OIS马达带动G1镜头和G2镜头移动来补偿偏移量,从而有效的克服因相机的振动产生的影像模糊。OIS马达可以是音圈马达、压电马达或者形状记忆合金的形式,来实现防抖位移补偿。上述防抖马达700的结构以及工作原理为比较常见的驱动方式,在此不再赘述。
长焦拍摄的摄像模组要求较高的对焦位置精度,G1镜头的驱动马达需要用霍尔传感器来感测镜头位置,实施闭环控制,同时需要利用模组上的陀螺仪信号来感测运动状态,经过软件算法计算来补偿抖动量,实现OIS防抖。
通过上述描述可看出,该摄像模组利用G1镜头轴向移动进行AF(Auto Focus,自动对焦)对焦,实现良好的近物距(如1.0米到无穷远距离的成像)成像效果。G2镜头和支架30固定,不需要做光轴方向的移动,拍摄时G1镜头在AF马达的驱动下实现对焦成像,摄像模组结构相对简单,控制方式容易实现,成本上面具有优势。
镜头模组通过2个镜头组合搭配实现对焦,可以在手机模组上实现5倍以上的长焦拍摄效果。为方便理解本申请实施例提供的摄像模组的效果,对其进行仿真,仿真结果如图15所示,由图15可看出,采用图14所示的摄像模组进行仿真时,成像效果MTF值0.8视场已经达到55,视场弯曲明显改善。
另外,OIS马达和AF驱动马达可分别控制,提高了控制效果。
参考图16,图16示出了另一种摄像模组的结构示意图。图16中的部分部件可参考图14中的相同标号。在图16中所示的摄像模组中,第一镜头10和第二镜头20均采用悬浮的方式与支架30连接。具体的,第一镜头10通过第一弹性件600与支架30连接;第二镜头20通过第二弹性件900与支架30连接。
为方便面描述将第一镜头10命名为G1镜头,第二镜头20命名为G2镜头。本实施例是通过弹性件分别把G1镜头和G2镜头悬挂在支架30上,使得G1镜头和G2镜头都可以移动,拍摄远处的景物时通过算法计算出G1镜头和G2镜头的最佳搭配距离来成像对焦,达成更高质量的成像效果,同样可以降低不同视场下的像场弯曲,提高画面成像质量的对焦方式。在这种架构下G1镜头和G2镜头是由单独的音圈马达或者其他马达(形状记忆合金丝或者压电马达)驱动,沿着光轴运动。
OIS马达是通过支架30底部的磁铁产生的磁场和底座上的coil通电产生的洛伦兹力推动4根或多跟弹簧、悬丝来产生位移,实现整体镜头组移动防抖。
G2镜头和G1镜头都用马达推动产生位移,G1镜头和G2镜头用2个独立的控制马达闭环控制,拍照时通过对焦算法,让G1镜头和G2镜头沿着光轴分别调整对焦距离,共同作用搭配组合实施AF功能,比如,G1镜头AF做粗对焦,G2镜头进行轴向AF移动做细对焦,可以减少光学元件对马达位置精度的要求,更容易实现良好的近物距(实现1.0米到无穷远距离的成像)成像效果。
另外,采用两个弹性件,降低了装配复杂的工艺组装难度,易于量产化。同时,G1镜头、G2镜头采用弹性件与支架30连接,更容易实现位移,响应速度也比较快。
参考图17,图17示出了另一种具体的支架30与第一镜头10和第二镜头20的配合示意图。图17中的部分部件可参考图14中的相同标号。在图17中所示的摄像模组中,第一镜头10和第二镜头20均采用悬浮的方式与支架30连接。与图14中所示的摄像模组的区别在于,第一镜头10和第二镜头20在与支架30连接时,支架30内设置有沿光轴1000方向延伸的轴1000,第一镜头10和第二镜头20分别滑动装配在轴1000上。拍摄远处的景物时通过算法计算出G1镜头和G2镜头的最佳搭配距离来成像对焦,达成更高质量的成像效果,可以降低不同视场下的像场弯曲,提高画面成像质量的对焦方式。在这种架构下G1镜头和G2镜头是由单独的音圈马达或者其他马达(SMA或者压电马达)驱动,沿着光轴1000运动。
防抖马达700和图14和图16所示的摄像模组相同,是通过支架30底部的磁铁产生的磁场和底座800上的电磁铁通电产生的洛伦兹力推动4根或多跟弹簧、悬丝来产生位移,实现整体镜头组移动防抖。
本实施例是在直立式折返架构基础上的进一步优化,让G1镜头和G2镜头用2个独立的控制马达闭环控制,拍照时通过对焦算法,让G1镜头和G2镜头沿着光轴分别调整对焦距离,共同作用搭配组合实施AF功能,比如,G1镜头AF做粗对焦,G2镜头进行轴向AF移动做细对焦,可以减少光学元件对马达位置精度的要求,更容易实现良好的近物距成像效果。
另外,G1镜头和G2镜头都参与对焦,减少了镜头位置硬件检测重复性精度的要求,现有的霍尔传感器硬件检测电路容易实现;不依赖于更高难度的TMR等高精度位置检测元件;
G1镜头和G2镜头都参与对焦的情况下,各个视场下的成像效果将得到很大提升,特别是视场弯曲将得到很大程度的改善。
G1镜头和G2穿在滑轴上移动实现对焦,可以有效的消除偏心,光轴偏移得到有效消除。
参考图18,图18示出了另一种具体的支架30与第一镜头10和第二镜头20的配合示意图。图18中的部分部件可参考图14中的相同标号。在图18中所示的摄像模组中,第一镜头10和第二镜头20均采用滚珠马达与支架30连接。滚珠马达包括设置在支架上的滑槽,该滑槽的长度方向平行于光轴。滚动装配在第一镜头10和第二镜头20的滚珠2000,该滚珠2000可在滑槽内滚动,还包括设置在支架内的电磁铁,以及设置在第一镜头和第二镜头内的永磁体。通过电磁铁与永磁体的作用驱动第一镜头10和第二镜20头沿光轴移动,并通过滚珠2000与滑槽的配合限定第一镜头和第二镜头的运动方向。
在拍摄远处的景物时通过算法计算出G1镜头和G2镜头的最佳搭配距离来成像对焦,达成更高质量的成像效果,可以降低不同视场下的像场弯曲,提高画面成像质量的对焦方式。
防抖马达700和图14和图16所示的摄像模组相同,是通过支架30底部的磁铁产生的磁场和底座800上的电磁铁通电产生的洛伦兹力推动4根或多跟弹簧、悬丝来产生位移,实现整体镜头组移动防抖。
本实施例是在直立式折返架构基础上的进一步优化,让G1镜头和G2镜头用2个独立的控制马达闭环控制,拍照时通过对焦算法,让G1镜头和G2镜头沿着滑槽分别调整对焦距离,共同作用搭配组合实施AF功能,比如,G1镜头AF做粗对焦,G2镜头进行轴向AF移动做细对焦,可以减少光学元件对马达位置精度的要求,更容易实现良好的近物距成像效果。
另外,G1镜头和G2镜头都参与对焦,减少了镜头位置硬件检测重复性精度的要求,现有的霍尔传感器硬件检测电路容易实现;不依赖于更高难度的TMR等高精度位置检测元件;
G1镜头和G2镜头都参与对焦的情况下,各个视场下的成像效果将得到很大提升,特别是视场弯曲将得到很大程度的改善。
G1镜头和G2穿在滑轴上移动实现对焦,可以有效的消除偏心,光轴偏移得到有效消除。
通过上述描述可看出,在本申请实施例中,可采用不同的调焦结构实现镜头模组的调焦。另外,通过第三弹性件将镜头模组与摄像模组连接,再与防抖马达的配合,实现了防抖效果。
本申请实施例还供了一种终端,该终端可以为手机、平板电脑、笔记本电脑等常见的终端。但是无论采用上述哪一个终端,其均包括壳体以及设置在所述壳体内的上述任一项所述的摄像模组。在上述技术方案中,通过第一透镜实现折返光路,从而实现长焦镜头的效果,另外,由于光路进行折返,从而可采用较小尺寸的直立式镜头模组,降低了摄像模组的尺寸,使得摄像模组可适应终端的薄型化发展。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种镜头模组,其特征在于,包括:沿光轴排列的第一镜头及第二镜头,其中,所述第一镜头靠近物侧,所述第二镜头靠近像侧;
    所述第一镜头包括第一透镜,所述第一透镜的入光侧表面包括透光区和第一反射区;所述第一透镜的出光侧表面包括第二反射区和出光区;其中,所述第一反射区和第二反射区用于折返从所述透光区射入到所述第一透镜内的光线;
    所述第二镜头包括至少一个第二透镜,所述至少一个第二透镜与所述第一透镜沿所述光轴排列,所述至少一个第二透镜为调焦透镜。
  2. 如权利要求1所述的镜头模组,其特征在于,所述第一反射区位于所述入光侧表面的中心位置,所述透光区环绕所述第一反射区;
    所述出光区位于所述出光侧表面的中心位置,所述第二反射区环绕所述出光区设置。
  3. 如权利要求2所述的镜头模组,其特征在于,所述透光区为平面;所述第一反射区为内凹的球形区。
  4. 如权利要求2或3所述的镜头模组,其特征在于,所述出光侧表面为外凸的球形面。
  5. 如权利要求1~4任一项所述的镜头模组,其特征在于,所述第一反射区和所述第二反射区分别贴附有反射膜层。
  6. 如权利要求1~5任一项所述的镜头模组,其特征在于,所述第一镜头还包括第一镜筒,所述第一透镜固定在所述第一镜筒内;
    所述第二镜头还包括第二镜筒,所述第二透镜的个数为多个,所述多个第二透镜沿所述光轴排列并固定在所述第二镜筒内。
  7. 如权利要求1~5任一项所述的镜头模组,其特征在于,所述第一镜头还包括第一镜筒,所述第一透镜固定在所述第一镜筒内,所述第一镜头还包括固定在所述第一镜筒内的至少一个第三透镜,所述至少一个第三透镜为调焦透镜;
    所述第二镜头还包括第二镜筒,所述第二透镜的个数为一个,且所述一个第二透镜固定在所述第二镜筒内。
  8. 如权利要求1~7任一项所述的镜头模组,其特征在于,还包括支架,所述第一镜头和所述第二镜头中,至少一个镜头可相对所述支架沿所述光轴方向滑动。
  9. 如权利要求8所述的镜头模组,其特征在于,所述第二镜头与所述支架固定连接,所述第一镜头通过第一弹性件与所述支架连接。
  10. 如权利要求8所述的镜头模组,其特征在于,所述第一镜头通过第一弹性件与所述支架连接;
    所述第二镜头通过第二弹性件与所述支架连接。
  11. 如权利要求8所述的镜头模组,其特征在于,所述支架内设置有沿所述光轴方向延伸的轴;所述第一镜头和所述第二镜头分别滑动装配在所述轴上。
  12. 一种摄像模组,其特征在于,包括底座以及与所述底座连接的如权利要求1~11任一项所述的镜头模组。
  13. 如权利要求12所述的摄像模组,其特征在于,所述底座通过所述第三弹性件与所述支架连接;
    所述摄像模组还包括补偿所述镜头模组抖动的防抖马达。
  14. 一种终端,其特征在于,包括壳体以及设置子所述壳体的如权利要求12或13所述的摄像模组。
PCT/CN2021/109802 2020-08-31 2021-07-30 一种镜头模组、摄像模组及终端 WO2022042209A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21860049.2A EP4206778A4 (en) 2020-08-31 2021-07-30 CAMERA MODULE, PHOTOGRAPHY MODULE AND TERMINAL DEVICE
JP2023513586A JP2023539266A (ja) 2020-08-31 2021-07-30 レンズモジュール、カメラモジュール、及び端末
KR1020237010166A KR20230058111A (ko) 2020-08-31 2021-07-30 카메라 모듈, 촬영 모듈 및 단말
US18/174,696 US20230221537A1 (en) 2020-08-31 2023-02-27 Lens module, camera module, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010901470 2020-08-31
CN202010901470.0 2020-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/174,696 Continuation US20230221537A1 (en) 2020-08-31 2023-02-27 Lens module, camera module, and terminal

Publications (1)

Publication Number Publication Date
WO2022042209A1 true WO2022042209A1 (zh) 2022-03-03

Family

ID=80352650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109802 WO2022042209A1 (zh) 2020-08-31 2021-07-30 一种镜头模组、摄像模组及终端

Country Status (6)

Country Link
US (1) US20230221537A1 (zh)
EP (1) EP4206778A4 (zh)
JP (1) JP2023539266A (zh)
KR (1) KR20230058111A (zh)
CN (1) CN114114595B (zh)
WO (1) WO2022042209A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116794791A (zh) * 2022-03-17 2023-09-22 华为技术有限公司 镜头组件、摄像模组以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150070483A1 (en) * 2013-09-09 2015-03-12 Bio-Rad Laboratories, Inc., LSG-LSD Division Double Fold Optics
CN109194859A (zh) * 2018-10-31 2019-01-11 维沃移动通信(杭州)有限公司 一种摄像头及终端设备
CN109239889A (zh) * 2018-09-28 2019-01-18 高新兴科技集团股份有限公司 摄像机镜头、成像方法和摄像机
CN110888216A (zh) * 2019-11-04 2020-03-17 华为技术有限公司 光学镜头、镜头模组以及终端
WO2020164406A1 (zh) * 2019-02-11 2020-08-20 华为技术有限公司 变焦组件、镜头模组及电子设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2177424C (en) * 1995-06-06 2001-02-13 Bruce A. Cameron Solid catadioptric lens
JPH11316343A (ja) * 1998-05-01 1999-11-16 Nikon Corp カタディオプトリックレンズ
JP4642646B2 (ja) * 2005-12-12 2011-03-02 三菱電機株式会社 レンズユニット及び撮像装置
US8434914B2 (en) * 2009-12-11 2013-05-07 Osram Sylvania Inc. Lens generating a batwing-shaped beam distribution, and method therefor
JP6308208B2 (ja) * 2013-02-26 2018-04-11 コニカミノルタ株式会社 撮像レンズ及び撮像装置
US9372352B2 (en) * 2013-08-23 2016-06-21 Samsung Electro-Mechanics Co., Ltd. Lens driving device and camera module including the same
CN103969800B (zh) * 2014-03-26 2017-03-22 中国计量学院 一种长焦型全景环形成像镜头
KR101724270B1 (ko) * 2014-12-11 2017-04-18 (주)씨앤오 전장이 짧은 홍채인식용 광학계
KR20160091085A (ko) * 2015-01-23 2016-08-02 삼성전자주식회사 반사 굴절 광학계 및 이미지 촬영 장치
CN106908936A (zh) * 2015-12-22 2017-06-30 博立码杰通讯(深圳)有限公司 一种全景光学镜头及影像采集装置
CN105737100A (zh) * 2016-04-27 2016-07-06 成都恒坤光电科技有限公司 一种多层全反射鳞片透镜及灯具和光学系统
JP6917000B2 (ja) * 2016-12-28 2021-08-11 株式会社タムロン 反射屈折光学系及び撮像装置
CN109031592B (zh) * 2018-07-26 2020-12-08 华为技术有限公司 摄像镜头、摄像模组及终端
CN110824653B (zh) * 2018-08-14 2021-08-06 宁波舜宇光电信息有限公司 光学镜头、摄像模组及其组装方法
CN110515189A (zh) * 2019-09-27 2019-11-29 Oppo广东移动通信有限公司 离轴折反式摄像头和电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150070483A1 (en) * 2013-09-09 2015-03-12 Bio-Rad Laboratories, Inc., LSG-LSD Division Double Fold Optics
CN109239889A (zh) * 2018-09-28 2019-01-18 高新兴科技集团股份有限公司 摄像机镜头、成像方法和摄像机
CN109194859A (zh) * 2018-10-31 2019-01-11 维沃移动通信(杭州)有限公司 一种摄像头及终端设备
WO2020164406A1 (zh) * 2019-02-11 2020-08-20 华为技术有限公司 变焦组件、镜头模组及电子设备
CN110888216A (zh) * 2019-11-04 2020-03-17 华为技术有限公司 光学镜头、镜头模组以及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206778A4 *

Also Published As

Publication number Publication date
EP4206778A1 (en) 2023-07-05
CN114114595A (zh) 2022-03-01
EP4206778A4 (en) 2024-03-27
US20230221537A1 (en) 2023-07-13
CN114114595B (zh) 2024-04-16
KR20230058111A (ko) 2023-05-02
JP2023539266A (ja) 2023-09-13

Similar Documents

Publication Publication Date Title
US11808925B2 (en) Auto focus and optical image stabilization in a compact folded camera
CN111103699B (zh) 带手抖校正功能的摄像装置
WO2021104017A1 (zh) 摄像头模组及电子设备
CN211206941U (zh) 潜望式光学模块以及光学系统
WO2021213216A1 (zh) 潜望式摄像模组、多摄摄像模组和摄像模组的组装方法
CN110646932B (zh) 反射式摄像头和电子装置
KR20180086762A (ko) 와이어를 이용한 ois용 반사계 구동장치
WO2022042209A1 (zh) 一种镜头模组、摄像模组及终端
CN215297800U (zh) 镜头模组及电子设备
CN114079710A (zh) 潜望式连续光变摄像模组及相应的电子设备
CN111953895B (zh) 可对焦成像装置
WO2024114616A1 (zh) 音圈马达、光学防抖组件、摄像模组及电子设备
JP2023522418A (ja) カメラモジュール及び移動端末機
JP2023037439A (ja) 光学系、及びカメラモジュール
CN117528218A (zh) 防抖组件、摄像头模组及其防抖方法、电子设备
CN117031686A (zh) 光学影像撷取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023513586

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237010166

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021860049

Country of ref document: EP

Effective date: 20230331