WO2022042166A1 - 一种具有光学衍射层析成像功能的激光加工系统 - Google Patents

一种具有光学衍射层析成像功能的激光加工系统 Download PDF

Info

Publication number
WO2022042166A1
WO2022042166A1 PCT/CN2021/108374 CN2021108374W WO2022042166A1 WO 2022042166 A1 WO2022042166 A1 WO 2022042166A1 CN 2021108374 W CN2021108374 W CN 2021108374W WO 2022042166 A1 WO2022042166 A1 WO 2022042166A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
processing system
optical path
imaging
processing
Prior art date
Application number
PCT/CN2021/108374
Other languages
English (en)
French (fr)
Inventor
贾宝华
姚涛
Original Assignee
伊诺福科光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊诺福科光学技术有限公司 filed Critical 伊诺福科光学技术有限公司
Priority to US18/042,999 priority Critical patent/US20230356324A1/en
Publication of WO2022042166A1 publication Critical patent/WO2022042166A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • G01N21/453Holographic interferometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02011Interferometers characterised by controlling or generating intrinsic radiation properties using temporal polarization variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02049Interferometers characterised by particular mechanical design details
    • G01B9/02051Integrated design, e.g. on-chip or monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/021Interferometers using holographic techniques
    • G01B9/027Interferometers using holographic techniques in real time
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Definitions

  • the present invention relates to the technical field of semiconductor processing, and more particularly, to a laser processing system with optical diffraction tomography function.
  • Laser processing technology is a processing technology for cutting, welding, surface treatment, drilling and micro-machining of materials (including metals and non-metals) by using the characteristics of the interaction between laser beams and substances.
  • laser processing technology has been widely used in important parts of the national economy such as automobiles, electronics, electrical appliances, aviation, metallurgy and machinery manufacturing. increasingly important role.
  • the present invention provides a laser processing system with optical diffraction tomography function, and the technical scheme is as follows:
  • a laser processing system with optical diffraction tomography imaging function comprises: an imaging optical path and a processing optical path set integrally;
  • the imaging optical path is used for optical diffraction tomography imaging of the device to be processed
  • the processing optical path is used for processing the device to be processed.
  • the imaging optical path includes: a first laser, a first polarized beam splitter prism, a dual-axis scanning galvanometer, a first objective lens, a second objective lens, and a non-polarized flat beam splitter;
  • the device to be processed is located between the first objective lens and the second objective lens;
  • the first laser is used for emitting imaging laser light
  • the first polarized beam splitting prism is used for dividing the imaging laser light into signal light and reference light;
  • the dual-axis scanning galvanometer is used for two-dimensional scanning of the signal light to form a scanning beam, and the scanning beam is focused on the back focal plane of the first objective lens to illuminate the device to be processed in different directions ;
  • the second objective lens is used for collecting the transmitted light signal passing through the device to be processed
  • the non-polarized flat beam splitter is used to combine the reference light and the transmitted light signal to form an off-axis hologram at a certain off-axis angle, and the off-axis hologram is photographed by an image acquisition device deal with.
  • the imaging optical path further includes:
  • the rotating polarizer is used to adjust the total light intensity of the imaging laser
  • the half-wave plate is used to adjust the spectral ratio of the imaging laser.
  • the imaging optical path further includes:
  • the first optical fiber is used for transmitting the signal light
  • the first collimating lens is used for collimating the signal light.
  • the imaging optical path further includes:
  • a second collimating lens arranged between the dual-axis scanning galvanometer and the first objective lens
  • the second collimating lens is used for collimating the scanning beam.
  • the imaging optical path further includes:
  • a third collimating lens disposed between the second objective lens and the non-polarized flat beam splitter;
  • the third collimating lens is used for collimating the transmitted light signal.
  • the imaging optical path further includes:
  • a second optical fiber and a fourth collimating lens sequentially arranged between the first polarized beam splitter prism and the non-polarized flat beam splitter;
  • the second optical fiber is used to transmit the reference light
  • the fourth collimating lens is used for collimating the reference light.
  • the first laser is a single longitudinal mode continuous laser.
  • an anti-reflection film is further provided on the non-polarized flat beam splitter.
  • the processing optical path includes: a second laser, a laser power adjustment device, a beam expander, and a dichroic mirror;
  • the second laser is used for emitting processing laser light
  • the laser power adjusting device is used to adjust the power of the processing laser
  • the beam expanding device is used for beam expanding processing on the processing laser
  • the dichroic mirror is used for reflecting the expanded processing laser to the second objective lens
  • the second objective lens is also used for focusing the beam-expanded processing laser on the device to be processed.
  • the laser power adjustment device includes:
  • a second half-wave plate and a second polarizing beam splitting prism are sequentially arranged on the exit light path of the second laser.
  • the beam expanding device includes:
  • a fifth collimating lens, a diaphragm and a sixth collimating lens are sequentially arranged between the second polarizing beam splitting prism and the dichroic mirror.
  • the diaphragm is located on the focal plane of the fifth collimating lens and the sixth collimating lens.
  • the second laser is a femtosecond pulsed laser.
  • the dichroic mirror performs reflection processing on the processing laser light, and performs high-transmission filtering processing on the transmitted light signal.
  • a laser processing system with optical diffraction tomography function includes: an imaging optical path and a processing optical path which are set integrally; the imaging optical path is used for performing optical diffraction tomography imaging on a device to be processed; the processing optical path for processing the device to be processed.
  • the laser processing system can also perform real-time imaging of the device to be processed without shifting the device to be processed. At the same time, laser processing and imaging processing of the device to be processed are realized.
  • FIG. 1 is a schematic structural diagram of a laser processing system with an optical diffraction tomography function provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another laser processing system with an optical diffraction tomography function provided by an embodiment of the present invention.
  • An embodiment of the present invention provides a laser processing system with an optical diffraction tomography function.
  • the laser processing system includes: an imaging optical path and a processing optical path that are set integrally.
  • the imaging optical path is used for optical diffraction tomography imaging of the device to be processed.
  • the processing optical path is used for processing the device to be processed.
  • the laser processing system in the process of processing the device to be processed, can also perform real-time imaging of the device to be processed without shifting the device to be processed, that is, in a set of laser In the processing system, the laser processing and imaging processing of the device to be processed can be realized at the same time.
  • FIG. 1 is a schematic structural diagram of a laser processing system with an optical diffraction tomography function according to an embodiment of the present invention.
  • the imaging optical path includes: a first laser 11 , a first polarized beam splitter prism PBS1 , a dual-axis scanning galvanometer 14 , a first objective lens OBJ1 , a second objective lens OBJ2 and a non-polarized flat beam splitter BS.
  • the device to be processed 15 is located between the first objective lens OBJ1 and the second objective lens OBJ2.
  • the first laser 11 is used for emitting imaging laser light.
  • the first polarization beam splitter prism PBS1 is used for dividing the imaging laser light into signal light and reference light.
  • the dual-axis scanning galvanometer 14 is used for two-dimensional scanning of the signal light to form a scanning beam, and the scanning beam is focused on the back focal plane of the first objective lens OBJ1 to irradiate the to-be-to-be in different directions.
  • Process device 15 Process device 15 .
  • the second objective lens OBJ2 is used to collect the transmitted light signal passing through the device to be processed 15 .
  • the non-polarized flat beam splitter BS is used to combine the reference light and the transmitted light signal to form an off-axis hologram at a certain off-axis angle. Take the shot.
  • the to-be-processed device 15 is placed on a carrying table, which is not shown in the figure, and the relative positional relationship is between the first objective lens OBJ1 and the second objective lens OBJ2 .
  • the imaging laser light is divided into signal light and reference light by the first polarization beam splitter prism PBS1 , the signal light is used for imaging, and the reference light is used for holographic imaging.
  • the signal light is scanned two-dimensionally, and the scanning beam is focused on the back focal plane of the first objective lens OBJ1, thereby realizing irradiation of the device to be processed 15 in different directions.
  • the second objective lens OBJ2 collects the transmitted light signal transmitted through the device 15 to be processed, and transmits the transmitted light signal to the non-polarized flat beam splitter BS.
  • the transmitted light signal and the reference light are combined to form an off-axis hologram at a certain off-axis angle, and the off-axis hologram is photographed by the image acquisition device 17 .
  • the three-dimensional refractive index distribution of the device to be processed can be obtained by performing a series of operations such as de-holography, Rytov approximation, spectrum splicing and filtering on the scattered light field holograms captured at different angles.
  • the imaging optical path further includes:
  • the rotating polarizer 12 and the first half-wave plate 13 are sequentially arranged between the first laser 11 and the first polarization beam splitter prism PBS1.
  • the rotating polarizer 12 is used to adjust the total light intensity of the imaging laser.
  • the half-wave plate 13 is used to adjust the spectral ratio of the imaging laser.
  • the rotating polarizer 12 and the first half-wave plate 13 are sequentially arranged on the laser output optical path of the first laser 11, and are mainly used to adjust the light intensity of the imaging laser.
  • the imaging optical path further includes:
  • the first optical fiber SMF1 and the first collimating lens L1 are sequentially arranged between the first polarization beam splitter prism PBS1 and the dual-axis scanning galvanometer 14 .
  • the first optical fiber SMF1 is used for transmitting the signal light.
  • the first collimating lens L1 is used for collimating the signal light.
  • the beam quality can also be improved.
  • the imaging optical path further includes:
  • a second collimating lens L2 is provided between the dual-axis scanning galvanometer 14 and the first objective lens OBJ1.
  • the second collimating lens L2 is used for collimating the scanning beam.
  • the scanning beam is collimated in combination with the second collimating lens L2, which can also improve the beam propagation quality in the imaging optical path.
  • the imaging optical path further includes:
  • a third collimating lens L3 is provided between the second objective lens OBJ2 and the non-polarizing plate beam splitter BS.
  • the third collimating lens L3 is used for collimating the transmitted light signal.
  • collimating the transmitted light signal in combination with the third collimating lens L3 can also improve the beam propagation quality in the imaging optical path.
  • the imaging optical path further includes:
  • a second optical fiber SMF2 and a fourth collimating lens L4 are sequentially arranged between the first polarizing beam splitter PBS1 and the non-polarizing plate beam splitter BS.
  • the second optical fiber SMF2 is used to transmit the reference light.
  • the fourth collimating lens L4 is used for collimating the reference light.
  • the beam quality can also be improved.
  • the first laser 11 includes but is not limited to a single longitudinal mode continuous laser.
  • an anti-reflection film is further provided on the non-polarized flat beam splitter BS to improve the light transmittance of the reference light and the signal light.
  • FIG. 2 is a schematic structural diagram of another laser processing system with an optical diffraction tomography imaging function provided by an embodiment of the present invention.
  • the processing optical path includes: a second laser 18 , a laser power adjusting device 21 , a beam expanding device 22 and a dichroic mirror 16 .
  • the second laser 18 is used for emitting processing laser light.
  • the laser power adjusting device 21 is used for adjusting the power of the processing laser.
  • the beam expander 22 is used to expand the beam of the processing laser.
  • the dichroic mirror 16 is used to reflect the expanded processing laser light to the second objective lens OBJ2.
  • the second objective lens OBJ2 is also used to focus the expanded processing laser on the device to be processed 15 .
  • the power of the processing laser is adjusted by the laser power adjusting device 21 , that is, the processing power is adjusted.
  • the processing laser is subjected to beam expansion processing in conjunction with the beam expansion device 22 .
  • the beam-expanded processing laser is reflected by the dichroic mirror 16 , it is focused on the device to be processed 15 by the second objective lens OBJ2 to realize the processing of the device to be processed 15 .
  • the degree of change in the refractive index of the device to be processed under different processing powers can be obtained. laser processing.
  • the laser power adjustment device 21 includes:
  • the second half-wave plate 19 and the second polarizing beam splitter prism PBS2 are sequentially arranged on the outgoing optical path of the second laser 18 .
  • the combination of the second half-wave plate 19 and the second polarizing beam splitter prism PBS2 is used to realize the adjustment of the processing laser power.
  • the beam expander 22 includes:
  • a fifth collimating lens L5 , a diaphragm 20 and a sixth collimating lens L6 are sequentially arranged between the second polarizing beam splitter prism PBS2 and the dichroic mirror 16 .
  • the diaphragm 20 is located on the focal plane of the fifth collimating lens L5 and the sixth collimating lens L6.
  • the diaphragm 20 is used for spatial filtering of the processing laser beam, so that the intensity distribution of the light spot is more uniform.
  • the sixth collimating lens L6 is used in conjunction with the fifth collimating lens L5 to collimate the light beam focused through the diaphragm 20 to convert the condensed light beam into a parallel light beam.
  • the second laser 18 includes but is not limited to a femtosecond pulsed laser.
  • the dichroic mirror 16 performs reflection processing on the processing laser light, and performs high-transmission filtering processing on the transmitted light signal.
  • the dichroic mirror 16 selects a band pass, performs high transmittance filtering on the imaging laser (eg, 561 nm imaging laser), and performs high reflection processing on the processing laser (eg, 1030 nm processing laser).
  • the imaging laser eg, 561 nm imaging laser
  • the processing laser eg, 1030 nm processing laser
  • a laser processing system with an optical diffraction tomography imaging function includes: an imaging optical path and a processing optical path that are integrally arranged; the imaging optical path is used for performing optical diffraction tomography imaging on the device to be processed. ; The processing optical path is used for processing the device to be processed. In addition, the specific optical path structure is introduced.
  • the laser processing system can also perform real-time imaging of the device to be processed without shifting the device to be processed. In one set of laser processing system, the laser processing and imaging processing of the device to be processed can be realized at the same time.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Laser Beam Processing (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种具有光学衍射层析成像功能的激光加工系统,包括集一体化设置的成像光路和加工光路。成像光路用于对待加工器件进行光学衍射层析成像;加工光路用于对待加工器件进行加工处理;以及具体的光路结构。该激光加工系统在对待加工器件进行加工的过程中,在不需要对待加工器件进行移位的情况下,还可以对待加工器件进行实时成像,在一套激光加工系统中就可以同时实现对待加工器件的激光加工处理和成像处理。

Description

一种具有光学衍射层析成像功能的激光加工系统
本申请要求于2020年08月27日提交中国专利局、申请号为202010876885.7、发明名称为“一种具有光学衍射层析成像功能的激光加工系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及半导体加工技术领域,更具体地说,涉及一种具有光学衍射层析成像功能的激光加工系统。
背景技术
激光加工技术是利用激光束与物质相互作用的特性,对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工等的一门加工技术。
激光加工技术作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金和机械制造等国民经济重要部分,对提高产品质量、劳动生产率、自动化、无污染和减少材料消耗等方面起到越来越重要的作用。
但是,目前的激光加工领域中加工和成像是在两个光学系统中实现的。
发明内容
有鉴于此,为解决上述问题,本发明提供一种具有光学衍射层析成像功能的激光加工系统,技术方案如下:
一种具有光学衍射层析成像功能的激光加工系统,所述激光加工系统包括:集一体化设置的成像光路和加工光路;
所述成像光路用于对待加工器件进行光学衍射层析成像;
所述加工光路用于对所述待加工器件进行加工处理。
可选的,在上述激光加工系统中,所述成像光路包括:第一激光器、第一偏振分光棱镜、双轴扫描振镜、第一物镜、第二物镜和非偏振平板分束镜;
所述待加工器件位于所述第一物镜和所述第二物镜之间;
所述第一激光器用于出射成像激光;
所述第一偏振分光棱镜用于将所述成像激光分为信号光和参考光;
所述双轴扫描振镜用于对所述信号光进行二维扫描形成扫描光束,所述扫描光束聚焦在所述第一物镜的后焦面上,以在不同方向上照射所述待加工器件;
所述第二物镜用于采集透过所述待加工器件的透射光信号;
所述非偏振平板分束镜用于将所述参考光和所述透射光信号进行合束,在一定离轴角度下形成离轴全息图,通过图像采集设备对所述离轴全息图进行拍摄处理。
可选的,在上述激光加工系统中,所述成像光路还包括:
依次设置在所述第一激光器和所述第一偏振分光棱镜之间的旋转偏振片和第一二分之一波片;
所述旋转偏振片用于调节所述成像激光的总光强;
所述二分之一波片用于调节所述成像激光的分光比。
可选的,在上述激光加工系统中,所述成像光路还包括:
依次设置在所述第一偏振分光棱镜和所述双轴扫描振镜之间的第一光纤和第一准直透镜;
所述第一光钎用于传输所述信号光;
所述第一准直透镜用于对所述信号光进行准直处理。
可选的,在上述激光加工系统中,所述成像光路还包括:
设置在所述双轴扫描振镜和所述第一物镜之间的第二准直透镜;
所述第二准直透镜用于对所述扫描光束进行准直处理。
可选的,在上述激光加工系统中,所述成像光路还包括:
设置在所述第二物镜和所述非偏振平板分束镜之间的第三准直透镜;
所述第三准直透镜用于对所述透射光信号进行准直处理。
可选的,在上述激光加工系统中,所述成像光路还包括:
依次设置在所述第一偏振分光棱镜和所述非偏振平板分束镜之间的第二光纤和第四准直透镜;
所述第二光纤用于传输所述参考光;
所述第四准直透镜用于对所述参考光进行准直处理。
可选的,在上述激光加工系统中,所述第一激光器为单纵模连续激光器。
可选的,在上述激光加工系统中,所述非偏振平板分束镜上还设置有增透膜。
可选的,在上述激光加工系统中,所述加工光路包括:第二激光器、激光功率调节装置、扩束装置和二色镜;
所述第二激光器用于出射加工激光;
所述激光功率调节装置用于对所述加工激光的功率进行调节;
所述扩束装置用于对所述加工激光进行扩束处理;
所述二色镜用于将扩束后的加工激光反射至所述第二物镜;
所述第二物镜还用于将扩束后的加工激光聚焦在所述待加工器件上。
可选的,在上述激光加工系统中,所述激光功率调节装置包括:
依次设置在所述第二激光器出射光路上的第二二分之一波片和第二偏振分光棱镜。
可选的,在上述激光加工系统中,所述扩束装置包括:
依次设置在所述第二偏振分光棱镜和所述二色镜之间的第五准直透镜、光 阑和第六准直透镜。
可选的,在上述激光加工系统中,所述光阑位于所述第五准直透镜和所述第六准直透镜的焦面上。
可选的,在上述激光加工系统中,所述第二激光器为飞秒脉冲激光器。
可选的,在上述激光加工系统中,所述二色镜对所述加工激光进行反射处理,对所述透射光信号进行高透过滤处理。
相较于现有技术,本发明实现的有益效果为:
本发明提供的一种具有光学衍射层析成像功能的激光加工系统包括:集一体化设置的成像光路和加工光路;所述成像光路用于对待加工器件进行光学衍射层析成像;所述加工光路用于对所述待加工器件进行加工处理。
即该激光加工系统在对待加工器件进行加工的过程中,在不需要对待加工器件进行移位的情况下,还可以对待加工器件进行实时成像,也就是说,在一套激光加工系统中就可以同时实现对待加工器件的激光加工处理和成像处理。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的一种具有光学衍射层析成像功能的激光加工系统的结构示意图;
图2为本发明实施例提供的另一种具有光学衍射层析成像功能的激光加工系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中提供了一种具有光学衍射层析成像功能的激光加工系统,所述激光加工系统包括:集一体化设置的成像光路和加工光路。
所述成像光路用于对待加工器件进行光学衍射层析成像。
所述加工光路用于对所述待加工器件进行加工处理。
在该实施例中,该激光加工系统在对待加工器件进行加工的过程中,在不需要对待加工器件进行移位的情况下,还可以对待加工器件进行实时成像,也就是说,在一套激光加工系统中就可以同时实现对待加工器件的激光加工处理和成像处理。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参考图1,图1为本发明实施例提供的一种具有光学衍射层析成像功能的激光加工系统的结构示意图。
所述成像光路包括:第一激光器11、第一偏振分光棱镜PBS1、双轴扫描振镜14、第一物镜OBJ1、第二物镜OBJ2和非偏振平板分束镜BS。
所述待加工器件15位于所述第一物镜OBJ1和所述第二物镜OBJ2之间。
所述第一激光器11用于出射成像激光。
所述第一偏振分光棱镜PBS1用于将所述成像激光分为信号光和参考光。
所述双轴扫描振镜14用于对所述信号光进行二维扫描形成扫描光束,所述扫描光束聚焦在所述第一物镜OBJ1的后焦面上,以在不同方向上照射所述待加工器件15。
所述第二物镜OBJ2用于采集透过所述待加工器件15的透射光信号。
所述非偏振平板分束镜BS用于将所述参考光和所述透射光信号进行合束,在一定离轴角度下形成离轴全息图,通过图像采集设备17对所述离轴全息 图进行拍摄处理。
在该实施例中,所述待加工器件15被放置在承载台上,图中并未示意出该承载台,且相对位置关系在位于所述第一物镜OBJ1和所述第二物镜OBJ2之间。
如图1所示,第一激光器11出射成像激光后,通过第一偏振分光棱镜PBS1将该成像激光分为信号光和参考光,该信号光用于成像,该参考光用于全息成像。
再结合双轴扫描振镜14对所述信号光进行二维扫描,扫描光束聚焦在所述第一物镜OBJ1的后焦面上,实现了对待加工器件15不同方向上的照射。
第二物镜OBJ2对透过所述待加工器件15的透射光信号进行采集,并将该透射光信号输送至非偏振平板分束镜BS。
在非偏振平板分束镜BS处,将透射光信号和参考光进行合束处理,在一定离轴角度下形成离轴全息图,通过图像采集设备17对所述离轴全息图进行拍摄处理。
通过对不同角度下拍摄得到的散射光场全息图进行解全息、Rytov近似、频谱拼接和滤波等一些列操作,即可得到待加工器件的三维折射率分布。
进一步的,基于本发明上述实施例,如图1所示,所述成像光路还包括:
依次设置在所述第一激光器11和所述第一偏振分光棱镜PBS1之间的旋转偏振片12和第一二分之一波片13。
所述旋转偏振片12用于调节所述成像激光的总光强。
所述二分之一波片13用于调节所述成像激光的分光比。
在该实施例中,所述旋转偏振片12和所述第一二分之一波片13,依次设置在所述第一激光器11的激光输出光路上,主要用于调整成像激光的光强。
进一步的,基于本发明上述实施例,如图1所示,所述成像光路还包括:
依次设置在所述第一偏振分光棱镜PBS1和所述双轴扫描振镜14之间的第一光纤SMF1和第一准直透镜L1。
所述第一光钎SMF1用于传输所述信号光。
所述第一准直透镜L1用于对所述信号光进行准直处理。
在该实施例中,包括但不限定于采用第一光纤SMF1对信号光进行传输,并结合第一准直透镜L1对所述信号光进行准直处理,也可以提高光束质量。
进一步的,基于本发明上述实施例,如图1所示,所述成像光路还包括:
设置在所述双轴扫描振镜14和所述第一物镜OBJ1之间的第二准直透镜L2。
所述第二准直透镜L2用于对所述扫描光束进行准直处理。
在该实施例中,结合所述第二准直透镜L2对所述扫描光束进行准直处理,也可提高成像光路中的光束传播质量。
进一步的,基于本发明上述实施例,如图1所示,所述成像光路还包括:
设置在所述第二物镜OBJ2和所述非偏振平板分束镜BS之间的第三准直透镜L3。
所述第三准直透镜L3用于对所述透射光信号进行准直处理。
在该实施例中,结合所述第三准直透镜L3对所述透射光信号进行准直处理,也可提高成像光路中的光束传播质量。
进一步的,基于本发明上述实施例,如图1所示,所述成像光路还包括:
依次设置在所述第一偏振分光棱镜PBS1和所述非偏振平板分束镜BS之间的第二光纤SMF2和第四准直透镜L4。
所述第二光纤SMF2用于传输所述参考光。
所述第四准直透镜L4用于对所述参考光进行准直处理。
在该实施例中,包括但不限定于采用第二光纤SMF2对参考光进行传输,并结合第四准直透镜L4对所述信号光进行准直处理,也可以提高光束质量。
需要说明的是,为了保证信号光和参考光可以同时到达图像采集设备17,那么,在参考光的光路上还需设置延时子光路结构,在本发明实施例中并没有 示例出具体的延时子光路结构。
可选的,所述第一激光器11包括但不限定于单纵模连续激光器。
可选的,所述非偏振平板分束镜BS上还设置有增透膜,以提高参考光和信号光的光透过率。
进一步的,基于本发明上述实施例,参考图2,图2为本发明实施例提供的另一种具有光学衍射层析成像功能的激光加工系统的结构示意图。
所述加工光路包括:第二激光器18、激光功率调节装置21、扩束装置22和二色镜16。
所述第二激光器18用于出射加工激光。
所述激光功率调节装置21用于对所述加工激光的功率进行调节。
所述扩束装置22用于对所述加工激光进行扩束处理。
所述二色镜16用于将扩束后的加工激光反射至所述第二物镜OBJ2。
所述第二物镜OBJ2还用于将扩束后的加工激光聚焦在所述待加工器件15上。
在该实施例中,所述第二激光器18出射加工激光后,通过激光功率调节装置21对所述加工激光的功率进行调节,即调整加工功率。
随后,结合扩束装置22对该加工激光进行扩束处理。
之后,扩束处理后的加工激光经过二色镜16的反射后,被第二物镜聚OBJ2焦在待加工器件15上,实现对待加工器件15的加工。
在实验过程中,通过改变加工激光的加工功率,再结合光学衍射层析技术,可得到不同加工功率下的待加工器件折射率的改变程度,选择合适功率的加工激光完成相对应待加工器件的激光加工。
进一步的,基于本发明上述实施例,如图2所示,所述激光功率调节装置 21包括:
依次设置在所述第二激光器18出射光路上的第二二分之一波片19和第二偏振分光棱镜PBS2。
在该实施例中,采用第二二分之一波片19和第二偏振分光棱镜PBS2的结合实现对加工激光功率的调节。
进一步的,基于本发明上述实施例,如图2所示,所述扩束装置22包括:
依次设置在所述第二偏振分光棱镜PBS2和所述二色镜16之间的第五准直透镜L5、光阑20和第六准直透镜L6。
其中,所述光阑20位于所述第五准直透镜L5和所述第六准直透镜L6的焦面上。
具体的,所述光阑20用于起到对所述加工激光束空间滤波的作用,使得光斑强度分布更加均匀。
所述第六准直透镜L6与所述第五准直透镜L5配合使用,用于对聚焦通过所述光阑20的光束进行准直,将会聚光束变为平行光束。
可选的,所述第二激光器18包括但不限定为飞秒脉冲激光器。
进一步的,基于本发明上述实施例,所述二色镜16对所述加工激光进行反射处理,对所述透射光信号进行高透过滤处理。
即,所述二色镜16选择段波通,对成像激光(例如561nm的成像激光)进行高透过滤,对加工激光(例如1030nm的加工激光)进行高反射处理。
通过上述描述可知,本发明提供的一种具有光学衍射层析成像功能的激光加工系统包括:集一体化设置的成像光路和加工光路;所述成像光路用于对待加工器件进行光学衍射层析成像;所述加工光路用于对所述待加工器件进行加工处理。并且,介绍了具体的光路结构,该激光加工系统在对待加工器件进行加工的过程中,在不需要对待加工器件进行移位的情况下,还可以对待加工器件进行实时成像,也就是说,在一套激光加工系统中就可以同时实现对待加工 器件的激光加工处理和成像处理。
以上对本发明所提供的一种具有光学衍射层析成像功能的激光加工系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备所固有的要素,或者是还包括为这些过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种具有光学衍射层析成像功能的激光加工系统,其特征在于,所述激光加工系统包括:集一体化设置的成像光路和加工光路;
    所述成像光路用于对待加工器件进行光学衍射层析成像;
    所述加工光路用于对所述待加工器件进行加工处理。
  2. 根据权利要求1所述的激光加工系统,其特征在于,所述成像光路包括:第一激光器、第一偏振分光棱镜、双轴扫描振镜、第一物镜、第二物镜和非偏振平板分束镜;
    所述待加工器件位于所述第一物镜和所述第二物镜之间;
    所述第一激光器用于出射成像激光;
    所述第一偏振分光棱镜用于将所述成像激光分为信号光和参考光;
    所述双轴扫描振镜用于对所述信号光进行二维扫描形成扫描光束,所述扫描光束聚焦在所述第一物镜的后焦面上,以在不同方向上照射所述待加工器件;
    所述第二物镜用于采集透过所述待加工器件的透射光信号;
    所述非偏振平板分束镜用于将所述参考光和所述透射光信号进行合束,在一定离轴角度下形成离轴全息图,通过图像采集设备对所述离轴全息图进行拍摄处理。
  3. 根据权利要求2所述的激光加工系统,其特征在于,所述成像光路还包括:
    依次设置在所述第一激光器和所述第一偏振分光棱镜之间的旋转偏振片和第一二分之一波片;
    所述旋转偏振片用于调节所述成像激光的总光强;
    所述二分之一波片用于调节所述成像激光的分光比。
  4. 根据权利要求2所述的激光加工系统,其特征在于,所述成像光路还包括:
    依次设置在所述第一偏振分光棱镜和所述双轴扫描振镜之间的第一光纤和第一准直透镜;
    所述第一光钎用于传输所述信号光;
    所述第一准直透镜用于对所述信号光进行准直处理。
  5. 根据权利要求2所述的激光加工系统,其特征在于,所述成像光路还包括:
    设置在所述双轴扫描振镜和所述第一物镜之间的第二准直透镜;
    所述第二准直透镜用于对所述扫描光束进行准直处理。
  6. 根据权利要求2所述的激光加工系统,其特征在于,所述成像光路还包括:
    设置在所述第二物镜和所述非偏振平板分束镜之间的第三准直透镜;
    所述第三准直透镜用于对所述透射光信号进行准直处理。
  7. 根据权利要求2所述的激光加工系统,其特征在于,所述成像光路还包括:
    依次设置在所述第一偏振分光棱镜和所述非偏振平板分束镜之间的第二光纤和第四准直透镜;
    所述第二光纤用于传输所述参考光;
    所述第四准直透镜用于对所述参考光进行准直处理。
  8. 根据权利要求2所述的激光加工系统,其特征在于,所述第一激光器为单纵模连续激光器。
  9. 根据权利要求2所述的激光加工系统,其特征在于,所述非偏振平板分束镜上还设置有增透膜。
  10. 根据权利要求2所述的激光加工系统,其特征在于,所述加工光路包括:第二激光器、激光功率调节装置、扩束装置和二色镜;
    所述第二激光器用于出射加工激光;
    所述激光功率调节装置用于对所述加工激光的功率进行调节;
    所述扩束装置用于对所述加工激光进行扩束处理;
    所述二色镜用于将扩束后的加工激光反射至所述第二物镜;
    所述第二物镜还用于将扩束后的加工激光聚焦在所述待加工器件上。
  11. 根据权利要求10所述的激光加工系统,其特征在于,所述激光功率调节装置包括:
    依次设置在所述第二激光器出射光路上的第二二分之一波片和第二偏振分光棱镜。
  12. 根据权利要求11所述的激光加工系统,其特征在于,所述扩束装置包括:
    依次设置在所述第二偏振分光棱镜和所述二色镜之间的第五准直透镜、光阑和第六准直透镜。
  13. 根据权利要求12所述的激光加工系统,其特征在于,所述光阑位于所述第五准直透镜和所述第六准直透镜的焦面上。
  14. 根据权利要求10所述的激光加工系统,其特征在于,所述第二激光器为飞秒脉冲激光器。
  15. 根据权利要求10所述的激光加工系统,其特征在于,所述二色镜对所述加工激光进行反射处理,对所述透射光信号进行高透过滤处理。
PCT/CN2021/108374 2020-08-27 2021-07-26 一种具有光学衍射层析成像功能的激光加工系统 WO2022042166A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/042,999 US20230356324A1 (en) 2020-08-27 2021-07-26 Laser processing system having optical diffraction tomography function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010876885.7 2020-08-27
CN202010876885.7A CN112008237B (zh) 2020-08-27 2020-08-27 一种具有光学衍射层析成像功能的激光加工系统

Publications (1)

Publication Number Publication Date
WO2022042166A1 true WO2022042166A1 (zh) 2022-03-03

Family

ID=73503245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108374 WO2022042166A1 (zh) 2020-08-27 2021-07-26 一种具有光学衍射层析成像功能的激光加工系统

Country Status (3)

Country Link
US (1) US20230356324A1 (zh)
CN (1) CN112008237B (zh)
WO (1) WO2022042166A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112008237B (zh) * 2020-08-27 2023-01-24 伊诺福科光学技术有限公司 一种具有光学衍射层析成像功能的激光加工系统
CN112404706B (zh) * 2021-01-22 2021-04-23 武汉大学 激光加工检测装置及方法、激光加工设备及调焦控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128752A (en) * 1976-12-15 1978-12-05 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Laser micromachining apparatus
US20110181888A1 (en) * 2010-01-22 2011-07-28 Ben Gurion University of the Negev Research and Development Authority Ltdd. High resolution extended depth of field optical coherence tomography
CN106226895A (zh) * 2016-08-25 2016-12-14 浙江大学 一种带反馈的旋转全内反射显微方法及装置
CN107014793A (zh) * 2017-04-21 2017-08-04 浙江大学 一种基于双振镜双物镜多模式宽场超分辨显微成像系统
CN108406141A (zh) * 2018-04-18 2018-08-17 中国科学院西安光学精密机械研究所 基于光学相干层析扫描的超快激光微孔加工方法及装置
CN109187726A (zh) * 2018-11-13 2019-01-11 北京理工大学 后分光瞳差动共焦Raman-LIBS-质谱探测的飞秒激光加工监测方法
CN112008237A (zh) * 2020-08-27 2020-12-01 伊诺福科光学技术有限公司 一种具有光学衍射层析成像功能的激光加工系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101614878B (zh) * 2009-08-06 2012-07-04 清华大学 一种产生多种矢量光束的系统
CN103000191B (zh) * 2012-12-04 2016-05-18 清华大学 一种动态刷新体全息三维显示的方法
CN106547189B (zh) * 2016-11-25 2019-11-15 西安科技大学 基于脉冲激光器的反射式数字全息显微成像系统及方法
CN110108201B (zh) * 2019-04-26 2021-02-19 华南理工大学 透反射双模式的高精度离轴数字全息显微装置及成像方法
CN110543090B (zh) * 2019-08-16 2022-01-28 北京钛极科技有限公司 一种光学加工系统及光学加工方法
CN111014947A (zh) * 2019-11-19 2020-04-17 中国科学技术大学 基于空间光调制器和扫描振镜的高速激光加工装置和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128752A (en) * 1976-12-15 1978-12-05 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Laser micromachining apparatus
US20110181888A1 (en) * 2010-01-22 2011-07-28 Ben Gurion University of the Negev Research and Development Authority Ltdd. High resolution extended depth of field optical coherence tomography
CN106226895A (zh) * 2016-08-25 2016-12-14 浙江大学 一种带反馈的旋转全内反射显微方法及装置
CN107014793A (zh) * 2017-04-21 2017-08-04 浙江大学 一种基于双振镜双物镜多模式宽场超分辨显微成像系统
CN108406141A (zh) * 2018-04-18 2018-08-17 中国科学院西安光学精密机械研究所 基于光学相干层析扫描的超快激光微孔加工方法及装置
CN109187726A (zh) * 2018-11-13 2019-01-11 北京理工大学 后分光瞳差动共焦Raman-LIBS-质谱探测的飞秒激光加工监测方法
CN112008237A (zh) * 2020-08-27 2020-12-01 伊诺福科光学技术有限公司 一种具有光学衍射层析成像功能的激光加工系统

Also Published As

Publication number Publication date
US20230356324A1 (en) 2023-11-09
CN112008237B (zh) 2023-01-24
CN112008237A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
WO2022042166A1 (zh) 一种具有光学衍射层析成像功能的激光加工系统
JP7073523B2 (ja) Sted光学顕微鏡に用いる照明システム及びsted光学顕微鏡
US8427633B1 (en) Laser beam analysis apparatus
WO2005084874A1 (ja) レーザ加工装置
KR20210144842A (ko) 프로세싱 광학 유닛, 레이저 프로세싱 장치 및 레이저 프로세싱을 위한 방법
MY149114A (en) Focusing an optical beam to two foci
JPH0236338A (ja) 光音響信号検出方法及びその装置
JP2007061855A (ja) レーザ照射装置
CN106908945B (zh) 一种基于光调制器的双光束光镊
CN107134714A (zh) 激光器合束装置
CN112285938B (zh) 一种奇异空心光束的产生装置及产生方法
CN111250873B (zh) 一种基于gb-sted的深层超分辨激光直写系统及其实现方法
US20030189757A1 (en) Beam splitter device or laser-scanning microscope
JPH06234092A (ja) レーザー加工装置
JP3386643B2 (ja) 2ビームトラッピング方法及び装置
CN112326609B (zh) 基于偏振复用的实时三维荧光差分超分辨成像方法和装置
CN212111960U (zh) 一种快速对焦暗场成像装置
CN111239997A (zh) 一种基于交叉相位调制的快速对焦暗场成像装置及方法
CN202388123U (zh) 激光加工装置
CN101363798A (zh) 激光飞秒探针装置
JP5357790B2 (ja) レーザ加工装置
KR101667792B1 (ko) 간섭 빔을 이용한 절단용 광학기기
CN115740738B (zh) 一种激光制造系统
JPH09323184A (ja) レーザ加工装置
JP7329704B2 (ja) レーザー加工用の加工ヘッド及び加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21860006

Country of ref document: EP

Kind code of ref document: A1