WO2022042045A1 - 仪表识别装置、仪表监控系统及其监控方法 - Google Patents

仪表识别装置、仪表监控系统及其监控方法 Download PDF

Info

Publication number
WO2022042045A1
WO2022042045A1 PCT/CN2021/104523 CN2021104523W WO2022042045A1 WO 2022042045 A1 WO2022042045 A1 WO 2022042045A1 CN 2021104523 W CN2021104523 W CN 2021104523W WO 2022042045 A1 WO2022042045 A1 WO 2022042045A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
meter
image
instrument
identification device
Prior art date
Application number
PCT/CN2021/104523
Other languages
English (en)
French (fr)
Inventor
哈谦
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/790,362 priority Critical patent/US20230045188A1/en
Publication of WO2022042045A1 publication Critical patent/WO2022042045A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/141Control of illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/02Recognising information on displays, dials, clocks

Definitions

  • the present disclosure relates to the field of instrument monitoring, and in particular, to an instrument identification device, an instrument monitoring system and a monitoring method thereof.
  • Monitoring instruments can be used to sense parameters such as temperature, pressure, voltage, current, and the like. In a variety of application scenarios (such as power transmission, oil pipelines, production lines of display panels, etc.), monitoring instruments can be used to monitor each link.
  • an instrument monitoring system includes: a wireless gateway, monitoring equipment and at least one meter identification device.
  • Each instrument identification device is located around a monitoring instrument; the instrument identification device includes an image collector, a processor and a wireless transceiver.
  • the image collector is configured to collect images on the display side of the monitoring instrument at set time intervals.
  • the processor is coupled to the image collector, and the processor is configured to determine monitoring data displayed by a monitoring instrument based on an image processing algorithm according to an image collected by the image collector.
  • the wireless transceiver is coupled to the processor, and the wireless transceiver is configured to transmit monitoring data determined by the processor to a wireless gateway.
  • the wireless gateway is configured to transmit the received monitoring data to the monitoring device.
  • the image acquisition device includes: a camera; and at least two light sources, which are disposed on the peripheral side of the camera, and are sequentially spaced along the circumferential direction of the camera.
  • the image collector is configured to: when only one light source of the at least two light sources is turned off, use the camera to capture a picture, and capture a spot-free area in the picture corresponding to the turned-off light source; repeating In the above steps, a spot-free area corresponding to each light source is obtained, and all the spot-free areas are combined to generate an image on the display side of the monitoring instrument.
  • the at least two light sources are equally spaced.
  • the monitoring instrument is a pointer monitoring instrument comprising a dial and a pointer moveable relative to the dial.
  • the determining of the monitoring data displayed by the monitoring instrument based on the image collected by the image collector based on the image processing algorithm includes the following steps: determining the position information of the pointer according to the image; according to the position information of the pointer, and the corresponding relationship between the position information of the pointer and the scale value of the dial, determine the scale value corresponding to the determined position information; use the determined scale value as the monitoring data corresponding to the image.
  • determining the monitoring data displayed by a monitoring instrument based on an image processing algorithm according to an image collected by the image collector includes the following steps: inputting the image into a trained neural network model; using The neural network model calculates and obtains the monitoring data corresponding to the image; wherein, the neural network model is obtained by training based on historical image data.
  • the processor is further configured to: acquire at least one of the identity information of the monitoring instrument, the address information of the instrument identification device, and the collection moment corresponding to the monitoring data;
  • the wireless transceiver is configured to: send at least one of the identity information of the monitoring instrument, the address information of the instrument identification device, and the collection time corresponding to the monitoring data to the monitoring data together with the monitoring data.
  • the wireless gateway is configured to: add at least one of the identity information of the monitoring instrument, the address information of the instrument identification device, and the collection time corresponding to the monitoring data with the monitoring data together with the monitoring device.
  • the processor is further configured to: determine whether the set time interval is greater than or equal to a preset time interval; if the set time interval is greater than or equal to the preset time interval, at At least one communication connection is established with the wireless gateway through the wireless transceiver between two adjacent collection moments.
  • the processor is further configured to: determine whether the set time interval is greater than or equal to a preset time interval; if the set time interval is greater than or equal to the preset time interval, at At each hour, a communication connection is established with the wireless gateway through the wireless transceiver.
  • the processor is further configured to: for any hour on the hour, determine whether the duration from the hour on the hour to the last collection moment is greater than or equal to a preset duration; if so, at the hour Establish a communication connection with the wireless gateway through the wireless transceiver at the hour; if not, do not establish a communication connection with the wireless gateway through the wireless transceiver at the hour.
  • the monitoring device when an update instruction is stored in the monitoring device, the monitoring device is configured to: when receiving the monitoring data sent by the meter identification device, send the monitoring device to the monitoring device through the wireless gateway.
  • the meter identification device sends an update instruction; and/or, when the meter identification device establishes a communication connection with the wireless gateway, an update instruction is sent to the meter identification device through the wireless gateway.
  • the monitoring device is further configured to: summarize all the monitoring information fed back by the meter identification device to generate a monitoring data report; wherein the monitoring information includes the monitoring data of the meter identification device, At least one of the collection time corresponding to the monitoring data, the identity information of the monitoring instrument, the address information of the instrument identification device, and the remaining battery power of the instrument identification device.
  • the monitoring data includes at least one of temperature, pressure, voltage, and current.
  • a meter identification device in another aspect, includes: an image collector configured to collect images on the display side of the monitoring meter at set time intervals; a processor coupled to the image collector, the processor configured In order to determine the monitoring data displayed by the monitoring instrument based on an image processing algorithm according to the image collected by the image collector; a wireless transceiver, coupled to the processor, and the wireless transceiver is configured to connect the processor The determined monitoring data is sent to the wireless gateway, and the wireless gateway is used to transmit the monitoring data to the monitoring device.
  • the image acquisition device includes: a camera; and at least two light sources, which are disposed on the peripheral side of the camera, and are sequentially spaced along the circumferential direction of the camera.
  • the image collector is configured to: when only one light source of the at least two light sources is turned off, use the camera to capture a picture, and capture a spot-free area in the picture corresponding to the turned-off light source; repeating In the above steps, a spot-free area corresponding to each light source is obtained, and all the spot-free areas are combined to generate an image on the display side of the monitoring instrument.
  • a monitoring method is provided, which is applied to the instrument monitoring system according to any one of the above embodiments.
  • the monitoring method includes: the at least one meter identification device collects an image on the display side of the monitoring meter at a set time interval; the at least one meter identification device determines the monitoring data of the monitoring meter according to the image and based on an image processing algorithm; The at least one meter identification device sends the monitoring data to the wireless gateway, and the wireless gateway transmits the monitoring data to the monitoring device.
  • FIG. 1 is a block diagram of an instrument monitoring system according to some embodiments
  • FIG. 2A is a structural diagram of a monitoring instrument according to some embodiments.
  • 2B is a structural diagram of another monitoring instrument according to some embodiments.
  • FIG. 3 is a structural diagram of a meter identification device according to some embodiments.
  • 4A is a structural diagram of an image collector according to some embodiments.
  • 4B is a flowchart of an image acquisition method of an image acquisition device according to some embodiments.
  • 5A is a flowchart of a monitoring data determination method according to some embodiments.
  • 5B is a flowchart of another monitoring data determination method according to some embodiments.
  • FIG. 6 is a structural diagram of another meter identification device according to some embodiments.
  • FIG. 7 is a flowchart of a monitoring method of an instrument monitoring system according to some embodiments.
  • FIG. 8 is a flowchart of yet another monitoring method of an instrument monitoring system according to some embodiments.
  • FIG. 9 is a flowchart of yet another monitoring method of an instrument monitoring system according to some embodiments.
  • FIG. 10 is a flowchart of yet another monitoring method of an instrument monitoring system according to some embodiments.
  • FIG. 11 is a flowchart of yet another monitoring method of a meter monitoring system according to some embodiments.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used in describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C”, and both include the following combinations of A, B, and C: A only, B only, C only, A and B , A and C, B and C, and A, B, and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally construed to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrases “if it is determined that" or “if a [statement or event] is detected” are optionally interpreted to mean “in determining" or “in response to determining" or “on detection of [recited condition or event]” or “in response to detection of [recited condition or event]”.
  • FIG. 1 shows a schematic block diagram of a meter monitoring system according to some embodiments.
  • the instrument monitoring system 200 includes at least one instrument monitoring device 100 , a monitoring device 201 and a wireless gateway 202 .
  • each meter identification device 100 is located around a monitoring meter.
  • each meter identification device 100 may be provided on the data display side of one monitoring meter 4 (the digital monitoring meter 41 shown in FIG. 2A , the pointer monitoring meter 42 shown in FIG. 2B , etc.). It can be understood that it is not a necessary condition to set the meter identification device 100 on the data display side of the corresponding monitoring meter 4 here.
  • the meter identification device 100 can also be set on the data display side of the monitoring meter 4. Other sides other than the side (for example, the back side of the monitoring instrument 4 , etc.), at this time, the instrument identification device 100 can collect the image on the display side of the monitoring instrument 4 through some optical lenses (for example, a mirror, etc.).
  • the meter identification device 100 includes an image collector 1 , a processor 2 coupled with the image collector 1 , and a wireless transceiver 3 coupled with the processor 2 .
  • the image collector 1 can be used to collect images on the display side of the monitoring instrument.
  • the image collector 1 is arranged on the other side of the monitoring instrument 4 except the data display side, and through some optical lenses, the image collector 1 collects the image on the display side of the monitoring instrument 4 .
  • the wireless transceiver 3 can be integrated with the processor 2; alternatively, the wireless transceiver 3 can also be separately provided with the processor 2.
  • the processor 2 is a microprocessor programmed to perform one or more of the operations and/or functions described herein. In other examples, the processor 2 is implemented in whole or in part by specially configured hardware (eg, by one or more application specific integrated circuits (ASIC(s))).
  • ASIC(s) application specific integrated circuits
  • the image collector 1 is configured to collect images on the display side of the monitoring instrument 4 at set time intervals.
  • the set time interval may be fixed or variable. That is, the duration of the interval between the first collection and the second collection may be equal to the duration of the interval between the second collection and the third collection, or the duration of the interval between the first collection and the second collection may also be the same as that of the second collection.
  • the length of the interval between the first and third acquisitions is not equal.
  • the monitoring instrument 4 may be the digital monitoring instrument 41 shown in FIG. 2A or the pointer monitoring instrument 42 shown in FIG. 2B .
  • the image on the display side of the monitoring instrument 4 refers to the image on the side where the monitoring instrument 4 displays monitoring data (for example, "88.88" in FIG. 2A ).
  • the monitoring data can be directly displayed in the form of numbers; for a pointer monitoring instrument, as shown in FIG. 2B , the monitoring data can be matched with the dial 421 A pointer 422 that can move relative to the dial 421 is displayed.
  • the processor 2 is configured to determine monitoring data of a monitoring instrument based on an image processing algorithm according to the image collected by the image collector 1 .
  • the monitoring data includes at least one of temperature, pressure, voltage, and current.
  • the wireless transceiver 3 is configured to send the monitoring data to the wireless gateway 202
  • the wireless gateway 202 is configured to transmit the monitoring data to the monitoring device 201 .
  • the monitoring device 201 may be an intelligent terminal (such as a mobile phone, a computer, etc.) installed with monitoring software, and it can be understood that the intelligent terminal includes a processor, a display screen, and the like.
  • the monitoring software in the smart terminal may use the smart terminal to send out prompt information when a certain monitoring data is abnormal (for example, the monitoring data exceeds the normal range).
  • the meter identification device 100 can be better integrated with the monitoring meter 4.
  • the meter identification device 100 can be used as a cover of the monitoring meter 4, so that the meter identification device 100 and the monitoring meter 4 are mutually It plays a certain protective role, so that the instrument identification device 100 and the monitoring instrument 4 are not easily affected by the external environment (such as the influence of weather factors such as wind, rain, thunder and lightning).
  • the meter identification device 100 and the monitoring meter 4 may be fixedly connected (such as welding, etc.), may be detachable connection (such as rotatable connection, slidable connection, etc.), or may not be connected (that is, the meter identification device 100 and the monitoring instrument 4 can be respectively fixed on different objects, as long as the relative positions of the two are ensured so that the instrument identification device 100 can collect the image on the display side of the monitoring instrument 4), which is not limited by the embodiments of the present disclosure .
  • the meter monitoring system 200 can greatly reduce the labor cost, improve the monitoring frequency and the accuracy of the monitoring data. Compared with the way of robot inspection, because it is not easily affected by the external environment, it can still effectively improve the monitoring frequency and the accuracy of monitoring data, and has the advantage of low cost.
  • the meter identification device 100 can not only use the image collector 1 to realize image acquisition, but also can use the processor 2 to identify the collected image to determine the monitoring data, and finally only need to pass the determined monitoring data through the wireless transceiver 3 . It is sent to the wireless gateway 202 , and the determined monitoring data is transmitted to the monitoring device 201 by the wireless gateway 202 . Therefore, the data to be processed (such as the collected image) only needs to be transmitted from the image collector 1 to the processor 2, and the transmission process takes less time, which increases the timeliness of data processing.
  • the network bandwidth used for uploading is reduced, that is, the network load is reduced, which is beneficial to improve the uploading speed and has better timeliness.
  • instrument identification device 100 there are various structural forms of the image collector 1 and ways of using the image collector 1 to collect images, which will be described below through some embodiments.
  • FIG. 4A shows a structural diagram of an image collector 1 according to some embodiments
  • FIG. 4B shows a flowchart of an image acquisition method of the image collector 1 according to some embodiments.
  • the image collector 1 includes a camera 11 and at least two light sources 12 .
  • the at least two light sources 12 are disposed on the peripheral side of the camera 11 , and are sequentially spaced apart along the circumferential direction of the camera 11 .
  • the image collector 1 is configured as:
  • the at least two light sources 12 are distributed at equal intervals.
  • four light sources 12 are distributed at equal intervals.
  • the number of light sources in each embodiment of the present disclosure is not limited to four. In practical applications, for monitoring instruments of different sizes, different numbers of light sources 12 can be set to meet the lighting requirements, thereby realizing the collection of clearer images.
  • the processor 2 can determine the monitoring data of the monitoring instrument 4 in various ways according to the image collected by the image collector 1 and based on the image processing algorithm. This is described.
  • the monitoring instrument 4 is a pointer monitoring instrument 42
  • the pointer monitoring instrument 42 includes a dial 421 and a pointer 422 movable relative to the dial 421 .
  • determining the monitoring data displayed by the monitoring instrument based on the image collected by the image collector based on the image processing algorithm includes the following steps:
  • S21 Determine the position information of the pointer 422 according to the image.
  • the image can be binarized, and then the position information of the pointer is determined based on the binarized image, which is beneficial to improve the accuracy of the determined pointer position information.
  • the correspondence between the position information of the pointer 422 and the scale value of the dial 421 may be stored in the meter identification device 100 in advance.
  • the correspondence between the position information of the pointer 422 and the scale value of the dial 421 may also be determined by the processor 2 according to the collected image.
  • the processor 2 can determine the initial scale value of the dial 421 (“0” in FIG. 2B ) and the initial position of the pointer 422 according to the acquired image, as well as the scale The end scale value of the disc 421 (“10” in FIG. 2B ) and the end position of the pointer 422 .
  • the initial position of the pointer 422 corresponds to the initial scale value of the dial 421
  • the end position of the pointer 422 corresponds to the end scale value of the dial 421.
  • the position of the pointer 422 corresponding to each scale value can be determined.
  • the pointer 422 can rotate around a fixed point.
  • the position information of the pointer 422 may refer to the number of angles between the current position of the pointer 422 and the initial position of the pointer.
  • the pointer can slide in one direction as a whole.
  • the position information of the pointer 422 may refer to the distance between the current position of the pointer 422 and the initial position of the pointer.
  • determining the monitoring data displayed by the monitoring instrument based on the image collected by the image collector based on the image processing algorithm includes the following steps:
  • the neural network model is obtained by training based on historical image data.
  • the neural network model refers to an algorithm structure that uses a certain algorithm (such as a machine learning algorithm) for calculation.
  • the steps include: selecting a network topology; using a set of training data representing the problem modeled by the network; and adjusting the weights until the network model targets all instances of the training data set Appears to have minimal error.
  • the output produced by the network in response to an input representing an instance in a training dataset is compared to the "correct" labeled output of that instance; computing the output representing the an error signal from the difference between the labeled outputs; and adjusting the weights associated with the connections to minimize the error when propagating the error signal back through the layers of the network.
  • the neural network model is considered “trained” and can be used for AI inference tasks.
  • the specific features of these training samples are extracted, and finally the algorithm structure and parameter values that can converge on the data set with the specific features are obtained. That is, a neural network model capable of identifying data with specific features is obtained, so that monitoring data corresponding to the image can be output by using the neural network model.
  • the neural network model may be a feedforward neural network model, a Convolutional Neural Network (CNN) model, a Recurrent Neural Network (RNN, Recurrent Neural Network) model, or a Generative Adversarial Network (GAN, Generative Adversarial). Network) model, etc., but not limited thereto, other neural network models known to those skilled in the art may also be used.
  • CNN Convolutional Neural Network
  • RNN Recurrent Neural Network
  • GAN Generative Adversarial Network
  • the meter identification device 100 further includes a battery 5 .
  • the battery 5 can provide power to various components in the meter identification device 100 (eg, the image collector 1 , the processor 2 and the wireless transceiver 3 ). In this way, the meter identification device 100 does not need to draw out a power harness, so that the meter identification device 100 can be applied to various complex scenarios (eg, a location far from the mains, etc.).
  • the battery 5 may be a common rechargeable battery, a solar rechargeable battery, or a disposable battery.
  • the processor 2 is further configured to: obtain the remaining power of the battery 5; send the remaining power of the battery 5 together with the monitoring data through the wireless transceiver 3 to the wireless gateway to transmit the remaining power of the battery 5 together with the monitoring data to the monitoring device 201 using the wireless gateway 202 .
  • the remaining power of the battery 5 can be monitored, so that the battery 5 can be replaced or charged in time before the power in the battery 5 is used up, thereby preventing the meter identification device 100 from stopping due to the battery 5 running out of power.
  • the processor 2 is further configured to acquire at least one of the identity information of the monitoring instrument 4, the address information of the instrument identification device 100, and the collection time corresponding to the monitoring data.
  • the time of collecting the corresponding monitoring data may be the time of shooting the one picture; if If the camera 11 is used to shoot multiple pictures, the acquisition time corresponding to the monitoring data may be, for example, the middle time of shooting the multiple pictures, or the last time of shooting the multiple pictures.
  • the address information of the meter identification device 100 may be an IP address (Internet Protocol Address).
  • the identity information of the monitoring instruments 4 may be the station number.
  • the M monitoring instruments 4 may be sequentially numbered from 1 to M, where M is a positive integer greater than or equal to 2 .
  • the monitoring instruments 4 may be numbered by hardware, or the monitoring instruments 4 may be numbered by software.
  • the wireless transceiver 3 is configured to: send at least one of the identity information of the monitoring instrument 4, the address information of the instrument identification device 100, and the collection time corresponding to the monitoring data to the wireless network together with the monitoring data gateway 202.
  • the wireless gateway 202 transmits at least one of the identity information of the monitoring instrument 4, the address information of the instrument identification device 100, and the collection time corresponding to the monitoring data to the monitoring device 201 together with the monitoring data.
  • the monitoring device 201 can classify and summarize the corresponding monitoring data according to at least one of the identity information of the monitoring instrument 4, the address information of the instrument identification device 100, and the collection time corresponding to the monitoring data.
  • the processor 2 may also be configured to: while sending the monitoring data to the wireless gateway 202, receive the monitoring device through the wireless transceiver 3 at the same time.
  • 201 is an update instruction sent by the wireless gateway 202 .
  • the meter identification device 100 can receive the update instruction while uploading the data.
  • the update instruction may include a parameter update instruction of the image collector 1, etc., such as the parameters of the camera and the brightness of the light source, and the like.
  • the processor 2 is further configured to:
  • the preset time interval may be 1 hour, or may be other time intervals, such as 100 minutes, 120 minutes, and the like.
  • the wireless transceiver 3 can communicate with the wireless gateway 202 normally when the interval between two adjacent collection times is too long, so that it is not easy for the meter identification device 100 to fail for a long time and not be found. situation, improving security throughout the monitoring period.
  • the at least one communication connection may be used to evenly separate the time duration between two adjacent collection moments. For example, when the duration between two adjacent collection moments is 90 minutes and two communication connections are established between two adjacent collection moments, a communication connection can be established every 30 minutes to achieve better troubleshooting Effect.
  • the processor 2 is further configured to:
  • S51 Determine whether the set time interval is greater than or equal to a preset time interval.
  • the preset time interval may be 1 hour, or may be other time intervals, such as 100 minutes, 120 minutes, and the like.
  • the wireless transceiver 3 can communicate with the wireless gateway 202 normally when the interval between two adjacent collection times is too long, so that it is not easy for the meter identification device 100 to fail for a long time and not be found. situation, improving security throughout the monitoring period.
  • the set time interval is greater than the preset time interval (that is, it means that the interval between two adjacent collection moments is too long, for example, the interval between two adjacent collection moments is greater than or equal to 1 hour), the communication connection is directly established at each hour, and there is no need to calculate the time to establish the communication connection, thus reducing the complexity of the logic design, while ensuring the stability of communication and the timely detection of faults .
  • the processor 2 can also be configured to: for any hour on the hour, determine whether the duration from the hour on the hour to the last collection moment is greater than or equal to a preset duration; The set time can be 5 minutes to 15 minutes. If so, establish a communication connection with the wireless gateway through the wireless transceiver at the hour. If not, the communication connection is not established with the wireless gateway through the wireless transceiver at the hour on the hour.
  • the meter identification device 100 will not establish a communication connection with the wireless gateway 202 for a period of time after the monitoring data is sent to the wireless gateway 202, so that it is difficult for the meter identification device 100 to communicate frequently with the wireless gateway 202. .
  • the instrument identification device 100 may also receive, through the wireless transceiver 3 , the above-mentioned update instruction sent by the monitoring device 201 through the wireless gateway 202 .
  • the update instruction may further include the update instruction of the preset time interval, the update instruction of the preset time interval, the update instruction of the preset duration, and the like.
  • the meter identification device 100 When the meter identification device 100 is in a dormant state (that is, in a state where monitoring data is not uploaded and the above-mentioned communication connection is not established), it does not receive an update instruction.
  • the update instruction can be stored in the monitoring device 201 in advance and wait until the meter identification device 100 sends monitoring data to the wireless gateway 202 or when the meter identification device 100 establishes a communication connection with the wireless gateway 202, the monitoring device 201 then transmits the update instruction to the wireless gateway 202, and uses the wireless gateway 202 to send it to the corresponding meter identification device 100, thereby achieve low-power operation.
  • the monitoring device 201 is configured to: when receiving the monitoring data sent by the meter identification device 100, identify the meter to the meter through the wireless gateway 202 The device 100 sends an update instruction; and/or, when the meter identification device 100 establishes a communication connection with the wireless gateway 202 , the update instruction is sent to the meter identification device 100 through the wireless gateway 202 .
  • the update instruction may include, for example, the above-mentioned parameter update instruction of the image collector 1 (such as the parameters of the camera and the brightness of the light source, etc.), the update instruction of the preset time interval, the update instruction of the preset time interval, and the preset time interval. update instructions, etc.
  • the meter identification device 100 may not receive an update instruction in a dormant state (that is, a state in which monitoring data is not uploaded and the above-mentioned communication connection is not established).
  • a dormant state that is, a state in which monitoring data is not uploaded and the above-mentioned communication connection is not established.
  • the monitoring device 201 transmits the update instruction to the wireless gateway 202, and uses the wireless gateway 202 to send it to the corresponding meter identification device 100 to achieve low-power operation.
  • the monitoring device 201 is further configured to: aggregate the monitoring information fed back by all the meter identification devices 100 to generate a monitoring data report.
  • the monitoring information includes at least the monitoring data of the meter identification device 100 , the collection time corresponding to the monitoring data, the identity information of the monitoring meter 4 , the address information of the meter identification device 100 and the remaining battery power of the meter identification device 100 . A sort of.
  • the monitoring information corresponding to each monitoring instrument can be presented more intuitively, so as to achieve the purpose of conveniently viewing the monitoring data of each monitoring instrument.
  • the monitoring device 201 is configured to directly receive the monitoring information, summarize the received monitoring information, and generate a monitoring data report, it is not necessary to process the data collected by the meter identification device 100 (for example, Therefore, the resource occupation of the monitoring device 201 and the wireless gateway 202 is reduced, thereby reducing the operating burden of the monitoring device 201 and the wireless gateway 202 .
  • some embodiments of the present disclosure provide a meter identification device 100 , and the meter identification device 100 may be the meter identification device in any of the above-mentioned embodiments. 100.
  • the meter identification device 100 therefore has all the beneficial effects as described above.
  • FIG. 10 shows a flowchart of a monitoring method according to some embodiments. As shown in FIG. 10 , some embodiments of the present disclosure provide a monitoring method, and the monitoring method can be applied to the instrument monitoring system described in any one of the above embodiments.
  • the monitoring method includes:
  • the at least one meter identification device 100 collects images on the display side of the monitoring meter at a set time interval.
  • the at least one meter identification device 100 determines monitoring data of a monitoring meter according to the image.
  • the at least one meter identification device 100 sends the monitoring data to the wireless gateway 202 , and the wireless gateway 202 transmits the monitoring data to the monitoring device 201 .
  • the monitoring method can greatly reduce labor costs, improve the monitoring frequency and the accuracy of monitoring data.
  • the robot inspection method since it is not easily affected by the external environment, it can still effectively improve the monitoring frequency and the accuracy of monitoring data, and has the advantage of low cost.
  • the monitoring method can not only use the meter identification device 100 to realize image acquisition, but also use the meter identification device 100 to identify the collected images to determine monitoring data, and finally only need to send the determined monitoring data to the wireless gateway 202 , using the wireless gateway 202 to transmit the determined monitoring data to the monitoring device 201, therefore, the data to be processed (such as the collected image) only needs to be transmitted between the internal components (such as the image collector and the processor) of the meter identification device 100 And processing, the transmission process takes less time, which increases the timeliness of data processing.
  • the network bandwidth used for uploading is reduced, that is, the network load is reduced, which is beneficial to improve the uploading speed and has better timeliness.
  • the monitoring method further includes:
  • the monitoring device 201 When receiving the monitoring data sent by the meter identification device 100, the monitoring device 201 sends an update instruction to the meter identification device 100 through the wireless gateway 202; and/or, the monitoring device 201 is in the meter When the identification device 100 establishes a communication connection with the wireless gateway 202 , an update instruction is sent to the meter identification device 100 through the wireless gateway 202 .
  • the meter identification device 100 may not receive an update instruction in a dormant state (that is, a state in which monitoring data is not uploaded and the above-mentioned communication connection is not established).
  • a dormant state that is, a state in which monitoring data is not uploaded and the above-mentioned communication connection is not established.
  • the monitoring device 201 transmits the update instruction to the wireless gateway 202, and uses the wireless gateway 202 to send it to the corresponding meter identification device 100 to achieve low-power operation.
  • the monitoring method further includes:
  • the monitoring device 201 summarizes the monitoring information fed back by all the meter identification devices 100, and generates a monitoring data report.
  • the monitoring information includes the monitoring data of the meter identification device 100 , the collection time corresponding to the monitoring data, the identity information of the monitoring meter 4 , the address information of the meter identification device 100 , and the remaining battery power of the meter identification device 100 . at least one.
  • the monitoring information corresponding to each monitoring instrument can be presented more intuitively, so as to achieve the purpose of conveniently viewing the monitoring data of each monitoring instrument.
  • the monitoring device 201 is configured to directly receive the monitoring information, summarize the received monitoring information, and generate a monitoring data report, it is not necessary to process the data collected by the meter identification device 100 (for example, Therefore, the resource occupation of the monitoring device 201 and the wireless gateway 202 is reduced, thereby reducing the operating burden of the monitoring device 201 and the wireless gateway 202 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Vascular Medicine (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种仪表监控系统(200),包括:无线网关(202)、监控设备(201)和至少一个仪表识别装置(100)。仪表识别装置(100)包括:图像采集器(1)、处理器(2)和无线收发器(3)。图像采集器(1)被配置为以设定时间间隔采集监控仪表(4)显示侧的图像。处理器(2)与图像采集器(1)耦接,处理器(2)被配置为根据图像采集器(1)采集到的图像,基于图像处理算法,确定监控仪表(4)显示的监控数据。无线收发器(3)与处理器(2)耦接,无线收发器(3)被配置为将处理器(2)确定出的监控数据发送至无线网关(202)。无线网关(202)被配置为将接收到的监控数据传输至监控设备(201)。

Description

仪表识别装置、仪表监控系统及其监控方法
本申请要求于2020年08月28日提交的、申请号为202010890099.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及仪表监控领域,尤其涉及一种仪表识别装置、仪表监控系统及其监控方法。
背景技术
监控仪表可以用于感知例如温度、压力、电压、电流等参数。在多种应用场景(例如电力输送、石油管路、显示面板的生产线等)中,可以利用监控仪表对各个环节进行监控。
发明内容
一方面,提供一种仪表监控系统。所述仪表监控系统包括:无线网关、监控设备和至少一个仪表识别装置。每个仪表识别装置位于一个监控仪表的周围;所述仪表识别装置包括:图像采集器、处理器和无线收发器。所述图像采集器被配置为以设定时间间隔采集监控仪表显示侧的图像。所述处理器与所述图像采集器耦接,所述处理器被配置为根据所述图像采集器采集到的图像,基于图像处理算法,确定监控仪表显示的监控数据。所述无线收发器与所述处理器耦接,所述无线收发器被配置为将所述处理器确定出的监控数据发送至无线网关。所述无线网关被配置为将接收到的监控数据传输至所述监控设备。
在一些实施例中,所述图像采集器包括:摄像头;至少两个光源,设置于所述摄像头的周侧,且沿所述摄像头的周向方向依次间隔排布。所述图像采集器被配置为:在仅关闭所述至少两个光源中的一个光源时,利用所述摄像头拍摄画面,以及,截取所述画面中与所关闭的光源对应的无光斑区域;重复上述步骤,得到与各个光源对应的无光斑区域,将所有无光斑区域组合生成所述监控仪表显示侧的图像。
在一些实施例中,所述至少两个光源等间隔分布。
在一些实施例中,所述监控仪表为指针监控仪表,所述指针监控仪表包括刻度盘和可相对于刻度盘运动的指针。所述根据所述图像采集器采集到的图像,基于图像处理算法,确定监控仪表显示的监控数据,包括以下步骤:根据所述图像确定所述指针的位置信息;根据所述指针的位置信息,以及所述指针的位置信息与所述刻度盘的刻度值之间的对应关系,确定与所确定的 位置信息对应的刻度值;将所确定的刻度值作为与所述图像对应的监控数据。
在一些实施例中,所述根据所述图像采集器采集到的图像,基于图像处理算法,确定监控仪表显示的监控数据,包括以下步骤:将所述图像输入至已训练的神经网络模型;利用所述神经网络模型计算得到与所述图像对应的监控数据;其中,所述神经网络模型基于历史图像数据进行训练得到。
在一些实施例中,所述处理器还被配置为:获取所述监控仪表的身份信息、所述仪表识别装置的地址信息、以及与所述监控数据对应的采集时刻中的至少一者;所述无线收发器被配置为:将所述监控仪表的身份信息、所述仪表识别装置的地址信息、以及与所述监控数据对应的采集时刻中的至少一者随所述监控数据一起发送至所述无线网关;所述无线网关被配置为:将所述监控仪表的身份信息、所述仪表识别装置的地址信息、以及与所述监控数据对应的采集时刻中的至少一者随所述监控数据一起传输至所述监控设备。
在一些实施例中,所述处理器还被配置为:判断所述设定时间间隔是否大于或等于预设时间间隔;若所述设定时间间隔大于或等于所述预设时间间隔,则在相邻两个采集时刻之间通过所述无线收发器与所述无线网关建立至少一次通信连接。
在一些实施例中,所述处理器还被配置为:判断所述设定时间间隔是否大于或等于预设时间间隔;若所述设定时间间隔大于或等于所述预设时间间隔,则在各个整点时刻通过所述无线收发器与所述无线网关建立通信连接。
在一些实施例中,所述处理器还被配置为:对于任一整点时刻,确定所述整点时刻到上一采集时刻的时长是否大于或等于预设时长;若是,则在所述整点时刻通过所述无线收发器与所述无线网关建立通信连接;若否,则不在所述整点时刻通过所述无线收发器与所述无线网关建立通信连接。
在一些实施例中,在所述监控设备中存储有更新指令的情况下,所述监控设备被配置为:在接收所述仪表识别装置发送的所述监控数据时,通过所述无线网关向所述仪表识别装置发送更新指令;和/或,在所述仪表识别装置与所述无线网关建立通信连接时,通过所述无线网关向所述仪表识别装置发送更新指令。
在一些实施例中,所述监控设备还被配置为:对所有所述仪表识别装置反馈的监控信息进行汇总,生成监控数据报表;其中,所述监控信息包括所述仪表识别装置的监控数据、与所述监控数据对应的采集时刻、所述监控仪表的身份信息、所述仪表识别装置的地址信息和所述仪表识别装置的电池剩余电量中的至少一种。
在一些实施例中,所述监控数据包括温度、压力、电压、电流中的至少一种。
另一方面,提供一种仪表识别装置。所述仪表识别装置包括:图像采集器,所述图像采集器被配置为以设定时间间隔采集监控仪表显示侧的图像;处理器,与所述图像采集器耦接,所述处理器被配置为根据所述图像采集器采集到的图像,基于图像处理算法,确定监控仪表显示的监控数据;无线收发器,与所述处理器耦接,所述无线收发器被配置为将所述处理器确定出的监控数据发送至无线网关,利用所述无线网关将所述监控数据传输至监控设备。
在一些实施例中,所述图像采集器包括:摄像头;至少两个光源,设置于所述摄像头的周侧,且沿所述摄像头的周向方向依次间隔排布。所述图像采集器被配置为:在仅关闭所述至少两个光源中的一个光源时,利用所述摄像头拍摄画面,以及,截取所述画面中与所关闭的光源对应的无光斑区域;重复上述步骤,得到与各个光源对应的无光斑区域,将所有无光斑区域组合生成所述监控仪表显示侧的图像。
又一方面,提供一种监控方法,应用于如上述任一项实施例所述的仪表监控系统。该监控方法包括:所述至少一个仪表识别装置以设定时间间隔采集监控仪表显示侧的图像;所述至少一个仪表识别装置根据所述图像,基于图像处理算法,确定监控仪表的监控数据;所述至少一个仪表识别装置将所述监控数据发送至所述无线网关,利用所述无线网关将所述监控数据传输至所述监控设备。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种仪表监控系统的结构图;
图2A为根据一些实施例的一种监控仪表的结构图;
图2B为根据一些实施例的另一种监控仪表的结构图;
图3为根据一些实施例的一种仪表识别装置的结构图;
图4A为根据一些实施例的一种图像采集器的结构图;
图4B为根据一些实施例的一种图像采集器的图像采集方法的流程图;
图5A为根据一些实施例的一种监控数据确定方法的流程图;
图5B为根据一些实施例的另一种监控数据确定方法的流程图;
图6为根据一些实施例的另一种仪表识别装置的结构图;
图7为根据一些实施例的一种仪表监控系统的监控方法的流程图;
图8为根据一些实施例的再一种仪表监控系统的监控方法的流程图;
图9为根据一些实施例的又一种仪表监控系统的监控方法的流程图;
图10为根据一些实施例的又一种仪表监控系统的监控方法的流程图;
图11为根据一些实施例的又一种仪表监控系统的监控方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
图1示出了根据一些实施例的一种仪表监控系统的示意框图。如图1所示,本公开一些实施例提供了一种仪表监控系统200,该仪表监控系统200包括至少一个仪表监控装置100、监控设备201和无线网关202。
在一些示例中,每个仪表识别装置100位于一个监控仪表的周围。例如,每个仪表识别装置100可以设置在一个监控仪表4(如图2A示出的数字监控仪表41、图2B示出的指针监控仪表42等)的数据显示侧。可以理解,此处,将仪表识别装置100设置在对应的监控仪表4的数据显示侧并非必要条件,在一些可能的实现方式中,也可将仪表识别装置100设置在监控仪表4的除数据显示侧以外的其它侧(例如监控仪表4的背侧等),此时则可以通过一些光学镜片(例如反射镜等)来使仪表识别装置100采集到监控仪表4显示侧的图像。
如图3所示,仪表识别装置100包括图像采集器1、与图像采集器1耦接的处理器2,以及与处理器2耦接的无线收发器3。其中,图像采集器1可以用于采集监控仪表显示侧的图像。在另一些可能的实现方式中,也可以选择仅将该图像采集器1设置在监控仪表4的数据显示侧,以便利用图像采集器1 采集监控仪表4显示侧的图像;或者,还可以将该图像采集器1设置在监控仪表4的除数据显示侧以外的其它侧,并通过一些光学镜片来使图像采集器1采集到监控仪表4显示侧的图像。因此,可以理解的是,在本公开的各个实施例中,只要保证图像采集器1能够采集到监控仪表4显示侧的图像即可,而无需对仪表识别装置100相对于监控仪表4的具体位置进行限制。
无线收发器3可以与处理器2集成在一起;或者,该无线收发器3也可以与处理器2分别单独设置。在一些示例中,该处理器2为编程为用于执行本文所描述的一个或多个操作和/或功能的微处理器。在另一些示例中,该处理器2整个或部分地由专门配置的硬件来执行(例如,由一个或多个专用集成电路(ASIC(s))来执行)。
所述图像采集器1被配置为以设定时间间隔采集监控仪表4显示侧的图像。其中,该设定时间间隔可以是固定的,也可以是变化的。也即,第一次采集和第二次采集间隔的时长可以与第二次采集和第三次采集间隔的时长相等,或者,第一次采集和第二次采集间隔的时长也可以与第二次采集和第三次采集之间间隔的时长不相等。
参见图2A和图2B,监控仪表4可以是图2A示出的数字监控仪表41,也可以是图2B示出的指针监控仪表42。该监控仪表4显示侧的图像指的是该监控仪表4显示监控数据(例如图2A中的“88.88”)一侧的图像。可以理解,对于数字监控仪表而言,如图2A所示,监控数据可以直接以数字的形式进行显示;而对于指针监控仪表而言,如图2B所示,监控数据则可以通过刻度盘421配合可相对于该刻度盘421运动的指针422进行显示。
所述处理器2被配置为根据所述图像采集器1采集到的图像,基于图像处理算法,确定监控仪表的监控数据。其中,所述监控数据包括温度、压力、电压、电流中的至少一种。
在此基础上,参见图1和图3,所述无线收发器3被配置为将所述监控数据发送至无线网关202,所述无线网关202被配置为将所述监控数据传输至监控设备201。此处,监控设备201可以是安装有监控软件的智能终端(例如手机、电脑等),可以理解,该智能终端包括处理器和显示屏等。通过处理器运行监控软件可以对接收到的所述监控数据进行整理,生成监控数据报表。通过显示屏可以显示所生成的监控数据报表。在一些示例中,智能终端中的监控软件可以在某一监控数据发生异常(例如该监控数据超出正常范围)时,利用智能终端发出提示信息。
值得指出的是,仪表识别装置100可以与监控仪表4较好的集成在一起, 例如,该仪表识别装置100可以作为监控仪表4的表盖,这样使得仪表识别装置100和监控仪表4之间彼此起到一定的保护作用,使得仪表识别装置100和监控仪表4均不容易受到外界环境的影响(如风雨雷电等天气原因产生的影响)。其中,仪表识别装置100与监控仪表4之间可以是固定连接(如焊接等),也可以是可拆卸连接(如可转动连接、可滑动连接等),或者还可以不连接(即仪表识别装置100与监控仪表4可以分别固定在不同的物体上,只要保证两者的相对位置使仪表识别装置100可以采集到监控仪表4显示侧的图像即可),本公开各实施例对此不进行限制。
该仪表监控系统200相较于人工抄表的方式而言,可以大幅降低人工成本,提高监控频率以及监控数据的准确性。相较于机器人巡检的方式而言,由于不容易受到外界环境的影响,因此仍能够有效的提高监控频率以及监控数据的准确性,而且具有成本低的优势。
此外,由于仪表识别装置100既可以利用图像采集器1实现图像采集,又可以利用处理器2对采集到的图像进行识别以确定监控数据,最后只需要将所确定的监控数据通过无线收发器3发送至无线网关202,利用无线网关202将所确定监控数据传输至监控设备201。因此,待处理数据(如采集到的图像)只需要由图像采集器1传输至处理器2即可,传输过程中耗时较少,这使得数据处理的时效性增加。并且,由于无需将该待处理数据上传至监控设备201及无线网关202,因此降低了上传所用的网络带宽,也即降低了网络负载,进而有利于提高上传速度,时效性较好。与此同时,还有利于减少对监控设备201及无线网关202的资源的占用,从而减小了监控设备201及无线网关202的运行负担。
在上述仪表识别装置100中,所述图像采集器1的结构形式以及利用该图像采集器1采集图像的方式有多种,下面通过一些实施例对此进行描述。
图4A示出了根据一些实施例的一种图像采集器1的结构图;图4B示出了根据一些实施例的一种图像采集器1的图像采集方法的流程图。
在一些实施例中,如图4A所示,该图像采集器1包括摄像头11和至少两个光源12。所述至少两个光源12设置于所述摄像头11的周侧,且沿所述摄像头11的周向方向依次间隔排布。
如图4B所示,所述图像采集器1被配置为:
S11、在仅关闭所述至少两个光源12中的一个光源12时,利用所述摄像头11拍摄画面,以及,截取所述画面中与所关闭的光源对应的无光斑区域(例如图4A所示,在上下左右四个光源12中:如果仅关闭其中某一光源12(例 如位于下方的光源12),则可以将该光源12所在的扇形区域作为截取的无光斑区域)。
S12、重复上述步骤,得到与各个光源对应的无光斑区域(例如图4A的示例中可以得到四个无光斑区域),将所有无光斑区域组合生成所述监控仪表显示侧的图像。这样设计,使得所得到的图像中不容易出现比较亮的光斑,可以避免光斑对原始采集图像中指针位置等关键区域的破坏,进而保证后续图像处理获得监控数据的准确性。
示例性的,所述至少两个光源12等间隔分布。例如,在图4A中,四个光源12等间隔分布。当然,本公开各个实施例中的光源数量不局限于四个。在实际应用中,对于不同大小的监控仪表而言,可以设置不同数量的光源12,以满足照明需求,进而实现采集到更清晰的图像。
对于该仪表识别装置100而言,所述处理器2根据所述图像采集器1采集到的图像,基于图像处理算法,确定监控仪表4的监控数据的方式有多种,下面通过一些实施例对此进行描述。
在一些实施例中,参见图2B,所述监控仪表4为指针监控仪表42,所述指针监控仪表42包括刻度盘421和可相对于刻度盘421运动的指针422。
如图5A所示,所述根据所述图像采集器采集到的图像,基于图像处理算法,确定监控仪表显示的监控数据,包括以下步骤:
S21、根据所述图像确定所述指针422的位置信息。示例性的,可以对所述图像进行二值化处理,然后基于二值化处理后的图像来确定所述指针的位置信息,这样有利于提高所确定的指针位置信息的准确性。
S22、根据所述指针422的位置信息,以及所述指针422的位置信息与所述刻度盘421的刻度值之间的对应关系,确定与所确定的位置信息对应的刻度值。
S23、将所确定的刻度值作为与所述图像对应的监控数据。
其中,所述指针422的位置信息与所述刻度盘421的刻度值之间的对应关系,可以预先存储在该仪表识别装置100中。
或者,所述指针422的位置信息与所述刻度盘421的刻度值之间的对应关系也可以利用处理器2根据采集到的图像来进行确定。例如,参见图2B,处理器2可以根据采集到的图像确定所述刻度盘421的起始刻度值(如图2B中的“0”)和所述指针422的起始位置,以及所述刻度盘421的终点刻度值(如图2B中的“10”)和所述指针422的终点位置。其中,所述指针422的起始位置对应所述刻度盘421的起始刻度值,所述指针422的终点位置对应 所述刻度盘421的终点刻度值。由于所述刻度盘421中任意相邻两个刻度值之间的距离相等,因此,所述指针422的起始位置到所述指针422的终点位置所经过的区域按照刻度值的总数进行平均分配,则可以确定与各个刻度值对应的指针422的位置。
在一些可能的实现方式中,如图2B所示,所述指针422可以围绕一个固定点转动。此时,所述指针422的位置信息可以是指该指针422的当前位置与该指针的初始位置之间的夹角度数。
在另一些可能的实现方式中,所述指针可以整体沿一个方向滑动。此时,所述指针422的位置信息可以是指该指针422的当前位置与该指针的初始位置之间的间距。
在另一些实施例中,如图5B所示,所述根据所述图像采集器采集到的图像,基于图像处理算法,确定监控仪表显示的监控数据,包括以下步骤:
S21′、将所述图像输入至已训练的神经网络模型;
S22′、利用所述神经网络模型计算得到与所述图像对应的监控数据。
其中,所述神经网络模型基于历史图像数据进行训练得到。此处,神经网络模型指的是利用一定的算法(如机器学习算法)进行计算的算法结构。
示例性的,在对神经网络模型进行训练期间,主要包括以下步骤:选择网络拓扑;使用表示被网络建模的问题的一组训练数据;以及调节权重,直到网络模型针对训练数据集的所有实例表现为具有最小误差。例如,在用于神经网络的监督式学习训练过程期间,将由网络响应于表示训练数据集中的实例的输入所产生的输出与该实例的“正确”的已标记输出相比较;计算表示所述输出与已标记输出之间的差异的误差信号;以及当将误差信号向后传播穿过网络的层时,调节与所述连接相关联的权重以最小化该误差。当从训练数据集的实例中生成的每个输出的误差被最小化时,该神经网络模型被视为“已经过训练”,并可以用于人工智能推理任务。
通过对大量训练样本(即历史图像数据)进行多次的迭代和计算,提取出这些训练样本的特定特征,最终得到能够在具有该特定特征的数据集上收敛的算法结构和参数值等,也即,得到能够识别具有特定特征的数据的神经网络模型,从而可以利用该神经网络模型输出与所述图像对应的监控数据。
其中,该神经网络模型可以为前馈神经网络模型、卷积神经网络(Convolutional Neural Network,简称为CNN)模型、循环神经网络(RNN,Recurrent Neural Network)模型、生成式对抗网络(GAN,Generative Adversarial Network)模型等,但不限于此,也可以采用本领域技术人员公知的其它神经 网络模型。
在本公开的一些实施例中,如图6所示,该仪表识别装置100还包括电池5。该电池5可以向该仪表识别装置100中的各个部件(例如图像采集器1、处理器2和无线收发器3)提供电力。这样设置,使得该仪表识别装置100无需向外引出电源线束,进而使得该仪表识别装置100可以适用于多种复杂场景(例如远离市电的位置等)中。
其中,需要说明的是,本公开不对电池5的类型进行限制,例如该电池5可以是普通的充电电池,也可以是太阳能充电电池,或者还可以是一次性电池。
在该仪表识别装置100包括电池5的情况下,示例性的,所述处理器2还被配置为:获取电池5的剩余电量;通过无线收发器3将电池5的剩余电量随监控数据一起发送至无线网关,以利用无线网关202将电池5的剩余电量和监控数据一起传输至监控设备201。
这样设置,可以对电池5的剩余电量进行监控,以便于在电池5中的电量用完之前及时地进行更换或充电,进而可以防止该仪表识别装置100因此电池5没电而停止工作。
在本公开的一些实施例中,参见图1、图2A、图2B、图3和图7:
S31、所述处理器2还被配置为:获取监控仪表4的身份信息、仪表识别装置100的地址信息、以及与所述监控数据对应的采集时刻中的至少一者。
其中,需要说明的是,对于采集一次监控仪表4显示侧的图像而言,如果只利用所述摄像头11拍摄一个画面,则该对应于监控数据的采集时刻可以是拍摄该一个画面的时刻;如果利用所述摄像头11拍摄了多个画面的,则对应于监控数据的采集时刻例如可以是拍摄该多个画面的中间时刻,或者也可以是拍摄该多个画面的最后时刻。
仪表识别装置100的地址信息可以是IP地址(Internet Protocol Address)。
监控仪表4的身份信息可以是站位编号,例如,在一个厂区布置有M个监控仪表4的情况下,M个监控仪表4可以依次编号为1~M,M为大于或等于2的正整数。此处,既可以是通过硬件的方式对监控仪表4进行编号,也可以是通过软件的方式对监控仪表4进行编号。
S32、所述无线收发器3被配置为:将监控仪表4的身份信息和仪表识别装置100的地址信息、以及与所述监控数据对应的采集时刻中的至少一者随监控数据一起发送至无线网关202。
S33、所述无线网关202将监控仪表4的身份信息、仪表识别装置100的 地址信息、以及与所述监控数据对应的采集时刻中的至少一者随监控数据一起传输至监控设备201。
这样设置,监控设备201可以根据监控仪表4的身份信息和仪表识别装置100的地址信息、以及与所述监控数据对应的采集时刻中的至少一者对相应的监控数据进行分类和汇总。
此处,需要说明的是,在监控设备201中存储有更新指令的情况下,处理器2还可以被配置为:在将监控数据发送至无线网关202的同时,通过无线收发器3接收监控设备201通过无线网关202发出的更新指令。这样使得仪表识别装置100可以在上传数据的同时实现接收更新指令。其中,更新指令可以包括所述图像采集器1的参数更新指令等,例如摄像头的参数和光源亮度等。
在一些实施例中,如图8所示,所述处理器2还被配置为:
S41、判断所述设定时间间隔是否大于或等于预设时间间隔。其中,该预设时间间隔可以是1小时,或者也可以是其它时间间隔,例如100分钟、120分钟等。
S42、若该设定时间间隔大于或等于预设时间间隔,则在相邻两个采集时刻之间通过无线收发器3与无线网关202建立至少一次通信连接。
这样设计,可以在相邻两次采集时刻间隔时间过长的情况下,确定无线收发器3是否可以与无线网关202进行正常通信,进而不容易出现仪表识别装置100长时间故障且未被发现的情况,提高了整个监控期间的安全性。
在此基础上,示例性的,可以利用该至少一次通信连接将相邻两个采集时刻之间的时长均匀分隔。例如,在相邻两个采集时刻之间的时长为90分钟、且相邻两个采集时刻之间建立两次通信连接时,可以每隔30分钟建立一次通信连接,以达到更好的故障排除效果。
在另一些实施例中,如图9所示,所述处理器2还被配置为:
S51、判断所述设定时间间隔是否大于或等于预设时间间隔。同样的,该预设时间间隔可以是1小时,或者也可以是其它时间间隔,例如100分钟、120分钟等。
S52、若该设定时间间隔大于或等于预设时间间隔,则在各个整点时刻通过所述无线收发器与所述无线网关建立通信连接。
这样设计,可以在相邻两次采集时刻间隔时间过长的情况下,确定无线收发器3是否可以与无线网关202进行正常通信,进而不容易出现仪表识别装置100长时间故障且未被发现的情况,提高了整个监控期间的安全性。
值得指出的是,由于在该另一些实施例中,判断出设定时间间隔大于预设时间间隔(也即表示相邻两次采集时刻间隔时间过长,例如相邻两次采集时刻间隔时间大于或等于1小时)时,直接在各个整点时刻建立通信连接,无需通过计算来得到建立通信连接的时刻,因此减小了逻辑设计的复杂度,同时保证了通信的稳定性以及故障的及时发现。
在此基础上,示例性的,该处理器2还可以被配置为:对于任一整点时刻,确定所述整点时刻到上一采集时刻的时长是否大于或等于预设时长;例如该预设时长可以为5分钟~15分钟。若是,则在所述整点时刻通过所述无线收发器与所述无线网关建立通信连接。若否,则不在所述整点时刻通过所述无线收发器与所述无线网关建立通信连接。
这样设计,使得仪表识别装置100在将监控数据发送至无线网关202后的一段时间内,不会与无线网关202建立通信连接,从而不易出现仪表识别装置100与无线网关202频繁地进行通信的情况。
仪表识别装置100在通过无线收发器3与无线网关202建立通信连接期间,示例性的,仪表识别装置100还可以通过无线收发器3接收监控设备201通过无线网关202发出的如上所述的更新指令。该更新指令例如还可以包括所述设定时间间隔的更新指令、所述预设时间间隔的更新指令和所述预设时长的更新指令等。
该仪表识别装置100在休眠状态(即,不上传监控数据、也不建立上述通信连接的状态)下,是不接收更新指令,此时更新指令可以预先存储在监控设备201中,等到仪表识别装置100向无线网关202发送监控数据或者仪表识别装置100与无线网关202建立通信连接时,监控设备201再将该更新指令传输至无线网关202,利用无线网关202发送至对应的仪表识别装置100,从而实现低功耗运行。
基于此,在所述监控设备201中存储有更新指令的情况下,示例性的,所述监控设备201被配置为:在接收仪表识别装置100发送的监控数据时,通过无线网关202向仪表识别装置100发送更新指令;和/或,在仪表识别装置100与无线网关202建立通信连接时,通过无线网关202向仪表识别装置100发送更新指令。其中,更新指令例如可以包括如上所述的图像采集器1的参数更新指令(如摄像头的参数和光源亮度等)、设定时间间隔的更新指令、预设时间间隔的更新指令和预设时长的更新指令等。
这样设置,使得仪表识别装置100在休眠状态(即,不上传监控数据、也不建立上述通信连接的状态)下,可以不接收更新指令,此时更新指令可 以暂时存储在监控设备201中,等到仪表识别装置100向无线网关202发送监控数据或者仪表识别装置100与无线网关202建立通信连接时,监控设备201再将该更新指令传输至无线网关202,利用无线网关202发送至对应的仪表识别装置100,从而实现低功耗运行。
在一些实施例中,所述监控设备201还被配置为:对所有仪表识别装置100反馈的监控信息进行汇总,生成监控数据报表。其中,所述监控信息包括仪表识别装置100的监控数据、与所述监控数据对应采集时刻、监控仪表4的身份信息、仪表识别装置100的地址信息和仪表识别装置100的电池剩余电量中的至少一种。
这样设计,可以更直观的呈现出与各个监控仪表对应的监控信息,从而达到方便查看各个监控仪表的监控数据的目的。此外,值得指出的是,由于监控设备201被配置为直接接收监控信息,并将接收到的监控信息进行汇总,生成监控数据报表,而不需要对仪表识别装置100采集到的待处理数据(例如监控仪表显示侧的图像)进行处理来生成监控数据,因此,减少了对监控设备201及无线网关202的资源的占用,从而减小了监控设备201及无线网关202的运行负担。
基于上述仪表监控系统200的技术方案,如图3所示,本公开一些实施例提供了一种仪表识别装置100,该仪表识别装置100可以为如上所述的任一实施例中的仪表识别装置100。因此该仪表识别装置100具有如上所述的全部有益效果。
图10示出了根据一些实施例的一种监控方法的流程图。如图10所示,本公开一些实施例提供了一种监控方法,该监控方法可以应用于上述任一项实施例所述的仪表监控系统中。
参见图3和图10,该监控方法包括:
S61、所述至少一个仪表识别装置100以设定时间间隔采集监控仪表显示侧的图像。
S62、所述至少一个仪表识别装置100根据所述图像确定监控仪表的监控数据。
S63、所述至少一个仪表识别装置100将所述监控数据发送至所述无线网关202,利用所述无线网关202将所述监控数据传输至所述监控设备201。
该监控方法相较于人工抄表的方式而言,可以大幅降低人工成本,提高监控频率以及监控数据的准确性。相较于机器人巡检的方式而言,由于不容易受到外界环境的影响,因此仍能够有效的提高监控频率以及监控数据的准 确性,而且具有成本低的优势。
此外,由于该监控方法既可以利用仪表识别装置100实现图像采集,又可以利用仪表识别装置100对采集到的图像进行识别以确定监控数据,最后只需要将所确定的监控数据发送至无线网关202,利用无线网关202将所确定监控数据传输至监控设备201,因此,待处理数据(如采集到的图像)只需要在仪表识别装置100的内部部件(例如图像采集器与处理器)之间传输并处理,传输过程中耗时较少,这使得数据处理的时效性增加。并且,由于无需将该待处理数据上传至监控设备201及无线网关202,因此降低了上传所用的网络带宽,也即降低了网络负载,进而有利于提高上传速度,时效性较好。与此同时,还有利于减少对监控设备201及无线网关202的资源的占用,从而减小了监控设备201及无线网关202的运行负担。
在所述监控设备201中存储有更新指令的情况下,示例性的,如图11所示,所述监控方法还包括:
S64、所述监控设备201在接收到仪表识别装置100发送的所述监控数据时,通过无线网关202向所述仪表识别装置100发送更新指令;和/或,所述监控设备201在所述仪表识别装置100与所述无线网关202建立通信连接时,通过所述无线网关202向所述仪表识别装置100发送更新指令。
这样设置,使得仪表识别装置100在休眠状态(即,不上传监控数据、也不建立上述通信连接的状态)下,可以不接收更新指令,此时更新指令可以暂时存储在监控设备201中,等到仪表识别装置100向无线网关202发送监控数据或者仪表识别装置100与无线网关202建立通信连接时,监控设备201再将该更新指令传输至无线网关202,利用无线网关202发送至对应的仪表识别装置100,从而实现低功耗运行。
在一些实施例中,如图11所示,所述监控方法还包括:
S65、监控设备201对所有仪表识别装置100反馈的监控信息进行汇总,生成监控数据报表。其中,所述监控信息包括仪表识别装置100的监控数据、与所述监控数据对应的采集时刻、监控仪表4的身份信息、仪表识别装置100的地址信息和仪表识别装置100的电池剩余电量中的至少一种。
这样设计,可以更直观的呈现出与各个监控仪表对应的监控信息,从而达到方便查看各个监控仪表的监控数据的目的。此外,值得指出的是,由于监控设备201被配置为直接接收监控信息,并将接收到的监控信息进行汇总,生成监控数据报表,而不需要对仪表识别装置100采集到的待处理数据(例如监控仪表显示侧的图像)进行处理来生成监控数据,因此,减少了对监控 设备201及无线网关202的资源的占用,从而减小了监控设备201及无线网关202的运行负担。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种仪表监控系统,包括:
    至少一个仪表识别装置,所述仪表识别装置包括:
    图像采集器,所述图像采集器被配置为以设定时间间隔采集监控仪表显示侧的图像;
    处理器,与所述图像采集器耦接,所述处理器被配置为根据所述图像采集器采集到的图像,基于图像处理算法,确定监控仪表显示的监控数据;
    无线收发器,与所述处理器耦接,所述无线收发器被配置为将所述处理器确定出的监控数据发送至无线网关;
    所述无线网关和监控设备,所述无线网关被配置为将接收到的监控数据传输至所述监控设备。
  2. 根据权利要求1所述的仪表监控系统,其中,所述图像采集器包括:
    摄像头;
    至少两个光源,设置于所述摄像头的周侧,且沿所述摄像头的周向方向依次间隔排布;
    所述图像采集器被配置为:
    在仅关闭所述至少两个光源中的一个光源时,利用所述摄像头拍摄画面,以及,截取所述画面中与所关闭的光源对应的无光斑区域;
    重复上述步骤,得到与各个光源对应的无光斑区域,将所有无光斑区域组合生成所述监控仪表显示侧的图像。
  3. 根据权利要求2所述的仪表监控系统,其中,
    所述至少两个光源等间隔分布。
  4. 根据权利要求1~3中任一项所述的仪表监控系统,其中,所述监控仪表为指针监控仪表,所述指针监控仪表包括刻度盘和可相对于刻度盘运动的指针;
    所述根据所述图像采集器采集到的图像,基于图像处理算法,确定监控仪表显示的监控数据,包括以下步骤:
    根据所述图像确定所述指针的位置信息;
    根据所述指针的位置信息,以及所述指针的位置信息与所述刻度盘的刻度值之间的对应关系,确定与所确定的位置信息对应的刻度值;
    将所确定的刻度值作为与所述图像对应的监控数据。
  5. 根据权利要求1~3中任一项所述的仪表监控系统,其中,所述根据所述图像采集器采集到的图像,基于图像处理算法,确定监控仪表显示的监控 数据,包括以下步骤:
    将所述图像输入至已训练的神经网络模型;
    利用所述神经网络模型计算得到与所述图像对应的监控数据;
    其中,所述神经网络模型基于历史图像数据进行训练得到。
  6. 根据权利要求1~5中任一项所述的仪表监控系统,其中,
    所述处理器还被配置为:获取所述监控仪表的身份信息、所述仪表识别装置的地址信息、以及与所述监控数据对应的采集时刻中的至少一者;
    所述无线收发器被配置为:将所述监控仪表的身份信息、所述仪表识别装置的地址信息、以及与所述监控数据对应的采集时刻中的至少一者随所述监控数据一起发送至所述无线网关;
    所述无线网关被配置为:将所述监控仪表的身份信息、所述仪表识别装置的地址信息、以及与所述监控数据对应的采集时刻中的至少一者随所述监控数据一起传输至所述监控设备。
  7. 根据权利要求1~6中任一项所述的仪表监控系统,其中,所述处理器还被配置为:
    判断所述设定时间间隔是否大于或等于预设时间间隔;
    若所述设定时间间隔大于或等于所述预设时间间隔,则在相邻两个采集时刻之间通过所述无线收发器与所述无线网关建立至少一次通信连接。
  8. 根据权利要求7所述的仪表监控系统,其中,所述处理器还被配置为:
    判断所述设定时间间隔是否大于或等于预设时间间隔;
    若所述设定时间间隔大于或等于所述预设时间间隔,则在各个整点时刻通过所述无线收发器与所述无线网关建立通信连接。
  9. 根据权利要求8所述的仪表监控系统,其中,所述处理器还被配置为:
    对于任一整点时刻,确定所述整点时刻到上一采集时刻的时长是否大于或等于预设时长;
    若是,则在所述整点时刻通过所述无线收发器与所述无线网关建立通信连接;
    若否,则不在所述整点时刻通过所述无线收发器与所述无线网关建立通信连接。
  10. 根据权利要求1~9中任一项所述的仪表监控系统,其中,在所述监控设备中存储有更新指令的情况下,所述监控设备被配置为:
    在接收所述仪表识别装置发送的所述监控数据时,通过所述无线网关向所述仪表识别装置发送更新指令;和/或,在所述仪表识别装置与所述无线网 关建立通信连接时,通过所述无线网关向所述仪表识别装置发送更新指令。
  11. 根据权利要求1~10中任一项所述的仪表监控系统,其中,所述监控设备还被配置为:对所有所述仪表识别装置反馈的监控信息进行汇总,生成监控数据报表;
    其中,所述监控信息包括所述仪表识别装置的监控数据、与所述监控数据对应的采集时刻、所述监控仪表的身份信息、所述仪表识别装置的地址信息和所述仪表识别装置的电池剩余电量中的至少一种。
  12. 根据权利要求1~11中任一项所述的仪表监控系统,其中,
    所述监控数据包括温度、压力、电压、电流中的至少一种。
  13. 一种仪表识别装置,包括:
    图像采集器,所述图像采集器被配置为以设定时间间隔采集监控仪表显示侧的图像;
    处理器,与所述图像采集器耦接,所述处理器被配置为根据所述图像采集器采集到的图像,基于图像处理算法,确定监控仪表显示的监控数据;
    无线收发器,与所述处理器耦接,所述无线收发器被配置为将所述处理器确定出的监控数据发送至无线网关,利用所述无线网关将所述监控数据传输至监控设备。
  14. 根据权利要求13所述的仪表识别装置,其中,所述图像采集器包括:
    摄像头;
    至少两个光源,设置于所述摄像头的周侧,且沿所述摄像头的周向方向依次间隔排布;
    所述图像采集器被配置为:
    在仅关闭所述至少两个光源中的一个光源时,利用所述摄像头拍摄画面,以及,截取所述画面中与所关闭的光源对应的无光斑区域;
    重复上述步骤,得到与各个光源对应的无光斑区域,将所有无光斑区域组合生成所述监控仪表显示侧的图像。
  15. 一种监控方法,应用于如权利要求1~12中任一项所述的仪表监控系统,包括:
    所述至少一个仪表识别装置以设定时间间隔采集监控仪表显示侧的图像;
    所述至少一个仪表识别装置根据所述图像,基于图像处理算法,确定监控仪表的监控数据;
    所述至少一个仪表识别装置将所述监控数据发送至所述无线网关,利用 所述无线网关将所述监控数据传输至所述监控设备。
PCT/CN2021/104523 2020-08-28 2021-07-05 仪表识别装置、仪表监控系统及其监控方法 WO2022042045A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/790,362 US20230045188A1 (en) 2020-08-28 2021-07-05 Meter recognition apparatus, meter monitoring system, and monitoring method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010890099.2A CN114202910A (zh) 2020-08-28 2020-08-28 仪表识别装置、仪表监控系统及其监控方法
CN202010890099.2 2020-08-28

Publications (1)

Publication Number Publication Date
WO2022042045A1 true WO2022042045A1 (zh) 2022-03-03

Family

ID=80352551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104523 WO2022042045A1 (zh) 2020-08-28 2021-07-05 仪表识别装置、仪表监控系统及其监控方法

Country Status (3)

Country Link
US (1) US20230045188A1 (zh)
CN (1) CN114202910A (zh)
WO (1) WO2022042045A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117075556B (zh) * 2023-08-25 2024-05-14 安徽鸿凌智能仪表科技有限公司 一种基于物联网的智能仪表装配方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272076A (ja) * 2002-03-14 2003-09-26 Osaka Gas Co Ltd 検針方法
CN201955891U (zh) * 2011-01-20 2011-08-31 浙江海洋学院 基于图像识别技术的智能直读式自动抄表系统
JP2012038195A (ja) * 2010-08-10 2012-02-23 Nec System Technologies Ltd 電力遠隔計測装置、電力遠隔計測システム、電力遠隔計測方法およびプログラム
TW201349129A (zh) * 2012-05-25 2013-12-01 Ming-Gong Yang 遠端讀錶辨識系統及其辨識方法
CN104678963A (zh) * 2015-02-03 2015-06-03 葛武 一种基于计算机视觉的采集仪表设备信息的系统及方法
CN107135372A (zh) * 2017-03-29 2017-09-05 浙江大学 一种基于图像识别的仪表实时监控系统及方法
KR101985712B1 (ko) * 2018-12-13 2019-06-04 주식회사 버넥트 머신 비전 기반의 비접촉방식의 계측기 정보 수집방법 및 이를 이용한 원격 모니터링 시스템
CN110059622A (zh) * 2019-04-18 2019-07-26 华北电力大学(保定) 一种基于无线传感器网络的指针式仪表示值识别系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104376545B (zh) * 2013-08-16 2018-12-14 联想(北京)有限公司 一种信息处理的方法及一种电子设备
CN103605959A (zh) * 2013-11-15 2014-02-26 武汉虹识技术有限公司 一种虹膜图像去除光斑的方法及装置
CN104913797A (zh) * 2015-05-29 2015-09-16 广州供电局有限公司 指针式仪表的读数识别方法及系统
CN106526345A (zh) * 2015-09-11 2017-03-22 张大堃 一种线路避雷器在线监测仪的远程状态监测系统
CN206110872U (zh) * 2016-07-21 2017-04-19 杭州海康威视数字技术股份有限公司 一种智能门锁系统
CN208520404U (zh) * 2018-04-24 2019-02-19 北京拓盛智联技术有限公司 一种智能巡检系统
CN111368823B (zh) * 2018-12-26 2023-06-23 沈阳新松机器人自动化股份有限公司 一种指针式仪表读数识别方法及装置
CN110929723B (zh) * 2019-11-20 2022-12-02 汕头大学 一种基于卷积神经网络的变电站指针式仪表的识别方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272076A (ja) * 2002-03-14 2003-09-26 Osaka Gas Co Ltd 検針方法
JP2012038195A (ja) * 2010-08-10 2012-02-23 Nec System Technologies Ltd 電力遠隔計測装置、電力遠隔計測システム、電力遠隔計測方法およびプログラム
CN201955891U (zh) * 2011-01-20 2011-08-31 浙江海洋学院 基于图像识别技术的智能直读式自动抄表系统
TW201349129A (zh) * 2012-05-25 2013-12-01 Ming-Gong Yang 遠端讀錶辨識系統及其辨識方法
CN104678963A (zh) * 2015-02-03 2015-06-03 葛武 一种基于计算机视觉的采集仪表设备信息的系统及方法
CN107135372A (zh) * 2017-03-29 2017-09-05 浙江大学 一种基于图像识别的仪表实时监控系统及方法
KR101985712B1 (ko) * 2018-12-13 2019-06-04 주식회사 버넥트 머신 비전 기반의 비접촉방식의 계측기 정보 수집방법 및 이를 이용한 원격 모니터링 시스템
CN110059622A (zh) * 2019-04-18 2019-07-26 华北电力大学(保定) 一种基于无线传感器网络的指针式仪表示值识别系统

Also Published As

Publication number Publication date
US20230045188A1 (en) 2023-02-09
CN114202910A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
US20210389293A1 (en) Methods and Systems for Water Area Pollution Intelligent Monitoring and Analysis
CN108890652B (zh) 一种变电站巡检机器人及变电站设备巡检方法
US20150356371A1 (en) Detecting camera conditions to initiate camera maintenance
US20190286985A1 (en) Real-time Monitoring
CN110427882A (zh) 用于巡视的智能分析方法、装置、设备及其存储介质
WO2022135539A1 (zh) 设备配置参数处理方法和装置、数据分析方法和装置、计算设备、计算机可读存储介质、以及计算机程序产品
CN109982037A (zh) 智能巡检装置
WO2022042045A1 (zh) 仪表识别装置、仪表监控系统及其监控方法
CN108764278A (zh) 一种基于视觉的自学习工业智能检测系统及方法
CN108712638A (zh) 一种燃烧秸秆监管系统及方法
JP2020531014A (ja) 植物健康状態の監視方法及び装置
CN110220589A (zh) 一种噪音在线检测装置及系统
CN111726576A (zh) 无人机巡检方法、装置、系统及存储介质
CN110941558A (zh) 一种智慧办公远程运维的方法及系统
CN205408031U (zh) 一种输变配电设备的智能监控系统
CN106197683B (zh) 一种便携智能红外测温系统
CN204791453U (zh) 一种基于红外成像测温的电力设备自动巡检与预警系统
CN107358343A (zh) 基于图像数据特征差异性的电力工程安全预警方法
CN103326267B (zh) 一种变电站巡检方法及系统
CN110751055A (zh) 一种智能制造系统
TWI722338B (zh) 智能資訊讀取方法、裝置與系統
CN114202738A (zh) 基于边缘计算和人工智能的电网监拍方法、装置及设备
CN113282123A (zh) 一种智能化建筑室内环境监控系统
TWM584502U (zh) 設備稼動率及異常偵測系統
CN110944159A (zh) 一种信息处理方法、电子设备以及信息处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21859885

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21859885

Country of ref document: EP

Kind code of ref document: A1