WO2022042009A1 - 音频数据的处理方法、装置及音箱系统 - Google Patents

音频数据的处理方法、装置及音箱系统 Download PDF

Info

Publication number
WO2022042009A1
WO2022042009A1 PCT/CN2021/103324 CN2021103324W WO2022042009A1 WO 2022042009 A1 WO2022042009 A1 WO 2022042009A1 CN 2021103324 W CN2021103324 W CN 2021103324W WO 2022042009 A1 WO2022042009 A1 WO 2022042009A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
speaker
full
low
audio data
Prior art date
Application number
PCT/CN2021/103324
Other languages
English (en)
French (fr)
Inventor
陈志鹏
李江
彭世强
赵翔宇
范泛
李海婷
王提政
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023513303A priority Critical patent/JP2023538939A/ja
Priority to KR1020237009507A priority patent/KR20230054426A/ko
Priority to EP21859851.4A priority patent/EP4195695A4/en
Publication of WO2022042009A1 publication Critical patent/WO2022042009A1/zh
Priority to US18/173,625 priority patent/US20230199369A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/26Spatial arrangements of separate transducers responsive to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/028Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/283Enclosures comprising vibrating or resonating arrangements using a passive diaphragm
    • H04R1/2834Enclosures comprising vibrating or resonating arrangements using a passive diaphragm for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/02Details casings, cabinets or mounting therein for transducers covered by H04R1/02 but not provided for in any of its subgroups
    • H04R2201/028Structural combinations of loudspeakers with built-in power amplifiers, e.g. in the same acoustic enclosure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2203/00Details of circuits for transducers, loudspeakers or microphones covered by H04R3/00 but not provided for in any of its subgroups
    • H04R2203/12Beamforming aspects for stereophonic sound reproduction with loudspeaker arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2205/00Details of stereophonic arrangements covered by H04R5/00 but not provided for in any of its subgroups
    • H04R2205/021Aspects relating to docking-station type assemblies to obtain an acoustical effect, e.g. the type of connection to external loudspeakers or housings, frequency improvement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2205/00Details of stereophonic arrangements covered by H04R5/00 but not provided for in any of its subgroups
    • H04R2205/022Plurality of transducers corresponding to a plurality of sound channels in each earpiece of headphones or in a single enclosure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2205/00Details of stereophonic arrangements covered by H04R5/00 but not provided for in any of its subgroups
    • H04R2205/026Single (sub)woofer with two or more satellite loudspeakers for mid- and high-frequency band reproduction driven via the (sub)woofer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/09Applications of special connectors, e.g. USB, XLR, in loudspeakers, microphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/07Synergistic effects of band splitting and sub-band processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/307Frequency adjustment, e.g. tone control

Definitions

  • the embodiments of the present application relate to the field of audio technology, and in particular, to a method, an apparatus, and a speaker system for processing audio data.
  • audio playback devices such as full-range speakers
  • An important performance indicator of the audio playback device is the sound quality of the audio playback device.
  • Embodiments of the present application provide an audio data processing method, device, and speaker system, which can improve the sound quality of an audio playback device.
  • an embodiment of the present application provides a full-frequency speaker, including a full-frequency speaker body and a first fixing component; the full-frequency speaker body includes M speakers, and the M speakers are distributed in a plane in the full-frequency speaker body,
  • the M loudspeakers form K pairs of acoustic dipoles, where M is a positive integer greater than 2, and K is a positive integer greater than or equal to 2.
  • the first fixing part is arranged in the preset fixing area of the main body of the full-range speaker, the first fixing part is used to physically connect or disassemble the low-frequency speaker, the first fixing part includes a first communication part, and the first communication part is used to make
  • the full-range sound box communicates with the low-frequency sound box, and the first communication component supports the transmission of multi-channel audio data. Among them, the low-frequency playback effect of low-frequency speakers is better than that of full-frequency speakers.
  • the audio data (that is, the target audio data) can be obtained by playing the audio data (that is, the target audio data) processed by the sound field expansion through the full-frequency speaker.
  • the full-frequency speaker and the low-frequency speaker are used in combination to play audio data, which can significantly improve the playback effect of the audio data, and the user can flexibly choose to use the full-frequency speaker.
  • Speakers play audio data, or use full-range speakers and low-frequency speakers to play audio data, which can meet the different needs of users.
  • the arrangement direction of the K pairs of acoustic dipoles formed by the M loudspeakers at least includes at least two directions of horizontal, vertical or oblique upward.
  • the K pairs of acoustic dipoles at least include at least two kinds of acoustic dipoles among the acoustic dipoles in the horizontal direction, the acoustic dipoles in the vertical direction or the acoustic dipoles in the oblique upward direction.
  • the above-mentioned horizontal direction refers to the direction parallel to the vertical projection of the main body of the full-range speaker
  • the above-mentioned vertical direction is the direction perpendicular to the vertical projection of the main body of the full-range speaker.
  • the above-mentioned oblique upward direction may include a variety of different preset directions, and different preset directions have different angles from the horizontal direction.
  • the preset direction here can be understood as the direction pointing to the sky at different angles (referred to as the sky direction) .
  • each pair of acoustic dipoles corresponds to a pair of speakers, and at least two pairs of acoustic dipoles in the above K pairs of acoustic dipoles satisfy the following conditions: d i ⁇ d j ; wherein, d i is the distance between the two loudspeakers constituting the ith pair of acoustic dipoles, d j is the distance between the two loudspeaker pairs constituting the jth pair of acoustic dipoles, i and j are 1, 2, ... ..., a value in K, and i ⁇ j, K is a positive integer greater than or equal to 2.
  • the two speakers constituting the ith pair of acoustic dipoles are used to play the first frequency band of the target audio data
  • the two speakers constituting the jth pair of acoustic dipoles are used to play the second frequency band of the target audio data
  • the first The frequency band and the second frequency band are different frequency bands.
  • the center frequency of the audio data that can be played by the two speakers constituting the ith pair of acoustic dipoles is smaller than that of the two speakers constituting the jth pair of acoustic dipoles.
  • the center frequency of the audio data that can be played is smaller than that of the two speakers constituting the jth pair of acoustic dipoles.
  • the frequency band of the audio data played by the speaker pair constituting a pair of acoustic dipoles is related to the distance between the two speakers included in the speaker pair. Specifically, the center frequency of audio data played by two speakers constituting a pair of acoustic dipoles decreases as the distance between the speakers increases. For a speaker pair with a smaller distance, the speaker has a better effect on playing audio data in the high frequency band.
  • the distances between the two speakers of the speaker pairs constituting the multiple pairs of acoustic dipoles are the same or different. Playing audio data of different frequency bands through pairs of speakers at different distances can create sound field effects in different frequency bands.
  • a loudspeaker may be multiplexed in one or more pairs of acoustic dipoles.
  • At least one of the above-mentioned M speakers is provided with a passive membrane, and the passive membrane is used to expand the low-frequency response of the speaker.
  • each speaker in the at least one speaker corresponds to a passive film, and the passive film is attached to the back of the cavity of the speaker.
  • each speaker in the at least one speaker corresponds to two passive membranes, and the two passive membranes are respectively located on the sides of the cavity of the speaker.
  • the effective resonance area of the passive film is further increased, thereby significantly improving the bass sound quality of the full-range speaker.
  • the full-range sound box provided by the embodiment of the present application further includes N speakers, where N is a positive integer, N is less than or equal to M, and the N speakers are back-to-back with the N speakers in the above-mentioned M speakers respectively. set up to form N back-to-back speaker pairs.
  • the M speakers face the first plane
  • the N speakers face the second plane
  • the first plane and the second plane are two planes perpendicular to the vertical projection of the full-range speaker
  • the first plane is parallel to the second plane.
  • the N speakers are respectively arranged face to face with the N speakers in the M speakers to form N face-to-face speaker pairs, wherein the cavities of the M speakers face the first plane, and the cavities of the N speakers face the second plane , the first plane and the second plane are two planes perpendicular to the vertical projection of the full-range speaker, and the first plane is parallel to the second plane.
  • each speaker pair in the N back-to-back speaker pairs two speakers in the speaker pair share a cavity; the cavity of at least one speaker pair in the N back-to-back speaker pairs A passive membrane is arranged on it.
  • the speaker pair corresponds to two passive membranes.
  • the two passive membranes are back-to-back and are respectively attached to the two sides of the cavity adjacent to the speaker pair.
  • the shape of the main body of the full-frequency speaker is one of the following: a ring shape, a circle shape, a tree shape or a W shape.
  • the above-mentioned first fixing component is also used to support the main body of the full-frequency speaker.
  • the first fixing part can be used as a base to support the main body of the annular sound box, so that it can be stably placed on the desktop.
  • the above-mentioned first fixing member is a first sheet-shaped member connected to the main body of the full-range speaker, and the first sheet-shaped member is used to physically connect or remove the second sheet-shaped member of the main body of the low-frequency speaker. .
  • the first fixing component is a concave component disposed in a preset fixed area of the full-range speaker body, and the concave component is used to physically connect or remove the raised component of the low-frequency speaker body.
  • the full-range sound box provided by the embodiment of the present application includes a processor and a transceiver connected to the processor.
  • the processor is used to perform multi-band filtering on the audio data to be played, and perform sound field expansion processing on the filtered audio data to be played to obtain target audio data, the intermediate frequency component and/or high frequency component of the target audio data
  • the low frequency component of the target audio data is played by the low frequency sound box, and the transceiver is used for sending the low frequency component of the target audio data to the low frequency sound box through the first communication component.
  • the above-mentioned target audio data is audio data processed by sound field expansion.
  • the audio data without sound field expansion processing is called original audio data
  • the audio data subjected to sound field expansion processing is called target audio data, that is, the original audio data is subjected to sound field expansion processing to obtain target audio data.
  • target audio data that is, the original audio data is subjected to sound field expansion processing to obtain target audio data.
  • both the original audio data and the target audio data are audio data to be played.
  • the transceiver of the full-frequency speaker is also used to receive audio data to be played, and the audio data to be played may be original audio data or components of different frequency bands of the original audio data (for example, the intermediate frequency component of the original audio data, high frequency components); the audio data to be played may also be target audio data or components of different frequency bands of the target audio data (for example, intermediate frequency components and high frequency components of the target audio data).
  • an embodiment of the present application provides a low-frequency sound box, including a low-frequency sound box body and a second fixing component; the low-frequency sound box body includes one or more low-frequency speakers, and the second fixing component is disposed in a preset fixing area of the low-frequency sound box body.
  • the second fixed part is used for physical connection or disassembly with the full-range speaker, the second fixed part includes a second communication part, the second communication part is used to make the low-frequency speaker communicate with the full-range speaker, and the second communication part supports the transmission of multiple sound channel audio data.
  • the low-frequency playback effect of the low-frequency speaker is better than that of the full-frequency speaker, and the frequency range of the full-frequency speaker is greater than the frequency range of the low-frequency speaker.
  • the low-frequency components of the audio data are played through one or more speakers of the low-frequency sound box, and the bass sound quality of the audio data can be improved.
  • the low-frequency sound box can be connected to the full-frequency sound box through the second communication component, and used in combination with the full-frequency sound box.
  • Speakers are played by full-frequency speakers.
  • the combination of full-frequency speakers and low-frequency speakers can improve the playback effect of audio data, and users can flexibly choose to use full-frequency speakers to play audio data, or use full-frequency speakers and low-frequency speakers to play audio. Data can meet the different needs of users.
  • the shape of the main body of the low-frequency sound box may be a flat cylinder, a long cylinder, a cube, a cuboid, or other shapes, which are not limited in the embodiments of the present application.
  • the second fixing member is a second sheet-shaped member connected to the main body of the low-frequency speaker, and the second sheet-shaped member is used to physically connect or remove the first sheet-shaped member of the main body of the full-frequency speaker.
  • the second fixing component is a convex-shaped component disposed in a preset fixing area of the low-frequency speaker main body, and the concave-shaped component is used for physical connection with the convex-shaped component of the full-frequency speaker main body or disassemble.
  • the low-frequency speaker further includes a charging port, which is used to connect an external power supply to supply power to the low-frequency speaker, or to charge the full-range speaker through the low-frequency speaker when the low-frequency speaker is connected to the full-range speaker.
  • the low-frequency sound box further includes a camera or a microphone.
  • the camera is used to capture the image of the user (listener) to determine the user's position according to the user's image; similarly, the microphone is used to capture the user's voice signal to determine the user's position according to the user's voice signal.
  • the low-frequency sound box provided by the embodiment of the present application includes a processor and a transceiver connected to the processor.
  • the processor is used to perform multi-band filtering on the audio data to be played, and perform sound field expansion processing on the filtered audio data to be played to obtain target audio data, the intermediate frequency component and/or high frequency component of the target audio data
  • the transceiver is used for sending the mid-frequency component and/or high-frequency component of the target audio data to the full-frequency speaker through the second communication component, and the low-frequency component of the target audio data is played by the low-frequency speaker.
  • the transceiver of the low-frequency speaker is also used to receive audio data to be played, and the audio data to be played may be original audio data or a low-frequency component of the original audio data; the audio data to be played may also be a target Low frequency components of audio data.
  • embodiments of the present application provide a sound box system, including a full-range sound box described in any one of the first aspect and its possible implementations, and a second aspect and any one of its possible implementations the low-frequency speaker.
  • the full-frequency sound box and the low-frequency sound box are physically connected through the first fixing component and the second fixing component, and the full-frequency sound box and the low-frequency sound box communicate through the first communication component and the second communication component.
  • the first fixing part and the second fixing part are a set of matched connection parts
  • the first communication part and the second communication part are a set of matched communication parts.
  • the full-frequency speaker in the speaker system can work independently, or the full-frequency speaker and the low-frequency speaker can work together. Therefore, the user can flexibly choose to use the full-frequency speaker to play audio data, or use the full-frequency speaker to play audio data. Speakers and low-frequency speakers play audio data, which can meet the different needs of users.
  • the full-frequency sound box is used to play the target audio data, or the high-frequency component and/or the intermediate frequency component of the target audio data; the low-frequency sound box is used to play the low-frequency component of the target audio data.
  • the full-frequency speakers work independently, since the full-frequency speakers have a good playback effect on the intermediate and high frequencies, playing the intermediate-frequency components and/or high-frequency components of the target audio data through the full-frequency speakers can improve the sound quality.
  • the full-frequency speaker and the low-frequency speaker work together, due to the low-frequency playback effect of the low-frequency speaker and the low-frequency playback effect of the full-frequency speaker, the low-frequency component of the target audio data can be played through the low-frequency speaker, which can improve the bass sound quality of the audio data; Since full-frequency speakers have better playback effects for intermediate and high frequencies, playing the intermediate-frequency components and/or high-frequency components of the target audio data through the full-frequency speakers can improve the playback of the intermediate-frequency components and/or high-frequency components of the target audio data. In this way, the playback effect of audio data can be improved over the entire frequency band of audio data.
  • the full-frequency sound box and the low-frequency sound box are connected in a stacked manner or in a hanging manner through the first fixing component and the second fixing component.
  • the first fixing member is a first sheet member
  • the second fixing member is a second sheet member
  • the first sheet member is in contact with and coupled to the second sheet member
  • the speakers are connected in a stacked manner with the low-frequency speakers.
  • the first sheet part includes a first communication part, the first communication part is located in the vertical projection of the main body of the full-range speaker; the second sheet part is located on the main body of the low frequency speaker, and the second sheet part includes a second communication part , the second communication component is arranged on the second sheet-like component.
  • the first fixing part is a first sheet-like part extending outward along one side of the main body of the full-range speaker
  • the second fixing part is a second part extending outward along one side of the main body of the low-frequency speaker.
  • the first sheet part includes a first communication part, the first communication part is located outside the vertical projection of the main body of the full-range speaker; outside the vertical projection.
  • first fixing member and the second fixing member are connected by means of snap coupling or magnetic coupling.
  • the first fixing part is a concave-shaped part arranged in the preset fixing area of the full-range speaker main body
  • the second fixing part is a convex-shaped part arranged in the preset fixing area of the low-frequency speaker main body.
  • first fixing member and the second fixing member are connected by means of snap coupling or screw coupling.
  • the above-mentioned first communication component is the magnetic female head of the magnetic interface
  • the second communication component is the magnetic male head of the magnetic interface.
  • the first communication component is a plug of a USB interface
  • the second communication component is a socket of the USB interface.
  • the first communication component and the second communication component may also be other communication components with matching relationship and detachable characteristics, which are not limited in the embodiment of the present application.
  • the full-frequency sound box is small in size, light in weight, and easy to carry.
  • the low-frequency sound box is slightly larger in size and heavier in weight, but the low-frequency sound box has stronger data processing capability.
  • the speaker system further includes at least one full-range speaker, and at least two full-range speakers included in the speaker system can work together.
  • the speaker system further includes at least one full-frequency speaker and at least one low-frequency speaker; in the speaker system, one full-frequency speaker corresponds to one low-frequency speaker to form a full-frequency speaker subsystem, and the speaker system includes At least two subsystems can work together.
  • an embodiment of the present application provides a method for processing audio data, including: the terminal detects whether the first communication component of the full-range speaker described in any one of the first aspect and its possible implementations is compatible with the second aspect.
  • the second communication part of the low-frequency speaker described in any one of its possible implementations is connected; when the terminal detects that the first communication part and the second communication part are not connected, the terminal sends the audio data to be played to the full-frequency speaker .
  • the terminal detects that the first communication part is connected to the second communication part the terminal sends the first audio data to the full-frequency speaker, and sends the second audio data to the low-frequency speaker; wherein the first audio data is the audio data to be played.
  • the intermediate frequency component and/or the high frequency component, the second audio data is the low frequency component of the audio data to be played.
  • the terminal sends the audio data to be played to the full-frequency speaker; or, the terminal sends the audio data to be played to the low-frequency speaker.
  • the terminal determines to send audio data to the full-frequency speaker and/or the low-frequency speaker by detecting whether the first communication part of the full-frequency speaker of the terminal is connected to the second communication part of the low-frequency speaker, So that the full-frequency speakers process audio data and/or the low-frequency speakers process audio data, so as to achieve a better sound field expansion effect and improve sound quality.
  • the terminal can detect whether the first communication component is connected to the second communication component by interacting with the full-frequency speaker.
  • the state information of the first port according to the state information of the first port, to determine whether the first communication part is connected with the second communication part.
  • the state information of the first port is "0"
  • the terminal determines that the first communication part and the second communication part are not connected after obtaining the state "0"; when the first communication part and the second communication part are not connected;
  • the state information of the first port is "1"
  • the terminal determines that the first communication part is connected to the second communication part after acquiring the state "1".
  • the terminal may also detect whether the first communication part is connected to the second communication part through other achievable methods, which is not limited in this embodiment of the present application.
  • sending the audio data to be played by the terminal to the full-frequency speaker specifically includes: sending the original audio data to the full-frequency speaker by the terminal. It should be understood that when the terminal sends original audio data to the full-frequency speaker, the full-frequency speaker divides the original data, and performs sound field expansion processing on components of different frequency bands to obtain target audio data, and then play the target audio data.
  • the terminal sending the audio data to be played to the full-frequency speaker specifically includes: the terminal sending the target audio data to the full-frequency speaker.
  • the target audio data can be obtained by dividing the original audio data by other devices and performing sound field expansion processing, and sending it to the full-frequency speaker, and then by the The full-range speaker plays the target audio data.
  • the above-mentioned other devices may be the terminal, a low-frequency speaker, or other devices other than these two devices, which are not limited in this embodiment of the present application.
  • the terminal sending the first audio data to the full-frequency speaker, and sending the second audio data to the low-frequency speaker specifically includes: the terminal sending the intermediate frequency component and/or the high-frequency component of the original audio data to the full-frequency speaker,
  • the subwoofer sends the low frequency components of the original audio data.
  • the terminal may divide the original audio data to obtain the intermediate frequency component and/or high frequency component and the low frequency component of the original audio data, and then the terminal sends the intermediate frequency component and/or high frequency component of the original audio data to the full-frequency speaker , the intermediate frequency component and/or the high frequency component of the original data are subjected to sound field expansion processing by the full-frequency speaker to obtain the intermediate frequency component and/or the high frequency component of the target audio data; and the terminal sends the low frequency component of the original audio data to the low-frequency speaker,
  • the low-frequency sound box performs sound field expansion processing on the low-frequency component of the original audio data to obtain the low-frequency component of the target audio data, and the low-frequency sound box plays the low-frequency component of the target audio data.
  • the terminal sending the first audio data to the full-frequency speaker, and sending the second audio data to the low-frequency speaker specifically includes: the terminal sending the intermediate frequency component and/or the high-frequency component of the target audio data to the full-frequency speaker,
  • the subwoofer sends the low frequency components of the target audio data.
  • the terminal or other device may divide the original audio data and perform sound field expansion processing on the divided intermediate frequency components and/or high frequency components, as well as the ground frequency components, and send the target audio data to the full-frequency speakers.
  • Intermediate frequency components and/or high frequency components send the low frequency components of the target audio data to the low frequency speaker, then play the intermediate frequency components and/or high frequency components of the target audio data by the full frequency speaker, and play the low frequency components of the target audio data by the low frequency speaker. weight.
  • the sending of the audio data to be played by the terminal to the low-frequency sound box specifically includes: the terminal sending the original audio data to the low-frequency sound box.
  • the terminal sends the original audio data to the low-frequency speaker
  • the low-frequency speaker performs frequency division on the original data, and the components of different frequency bands are subjected to sound field expansion processing to obtain target audio data, and then the low-frequency speaker plays the target audio.
  • the low-frequency component of the data is sent to the full-range speaker, and the mid-frequency component and/or the high-frequency component is played by the full-range speaker.
  • the sending of the audio data to be played by the terminal to the low-frequency sound box specifically includes: the terminal sending the target audio data to the low-frequency sound box.
  • the target audio data can be obtained by dividing the original audio data by other equipment and performing sound field expansion processing, and sent to the low-frequency speaker, and then by the low-frequency speaker.
  • the low-frequency component of the target audio data is played, and the low-frequency speaker sends the mid-frequency component and/or the high-frequency component of the target audio data to the full-frequency speaker, and the full-frequency speaker plays the mid-frequency component and/or the high-frequency component and sends it to the full-frequency speaker. audio speakers.
  • an embodiment of the present application provides a method for processing audio data, which is applied to the full-frequency speaker described in any one of the first aspect and its possible implementation manners, and the method includes: acquiring audio data to be played; And multi-band filtering is performed on the audio data to be played to obtain the intermediate frequency component and/or high frequency component and the low frequency component of the audio data to be played; then the intermediate frequency component and/or high frequency component of the audio data to be played, and the low frequency component Perform sound field expansion processing to obtain target audio data; and send the low-frequency component of the target audio data to the low-frequency speaker.
  • the mid-frequency component and/or the high-frequency component of the target audio data is played by a full-frequency speaker
  • the low-frequency component of the target audio data is played by a low-frequency speaker.
  • the full-frequency speaker plays the high-frequency component and/or the intermediate frequency of the audio data after the sound field expansion processing.
  • components since full-range speakers have better playback effects on mid-frequency and high-frequency components, they can improve the sound quality of mid-frequency components and/or high-frequency components.
  • the full-frequency speaker sends the low-frequency component of the audio data after sound field expansion processing to the low-frequency speaker, and the low-frequency speaker plays the low-frequency component. Since the low-frequency playback effect of the low-frequency speaker is better than that of the full-frequency speaker, it can be Improves the bass quality of audio data.
  • the above-mentioned multi-band filtering may include high-frequency filtering, band-pass filtering, and low-frequency filtering. And/or, the multi-band filtering includes high frequency filtering and low frequency filtering. It should be understood that the high frequency component of the audio data is obtained by performing high frequency filtering on the audio data; the intermediate frequency component of the audio data is obtained by bandpass filtering the audio data; and the low frequency component of the audio data is obtained by performing low frequency filtering on the audio data.
  • the setting of the filtering frequency band is related to the distance between the two speakers in the speaker pair forming the dipole in the full-range speaker box.
  • the filter frequency band determines the frequency bands corresponding to the filtered high-frequency components, intermediate-frequency components, and low-frequency components.
  • the above-mentioned sound field expansion processing includes: a full-frequency speaker performs high-band dipole processing on the high-frequency components of the filtered audio data, and/or performs mid-frequency processing on the intermediate-frequency components of the filtered audio data. Band dipole processing.
  • the sound field of the speaker of the full-range speaker has a sweet point area, which refers to the area that can achieve better sound effects.
  • the sweet spot is deviated from the center of the full-range speaker by a preset angle. area.
  • the user or listener
  • the user has a better listening experience; when the user is far away from the sweet spot area (for example, the angle between the user and the center of the full-range speaker is greater than the above-mentioned preset angle)
  • the binaural crosstalk occurs, the user's listening experience will be deteriorated.
  • a pair of acoustic dipoles corresponds to a pair of loudspeakers, and signals with the same amplitude and different phases are played through the pair of loudspeakers.
  • the right channel corresponds to an acoustic dipole
  • the left channel corresponds to an acoustic dipole.
  • the high frequency band dipole algorithm is used to perform sound field expansion processing on the high frequency components of the audio data
  • the intermediate frequency band dipole algorithm is used to perform the sound field expansion processing on the intermediate frequency components of the audio data.
  • the right channel signal It can reduce the energy of the right channel signal reaching the left ear without reducing the energy of the right channel signal reaching the right ear; for the left channel signal, it can ensure that the energy of the left channel signal reaching the left ear is not reduced. In the case of , the energy of the left channel signal reaching the right ear is reduced, so as to achieve binaural crosstalk cancellation.
  • the smaller the energy of the signal reaching the right ear and the greater the energy of the left channel signal reaching the left ear, the better the binaural crosstalk cancellation effect is.
  • the above-mentioned sound field expansion processing includes: using a bass enhancement algorithm to process the low-frequency components of the filtered audio data, and dynamically enhancing the low-frequency signal without damaging the speaker (not exceeding the maximum displacement of the diaphragm). (i.e. low frequency components), which significantly improves the bass quality of the audio data.
  • the bass enhancement algorithm obtains the parameters (TS parameters) of the loudspeaker in advance and builds a model according to the parameters of the loudspeaker to obtain a processing model.
  • one frequency band corresponds to one or more pairs of acoustic dipoles.
  • the high frequency band corresponds to multiple pairs of acoustic dipoles, so the high frequency components filtered by the high frequency will be played through the speakers corresponding to the multiple pairs of dipoles after being processed by the high frequency band dipole algorithm.
  • the audio data is multi-channel audio data.
  • a multi-channel is a two-channel, including a left channel (L) and a right channel (R).
  • the multi-channel includes a left channel (L), a left surround channel (Ls), a left rear channel (Lb), a left upper channel (Lh), a right channel (R), a right surround channel ( Rs), rear right channel (Rb), upper right channel (Rh), center channel (C).
  • an embodiment of the present application provides a method for processing audio data, which is applied to the low-frequency speaker described in any one of the second aspect and its possible implementation manners, the method comprising: acquiring audio data to be played; And multi-band filtering is performed on the audio data to be played to obtain the intermediate frequency component and/or high frequency component and the low frequency component of the audio data to be played; then the intermediate frequency component and/or high frequency component of the audio data to be played, and the low frequency component Perform sound field expansion processing to obtain target audio data; and send the mid-frequency component and/or high-frequency component of the target audio data to the full-frequency speaker.
  • the mid-frequency component and/or the high-frequency component of the target audio data is played by a full-frequency speaker
  • the low-frequency component of the target audio data is played by a low-frequency speaker.
  • the low-frequency component after the bass enhancement processing is played through the low-frequency sound box on the low-frequency sound box, because the low-frequency sound box has a better low-frequency playback effect than the full-frequency sound box.
  • the low-frequency playback effect of the speaker can thus improve the bass quality of the audio data.
  • the low-frequency speaker sends the high-frequency component and/or the mid-frequency component of the audio data processed by the sound field expansion to the full-frequency speaker, and then the high-frequency component and/or the mid-frequency component is played by the full-frequency speaker. It has a better playback effect on the mid-frequency and high-frequency components, so it can improve the sound quality of the mid-frequency components and/or high-frequency components.
  • the audio data processing method provided by the embodiment of the present application further includes: collecting the image information of the listener through a camera on the low-frequency sound box, or collecting the sound signal of the listener through a microphone, the listening The image information of the listener or the sound signal of the listener is used to perform sound field expansion processing on the filtered audio data to be played.
  • the low-frequency speaker analyzes the listener's image information or sound signal to determine the listener's position information.
  • the user's position information includes the angle between the user and the center axis of the speaker system.
  • the phase difference is the configuration parameter of the high-band dipole processing and/or the mid-band dipole processing .
  • the configuration parameters in the high-band dipole algorithm or the mid-band dipole algorithm are The phase difference of the playback signal for the two speakers that form a pair of acoustic dipoles), thereby improving the effect of binaural crosstalk cancellation, enabling the user to achieve a better listening experience at the current location.
  • the phase difference is related to the current position of the user, the above-mentioned phase difference is adjusted through the above-mentioned steps A to C, so that the adjusted phase difference is used to perform sound field expansion processing on the audio data, and the binaural crosstalk is eliminated.
  • the effect of sound field expansion at the user's current location improves the user's listening experience in real time.
  • an embodiment of the present application provides a method for processing audio data, which is applied in a scenario where a terminal establishes a communication connection with the speaker system described in any one of the third aspect and its possible implementation manners, the method includes: : When the terminal receives the user's first operation, the terminal controls the full-frequency speaker to work independently in response to the first operation; when the terminal receives the user's second operation, the terminal responds to the second operation and controls the full-frequency speaker and the low-frequency speaker. The speakers work together.
  • the user performs corresponding operations on the terminal, so that the terminal controls the full-frequency speakers in the speaker system to work independently, or controls the full-frequency speakers and the low-frequency speakers to work together in response to the user's operation. , which can improve the user experience and achieve a better sound field expansion effect.
  • the full-frequency speakers work independently, since the full-frequency speakers have a good playback effect on the intermediate and high frequencies, playing the intermediate-frequency components and/or high-frequency components of the target audio data through the full-frequency speakers can improve the sound quality.
  • the full-frequency speaker and the low-frequency speaker work together, due to the low-frequency playback effect of the low-frequency speaker and the low-frequency playback effect of the full-frequency speaker, playing the low-frequency component of the target audio data through the low-frequency speaker can improve the bass sound quality of the audio data.
  • full-frequency speakers have better playback effects for intermediate and high frequencies
  • playing the intermediate-frequency components and/or high-frequency components of the target audio data through the full-frequency speakers can improve the playback of the intermediate-frequency components and/or high-frequency components of the target audio data. In this way, the playback effect of audio data can be improved over the entire frequency band of audio data.
  • the above-mentioned terminal in response to the first operation, controlling the full-frequency speaker to work independently specifically includes: the terminal, in response to the first operation, sends a first instruction to the speaker system, where the first instruction is used to control the full-frequency speaker.
  • full-range speakers work independently means that the target audio data is played by the full-range speakers.
  • the above-mentioned terminal sending the first instruction to the speaker system specifically includes: the terminal sending the first instruction to the low-frequency speaker.
  • the low-frequency speaker controls and manages the entire speaker system , that is, the terminal sending the first instruction to the speaker system refers to sending the first instruction to the low-frequency speaker in the speaker system.
  • the above-mentioned terminal, in response to the second operation, controlling the full-frequency speaker and the low-frequency speaker to work together specifically includes: the terminal, in response to the second operation, sends a second instruction to the speaker system, and the second instruction is used to control the sound box system.
  • the full-frequency speaker and the low-frequency speaker system work together, and the full-frequency speaker and the low-frequency speaker work together means that the mid-frequency component and/or high-frequency component of the target audio data are played by the full-frequency speaker, and the low-frequency component of the target audio data is played by the low-frequency speaker.
  • the sending of the second instruction by the terminal to the speaker system specifically includes: the terminal sending the second instruction to the low-frequency speaker.
  • the above-mentioned first operation is the user's selection operation on the first option in the first interface of the terminal, and the first option corresponds to the independent operation of the full-frequency speaker; the second operation is the user's first operation on the terminal.
  • the selection operation of the second option in the interface, the second option corresponds to the cooperation of the full-range speaker and the low-frequency speaker.
  • the method for processing audio data provided by the embodiment of the present application further includes: if the terminal determines that the audio data to be played currently is audio data with heavy and low frequencies, the terminal displays the first audio data. A prompt message, the first prompt message is used to prompt the full-frequency speaker and the low-frequency speaker to work together.
  • the audio data processing method provided by the embodiment of the present application further includes: the terminal receives the third operation; and the terminal controls the camera or the microphone on the low-frequency speaker to start up in response to the third operation.
  • the above-mentioned speaker system includes a plurality of full-frequency speakers
  • the audio data processing method provided by the embodiment of the present application further includes: the terminal determines the channel and the channel of the audio data according to the position information of the multiple full-frequency speakers. The corresponding relationship between multiple full-range speakers, and the corresponding relationship information between the audio channel and multiple full-range speakers is displayed.
  • an embodiment of the present application provides a method for processing audio data, which is applied in a scenario where a terminal establishes a communication connection with the speaker system described in any one of the third aspect and its possible implementation manners, the method includes: : The terminal determines the type of the target audio data, and the type of the target audio data includes heavy low frequency or non-heavy low frequency; when the type of the target audio data is non-heavy low frequency, the terminal controls the full-frequency speaker to work independently; when the type of the target audio data is When the low frequency is heavy, the terminal controls the full-range speaker and the low-frequency speaker to work together.
  • the terminal controls the full-frequency speakers in the speaker system to work independently according to the type of target audio data, or controls the full-frequency speakers and the low-frequency speakers to work together, which can achieve a better sound field expansion effect. .
  • the full-frequency speakers work independently, since the full-frequency speakers have a good playback effect on the intermediate and high frequencies, playing the intermediate-frequency components and/or high-frequency components of the target audio data through the full-frequency speakers can improve the sound quality.
  • the full-frequency speaker and the low-frequency speaker work together, due to the low-frequency playback effect of the low-frequency speaker and the low-frequency playback effect of the full-frequency speaker, playing the low-frequency component of the target audio data through the low-frequency speaker can improve the bass sound quality of the audio data.
  • full-frequency speakers have better playback effects for intermediate and high frequencies
  • playing the intermediate-frequency components and/or high-frequency components of the target audio data through the full-frequency speakers can improve the playback of the intermediate-frequency components and/or high-frequency components of the target audio data. In this way, the playback effect of audio data can be improved over the entire frequency band of audio data.
  • the terminal controlling the full-frequency speakers to work independently specifically includes: the terminal sends a first command to the speaker system, where the first command is used to control the full-frequency speakers to work independently.
  • the audio speaker plays the target audio data.
  • the sending of the first instruction by the terminal to the speaker system specifically includes: the terminal sending the first instruction to the low-frequency speaker.
  • the terminal controlling the full-frequency speaker and the low-frequency speaker to work together specifically includes: the terminal sends a second instruction to the speaker system, where the second instruction is used to control the full-frequency speaker and the low-frequency speaker system to work, the full-frequency speaker and the low-frequency speaker system work together.
  • the cooperative work of the low-frequency speakers means that the mid-frequency components and/or high-frequency components of the target audio data are played by the full-frequency speakers, and the low-frequency components of the target audio data are played by the low-frequency speakers.
  • the sending of the second instruction by the terminal to the speaker system specifically includes: the terminal sending the second instruction to the low-frequency speaker.
  • an embodiment of the present application provides a terminal, including a detection module and a transmission module.
  • the detection module is used to detect whether the first communication component of the full-frequency speaker described in any one of the first aspect and its possible implementations is the same as the low frequency described in any one of the second aspect and its possible implementations.
  • the second communication part of the speaker is connected.
  • the sending module is configured to send the audio data to be played to the full-frequency speaker when the detection module detects that the first communication part and the second communication part are not connected.
  • the sending module is further configured to send the first audio data to the full-frequency speaker and send the second audio data to the low-frequency speaker when the detection module detects that the first communication part is connected to the second communication part; wherein the first audio data is The intermediate frequency component and/or the high frequency component of the audio data to be played, the second audio data is the low frequency component of the audio data to be played; or, the sending module is also used to send the audio data to be played to the full-frequency speaker; The module is also used to send the audio data to be played to the low frequency speaker.
  • an embodiment of the present application provides a full-frequency speaker, including an acquisition module, a filter module, a processing module, and a transmission module.
  • the acquisition module is used to acquire the audio data to be played
  • the filtering module is used to perform multi-band filtering on the audio data to be played to obtain intermediate frequency components and/or high frequency components and low frequency components of the audio data to be played
  • the intermediate frequency component and/or the high frequency component of the audio data to be played, and the low frequency component carry out sound field expansion processing to obtain the target audio data
  • the sending module is used to send the low frequency component of the target audio data to the low-frequency speaker, wherein the target audio data is The mid-frequency components and/or high-frequency components are played by the full-range speakers, and the low-frequency components of the target audio data are played by the low-frequency speakers.
  • an embodiment of the present application provides a low-frequency sound box, including an acquisition module, a filter module, a processing module, and a transmission module.
  • the acquisition module is used for the audio data to be played;
  • the filtering module is used to perform multi-band filtering on the audio data to be played to obtain the intermediate frequency component and/or the high frequency component and the low frequency component of the audio data to be played;
  • the processing module is used for Perform sound field expansion processing on the intermediate frequency component and/or high frequency component and low frequency component of the audio data to be played to obtain target audio data;
  • the sending module is used to send the intermediate frequency component and/or high frequency component of the target audio data to the full-frequency speaker.
  • the mid-frequency component and/or the high-frequency component of the target audio data is played by a full-frequency speaker, and the low-frequency component of the target audio data is played by a low-frequency speaker.
  • the low-frequency sound box provided by the embodiment of the present application further includes an image acquisition module or an audio acquisition module.
  • the image collection module is used to collect the image information of the listener;
  • the audio collection module is used to collect the sound signal of the listener, wherein the image information of the listener or the sound signal of the listener is used for filtering the to-be-played audio signal.
  • the audio data is subjected to sound field expansion processing.
  • an embodiment of the present application provides a terminal, which is applied to the scenario in which the speaker system establishes a communication connection according to any one of the third aspect and its possible implementation manners.
  • the terminal includes a receiving module and a control module.
  • the control module is configured to control the full-frequency speaker to work independently in response to the first operation when the receiving module receives the first operation of the user.
  • the control module is further configured to control the full-range sound box and the low-frequency sound box to work together in response to the second operation when the receiving module receives the second operation of the user.
  • the terminal provided in this embodiment of the present application further includes a sending module, and the above-mentioned control module is specifically configured to, in response to the first operation, control the sending module to send a first instruction to the speaker system, where the first instruction is used to control the
  • the full-range speakers work independently, and the full-range speakers work independently means that the target audio data is played by the full-range speakers.
  • the above-mentioned sending module is specifically configured to send the first instruction to the low-frequency speaker.
  • control module is specifically used to control the sending module to send a second instruction to the speaker system in response to the second operation, and the second instruction is used to control the full-frequency speaker system and the low-frequency speaker system to work, and the full-frequency speaker system.
  • Working in cooperation with the low-frequency speaker means that the full-frequency speaker plays the mid-frequency component and/or the high-frequency component of the target audio data, and the low-frequency speaker plays the low-frequency component of the target audio data.
  • the above-mentioned sending module is specifically configured to send the second instruction to the low-frequency speaker.
  • the above-mentioned first operation is the user's selection operation on the first option in the first interface of the terminal, and the first option corresponds to the independent operation of the full-frequency speaker;
  • the above-mentioned second operation is the user's first operation on the terminal.
  • the selection operation of the second option in an interface, the second option corresponds to the cooperation of the full-range speaker and the low-frequency speaker.
  • the terminal provided by the embodiment of the present application further includes a display module, which is used for independent operation of the full-frequency speaker, and the terminal determines that the audio data to be played currently is the audio data of heavy and low frequencies.
  • the display includes first prompt information, where the first prompt information is used to prompt the full-frequency speaker and the low-frequency speaker to work together.
  • the receiving module is further configured to receive a third operation; the control module is further configured to control the camera or the microphone on the low-frequency sound box to activate in response to the third operation.
  • the terminal provided by the embodiment of the present application further includes a determination module, and in the case that the speaker system includes multiple full-frequency speakers, the determination module is used to determine the audio frequency according to the position information of the multiple full-frequency speakers. Correspondence between data channels and multiple full-range speakers.
  • the above-mentioned display module is further configured to display the correspondence information between the audio channels of the audio data and the plurality of full-range speakers.
  • an embodiment of the present application provides a terminal, which is applied in the scenario in which the speaker system establishes a communication connection according to any one of the third aspect and its possible implementation manners.
  • the terminal includes a determination module and a control module.
  • the determination module is used to determine the type of target audio data, and the type of target audio data includes heavy low frequency or non-heavy low frequency;
  • the control module is used to control the full-frequency speaker to work independently when the type of target audio data is heavy low frequency ;
  • the control module is also used to control the full-frequency speaker and the low-frequency speaker to work together when the type of target audio data is non-heavy low-frequency.
  • the terminal provided by the embodiment of the present application further includes a sending module, and the above-mentioned control module is specifically configured to control the sending module to send a first instruction to the speaker system, where the first instruction is used to control the full-frequency speaker to work independently,
  • the independent working of the full-range speakers means that the target audio data is played by the full-range speakers.
  • the above-mentioned sending module is specifically configured to send the first instruction to the low-frequency speaker.
  • the terminal provided in the embodiment of the present application further includes a sending module, and the above-mentioned control module is specifically used to control the sending module to send a second instruction to the speaker system, and the second instruction is used to control the full-frequency speaker and the low-frequency speaker.
  • the full-frequency speakers and the low-frequency speakers work together, which means that the full-frequency speakers play the mid-frequency components and/or high-frequency components of the target audio data, and the low-frequency speakers play the low-frequency components of the target audio data.
  • the above-mentioned sending module is specifically configured to send the second instruction to the low-frequency speaker.
  • an embodiment of the present application provides a full-range speaker, including a memory and at least one processor connected to the memory, where the memory is used to store an instruction, and after the instruction is read by the at least one processor, the fifth aspect is executed the method described.
  • an embodiment of the present application provides a computer-readable storage medium, including a computer program, and when the computer program runs on a computer, the method described in the fifth aspect is executed.
  • embodiments of the present application provide a computer program product containing instructions, which, when executed on a computer, cause the computer to execute the method described in the fifth aspect.
  • an embodiment of the present application provides a chip, including a memory and a processor.
  • Memory is used to store computer instructions.
  • the processor is configured to invoke and execute the computer instructions from the memory to perform the method of the fifth aspect.
  • an embodiment of the present application provides a low-frequency sound box, including a memory and at least one processor connected to the memory, where the memory is used to store an instruction, and after the instruction is read by the at least one processor, executes the instructions in the sixth aspect. method described.
  • an embodiment of the present application provides a computer-readable storage medium, including a computer program, and when the computer program runs on a computer, the method described in the sixth aspect is executed.
  • embodiments of the present application provide a computer program product containing instructions, which, when executed on a computer, cause the computer to execute the method described in the sixth aspect.
  • an embodiment of the present application provides a chip, including a memory and a processor.
  • Memory is used to store computer instructions.
  • the processor is configured to invoke and execute the computer instructions from the memory to perform the method of the sixth aspect.
  • an embodiment of the present application provides a terminal, including a memory and at least one processor connected to the memory, where the memory is used to store an instruction, and after the instruction is read by the at least one processor, the fourth aspect, The method described in any one of the seventh aspect and the eighth aspect and its possible implementation manners.
  • embodiments of the present application provide a computer-readable storage medium, including a computer program, when the computer program runs on a computer, the fourth, seventh, and eighth aspects and possible implementations thereof are executed any one of the methods described above.
  • an embodiment of the present application provides a computer program product containing instructions, which, when run on a computer, enables the computer to execute any of the fourth, seventh, and eighth aspects and their possible implementations. one of the methods described.
  • an embodiment of the present application provides a chip, including a memory and a processor.
  • Memory is used to store computer instructions.
  • the processor is configured to invoke and execute the computer instructions from the memory to perform the method described in any one of the fourth aspect, the seventh aspect, and the eighth aspect and possible implementations thereof.
  • FIG. 1 is a schematic structural diagram 1 of a full-frequency speaker provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of the shape of a main body of a full-frequency speaker provided by an embodiment of the present application
  • FIG. 3 is a second structural schematic diagram of a full-frequency speaker provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a dipole in a full-frequency speaker provided by an embodiment of the present application.
  • FIG. 5 is a schematic layout diagram of a speaker of a ring-shaped full-range sound box provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of the position of a passive film in a full-range speaker provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a face-to-face speaker pair and a back-to-back speaker pair provided by an embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a low-frequency sound box provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a speaker system provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram 1 of a stacked connection between a full-frequency speaker and a low-frequency speaker provided by an embodiment of the application;
  • FIG. 11 is a schematic diagram of a docking connection of a full-range speaker and a low-frequency speaker provided by an embodiment of the application;
  • FIG. 12 is a schematic top view of a full-range speaker provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram 2 of a stacked connection between a full-frequency speaker and a low-frequency speaker provided by an embodiment of the application;
  • FIG. 14 is a schematic diagram of the structure and hardware of a full-frequency speaker provided by an embodiment of the application.
  • FIG. 15 is a first hardware schematic diagram of a low-frequency speaker provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram 1 of an audio data processing method provided by an embodiment of the present application.
  • 17 is a second schematic diagram of a method for processing audio data provided by an embodiment of the present application.
  • 19 is a schematic diagram three of a method for processing audio data according to an embodiment of the present application.
  • 20 is a schematic diagram 1 of a processing flow of two-channel audio data provided by an embodiment of the present application.
  • 21 is a schematic diagram 1 of a processing flow of multi-channel audio data provided by an embodiment of the present application.
  • 22 is a second schematic diagram of a processing flow of two-channel audio data provided by an embodiment of the present application.
  • FIG. 23 is a second schematic diagram of a processing flow of multi-channel audio data provided by an embodiment of the present application.
  • FIG. 24 is a fourth schematic diagram of a method for processing audio data provided by an embodiment of the present application.
  • 25 is a schematic diagram 1 of a display effect in an audio data processing method provided by an embodiment of the present application.
  • 26 is a second schematic diagram of a display effect in the audio data processing method provided by the embodiment of the present application.
  • 27 is a schematic diagram five of a method for processing audio data according to an embodiment of the present application.
  • FIG. 28 is a second schematic diagram of a display effect in the audio data processing method provided by the embodiment of the present application.
  • FIG. 29 is a schematic diagram 3 of a display effect in the audio data processing method provided by the embodiment of the present application.
  • FIG. 30 is a schematic diagram of a network of a speaker system provided by an embodiment of the application.
  • FIG. 31 is a third structural schematic diagram of a full-frequency speaker provided by an embodiment of the application.
  • 32 is a second structural schematic diagram of a low-frequency sound box provided by an embodiment of the application.
  • FIG. 33 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of the objects.
  • first fixed part and the second fixed part, etc. are used to distinguish different parts, not to describe the specific order of the parts;
  • first audio data and the second audio data, etc. are used to distinguish different audio data, while Not a specific order for describing audio data.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • multiple processing units refers to two or more processing units; multiple systems refers to two or more systems.
  • an embodiment of the present application provides a full-frequency sound box.
  • the full-frequency sound box includes a full-frequency sound box main body 101 and a first fixing part 102 .
  • the full-frequency sound box main body includes M speakers 1011 .
  • the M speakers 1011 The full-range speaker body is distributed in a plane, and the M speakers 1011 form K pairs of acoustic dipoles, where M is a positive integer greater than 2, and K is a positive integer greater than or equal to 2.
  • the above-mentioned first fixing member 102 is located in the preset fixing area of the full-range speaker body 101, and the first fixing member 102 is used to physically connect or disassemble the low-frequency full-frequency speaker.
  • the first fixing member 102 includes a first communication member 1021,
  • the first communication part 1021 is used to make the full-range speaker communicate with the low-frequency speaker, and the first communication part supports the transmission of multi-channel audio data. Among them, the low-frequency playback effect of low-frequency speakers is better than that of full-frequency speakers.
  • FIG. 1 only illustrates the positions of the first fixing member 102 and the first communication member 1021 , and does not limit other features such as the shape of the first fixing member 102 and the first communication member 1021 .
  • the above-mentioned full-frequency sound box is used for playing the target audio data, or the full-frequency sound box is used for playing the high-frequency component and/or the intermediate frequency component of the target audio data; the above-mentioned low-frequency sound box is used for playing the low-frequency component of the target audio data.
  • the above-mentioned target audio data played through the speaker of the full-range sound box is audio data processed by sound field expansion.
  • the audio data without sound field expansion processing is called original audio data
  • the audio data subjected to sound field expansion processing is called target audio data, that is, the original audio data is subjected to sound field expansion processing to obtain target audio data.
  • the original audio data and the target audio data are the audio data to be played, that is, the audio data to be played obtained by the full-frequency speaker or the low-frequency speaker can be the original audio data (or the components of different frequency bands of the original audio data. , such as an intermediate frequency component, a high frequency component or a low frequency component), or it can be target audio data obtained by performing sound field expansion processing on the original audio data.
  • the audio data to be played obtained by the full-frequency speaker is original audio data (or the intermediate frequency component and/or the high-frequency component of the original audio data)
  • the original audio data Or the intermediate frequency component and/or the high frequency component of the original audio data
  • the target audio data or the intermediate frequency component and/or the intermediate frequency component of the target audio data High-frequency components
  • the target audio data or the intermediate frequency component and/or the intermediate frequency component of the target audio data High-frequency components
  • the low-frequency speaker should perform a sound field on the original audio data (or the low-frequency component of the original audio data). Expansion processing; if the audio data to be played obtained by the low-frequency speaker is the low-frequency component of the target audio data, then the low-frequency component of the target audio data is the frequency division of the original audio data by other equipment (specifically, multi-band filtering technology is used to achieve) , and then perform sound field expansion processing on the components of different frequency bands of the original audio data.
  • the shape of the main body of the full-range speaker is one of the following: a ring shape, a circle shape, a tree shape or a W shape.
  • the full-range speaker body shown in FIG. 1 is exemplified by taking a ring shape as an example, and the shape of the full-range speaker body is not limited.
  • the shape of the main body of the full-range speaker can also be designed to be other shapes than the above-mentioned ring, circle, tree or W shape. Not limited.
  • Figure 2 illustrates a front view of a full-range speaker body with several shapes, wherein (a) in Figure 2 is a ring full-range speaker (ie Sound Ring), and the above M speakers are deployed in the ring; (b) is a circular full-range speaker, and the above M speakers are deployed on a circular surface; (c) in Figure 2 is a tree-shaped full-range speaker, and (d) in Figure 2 is a W-shaped full-range speaker.
  • the M speakers are arranged on a plane of the main body of the full-range speaker, that is, the M speakers are coplanar and face the same surface of the full-range speaker.
  • the above-mentioned first fixing member is also used to support the main body of the full-frequency speaker.
  • the first fixing part can be used as a base to support the main body of the annular sound box so that it can be stably placed on the desktop.
  • the M speakers of the above-mentioned full-frequency sound box constitute K pairs of acoustic dipoles, wherein a pair of acoustic dipoles corresponds to a pair of acoustic speakers.
  • the ring-shaped full-range speaker contains 8 speakers, wherein the speaker 1 and the speaker 5 form a pair of acoustic dipoles, and the speaker 2 and the speaker 4 form a pair of acoustic dipoles.
  • the speaker 6 and the speaker 8 constitute a pair of acoustic dipoles
  • the speaker 3 and the speaker 7 constitute a pair of acoustic dipoles.
  • the arrangement directions of the K pairs of acoustic dipoles formed by the loudspeakers in the above-mentioned full-range speakers include at least two directions of horizontal, vertical or obliquely upward, that is, the K pairs of acoustic dipoles at least include horizontal directions. At least two kinds of acoustic dipoles among acoustic dipoles, acoustic dipoles in a vertical direction, or acoustic dipoles in an obliquely upward direction.
  • the horizontal direction refers to the direction parallel to the vertical projection of the full-range speaker body
  • the vertical direction is the direction perpendicular to the vertical projection of the full-range speaker body.
  • the speaker 1 and the speaker 5 form a pair of horizontal acoustic dipoles
  • the speaker 3 and the speaker 5 The loudspeaker 7 constitutes a pair of vertical acoustic dipoles.
  • the angle between the above-mentioned preset direction and the preset direction here can be understood as the direction pointing to the sky at different angles (referred to as the sky direction for short).
  • a direction whose included angle with the first direction is less than 180 degrees is the sky direction.
  • the two speakers in the dashed frame form an acoustic dipole in the sky direction.
  • the acoustic dipoles in other preset directions are collectively referred to as the acoustic dipoles in the sky direction.
  • the target audio data played by the full-frequency speaker is the audio data after the sound field expansion processing is performed on the original audio data.
  • the audio data after the sound field expansion processing and the dipoles of the full-frequency speaker in different directions are Corresponding.
  • the speaker pair constituting the acoustic dipole in the horizontal direction is used to play the audio data after the sound field expansion processing in the horizontal direction
  • the speaker pair constituting the acoustic dipole in the vertical direction is used for playing the sound field expansion in the vertical direction.
  • the pair of speakers constituting the acoustic dipole in the sky direction is used to play the audio data whose sound field is expanded in the sky direction.
  • the sound field expansion in the vertical direction and the sound field expansion in other preset directions can improve the 3D effect of audio data playback.
  • the sound field expansion includes performing high frequency band dipole processing on the high frequency components of the audio data, performing mid frequency band dipole processing on the intermediate frequency components of the audio data, and performing bass enhancement processing on the low frequency components of the audio data. , which will be described in detail in the following method examples.
  • the embodiment of the present application also does not limit the number M of speakers included in the full-frequency sound box, which is specifically set according to actual requirements.
  • the full-range sound box provided by the embodiment of the present application includes 6 speakers or 8 speakers.
  • the full-frequency speaker provided by the embodiment of the present application has a good playback effect on the intermediate frequency component and the high-frequency component of the audio data, and one or more of the above-mentioned M speakers is a full-frequency speaker, or, among the M speakers
  • the speakers are medium and high frequency speakers, which are not limited in the embodiments of the present application.
  • the full-range sound box includes 8 speakers, wherein all the 8 speakers may be full-range speakers, or, among the 8 speakers, 4 speakers are full-range speakers, and 4 speakers are mid-high frequency speakers.
  • the M speakers in the full-frequency sound box provided by the embodiment of the present application constitute K pairs of acoustic dipoles, a pair of acoustic dipoles corresponds to a pair of speakers, and at least one of the K pairs of acoustic dipoles corresponds to a pair of speakers.
  • the two pairs of acoustic dipoles satisfy the following condition: d i ⁇ d j .
  • d i is the distance between the two loudspeakers constituting the ith pair of acoustic dipoles
  • d j is the distance between the two loudspeaker pairs constituting the jth pair of acoustic dipoles
  • i and j are 1, respectively, 2,..., a value in K, and i ⁇ j
  • K is a positive integer greater than or equal to 2.
  • the two speakers constituting the ith pair of acoustic dipoles play the first frequency band of the target audio data
  • the two speakers constituting the jth pair of acoustic dipoles play the second frequency band of the target audio data, the first frequency band and the second frequency band. are different frequency bands.
  • the frequency band of the audio data played by the speaker pair constituting a pair of acoustic dipoles is related to the distance between the two speakers included in the speaker pair. Specifically, the center frequency of audio data played by two speakers constituting a pair of acoustic dipoles decreases as the distance between the speakers increases. If the above d i >d j , the center frequency of the audio data that can be played by the two speakers that constitute the ith pair of acoustic dipoles is less than the frequency of the audio data that can be played by the two speakers that constitute the j-th pair of acoustic dipoles Center frequency.
  • the frequency band of the audio data played by the speaker pair constituting the ith pair of acoustic dipoles may be 600Hz-2600Hz
  • the frequency band of the audio data played by the speaker pair constituting the jth pair of acoustic dipoles may be 2600Hz-12KHz.
  • the speaker has a better effect on playing audio data of high frequency band.
  • the distances between the two speakers of the speaker pairs constituting the multiple pairs of acoustic dipoles are the same or different. Playing audio data of different frequency bands through pairs of speakers at different distances can create sound field effects in different frequency bands.
  • Figure 5 illustrates two different layouts of the speakers of the annular full-range speaker.
  • the annular full-range speaker contains 4 pairs of acoustic dipoles with different spacings in the horizontal direction. , wherein the speaker 1 and the speaker 4 constitute the first pair of horizontal acoustic dipoles, the speaker 8 and the speaker 5 constitute the second pair of horizontal acoustic dipoles, and the speaker 2 and the speaker 3 constitute the third pair of horizontal acoustic dipoles Dipole, speaker 7 and speaker 6 constitute a fourth pair of horizontal acoustic dipoles.
  • the speaker 5 includes two pairs of acoustic dipoles in the horizontal direction and two pairs of acoustic dipoles in the vertical direction, wherein the speaker 1 and the speaker 3 constitute a pair of long-distance horizontal
  • the direction of the acoustic dipole, the speaker 5 and the speaker 4 form a pair of short-range horizontal acoustic dipoles;
  • the speaker 5 and the speaker 2 form a pair of long-distance vertical acoustic dipoles, the speaker 5 and the speaker 6 constitute a pair of close vertical acoustic dipoles.
  • the center frequency of the audio data played by the speaker pair decreases with the increase of the distance between the two speakers included in the speaker pair, therefore, in conjunction with (a) in FIG. 5 , the above configuration
  • the center frequency of the audio data played by the four speakers of the four pairs of horizontal acoustic dipoles increases in turn, that is, the center frequency of the audio data corresponding to the first pair of horizontal acoustic dipoles is the smallest, and so on.
  • the center frequency of the audio data corresponding to the acoustic dipole in the horizontal direction is the highest.
  • one loudspeaker may be multiplexed into one or more pairs of acoustic dipoles.
  • speaker 5 and speaker 4 form a pair of horizontal acoustic dipoles
  • speaker 5 and speaker 2 form a pair of vertical acoustic dipoles
  • speaker 5 and speaker 6 Another pair of vertical acoustic dipoles is formed. It can be seen that the loudspeaker 5 is multiplexed in multiple pairs of acoustic dipoles.
  • At least one speaker in the M speakers of the full-range sound box is provided with a passive membrane, and the passive membrane is used to expand the low-frequency response of the speaker.
  • each speaker in the above at least one speaker corresponds to a passive membrane, as shown in (a) of FIG. 6 , the passive membrane is attached to the back of the cavity of the speaker, and 601 in the figure is Passive film, by setting a passive film on the back of the cavity of the speaker, the passive film and the cavity in the box form an air spring whose resonant frequency is lower than the resonant frequency of the speaker, and the air spring is pushed by the speaker to operate at its resonant frequency.
  • each speaker in the above at least one speaker corresponds to two passive membranes.
  • the two passive membranes are respectively located on the sides of the cavity of the speaker.
  • the 602 and 603 are two passive membranes.
  • the full-range sound box provided in the embodiment of the present application further includes N speakers (N is a positive integer, and N is less than or equal to M), and the N speakers are respectively arranged back-to-back with the N speakers in the above-mentioned M speakers, forming a N back-to-back speaker pairs, wherein the M speakers face the first plane, the N speakers face the second plane, and the first plane and the second plane are two planes perpendicular to the vertical projection of the full-range speaker body, The first plane is parallel to the second plane.
  • the N loudspeakers are respectively arranged face to face with the N loudspeakers in the above-mentioned M loudspeakers to form N face-to-face loudspeaker pairs, wherein the cavities of the M loudspeakers face the first plane, and the cavities of the N loudspeakers face the first plane.
  • the second plane, the first plane and the second plane are two planes perpendicular to the vertical projection of the main body of the full-range speaker, the first plane is parallel to the second plane, and correspondingly, the N speakers are also coplanar.
  • FIG. 7(a) is a schematic diagram of two face-to-face speakers
  • FIG. 7(b) is a schematic diagram of two back-to-back speakers.
  • a passive membrane is provided on the cavity of at least one speaker pair in the N back-to-back speaker pairs, wherein for one speaker pair in the at least one speaker pair, the speaker pair corresponds to two passive membranes membrane.
  • the two passive membranes corresponding to the speaker pair are back-to-back and attached to the two sides of the cavity adjacent to the speaker pair, for example, 701 and 702 in Fig. Two passive membranes.
  • the first fixing member may be a first sheet-shaped member connected to the main body of the full-range speaker, and the first sheet-shaped member is used to physically connect or remove the second sheet-shaped member of the main body of the low-frequency speaker.
  • the first fixing component is a concave component disposed in a preset fixing area of the main body of the full-range speaker, and the concave component is used for physical connection or disassembly with the convex component of the main body of the low-frequency speaker.
  • the audio data (that is, the target audio data) can be obtained by playing the audio data (that is, the target audio data) processed by the sound field expansion through the full-frequency speaker.
  • the full-frequency speaker and the low-frequency speaker are used in combination to play audio data, which can significantly improve the playback effect of the audio data, and the user can flexibly choose to use the full-frequency speaker.
  • Speakers play audio data, or use full-range speakers and low-frequency speakers to play audio data, which can meet the different needs of users.
  • the low-frequency sound box includes a low-frequency sound box main body 801 and a second fixing part 802 , the low-frequency sound box main body includes one or more low-frequency speakers 8011 , and the second fixing part 802 Located in the preset fixing area of the main body of the low-frequency speaker, the second fixing part 802 is used to physically connect or remove the full-range speaker, the second fixing part 802 includes a second communication part 8021, and the second communication part 8021 is used for The low-frequency sound box is made to communicate with the full-frequency sound box, and the second communication component supports the transmission of multi-channel audio data. Among them, the low-frequency playback effect of the low-frequency speaker is better than that of the full-frequency speaker, and the frequency range of the full-frequency speaker is greater than the frequency range of the low-frequency speaker.
  • FIG. 8 only illustrates the positions of the second fixing member 802 and the second communication member 8021 , and does not limit other features such as the shape of the second fixing member 802 and the second communication member 8021 .
  • the above-mentioned low-frequency sound box is used for playing the low-frequency component of the target audio data
  • the full-frequency sound box is used for playing the target audio data or the high-frequency component and/or the intermediate frequency component of the target audio data.
  • the above-mentioned target audio data is audio data processed by sound field expansion.
  • the shape of the main body of the low frequency sound box may be a flat cylinder, a long cylinder, a cube, a cuboid, or other shapes, which are not limited in the embodiment of the present application. It should be noted that, in FIG. 8 , a flat cylinder is only used as a schematic representation of the low-frequency sound box, and features such as the specific shape of the low-frequency sound box and the shape of the first communication component are not limited.
  • the above-mentioned second fixing member is a second sheet-shaped member connected to the main body of the low-frequency speaker, and the second sheet-shaped member is used to physically connect or remove the first sheet-shaped member of the main body of the full-frequency speaker.
  • the second fixing member is a convex-shaped member disposed in a preset fixing area of the low-frequency speaker body, and the concave-shaped member is used for physical connection or disassembly with the convex-shaped member of the full-frequency speaker body.
  • the low-frequency speaker further includes a charging port, which is used to connect an external power source to supply power to the low-frequency speaker, or to charge the full-range speaker through the low-frequency speaker when the low-frequency speaker is connected to the full-range speaker.
  • a charging port which is used to connect an external power source to supply power to the low-frequency speaker, or to charge the full-range speaker through the low-frequency speaker when the low-frequency speaker is connected to the full-range speaker.
  • the first fixing part is connected with the second fixing part
  • the first communication part is connected with the second communication part, so that the full-frequency speaker is charged through the low-frequency speaker.
  • the low-frequency sound box provided in this embodiment of the present application further includes a camera or a microphone, and the camera is used to collect an image of the user (listener) to determine the user's position according to the user's image; similarly, the microphone is used to collect the user's image. sound signal to determine the user's location according to the user's sound signal.
  • the low-frequency components of the audio data are played through one or more speakers of the low-frequency sound box, and the bass sound quality of the audio data can be improved.
  • the low-frequency sound box can be connected to the full-frequency sound box through the second communication component, and used in combination with the full-frequency sound box.
  • Speakers are played by full-frequency speakers.
  • the combination of full-frequency speakers and low-frequency speakers can improve the playback effect of audio data, and users can flexibly choose to use full-frequency speakers to play audio data, or use full-frequency speakers and low-frequency speakers to play audio. Data can meet the different needs of users.
  • the sound box system includes a full-frequency sound box 901 and a low-frequency sound box 902 .
  • the full-frequency sound box 901 is the full-frequency sound box described in the above embodiment
  • the low-frequency sound box 902 is the For the low-frequency sound box described in the embodiment, for the description of the structures of the full-frequency sound box 901 and the low-frequency sound box 902, reference may be made to the above-mentioned embodiment, and details are not repeated here.
  • the full-range speaker 901 and the low-frequency speaker 902 are physically connected by a first fixing part and a second fixing part, and the first fixing part and the second fixing part are a set of matching connection parts.
  • the first fixed component includes a first communication component
  • the second fixed component includes a second communication component. After the first fixed component and the second fixed component are physically connected, the first communication component and the second fixed component are physically connected.
  • the communication part is connected so that the full-range speaker 901 and the subwoofer 902 can communicate, the first communication part and the second communication part are a set of paired communication parts (for example, to transmit audio data or control signaling), or, through the subwoofer Charge the full-range speaker (it should be noted that when charging the full-range speaker through the low-frequency speaker, the low-frequency speaker is connected to the power supply).
  • FIG. 8 is only a schematic diagram of a possible composition of the speaker system.
  • the full-frequency speaker is annular
  • the low-frequency speaker is flat and cylindrical
  • the full-frequency speaker and the low-frequency speaker are stacked and connected
  • the first fixing part, the second fixing part, the first communication part and the second communication part are not visible.
  • the full-frequency sound box and the low-frequency sound box may be of other shapes
  • the connection manner of the full-frequency sound box and the low-frequency sound box may also be other connection manners, which are not limited in the embodiments of the present application.
  • the above-mentioned full-frequency speaker 901 is used for playing the target audio data, or the high-frequency component and/or the intermediate frequency component of the target audio data; the low-frequency speaker 902 is used for playing the low-frequency component of the target audio data, and the low-frequency playback effect of the low-frequency speaker is better than that of the full-frequency sound box.
  • the frequency range of the full-frequency speaker is larger than that of the low-frequency speaker.
  • the full-frequency sound box and the low-frequency sound box are connected in a stacked manner or in a hanging manner through the first fixing member and the second fixing member.
  • the first fixing part is the first sheet-like part 1001 connected to the main body of the full-range speaker
  • the second fixing part is connected to the main body of the low-frequency speaker
  • the second sheet-shaped member 1002 when the first sheet-shaped member and the second sheet-shaped member are in contact and coupled, the full-range sound box and the low-frequency sound box are connected in a stacked manner.
  • the first sheet member 1001 includes a first communication member 1001a, the first communication member 1001a is located within the vertical projection of the main body of the full-range speaker; the second sheet member 1002 is located on the main body of the low-frequency speaker, and the second sheet The part 1002 includes a second communication part 1002a provided on the second sheet part 1002 .
  • the first sheet-like member 1001 is in contact with and coupled with the second sheet-like member 1002 so that the full-range sound box and the low-frequency sound box are connected in a stacked manner.
  • FIG. 10 is a schematic diagram of the effect of the stacked connection of the full-range speakers and the low-frequency speakers.
  • first sheet member 1001a and the second sheet member 1002a are connected by means of snap coupling or magnetic coupling.
  • first sheet member 1001a and the second sheet member 1001a can also be connected by other The connection in an achievable manner is not limited in this embodiment of the present application.
  • the first fixing member is a first sheet-like member 1101 extending outward along one side of the main body of the full-range speaker
  • the second fixing member is a A second sheet-like member 1102 extending outward from one side of the main body of the low-frequency speaker
  • the full-range speaker is connected to the low-frequency speaker by hanging.
  • the first sheet member 1101 includes a first communication member 1101a
  • the first communication member 1101a is located outside the vertical projection of the main body of the full-range speaker
  • the second sheet member 1102 includes a second communication member 1102a.
  • Two communication components 1102a are located outside the vertical projection of the subwoofer body.
  • FIG. 11 is a schematic diagram of the effect of the hanging connection of the full-range speaker and the low-frequency speaker.
  • the first fixed part is connected to the main body of the full-frequency speaker, and the first fixed part includes a first communication part.
  • the first communication part is located within the vertical projection of the main body of the full-frequency speaker 12 (a) to (c) in FIG. 12, when the second fixing member is located on the main body of the low-frequency sound box, the full-range sound box and the low-frequency sound box are connected in a stacked manner.
  • the first communication part is located outside the vertical projection of the main body of the full-range speaker, such as (d) in Figure 12
  • the second fixed part is located outside the vertical projection of the main body of the low-frequency speaker
  • the full-range speaker is connected to the low-frequency speaker by hanging.
  • the second fixing part is arranged at The convex part 1302 in the preset fixed area of the main body of the low frequency speaker, and when the concave part 1301 is in contact with the convex part 1302 and is coupled and connected, the full frequency speaker is connected to the low frequency speaker in a stacked manner.
  • FIG. 13 is a schematic diagram of the effect of a stacked connection of a full-range speaker and a low-frequency speaker.
  • the aforementioned concave member 1301 and the convex member 1302 may be connected by means of snap coupling or screw coupling, or may be connected by other achievable means, which are not limited in the embodiment of the present application.
  • the first communication component is a magnetic female head of the magnetic interface
  • the second communication component is a magnetic male head of the magnetic interface
  • the first communication component is a plug of a USB interface
  • the second communication component is a socket of the USB interface.
  • the first communication component and the second communication component may also be other communication components with matching relationship and detachable characteristics, which are not limited in the embodiment of the present application.
  • the speaker system provided in the embodiment of the present application further includes at least one full-frequency speaker, the structure of the at least one full-frequency speaker is similar to the full-frequency speaker described in the above embodiment, and the at least one full-frequency speaker is the same as the speaker.
  • One full-range speaker in the system constitutes at least two full-range speakers of the speaker system, and at least two full-range speakers included in the speaker system can work together. The manner in which the at least two full-range speakers work together will be described in detail in the following embodiments.
  • the sound box system provided in the embodiment of the present application further includes at least one full-frequency sound box and at least one low-frequency sound box.
  • one full-frequency sound box corresponds to one low-frequency sound box to form a full-frequency sound box subsystem.
  • the speaker system includes at least two subsystems that can work together. The manner in which the at least two full-range speaker subsystems work together will be described in detail in the following embodiments.
  • the full-frequency speaker is small in size, light in weight, and easy to carry.
  • a ring full-range speaker has a diameter of about 25 centimeters (cm), a thickness of about 3 cm, and a weight of less than 500 grams.
  • low-frequency speakers are slightly larger in size and heavier.
  • a flat-cylindrical low-frequency speaker has a bottom surface diameter of about 30cm, a height of about 10cm, and a weight greater than 2000 grams.
  • the full-frequency speaker in the speaker system can work independently, or the full-frequency speaker and the low-frequency speaker can work together. Therefore, the user can flexibly choose to use the full-frequency speaker to play audio data, or use the full-frequency speaker to play audio data. Speakers and low-frequency speakers play audio data, which can meet the different needs of users.
  • the full-frequency speakers work independently, since the full-frequency speakers have a better playback effect on the intermediate and high frequencies, playing the intermediate-frequency components and/or high-frequency components of the target audio data through the full-frequency speakers can improve the performance. sound quality.
  • the low-frequency component of the target audio data can be played through the low-frequency speaker, which can improve the bass sound quality of the audio data; and Since full-frequency speakers have better playback effects for intermediate and high frequencies, playing the intermediate-frequency components and/or high-frequency components of the target audio data through the full-frequency speakers can improve the playback of the intermediate-frequency components and/or high-frequency components of the target audio data. In this way, the playback effect of audio data can be improved over the entire frequency band of audio data.
  • FIG. 14 is a schematic diagram of the hardware structure of a full-range speaker provided by an embodiment of the application.
  • the full-range speaker includes a processor 1401 , one or more speakers 1402 , and one or more digital-analog speakers corresponding to the speakers 1402 A conversion module 1403 and one or more power amplifiers 1404 , a communication module 1405 , a power supply 1406 and a connection module 1407 .
  • the processor 1401 is the core control and processing unit of the full-range speaker, and has functions such as signal flow control and processing. For example, the processor 1401 processes audio data.
  • One or more speakers 1402 are playback devices of full-range speakers, and are used to play the audio data processed by the processor 1401 .
  • the one or more speakers 1402 may be full-range speakers, and some of the one or more speakers 802 may be mid-high frequency speakers, which are not specifically limited in this embodiment of the present application.
  • One or more digital-to-analog conversion modules 1403 are used to convert the audio data processed by the processor 1401 from a digital signal form to an analog signal form.
  • One or more power amplifiers 1404 are used to power amplify the audio data in the form of an analog signal for playback by one or more speakers 1402 .
  • the communication module 1405 is used to support the full-frequency speaker to communicate with other devices.
  • the communication module 1405 may be a Bluetooth module.
  • the Bluetooth module enables the full-frequency speaker to establish a connection with the mobile phone to transmit audio data.
  • the communication module 1405 may be a transceiver.
  • the power source 1406 is used to power the full-range speaker, and the power source 1406 can be a battery.
  • the connection module 1407 is used to detachably connect the full-frequency speaker and the low-frequency speaker, and the contactable connection between the full-frequency speaker and the low-frequency speaker is realized through the connection module 1407, so as to charge the full-frequency speaker or realize the communication between the full-frequency speaker and the low-frequency speaker.
  • the connection module 1407 includes a communication part, and the communication part can be a USB interface or a magnetic interface.
  • the transceiver of the full-range loudspeaker can send audio data to the low-frequency loudspeaker through the communication component.
  • the full-range sound box provided in this embodiment of the present application may further include an analog audio interface 1408, and the analog audio interface 1408 is used to receive or send analog audio data.
  • FIG. 15 is a schematic diagram of the hardware structure of a low-frequency speaker provided by an embodiment of the application.
  • the low-frequency speaker includes a processor 1501 , one or more low-frequency speakers 1502 , and one or more digital-analog speakers corresponding to the low-frequency speakers 1502
  • the processor 1501 is the core control and processing unit of the entire full-frequency speaker (including the full-frequency speaker and the low-frequency speaker), and has functions such as signal flow control and processing. And compared with the processor 1401 of the above-mentioned full-range speaker, the processor 1501 of the low-frequency speaker has stronger computing, storage capacity and computing resources.
  • the one or more speakers 1502 are bass playback devices for playing low frequency components of the audio data processed by the processor 1501 .
  • One or more digital-to-analog conversion modules 1503 are used to convert the audio data processed by the processor 1501 from a digital signal form to an analog signal form.
  • One or more power amplifiers 1504 are used to power amplify the audio data in the form of an analog signal for playback by one or more speakers 1502 .
  • the communication module 1505 is used to support the communication between the full-frequency speaker and other devices.
  • the communication module 1505 enables the full-frequency speaker to establish a connection with the mobile phone to transmit audio data.
  • the communication module 1405 can be a transceiver.
  • the communication module 1505 may be a Bluetooth module or a WiFi module, which is not limited in this embodiment of the present application.
  • the power supply 1506 is a wired power supply for powering the subwoofer and full-range speakers.
  • the connection module 1507 is used to detachably connect the low-frequency speaker and the full-frequency speaker, and the contactable connection between the full-frequency speaker and the low-frequency speaker is realized through the connection module 1507, so as to charge the full-frequency speaker or realize the communication between the full-frequency speaker and the low-frequency speaker.
  • the connection module 1507 includes a communication component, and the communication component can be a USB interface or a magnetic interface.
  • the transceiver of the low frequency sound box can send audio data to the full frequency sound box through the communication part.
  • the low-frequency sound box provided in the embodiment of the present application further includes other expandable units, for example, the low-frequency sound box further includes a camera or a microphone array.
  • an embodiment of the present application provides a method for processing audio data. As shown in FIG. 16 , the method includes steps 1601 to 1603 .
  • Step 1601 The terminal detects whether the first communication part of the full-range speaker is connected to the second communication part of the low-frequency speaker.
  • the full-range speaker includes a first fixing part, and the first communication part is arranged on the first fixing part; the low-frequency sound box includes a second fixing part, and the second communication part is arranged on the second fixing part .
  • the full-frequency sound box and the low-frequency sound box are physically connected or disassembled through the first fixed part and the second fixed part.
  • the first communication part and the second communication part are connected, the full-frequency sound box and the low-frequency sound box can communicate.
  • the first communication part and the second communication part support the transmission of multi-channel audio data, the low frequency playback effect of the low frequency speaker is better than that of the full frequency speaker, and the frequency range of the full frequency speaker is larger than that of the low frequency speaker.
  • the terminal can detect whether the first communication component is connected to the second communication component by interacting with the full-frequency speaker. For example, the terminal obtains the first port corresponding to the first communication component on the full-frequency speaker from the full-frequency speaker. The state information of the first port is used to determine whether the first communication part is connected with the second communication part according to the state information of the first port.
  • the state information of the first port is "0", and the terminal determines that the first communication part and the second communication part are not connected after obtaining the state "0"; when the first communication part and the second communication part are not connected;
  • the state information of the first port is "1"
  • the terminal determines that the first communication part is connected to the second communication part after acquiring the state "1".
  • the terminal may also detect whether the first communication component is connected to the second communication unit by using other achievable methods, which is not limited in this embodiment of the present application.
  • Step 1602 When the terminal detects that the first communication part and the second communication part are not connected, the terminal sends the audio data to be played to the full-frequency speaker.
  • the audio data to be played can be original audio data or target audio data.
  • the terminal sending the audio data to be played to the full-frequency speaker may include the following two situations.
  • the full-frequency speaker divides the original data, and performs sound field expansion processing on components of different frequency bands to obtain target audio data, and then play the target audio data.
  • the terminal sends the target audio data to the full-frequency speaker.
  • the target audio data can be obtained by dividing the original audio data by other devices and performing sound field expansion processing, and sending it to the full-frequency speaker, and then by the The full-range speaker plays the target audio data.
  • the above-mentioned other devices may be the terminal, a low-frequency speaker, or other devices other than these two devices, which are not limited in this embodiment of the present application.
  • Step 1603 When the terminal detects that the first communication part is connected to the second communication part, the terminal sends audio data according to one of the following steps 1603a to 1603c.
  • Step 1603a the terminal sends the first audio data to the full-frequency speaker, and sends the second audio data to the low-frequency speaker.
  • the first audio data is an intermediate frequency component and/or a high frequency component of the audio data to be played
  • the second audio data is a low frequency component of the audio data to be played.
  • the terminal sends audio data to the full-range speakers and the low-frequency speakers, including the following situations.
  • Case 1 The terminal sends the intermediate frequency component and/or the high frequency component of the original audio data to the full-frequency speaker, and sends the low-frequency component of the original audio data to the low-frequency speaker.
  • the terminal can perform frequency division on the original audio data to obtain intermediate frequency components and/or high frequency components and low frequency components of the original audio data, and then the terminal sends the intermediate frequency components and/or high frequency components of the original audio data to the full-frequency speaker.
  • component, the intermediate frequency component and/or the high frequency component of the original data is subjected to sound field expansion processing by the full-frequency speaker to obtain the intermediate frequency component and/or the high frequency component of the target audio data; and the terminal sends the low frequency component of the original audio data to the low-frequency speaker , the low-frequency sound box performs sound field expansion processing on the low-frequency component of the original audio data to obtain the low-frequency component of the target audio data, and the low-frequency sound box plays the low-frequency component of the target audio data.
  • Case 2 The terminal sends the mid-frequency component and/or the high-frequency component of the target audio data to the full-frequency speaker, and sends the low-frequency component of the target audio data to the low-frequency speaker.
  • the terminal or other equipment can perform frequency division on the original audio data and perform sound field expansion processing on the intermediate frequency component and/or high frequency component after the frequency division, and the ground frequency component respectively, and send the target audio data to the full-frequency speaker.
  • the intermediate frequency component and/or high frequency component of the target audio data is sent to the low frequency speaker, and then the full frequency speaker plays the intermediate frequency component and/or high frequency component of the target audio data, and the low frequency speaker plays the target audio data. low frequency components.
  • Step 1603b the terminal sends the audio data to be played to the full-frequency speaker.
  • the full-frequency speaker divides the frequency of the original audio data and performs sound field expansion processing to obtain target audio data.
  • the playback mode of the target audio data includes the following two modes:
  • Mode 1 The target audio data is played by a full-frequency speaker.
  • Mode 2 The mid-frequency component and/or the high-frequency component of the target audio data is played by a full-frequency speaker, the full-frequency speaker sends the low-frequency component of the target audio data to the low-frequency speaker, and the low-frequency speaker plays the low-frequency component of the target audio data.
  • Step 1603c The terminal sends the audio data to be played to the low-frequency speaker.
  • the terminal sending the audio data to be played to the low-frequency speaker may include the following two situations.
  • the low-frequency speaker performs frequency division on the original data, and the components of different frequency bands are subjected to sound field expansion processing to obtain target audio data, and then the low-frequency speaker plays the target audio.
  • the low-frequency component of the data is sent to the full-range speaker, and the mid-frequency component and/or the high-frequency component is played by the full-range speaker.
  • Case 2 The terminal sends target audio data to the low-frequency speaker.
  • the target audio data can be obtained by dividing the original audio data by other equipment and performing sound field expansion processing, and sent to the low-frequency speaker, and then by the low-frequency speaker.
  • the low-frequency component of the target audio data is played, and the low-frequency speaker sends the mid-frequency component and/or the high-frequency component of the target audio data to the full-frequency speaker, and the full-frequency speaker plays the mid-frequency component and/or the high-frequency component and sends it to the full-frequency speaker. audio speakers.
  • the terminal determines to send audio data to the full-frequency speaker and/or the low-frequency speaker by detecting whether the first communication part of the full-frequency speaker of the terminal is connected to the second communication part of the low-frequency speaker, So that the full-frequency speakers process audio data and/or the low-frequency speakers process audio data, so as to achieve a better sound field expansion effect and improve sound quality.
  • an embodiment of the present application provides a method for processing audio data, which is applied to the above-mentioned full-range speaker, and the method includes steps 1701 to 1704 .
  • Step 1701 The full-frequency speaker obtains audio data to be played.
  • the audio data to be played is original audio data.
  • the audio data to be played may be audio data received by the full-frequency speaker from the terminal, or audio data obtained by the full-frequency speaker from other devices, which is not limited in this embodiment of the present application.
  • Step 1702 The full-frequency speaker performs multi-band filtering on the acquired audio data to be played, to obtain intermediate frequency components and/or high frequency components and low frequency components of the audio data to be played.
  • the above-mentioned multi-band filtering may include high-frequency filtering, band-pass filtering, and low-frequency filtering. And/or, the multi-band filtering includes high frequency filtering and low frequency filtering. It should be understood that the high frequency component of the audio data is obtained by performing high frequency filtering on the audio data; the intermediate frequency component of the audio data is obtained by bandpass filtering the audio data; and the low frequency component of the audio data is obtained by performing low frequency filtering on the audio data.
  • the setting of the filtering frequency band is related to the distance between the two speakers in the speaker pair forming the dipole in the full-frequency sound box.
  • the filter frequency band determines the frequency bands corresponding to the filtered high-frequency components, intermediate-frequency components, and low-frequency components.
  • Step 1703 Perform sound field expansion processing on the intermediate frequency component and/or high frequency component and the low frequency component of the audio data to be played by the full-frequency speaker to obtain target audio data.
  • the above step 1703 includes steps 1703a to 1703b.
  • Step 1703a the full-range speaker performs high-frequency band dipole processing on the high-frequency components of the filtered audio data, and/or performs mid-band dipole processing on the intermediate frequency components of the filtered audio data.
  • the sound field of the speaker of the full-range speaker has a sweet point area, which refers to the area that can achieve better sound effects.
  • the sweet spot is deviated from the center of the full-range speaker by a preset angle. area.
  • the user or listener
  • the user has a better listening experience; when the user is far away from the sweet spot area (for example, the angle between the user and the center of the full-range speaker is greater than the above-mentioned preset angle)
  • the binaural crosstalk occurs, the user's listening experience will be deteriorated.
  • a pair of acoustic dipoles corresponds to a pair of loudspeakers, and signals with the same amplitude and different phases are played through the pair of loudspeakers.
  • the right channel corresponds to an acoustic dipole
  • the left channel corresponds to an acoustic dipole.
  • the high frequency band dipole algorithm is used to perform sound field expansion processing on the high frequency components of the audio data
  • the intermediate frequency band dipole algorithm is used to perform sound field expansion processing on the intermediate frequency components of the audio data.
  • the right channel signal It can reduce the energy of the right channel signal reaching the left ear without reducing the energy of the right channel signal reaching the right ear; for the left channel signal, it can ensure that the energy of the left channel signal reaching the left ear is not reduced. In the case of , the energy of the left channel signal reaching the right ear is reduced, so as to achieve binaural crosstalk cancellation.
  • the smaller the energy of the signal reaching the right ear and the greater the energy of the left channel signal reaching the left ear, the better the binaural crosstalk cancellation effect is.
  • Figure 18 shows the directivity diagram of the dipole corresponding to the right channel.
  • the directivity diagram of the dipole can further demonstrate the effect of crosstalk cancellation.
  • the directivity diagram of the acoustic dipole corresponding to the right channel can be expressed by the following formula:
  • phase difference ⁇ is related to the user's position. Specifically, ⁇ can be adjusted according to the user's position to achieve optimal crosstalk cancellation, that is, the sound field expansion effect.
  • the 240-degree direction in the figure is The direction of the user's left ear, and the corresponding ⁇ at this time is 0 degrees. It can be seen that around 240 degrees, the energy of the right channel signal reaching the left ear is small. And in the vicinity of 240 degrees, the energy of the right channel signal reaching the right ear is larger.
  • FIG. 18 shows the directivity diagram of the dipole when ⁇ is 30 degrees
  • (c) in FIG. 18 shows the directivity diagram of the dipole when ⁇ is -30 degrees.
  • one frequency band corresponds to one or more pairs of acoustic dipoles.
  • the high frequency band corresponds to multiple pairs of acoustic dipoles, so the high frequency components filtered by the high frequency will be played through the speakers corresponding to the multiple pairs of dipoles after being processed by the high frequency band dipole algorithm.
  • Step 1703b Perform bass enhancement processing on the low-frequency components of the filtered audio data.
  • the low-frequency component of the filtered audio data is processed by a bass enhancement algorithm, and the energy of the low-frequency signal (ie the low-frequency component) is dynamically increased without damaging the speaker (not exceeding the maximum displacement of the diaphragm), Significantly improves the bass quality of audio data.
  • the bass enhancement algorithm obtains the parameters (TS parameters) of the loudspeaker in advance and builds a model according to the parameters of the loudspeaker to obtain a processing model, which can be specifically referred to the existing method, which is not repeated in the embodiments of the present application.
  • the full-frequency sound box is processed to the original audio data, obtain the intermediate frequency component and/or the high frequency component of the target audio data (specifically including the intermediate frequency component and/or the high frequency component of the target audio data, and the low frequency component) of the target audio data.
  • the components are played by full-range speakers.
  • Step 1704 The full-frequency speaker sends the low-frequency component of the target audio data to the low-frequency speaker.
  • the low-frequency component of the target audio data is played by the low-frequency speaker, and the low-frequency playing effect of the low-frequency speaker is better than the low-frequency playing effect of the full-frequency speaker.
  • the full-frequency speaker may not send the low-frequency component of the target audio data to the low-frequency speaker, but the full-frequency speaker plays the target audio data (including the mid-frequency component and/or the high-frequency component, and the low-frequency component). ).
  • the full-frequency speaker plays the high-frequency component and/or the intermediate frequency of the audio data after the sound field expansion processing.
  • components since full-range speakers have better playback effects on mid-frequency and high-frequency components, they can improve the sound quality of mid-frequency components and/or high-frequency components.
  • the full-frequency speaker sends the low-frequency component of the audio data after sound field expansion processing to the low-frequency speaker, and the low-frequency speaker plays the low-frequency component. Since the low-frequency playback effect of the low-frequency speaker is better than that of the full-frequency speaker, it can be Improves the bass quality of audio data.
  • an embodiment of the present application provides a method for processing audio data, which is applied to a low-frequency speaker, and the method includes steps 1901 to 1904 .
  • Step 1901 the low-frequency speaker obtains audio data to be played.
  • the audio data to be played is original audio data.
  • the audio data to be played may be audio data received by the low-frequency speaker from the terminal, or audio data obtained by the low-frequency speaker from other devices, which is not limited in this embodiment of the present application.
  • Step 1902 The low-frequency speaker performs multi-band filtering on the acquired audio data to be played, to obtain intermediate frequency components and/or high frequency components and low frequency components of the audio data to be played.
  • Step 1903 The low-frequency speaker performs sound field expansion processing on the intermediate frequency component and/or the high frequency component and the low frequency component of the audio data to be played to obtain target audio data.
  • the method for performing multi-band filtering and sound field expansion processing on the audio data to be played by the low-frequency speaker is the same as the method for performing multi-band filtering and sound field expansion processing on the audio data to be played by the above-mentioned full-frequency speaker.
  • the description of the example will not be repeated here.
  • Step 1904 The low-frequency speaker sends the mid-frequency component and/or the high-frequency component of the target audio data to the full-frequency speaker.
  • the low-frequency component after the bass enhancement processing is played through the low-frequency speaker on the low-frequency speaker.
  • a dedicated subwoofer is used for playback, thus enhancing the bass quality of the audio data.
  • the low-frequency speaker sends the high-frequency component and/or the mid-frequency component of the audio data processed by the sound field expansion to the full-frequency speaker, and then the high-frequency component and/or the mid-frequency component is played by the full-frequency speaker. It has a better playback effect on the mid-frequency and high-frequency components, so it can improve the sound quality of the mid-frequency components and/or high-frequency components.
  • the layout of the speakers of the full-range speakers in the speaker system and the above-mentioned sound field expansion algorithm (including the high-band dipole algorithm, the mid-band dipole algorithm, and the bass enhancement algorithm) are Cooperate with each other to achieve a wider sound field effect.
  • the audio data is multi-channel audio data.
  • the multi-channel is two-channel, including a left channel (L) and a right channel (R).
  • the multi-channel includes a left channel (L), a left surround channel (Ls), a left rear channel (Lb), a left upper channel (Lh), a right channel (R), a right surround channel ( Rs), rear right channel (Rb), upper right channel (Rh), center channel (C).
  • the layout of the 8 speakers of the ring-shaped full-range speaker refers to (a) in Figure 2.
  • the audio data is used as the two-channel audio data below. Taking audio data and multi-channel audio data as an example, an exemplary description is given of how the speaker and the sound field expansion algorithm cooperate with each other.
  • the low-frequency speaker obtains the two-channel audio data to be played (including the left channel signal and the right channel signal) Afterwards, in conjunction with FIG. 20, the processing procedure of the two-channel audio data includes:
  • Step 2001 The low frequency speaker performs high frequency filtering, intermediate frequency filtering and low frequency filtering on the left channel (L) signal to obtain the high frequency component of the left channel signal, the intermediate frequency component of the left channel signal and the low frequency component of the left channel signal.
  • Step 2002 the low-frequency speaker performs high-frequency filtering, intermediate-frequency filtering and low-frequency filtering on the right channel (R) audio signal to obtain the high-frequency component of the right channel signal, the intermediate frequency component of the right channel signal and the low-frequency component of the right channel signal.
  • the left channel signal is denoted as DL
  • the high frequency component of the left channel signal is denoted as DL_h
  • the intermediate frequency component of the left channel signal is denoted as DL_c
  • the left channel signal is denoted as DL_c
  • the low frequency component of the signal is denoted as DL_1 ;
  • the right channel signal is denoted as DR
  • the high frequency component of the right channel signal is denoted as D R_h
  • the intermediate frequency component of the left channel signal is denoted as D R_c
  • the left channel signal is denoted as D R_c .
  • the low frequency component of is denoted as D R_l .
  • Step 2003 the low-frequency speaker performs high-frequency dipole processing on the high-frequency component D L_h of the left channel signal and the high-frequency component D R_h of the right channel signal, and obtains the processed high-frequency component D' of the left channel signal L_h and high frequency components D' R_h of the right channel signal.
  • Step 2004, the low-frequency loudspeaker performs intermediate frequency band dipole processing on the intermediate frequency component D L_c of the left channel signal and the intermediate frequency component D R_c of the right channel signal, and obtains the intermediate frequency component D' L_c and the right sound of the processed left channel signal.
  • the intermediate frequency component D' R_c of the channel signal is the intermediate frequency band dipole processing on the intermediate frequency component D L_c of the left channel signal and the intermediate frequency component D R_c of the right channel signal, and obtains the intermediate frequency component D' L_c and the right sound of the processed left channel signal.
  • Step 2005 the low-frequency speaker performs a mixing process on the low-frequency component D L_1 of the left channel signal and the low-frequency component D R_1 of the right channel signal, to obtain a mixed low-frequency component D1 , and then perform bass enhancement processing on the low-frequency component D1 , obtain the low-frequency component D' l of the processed audio data, and play the low-frequency component D' l of the processed audio data through a low-frequency speaker.
  • Step 2006 the low-frequency loudspeaker uses the high frequency component D' L_h and the intermediate frequency component D' L_c of the left channel signal after the sound field expansion process, and the high frequency component D' R_h and the intermediate frequency of the right channel signal after the sound field expansion process. Component D' R_c is sent to full-range speakers.
  • the above-mentioned playing audio data through the corresponding speakers on the full-range speaker refers to: using speakers that constitute a horizontal acoustic dipole to play audio data (including high-frequency components) after the sound field has been expanded in the horizontal direction. and mid-frequency components), specifically, the pair of speakers with a closer distance is used to play high-frequency components, and the pair of speakers with a farther distance is used to play the mid-frequency components.
  • the speaker 2 and the speaker 4 form a pair of sound dipoles in the horizontal direction, which are used to play the high-frequency components after the sound field is expanded in the horizontal direction; 6 and loudspeaker 8 form a pair of horizontal acoustic dipoles for playing the high-frequency components expanded by the horizontal sound field; loudspeaker 1 and loudspeaker 5 form a pair of horizontal acoustic dipoles for playing The mid-frequency component after the directional sound field is expanded.
  • one frequency band corresponds to one or more speaker pairs.
  • the high frequency band ie the above-mentioned high frequency components
  • Table 1 is an example of the correspondence between each component of the audio data and the speakers of the full-range sound box.
  • the sound field expansion processing performed on the two-channel audio data is the sound field expansion processing performed on the audio data in the horizontal direction.
  • the low-frequency speaker receives the multi-channel (including the left channel, the left surround channel, the left rear sound channel) to be played.
  • channel, upper left channel, right channel, right surround channel, rear right channel, upper right channel, center channel) audio data in conjunction with Figure 21, the processing process of the multi-channel audio data includes:
  • Step 2101 The low-frequency speaker mixes the audio data of the left channel (L), the left surround channel (Ls) and the left rear channel (Lb) to obtain a horizontal left channel signal.
  • the left channel signal is denoted as DL
  • the left surround channel audio data is denoted as D Ls
  • the left rear channel audio data is denoted as D Lb
  • Step 2102 The low-frequency speaker performs high-frequency filtering, intermediate-frequency filtering, and low-frequency filtering on the horizontal left channel signal D LH to obtain the high-frequency component D LH_h of the horizontal left channel signal, the intermediate frequency component D LH_c of the horizontal left channel signal, and the horizontal left channel signal.
  • the low frequency component D LH_l of the channel signal The low frequency component D LH_l of the channel signal.
  • Step 2103 The low-frequency speaker mixes the audio data of the right channel (R), the right surround channel (Rs) and the right rear channel (Rb) to obtain a horizontal right channel signal.
  • the right channel signal is denoted as DR
  • the left surround channel audio data is denoted as D Rs
  • the left rear channel audio data is denoted as D Rb
  • Step 2104 The low-frequency speaker performs high-frequency filtering, intermediate-frequency filtering and low-frequency filtering on the horizontal right channel signal D RH to obtain the high-frequency component D RH_h of the horizontal right channel signal, the intermediate frequency component D RH_c of the horizontal right channel signal and the horizontal right channel signal D RH_c .
  • Step 2105 The low-frequency speaker performs high-frequency filtering, intermediate-frequency filtering, and low-frequency filtering on the audio data D Lh of the upper left channel (Lh) to obtain the high-frequency component D LV_h of the vertical left channel signal, and the intermediate frequency of the vertical left channel signal.
  • component D LV_c and the low frequency component D LV_l of the vertical left channel signal performs high-frequency filtering, intermediate-frequency filtering, and low-frequency filtering on the audio data D Lh of the upper left channel (Lh) to obtain the high-frequency component D LV_h of the vertical left channel signal, and the intermediate frequency of the vertical left channel signal.
  • the above-mentioned audio data of the upper left channel is a left channel signal in a vertical direction, which is hereinafter referred to as a vertical left channel signal.
  • Step 2106 The low-frequency speaker performs high-frequency filtering, intermediate-frequency filtering and low-frequency filtering on the audio data D Rh of the upper right channel (Rh) to obtain the high-frequency component D RV_h of the vertical right channel signal, and the intermediate frequency of the vertical right channel signal. component D RV_c and the low frequency component D RV_l of the vertical right channel signal.
  • the above-mentioned audio data of the upper right channel is a right channel signal in a vertical direction, which is hereinafter referred to as a vertical right channel signal.
  • Step 2107 the low-frequency speaker carries out high-frequency filtering and low-frequency filtering to the center channel (C) audio data D C , to obtain the high frequency component D C_h of the center channel audio data and the low frequency component D C_1 of the center channel audio data .
  • Step 2108 The low-frequency speaker performs horizontal high-frequency dipole processing on the high-frequency component D LH_h of the horizontal left channel signal and the high-frequency component D RH_h of the horizontal right channel signal, to obtain the processed signal of the horizontal left channel.
  • the high frequency component D' LH_h and the high frequency component D' RH_h of the horizontal right channel signal are the high frequency component D' LH_h and the high frequency component D' RH_h of the horizontal right channel signal.
  • Step 2109 The low-frequency sound box performs horizontal intermediate frequency band dipole processing on the intermediate frequency component D LH_c of the horizontal left channel signal and the intermediate frequency component D RH_c of the horizontal right channel signal, and obtains the processed intermediate frequency component D of the horizontal left channel signal. ' LH_c and the intermediate frequency component D' of the horizontal right channel signal RH_c .
  • Step 2110 The low-frequency speaker performs vertical high-frequency band dipole processing on the high-frequency component D LV_h of the vertical left channel signal and the high-frequency component D RV_h of the vertical right channel signal, to obtain the processed vertical left channel.
  • the high frequency component D' LV_h of the channel signal and the high frequency component D' RV_h of the vertical right channel signal are vertical high-frequency band dipole processing on the high-frequency component D LV_h of the vertical left channel signal and the high-frequency component D RV_h of the vertical right channel signal.
  • Step 2111 The low-frequency speaker performs vertical intermediate frequency band dipole processing on the intermediate frequency component D LV_c of the vertical left channel signal and the intermediate frequency component D RV_c of the vertical right channel signal, to obtain the processed vertical left channel signal
  • the intermediate frequency component D' LV_c of the vertical right channel signal and the intermediate frequency component D' RV_c of the vertical right channel signal performs vertical intermediate frequency band dipole processing on the intermediate frequency component D LV_c of the vertical left channel signal and the intermediate frequency component D RV_c of the vertical right channel signal, to obtain the processed vertical left channel signal
  • the intermediate frequency component D' LV_c of the vertical right channel signal and the intermediate frequency component D' RV_c of the vertical right channel signal The intermediate frequency component D' LV_c of the vertical right channel signal.
  • Step 2112 The low-frequency speaker compares the low-frequency component D LH_1 of the horizontal left channel signal, the low-frequency component D RH_1 of the horizontal right channel signal, the low-frequency component D LV_1 of the vertical left channel signal, and the low-frequency component D of the vertical right channel signal RV_1 and the low frequency component D C_1 of the center channel audio data carry out sound mixing processing to obtain the mixed low frequency component D 1 , and then carry out bass enhancement processing to this low frequency component D 1 to obtain the low frequency component D ′ 1 of the processed audio data .
  • the low frequency components of the processed audio data are played by the subwoofer.
  • the mixed low-frequency components obtained through the sound mixing process satisfy:
  • Step 2113 The low-frequency speaker mixes the high-frequency components and the intermediate-frequency components of the audio data after sound field expansion processing, and sends the mixed-processed audio data to the full-frequency speaker.
  • Step 2114 The full-range speaker receives the mixed-processed audio data sent by the low-frequency speaker.
  • playing audio data through the corresponding speaker on the full-frequency speaker refers to: using a speaker that constitutes a horizontal acoustic dipole to play the audio data (including high-frequency components and Intermediate frequency components), specifically, the speaker pair with a closer distance is used to play the high frequency component, and the speaker pair with a farther distance is used to play the intermediate frequency component. And adopt the speaker pair that constitutes the acoustic dipole in the vertical direction to play the audio data (including the high frequency component and the intermediate frequency component) expanded by the sound field in the vertical direction. The farther apart speaker pair is used to play mid-range components.
  • the loudspeaker 4 and the loudspeaker 6 constitute a pair of vertical acoustic dipoles, which are used to play the high-frequency components after the sound field is expanded in the vertical direction.
  • Loudspeaker 2 and loudspeaker 8 constitute a pair of vertical acoustic dipoles for playing the high-frequency components after the sound field expansion in the vertical direction
  • Loudspeaker 3 and loudspeaker 7 constitute a pair of vertical acoustic dipoles, It is used to play the mid-frequency component after the vertical sound field is expanded.
  • the speaker 2 and the speaker 4 constitute a pair of horizontal acoustic dipoles for playing the high-frequency components after the sound field in the horizontal direction is expanded;
  • the speaker 6 and the speaker 8 constitute a pair of horizontal acoustic dipoles for Play the high-frequency components expanded by the sound field in the horizontal direction;
  • the speaker 1 and the speaker 5 form a pair of sound dipoles in the horizontal direction, which are used to play the mid-frequency components expanded by the sound field in the horizontal direction.
  • a frequency band corresponds to one or more speaker pairs.
  • Table 2 is an example of the correspondence between each component of the audio data and the speakers of the full-range sound box.
  • the above-mentioned mixing process specifically refers to mixing the high frequency component D' LH_h of the horizontal left channel signal, the high frequency component D' RV_h of the vertical right channel signal, and the high frequency component of the center channel.
  • the components D C_h are mixed; the high frequency component D' RH_h of the horizontal right channel signal, the high frequency component D' RV_h of the vertical right channel signal, and the high frequency component D C_h of the center channel are mixed; The high frequency component D' RH_h of the channel signal, the high frequency component D' LV_h of the vertical left channel signal, and the high frequency component D C_h of the center channel are mixed; the high frequency component D' of the horizontal left channel signal is mixed LH_h , the high frequency component D' LV_h of the vertical left channel signal, and the high frequency component D C_h of the center channel are mixed.
  • performing sound field expansion processing on multi-channel audio data is to perform sound field expansion processing in the horizontal direction and sound field expansion processing in the vertical direction on the audio data, which can generate a three-dimensional sound field effect.
  • the first communication part of the full-range speaker in the speaker system is not connected to the second communication part of the low-frequency speaker, or the first communication part of the full-range speaker is connected to the second communication part of the low-frequency speaker, but the full-frequency speaker is connected.
  • the audio box independently processes the audio data, and when the low-frequency box does not participate in the audio data processing, the two-channel audio data and the multi-channel audio data are used as examples to describe how the speakers and the sound field expansion algorithm cooperate with each other.
  • the full-frequency speaker performs sound field expansion processing on the two-channel audio data, and plays the audio data after sound field expansion processing.
  • the speaker 2 and the speaker 4 constitute a pair of horizontal acoustic dipoles for playing the high-frequency components after the sound field is expanded in the horizontal direction;
  • the speaker 6 and the speaker 8 constitute a pair of The sound dipole in the horizontal direction is used to play the high-frequency components after the sound field expansion in the horizontal direction;
  • the speaker 1 and the speaker 5 form a pair of sound dipoles in the horizontal direction, which are used to play the intermediate frequency components after the sound field expansion in the horizontal direction.
  • the low-frequency components of the audio data after bass enhancement processing are mixed with other high-frequency components or mid-frequency components, and played through the speakers of the full-range speakers.
  • Table 3 is an example of the correspondence between each component of the audio data and the speakers of the full-range sound box.
  • the audio data is multi-channel audio data (including left channel, left surround channel, left rear channel, left upper channel, right channel, right surround channel, right rear channel, right upper channel, center channel), the multi-channel audio data is subjected to sound field expansion processing by the full-frequency speaker, and the audio data after the sound field expansion processing is played, in conjunction with (a) in FIG. 2 and FIG.
  • a pair of acoustic dipoles in the vertical direction are used to play the high-frequency components after the sound field expanded in the vertical direction; the speaker 2 and the speaker 8 constitute a pair of acoustic dipoles in the vertical direction, which are used to play the high-frequency components in the vertical direction.
  • the speaker 2 and the speaker 4 constitute a pair of horizontal acoustic dipoles for playing the high-frequency components after the sound field in the horizontal direction is expanded;
  • the speaker 6 and the speaker 8 constitute a pair of horizontal acoustic dipoles for Play the high-frequency components expanded by the sound field in the horizontal direction;
  • the speaker 1 and the speaker 5 form a pair of sound dipoles in the horizontal direction, which are used to play the mid-frequency components expanded by the sound field in the horizontal direction.
  • the low-frequency components of the audio data after bass enhancement processing are mixed with other high-frequency components or mid-frequency components, and played through the speakers of the full-range speakers.
  • Table 4 is an example of the correspondence between each component of the audio data and the speakers of the full-range sound box.
  • an embodiment of the present application provides a method for processing audio data, and the method is applied in a scenario where a terminal establishes a communication connection with the above-mentioned sound box system.
  • the sound box system includes a full-frequency sound box and a low-frequency sound box.
  • the first communication part of the speaker is connected to the second communication part of the low frequency enclosure.
  • the full-frequency sound box includes a first fixing part, the first communication part is arranged on the first fixing part, the low-frequency sound box includes a second fixing part, the second communication part is arranged on the second fixing part, and the full-frequency sound box and the low-frequency sound box pass through the first fixing part.
  • a fixed part and a second fixed part are physically connected or disassembled, the full-range speaker and the low-frequency speaker are made to communicate through the first communication part and the second communication part, and the first communication part and the second communication part support the transmission of multi-channel audio data .
  • the method includes steps 2401 to 2404 .
  • Step 2401 the terminal receives the first operation of the user.
  • Step 2402 The terminal controls the full-frequency speaker to work independently in response to the first operation.
  • the above-mentioned first operation is the user's selection operation on the first option in the first interface of the terminal, the first option corresponds to the independent operation of the full-frequency speaker, and the independent operation of the full-frequency speaker means that the full-frequency speaker plays the target audio data.
  • the above-mentioned first operation may be a touch screen operation or a key operation, etc., which is not specifically limited in this embodiment of the present invention.
  • the above-mentioned touch screen operation is a user's pressing operation on the touch screen of the terminal, a long pressing operation, a sliding operation, a clicking operation, a hovering operation (a user's operation near the touch screen), and the like.
  • the key operation corresponds to the user's single-click operation, double-click operation, long-press operation, combined key operation and other operations on the power key, volume key, Home key and other keys of the terminal.
  • a full-frequency speaker application is installed on the terminal. After the user opens the full-frequency speaker application and establishes a communication connection with the speaker system, the terminal displays a first interface, and the user can download the first interface. Perform corresponding operations to control the speaker system to work in different working modes.
  • the working modes of the speaker system include the independent work of the full-range speakers and the coordinated work of the full-range speakers and the low-frequency speakers.
  • the first interface is the interface 2501 shown in (a) of FIG. 25
  • the first interface 2501 includes the first option 2501a and the second option 2501b, wherein the first option 2501a corresponds to the independent working of the full-range speaker , the second option 2501b corresponds to the cooperation of the full-range speaker and the low-frequency speaker.
  • the user can select the corresponding option in the interface 2501 according to actual needs. For example, the user can click the first option 2501a to control the full-range speaker to work independently.
  • the first interface is the interface 2502 shown in (b) of FIG. 25 , and the first interface 2502 includes a full-range speaker icon 2502a and a low-frequency speaker icon 2502b. For example, if the user clicks the full-range speaker icon 2501a, then Can control full-range speakers to work independently.
  • step 2402 may specifically include step 2402a.
  • Step 2402a in response to the first operation, the terminal sends a first instruction to the speaker system, where the first instruction is used to control the full-frequency speaker to work independently.
  • the low-frequency speaker controls and manages the entire speaker system , that is, the terminal sending the first instruction to the speaker system refers to sending the first instruction to the low-frequency speaker in the speaker system.
  • the terminal may also send a first instruction to the full-frequency speaker to control the full-frequency speaker to work independently.
  • the terminal sends the first instruction to the low-frequency sound box
  • the low-frequency sound box and the full-frequency sound box of the sound box system execute steps A1 to A4.
  • Step A1 The low-frequency speaker sends a control instruction to the full-frequency speaker, where the control instruction is used to instruct the full-frequency speaker to play target audio data.
  • Step A2 The full-frequency speaker receives the control instruction, and obtains the audio data to be played.
  • the above control instruction is also used to instruct the full-frequency speaker to perform multi-band filtering on the audio data to be played, and to perform sound field expansion processing on the filtered audio data to be played.
  • the full-frequency loudspeaker can establish a communication connection with the terminal, so that the full-frequency loudspeaker obtains audio data (referring to original audio data) to be played from the terminal.
  • the low-frequency speaker acquires audio data to be played from the terminal, and sends the audio data to be played to the full-frequency speaker.
  • the full-frequency speaker may also acquire audio data to be played from other devices, which is not limited in this embodiment of the present application.
  • Step A3 The full-frequency speaker performs multi-band filtering on the acquired audio data to be played to obtain intermediate frequency components and/or high frequency components and low frequency components of the audio data to be played.
  • Step A4 The full-frequency speaker performs sound field expansion processing on the intermediate frequency component and/or high frequency component and the low frequency component of the audio data to be played to obtain target audio data.
  • target audio data specifically including the intermediate frequency component and/or the high-frequency component of the target audio data, and the low-frequency component
  • this target audio data can be played by the full-frequency speaker.
  • the low-frequency speakers of the speaker system do not participate in the processing and playback of audio data.
  • Step 2403 the terminal receives the second operation.
  • Step 2404 The terminal controls the full-frequency speaker and the low-frequency speaker to work together in response to the second operation.
  • the above-mentioned second operation is the user's selection operation on the second option in the first interface of the terminal.
  • the second option corresponds to the full-frequency speaker and the low-frequency speaker working together.
  • the intermediate frequency component and/or the high frequency component of the target audio data is played, and the low frequency component of the target audio data is played by the low-frequency sound box.
  • the above-mentioned second operation may also be a touch screen operation or a key operation, etc., which is not specifically limited in this embodiment of the present invention.
  • the above-mentioned touch screen operation is a user's pressing operation on the touch screen of the terminal, a long pressing operation, a sliding operation, a clicking operation, a hovering operation (a user's operation near the touch screen), and the like.
  • the key operation corresponds to the user's single-click operation, double-click operation, long-press operation, combined key operation and other operations on the power key, volume key, Home key and other keys of the terminal.
  • the second option 2501b corresponds to the cooperation of the full-range speaker and the low-frequency speaker, and the user can select the corresponding option in the interface 2501 according to actual needs, for example , the user can click the second option 2501b to control the full-range speaker and the low-frequency speaker to work together.
  • step 2404 may specifically include step 2404a.
  • Step 2404a In response to the second operation, the terminal sends a second instruction to the speaker system, where the second instruction is used to control the operation of the full-range speaker system and the low-frequency speaker system.
  • the terminal sends the second instruction to the low-frequency speaker.
  • the low-frequency sound box executes steps B1 to B3.
  • Step B1 the low-frequency speaker performs multi-band filtering on the acquired audio data to be played, to obtain intermediate frequency components and/or high frequency components and low frequency components of the audio data to be played.
  • the low-frequency speaker can obtain the audio data to be played (referring to the original audio data) from the terminal, and the low-frequency speaker can also obtain the audio data to be played from other devices.
  • the embodiment is not limited.
  • step B2 the low-frequency speaker performs sound field expansion processing on the intermediate frequency component and/or the high frequency component and the low frequency component of the audio data to be played to obtain target audio data.
  • Step B3 the low-frequency sound box sends the intermediate frequency component and/or the high-frequency component of the target audio data to the full-frequency sound box.
  • the mid-frequency component and/or the high-frequency component of the target audio data is played by a full-frequency speaker
  • the low-frequency component of the target audio data is played by a low-frequency speaker
  • the terminal selects to execute steps 2401 to 2402, or steps 2403 to 2404 according to the specific operation of the user.
  • the audio data processing method provided by the embodiment of the present application further includes the following steps C1 to C4.
  • Step C1 The terminal receives a third operation of the user, and in response to the third operation, controls the camera or the microphone on the low-frequency speaker to start.
  • the terminal may send a third instruction to the low-frequency speaker.
  • the third instruction is used to instruct to activate the camera or the microphone on the low frequency speaker.
  • Step C2 the low-frequency speaker activates the camera or the microphone.
  • Step C3 The low-frequency sound box collects the image information of the listener through the camera, or the sound signal of the listener collected through the microphone.
  • the image information of the listener or the sound signal of the listener is used to perform sound field expansion processing on the filtered audio data to be played.
  • Step C4 The low-frequency speaker performs sound field expansion processing on the filtered audio data to be played according to the listener's image information or sound signal.
  • the low-frequency speaker analyzes the listener's image information or sound signal to determine the listener's position information.
  • the user's position information includes the angle between the user and the center axis of the speaker system. And according to the position information of the listener, adjust the phase difference of the playback signals of the two speakers that form a pair of acoustic dipoles (that is, the above-mentioned phase difference ⁇ ), and the phase difference is the high frequency band dipole processing and/or the intermediate frequency band. Configuration parameters for dipole processing.
  • the configuration parameters in the high-band dipole algorithm or the mid-band dipole algorithm are The phase difference of the playback signal for the two speakers that form a pair of acoustic dipoles), thereby improving the effect of binaural crosstalk cancellation, enabling the user to achieve a better listening experience at the current location.
  • the phase difference is related to the current position of the user, the above-mentioned phase difference is adjusted through the above-mentioned steps A to C, so that the adjusted phase difference is used to perform sound field expansion processing on the audio data, and the binaural crosstalk is eliminated.
  • the effect of sound field expansion at the user's current location improves the user's listening experience in real time.
  • the multiple full-range speakers are respectively connected to the low-frequency speakers, and the multiple full-range speakers can work together.
  • the low-frequency speakers perform sound field expansion processing on the audio data to be played, and after obtaining the target audio data, the low-frequency speakers respectively send the high-frequency components and intermediate-frequency components of the target audio data to each of the multiple full-frequency speakers.
  • a full-range speaker plays the high-frequency component and the mid-frequency component of the target audio data through the corresponding speakers on the multiple full-range speakers.
  • the above-mentioned working modes of the multiple full-frequency speakers working together include multiple types.
  • the high-frequency components are played by some speakers of the full-frequency sound box, and the intermediate-frequency components are played by another part of the speakers.
  • the working mode of the collaborative work can be set according to actual use requirements, which is not limited in the embodiment of the present application.
  • multiple full-frequency speakers obtain audio data to be played respectively, and perform sound field expansion processing on the to-be-played audio data to obtain target audio data, and then the multiple full-frequency speakers play the audio data respectively. the target audio data.
  • the working modes of multiple full-frequency speakers working together may include various, for example, different full-frequency speakers process audio data of different channels. limited.
  • the plurality of full-range sound box subsystems can work together.
  • the low-frequency speakers of each speaker subsystem perform sound field expansion processing on the audio data to be played, obtain the target audio data, play the low-frequency components of the target audio data, and send the intermediate-frequency components of the target audio data to the corresponding full-frequency speakers respectively.
  • the mid-frequency components and/or high-frequency components are played by a full-range speaker.
  • the working modes of the multiple speaker subsystems working together may include various, for example, different speaker subsystems process audio data of different channels. Specifically, the working modes of the collaborative working can be set according to actual usage requirements, which are not limited in the embodiments of the present application.
  • the user performs corresponding operations on the terminal, so that the terminal controls the full-frequency speakers in the speaker system to work independently, or controls the full-frequency speakers and the low-frequency speakers to work together in response to the user's operation. , which can improve the user experience.
  • an embodiment of the present application provides a method for processing audio data, and the method is applied in a scenario where a terminal establishes a communication connection with a speaker system, the speaker system includes a full-frequency speaker and a low-frequency speaker, and the full-frequency speaker
  • the first communication part of the woofer is connected with the second communication part of the low frequency enclosure.
  • the full-range sound box includes a first fixing part, the first communication part is arranged on the first fixing part, the low-frequency sound box includes a second fixing part, the second communication part is arranged on the second fixing part, and the full-frequency sound box and the low-frequency sound box pass through the first fixing part.
  • a fixed part and a second fixed part are physically connected or disassembled, the full-range speaker and the low-frequency speaker can communicate through the first communication part and the second communication part, and the first communication part and the second communication part support the transmission of multi-channel audio data .
  • the method includes steps 2701 to 2703 .
  • Step 2701 The terminal determines the type of the target audio data.
  • the type of the target audio data includes heavy low frequency or non-heavy low frequency.
  • Heavy low frequency refers to the frequency less than 200Hz.
  • bass, cello, low frequency violin, bass drum and other musical instruments or music with bass components belong to heavy low frequency.
  • Step 2702 When the type of the target audio data is non-heavy low frequency, the terminal controls the full-frequency speaker to work independently.
  • the independent working of the full-range speakers means that the target audio data is played by the full-range speakers.
  • the terminal controls the full-frequency speakers to work independently by sending the first command to the speaker system (specifically, the bass speakers), and the first command is used to control the full-frequency speakers to work independently.
  • the terminal sends the first command to the low-frequency speaker
  • the low-frequency speaker and the full-frequency speaker of the speaker system execute the above steps A1 to A4, and the specific reference is made to the description of the above-mentioned embodiment, which will not be repeated here.
  • Step 2703 When the type of the target audio data is non-heavy low frequency, the terminal controls the full-frequency speaker and the low-frequency speaker to work together.
  • the full-frequency speaker and the low-frequency speaker work together, which means that the full-frequency speaker plays the mid-frequency component and/or the high-frequency component of the target audio data, and the low-frequency speaker plays the low-frequency component of the target audio data.
  • the terminal controls the full-frequency speaker and the low-frequency speaker to work together by sending a second instruction to the speaker system (specifically, the bass speaker), and the second instruction is used to control the full-frequency speaker and the low-frequency speaker system to work.
  • the terminal sends the second instruction to the low-frequency sound box
  • the low-frequency sound box of the sound box system executes the above steps B1 to B3, and the specific reference is made to the description of the above-mentioned embodiment, which will not be repeated here.
  • the processing method for providing audio data in the embodiment of the present application further includes: the terminal displays the first prompt information , the first prompt information is used to prompt the full-range speaker and the low-frequency speaker to work together.
  • the terminal displays the first prompt information, so that the user performs corresponding operations on the terminal according to the first prompt information, so that the working mode of the speaker system is switched to A mode in which full-range speakers and low-frequency speakers work together. For example, (a) in FIG.
  • FIG. 28 is a schematic diagram of a display effect of the first prompt information.
  • the terminal determines that the audio data to be played is the audio data with heavy low frequency
  • the terminal automatically switches the working mode of the speaker system, and then displays the first prompt message on the display screen of the terminal to notify the user that the working mode of the speaker system has been changed. Switch to a mode where the full-range speakers and the low-frequency speakers work together.
  • (b) in FIG. 28 is a schematic diagram of a display effect of the first prompt information.
  • the terminal can display second prompt information on the terminal, the second prompt The information is used to prompt the user to add a low-frequency speaker to the full-frequency speaker, that is, to prompt the user to physically connect the full-frequency speaker and the low-frequency speaker, and make the full-frequency speaker and the low-frequency speaker work together, the low-frequency speaker processes the audio data, and the low-frequency speaker The low-frequency components of the processed audio data are played, and the intermediate-frequency components and/or high-frequency components of the processed audio data are played by a full-frequency speaker.
  • FIG. 29 is a schematic diagram of a display effect of the second prompt information.
  • the terminal may present the above-mentioned first prompt information or second prompt information in the form of a fixed bar, a floating window, or a bubble, which is not limited in this embodiment of the present application.
  • the terminal can also display at least one of the following information: the number of channels of audio data currently played by the speaker system, the rendering mode of the audio data, or the difference between the channels of the audio data and the speakers of the full-range speaker. Correspondence information.
  • the rendering mode of the audio data includes a 2D mode or a 3D mode.
  • the above information is displayed on the terminal. In this way, the user can know some detailed states of the currently playing audio data, which can improve the user's subjective experience.
  • the method for processing audio data provided by the embodiment of the present application further includes: the terminal determines, according to the position information of the multiple full-frequency speakers, the channel of the audio data and the multiple The corresponding relationship of the full-range speakers, and the corresponding relationship information between the channel of the audio data and multiple full-range speakers is displayed.
  • channels of audio data corresponding to the five full-range speakers are allocated according to the positions of the five full-range speakers.
  • the full-range speaker 1 The channels corresponding to the full-range speakers 5 in turn are: a left channel, a center channel, a right channel, a right surround channel, and a left surround channel.
  • the corresponding relationship between a channel of audio data and a plurality of full-range speakers may be set according to actual requirements, which is not limited in the embodiment of the present application.
  • a method for processing audio data in which the terminal controls the full-frequency speaker to work independently, or controls the full-frequency speaker and the low-frequency speaker to work together, so as to achieve a better sound field expansion effect.
  • the full-frequency speakers work independently, since the full-frequency speakers have a better playback effect on the intermediate and high frequencies, playing the intermediate-frequency components and/or high-frequency components of the target audio data through the full-frequency speakers can improve the sound quality.
  • the low-frequency component of the target audio data can be played through the low-frequency speaker, which can improve the bass sound quality of the audio data.
  • full-frequency speakers have better playback effects for intermediate and high frequencies
  • playing the intermediate-frequency components and/or high-frequency components of the target audio data through the full-frequency speakers can improve the playback of the intermediate-frequency components and/or high-frequency components of the target audio data. In this way, the playback effect of audio data can be improved over the entire frequency band of audio data.
  • the full-frequency sound box includes an acquisition module 3101 , a filtering module 3102 , and a processing module 3103 .
  • the acquisition module 3101 is used to acquire the audio data to be played.
  • the acquisition module 3101 is used to perform step 1701 in the above method embodiment; Filter to obtain intermediate frequency components and/or high frequency components and low frequency components of the audio data to be played.
  • the filtering module 3102 is configured to perform step 1702 in the foregoing method embodiments.
  • the processing module 3103 is used to perform sound field expansion processing on the intermediate frequency components and/or high frequency components of the audio data to be played, as well as the low frequency components, to obtain target audio data, for example, the processing module 3103 is used to perform step 1703 in the above method embodiment (including Steps 1703a to 1703b).
  • the full-range speaker further includes a sending module 3104, which is configured to send the low-frequency component of the target audio data to the low-frequency speaker.
  • the sending module 3104 is configured to perform step 1704 in the above method embodiment.
  • the apparatus embodiment described in FIG. 31 is only illustrative.
  • the division of the above-mentioned units (or modules) is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • Each functional unit in each embodiment of the present application may be integrated into one module, or each module may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned modules in FIG. 31 can be implemented in the form of hardware, or can be implemented in the form of software functional units.
  • the filtering module 3102 and the processing module 3103 can be implemented by software function modules generated by the processor of the full-range speaker after reading the program code stored in the memory.
  • the above-mentioned modules can also be implemented by different hardware of the full-range speaker.
  • the filtering module 3102 is implemented by a part of the processing resources (for example, one core or two cores in the multi-core processor) of the processor of the full-frequency speaker, while the processing module 3103 is processed by the rest of the processing resources in the processor of the full-range speaker (such as other cores in the multi-core processor) or by programmable devices such as field-programmable gate arrays (FPGA) or coprocessors. Finish.
  • FPGA field-programmable gate arrays
  • the above-mentioned sending module 3104 is realized by the network interface of the full-range speaker and the like.
  • the above functional modules can also be implemented by a combination of software and hardware.
  • the filtering module 3102 is implemented by a hardware programmable device
  • the processing module 3103 is a software function module generated after the CPU reads the program code stored in the memory.
  • the low-frequency sound box includes an acquisition module 3201 , a filtering module 3202 , a processing module 3203 , and a sending module 3204 .
  • the acquisition module 3201 is used to acquire the audio data to be played.
  • the acquisition module 3201 is used to perform step 1901 in the above method embodiment; Filter to obtain intermediate frequency components and/or high frequency components and low frequency components of the audio data to be played.
  • the filtering module 3202 is configured to perform step 1902 in the foregoing method embodiments.
  • the processing module 3203 is used to perform sound field expansion processing on the intermediate frequency component and/or high frequency component and the low frequency component of the audio data to be played to obtain target audio data.
  • the processing module 3203 is used to perform step 1903 in the above method embodiment.
  • the sending module 3204 is configured to send the mid-frequency component and/or the high-frequency component of the target audio data to the full-range speaker.
  • the sending module 3204 is configured to perform step 1904 in the above method embodiments.
  • the low-frequency sound box may further include other modules, such as an image acquisition module or an audio acquisition module, the image acquisition module is used to collect the image information of the listener; the audio collection module is used to collect the sound signal of the listener.
  • image acquisition module is used to collect the image information of the listener
  • audio collection module is used to collect the sound signal of the listener.
  • the apparatus embodiment described in FIG. 32 is only illustrative.
  • the division of the above-mentioned units (or modules) is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • Each functional unit in each embodiment of the present application may be integrated into one module, or each module may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned modules in FIG. 32 can be implemented in the form of hardware, or can be implemented in the form of software functional units.
  • the filtering module 3202 and the processing module 3203 can be implemented by software function modules generated by the processor of the low-frequency speaker after reading the program code stored in the memory.
  • the above-mentioned modules can also be implemented by different hardware of the low-frequency speaker.
  • the filtering module 3202 is implemented by a part of the processing resources in the processor of the low-frequency speaker (for example, one core or two cores in a multi-core processor), while the processing module 3203 is implemented by The rest of the processing resources in the processor of the subwoofer (such as other cores in a multi-core processor) are either implemented by programmable devices such as field-programmable gate arrays (FPGA) or co-processors.
  • FPGA field-programmable gate arrays
  • the above-mentioned sending module 3204 is realized by the network interface of the low-frequency speaker and the like.
  • the above functional modules can also be implemented by a combination of software and hardware.
  • the filtering module 3202 is implemented by a hardware programmable device
  • the processing module 3203 is a software function module generated after the CPU reads the program code stored in the memory.
  • An embodiment of the present application further provides a terminal.
  • the terminal includes a detection module 3301 and a transmission module 3302 .
  • the detection module 3301 is used to detect whether the first communication part of the full-range speaker is connected to the second communication part of the low-frequency speaker. For example, the detection module 3301 is used to perform step 1601 in the above method embodiments.
  • the sending module 3302 is used to send the audio data to be played to the full-range speaker when it is detected that the first communication component and the second communication component are not connected. For example, the sending module 3302 is used to perform step 1602 in the above method embodiment .
  • the sending module 3302 is further configured to send the first audio data to the full-range speaker and send the second audio data to the low-frequency speaker when it is detected that the first communication part is connected to the second communication part, for example, the sending module 3302 is used to perform the above-mentioned Step 1603a in the method embodiment; wherein, the first audio data is an intermediate frequency component and/or a high frequency component of the audio data to be played, and the second audio data is a low frequency component of the audio data to be played.
  • send the audio data to be played to the full-frequency speaker for example, the sending module 3302 is used to perform step 1603b in the above method embodiment; or, send the audio data to be played to the low-frequency speaker, for example, the sending module 3302 is used to perform the above method. Step 1603c in an embodiment.
  • the terminal provided in this embodiment of the present application further includes a receiving module 3303 and a control module 3304 .
  • the receiving module is configured to receive the first operation or the second operation of the user, for example, the receiving module 3303 is configured to perform steps 2401 and 2403 in the above method embodiments.
  • the above-mentioned control module 3304 is also used to control the full-range speaker to work independently, or to control the full-range speaker and the low-frequency speaker to work together in response to the first operation.
  • control module 3304 is specifically configured to control the sending module 3302 to send the first instruction to the speaker system, for example, to control the sending module 3302 to execute step 2402a or step 2404a in the above method embodiments.
  • the terminal provided in this embodiment of the present application further includes a display module 3305, where the display module 3305 is used to display first prompt information, and the first prompt information is used for the first prompt information to prompt the full-frequency speaker and the low-frequency speaker.
  • the display module 3305 may also display other contents, for details, please refer to the related contents in the above method embodiments. It should be understood that the display module 3305 can display relevant content under the control of the control module 3304 .
  • the terminal provided in this embodiment of the present application further includes a determination module 3306, which is configured to determine the type of target audio data, where the type of target audio data includes heavy low frequency or non-heavy low frequency.
  • the determination module 3306 is configured to execute the above method implementation Step 2701 in the example.
  • the above-mentioned control module 3304 is also used to control the full-frequency speaker to work independently when the type of the target audio data is non-heavy low-frequency; Working cooperatively, for example, the control module 3304 is configured to execute step 2702 or step 2403 in the above method embodiments.
  • the apparatus embodiment described in FIG. 33 is only illustrative.
  • the division of the above-mentioned units (or modules) is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • Each functional unit in each embodiment of the present application may be integrated into one module, or each module may exist physically alone, or two or more units may be integrated into one module.
  • the above-mentioned modules in FIG. 33 can be implemented in the form of hardware, or can be implemented in the form of software functional units.
  • the detection module 3301 and the determination module 3306 may be implemented by software function modules generated after the processor of the terminal reads the program code stored in the memory.
  • the above modules can also be implemented by different hardware of the terminal.
  • the detection module 3301 is implemented by a part of the processing resources in the processor of the terminal (for example, one core or two cores in a multi-core processor), and the determination module 3306 is implemented by the terminal's processor.
  • the rest of the processing resources in the processor are either implemented by programmable devices such as field-programmable gate arrays (FPGA) or coprocessors.
  • FPGA field-programmable gate arrays
  • the above-mentioned sending module 3302 and receiving module 3303 are implemented by the network interface of the terminal and the like.
  • the display module 3305 is implemented by the display screen of the terminal.
  • the above functional modules can also be implemented by a combination of software and hardware.
  • the determination module 3305 is implemented by a hardware programmable device, and the detection module 3301 is a software function module generated after the CPU reads the program code stored in the memory.
  • the detection module 3301, the transmission module 3302, the reception module 3303, the control module 3304, the display module 3305 and the determination module 3306 implement the above functions for more details, please refer to the descriptions in the previous method embodiments, which will not be repeated here.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, the procedures or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored on or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be transmitted over a wire from a website site, computer, server or data center (eg coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer, or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disks, magnetic disks, magnetic tapes), optical media (eg, digital video discs (DVDs)), or semiconductor media (eg, solid state drives (SSDs)), etc. .
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: flash memory, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Stereophonic System (AREA)

Abstract

本申请实施例提供一种音频数据的处理方法、装置及音箱系统,涉及音频技术领域,能够提升音频播放设备的音质。该音箱系统包括全频音箱和低频音箱,该全频音箱和低频音箱通过全频音箱的第一固定部件和低频音箱的第二固定部件物理连接;全频音箱和低频音箱通过第一固定部件中的第一通信部件和第二固定部件中的第二通信部件通信;其中,第一固定部件与第二固定部件是一组配对的连接部件,第一通信部件与第二通信部件是一组配对的通信部件。其中,低频音箱的低频播放效果优于全频音箱的低频播放效果,全频音箱的频段范围大于低频音箱的频段范围。

Description

音频数据的处理方法、装置及音箱系统
本申请要求于2020年08月27日提交国家知识产权局、申请号为202010880205.9、申请名称为“音频数据的处理方法、装置及音箱系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及音频技术领域,尤其涉及一种音频数据的处理方法、装置及音箱系统。
背景技术
随着音频软硬件技术的发展,音频播放设备(例如全频音箱)层出不穷,音频播放设备的一个重要的性能指标是音频播放设备的音质。
目前,对于现有的各类全频音箱产品,无法较好的兼顾全频音箱的便携性和全频音箱的音质。例如,对于小体积、小质量、便携性较好的全频音箱,由于全频音箱的音腔体积较小,低音音质受到影响,因此音质较差。又例如,对于音质较好的全频音箱,由于全频音箱内集成的音频单元(包括中高频/全频扬声器以低频扬声器)较多,因此全频音箱的体积、重量和功耗等较大,且便携性较差。
基于此,对便携且音质优越的全频音箱产品研发是需要攻克的难题。
发明内容
本申请实施例提供一种音频数据的处理方法、装置及音箱系统,能够提升音频播放设备的音质。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种全频音箱,包括全频音箱主体和第一固定部件;该全频音箱主体包括M个扬声器,该M个扬声器在全频音箱主体中成平面分布,M个扬声器构成K对声偶极子,M为大于2的正整数,K为大于或等于2的正整数。第一固定部件设置于全频音箱主体的预设固定区域,该第一固定部件用于与低频音箱进行物理连接或拆卸,第一固定部件中包括第一通信部件,第一通信部件用于使得全频音箱与低频音箱通信,第一通信部件支持传输多声道音频数据。其中,低频音箱的低频播放效果优于全频音箱的低频播放效果。
本申请实施例提供的全频音箱,由于该全频音箱中包含的M个扬声器构成多对声偶极子,通过该全频音箱播放经声场扩展处理的音频数据(即目标音频数据)能够获取较好的声场扩展效果,提升音质。进一步的,通过该全频音箱上的第一固定部件与低频音箱连接后,全频音箱与低频音箱组合使用以播放音频数据,能够显著提升音频数据的播放效果,并且用户可灵活选择使用全频音箱播放音频数据,或者使用全频音箱和低频音箱播放音频数据,能够满足用户的不同需求。
一种可能的实现方式中,M个扬声器构成的K对声偶极子的排布方向至少包括水平、竖直或斜上中的至少两种方向。
即K对声偶极子至少包括水平方向的声偶极子、竖直方向的声偶极子或斜上方向 的声偶极子中的至少两种声偶极子。上述水平方向指的是与全频音箱主体的垂直投影所平行的方向,上述竖直方向是与与全频音箱主体的垂直投影所垂直的方向。上述斜上方向可以包括多种不同的预设方向,不同的预设方向与水平方向的夹角不同,此处的预设方向可以理解为以不同的角度指向天空的方向(简称为天空方向)。
一种可能的实现方式中,每一对声偶极子对应一对扬声器,上述K对声偶极子中的至少两对声偶极子满足下述条件:d i≠d j;其中,d i是构成第i对声偶极子的两个扬声器之间的距离,d j是构成第j对声偶极子的两个扬声器对之间的距离,i和j分别为1,2,……,K中的一个值,且i≠j,K为大于或等于2的正整数。其中,构成第i对声偶极子的两个扬声器用于播放目标音频数据的第一频段,构成第j对声偶极子的两个扬声器用于播放目标音频数据的第二频段,第一频段与第二频段是不同的频段。
一种可能的实现方式中,若d i>d j,则构成第i对声偶极子的两个扬声器所能播放的音频数据的中心频率小于构成第j对声偶极子的两个扬声器所能播放的音频数据的中心频率。
本申请实施例中,构成一对声偶极子的扬声器对所播放的音频数据的频段与扬声器对包含的两个扬声器之间的距离有关。具体的,构成一对声偶极子的两个扬声器播放的音频数据的中心频率随着扬声器之间的距离的增大而减小。对于距离较小的扬声器对,该扬声器对播放高频带的音频数据的效果较好。
通过调整全频音箱的扬声器的布局,使得构成多对声偶极子的扬声器对的两个扬声器之间的间距相同或者不同。通过不同间距的扬声器对播放不同频带的音频数据,能够营造不同频段的声场效果。
一种可能的实现方式中,一个扬声器可以被复用于一对或多对声偶极子中。
一种可能的实现方式中,上述M个扬声器中的至少一个扬声器上设置有被动膜,该被动膜用于扩展扬声器的低频响应。其中,该至少一个扬声器中的每一个扬声器对应一个被动膜,被动膜贴附于扬声器的腔体的背部。通过在扬声器的腔体的背部设置被动膜,被动膜和箱体内的腔体组成一个空气弹簧,其谐振频率低于扬声器的谐振频率,由扬声器推动该空气弹簧在其谐振频率上进行谐振,从而达到扩展扬声器的低频响应(例如增大低频响应的范围、能量、幅值等)的目的,能够提升全频音箱的低音音质。或者,该至少一个扬声器中的每一个扬声器对应两个被动膜,两个被动膜分别位于扬声器的腔体的侧面。通过在扬声器腔体的侧面设置被动膜,进一步增加被动膜的有效谐振面积,从而更加显著地提升全频音箱的低音音质。
一种可能的实现方式中,本申请实施例提供的全频音箱还包括N个扬声器,N为正整数,N小于或等于M,该N个扬声器分别与上述M个扬声器中的N个扬声器背对背设置,形成N个背对背的扬声器对。其中,M个扬声器朝向第一平面,N个扬声器朝向第二平面,第一平面和第二平面是与全频音箱的垂直投影所垂直的两个平面,第一平面与第二平面平行。或者,该N个扬声器分别与M个扬声器中的N个扬声器面对面设置,形成N个面对面的扬声器对,其中,M个扬声器的腔体朝向第一平面,N个扬声器的腔体朝向第二平面,第一平面和第二平面是与全频音箱的垂直投影所垂直的两个平面,第一平面与第二平面平行。
一种可能的实现方式中,对于N个背对背的扬声器对中的每一个扬声器对,该扬声器对中的两个扬声器共用一个腔体;N个背对背的扬声器对中的至少一个扬声器对 的腔体上设置有被动膜。其中,对于至少一个扬声器对中的一个扬声器对,扬声器对对应两个被动膜。这两个被动膜背对背,并且分别贴附于腔体内与扬声器对相邻的两个侧面。
一种可能的实现方式中,上述全频音箱主体的形状为下述一种:环形、圆形、树形或W型。
一种可能的实现方式中,上述第一固定部件,还用于支撑全频音箱主体。
例如,当全频音箱主体为环形时,该第一固定部件可以作为底座以支撑该环形音箱主体,使其稳定地置于桌面上。
一种可能的实现方式中,上述第一固定部件是与全频音箱主体连接的第一片状部件,该第一片状部件用于与低频音箱主体的第二片状部件进行物理连接或拆卸。
一种可能的实现方式中,第一固定部件是设置在全频音箱主体的预设固定区域的凹坑状部件,该凹坑部件用于与低频音箱主体的凸起状部件进行物理连接或拆卸。
一种可能的实现方式中,本申请实施例提供的全频音箱包括处理器以及与该处理器连接的收发器。其中,处理器用于对待播放的音频数据进行多频带滤波,并且对滤波后的待播放的音频数据进行声场扩展处理,得到目标音频数据,该目标音频数据的中频分量和/或高频分量由全频音箱播放;收发器用于通过第一通信部件向低频音箱发送目标音频数据的低频分量,该目标音频数据的低频分量由低频音箱播放。
需要说明的是,本申请实施例中,上述目标音频数据是经声场扩展处理的音频数据。为了便于描述,将未经声场扩展处理的音频数据称为原始音频数据,将经声场扩展处理的音频数据称为目标音频数据,即该原始音频数据经声场扩展处理后得到目标音频数据。应理解,该原始音频数据和目标音频数据均是待播放的音频数据。
本申请实施例中,全频音箱的收发器还用于接收待播放的音频数据,该待播放的音频数据可以为原始音频数据或者原始音频数据的不同频段的分量(例如原始音频数据中频分量、高频分量);该待播放的音频数据也可以为目标音频数据或者目标音频数据的不同频段的分量(例如目标音频数据的中频分量、高频分量)。
第二方面,本申请实施例提供一种低频音箱,包括低频音箱主体和第二固定部件;该低频音箱主体包括一个或多个低频扬声器,第二固定部件设置于低频音箱主体的预设固定区域。第二固定部件用于与全频音箱进行物理连接或拆卸,第二固定部件中包括第二通信部件,第二通信部件用于使得低频音箱与全频音箱通信,第二通信部件支持传输多声道音频数据。其中,低频音箱的低频播放效果优于全频音箱的低频播放效果,全频音箱的频段范围大于低频音箱的频段范围。
本申请实施例提供的低频音箱,通过低频音箱的一个或多个扬声器播放音频数据的低频分量,能够提升音频数据的低音音质。进一步的,该低频音箱可以通过第二通信组件与全频音箱连接,并与全频音箱组合使用,低频音箱将经声场扩展处理后的音频数据的中频分量和/或高频分量发送至全频音箱,由全频音箱播放,通过全频音箱与低频音箱的配合使用,能够提升音频数据的播放效果,并且用户可灵活选择使用全频音箱播放音频数据,或者使用全频音箱和低频音箱播放音频数据,能够满足用户的不同需求。
一种可能的实现方式中,低频音箱主体的形状可以为扁圆柱体、长圆柱体、正方 体、长方体或其他形状,本申请实施例不作限定。
一种可能的实现方式中,第二固定部件是与低频音箱主体连接的第二片状部件,该第二片状部件用于与全频音箱主体的第一片状部件进行物理连接或拆卸。
一种可能的实现方式中,第二固定部件是设置在低频音箱主体的预设固定区域的凸起状部件,该凹坑状部件用于与全频音箱主体的凸起状部件进行物理连接或拆卸。
一种可能的实现方式中,低频音箱还包括充电端口,该充电端口用于连接外部电源,以为低频音箱供电,或者在低频音箱与全频音箱连接时,通过低频音箱为全频音箱充电。
一种可能的实现方式中,低频音箱还包括摄像头或麦克风。该摄像头用于采集用户(听音者)的图像以根据用户的图像确定用户的位置;同理,麦克风用于采集用户的声音信号以根据用户的声音信号确定用户的位置。
一种可能的实现方式中,本申请实施例提供的低频音箱包括处理器以及与处理器连接的收发器。其中,处理器用于对待播放的音频数据进行多频带滤波,并且对滤波后的待播放的音频数据进行声场扩展处理,得到目标音频数据,该目标音频数据的中频分量和/或高频分量由全频音箱播放;收发器用于通过第二通信部件向全频音箱发送目标音频数据的中频分量和/或高频分量,该目标音频数据的低频分量由低频音箱播放。
本申请实施例中,低频音箱的收发器还用于接收待播放的音频数据,该待播放的音频数据可以为原始音频数据或原始音频数据的低频分量;该待播放的音频数据也可以为目标音频数据的低频分量。
第三方面,本申请实施例提供一种音箱系统,包括一个第一方面及其可能的实现方式中任意之一所述的全频音箱和一个第二方面及其可能的实现方式中任意之一所述的低频音箱。该全频音箱与低频音箱通过第一固定部件和第二固定部件进行物理连接,全频音箱和低频音箱通过第一通信部件和第二通信部件通信。其中,第一固定部件与第二固定部件是一组配对的连接部件,第一通信部件与第二通信部件是一组配对的通信部件。
本申请实施例提供的音箱系统,该音箱系统中的全频音箱可以独立工作,或者该全频音箱与低频音箱协同工作,因此,用户可灵活选择使用全频音箱播放音频数据,或者使用全频音箱和低频音箱播放音频数据,能够满足用户的不同需求。
一种可能的实现方式中,全频音箱用于播放目标音频数据,或者播放目标音频数据的高频分量和/或中频分量;低频音箱用于播放目标音频数据的低频分量。
在全频音箱独立工作的情况下,由于全频音箱对中频和高频具有较好的播放效果,因此通过全频音箱播放目标音频数据的中频分量和/或高频分量,能够提升音质。在全频音箱与低频音箱协同工作的情况下,由于低频音箱的低频播放效果由于全频音箱的低频播放效果,因此通过低频音箱播放目标音频数据的低频分量,能够提升音频数据的低音音质;又由于全频音箱对中频和高频具有较好的播放效果,因此通过全频音箱播放目标音频数据的中频分量和/或高频分量能够提升目标音频数据的中频分量和/或高频分量的播放效果,如此,能够在音频数据的全频带提升音频数据的播放效果。
一种可能的实现方式中,全频音箱与低频音箱通过第一固定部件与第二固定部件叠放式连接或者挂靠式连接。
一种可能的实现方式中,当第一固定部件为第一片状部件,第二固定部件为第二片状部件,且第一片状部件与第二片状部件接触并耦合时,全频音箱与低频音箱叠放式连接。该第一片状部件包括第一通信部件,该第一通信部件位于全频音箱主体的垂直投影之内;第二片状部件位于低频音箱主体上,第二片状部件中包括第二通信部件,该第二通信部件设置在第二片状部件上。
一种可能的实现方式中,当第一固定部件为沿全频音箱主体的一侧向外延伸的第一片状部件,第二固定部件为沿低频音箱主体的一侧向外延伸的第二片状部件,且第一片状部件与第二片状部件接触并耦合时,全频音箱与低频音箱挂靠式连接。该第一片状部件包括第一通信部件,该第一通信部件位于全频音箱主体的垂直投影之外,第二片状部件中包括第二通信部件,该第二通信部件位于低频音箱主体的垂直投影之外。
一种可能的实现方式中,第一固定部件与第二固定部件通过卡扣耦合或磁吸耦合的方式连接。
一种可能的实现方式中,当第一固定部件为设置在全频音箱主体的预设固定区域的凹坑状部件,第二固定部件是设置在低频音箱主体的预设固定区域的凸起状部件,且凹坑状部件与凸起状部件接触并耦合时,全频音箱与低频音箱叠放式连接。
一种可能的实现方式中,第一固定部件与第二固定部件通过卡扣耦合或螺纹耦合的方式连接。
综上,上述第一通信部件为磁吸式接口的磁吸母头,第二通信部件为磁吸式接口的磁吸公头。或者,上述第一通信部件为USB接口的插头,第二通信部件为USB接口的插口。第一通信部件和第二通信部件也可以为其他具有匹配关系且具有可拆卸特性的通信部件,本申请实施例不作限定。
本申请实施例中,全频音箱的体积较小,重量较轻,便于携带,相比于全频音箱,低频音箱的体积稍大,重量较大,但低频音箱的数据处理能力较强。
一种可能的实现方式中,音箱系统还包括至少一个所述的全频音箱,音箱系统包含的至少两个全频音箱可协同工作。
一种可能的实现方式中,音箱系统还包括至少一个全频音箱和至少一个低频音箱;在音箱系统中,一个全频音箱对应一个低频音箱而构成一个全频音箱子系统,该音箱系统包含的至少两个子系统可协同工作。
第三方面的音箱系统中的全频音箱和低频音箱的相关内容和技术效果的描述可参考第一方面的相关描述,此处不再赘述。
第四方面,本申请实施例提供一种音频数据的处理方法,包括:终端检测第一方面及其可能的实现方式中任意之一所述的全频音箱的第一通信部件是否与第二方面及其可能的实现方式中任意之一所述的低频音箱的第二通信部件连接;当终端检测到第一通信部件与第二通信部件未连接时,终端向全频音箱发送待播放的音频数据。当终端检测到第一通信部件与第二通信部件连接时,终端向全频音箱发送第一音频数据,并且向低频音箱发送第二音频数据;其中,第一音频数据是待播放的音频数据的中频分量和/或高频分量,第二音频数据是待播放的音频数据的低频分量。或者,终端向全频音箱发送待播放的音频数据;或者,终端向低频音箱发送待播放的音频数据。
本申请实施例提供的音频数据的处理方法,终端通过检测该终端全频音箱的第一 通信部件与低频音箱的第二通信部件是否连接,确定向全频音箱和/或者低频音箱发送音频数据,以使得全频音箱处理音频数据和/或低频音箱处理音频数据,从而达到较好的声场扩展效果,提升音质。
一种可能的实现方式中,终端可以通过与全频音箱交互的方式检测第一通信部件是否与第二通信部件连接,例如,终端从全频音箱获取该全频音箱上与第一通信部件对应的第一端口的状态信息,根据该第一端口的状态信息确定第一通信部件是否与第二通信部件连接。当第一通信部件与第二通信部件未连接时,第一端口的状态信息为“0”,则终端获取到该状态“0”之后确定第一通信部件与第二通信部件未连接;当第一通信部件与第二通信部件连接时,第一端口的状态信息为“1”,则终端获取到该状态“1”之后确定第一通信部件与第二通信部件连接。
终端也可以通过其他可实现的方法检测第一通信部件是否与第二通信部是否连接,本申请实施例不作限定。
一种可能的实现方式中,终端向全频音箱发送待播放的音频数据具体包括:终端向全频音箱发送原始音频数据。应理解,当终端向全频音箱发送原始音频数据时,由全频音箱对该原始数据进行分频,并对不同频段的分量进行声场扩展处理,得到目标音频数据,进而播放该目标音频数据。
一种可能的实现方式中,终端向全频音箱发送待播放的音频数据具体包括:终端向全频音箱发送目标音频数据。应理解,当终端向全频音箱发送目标音频数据时,该目标音频数据可以是由其他设备对原始音频数据进行分频并进行声场扩展处理得到,并发送至该全频音箱的,然后由该全频音箱播放该目标音频数据。上述其他设备可以为该终端、低频音箱或者除这两个设备之外的其他设备,本申请实施例不作限定。
一种可能的实现方式中,终端向全频音箱发送第一音频数据,向低频音箱发送第二音频数据具体包括:终端向全频音箱发送原始音频数据的中频分量和/或高频分量,向低频音箱发送原始音频数据的低频分量。具体的,终端可以对原始音频数据进行分频,得到原始音频数据的中频分量和/或高频分量,以及低频分量,然后终端向全频音箱发送原始音频数据的中频分量和/或高频分量,由全频音箱对该原始数据的中频分量和/或高频分量进行声场扩展处理,得到目标音频数据的中频分量和/或高频分量;并且终端向低频音箱发送原始音频数据的低频分量,由该低频音箱对原始音频数据的低频分量进行声场扩展处理,得到目标音频数据的低频分量,由该低频音箱播放该目标音频数据的低频分量。
一种可能的实现方式中,终端向全频音箱发送第一音频数据,向低频音箱发送第二音频数据具体包括:终端向全频音箱发送目标音频数据的中频分量和/或高频分量,向低频音箱发送目标音频数据的低频分量。具体的,终端或其他设备可以对原始音频数据进行分频并对分频后的中频分量和/或高频分量,以及地频分量分别进行声场扩展处理,并向全频音箱发送目标音频数据的中频分量和/或高频分量,向低频音箱发送目标音频数据的低频分量,然后由该全频音箱播放该目标音频数据的中频分量和/或高频分量,由低频音箱播放目标音频数据的低频分量。
一种可能的实现方式中,终端向低频音箱发送待播放的音频数据具体包括:终端向低频音箱发送原始音频数据。应理解,当终端向低频音箱发送原始音频数据时,由 低频音箱对该原始数据进行分频,并对不同频段的分量进行声场扩展处理,得到目标音频数据,进而由该低频音箱播放该目标音频数据的低频分量,并且将该目标音频数据的中频分量和/或高频分量发送至全频音箱,由该全频音箱播放该中频分量和/或高频分量。
一种可能的实现方式中,终端向低频音箱发送待播放的音频数据具体包括:终端向低频音箱发送目标音频数据。应理解,当终端向低频音箱发送目标音频数据时,该目标音频数据可以是由其他设备对原始音频数据进行分频并进行声场扩展处理得到,并发送至该低频音箱的,然后由该低频音箱播放该目标音频数据的低频分量,并且低频音箱将该目标音频数据的中频分量和/或高频分量发送至全频音箱,由该全频音箱播放该中频分量和/或高频分量发送至全频音箱。
第五方面,本申请实施例提供一种音频数据的处理方法,应用于第一方面及其可能的实现方式中任意之一所述的全频音箱,该方法包括:获取待播放的音频数据;并对待播放的音频数据进行多频带滤波,得到待播放的音频数据的中频分量和/或高频分量,以及低频分量;然后对待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据;以及向低频音箱发送目标音频数据的低频分量。其中,目标音频数据的中频分量和/或高频分量由全频音箱播放,目标音频数据的低频分量由低频音箱播放。
本申请实施例提供的音频数据的处理方法,上述全频音箱完成对音频数据的声场扩展处理之后,一方面,该全频音箱播放经声场扩展处理后的音频数据的高频分量和/或中频分量,由于全频音箱对中频和高频具有较好的播放效果,因此能够提升中频分量和/或高频分量的音质。另一方面,全频音箱向低频音箱发送经声场扩展处理后的音频数据的低频分量,由低频音箱播放该低频分量,由于低频音箱的低频播放效果优于全频音箱的低频播放效果,因此能够提升音频数据的低音音质。
一种可能的实现方式中,上述多频带滤波可以包括高频滤波、带通滤波以及低频滤波。和/或,多频带滤波包括高频滤波和低频滤波。应理解,对音频数据进行高频滤波,得到音频数据的高频分量;对音频数据进行带通滤波,得到音频数据的中频分量;对音频数据进行低频滤波,得到音频数据的低频分量。
对音频数据进行多频带滤波时,滤波频带的设置与全频音箱中组成偶极子的扬声器对中的两个扬声器之间的距离有关。滤波频带决定滤波后的高频分量、中频分量以及低频分量各自对应的频段。
一种可能的实现方式中,上述声场扩展处理包括:全频音箱对滤波后的音频数据的高频分量进行高频带偶极子处理,和/或对滤波后的音频数据的中频分量进行中频带偶极子处理。
可以理解的是,全频音箱的扬声器的声场存在甜点(sweet point)区域,该甜点区域指的是能够达到较好的音效的区域,通常该甜点区域是与全频音箱中心偏离预设角度的区域。当用户(或听音者)位于甜点区域内时,用户具有较好的听音感受;当用户远离甜点区域(例如用户与全频音箱中心的之间的夹角的角度大于上述预设角度)时,将出现双耳串扰的现象,如此,用户的听音感受将变差。
本申请实施例中,一对声偶极子对应一对扬声器,通过一对扬声器播放幅度相同, 相位不同的信号。以水平方向为例,右声道对应一个声偶极子,左声道对应一个声偶极子,例如,当右声道信号到达用户的左耳的能量较大时,左右耳将出现串扰,即右声道信号对左耳形成干扰,如此,声场变窄。当右声道信号达到用户的左耳的能量较小时,左右耳串扰较小。
本申请实施例中,采用高频带偶极子算法对音频数据的高频分量进行声场扩展处理,采用中频带偶极子算法对音频数据的中频分量进行声场扩展处理,对于右声道信号,能够在保证右声道信号到达右耳的能量不降低的情况下,减小右声道信号到达左耳的能量;对于左声道信号,能够在保证左声道信号到达左耳的能量不降低的情况下,减小左声道信号到达右耳的能量,从而实现双耳串扰消除。本申请实施例中,右声道信号到达用户的左耳的能量越小,该右声道信号到达用户的右耳的能量越大,则双耳串扰消除效果越好;同理,左声道信号到达右耳的能量越小,该左声道信号到达左耳的能量越大,则双耳串扰消除效果越好。
一种可能的实现方式中,上述声场扩展处理包括:采用低音增强算法对滤波后的音频数据的低频分量进行处理,在不损伤扬声器的情况下(不超过振膜最大位移),动态提升低频信号(即低频分量)的能量,显著提升音频数据的低音音质。应理解,低音增强算法通过预先获得扬声器的参数(TS参数),并根据扬声器的参数建模,得到的处理模型。
一种可能的实现方式中,一种频带对应一对或多对声偶极子。例如,高频带对应多对声偶极子,如此,通过高频滤波后的高频分量经高频带偶极子算法处理后,将通过多对偶极子对应的扬声器播放。
一种可能的实现方式中,本申请实施例中,音频数据为多声道音频数据。例如,多声道为双声道,包括左声道(L)和右声道(R)。又例如,多声道包括左声道(L)、左环绕声道(Ls)、左后方声道(Lb)、左上方声道(Lh)、右声道(R)、右环绕声道(Rs)、右后方声道(Rb)、右上方声道(Rh)、中置声道(C)。
第六方面,本申请实施例提供一种音频数据的处理方法,应用于上述第二方面及其可能的实现方式中任意之一所述的低频音箱,该方法包括:获取待播放的音频数据;并对待播放的音频数据进行多频带滤波,得到待播放的音频数据的中频分量和/或高频分量,以及低频分量;然后对待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据;以及向全频音箱发送目标音频数据的中频分量和/或高频分量。其中,目标音频数据的中频分量和/或高频分量由全频音箱播放,目标音频数据的低频分量由低频音箱播放。
本申请实施例中,上述低频音箱完成对音频数据的声场扩展处理之后,一方面,通过该低频音箱上的低音扬声器播放低音增强处理后的低频分量,由于低频音箱的低频播放效果优于全频音箱的低频播放效果,因此能够提升音频数据的低音音质。另一方面,该低频音箱向全频音箱发送经声场扩展处理后的音频数据的高频分量和/或中频分量,进而由全频音箱播放该高频分量和/或中频分量,由于全频音箱对中频和高频具有较好的播放效果,因此能够提升中频分量和/或高频分量的音质。
一种可能的实现方式中,本申请实施例提供的音频数据的处理方法还包括:通过低频音箱上的摄像头采集听音者的图像信息,或者通过麦克风采集听音者的声音信号, 该听音者的图像信息或听音者的声音信号用于对滤波后的待播放的音频数据进行声场扩展处理。具体的,低频音箱对听音者的图像信息或声音信号进行分析,确定听音者的位置信息,用户的位置信息包括用户与音箱系统的中心轴的夹角的角度。并且根据听音者的位置信息,调整组成一对声偶极子的两个扬声器播放信号的相位差,该相位差是高频带偶极子处理和/或中频带偶极子处理的配置参数。
本申请实施例中,为提升用户的听音感受,在对音频数据进行声场扩展的过程中,可以调整高频带偶极子算法或中频带偶极子算法中的配置参数(即配置参数即为组成一对声偶极子的两个扬声器播放信号的相位差),从而提升双耳串扰消除的效果,使得用户在当前位置处达到较好的听音感受。具体的,由于该相位差与用户当前的位置有关,因此通过上述步骤A至步骤C调整上述相位差,如此采用该调整后的相位差对音频数据进行声场扩展处理,消除双耳串扰,达到在用户当前位置处进行声场扩展的效果,实时提升用户的听音感受。
第七方面,本申请实施例提供一种音频数据的处理方法,应用于终端与上述第三方面及其可能的实现方式中任意之一所述的音箱系统建立通信连接的场景中,该方法包括:当终端接收到用户的第一操作时,终端响应于第一操作,控制全频音箱独立工作;当终端接收到用户的第二操作时,终端响应于第二操作,控制全频音箱和低频音箱协同工作。
本申请实施例提供的音频数据的处理方法,用户在终端上进行相应的操作,从而终端响应于用户的操作,控制音箱系统中的全频音箱独立工作,或者控制全频音箱与低频音箱协同工作,能够提升用户体验,且能够达到较好的声场扩展效果。
在全频音箱独立工作的情况下,由于全频音箱对中频和高频具有较好的播放效果,因此通过全频音箱播放目标音频数据的中频分量和/或高频分量,能够提升音质。在全频音箱与低频音箱协同工作的情况下,由于低频音箱的低频播放效果由于全频音箱的低频播放效果,因此通过低频音箱播放目标音频数据的低频分量,能够提升音频数据的低音音质,又由于全频音箱对中频和高频具有较好的播放效果,因此通过全频音箱播放目标音频数据的中频分量和/或高频分量能够提升目标音频数据的中频分量和/或高频分量的播放效果,如此,能够在音频数据的全频带提升音频数据的播放效果。
一种可能的实现方式中,上述终端响应于第一操作,控制全频音箱独立工作具体包括:终端响应于第一操作,向音箱系统发送第一指令,该第一指令用于控制全频音箱独立工作,全频音箱独立工作指的是由全频音箱播放目标音频数据。
一种可能的实现方式中,上述终端向音箱系统发送第一指令具体包括:终端向低频音箱发送第一指令。
具体的,音箱系统中的全频音箱和低频音箱连接(第一固定部件与第二固定部件连接,且第一通信部件与第二通信部件连接)时,低频音箱对整个音箱系统进行控制和管理,即上述终端向音箱系统发送第一指令指的是向音箱系统中的低频音箱发送第一指令。
一种可能的实现方式中,上述终端响应于第二操作,控制全频音箱和低频音箱协同工作具体包括:终端响应于第二操作,向音箱系统发送第二指令,该第二指令用于控制全频音箱和低频音箱系统工作,全频音箱和低频音箱协同工作指的是由全频音箱 播放目标音频数据的中频分量和/或高频分量,由低频音箱播放目标音频数据的低频分量。
一种可能的实现方式中,上述终端向音箱系统发送第二指令具体包括:终端向低频音箱发送第二指令。
一种可能的实现方式中,上述第一操作是用户对终端的第一界面中的第一选项的选中操作,第一选项对应于全频音箱独立工作;第二操作是用户对终端的第一界面中的第二选项的选中操作,第二选项对应于全频音箱和低频音箱协同工作。
一种可能的实现方式中,当全频音箱独立工作时,本申请实施例提供的音频数据的处理方法还包括:若终端确定当前待播放的音频数据是重低频的音频数据,则终端显示第一提示信息,该第一提示信息用于提示全频音箱与低频音箱协同工作。
一种可能的实现方式中,本申请实施例提供的音频数据的处理方法还包括:终端接收用于第三操作;终端响应于第三操作,控制低频音箱上的摄像头或麦克风启动。
一种可能的实现方式中,上述音箱系统包括多个全频音箱,本申请实施例提供的音频数据的处理方法还包括:终端根据多个全频音箱的位置信息,确定音频数据的声道与多个全频音箱的对应关系,并且显示音频数据的声道与多个全频音箱之间的对应关系信息。
第八方面,本申请实施例提供一种音频数据的处理方法,应用于终端与上述第三方面及其可能的实现方式中任意之一所述的音箱系统建立通信连接的场景中,该方法包括:终端确定目标音频数据的类型,该目标音频数据的类型包括重低频或非重低频;当目标音频数据的类型为非重低频时,终端控制全频音箱独立工作;当目标音频数据的类型为重低频时,终端控制全频音箱和低频音箱协同工作。
本申请实施例提供的音频数据的处理方法,终端根据目标音频数据的类型,控制音箱系统中的全频音箱独立工作,或者控制全频音箱与低频音箱协同工作,能够达到较好的声场扩展效果。
在全频音箱独立工作的情况下,由于全频音箱对中频和高频具有较好的播放效果,因此通过全频音箱播放目标音频数据的中频分量和/或高频分量,能够提升音质。在全频音箱与低频音箱协同工作的情况下,由于低频音箱的低频播放效果由于全频音箱的低频播放效果,因此通过低频音箱播放目标音频数据的低频分量,能够提升音频数据的低音音质,又由于全频音箱对中频和高频具有较好的播放效果,因此通过全频音箱播放目标音频数据的中频分量和/或高频分量能够提升目标音频数据的中频分量和/或高频分量的播放效果,如此,能够在音频数据的全频带提升音频数据的播放效果。
一种可能的实现方式中,终端控制全频音箱独立工作具体包括:终端向音箱系统发送第一指令,该第一指令用于控制全频音箱独立工作,全频音箱独立工作指的是由全频音箱播放目标音频数据。
一种可能的实现方式中,终端向音箱系统发送第一指令具体包括:终端向低频音箱发送第一指令。
一种可能的实现方式中,终端控制全频音箱和低频音箱协同工作具体包括:终端向音箱系统发送第二指令,该第二指令用于控制全频音箱和低频音箱系统工作,全频音箱和低频音箱协同工作指的是由全频音箱播放目标音频数据的中频分量和/或高频 分量,由低频音箱播放目标音频数据的低频分量。
一种可能的实现方式中,终端向音箱系统发送第二指令具体包括:终端向低频音箱发送第二指令。
第九方面,本申请实施例提供一种终端,包括检测模块和发送模块。其中,检测模块用于检测第一方面及其可能的实现方式中任意之一所述的全频音箱的第一通信部件是否与第二方面及其可能的实现方式中任意之一所述的低频音箱的第二通信部件连接。发送模块用于在检测模块检测到第一通信部件与第二通信部件未连接的情况下,向全频音箱发送待播放的音频数据。该发送模块还用于在检测模块检测到第一通信部件与第二通信部件连接时,向全频音箱发送第一音频数据,并且向低频音箱发送第二音频数据;其中,第一音频数据是待播放的音频数据的中频分量和/或高频分量,第二音频数据是待播放的音频数据的低频分量;或者,发送模块还用于向全频音箱发送待播放的音频数据;或者,发送模块还用于向低频音箱发送待播放的音频数据。
第十方面,本申请实施例提供一种全频音箱,包括获取模块、滤波模块、处理模块以及发送模块。其中,获取模块用于获取待播放的音频数据;滤波模块用于对待播放的音频数据进行多频带滤波,得到待播放的音频数据的中频分量和/或高频分量,以及低频分量;处理模块用于对待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据;发送模块用于向低频音箱发送目标音频数据的低频分量,其中,目标音频数据的中频分量和/或高频分量由全频音箱播放,目标音频数据的低频分量由低频音箱播放。
第十一方面,本申请实施例提供一种低频音箱,包括获取模块、滤波模块、处理模块以及发送模块。其中,获取模块用于待播放的音频数据;滤波模块用于对待播放的音频数据进行多频带滤波,得到待播放的音频数据的中频分量和/或高频分量,以及低频分量;处理模块用于对待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据;发送模块用于向全频音箱发送目标音频数据的中频分量和/或高频分量。其中,目标音频数据的中频分量和/或高频分量由全频音箱播放,目标音频数据的低频分量由低频音箱播放。
一种可能的实现方式中,本申请实施例提供的低频音箱还包括图像采集模块或音频采集模块。图像采集模块用于采集听音者的图像信息;音频采集模块用于采集听音者的声音信号,其中,听音者的图像信息或听音者的声音信号用于对滤波后的待播放的音频数据进行声场扩展处理。
第十二方面,本申请实施例提供一种终端,应用于第三方面及其可能的实现方式中任意之一所述的音箱系统建立通信连接的场景中,该终端包括接收模块和控制模块。其中,控制模块用于在接收模块接收到用户的第一操作的情况下,响应于第一操作,控制全频音箱独立工作。该控制模块还用于在接收模块接收到用户的第二操作的情况下,响应于第二操作,控制全频音箱和低频音箱协同工作。
一种可能的实现方式中,本申请实施例提供的终端还包括发送模块,上述控制模块具体用于响应于第一操作,控制发送模块向音箱系统发送第一指令,该第一指令用于控制全频音箱独立工作,全频音箱独立工作指的是由全频音箱播放目标音频数据。
一种可能的实现方式中,上述发送模块具体用于向低频音箱发送第一指令。
一种可能的实现方式中,上述控制模块具体用于响应于第二操作,控制发送模块向音箱系统发送第二指令,该第二指令用于控制全频音箱和低频音箱系统工作,全频音箱和低频音箱协同工作指的是由全频音箱播放目标音频数据的中频分量和/或高频分量,由低频音箱播放目标音频数据的低频分量。
一种可能的实现方式中,上述发送模块具体用于向低频音箱发送第二指令。
一种可能的实现方式中,上述第一操作是用户对终端的第一界面中的第一选项的选中操作,第一选项对应于全频音箱独立工作;上述第二操作是用户对终端的第一界面中的第二选项的选中操作,第二选项对应于全频音箱和低频音箱协同工作。
一种可能的实现方式中,本申请实施例提供的终端还包括显示模块,该显示模块用于在全频音箱独立工作,且终端确定当前待播放的音频数据是重低频的音频数据的情况下,显示包含第一提示信息,该第一提示信息用于提示全频音箱与低频音箱协同工作。
一种可能的实现方式中,上述接收模块还用于接收第三操作;上述控制模块还用于响应于第三操作,控制低频音箱上的摄像头或麦克风启动。
一种可能的实现方式中,本申请实施例提供的终端还包括确定模块,在音箱系统包括多个全频音箱的情况下,确定模块用于根据该多个全频音箱的位置信息,确定音频数据的声道与多个全频音箱的对应关系。上述显示模块还用于显示音频数据的声道与该多个全频音箱之间的对应关系信息。
第十三方面,本申请实施例提供一种终端,应用于第三方面及其可能的实现方式中任意之一所述的音箱系统建立通信连接的场景中,该终端包括确定模块和控制模块。其中,确定模块用于确定目标音频数据的类型,目标音频数据的类型包括重低频或非重低频;控制模块用于在目标音频数据的类型为重低频的情况下,控制控制全频音箱独立工作;该控制模块还用于在目标音频数据的类型为非重低频情况下,控制全频音箱和低频音箱协同工作。
一种可能的实现方式中,本申请实施例提供的终端还包括发送模块,上述控制模块具体用于控制发送模块向音箱系统发送第一指令,该第一指令用于控制全频音箱独立工作,全频音箱独立工作指的是由全频音箱播放目标音频数据。
一种可能的实现方式中,上述发送模块具体用于向低频音箱发送第一指令。
一种可能的实现方式中,本申请实施例提供的终端还包括发送模块,上述控制模块具体用于控制发送模块向音箱系统发送第二指令,该第二指令用于控制全频音箱和低频音箱系统工作,全频音箱和低频音箱协同工作指的是由全频音箱播放目标音频数据的中频分量和/或高频分量,由低频音箱播放目标音频数据的低频分量。
一种可能的实现方式中,上述发送模块具体用于向低频音箱发送第二指令。
第十四方面,本申请实施例提供一种全频音箱,包括存储器和与该存储器连接的至少一个处理器,存储器用于存储指令,该指令被至少一个处理器读取后,执行第五方面所述的方法。
第十五方面,本申请实施例提供一种计算机可读存储介质,包括计算机程序,当该计算机程序在计算机上运行时,执行第五方面所述的方法。
第十六方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机 上运行时,使得计算机执行第五方面所述的方法。
第十七方面,本申请实施例提供一种芯片,包括存储器和处理器。存储器用于存储计算机指令。处理器用于从存储器中调用并运行该计算机指令,以执行第五方面所述的方法。
第十八方面,本申请实施例提供一种低频音箱,包括存储器和与该存储器连接的至少一个处理器,存储器用于存储指令,该指令被至少一个处理器读取后,执行第六方面所述的方法。
第十九方面,本申请实施例提供一种计算机可读存储介质,包括计算机程序,当该计算机程序在计算机上运行时,执行第六方面所述的方法。
第二十方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第六方面所述的方法。
第二十一方面,本申请实施例提供一种芯片,包括存储器和处理器。存储器用于存储计算机指令。处理器用于从存储器中调用并运行该计算机指令,以执行第六方面所述的方法。
第二十二方面,本申请实施例提供一种终端,包括存储器和与该存储器连接的至少一个处理器,存储器用于存储指令,该指令被至少一个处理器读取后,执行第四方面、第七方面以及第八方面及其可能的实现方式中任意之一所述的方法。
第二十三方面,本申请实施例提供一种计算机可读存储介质,包括计算机程序,当该计算机程序在计算机上运行时,执行第四方面、第七方面以及第八方面及其可能的实现方式中任意之一所述的方法。
第二十四方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第四方面、第七方面以及第八方面及其可能的实现方式中任意之一所述的方法。
第二十五方面,本申请实施例提供一种芯片,包括存储器和处理器。存储器用于存储计算机指令。处理器用于从存储器中调用并运行该计算机指令,以执行第四方面、第七方面以及第八方面及其可能的实现方式中任意之一所述的方法。
应当理解的是,本申请实施例的第九方面至第二十五方面技术方案及对应的可能的实施方式所取得的有益效果可以参见上述对第一方面至第八方面及其对应的可能的实施方式的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种全频音箱的结构示意图一;
图2为本申请实施例提供的一种全频音箱主体的形状示意图;
图3为本申请实施例提供的一种全频音箱的结构示意图二;
图4为本申请实施例提供的一种全频音箱中偶极子的示意图;
图5为本申请实施例提供的一种环形全频音箱的扬声器的布局示意图;
图6为本申请实施例提供的全频音箱中被动膜的位置示意图;
图7为本申请实施例提供的面对面的扬声器对和背对背的扬声器对的示意图;
图8为本申请实施例提供的低频音箱的结构示意图;
图9为本申请实施例提供的音箱系统的结构示意图;
图10为本申请实施例提供的全频音箱和低频音箱的叠放式连接的示意图一;
图11为本申请实施例提供的全频音箱和低频音箱的挂靠式连接的示意图;
图12为本申请实施例提供的全频音箱的俯视示意图;
图13为本申请实施例提供的全频音箱和低频音箱的叠放式连接的示意图二;
图14为本申请实施例提供的全频音箱的结构硬件示意图;
图15为本申请实施例提供的低频音箱的硬件示意图一;
图16为本申请实施例提供的音频数据的处理方法示意图一;
图17为本申请实施例提供的音频数据的处理方法示意图二;
图18为本申请实施例提供的音频数据处理方法中右声道对应的偶极子的指向性图;
图19为本申请实施例提供的音频数据的处理方法示意图三;
图20为本申请实施例提供的双声道音频数据的处理流程示意图一;
图21为本申请实施例提供的多声道音频数据的处理流程示意图一;
图22为本申请实施例提供的双声道音频数据的处理流程示意图二;
图23为本申请实施例提供的多声道音频数据的处理流程示意图二;
图24为本申请实施例提供的音频数据的处理方法示意图四;
图25为本申请实施例提供的音频数据处理方法中的显示效果示意图一;
图26为本申请实施例提供的音频数据处理方法中的显示效果示意图二;
图27为本申请实施例提供的音频数据的处理方法示意图五;
图28为本申请实施例提供的音频数据处理方法中的显示效果示意图二;
图29为本申请实施例提供的音频数据处理方法中的显示效果示意图三;
图30为本申请实施例提供的音箱系统的一种组网示意图;
图31为本申请实施例提供的全频音箱的结构示意图三;
图32为本申请实施例提供的低频音箱的结构示意图二;
图33为本申请实施例提供的终端的结构示意图。
具体实施方式
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一固定部件和第二固定部件等是用于区别不同的部件,而不是用于描述部件的特定顺序;第一音频数据和第二音频数据等是用于区别不同的音频数据,而不是用于描述音频数据的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上 的系统。
如图1所示,本申请实施例提供一种全频音箱,该全频音箱包括全频音箱主体101和第一固定部件102,该全频音箱主体包括M个扬声器1011,该M个扬声器1011在该全频音箱主体中成平面分布,并且该M个扬声器1011构成K对声偶极子,M为大于2的正整数,K为大于或等于2的正整数。上述第一固定部件102位于全频音箱主体101的预设固定区域,第一固定部件102用于与低频全频音箱进行物理连接或拆卸,该第一固定部件102中包括第一通信部件1021,该第一通信部件1021用于使得全频音箱与低频音箱通信,该第一通信部件支持传输多声道的音频数据。其中,低频音箱的低频播放效果优于全频音箱的低频播放效果。
需要说明的是,图1仅是对第一固定部件102和第一通信部件1021的位置进行示意,并不对第一固定部件102和第一通信部件1021的形状等其他特征进行限定。
本申请实施例中,上述全频音箱用于播放目标音频数据,或者该全频音箱用于播放目标音频数据的高频分量和/或中频分量;上述低频音箱用于播放目标音频数据的低频分量。
需要说明的是,本申请实施例中,上述通过全频音箱的扬声器播放的目标音频数据是经声场扩展处理的音频数据。为了便于描述,将未经声场扩展处理的音频数据称为原始音频数据,将经声场扩展处理的音频数据称为目标音频数据,即该原始音频数据经声场扩展处理后得到目标音频数据。应理解,该原始音频数据和目标音频数据均是待播放的音频数据,即全频音箱或低频音箱获取到的待播放的音频数据可以是原始音频数据(或者是原始音频数据的不同频段的分量,例如中频分量、高频分量或低频分量),也可以是对原始音频数据进行声场扩展处理后得到的目标音频数据。
本申请实施例中,若全频音箱获取到的待播放的音频数据是原始音频数据(或者是原始音频数据的中频分量和/或高频分量),则该由全频音箱对原始音频数据(或者是原始音频数据的中频分量和/或高频分量)进行声场扩展处理。若全频音箱获取到的待播放的音频数据是目标音频数据(或者是目标音频数据的中频分量和/或高频分量),则该目标音频数据(或者是目标音频数据的中频分量和/或高频分量)是由其他设备对原始音频数据进行分频(具体采用多频带滤波技术实现),然后对原始音频数据的不同频段的分量进行声场扩展处理得到。
同理,若低频音箱获取到的待播放的音频数据是原始音频数据(或者是原始音频数据的低频分量),则该由低频音箱对原始音频数据(或者是原始音频数据的低频分量)进行声场扩展处理;若低频音箱获取到的待播放的音频数据是目标音频数据的低频分量,则该目标音频数据的低频分量是由其他设备对原始音频数据进行分频(具体采用多频带滤波技术实现),然后对原始音频数据的不同频段的分量进行声场扩展处理得到。
可选地,上述全频音箱主体的形状为下述一种:环形、圆形、树形或W型。图1所示的全频音箱主体是以环形为例进行示例的,并不对全频音箱主体的形状构成限定。当然,在满足M个扬声器构成多对声偶极子的情况下,全频音箱主体的形状也可以设计为除上述环形、圆形、树形或W型之外的其他形状,本申请实施例不作限定。
图2示例了几种形状的全频音箱主体的正视图,其中,图2中的(a)为环形全频 音箱(即Sound Ring),上述M个扬声器部署在圆环内;图2中的(b)为圆形全频音箱,上述M个扬声器部署在圆面上;图2中的(c)为树形全频音箱,图2中的(d)为W型全频音箱。本申请实施例中,M个扬声器排布在全频音箱主体的一个平面上,即M个扬声器是共平面的,且朝向该全频扬声器的同一表面。
本申请实施例中,上述第一固定部件还用于支撑全频音箱主体。例如,如图3所示,当全频音箱主体为环形时,该第一固定部件可以作为底座以支撑该环形音箱主体,使其稳定地置于桌面上。
本申请实施例中,上述全频音箱的M个扬声器构成K对声偶极子,其中,一对声偶极子对应一对声扬声器。例如,对于图2中的(a)所示的环形全频音箱,该环形全频音箱包含8个扬声器,其中,扬声器1和扬声器5构成一对声偶极子,扬声器2和扬声器4构成一对声偶极子,扬声器6和扬声器8构成一对声偶极子,扬声器3和扬声器7构成一对声偶极子。
应理解,上述全频音箱中的扬声器构成的K对声偶极子的排布方向至少包括水平、竖直或斜上中的至少两种方向,即K对声偶极子至少包括水平方向的声偶极子、竖直方向的声偶极子或斜上方向的声偶极子中的至少两种声偶极子。结合图3,上述水平方向指的是与全频音箱主体的垂直投影所平行的方向,上述竖直方向是与与全频音箱主体的垂直投影所垂直的方向。仍以全频音箱为图2中的(a)所示的环形全频音箱为例,在该环形全频音箱中,扬声器1和扬声器5构成一对水平方向的声偶极子,扬声器3和扬声器7构成一对竖直方向的声偶极子。
本申请实施例中,上述预设方向与的夹角,此处的预设方向可以理解为以不同的角度指向天空的方向(简称为天空方向),例如,图4中的(a)示意的与第一方向的夹角小于180度的方向是天空方向。示例性的,如图4中的(b)所示的环形全频音箱中,虚线框内的两个扬声器构成天空方向的声偶极子。为了便于描述,本申请实施例中,将其他预设方向的声偶极子统一称为天空方向的声偶极子。
本申请实施例中,全频音箱播放的目标音频数据是对原始音频数据进行声场扩展处理后的音频数据,应注意,声场扩展处理后的音频数据与全频音箱的不同方向的偶极子是相对应的。例如,构成水平方向的声偶极子的扬声器对用于播放经水平方向进行声场扩展处理后的音频数据,构成竖直方向的声偶极子的扬声器对用于播放经竖直方向进行声场扩展处理后的音频数据,构成天空方向的声偶极子的扬声器对用于播放经天空方向进行声场扩展后的音频数据。对音频数据做竖直方向的声场扩展以及其他预设方向的声场扩展,能够提升音频数据回放的3D效果。在本申请实施例中,声场扩展包括对音频数据的高频分量进行高频带偶极子处理、对音频数据的中频分量进行中频带偶极子处理以及对音频数据的低频分量的低音增强处理,具体将在下述方法实施例中详述。
可选地,本申请实施例对全频音箱包含的扬声器的数量M也不作限定,具体根据实际需求设定。例如,在一种实现方式中,本申请实施例提供的全频音箱包括6个扬声器或8个扬声器。
本申请实施例提供的全频音箱对播放音频数据的中频分量和高频分量具有较好的播放效果,上述M个扬声器中的一个或多个扬声器为全频扬声器,或者,该M个扬 声器中的一个或多个扬声器为中高频扬声器,本申请实施例不作限定。例如,该全频音箱包含8个扬声器,其中,该8个扬声器可以全部为全频扬声器,或者,该8个扬声器中的4个扬声器为全频扬声器,4个扬声器为中高频扬声器。
在一种实现方式中,本申请实施例提供的全频音箱中的M个扬声器构成K对声偶极子,一对声偶极子对应一对扬声器,该K对声偶极子中的至少两对声偶极子满足下述条件:d i≠d j。其中,d i是构成第i对声偶极子的两个扬声器之间的距离,d j是构成第j对声偶极子的两个扬声器对之间的距离,i和j分别为1,2,……,K中的一个值,且i≠j,K为大于或等于2的正整数。并且构成第i对声偶极子的两个扬声器播放目标音频数据的第一频段,构成第j对声偶极子的两个扬声器播放目标音频数据的第二频段,第一频段与第二频段是不同的频段。
应理解,构成一对声偶极子的扬声器对所播放的音频数据的频段与扬声器对包含的两个扬声器之间的距离有关。具体的,构成一对声偶极子的两个扬声器播放的音频数据的中心频率随着扬声器之间的距离的增大而减小。若上述d i>d j,则构成第i对声偶极子的两个扬声器所能播放的音频数据的中心频率小于构成第j对声偶极子的两个扬声器所能播放的音频数据的中心频率。
例如,构成第i对声偶极子的扬声器对播放的音频数据的频段可以为600Hz-2600Hz,构成第j对声偶极子的扬声器对播放的音频数据的频段可以为2600Hz-12KHz。对于距离较小的一个扬声器对,该扬声器对播放高频带的音频数据的效果较好。
本申请实施例中,通过调整全频音箱的扬声器的布局,使得构成多对声偶极子的扬声器对的两个扬声器之间的间距相同或者不同。通过不同间距的扬声器对播放不同频带的音频数据,能够营造不同频段的声场效果。
示例性的,图5示意了环形全频音箱的扬声器的两种不同的布局,如图5中的(a)所示,该环形全频音箱包含4对不同间距的水平方向的声偶极子,其中,扬声器1和扬声器4构成第一对水平方向的声偶极子,扬声器8和扬声器5构成第二对水平方向的声偶极子,扬声器2和扬声器3构成第三对水平方向的声偶极子,扬声器7和扬声器6构成第四对水平方向的声偶极子。图5中的(b)所示的环形全频音箱包含2对水平方向的声偶极子和2对竖直方向的声偶极子,其中,扬声器1和扬声器3构成一对远距离的水平方向的声偶极子,扬声器5和扬声器4构成一对近距离的水平方向的声偶极子;扬声器5和扬声器2构成一对远距离的竖直方向的声偶极子,扬声器5和扬声器6构成一对近距离的竖直方向的声偶极子。
基于上述实施例的描述,由于扬声器对播放的音频数据的中心频率随着扬声器对包含的两个扬声器之间的距离的增大而减小,因此,结合图5中的(a),上述构成4对水平方向的声偶极子的4个扬声器对播放的音频数据的中心频率依次升高,即第一对水平方向的声偶极子对应的音频数据的中心频率最小,依次类推,第四对水平方向的声偶极子对应的音频数据的中心频率最高。
可选地,本申请实施例中,一个扬声器可以被复用于一对或多对声偶极子中。例如,结合图4中的(b),扬声器5和扬声器4构成一对水平方向的声偶极子,扬声器5和扬声器2构成一对竖直方向的声偶极子,且扬声器5和扬声器6构成另一对竖直方向的声偶极子,可见,扬声器5被复用于多对声偶极子中。
可选地,本申请实施例中,全频音箱的M个扬声器中的至少一个扬声器上设置有被动膜,被动膜用于扩展扬声器的低频响应。在一种实现方式中,上述至少一个扬声器中的每一个扬声器对应一个被动膜,如图6中的(a)所示,该被动膜贴附于扬声器的腔体的背部,图中的601是被动膜,通过在扬声器的腔体的背部设置被动膜,被动膜和箱体内的腔体组成一个空气弹簧,其谐振频率低于扬声器的谐振频率,由扬声器推动该空气弹簧在其谐振频率上进行谐振,从而达到扩展扬声器的低频响应(例如增大低频响应的范围、能量、幅值等)的目的,能够提升全频音箱的低音音质。在另一种实现方式中,上述至少一个扬声器中的每一个扬声器对应两个被动膜,如图6中的(b)所示,该两个被动膜分别位于扬声器的腔体的侧面,图中的602和603是两个被动膜,通过在扬声器腔体的侧面设置被动膜,进一步增加被动膜的有效谐振面积,从而更加显著地提升全频音箱的低音音质。需要说明的是,图6仅是被动膜的位置的示意。
可选地,本申请实施例提供的全频音箱还包括N个扬声器(N为正整数,N小于或等于M),该N个扬声器分别与上述M个扬声器中的N个扬声器背对背设置,形成N个背对背的扬声器对,其中,该M个扬声器朝向第一平面,该N个扬声器朝向第二平面,第一平面和第二平面是与全频音箱主体的垂直投影所垂直的两个平面,第一平面与第二平面平行。或者,该N个扬声器分别与上述M个扬声器中的N个扬声器面对面设置,形成N个面对面的扬声器对,其中,该M个扬声器的腔体朝向第一平面,该N个扬声器的腔体朝向第二平面,第一平面和第二平面是与全频音箱主体的垂直投影所垂直的两个平面,第一平面与第二平面平行,相应的,该N个扬声器也共平面。示例性的,以一个扬声器对为例,图7中的(a)是两个面对面的扬声器的示意图,图7中的(b)是两个背对背的扬声器的示意图。
本申请实施例中,对于上述N个背对背的扬声器对中的每一个扬声器对,该扬声器对中的两个扬声器共用一个腔体。在一种实现方式中,该N个背对背的扬声器对中的至少一个扬声器对的腔体上设置有被动膜,其中,对于该至少一个扬声器对中的一个扬声器对,该扬声器对对应两个被动膜。以1个扬声器对为例,该扬声器对对应的两个被动膜背对背,并且分别贴附于腔体内与扬声器对相邻的两个侧面,例如,图7中(b)中的701和702是两个被动膜。
可选地,上述第一固定部件可以是与全频音箱主体连接的第一片状部件,该第一片状部件用于与低频音箱主体的第二片状部件进行物理连接或拆卸。或者,该第一固定部件是设置在全频音箱主体的预设固定区域的凹坑状部件,该凹坑部件用于与低频音箱主体的凸起状部件进行物理连接或拆卸。
本申请实施例提供的全频音箱,由于该全频音箱中包含的M个扬声器构成多对声偶极子,通过该全频音箱播放经声场扩展处理的音频数据(即目标音频数据)能够获取较好的声场扩展效果,提升音质。进一步的,通过该全频音箱上的第一固定部件与低频音箱连接后,全频音箱与低频音箱组合使用以播放音频数据,能够显著提升音频数据的播放效果,并且用户可灵活选择使用全频音箱播放音频数据,或者使用全频音箱和低频音箱播放音频数据,能够满足用户的不同需求。
本申请实施例提供一种低频音箱,如图8所示,该低频音箱包括低频音箱主体801 和第二固定部件802,该低频音箱主体包括一个或多个低频扬声器8011,该第二固定部件802位于低频音箱主体的预设固定区域,该第二固定部件802用于与全频音箱进行物理连接或拆卸,该第二固定部件802中包括第二通信部件8021,该第二通信部件8021用于使得低频音箱与全频音箱通信,该第二通信部件支持传输多声道音频数据。其中,低频音箱的低频播放效果优于全频音箱的低频播放效果,全频音箱的频段范围大于低频音箱的频段范围。
需要说明的是,图8仅是对第二固定部件802和第二通信部件8021的位置进行示意,并不对第二固定部件802和第二通信部件8021的形状等其他特征进行限定。
上述低频音箱用于播放目标音频数据的低频分量,全频音箱用于播放目标音频数据或目标音频数据的高频分量和/或中频分量。同理,上述目标音频数据是经声场扩展处理的音频数据。
可选地,低频音箱主体的形状可以为扁圆柱体、长圆柱体、正方体、长方体或其他形状,本申请实施例不作限定。需要说明的是,图8中仅以扁圆柱体作为低频音箱的一种示意,不对低频音箱的具体形状和第一通信部件的形状等特征进行限定。
可选地,上述第二固定部件是与低频音箱主体连接的第二片状部件,该第二片状部件用于与全频音箱主体的第一片状部件进行物理连接或拆卸。或者,第二固定部件是设置在低频音箱主体的预设固定区域的凸起状部件,该凹坑状部件用于与全频音箱主体的凸起状部件进行物理连接或拆卸。
可选地,低频音箱还包括充电端口,该充电端口用于连接外部电源,以为低频音箱供电,或者在低频音箱与全频音箱连接时,通过低频音箱为全频音箱充电。具体的,上述第一固定部件与第二固定部件连接后使得第一通信部件与第二通信部件连接,从而通过低频音箱对全频音箱充电。
可选地,本申请实施例提供的低频音箱还包括摄像头或麦克风,该摄像头用于采集用户(听音者)的图像以根据用户的图像确定用户的位置;同理,麦克风用于采集用户的声音信号以根据用户的声音信号确定用户的位置。
本申请实施例提供的低频音箱,通过低频音箱的一个或多个扬声器播放音频数据的低频分量,能够提升音频数据的低音音质。进一步的,该低频音箱可以通过第二通信组件与全频音箱连接,并与全频音箱组合使用,低频音箱将经声场扩展处理后的音频数据的中频分量和/或高频分量发送至全频音箱,由全频音箱播放,通过全频音箱与低频音箱的配合使用,能够提升音频数据的播放效果,并且用户可灵活选择使用全频音箱播放音频数据,或者使用全频音箱和低频音箱播放音频数据,能够满足用户的不同需求。
本申请实施例提供一种音箱系统,如图9所示,该音箱系统包括全频音箱901和低频音箱902,该全频音箱901为上述实施例所述的全频音箱,低频音箱902为上述实施例所述的低频音箱,关于全频音箱901和低频音箱902的结构的描述可参考上述实施例,此处不再赘述。
可以理解的是,该全频音箱901和低频音箱902通过第一固定部件和第二固定部件进行物理连接,该第一固定部件与第二固定部件是一组配对的连接部件。通过上述实施例可知,第一固定部件中包括第一通信部件,第二固定部件中包括第二通信部件, 上述第一固定部件和第二固定部件物理连接之后,使得第一通信部件与第二通信部件连接,从而全频音箱901和低频音箱902可进行通信,该第一通信部件与第二通信部件是一组配对的通信部件(例如传输音频数据或者控制信令),或者,通过低频音箱对全频音箱充电(应注意,通过低频音箱对全频音箱充电时,该低频音箱连接电源)。
需要说明的是,上述图8仅音箱系统的一种可能的组成示意图,图8中,全频音箱为环形,低频音箱扁圆柱形,该全频音箱和低频音箱叠放连接,且在图8中,由于全频音箱和低频音箱处于连接状态,因此第一固定部件、第二固定部件、第一通信部件以及第二通信部件均不可见。可选地,全频音箱和低频音箱分别可以为其他的形状,并且全频音箱与低频音箱的连接方式也可以为其他的连接方式,本申请实施例不作限定。
上述全频音箱901用于播放目标音频数据,或者播放目标音频数据的高频分量和/或中频分量;低频音箱902用于播放目标音频数据的低频分量,且低频音箱的低频播放效果优于全频音箱的低频播放效果,全频音箱的频段范围大于低频音箱的频段范围。
可选地,全频音箱与低频音箱通过第一固定部件与第二固定部件叠放式连接或者挂靠式连接。
在一种实现方式中,如图10中的(a)所示,当上述第一固定部件是与全频音箱主体连接的第一片状部件1001,第二固定部件是与低频音箱主体连接的第二片状部件1002,且第一片状部件与第二片状部件接触并耦合时,全频音箱与低频音箱叠放式连接。具体的,该第一片状部件1001包括第一通信部件1001a,该第一通信部件1001a位于全频音箱主体的垂直投影之内;第二片状部件1002位于低频音箱主体上,第二片状部件1002中包括第二通信部件1002a,该第二通信部件1002a设置在第二片状部件1002上。该第一片状部件1001与第二片状部件1002接触并耦合使得全频音箱与低频音箱叠放式连接。图10中的(b)为全频音箱和低频音箱的叠放式连接的效果示意图。
可选地,上述第一片状部件1001a与第二片状部件1002a通过卡扣耦合或磁吸耦合的方式连接,当然,该第一片状部件1001a与第二片状部件1001a也可以通过其他可实现的方式连接,本申请实施例不作限定。
在另一种实现方式中,如图11中的(a)所示,当第一固定部件为沿全频音箱主体的一侧向外延伸的第一片状部件1101,第二固定部件为沿低频音箱主体的一侧向外延伸的第二片状部件1102,且第一片状部件1101与第二片状部件1102接触并耦合时,全频音箱与低频音箱挂靠式连接。具体的,该第一片状部件1101包括第一通信部件1101a,该第一通信部件1101a位于全频音箱主体的垂直投影之外,第二片状部件1102中包括第二通信部件1102a,该第二通信部件1102a位于低频音箱主体的垂直投影之外。图11中的(b)为全频音箱和低频音箱的挂靠式连接的效果示意图。
结合上述全频音箱与低频音箱的两种连接方式,第一固定部件与全频音箱主体连接,第一固定部件包括第一通信部件,当第一通信部件位于全频音箱主体的垂直投影之内,例如图12中的(a)至图12中的(c),且第二固定部件位于低频音箱主体上时,全频音箱与低频音箱叠放式连接。当第一通信部件位于全频音箱主体的垂直投影之外,例如图12中的(d),且第二固定部件位于低频音箱主体的垂直投影之外,全频音箱与低频音箱挂靠式连接。
在又一种实现方式中,如图13中的(a)所示,当第一固定部件是设置在全频音箱主体的预设固定区域的凹坑状部件1301,第二固定部件是设置在低频音箱主体的预设固定区域的凸起状部件1302,且该凹坑状部件1301与凸起状部件1302接触并耦合连接时,使得全频音箱与低频音箱叠放式连接。图13中的(b)为全频音箱和低频音箱的一种叠放式连接的效果示意图。
可选地,上述凹坑状部件1301与凸起状部件1302可以通过卡扣耦合或螺纹耦合的方式连接,或者通过其他可实现的方式连接,本申请实施例不作限定。
综上,可选地,上述第一通信部件为磁吸式接口的磁吸母头,第二通信部件为磁吸式接口的磁吸公头。或者,上述第一通信部件为USB接口的插头,第二通信部件为USB接口的插口。第一通信部件和第二通信部件也可以为其他具有匹配关系且具有可拆卸特性的通信部件,本申请实施例不作限定。
可选地,本申请实施例提供的音箱系统还包括至少一个的全频音箱,该至少一个全频音箱与上述实施例中所述的全频音箱的结构类似,该至少一个全频音箱与音箱系统中的一个全频音箱组成音箱系统的至少两个全频音箱,该音箱系统包含的至少两个全频音箱可协同工作。关于至少两个全频音箱协同工作的方式将在下述实施例中进行详细描述。
可选地,本申请实施例提供的音箱系统还包括至少一个全频音箱和至少一个低频音箱,在音箱系统中,一个全频音箱对应一个低频音箱而构成一个全频音箱子系统,如此,该音箱系统包含的至少两个子系统,该至少两个子系统可协同工作。关于至少两个全频音箱子系统协同工作的方式将在下述实施例中进行详细描述。
本申请实施例中,全频音箱的体积较小,重量较轻,便于携带。例如,环形全频音箱的直径约为25厘米(cm),厚度约为3cm,重量小于500克。相比于全频音箱,低频音箱的体积稍大,重量较大,例如,扁圆柱形的低频音箱的底面直径约为30cm,高度约为10cm,重量大于2000克。
本申请实施例提供的音箱系统,该音箱系统中的全频音箱可以独立工作,或者该全频音箱与低频音箱协同工作,因此,用户可灵活选择使用全频音箱播放音频数据,或者使用全频音箱和低频音箱播放音频数据,能够满足用户的不同需求。
进一步的,在全频音箱独立工作的情况下,由于全频音箱对中频和高频具有较好的播放效果,因此通过全频音箱播放目标音频数据的中频分量和/或高频分量,能够提升音质。在全频音箱与低频音箱协同工作的情况下,由于低频音箱的低频播放效果由于全频音箱的低频播放效果,因此通过低频音箱播放目标音频数据的低频分量,能够提升音频数据的低音音质;又由于全频音箱对中频和高频具有较好的播放效果,因此通过全频音箱播放目标音频数据的中频分量和/或高频分量能够提升目标音频数据的中频分量和/或高频分量的播放效果,如此,能够在音频数据的全频带提升音频数据的播放效果。
下面对本申请实施例提供的音箱系统包含的全频音箱和低频音箱的硬件结构分别进行解释说明。
图14为本申请实施例提供的全频音箱的硬件结构示意图,如图14所示,该全频音箱包括处理器1401,一个或多个扬声器1402,与扬声器1402对应的一个或多个数 模转换模块1403和一个或多个功率放大器1404,通信模块1405、电源1406以及连接模块1407。
处理器1401是全频音箱的核心控制、处理单元,具有信号流控制、处理等功能,例如,处理器1401处理音频数据。
一个或多个扬声器1402是全频音箱的回放器件,用于播放经处理器1401处理后的音频数据。可选地,该一个或多个扬声器1402可以为全频扬声器,该一个或多个扬声器802中的部分扬声器可以为中高频扬声器,本申请实施例不作具体限定。
一个或多个数模转换模块1403用于将处理器1401处理后的音频数据由数字信号形式转换为模拟信号形式。
一个或多个功率放大器1404用于对模拟信号形式的音频数据进行功率放大,进而由一个或多个扬声器1402进行播放。
通信模块1405用于支持全频音箱与其他设备进行通信,例如该通信模块1405可以为蓝牙模块,通过蓝牙模块使得全频音箱与手机建立连接,从而传输音频数据。该通信模块1405可以为收发器。
电源1406用于为全频音箱供电,电源1406可以为电池。
连接模块1407用于将全频音箱与低频音箱可拆卸连接,通过连接模块1407实现全频音箱与低频音箱的可接触式连接,以对全频音箱充电或者实现全频音箱与低频音箱通信。该连接模块中1407包括通信部件,该通信部件可以为USB接口或磁吸式接口。全频音箱的收发器可以通过该通信部件向低频音箱发送音频数据。
可选地,本申请实施例提供的全频音箱还可以包括模拟音频接口1408,该模拟音频接口1408用于接收或者发送模拟音频数据。
图15为本申请实施例提供的低频音箱的硬件结构示意图,如图15所示,该低频音箱包括处理器1501,一个或多个低频扬声器1502,与低频扬声器1502对应的一个或多个数模转换模块1503和一个或多个功率放大器1504,通信模块1505、电源1506以及连接模块1507。
处理器1501是整个全频音箱(包含全频音箱和低频音箱)的核心控制、处理单元,具有信号流控制、处理等功能。并且相比于上述全频音箱的处理器1401,该低频音箱的处理器1501具有更强的运算、存储能力和计算资源。
一个或多个扬声器1502是低音回放器件,用于播放经处理器1501处理后的音频数据的低频分量。
一个或多个数模转换模块1503用于将处理器1501处理后的音频数据由数字信号形式转换为模拟信号形式。
一个或多个功率放大器1504用于对模拟信号形式的音频数据进行功率放大,进而由一个或多个扬声器1502进行播放。
通信模块1505用于支持全频音箱与其他设备进行通信,例如通过该通信模块1505使得全频音箱与手机建立连接,从而传输音频数据,该通信模块1405可以为收发器。可选地,该通信模块1505可以为蓝牙模块或WiFi模块,本申请实施例不作限定。
电源1506是有线电源,为低频音箱和全频音箱供电。
连接模块1507用于将低频音箱与全频音箱可拆卸连接,通过连接模块1507实现 全频音箱与低频音箱的可接触式连接,以对全频音箱充电或者实现全频音箱与低频音箱通信。该连接模块1507中包括通信部件,该通信部件可以为USB接口或磁吸式接口。低频音箱的收发器可以通过该通信部件向全频音箱发送音频数据。
可选地,本申请实施例提供的低频音箱还包括其他可扩展单元,例如该低频音箱还包括摄像头或麦克风阵列。
基于上述实施例所述的音箱系统中的全频音箱和低频音箱,本申请实施例提供一种音频数据的处理方法。如图16所示,该方法包括步骤1601至步骤1603。
步骤1601、终端检测全频音箱的第一通信部件是否与低频音箱的第二通信部件连接。
基于上述实施例的描述,全频音箱包括第一固定部件,上述第一通信部件设置在第一固定部件上;该低频音箱包括第二固定部件,上述第二通信部件设置在第二固定部件上。全频音箱和低频音箱通过第一固定部件和第二固定部件进行物理连接或拆卸,第一通信部件和第二通信部件连接时,全频音箱和低频音箱可以通信。并且,第一通信部件和第二通信部件支持传输多声道音频数据,低频音箱的低频播放效果优于全频音箱的低频播放效果,全频音箱的频段范围大于低频音箱的频段范围。
关于全频音箱和低频音箱的结构的相关描述可参考上述实施例的详细内容。
可选地,终端可以通过与全频音箱交互的方式检测第一通信部件是否与第二通信部件连接,例如,终端从全频音箱获取该全频音箱上与第一通信部件对应的第一端口的状态信息,根据该第一端口的状态信息确定第一通信部件是否与第二通信部件连接。当第一通信部件与第二通信部件未连接时,第一端口的状态信息为“0”,则终端获取到该状态“0”之后确定第一通信部件与第二通信部件未连接;当第一通信部件与第二通信部件连接时,第一端口的状态信息为“1”,则终端获取到该状态“1”之后确定第一通信部件与第二通信部件连接。
需要说明的是,终端也可以通过其他可实现的方法检测第一通信部件是否与第二通信部是否连接,本申请实施例不作限定。
步骤1602、当终端检测到第一通信部件与第二通信部件未连接时,终端向全频音箱发送待播放的音频数据。
结合上述实施例中对待播放的音频数据的说明可知,待播放的音频数据可以原始音频数据或目标音频数据。如此,终端向全频音箱发送待播放的音频数据可以包括下述2种情况。
情况1、终端向全频音箱发送原始音频数据。
应理解,当终端向全频音箱发送原始音频数据时,由全频音箱对该原始数据进行分频,并对不同频段的分量进行声场扩展处理,得到目标音频数据,进而播放该目标音频数据。
情况2、终端向全频音箱发送目标音频数据。
应理解,当终端向全频音箱发送目标音频数据时,该目标音频数据可以是由其他设备对原始音频数据进行分频并进行声场扩展处理得到,并发送至该全频音箱的,然后由该全频音箱播放该目标音频数据。上述其他设备可以为该终端、低频音箱或者除这两个设备之外的其他设备,本申请实施例不作限定。
步骤1603、当终端检测到第一通信部件与第二通信部件连接时,终端按照下述步骤1603a至步骤1603c中的一种方式发送音频数据。
步骤1603a、终端向全频音箱发送第一音频数据,并且向低频音箱发送第二音频数据。
其中,第一音频数据是待播放的音频数据的中频分量和/或高频分量,第二音频数据是待播放的音频数据的低频分量。
同理,终端向全频音箱和低频音箱发送音频数据包括下述几种情况。
情况1、终端向全频音箱发送原始音频数据的中频分量和/或高频分量,向低频音箱发送原始音频数据的低频分量。
可选地,终端可以对原始音频数据进行分频,得到原始音频数据的中频分量和/或高频分量,以及低频分量,然后终端向全频音箱发送原始音频数据的中频分量和/或高频分量,由全频音箱对该原始数据的中频分量和/或高频分量进行声场扩展处理,得到目标音频数据的中频分量和/或高频分量;并且终端向低频音箱发送原始音频数据的低频分量,由该低频音箱对原始音频数据的低频分量进行声场扩展处理,得到目标音频数据的低频分量,由该低频音箱播放该目标音频数据的低频分量。
情况2、终端向全频音箱发送目标音频数据的中频分量和/或高频分量,向低频音箱发送目标音频数据的低频分量。
可选地,终端或其他设备可以对原始音频数据进行分频并对分频后的中频分量和/或高频分量,以及地频分量分别进行声场扩展处理,并向全频音箱发送目标音频数据的中频分量和/或高频分量,向低频音箱发送目标音频数据的低频分量,然后由该全频音箱播放该目标音频数据的中频分量和/或高频分量,由低频音箱播放目标音频数据的低频分量。
步骤1603b、终端向全频音箱发送待播放的音频数据。
终端向全频音箱发送待播放的音频数据也包括2种情况,具体参考上述步骤1602,此处不再赘述。
需要说明的是,终端向全频音箱发送的待播放的音频数据是原始音频数据时,则该全频音箱对该原始音频数据进行分频并进行声场扩展处理,得到目标音频数据。
可选地,上述全频音箱得到目标音频数据之后,该目标音频数据的播放方式包括下述两种方式:
方式一、由全频音箱播放该目标音频数据。
方式二、由全频音箱播放该目标音频数据的中频分量和/或高频分量,全频音箱将该目标音频数据的低频分量发送至低频音箱,由低频音箱播放该目标音频数据的低频分量。
步骤1603c、终端向低频音箱发送待播放的音频数据。
终端向低频音箱发送待播放的音频数据可以包括下述2种情况。
情况1、终端向低频音箱发送原始音频数据。
应理解,当终端向低频音箱发送原始音频数据时,由低频音箱对该原始数据进行分频,并对不同频段的分量进行声场扩展处理,得到目标音频数据,进而由该低频音箱播放该目标音频数据的低频分量,并且将该目标音频数据的中频分量和/或高频分量 发送至全频音箱,由该全频音箱播放该中频分量和/或高频分量。
情况2、终端向低频音箱发送目标音频数据。
应理解,当终端向低频音箱发送目标音频数据时,该目标音频数据可以是由其他设备对原始音频数据进行分频并进行声场扩展处理得到,并发送至该低频音箱的,然后由该低频音箱播放该目标音频数据的低频分量,并且低频音箱将该目标音频数据的中频分量和/或高频分量发送至全频音箱,由该全频音箱播放该中频分量和/或高频分量发送至全频音箱。
本申请实施例提供的音频数据的处理方法,终端通过检测该终端全频音箱的第一通信部件与低频音箱的第二通信部件是否连接,确定向全频音箱和/或者低频音箱发送音频数据,以使得全频音箱处理音频数据和/或低频音箱处理音频数据,从而达到较好的声场扩展效果,提升音质。
如图17所示,本申请实施例提供一种音频数据的处理方法,应用于上述全频音箱,该方法包括步骤1701至步骤1704。
步骤1701、全频音箱获取待播放的音频数据。
应理解,上述待播放的音频数据是原始音频数据。可选地,该待播放的音频数据可以是全频音箱从终端接收的音频数据,或者是该全频音箱从其他设备获取的音频数据,本申请实施例不作限定。
步骤1702、全频音箱对获取的待播放的音频数据进行多频带滤波,得到待播放的音频数据的中频分量和/或高频分量,以及低频分量。
可选地,本申请实施例中,上述多频带滤波可以包括高频滤波、带通滤波以及低频滤波。和/或,多频带滤波包括高频滤波和低频滤波。应理解,对音频数据进行高频滤波,得到音频数据的高频分量;对音频数据进行带通滤波,得到音频数据的中频分量;对音频数据进行低频滤波,得到音频数据的低频分量。
需要说明的是,本申请实施例中,对音频数据进行多频带滤波时,滤波频带的设置与全频音箱中组成偶极子的扬声器对中的两个扬声器之间的距离有关。滤波频带决定滤波后的高频分量、中频分量以及低频分量各自对应的频段。
步骤1703、全频音箱对待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据。
上述步骤1703包括步骤1703a至步骤1703b。
步骤1703a、全频音箱对滤波后的音频数据的高频分量进行高频带偶极子处理,和/或对滤波后的音频数据的中频分量进行中频带偶极子处理。
可以理解的是,全频音箱的扬声器的声场存在甜点(sweet point)区域,该甜点区域指的是能够达到较好的音效的区域,通常该甜点区域是与全频音箱中心偏离预设角度的区域。当用户(或听音者)位于甜点区域内时,用户具有较好的听音感受;当用户远离甜点区域(例如用户与全频音箱中心的之间的夹角的角度大于上述预设角度)时,将出现双耳串扰的现象,如此,用户的听音感受将变差。
本申请实施例中,一对声偶极子对应一对扬声器,通过一对扬声器播放幅度相同,相位不同的信号。以水平方向为例,右声道对应一个声偶极子,左声道对应一个声偶极子,例如,当右声道信号到达用户的左耳的能量较大时,左右耳将出现串扰,即右 声道信号对左耳形成干扰,如此,声场变窄。当右声道信号达到用户的左耳的能量较小时,左右耳串扰较小。
本申请实施例中,采用高频带偶极子算法对音频数据的高频分量进行声场扩展处理,采用中频带偶极子算法对音频数据的中频分量进行声场扩展处理,对于右声道信号,能够在保证右声道信号到达右耳的能量不降低的情况下,减小右声道信号到达左耳的能量;对于左声道信号,能够在保证左声道信号到达左耳的能量不降低的情况下,减小左声道信号到达右耳的能量,从而实现双耳串扰消除。本申请实施例中,右声道信号到达用户的左耳的能量越小,该右声道信号到达用户的右耳的能量越大,则双耳串扰消除效果越好;同理,左声道信号到达右耳的能量越小,该左声道信号到达左耳的能量越大,则双耳串扰消除效果越好。
通过偶极子算法处理之后,偶极子的指向性发生改变,图18为右声道对应的偶极子的指向性图,通过该偶极子的指向性图可以进一步展示串扰消除的效果。该右声道对应的声偶极子的指向性图可以通过下述公式表示:
Figure PCTCN2021103324-appb-000001
其中,w=2πf,f为右声道信号的频率,t delay是偶极子对应的扬声器播放的信号达到左耳与右耳的时间差,d spk是构成一对声偶极子的两个扬声器之间的距离,
Figure PCTCN2021103324-appb-000002
为指向性图的遍历角度,θ为偶极子处理算法中的配置参数,该配置参数为组成一对声偶极子的两个扬声器播放信号的相位差,c为声速。该相位差θ与用户的位置相关,具体的,可根据用户位置调整θ以达到最优的串扰消除,即声场扩展效果。
以图18中的(a)为例,需要说明的是,圆周上的角度是
Figure PCTCN2021103324-appb-000003
(0度至360度),不同的圆周对应不同的能量(例如0.5,1,1.5,2)。其中,图18中的(a)示意的是θ为0度时该偶极子的指向性图,结合该指向性图可知,此时右声道信号达到左耳的能量较小,该右声道信号到达右耳的能量较大。具体的,图18中的(a)中,用户位于全频音箱的正前方(270度方向),假设用户的左耳与全频音箱中心的夹角为30度,则图中240度方向是用户左耳所在的方向,并且此时对应的θ为0度,可见在240度附近,右声道信号达到左耳的能量较小。且在240度附近,右声道信号到达右耳的能量较大。
图18中的(b)示意的是θ为30度时该偶极子的指向性图,图18中的(c)示意的是θ为-30度时该偶极子的指向性图。同理,此时右声道信号达到左耳的能量较小,该右声道信号到达右耳的能量较大。
可选地,本申请实施例中,一种频带对应一对或多对声偶极子。例如,高频带对应多对声偶极子,如此,通过高频滤波后的高频分量经高频带偶极子算法处理后,将通过多对偶极子对应的扬声器播放。
步骤1703b、对滤波后的音频数据的低频分量进行低音增强处理。
本申请实施例中,采用低音增强算法对滤波后的音频数据的低频分量进行处理,在不损伤扬声器的情况下(不超过振膜最大位移),动态提升低频信号(即低频分量)的能量,显著提升音频数据的低音音质。
应理解,低音增强算法通过预先获得扬声器的参数(TS参数),并根据扬声器的 参数建模,得到的处理模型,具体可以参考现有方法,本申请实施例不再赘述。
可选地,全频音箱对原始音频数据处理之后,得到目标音频数据(具体包括目标音频数据的中频分量和/或高频分量,以及低频分量)该目标音频数据的中频分量和/或高频分量由全频音箱播放。
步骤1704、全频音箱向低频音箱发送目标音频数据的低频分量。
如此,目标音频数据的低频分量由低频音箱播放,该低频音箱的低频播放效果优于全频音箱的低频播放效果。
在一种实现方式中,全频音箱也可以不向低频音箱发送目标音频数据的低频分量,而是由该全频音箱播放该目标音频数据(包括中频分量和/或高频分量,以及低频分量)。
本申请实施例提供的音频数据的处理方法,上述全频音箱完成对音频数据的声场扩展处理之后,一方面,该全频音箱播放经声场扩展处理后的音频数据的高频分量和/或中频分量,由于全频音箱对中频和高频具有较好的播放效果,因此能够提升中频分量和/或高频分量的音质。另一方面,全频音箱向低频音箱发送经声场扩展处理后的音频数据的低频分量,由低频音箱播放该低频分量,由于低频音箱的低频播放效果优于全频音箱的低频播放效果,因此能够提升音频数据的低音音质。
如图19所示,本申请实施例提供一种音频数据的处理方法,应用于低频音箱,该方法包括步骤1901至步骤1904。
步骤1901、低频音箱获取待播放的音频数据。
应理解,上述待播放的音频数据是原始音频数据。可选地,该待播放的音频数据可以是低频音箱从终端接收的音频数据,或者是该低频音箱从其他设备获取的音频数据,本申请实施例不作限定。
步骤1902、低频音箱对获取的待播放的音频数据进行多频带滤波,得到待播放的音频数据的中频分量和/或高频分量,以及低频分量。
步骤1903、低频音箱对待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据。
需要说明的是,该低频音箱对待播放的音频数据进行多频带滤波、声场扩展处理的方法与上述全频音箱对待播放的音频数据进行多频带滤波以及声场扩展处理的方法相同,具体可参考上述实施例的描述,此处不再赘述。
步骤1904、低频音箱向全频音箱发送目标音频数据的中频分量和/或高频分量。
本申请实施例中,上述低频音箱完成对音频数据的声场扩展处理之后,一方面,通过该低频音箱上的低音扬声器播放低音增强处理后的低频分量,由于音频数据的低频分量是由低频音箱中专用的低频扬声器播放,因此能够提升音频数据的低音音质。另一方面,该低频音箱向全频音箱发送经声场扩展处理后的音频数据的高频分量和/或中频分量,进而由全频音箱播放该高频分量和/或中频分量,由于全频音箱对中频和高频具有较好的播放效果,因此能够提升中频分量和/或高频分量的音质。
本申请实施例提供的音频数据的处理方法,音箱系统中的全频音箱的扬声器的布局与上述声场扩展算法(包括高频带偶极子算法、中频带偶极子算法以及低音增强算法)是相互配合达到更宽广的声场效果的。
可选地,本申请实施例中,音频数据为多声道音频数据。例如,多声道为双声道, 包括左声道(L)和右声道(R)。又例如,多声道包括左声道(L)、左环绕声道(Ls)、左后方声道(Lb)、左上方声道(Lh)、右声道(R)、右环绕声道(Rs)、右后方声道(Rb)、右上方声道(Rh)、中置声道(C)。
以音箱系统中的全频音箱为包含8个扬声器的环形全频音箱为例,该环形全频音箱的8个扬声器的布局参考图2中的(a),下面分别以音频数据为双声道音频数据和多声道音频数据为例,对扬声器与声场扩展算法如何相互配合进行示例性的描述。
在音箱系统中的全频音箱的第一通信部件与低频音箱的第二通信部件连接的情况下,低频音箱获取到待播放的双声道音频数据(包括左声道信号和右声道信号)之后,结合图20,该双声道音频数据的处理过程包括:
步骤2001、低频音箱对左声道(L)信号进行高频滤波、中频滤波以及低频滤波,得到左声道信号的高频分量,左声道信号的中频分量以及左声道信号的低频分量。
步骤2002、低频音箱对右声道(R)音频信号进行高频滤波、中频滤波以及低频滤波,得到右声道信号的高频分量,右声道信号的中频分量以及右声道信号的低频分量。
为了便于描述,本申请实施例中,将左声道信号记为D L,左声道信号的高频分量记为D L_h,将左声道信号的中频分量记为D L_c,将左声道信号的低频分量记为D L_l;将右声道信号记为D R,右声道信号的高频分量记为D R_h,将左声道信号的中频分量记为D R_c,将左声道信号的低频分量记为D R_l
步骤2003、低频音箱对左声道信号的高频分量D L_h和右声道信号的高频分量D R_h进行高频带偶极子处理,得到处理后的左声道信号的高频分量D' L_h和右声道信号的高频分量D' R_h
步骤2004、低频音箱对左声道信号的中频分量D L_c和右声道信号的中频分量D R_c进行中频带偶极子处理,得到处理后的左声道信号的中频分量D' L_c和右声道信号的中频分量D' R_c
步骤2005、低频音箱对左声道信号的低频分量D L_l和右声道信号的低频分量D R_l进行会混音处理,得到混合的低频分量D l,然后对该低频分量D l进行低音增强处理,得到处理后的音频数据的低频分量D' l,并通过低频音箱播放处理后的音频数据的低频分量D' l
本申请实施例中,经混音处理得到混合的低频分量满足:D l=D L_l+D R_l
步骤2006、低频音箱将经声场扩展处理后的左声道信号的高频分量D' L_h和中频分量D' L_c,以及经声场扩展处理后的右声道信号的高频分量D' R_h和中频分量D' R_c发送至全频音箱。
应理解,上述高频分量和中频分量由该全频音箱上对应的扬声器播放。
本申请实施例中,上述通过该全频音箱上对应的扬声器播放音频数据指的是:采用构成水平方向的声偶极子的扬声器对播放经水平方向声场扩展后的音频数据(包含高频分量和中频分量),具体的,距离较近的扬声器对用于播放高频分量,距离较远的扬声器对用于播放中频分量。
示例性的,结合图2中的(a),本申请实施例中,扬声器2和扬声器4构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的高频分量;扬声器6和扬声 器8构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的高频分量;扬声器1和扬声器5构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的中频分量。
可选地,一个频带对应一个或多个扬声器对。例如,高频带(即上述高频分量)对应两个扬声器对。
相应地,表1是音频数据的各个分量与全频音箱的扬声器的对应关系的一种示例。
表1
扬声器 音频数据
1 D' L_c
2 D' L_h
3 /
4 D' L_h
5 D' R_c
6 D' R_h
7 /
8 D' L_h
需要说明的是,上述表1中的“/”表示无数据,即扬声器3和扬声器7不播放音频数据。
综上可知,对双声道音频数据进行声场扩展处理,是对音频数据做水平方向的声场扩展处理。
在音箱系统中的全频音箱的第一通信部件与低频音箱的第二通信部件连接的情况下,低频音箱接收到待播放的多声道(包括左声道、左环绕声道、左后方声道、左上方声道、右声道、右环绕声道、右后方声道、右上方声道、中置声道)音频数据之后,结合图21,该多声道音频数据的处理过程包括:
步骤2101、低频音箱将左声道(L)、左环绕声道(Ls)以及左后方声道(Lb)音频数据进行混合,得到水平左声道信号。
本申请实施例中,将左声道信号记为D L,将左环绕声道音频数据记为D Ls,将左后方声道音频数据记为D Lb,则水平左声道信号为:D LH=D L+D Ls+D Lb
步骤2102、低频音箱对水平左声道信号D LH进行高频滤波、中频滤波以及低频滤波,得到水平左声道信号的高频分量D LH_h,水平左声道信号的中频分量D LH_c以及水平左声道信号的低频分量D LH_l
步骤2103、低频音箱将右声道(R)、右环绕声道(Rs)以及右后方声道(Rb)音频数据进行混合,得到水平右声道信号。
本申请实施例中,将右声道信号记为D R,将左环绕声道音频数据记为D Rs,将左后方声道音频数据记为D Rb,则水平左声道信号为:D RH=D R+D Rs+D Rb
步骤2104、低频音箱对水平右声道信号D RH进行高频滤波、中频滤波以及低频滤波,得到水平右声道信号的高频分量D RH_h,水平右声道信号的中频分量D RH_c以及水平右声道信号的低频分量D RH_l
步骤2105、低频音箱对左上方声道(Lh)音频数据D Lh进行高频滤波、中频滤波以及低频滤波,得到竖直左声道信号的高频分量D LV_h,竖直左声道信号的中频分量D LV_c以及竖直左声道信号的低频分量D LV_l
应理解,上述左上方声道音频数据是竖直方向的左声道信号,以下简称为竖直左声道信号。
步骤2106、低频音箱对右上方声道(Rh)音频数据D Rh进行高频滤波、中频滤波以及低频滤波,得到竖直右声道信号的高频分量D RV_h,竖直右声道信号的中频分量D RV_c以及竖直右声道信号的低频分量D RV_l
应理解,上述右上方声道音频数据是竖直方向的右声道信号,以下简称为竖直右声道信号。
步骤2107、低频音箱对中置声道(C)音频数据D C进行高频滤波和低频滤波,得到中置声道音频数据的高频分量D C_h和中置声道音频数据的低频分量D C_l
步骤2108、低频音箱对水平左声道信号的高频分量D LH_h和水平右声道信号的高频分量D RH_h进行水平方向高频带偶极子处理,得到处理后的水平左声道信号的高频分量D' LH_h和水平右声道信号的高频分量D' RH_h
步骤2109、低频音箱对水平左声道信号的中频分量D LH_c和水平右声道信号的中频分量D RH_c进行水平方向中频带偶极子处理,得到处理后的水平左声道信号的中频分量D' LH_c和水平右声道信号的中频分量D' RH_c
步骤2110、低频音箱对竖直左声道信号的高频分量D LV_h和竖直右声道信号的高频分量D RV_h进行竖直方向高频带偶极子处理,得到处理后的竖直左声道信号的高频分量D' LV_h和竖直右声道信号的高频分量D' RV_h
步骤2111、低频音箱对竖直左声道信号的中频分量D LV_c和竖直右声道信号的中频分量D RV_c进行竖直方向中频带偶极子处理,得到处理后的竖直左声道信号的中频分量D' LV_c和竖直右声道信号的中频分量D' RV_c
步骤2112、低频音箱对水平左声道信号的低频分量D LH_l、水平右声道信号的低频分量D RH_l、竖直左声道信号的低频分量D LV_l、竖直右声道信号的低频分量D RV_l以及中置声道音频数据的低频分量D C_l进行混音处理,得到混合的低频分量D l,然后对该低频分量D l进行低音增强处理,得到处理后的音频数据的低频分量D' l
应理解,处理后的音频数据的低频分量由低频音箱播放。
本申请实施例中,经混音处理得到混合的低频分量满足:
D l=D LH_l+D RH_l+D LV_l+D RV_l+D C_l
步骤2113、低频音箱将经声场扩展处理后的音频数据的高频分量和中频分量进行混音处理,并将混音处理后的音频数据发送至全频音箱。
步骤2114、全频音箱接收低频音箱发送的混音处理后的音频数据。
应理解,该混音处理后的音频数据由全频音箱上对应的扬声器播放。
本申请实施例中,通过该全频音箱上对应的扬声器播放音频数据指的是:采用构成水平方向的声偶极子的扬声器对播放经水平方向声场扩展后的音频数据(包含高频分量和中频分量),具体的,距离较近的扬声器对用于播放高频分量,距离较远的扬 声器对用于播放中频分量。并且采用构成竖直方向的声偶极子的扬声器对播放经竖直方向声场扩展的音频数据(包含高频分量和中频分量),具体的,距离较近的扬声器对用于播放高频分量,距离较远的扬声器对用于播放中频分量。
示例性的,结合图2中的(a),本申请实施例中,扬声器4和扬声器6构成一对竖直方向的声偶极子,用于播放经竖直方向声场扩展后的高频分量;扬声器2和扬声器8构成一对竖直方向的声偶极子,用于播放经竖直方向声场扩展后的高频分量;扬声器3和扬声器7构成一对竖直方向的声偶极子,用于播放经竖直方向声场扩展后的中频分量。并且,扬声器2和扬声器4构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的高频分量;扬声器6和扬声器8构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的高频分量;扬声器1和扬声器5构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的中频分量。
同理,一个频带对应一个或多个扬声器对。
相应地,表2是音频数据的各个分量与全频音箱的扬声器的对应关系的一种示例。
表2
扬声器 音频数据
1 D' LH_c
2 D' LH_h+D' RV_h+D C_h
3 D' RV_c
4 D' RH_h+D' RV_h+D C_h
5 D' RH_c
6 D' RH_h+D' LV_h+D C_h
7 D' LV_c
8 D' LH_h+D' LV_h+D C_h
至此,可以理解的是,上述混音处理具体指的是将水平左声道信号的高频分量D' LH_h、竖直右声道信号的高频分量D' RV_h以及中置声道的高频分量D C_h进行混合;将水平右声道信号的高频分量D' RH_h、竖直右声道信号的高频分量D' RV_h以及中置声道的高频分量D C_h进行混合;将水平右声道信号的高频分量D' RH_h、竖直左声道信号的高频分量D' LV_h以及中置声道的高频分量D C_h进行混合;将水平左声道信号的高频分量D' LH_h、竖直左声道信号的高频分量D' LV_h以及中置声道的高频分量D C_h进行混合。
综上可知,对多声道音频数据进行声场扩展处理,是对音频数据做水平方向的声场扩展处理和竖直方向的声场扩展处理,能够产生三维声场效果。
同理,在音箱系统中的全频音箱的第一通信部件与低频音箱的第二通信部件未连接,或者,全频音箱的第一通信部件与低频音箱的第二通信部件连接,但该全频音箱独立处理音频数据,低频音箱不参与音频数据处理的情况下,以双声道音频数据和多声道音频数据为例对扬声器与声场扩展算法如何相互配合进行示例性的描述。
音频数据为双声道音频数据(包括左声道信号和右声道信号)时,由全频音箱对该双声道音频数据进行声场扩展处理,并播放经声场扩展处理后的音频数据。结合图 2中的(a)和图22,扬声器2和扬声器4构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的高频分量;扬声器6和扬声器8构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的高频分量;扬声器1和扬声器5构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的中频分量。
需要说明的是,与上述图20不同的是,经低音增强处理后的音频数据的低频分量与其他的高频分量或中频分量进行混合,并通过全频音箱的扬声器播放。相应地,结合图22,表3是音频数据的各个分量与全频音箱的扬声器的对应关系的一种示例。
表3
扬声器 音频数据
1 D' L_c+D' l
2 D' L_h+D' l
3 D' l
4 D' L_h+D' l
5 D' R_c+D' l
6 D' R_h+D' l
7 D' l
8 D' L_h+D' l
音频数据为多声道音频数据(包括左声道、左环绕声道、左后方声道、左上方声道、右声道、右环绕声道、右后方声道、右上方声道、中置声道)时,由全频音箱对该多声道音频数据进行声场扩展处理,并播放经声场扩展处理后的音频数据,结合图2中的(a)和图23,扬声器4和扬声器6构成一对竖直方向的声偶极子,用于播放经竖直方向声场扩展后的高频分量;扬声器2和扬声器8构成一对竖直方向的声偶极子,用于播放经竖直方向声场扩展后的高频分量;扬声器3和扬声器7构成一对竖直方向的声偶极子,用于播放经竖直方向声场扩展后的中频分量。并且,扬声器2和扬声器4构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的高频分量;扬声器6和扬声器8构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的高频分量;扬声器1和扬声器5构成一对水平方向的声偶极子,用于播放经水平方向声场扩展后的中频分量。
需要说明的是,与上述图21不同的是,经低音增强处理后的音频数据的低频分量与其他的高频分量或中频分量进行混合,并通过全频音箱的扬声器播放。
相应地,结合图23,表4是音频数据的各个分量与全频音箱的扬声器的对应关系的一种示例。
表4
扬声器 音频数据
1 D' LH_c+D' l
2 D' LH_h+D' RV_h+D C_h+D' l
3 D' RV_c+D' l
4 D' RH_h+D' RV_h+D C_h+D' l
5 D' RH_c+D' l
6 D' RH_h+D' LV_h+D C_h+D' l
7 D' LV_c+D' l
8 D' LH_h+D' LV_h+D C_h+D' l
在另一种实现方式中,本申请实施例提供一种音频数据的处理方法,该方法应用于终端与上述音箱系统建立通信连接的场景中,该音箱系统包括全频音箱和低频音箱,全频音箱的第一通信部件与低频音箱的第二通信部件连接。该全频音箱包括第一固定部件,第一通信部件设置在第一固定部件上,低频音箱包括第二固定部件,第二通信部件设置在第二固定部件上,全频音箱和低频音箱通过第一固定部件和第二固定部件进行物理连接或拆卸,通过第一通信部件和第二通信部件使得全频音箱和低频音箱通信,该第一通信部件和第二通信部件支持传输多声道音频数据。如图24所示,该方法包括步骤2401至步骤2404。
步骤2401、终端接收用户的第一操作。
步骤2402、终端响应于第一操作,控制全频音箱独立工作。
上述第一操作是用户对终端的第一界面中的第一选项的选中操作,该第一选项对应于全频音箱独立工作,全频音箱独立工作指的是由全频音箱播放目标音频数据。
可选地,上述第一操作可以为触屏操作或者按键操作等,本发明实施例不作具体限定。示例性的,上述触屏操作为用户对终端的触控屏的按压操作、长按操作、滑动操作、点击操作、悬浮操作(用户在触控屏附近的操作)等。按键操作对应于用户对终端的电源键、音量键、Home键等按键的单击操作、双击操作、长按操作、组合按键操作等操作。
在本申请实施例的一种应用场景中,终端上安装有全频音箱应用,用户打开该全频音箱应用并与音箱系统建立通信连接之后,终端显示第一界面,用户可以下第一界面中进行相应的操作,以控制音箱系统工作于不同的工作模式,此处音箱系统的工作模式包括全频音箱独立工作、全频音箱和低频音箱协同工作。
例如,第一界面为图25中的(a)所示的界面2501,该第一界面2501中包括上述第一选项2501a和第二选项2501b,其中,第一选项2501a对应于全频音箱独立工作,第二选项2501b对应于全频音箱和低频音箱协同工作,用户可以根据实际需求在该界面2501中选择对应的选项,例如,用户点击第一选项2501a,则可控制全频音箱独立工作。
又例如,第一界面为图25中的(b)所示的界面2502,该第一界面2502中包括全频音箱图标2502a和低频音箱图标2502b,例如,用户点击该全频音箱图标2501a,则可控制全频音箱独立工作。
上述步骤2402具体可以包括步骤2402a。
步骤2402a、终端响应于第一操作,向音箱系统发送第一指令,第一指令用于控制全频音箱独立工作。
具体的,音箱系统中的全频音箱和低频音箱连接(第一固定部件与第二固定部件 连接,且第一通信部件与第二通信部件连接)时,低频音箱对整个音箱系统进行控制和管理,即上述终端向音箱系统发送第一指令指的是向音箱系统中的低频音箱发送第一指令。
可选地,在其他的实现方式中,终端也可以向全频音箱发送第一指令,以控制全频音箱独立工作。
需要说明的是,当终端向低频音箱发送第一指令时,音箱系统的低频音箱和全频音箱执行步骤A1至步骤A4。
步骤A1、低频音箱向全频音箱发送控制指令,该控制指令用于指示全频音箱播放目标音频数据。
步骤A2、全频音箱接收控制指令,获取待播放的音频数据。
上述控制指令还用于指示全频音箱对待播放的音频数据进行多频带滤波,并对滤波后的待播放的音频数据进行声场扩展处理。
可选地,在全频音箱接收到低频音箱控制指令之后,该全频音箱可以与终端建立通信连接,从而该全频音箱从终端获取待播放的音频数据(指的是原始音频数据)。或者,低频音箱从终端获取待播放的音频数据,并将该待播放的音频数据发送至全频音箱。或者,该全频音箱也可以从其他设备获取待播放的音频数据,本申请实施例不作限定。
步骤A3、全频音箱对获取的待播放的音频数据进行多频带滤波,得到待播放的音频数据的中频分量和/或高频分量,以及低频分量。
步骤A4、全频音箱对待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据。
关于步骤A2至步骤A4中全频音箱处理待播放的音频数据等内容的详细描述可参考上述实施例的相关描述,此处不再赘述。
可选地,全频音箱对原始音频数据处理之后,得到目标音频数据(具体包括目标音频数据的中频分量和/或高频分量,以及低频分量),该目标音频数据可以由该全频音箱播放。应注意,此时音箱系统的低频音箱不参与音频数据的处理和播放。
步骤2403、终端接收第二操作。
步骤2404、终端响应于第二操作,控制全频音箱和低频音箱协同工作。
上述第二操作是用户对终端的第一界面中的第二选项的选中操作,第二选项对应于全频音箱和低频音箱协同工作,全频音箱和低频音箱协同工作指的是由全频音箱播放目标音频数据的中频分量和/或高频分量,由低频音箱播放目标音频数据的低频分量。
可选地,上述第二操作也可以为触屏操作或者按键操作等,本发明实施例不作具体限定。示例性的,上述触屏操作为用户对终端的触控屏的按压操作、长按操作、滑动操作、点击操作、悬浮操作(用户在触控屏附近的操作)等。按键操作对应于用户对终端的电源键、音量键、Home键等按键的单击操作、双击操作、长按操作、组合按键操作等操作。
结合上述图25中的(a),如图26(a)所示,第二选项2501b对应于全频音箱和低频音箱协同工作,用户可以根据实际需求在该界面2501中选择对应的选项,例如,用户点击第二选项2501b,则可控制全频音箱和低频音箱协同工作。
结合上述图25中的(b),如图26中的(b)所示,用户可以将低频音箱图标2502b拖动至全频音箱图标2501a的下方,使得全频音箱与低频音箱成叠放的效果,则可控制全频音箱和低频音箱协同工作。
上述步骤2404具体可以包括步骤2404a。
步骤2404a、终端响应于第二操作,向音箱系统发送第二指令,该第二指令用于控制全频音箱和低频音箱系统工作。
具体的,终端向低频音箱发送第二指令。
需要说明的是,当终端向低频音箱发送第二指令时,低频音箱执行步骤B1至步骤B3。
步骤B1、低频音箱对获取的待播放的音频数据进行多频带滤波,得到待播放的音频数据的中频分量和/或高频分量以及低频分量。
可选地,低频音箱接收到第二指令后,低频音箱可以从终端获取待播放的音频数据(指的是原始音频数据),该低频音箱也可以从其他设备获取待播放的音频数据,本申请实施例不作限定。
步骤B2、低频音箱对待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据。
步骤B3、低频音箱向全频音箱发送目标音频数据的中频分量和/或高频分量。
应理解,此时,目标音频数据的中频分量和/或高频分量由全频音箱播放,目标音频数据的低频分量由低频音箱播放。
关于步骤B1至步骤B3中低频音箱处理待播放的音频数据等内容的详细描述可参考上述实施例的相关描述,此处不再赘述。
需要说明的是,上述步骤2401至步骤2404中,终端根据用户的具体操作,选择执行步骤2401至步骤2402,或者执行步骤2403至步骤2404。
可选地,在音箱系统中的全频音箱与低频音箱协同工作的情况下,本申请实施例提供的音频数据的处理方法还包括下述步骤C1至步骤C4。
步骤C1、终端接收用户的第三操作,并且响应于该第三操作,控制低频音箱上的摄像头或麦克风启动。
具体的,终端响应于第三操作,可以向低频音箱发送第三指令。该第三指令用于指示启动低频音箱上的摄像头或麦克风。
步骤C2、低频音箱启动摄像头或麦克风。
步骤C3、低频音箱通过摄像头采集听音者的图像信息,或者通过麦克风采集的听音者的声音信号。
该听音者的图像信息或听音者的声音信号用于对滤波后的待播放的音频数据进行声场扩展处理。
步骤C4、低频音箱根据听音者的图像信息或声音信号对滤波后的待播放的音频数据进行声场扩展处理。
具体的,低频音箱对听音者的图像信息或声音信号进行分析,确定听音者的位置信息,用户的位置信息包括用户与音箱系统的中心轴的夹角的角度。并且根据听音者的位置信息,调整组成一对声偶极子的两个扬声器播放信号的相位差(即上述相位差 θ),该相位差是高频带偶极子处理和/或中频带偶极子处理的配置参数。
本申请实施例中,为提升用户的听音感受,在对音频数据进行声场扩展的过程中,可以调整高频带偶极子算法或中频带偶极子算法中的配置参数(即配置参数即为组成一对声偶极子的两个扬声器播放信号的相位差),从而提升双耳串扰消除的效果,使得用户在当前位置处达到较好的听音感受。具体的,由于该相位差与用户当前的位置有关,因此通过上述步骤A至步骤C调整上述相位差,如此采用该调整后的相位差对音频数据进行声场扩展处理,消除双耳串扰,达到在用户当前位置处进行声场扩展的效果,实时提升用户的听音感受。
可选地,当音箱系统包括多个全频音箱时,该多个全频音箱分别与低频音箱连接,该多个全频音箱可协同工作。
在一种协同工作的方式中,低频音箱对待播放的音频数据进行声场扩展处理,得到目标音频数据之后,低频音箱将目标音频数据的高频分量和中频分量分别发送至多个全频音箱中的每一个全频音箱,通过多个全频音箱上对应的扬声器播放目标音频数据的高频分量和中频分量。
可选地,上述多个全频音箱协同工作的工作方式包括多种,例如每一个全频音箱的各个扬声器与音频数据的各个频段的对应关系均为表1所示的情况。或者,由部分全频音箱的扬声器播放高频分量,由另一部分的扬声器播放中频分量,具体可根据实际使用需求设定协同工作的工作方式,本申请实施例不作限定。
在另一种协同工作的方式中,多个全频音箱分别获取待播放的音频数据,并对该待播放的音频数据进行声场扩展处理,得到目标音频数据,进而该多个全频音箱分别播放该目标音频数据。同理,多个全频音箱协同工作的工作方式可以包括多种,例如不同全频音箱处理不同声道的音频数据,具体可根据实际使用需求设定协同工作的工作方式,本申请实施例不作限定。
可选地,当音箱系统包括多个音箱子系统(关于音箱子系统的描述可参考上述实施例)时,该多个全频音箱子系统可以协同工作。例如,每一个音箱子系统的低频音箱分别对待播放的音频数据进行声场扩展处理,得到目标音频数据,并播放目标音频数据的低频分量,并且分别向对应的全频音箱发送目标音频数据的中频分量和/或高频分量,由全频音箱播放该中频分量和/或高频分量。多个音箱子系统协同工作的工作方式可以包括多种,例如不同音箱子系统处理不同声道的音频数据,具体可根据实际使用需求设定协同工作的工作方式,本申请实施例不作限定。
本申请实施例提供的音频数据的处理方法,用户在终端上进行相应的操作,从而终端响应于用户的操作,控制音箱系统中的全频音箱独立工作,或者控制全频音箱与低频音箱协同工作,能够提升用户体验。
在又一种实现方式中,本申请实施例提供一种音频数据的处理方法,该方法应用于终端与音箱系统建立通信连接的场景中,该音箱系统包括全频音箱和低频音箱,全频音箱的第一通信部件与低频音箱的第二通信部件连接。该全频音箱包括第一固定部件,第一通信部件设置在第一固定部件上,低频音箱包括第二固定部件,第二通信部件设置在第二固定部件上,全频音箱和低频音箱通过第一固定部件和第二固定部件进行物理连接或拆卸,通过第一通信部件和第二通信部件使得全频音箱和低频音箱通信, 该第一通信部件和第二通信部件支持传输多声道音频数据。如图27所示,该方法包括步骤2701至步骤2703。
步骤2701、终端确定目标音频数据的类型。
该目标音频数据的类型包括重低频或非重低频。重低频指的是频率小于200Hz,例如,低音贝斯、大提琴、低频提琴、低音大鼓等乐器或男低音成分的音乐均属于重低频。
步骤2702、当目标音频数据的类型为非重低频时,终端控制全频音箱独立工作。
全频音箱独立工作指的是由全频音箱播放目标音频数据。
同理,终端通过向音箱系统(具体为低音音箱)发送第一指令,控制全频音箱独立工作,该第一指令用于控制全频音箱独立工作。当终端向低频音箱发送第一指令时,音箱系统的低频音箱和全频音箱执行上述步骤A1至步骤A4,具体参考上述实施例的描述,此处不再赘述。
步骤2703、当目标音频数据的类型为非重低频时,终端控制全频音箱和低频音箱协同工作。
全频音箱和低频音箱协同工作指的是由全频音箱播放目标音频数据的中频分量和/或高频分量,由低频音箱播放目标音频数据的低频分量。
同理,终端通过向音箱系统(具体为低音音箱)发送第二指令,控制全频音箱和低频音箱协同工作,该第二指令用于控制全频音箱和低频音箱系统工作。当终端向低频音箱发送第二指令时,音箱系统的低频音箱执行上述步骤B1至步骤B3,具体参考上述实施例的描述,此处不再赘述。
本申请实施例中,当全频音箱独立工作时,若终端确定当前待播放的音频数据是重低频的音频数据,则本申请实施例提供音频数据的处理方法还包括:终端显示第一提示信息,该第一提示信息用于提示全频音箱与低频音箱协同工作。例如,终端确定当前待播放的音频数据是重低频的音频数据时,终端显示该第一提示信息,从而用户根据该第一提示信息在终端上进行相应地操作,使得音箱系统的工作模式切换为全频音箱与低频音箱协同工作的模式。例如,图28中的(a)为该第一提示信息的一种显示效果示意图。或者,终端确定待播放的音频数据是重低频的音频数据时,终端自动切换音箱系统的工作模式,然后在该终端的显示屏上显示该第一提示信息,以通知用户音箱系统的工作模式已切换至全频音箱与低频音箱协同工作的模式。例如,图28中的(b)为第一提示信息的一种显示效果示意图。
需要说明的是,在全频音箱与低频音箱未连接的情况下,终端确定当前待播放的音频数据是重低频的音频数据,则终端可以在该终端的显示第二提示信息,该第二提示信息用于提示用户为该全频音箱添加低频音箱,即提示用户将全频音箱与低频音箱进行物理连接,并使得全频音箱与低频音箱协同工作,由低频音箱处理音频数据,并由低频音箱播放处理后的音频数据的低频分量,由全频音箱播放处理后的音频数据的中频分量和/或高频分量。例如,图29为第二提示信息的一种显示效果示意图。
可选地,终端可以以固定栏、悬浮窗或者气泡的方式呈现上述第一提示信息或第二提示信息,本申请实施例不作限定。
可选地,终端还可以显示下述信息中的至少一项:音箱系统当前播放的音频数据 的声道数、音频数据的渲染模式或音频数据的声道与全频音箱的扬声器的之间的对应关系信息。
本申请实施例中,音频数据的渲染模式包括2D模式或3D模式。在终端与全频音箱建立通信连接,且在终端与全频音箱交互播放音频数据的过程中,终端上显示上述信息,如此,用户可以获知当前播放音频数据的一些详细状态,能够提升用户的主观体验。
可选地,当音箱系统包括多个全频音箱时,本申请实施例提供的音频数据的处理方法还包括:终端根据该多个全频音箱的位置信息,确定音频数据的声道与多个全频音箱的对应关系,并且显示音频数据的声道与多个全频音箱之间的对应关系信息。
示例性的,音箱系统包括5个全频音箱时,根据该5个全频音箱的位置分配该5个全频音箱对应的音频数据的声道,例如,如图30所示,全频音箱1至全频音箱5依次对应的声道为:左声道、中置声道、右声道、右环绕声道以及左环绕声道。可选地,音频数据的声道与多个全频音箱的对应关系可以根据实际需求设定,本申请实施例不作限定。
基于本申请实施例提供的音箱系统,提出一种音频数据的处理方法,通过终端控制全频音箱独立工作,或者控制全频音箱与低频音箱协同工作,以达到较好的声场扩展效果。并且在全频音箱独立工作的情况下,由于全频音箱对中频和高频具有较好的播放效果,因此通过全频音箱播放目标音频数据的中频分量和/或高频分量,能够提升音质。在全频音箱与低频音箱系统工作的情况下,由于低频音箱的低频播放效果由于全频音箱的低频播放效果,因此通过低频音箱播放目标音频数据的低频分量,能够提升音频数据的低音音质,又由于全频音箱对中频和高频具有较好的播放效果,因此通过全频音箱播放目标音频数据的中频分量和/或高频分量能够提升目标音频数据的中频分量和/或高频分量的播放效果,如此,能够在音频数据的全频带提升音频数据的播放效果。
相应地,本申请实施例提供一种全频音箱,如图31所示,该全频音箱包括获取模块3101、滤波模块3102以及处理模块3103。该获取模块3101用于获取的待播放的音频数据,例如获取模块3101用于执行上述方法实施例中的步骤1701;该滤波模块3102用于对获取模块3101获取的待播放的音频数据进行多频带滤波,得到待播放的音频数据的中频分量和/或高频分量,以及低频分量,例如滤波模块3102用于执行上述方法实施例中的步骤1702。处理模块3103用于对待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据,例如处理模块3103用于执行上述方法实施例中的步骤1703(包括步骤1703a至步骤1703b)。
可选地,该全频音箱还包括发送模块3104,该发送模块3104用于向低频音箱发送目标音频数据的低频分量,例如发送模块3104用于执行上述方法实施例中的步骤1704。
上述各个模块还可以执行上述方法实施例中的其他相关动作,具体参见上述实施例的描述,此处不再赘述。
同理,图31所描述的装置实施例仅仅是示意性的,例如,上述单元(或模块)的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元 或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。在本申请各个实施例中的各功能单元可以集成在一个模块中,也可以是各个模块单独物理存在,也可以两个或两个以上单元集成在一个模块中。图31中上述各个模块既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。例如,采用软件实现时,上述滤波模块3102和处理模块3103可以是由全频音箱的处理器读取存储器中存储的程序代码后,生成的软件功能模块来实现。上述各个模块也可以由全频音箱的不同硬件分别实现,例如滤波模块3102由全频音箱的处理器中的一部分处理资源(例如多核处理器中的一个核或两个核)实现,而处理模块3103由全频音箱的处理器中的其余部分处理资源(例如多核处理器中的其他核)或者采用现场可编程门阵列(field-programmable gate array,FPGA)、或协处理器等可编程器件来完成。上述发送模块3104由全频音箱的网络接口等实现。显然上述功能模块也可以采用软件硬件相结合的方式来实现,例如滤波模块3102由硬件可编程器件实现,而处理模块3103是由CPU读取存储器中存储的程序代码后,生成的软件功能模块。
上述,获取模块3101、滤波模块3102、处理模块3103以及发送模块3104实现上述功能的更多细节请参考前面各个方法实施例中的描述,在这里不再重复。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
本申请实施例提供一种低频音箱,如图32所示,该低频音箱包括获取模块3201、滤波模块3202、处理模块3203以及发送模块3204。该获取模块3201用于获取的待播放的音频数据,例如获取模块3201用于执行上述方法实施例中的步骤1901;该滤波模块3202用于对获取模块3101获取的待播放的音频数据进行多频带滤波,得到待播放的音频数据的中频分量和/或高频分量,以及低频分量,例如滤波模块3202用于执行上述方法实施例中的步骤1902。处理模块3203用于对待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据,例如处理模块3203用于执行上述方法实施例中的步骤1903。发送模块3204用于向全频音箱发送目标音频数据的中频分量和/或高频分量。例如,发送模块3204用于执行上述方法实施例中的步骤1904。
可选地,低频音箱还可以包括其他模块,例如图像采集模块或音频采集模块,图像采集模块用于采集听音者的图像信息;音频采集模块用于采集听音者的声音信号。
上述各个模块还可以执行上述方法实施例中的其他相关动作,具体参见上述实施例的描述,此处不再赘述。
同理,图32所描述的装置实施例仅仅是示意性的,例如,上述单元(或模块)的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。在本申请各个实施例中的各功能单元可以集成在一个模块中,也可以是各个模块单独物理存在,也可以两个或两个以上单元集成在一个模块中。图32中上述各个模块既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。例如,采用软件实现时,上述滤波模块3202和处理模块3203可以是由低频音箱的处理器读取存储器中存储的程序代码后,生成的软件功能模块来实现。上述各个模块也可以由低频音箱的不同硬 件分别实现,例如滤波模块3202由低频音箱的处理器中的一部分处理资源(例如多核处理器中的一个核或两个核)实现,而处理模块3203由低频音箱的处理器中的其余部分处理资源(例如多核处理器中的其他核)或者采用现场可编程门阵列(field-programmable gate array,FPGA)、或协处理器等可编程器件来完成。上述发送模块3204由低频音箱的网络接口等实现。显然上述功能模块也可以采用软件硬件相结合的方式来实现,例如滤波模块3202由硬件可编程器件实现,而处理模块3203是由CPU读取存储器中存储的程序代码后,生成的软件功能模块。
上述,获取模块3201、滤波模块3202、处理模块3203以及发送模块3204实现上述功能的更多细节请参考前面各个方法实施例中的描述,在这里不再重复。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
本申请实施例还提供一种终端,如图33所示,该终端包括检测模块3301和发送模块3302。该检测模块3301用于检测全频音箱的第一通信部件是否与低频音箱的第二通信部件连接,例如检测模块3301用于执行上述方法实施例中的步骤1601。发送模块3302用于在检测到第一通信部件与第二通信部件未连接的情况下,向全频音箱发送待播放的音频数据,例如,发送模块3302用于执行上述方法实施例中的步骤1602。该发送模块3302还用于在检测到第一通信部件与第二通信部件连接时,向全频音箱发送第一音频数据,并且向低频音箱发送第二音频数据,例如发送模块3302用于执行上述方法实施例中的步骤1603a;其中,第一音频数据是待播放的音频数据的中频分量和/或高频分量,第二音频数据是待播放的音频数据的低频分量。或者,向全频音箱发送待播放的音频数据,例如发送模块3302用于执行上述方法实施例中的步骤1603b;或者,向低频音箱发送待播放的音频数据,例如发送模块3302用于执行上述方法实施例中的步骤1603c。
本申请实施例提供的终端还包括接收模块3303和控制模块3304。该接收模块用于接收用户的第一操作或第二操作,例如接收模块3303用于执行上述方法实施例中的步骤2401和步骤2403。上述控制模块3304还用于响应于第一操作,控制全频音箱独立工作,或者控制全频音箱和低频音箱协同工作,例如控制模块3304用于执行上述方法实施例中的步骤2402或步骤2404。
具体的,上述控制模块3304具体用于控制发送模块3302向音箱系统发送第一指令,例如,控制发送模块3302执行上述方法实施例中的步骤2402a或者步骤2404a。
可选地,本申请实施例提供的终端还包括显示模块3305,该显示模块3305用于显示第一提示信息,该第一提示信息用于该第一提示信息用于提示全频音箱与低频音箱协同工作。该显示模块3305还可以显示其他内容,具体参见上述方法实施例中的相关内容。应理解,该显示模块3305可以在控制模块3304的控制下显示相关内容。
本申请实施例提供的终端还包括确定模块3306,该确定模块3306用于确定目标音频数据的类型,目标音频数据的类型包括重低频或非重低频,例如,确定模块3306用于执行上述方法实施例中的步骤2701。上述控制模块3304还用于在目标音频数据的类型为非重低频的情况下,控制全频音箱独立工作;或者在目标音频数据的类型为非重低频的情况下,控制全频音箱和低频音箱协同工作,例如控制模块3304用于执行 上述方法实施例中的步骤2702或步骤2403。
上述各个模块还可以执行上述方法实施例中的其他相关动作,具体参见上述实施例的描述,此处不再赘述。
同理,图33所描述的装置实施例仅仅是示意性的,例如,上述单元(或模块)的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。在本申请各个实施例中的各功能单元可以集成在一个模块中,也可以是各个模块单独物理存在,也可以两个或两个以上单元集成在一个模块中。图33中上述各个模块既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。例如,采用软件实现时,上述检测模块3301和确定模块3306可以是由终端的处理器读取存储器中存储的程序代码后,生成的软件功能模块来实现。上述各个模块也可以由终端的不同硬件分别实现,例如检测模块3301由终端的处理器中的一部分处理资源(例如多核处理器中的一个核或两个核)实现,而确定模块3306由终端的处理器中的其余部分处理资源(例如多核处理器中的其他核)或者采用现场可编程门阵列(field-programmable gate array,FPGA)、或协处理器等可编程器件来完成。上述发送模块3302和接收模块3303由终端的网络接口等实现。显示模块3305由终端的显示屏实现。显然上述功能模块也可以采用软件硬件相结合的方式来实现,例如确定模块3305由硬件可编程器件实现,而检测模块3301是由CPU读取存储器中存储的程序代码后,生成的软件功能模块。
上述,检测模块3301、发送模块3302、接收模块3303、控制模块3304、显示模块3305以及确定模块3306实现上述功能的更多细节请参考前面各个方法实施例中的描述,在这里不再重复。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))方式或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、磁盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state drives,SSD))等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模 块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (68)

  1. 一种全频音箱,其特征在于,包括:全频音箱主体和第一固定部件;
    所述全频音箱主体包括M个扬声器,所述M个扬声器在所述全频音箱主体中成平面分布,所述M个扬声器构成K对声偶极子,M为大于2的正整数,K为大于或等于2的正整数;
    所述第一固定部件设置于所述全频音箱主体的预设固定区域,所述第一固定部件用于与低频音箱进行物理连接或拆卸;所述第一固定部件中包括第一通信部件,所述第一通信部件用于使得所述全频音箱与所述低频音箱通信,所述第一通信部件支持传输多声道音频数据;
    其中,所述低频音箱的低频播放效果优于所述全频音箱的低频播放效果。
  2. 根据权利要求1所述的全频音箱,其特征在于,
    所述K对声偶极子的排布方向至少包括水平、竖直或斜上中的至少两种方向。
  3. 根据权利要求1或2所述的全频音箱,其特征在于,一对声偶极子对应一对扬声器;
    所述K对声偶极子中的至少两对声偶极子满足下述条件:d i≠d j;其中,d i是构成第i对声偶极子的两个扬声器之间的距离,d j是构成第j对声偶极子的两个扬声器对之间的距离,i和j分别为1,2,……,K中的一个值,且i≠j,K为大于或等于2的正整数;
    构成所述第i对声偶极子的两个扬声器用于播放目标音频数据的第一频段,构成所述第j对声偶极子的两个扬声器用于播放所述目标音频数据的第二频段,所述第一频段与所述第二频段是不同的频段。
  4. 根据权利要求3所述的全频音箱,其特征在于,
    若d i>d j,则构成所述第i对声偶极子的两个扬声器所能播放的音频数据的中心频率小于构成所述第j对声偶极子的两个扬声器所能播放的音频数据的中心频率。
  5. 根据权利要求1至4任一项所述的全频音箱,其特征在于,
    所述M个扬声器中的至少一个扬声器上设置有被动膜,所述被动膜用于扩展扬声器的低频响应;其中,
    所述至少一个扬声器中的每一个扬声器对应一个被动膜,所述被动膜贴附于所述扬声器的腔体的背部;或者,
    所述至少一个扬声器中的每一个扬声器对应两个被动膜,所述两个被动膜分别位于所述扬声器的腔体的侧面。
  6. 根据权利要求1至5任一项所述的全频音箱,其特征在于,所述全频音箱还包括N个扬声器,N为正整数,N小于或等于M;
    所述N个扬声器分别与所述M个扬声器中的N个扬声器背对背设置,形成N个背对背的扬声器对,其中,所述M个扬声器朝向第一平面,所述N个扬声器朝向第二平面,所述第一平面和所述第二平面是与所述全频音箱的垂直投影所垂直的两个平面,所述第一平面与所述第二平面平行;或者,
    所述N个扬声器分别与所述M个扬声器中的N个扬声器面对面设置,形成N个面对面的扬声器对,其中,所述M个扬声器的腔体朝向第一平面,所述N个扬声器的 腔体朝向第二平面,所述第一平面和所述第二平面是与所述全频音箱的垂直投影所垂直的两个平面,所述第一平面与所述第二平面平行。
  7. 根据权利要求6所述的全频音箱,其特征在于,对于所述N个背对背的扬声器对中的每一个扬声器对,所述扬声器对中的两个扬声器共用一个腔体;
    所述N个背对背的扬声器对中的至少一个扬声器对的腔体上设置有被动膜;其中,对于所述至少一个扬声器对中的一个扬声器对,所述扬声器对对应两个被动膜;所述两个被动膜背对背,并且分别贴附于所述腔体内与所述扬声器对相邻的两个侧面。
  8. 根据权利要求1至7任一项所述的全频音箱,其特征在于,
    所述全频音箱主体的形状为下述一种:环形、圆形、树形或W型。
  9. 根据权利要求1至8任一项所述的全频音箱,其特征在于,
    所述第一固定部件,还用于支撑所述全频音箱主体。
  10. 根据权利要求1至9任一项所述的全频音箱,其特征在于,
    所述第一固定部件是与所述全频音箱主体连接的第一片状部件;或者,
    所述第一固定部件是设置在所述全频音箱主体的预设固定区域的凹坑状部件。
  11. 根据权利要求1至10任一项所述的全频音箱,其特征在于,所述全频音箱包括处理器以及与所述处理器连接的收发器;
    所述处理器,用于对待播放的音频数据进行多频带滤波,并且对滤波后的待播放的音频数据进行声场扩展处理,得到目标音频数据,所述目标音频数据的中频分量和/或高频分量由所述全频音箱播放;
    所述收发器,用于通过所述第一通信部件向低频音箱发送所述目标音频数据的低频分量,所述目标音频数据的低频分量由所述低频音箱播放。
  12. 一种低频音箱,其特征在于,包括低频音箱主体和第二固定部件;
    所述低频音箱主体包括一个或多个低频扬声器,所述第二固定部件设置于所述低频音箱主体的预设固定区域,所述第二固定部件用于与全频音箱进行物理连接或拆卸;所述第二固定部件中包括第二通信部件,所述第二通信部件用于使得所述低频音箱与所述全频音箱通信,所述第二通信部件支持传输多声道音频数据;
    其中,所述低频音箱的低频播放效果优于所述全频音箱的低频播放效果,所述全频音箱的频段范围大于所述低频音箱的频段范围。
  13. 根据权利要求12所述的低频音箱,其特征在于,
    所述第二固定部件是与所述低频音箱主体连接的第二片状部件;或者,
    所述第二固定部件是设置在所述低频音箱主体的预设固定区域的凸起状部件。
  14. 根据权利要求12或13所述的低频音箱,其特征在于,
    所述低频音箱还包括充电端口,所述充电端口用于连接外部电源,以为所述低频音箱供电,或者在所述低频音箱与所述全频音箱连接时,通过所述低频音箱为所述全频音箱充电。
  15. 根据权利要求12至14任一项所述的低频音箱,其特征在于,所述低频音箱包括处理器以及与所述处理器连接的收发器;
    所述处理器,用于对待播放的音频数据进行多频带滤波,并且对滤波后的待播放的音频数据进行声场扩展处理,得到目标音频数据,所述目标音频数据的中频分量和/ 或高频分量由所述全频音箱播放;
    所述收发器,用于通过所述第二通信部件向全频音箱发送所述目标音频数据的中频分量和/或高频分量,所述目标音频数据的低频分量由所述低频音箱播放。
  16. 根据权利要求12至14任一项所述的低频音箱,其特征在于,
    所述低频音箱还包括摄像头或麦克风。
  17. 一种音箱系统,其特征在于,包括一个如权利要求1至11任一项所述的全频音箱和一个权利要求12至16任一项所述的低频音箱;
    所述全频音箱与所述低频音箱通过所述第一固定部件和所述第二固定部件进行物理连接,所述全频音箱和所述低频音箱通过所述第一通信部件和所述第二通信部件通信;其中,所述第一固定部件与所述第二固定部件是一组配对的连接部件,所述第一通信部件与所述第二通信部件是一组配对的通信部件。
  18. 根据权利要求17所述的音箱系统,其特征在于,
    所述全频音箱用于播放目标音频数据,或者播放所述目标音频数据的高频分量和/或中频分量;
    所述低频音箱用于播放目标音频数据的低频分量。
  19. 根据权利要求17或18所述的音箱系统,其特征在于,
    所述全频音箱与所述低频音箱通过所述第一固定部件与所述第二固定部件叠放式连接或者挂靠式连接。
  20. 根据权利要求19所述的音箱系统,其特征在于,
    当所述第一固定部件为第一片状部件,所述第二固定部件为第二片状部件,且所述第一片状部件与所述第二片状部件接触并耦合时,所述全频音箱与所述低频音箱叠放式连接。
  21. 根据权利要求19所述的音箱系统,其特征在于,
    当所述第一固定部件为沿所述全频音箱主体的一侧向外延伸的第一片状部件,所述第二固定部件为沿所述低频音箱主体的一侧向外延伸的第二片状部件,且所述第一片状部件与所述第二片状部件接触并耦合时,所述全频音箱与所述低频音箱挂靠式连接。
  22. 根据权利要求20或21所述的音箱系统,其特征在于,
    所述第一固定部件与第二固定部件通过卡扣耦合或磁吸耦合的方式连接。
  23. 根据权利要求19所述的音箱系统,其特征在于,
    当所述第一固定部件为设置在全频音箱主体的预设固定区域的凹坑状部件,所述第二固定部件是设置在低频音箱主体的预设固定区域的凸起状部件,且所述凹坑状部件与所述凸起状部件接触并耦合时,所述全频音箱与所述低频音箱叠放式连接。
  24. 根据权利要求23所述的音箱系统,其特征在于,
    所述第一固定部件与所述第二固定部件通过卡扣耦合或螺纹耦合的方式连接。
  25. 根据权利要求17至24任一项所述的音箱系统,其特征在于,
    所述音箱系统还包括至少一个所述的全频音箱,所述音箱系统包含的至少两个全频音箱可协同工作。
  26. 根据权利要求17至24任一项所述的音箱系统,其特征在于,
    所述音箱系统还包括至少一个所述全频音箱和至少一个所述低频音箱;
    在所述音箱系统中,一个全频音箱对应一个低频音箱而构成一个全频音箱子系统,所述音箱系统包含的至少两个子系统可协同工作。
  27. 一种音频数据的处理方法,其特征在于,包括:
    终端检测如权利要求1至11任一项所述的全频音箱的第一通信部件是否与如权利要求12至16任一项所述的低频音箱的第二通信部件连接;
    当所述终端检测到所述第一通信部件与所述第二通信部件未连接时,所述终端向所述全频音箱发送待播放的音频数据;
    当所述终端检测到所述第一通信部件与所述第二通信部件连接时,所述终端向所述全频音箱发送第一音频数据,并且向所述低频音箱发送第二音频数据;其中,所述第一音频数据是待播放的音频数据的中频分量和/或高频分量,所述第二音频数据是所述待播放的音频数据的低频分量;或者,
    所述终端向所述全频音箱发送待播放的音频数据;或者,
    所述终端向所述低频音箱发送待播放的音频数据。
  28. 一种音频数据的处理方法,其特征在于,应用于如权利要求1至11任一项所述的全频音箱,所述方法包括:
    获取待播放的音频数据;
    对所述待播放的音频数据进行多频带滤波,得到所述待播放的音频数据的中频分量和/或高频分量,以及低频分量;
    对所述待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据;
    向低频音箱发送所述目标音频数据的低频分量;
    其中,所述目标音频数据的中频分量和/或高频分量由所述全频音箱播放,所述目标音频数据的低频分量由所述低频音箱播放。
  29. 一种音频数据的处理方法,其特征在于,应用于如权利要求12至16任一项所述的低频音箱,所述方法包括:
    获取待播放的音频数据;
    对所述待播放的音频数据进行多频带滤波,得到所述待播放的音频数据的中频分量和/或高频分量,以及低频分量;
    对所述待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据;
    向所述全频音箱发送所述目标音频数据的中频分量和/或高频分量;
    其中,所述目标音频数据的中频分量和/或高频分量由所述全频音箱播放,所述目标音频数据的低频分量由所述低频音箱播放。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    通过所述低频音箱上的摄像头采集听音者的图像信息,或者通过所述低频音箱上的麦克风采集听音者的声音信号,所述听音者的图像信息或所述听音者的声音信号用于对滤波后的待播放的音频数据进行声场扩展处理。
  31. 一种音频数据的处理方法,其特征在于,应用于终端与如权利要求17至26任 一项所述的音箱系统建立通信连接的场景中,所述方法包括:
    当终端接收到用户的第一操作时,所述终端响应于所述第一操作,控制全频音箱独立工作;
    当终端接收到用户的第二操作时,所述终端响应于所述第二操作,控制所述全频音箱和低频音箱协同工作。
  32. 根据权利要求31所述的方法,其特征在于,所述终端响应于所述第一操作,控制全频音箱独立工作,包括:
    所述终端响应于所述第一操作,向所述音箱系统发送第一指令,所述第一指令用于控制所述全频音箱独立工作,所述全频音箱独立工作指的是由所述全频音箱播放目标音频数据。
  33. 根据权利要求32所述的方法,其特征在于,所述向所述音箱系统发送第一指令,包括:
    向所述低频音箱发送所述第一指令。
  34. 根据权利要求31至33任一项所述的方法,其特征在于,所述终端响应于所述第二操作,控制所述全频音箱和低频音箱协同工作,包括:
    所述终端响应于所述第二操作,向所述音箱系统发送第二指令,所述第二指令用于控制所述全频音箱和所述低频音箱系统工作,所述全频音箱和低频音箱协同工作指的是由所述全频音箱播放目标音频数据的中频分量和/或高频分量,由所述低频音箱播放目标音频数据的低频分量。
  35. 根据权利要求34所述的方法,其特征在于,所述向所述音箱系统发送第二指令,包括:
    向所述低频音箱发送所述第二指令。
  36. 根据权利要求31至35任一项所述的方法,其特征在于,
    所述第一操作是用户对所述终端的第一界面中的第一选项的选中操作,所述第一选项对应于全频音箱独立工作;
    所述第二操作是用户对所述终端的第一界面中的第二选项的选中操作,所述第二选项对应于全频音箱和低频音箱协同工作。
  37. 根据权利要求31至36任一项所述的方法,其特征在于,当所述全频音箱独立工作时,所述方法还包括:
    若终端确定当前待播放的音频数据是重低频的音频数据,则所述终端显示第一提示信息,所述第一提示信息用于提示所述全频音箱与所述低频音箱协同工作。
  38. 根据权利要求31至37任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收用于第三操作;
    所述终端响应于所述第三操作,控制所述低频音箱上的摄像头或麦克风启动。
  39. 根据权利要求31至38任一项所述的方法,其特征在于,所述音箱系统包括多个全频音箱,所述方法包括:
    所述终端根据所述多个全频音箱的位置信息,确定所述音频数据的声道与所述多个全频音箱的对应关系,并且显示所述音频数据的声道与所述多个全频音箱之间的对应关系信息。
  40. 一种音频数据的处理方法,其特征在于,应用于终端与如权利要求17至26任一项所述的音箱系统建立通信连接的场景中,所述方法包括:
    所述终端确定目标音频数据的类型,所述目标音频数据的类型包括重低频或非重低频;
    当所述目标音频数据的类型为非重低频时,所述终端控制全频音箱独立工作;
    当所述目标音频数据的类型为重低频时,所述终端控制所述全频音箱和低频音箱协同工作。
  41. 根据权利要求40所述的方法,其特征在于,所述终端控制全频音箱独立工作,包括:
    所述终端向所述音箱系统发送第一指令,所述第一指令用于控制所述全频音箱独立工作,所述全频音箱独立工作指的是由所述全频音箱播放目标音频数据。
  42. 根据权利要求41所述的方法,其特征在于,所述向所述音箱系统发送第一指令,包括:
    向所述低频音箱发送所述第一指令。
  43. 根据权利要求40至42任一项所述的方法,其特征在于,所述终端控制所述全频音箱和低频音箱协同工作,包括:
    所述终端向所述音箱系统发送第二指令,所述第二指令用于控制所述全频音箱和所述低频音箱系统工作,所述全频音箱和低频音箱协同工作指的是由所述全频音箱播放目标音频数据的中频分量和/或高频分量,由所述低频音箱播放目标音频数据的低频分量。
  44. 根据权利要求43所述的方法,其特征在于,所述向所述音箱系统发送第二指令,包括:
    向所述低频音箱发送所述第二指令。
  45. 一种终端,其特征在于,包括检测模块和发送模块;
    所述检测模块,用于检测如权利要求1至11任一项所述的全频音箱的第一通信部件是否与如权利要求12至16任一项所述的低频音箱的第二通信部件连接;
    所述发送模块,用于在所述检测模块检测到所述第一通信部件与所述第二通信部件未连接的情况下,向所述全频音箱发送待播放的音频数据;
    所述发送模块,还用于在所述检测模块检测到所述第一通信部件与所述第二通信部件连接时,向所述全频音箱发送第一音频数据,并且向所述低频音箱发送第二音频数据;其中,所述第一音频数据是待播放的音频数据的中频分量和/或高频分量,所述第二音频数据是所述待播放的音频数据的低频分量;或者,
    所述发送模块,还用于向所述全频音箱发送待播放的音频数据;或者,
    所述发送模块,还用于向所述低频音箱发送待播放的音频数据。
  46. 一种全频音箱,其特征在于,包括获取模块、滤波模块、处理模块以及发送模块;
    所述获取模块,用于获取待播放的音频数据;
    所述滤波模块,用于对所述待播放的音频数据进行多频带滤波,得到所述待播放的音频数据的中频分量和/或高频分量,以及低频分量;
    所述处理模块,用于对所述待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据;
    所述发送模块,用于向低频音箱发送所述目标音频数据的低频分量;
    其中,所述目标音频数据的中频分量和/或高频分量由所述全频音箱播放,所述目标音频数据的低频分量由所述低频音箱播放。
  47. 一种低频音箱,其特征在于,包括获取模块、滤波模块、处理模块以及发送模块;
    所述获取模块,用于待播放的音频数据;
    所述滤波模块,用于对所述待播放的音频数据进行多频带滤波,得到所述待播放的音频数据的中频分量和/或高频分量,以及低频分量;
    所述处理模块,用于对所述待播放的音频数据的中频分量和/或高频分量,以及低频分量进行声场扩展处理,得到目标音频数据;
    所述发送模块,用于向全频音箱发送所述目标音频数据的中频分量和/或高频分量;
    其中,所述目标音频数据的中频分量和/或高频分量由所述全频音箱播放,所述目标音频数据的低频分量由所述低频音箱播放。
  48. 根据权利要求47所述的低频音箱,其特征在于,还包括图像采集模块或音频采集模块;
    所述图像采集模块,用于采集听音者的图像信息;
    所述音频采集模块,用于采集听音者的声音信号;
    其中,所述听音者的图像信息或所述听音者的声音信号用于对滤波后的待播放的音频数据进行声场扩展处理。
  49. 一种终端,其特征在于,应用于与如权利要求17至26任一项所述的音箱系统建立通信连接的场景中,所述终端包括接收模块和控制模块;
    所述控制模块,用于在所述接收模块接收到用户的第一操作的情况下,响应于所述第一操作,控制全频音箱独立工作;
    所述控制模块,还用于在所述接收模块接收到用户的第二操作的情况下,响应于所述第二操作,控制所述全频音箱和低频音箱协同工作。
  50. 根据权利要求49所述的终端,其特征在于,所述终端还包括发送模块;
    所述控制模块,具体用于响应于所述第一操作,控制所述发送模块向所述音箱系统发送第一指令,所述第一指令用于控制所述全频音箱独立工作,所述全频音箱独立工作指的是由所述全频音箱播放目标音频数据。
  51. 根据权利要求50所述的终端,其特征在于,
    所述发送模块,具体用于向所述低频音箱发送所述第一指令。
  52. 根据权利要求49至51任一项所述的终端,其特征在于,所述终端还包括发送模块;
    所述控制模块,具体用于响应于所述第二操作,控制所述发送模块向所述音箱系统发送第二指令,所述第二指令用于控制所述全频音箱和所述低频音箱系统工作,所述全频音箱和低频音箱协同工作指的是由所述全频音箱播放目标音频数据的中频分量和/或高频分量,由所述低频音箱播放目标音频数据的低频分量。
  53. 根据权利要求52所述的终端,其特征在于,
    所述发送模块,具体用于向所述低频音箱发送所述第二指令。
  54. 根据权利要求49至53任一项所述的终端,其特征在于,
    所述第一操作是用户对所述终端的第一界面中的第一选项的选中操作,所述第一选项对应于全频音箱独立工作;
    所述第二操作是用户对所述终端的第一界面中的第二选项的选中操作,所述第二选项对应于全频音箱和低频音箱协同工作。
  55. 根据权利要求49至54任一项所述的终端,其特征在于,所述终端还包括显示模块;
    所述显示模块,用于在所述全频音箱独立工作,且终端确定当前待播放的音频数据是重低频的音频数据的情况下,显示包含第一提示信息,所述第一提示信息用于提示所述全频音箱与所述低频音箱协同工作。
  56. 根据权利要求49至55任一项所述的终端,其特征在于,
    所述接收模块,还用于接收第三操作;
    所述控制模块,还用于响应于所述第三操作,控制所述低频音箱上的摄像头或麦克风启动。
  57. 根据权利要求49至56任一项所述的终端,其特征在于,所述终端还包括确定模块和显示模块,所述音箱系统包括多个全频音箱;
    所述确定模块,用于根据所述多个全频音箱的位置信息,确定所述音频数据的声道与所述多个全频音箱的对应关系;
    所述显示模块,还用于显示所述音频数据的声道与所述多个全频音箱之间的对应关系信息。
  58. 一种终端,其特征在于,应用于与如权利要求17至26任一项所述的音箱系统建立通信连接的场景中,所述终端包括确定模块和控制模块;
    所述确定模块,用于确定目标音频数据的类型,所述目标音频数据的类型包括重低频或非重低频;
    所述控制模块,用于在所述目标音频数据的类型为重低频的情况下,控制控制全频音箱独立工作;
    所述控制模块,还用于在所述目标音频数据的类型为非重低频情况下,控制所述全频音箱和低频音箱协同工作。
  59. 根据权利要求58所述的终端,其特征在于,所述终端还包括发送模块;
    所述控制模块,具体用于控制所述发送模块向所述音箱系统发送第一指令,所述第一指令用于控制所述全频音箱独立工作,所述全频音箱独立工作指的是由所述全频音箱播放目标音频数据。
  60. 根据权利要求59所述的终端,其特征在于,
    所述发送模块,具体用于向所述低频音箱发送所述第一指令。
  61. 根据权利要求58至60任一项所述的终端,其特征在于,所述终端还包括发送模块;
    所述控制模块,具体用于控制所述发送模块向所述音箱系统发送第二指令,所述 第二指令用于控制所述全频音箱和所述低频音箱系统工作,所述全频音箱和低频音箱协同工作指的是由所述全频音箱播放目标音频数据的中频分量和/或高频分量,由所述低频音箱播放目标音频数据的低频分量。
  62. 根据权利要求61所述的终端,其特征在于,
    所述发送模块,具体用于向所述低频音箱发送所述第二指令。
  63. 一种全频音箱,其特征在于,包括存储器和与所述存储器连接的至少一个处理器,所述存储器用于存储指令,所述指令被至少一个处理器读取后,执行如权利要求28所述的方法。
  64. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,执行如权利要求28所述的方法。
  65. 一种低频音箱,其特征在于,包括存储器和与所述存储器连接的至少一个处理器,所述存储器用于存储指令,所述指令被至少一个处理器读取后,执行如权利要求29或30所述的方法。
  66. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,执行如权利要求29或30所述的方法。
  67. 一种终端,其特征在于,包括存储器和与所述存储器连接的至少一个处理器,所述存储器用于存储指令,所述指令被至少一个处理器读取后,执行如权利要求27、或者如权利要求31至39任一项或如权利要求40至44任一项所述的方法。
  68. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,执行如权利要求27、或者如权利要求31至39任一项或如权利要求40至44任一项所述的方法。
PCT/CN2021/103324 2020-08-27 2021-06-29 音频数据的处理方法、装置及音箱系统 WO2022042009A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023513303A JP2023538939A (ja) 2020-08-27 2021-06-29 オーディオデータ処理方法及び装置、並びにサウンドボックスシステム
KR1020237009507A KR20230054426A (ko) 2020-08-27 2021-06-29 오디오 데이터 처리 방법 및 장치, 그리고 사운드 박스 시스템
EP21859851.4A EP4195695A4 (en) 2020-08-27 2021-06-29 AUDIO DATA PROCESSING METHOD, APPARATUS AND SPEAKER SYSTEM
US18/173,625 US20230199369A1 (en) 2020-08-27 2023-02-23 Audio data processing method and apparatus, and sound box system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010880205.9 2020-08-27
CN202010880205.9A CN114125650B (zh) 2020-08-27 2020-08-27 音频数据的处理方法、装置及音箱系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/173,625 Continuation US20230199369A1 (en) 2020-08-27 2023-02-23 Audio data processing method and apparatus, and sound box system

Publications (1)

Publication Number Publication Date
WO2022042009A1 true WO2022042009A1 (zh) 2022-03-03

Family

ID=80352553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103324 WO2022042009A1 (zh) 2020-08-27 2021-06-29 音频数据的处理方法、装置及音箱系统

Country Status (6)

Country Link
US (1) US20230199369A1 (zh)
EP (1) EP4195695A4 (zh)
JP (1) JP2023538939A (zh)
KR (1) KR20230054426A (zh)
CN (1) CN114125650B (zh)
WO (1) WO2022042009A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116668904A (zh) * 2022-12-21 2023-08-29 荣耀终端有限公司 音频电路和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170105069A1 (en) * 2015-10-08 2017-04-13 Harman International Industries, Inc. Removable speaker system
US20170117865A1 (en) * 2015-10-27 2017-04-27 Teac Corporation Multi-band limiter, sound recording apparatus, and program storage medium
CN107873135A (zh) * 2015-04-27 2018-04-03 弗劳恩霍夫应用研究促进协会 声音系统
CN110798760A (zh) * 2019-10-10 2020-02-14 马朗尼(广州)科技发展有限公司 一种多功能音箱组合
CN211019216U (zh) * 2019-10-10 2020-07-14 马朗尼(广州)科技发展有限公司 一种双分频可拆卸音箱

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333297A (ja) * 1999-05-14 2000-11-30 Sound Vision:Kk 立体音生成装置、立体音生成方法及び立体音を記録した媒体
US8660271B2 (en) * 2010-10-20 2014-02-25 Dts Llc Stereo image widening system
CN202395971U (zh) * 2011-10-14 2012-08-22 珠海京科数字科技有限公司 一种分体便携式音乐播放器
US9762999B1 (en) * 2014-09-30 2017-09-12 Apple Inc. Modal based architecture for controlling the directivity of loudspeaker arrays
US9788114B2 (en) * 2015-03-23 2017-10-10 Bose Corporation Acoustic device for streaming audio data
US10535966B2 (en) * 2016-10-03 2020-01-14 Google Llc Planar electrical connector for an electronic device
CN107197402A (zh) * 2017-06-16 2017-09-22 苏州美声电子有限公司 蓝牙音箱及其控制系统
US11496849B2 (en) * 2018-07-13 2022-11-08 Zound Industries International Ab Acoustic radiation reproduction
CN114360495A (zh) * 2019-03-29 2022-04-15 华为技术有限公司 唤醒音箱的方法及设备
CN210725224U (zh) * 2019-12-25 2020-06-09 深圳市中科睿科技有限公司 一种全频全方向扩散式音箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107873135A (zh) * 2015-04-27 2018-04-03 弗劳恩霍夫应用研究促进协会 声音系统
US20170105069A1 (en) * 2015-10-08 2017-04-13 Harman International Industries, Inc. Removable speaker system
US20170117865A1 (en) * 2015-10-27 2017-04-27 Teac Corporation Multi-band limiter, sound recording apparatus, and program storage medium
CN110798760A (zh) * 2019-10-10 2020-02-14 马朗尼(广州)科技发展有限公司 一种多功能音箱组合
CN211019216U (zh) * 2019-10-10 2020-07-14 马朗尼(广州)科技发展有限公司 一种双分频可拆卸音箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4195695A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116668904A (zh) * 2022-12-21 2023-08-29 荣耀终端有限公司 音频电路和电子设备
CN116668904B (zh) * 2022-12-21 2024-04-12 荣耀终端有限公司 音频电路和电子设备

Also Published As

Publication number Publication date
EP4195695A4 (en) 2024-02-21
CN114125650A (zh) 2022-03-01
US20230199369A1 (en) 2023-06-22
KR20230054426A (ko) 2023-04-24
EP4195695A1 (en) 2023-06-14
CN114125650B (zh) 2023-05-09
JP2023538939A (ja) 2023-09-12

Similar Documents

Publication Publication Date Title
US11838707B2 (en) Capturing sound
JP6799573B2 (ja) 端末ブラケット及びファーフィールド音声対話システム
CN105340299B (zh) 用于生成环绕立体声声场的方法及其装置
JP6434001B2 (ja) オーディオシステム及びオーディオ出力方法
US11388510B2 (en) Microphone arrays providing improved horizontal directivity
CN110049428B (zh) 用于实现多声道环绕立体声播放的方法、播放设备及系统
CN102325298A (zh) 音频信号处理装置和音频信号处理方法
EP1862033B1 (en) A transducer arrangement improving naturalness of sounds
WO2015035785A1 (zh) 语音信号处理方法与装置
WO2015087093A1 (en) Balanced directivity loudspeakers
JP2015507572A (ja) 車両内の音を指向させるシステム、方法、及び装置
CN112492446B (zh) 利用入耳式耳机实现信号均衡的方法及处理器
WO2022042009A1 (zh) 音频数据的处理方法、装置及音箱系统
CN104247457B (zh) 单箱中的多波瓣立体声扬声器
CN105706461B (zh) 扬声器换能装置
CN117835121A (zh) 立体声重放方法、电脑、话筒设备、音箱设备和电视
US20160205464A1 (en) Loudspeaker apparatus
WO2020102994A1 (zh) 3d音效实现方法、装置、存储介质及电子设备
CN111050270A (zh) 移动终端多声道切换方法、装置、移动终端及存储介质
US20210067875A1 (en) Loudspeaker system with active directivity control
WO2019153455A1 (zh) 音响机构、音响系统以及音效调节方法
CN109218920A (zh) 一种信号处理方法、装置及终端
WO2024169133A9 (zh) 空间音频处理装置、设备、方法以及头戴式耳机
TW202126064A (zh) 用於生成三維聲場的音頻設備和方法
CN118566841A (zh) 用于确定位置信息的方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21859851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023513303

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021859851

Country of ref document: EP

Effective date: 20230308

ENP Entry into the national phase

Ref document number: 20237009507

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE