WO2022041894A1 - 多结叠层光伏电池子电池电流及匹配度的检测方法 - Google Patents

多结叠层光伏电池子电池电流及匹配度的检测方法 Download PDF

Info

Publication number
WO2022041894A1
WO2022041894A1 PCT/CN2021/096753 CN2021096753W WO2022041894A1 WO 2022041894 A1 WO2022041894 A1 WO 2022041894A1 CN 2021096753 W CN2021096753 W CN 2021096753W WO 2022041894 A1 WO2022041894 A1 WO 2022041894A1
Authority
WO
WIPO (PCT)
Prior art keywords
junction
photovoltaic cell
cell
current
tandem photovoltaic
Prior art date
Application number
PCT/CN2021/096753
Other languages
English (en)
French (fr)
Inventor
王安成
董建荣
孙玉润
于淑珍
尹佳静
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Priority to US17/594,306 priority Critical patent/US11581849B2/en
Priority to EP21802579.9A priority patent/EP3989436A4/en
Publication of WO2022041894A1 publication Critical patent/WO2022041894A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application particularly relates to a method for detecting current and matching degree of a multi-junction stacked photovoltaic cell sub-cell, which belongs to the technical field of semiconductor testing.
  • the multi-junction stacking method is an effective way to improve the conversion efficiency and voltage of solar cells and laser photovoltaic cells.
  • the excellent performance of multi-junction stacked photovoltaic cells in terms of conversion efficiency has attracted the attention of researchers.
  • the current of multi-junction cells is mainly determined by each It is determined by the sub-cell with the smallest current in the junction sub-cell. To obtain a cell with high conversion efficiency, it is necessary to ensure that the current of each junction sub-cell is equal, that is, matching. Under the requirements of the above current matching, the thickness of the absorber layer of each junction cell is determined by the light flux of the corresponding wavelength band absorbed by the material. However, it is difficult for the fabricated photovoltaic cell structure to ensure that the currents of each junction cell are accurately matched. Therefore, it is very important to test whether the fabricated multi-junction tandem photovoltaic cell sub-cells have current matching.
  • the main purpose of the present application is to provide a method for detecting the current and matching degree of a multi-junction stacked photovoltaic cell sub-cell, so as to overcome the deficiencies in the prior art.
  • the embodiment of the present application provides a method for detecting the current and matching degree of a multi-junction stacked photovoltaic cell sub-cell, which includes:
  • the I-V curve of the multi-junction tandem photovoltaic cell is obtained
  • the approximate value of the short-circuit current of each junction sub-cell in the multi-junction tandem photovoltaic cell is obtained, and then by calculating the mismatch degree of this set of currents, the The degree of mismatch of neutron cell currents in multijunction tandem photovoltaic cells.
  • the advantages of the present application include: the detection method provided in the embodiments of the present application analyzes the IV of the multi-junction tandem photovoltaic cell obtained by scanning from reverse bias to forward bias voltage or scanning from forward bias to reverse bias voltage. curve, the photocurrent of each sub-cell is obtained from each step appearing in the curve, and the current mismatch degree of the multi-junction stacked photovoltaic cell sub-cell is calculated according to the obtained photocurrent of each sub-cell;
  • the method, the inspection process is fast and simple, and complex and time-consuming processes such as no standard light source spectrum, no need to add bias light, and integration according to the standard light source spectrum are not required.
  • FIG. 1 is a schematic structural diagram of a sub-cell current and matching degree detection system of a multi-junction tandem photovoltaic cell provided in a typical implementation case of the present application;
  • Example 2 is an I-V curve diagram of a six-junction 1550nm InGaAs laser photovoltaic cell in Example 1 of the present application.
  • the present application provides a method for detecting the current and matching degree of a multi-junction stacked photovoltaic cell sub-cell.
  • the photocurrent of each junction sub-cell can be obtained (the short-circuit current is when the voltage is 0V.
  • the short-circuit current of the sub-cell is equal to the approximate value of the photocurrent of the sub-cell); for multi-junction laser photovoltaic cells, because the band gaps of the materials of each junction sub-cell are consistent, the reverse strike of each junction sub-cell
  • the breakdown voltage is determined by the doping concentration.
  • the short-circuit current of the PN junction sub-cell with lower doping concentration corresponds to the current of the wider current step in the curve
  • the short-circuit current of the PN junction sub-cell with higher doping concentration corresponds to the current of the narrower current step in the curve. If the PN junction doping of each junction sub-cell is the same, the sub-cell corresponding to each current step cannot be determined, but a quantitative value can be obtained.
  • the short-circuit current value of the sub-cells in the group whether for a multi-junction solar cell or a multi-junction laser photovoltaic cell, the current value of each junction sub-cell can be used to determine the matching degree of the sub-cell current in this application, and there is no need to analyze it by indirect means such as external quantum efficiency.
  • the matching degree of the battery current of each junction is not limited.
  • the present application discloses a method for detecting the current and matching degree of a multi-junction stacked photovoltaic cell sub-cell.
  • the detection tools used in the detection method include a high-precision source meter, a light source with stable power (for multi-junction solar cells, solar simulation For laser photovoltaic cells, it is a power-adjustable laser) and a photovoltaic cell IV test system.
  • the detection method includes connecting the multi-junction laminated photovoltaic cell with a high-precision source meter by a four-wire method, and irradiating the multi-junction laminated photovoltaic cell with a power-stabilized light source.
  • Layer photovoltaic cells by analyzing the IV curve obtained from reverse bias to forward bias voltage scan or from forward bias to reverse bias voltage scan, measure the current values corresponding to all steps appearing in the IV curve, and calculate the multi-junction stack Photovoltaic cell sub-cell current mismatch.
  • the embodiment of the present application provides a method for detecting the current and matching degree of a multi-junction stacked photovoltaic cell sub-cell, which includes:
  • the I-V curve of the multi-junction tandem photovoltaic cell is obtained
  • the multi-junction tandem photovoltaic cell is calculated by calculating the mismatch degree of the current. The degree of mismatch of neutron cell currents in junction tandem photovoltaic cells.
  • the detection method includes: irradiating the multi-junction tandem photovoltaic cell with a light source with stable output power, and simultaneously scanning the multi-junction tandem photovoltaic cell within a set voltage scanning range to obtain the IV curve .
  • the set voltage scanning range is from reverse bias to forward bias.
  • the set voltage scanning range is from the reverse breakdown voltage to the forward open circuit voltage.
  • set voltage scanning range may also be from forward bias to reverse bias.
  • the set voltage scanning range may also be from the forward open circuit voltage to the reverse breakdown voltage.
  • the detection method specifically includes:
  • the multi-junction stacked photovoltaic cells include N-junction laser photovoltaic cells, N-junction solar cells or N-junction thermal photovoltaic cells, and N ⁇ 2.
  • the multi-junction stacked photovoltaic cell is a laser photovoltaic cell
  • the light source is a laser with stable output power
  • the multi-junction stacked photovoltaic cell is a multi-junction solar cell, and the light source is a steady-state solar simulator.
  • the detection method specifically includes:
  • the current value is approximately equal to the short-circuit current value of each junction cell
  • the mismatch degree M of the group of currents is calculated by the following formula (1), namely:
  • the mismatch degree of the neutron cell current of the multi-junction tandem photovoltaic cell is obtained.
  • M the smaller the current mismatch of the sub cell is, and vice versa, the larger the current mismatch of the sub cell is.
  • the wavelength of the incident light provided by the light source is the same as or different from the design target wavelength of the multi-junction tandem photovoltaic cell.
  • FIG. 1 which includes: a light source 3/8, a high-precision digital source meter 5 and a computer 7; wherein, the light source 3/8 is at least used for Provides light for irradiating the multi-junction stacked photovoltaic cell 1, and the high-precision digital source meter 5 is connected to the tested multi-junction stacked photovoltaic cell 1, and is at least used to measure and collect the measured multi-junction stacked photovoltaic cell at least.
  • IV data when irradiated by the light source 3/8; the computer 7 is respectively connected with the light source 3/8 and the high-precision digital source meter 5, and is at least used to draw the IV curve according to the IV data.
  • the high-precision digital source meter 5 is the electronic load of the multi-junction stacked photovoltaic cell.
  • the line method wiring is used to eliminate the voltage test error caused by the series resistance of the leads, and the voltage scanning range of the high-precision digital source meter 5 meets the voltage scanning range required for the test;
  • the computer 7 is used to control the light source and the digital source meter, mainly including: Send voltage scanning commands to the high-precision digital source meter, turn on and off the light source, and collect the IV data measured by the high-precision digital source meter, and draw the IV curve according to the IV data.
  • the tested multi-junction stacked photovoltaic cell may be a multi-junction laser photovoltaic cell or a multi-junction solar cell.
  • the tested multi-junction stacked photovoltaic cell 1 is a multi-junction laser photovoltaic cell
  • the light source It is a power-tunable laser 3
  • the power of the power-tunable laser 3 is stable
  • the center wavelength is the target application wavelength designed for the multi-junction laser photovoltaic cell.
  • the distance between the optical head of the fiber 4 and the multi-junction laminated photovoltaic cell is The surface should not be too close to avoid the phenomenon of tunnel junction current limiting; when the multi-junction tandem photovoltaic cell 1 under test is a multi-junction solar cell, a steady-state solar simulator 8 can be used as the light source.
  • the computer 7 and the high-precision digital source meter 5 are connected through the serial communication data line 6, and the high-precision digital source meter 5 is connected with the positive and negative electrodes of the multi-junction laminated photovoltaic cell 1 through the wire 2 .
  • a method for detecting the current and matching degree of a multi-junction stacked photovoltaic cell sub-cell mainly includes the following steps:
  • the starting point of the voltage sweep in the multi-junction tandem photovoltaic cell IV test system is set to the reverse breakdown voltage of the photovoltaic cell, and the end point of the voltage sweep is set to the open-circuit voltage of the multi-junction tandem photovoltaic cell, or the voltage sweep
  • the starting point is set as the forward open circuit voltage of the multi-junction tandem photovoltaic cell, and the end point of the voltage sweep is set as the reverse breakdown voltage of the multi-junction tandem photovoltaic cell;
  • the corresponding relationship between the short-circuit current of each junction sub-cell and each step in the IV curve is determined by the breakdown voltage of the sub-cell, that is, the doping concentration on the low-doped side of the PN junction; if it affects the sub-cell
  • the doping concentration on the low-doped side of the reverse breakdown voltage of the PN junction is different, the current value corresponding to the wider step corresponds to the short-circuit current of the junction cell with the low doping concentration, and the current value corresponding to the narrow step
  • the short-circuit current of the junction cell corresponding to the higher doping concentration.
  • the wavelength of the incident light provided by the light source is the same as or different from the design target wavelength of the multi-junction tandem photovoltaic cell, that is, for the multi-junction laser photovoltaic cell, the wavelength of the incident laser light may be outside the designed target wavelength At a certain wavelength, the detection method obtains the current matching degree between the sub-cells under the incident laser wavelength.
  • the detection methods provided in the embodiments of the present application are mainly aimed at the matching degree at the target wavelength of the multi-junction tandem photovoltaic cells, but the detection methods provided in the embodiments of the present application are not suitable for wavelengths other than the target wavelengths of the multi-junction tandem photovoltaic cells.
  • a certain wavelength ie, the non-target wavelength
  • the multi-junction stack The sub-cell currents of the photovoltaic cells are mismatched.
  • an ideal multi-junction GaAs laser photovoltaic cell only has the best response to a laser of a single wavelength (target wavelength).
  • the short-circuit current of the junction GaAs laser photovoltaic cell is the largest, and under the illumination of 830nm, the short-circuit current becomes smaller.
  • the actual laser photovoltaic cell formed does not necessarily have the best response at 808nm.
  • the detection process in order to avoid the interference of ambient light, the detection process should be carried out in a dark room, and the test environment temperature parameters should be recorded at the same time, because the matching degree of the current of each sub-battery is related to the temperature, and the temperature will affect the material.
  • the forbidden band width of which in turn affects the absorption coefficient of the material for light of a specific wavelength; specifically, the sub-cell current and matching degree of the multi-junction tandem photovoltaic cell are related to the absorption coefficient of the material to the light, which is in turn related to the photon energy.
  • the detection method of the sub-cell current and the matching degree of the multi-junction stacked photovoltaic cell includes the following steps:
  • the head of the optical fiber 4 should keep an appropriate distance from the surface of the InGaAs laser photovoltaic cell (this embodiment adopts a height of 3 cm);
  • the reverse breakdown voltage of the single-junction InGaAs PN junction with the same doping concentration as the PN junction of each sub-cell in the multi-junction cell is obtained during the test.
  • the reverse breakdown voltage of the six-junction InGaAs laser photovoltaic cell is about -9V, and the open circuit voltage is close to 3V, so the starting point of the voltage sweep is set to -9V, and the end point is set to 3V; or the starting point of the voltage sweep is set to is 3V, and the end point is set to -9V;
  • the detection method provided in this application combined with the actual structure of the multi-junction tandem photovoltaic cell, compares the doping concentration on the lightly doped side of the PN junction of each sub-cell with the width of each step in the IV curve, according to the doping concentration The higher the step width is, the smaller the step width is, and the current value corresponding to the step corresponding to each junction sub-cell is obtained.
  • junction laser photovoltaic cells can also be applied to multi-junction solar cells.
  • the detection method provided by the embodiment of the present application analyzes the IV curve of the multi-junction tandem photovoltaic cell obtained by scanning the voltage from reverse bias to forward bias or from forward bias to reverse bias, and calculates all the step currents appearing in the IV curve by calculating The current mismatch degree of the multi-junction tandem photovoltaic cell sub-cell is obtained.
  • the detection method provided in the embodiment of the present application has a fast and simple inspection process, and does not require complex and time-consuming processes such as standard light source spectrum, bias light, and spectral integration according to the standard light source; the detection method provided by the embodiment of the present application is suitable for power Extraction of the short-circuit current value of each sub-cell of a multi-junction tandem photovoltaic cell under stable light source illumination and quantitative evaluation of the current matching degree of the sub-cells of a multi-junction tandem photovoltaic cell.

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本申请公开了一种多结叠层光伏电池子电池电流及匹配度的检测方法。所述检测方法包括:通过测试多结叠层光伏电池的I-V特性,得到所述多结叠层光伏电池的I-V曲线;通过量取所述I-V曲线中各电流台阶所对应的电流,得到所述多结叠层光伏电池中各结子电池的短路电流的近似值,再通过计算该一组电流的失配度,获得所述多结叠层光伏电池中子电池电流的失配度。本申请提供的检测方法通过计算I-V曲线中出现的所有台阶对应的电流值组合的失配度,得出多结叠层光伏电池子电池的电流失配度,检验过程快速简单,不需标准光源光谱、不需要加偏置光以及根据标准光源光谱积分等复杂耗时的过程。

Description

多结叠层光伏电池子电池电流及匹配度的检测方法
本申请基于并要求于2020年08月31日递交的申请号为202010894576.2、发明名称为“多结叠层光伏电池子电池电流及匹配度的检测方法”的中国专利申请的优先权。
技术领域
本申请涉特别涉及一种多结叠层光伏电池子电池电流及匹配度的检测方法,属于半导体测试技术领域。
背景技术
采用多结层叠的方式是提升太阳电池和激光光伏电池转换效率及电压的有效方式,多结叠层光伏电池在转换效率方面的出色表现备受研究人员的关注,多结电池的电流主要由各结子电池电流中最小的子电池决定的,若要获得转换效率高的电池,就要保证各结子电池的电流相等,即匹配。在上述电流匹配的要求下,各结子电池的吸收层厚度由材料吸收对应波段的光通量决定。然而,制作出来的光伏电池结构很难确保各结子电池电流精确匹配,因而,检验制作的多结叠层光伏电池子电池是否电流匹配成为多结叠层光伏电池测试分析的非常重要的内容。
现有技术中主要是通过测量电池在不同波长处的量子效率即光谱响应来判断光伏电池子电池电流是否匹配;然而,对于多结太阳电池,需要加偏置激光使得非被测子电池电流处于过饱和状态,消除非被测子电池对被测子电池的影响。若想得到多结太阳电池各结子电池的电流,则需要根据子电池的数目依次加不同的偏置激光测试光谱响应,然后结合标准光谱积分计算得到各结子电池的短路电流,测试多结太阳电池的子电池电流匹配度的过程比较复杂耗时。对于多结激光光伏电池,通过对比光谱响应最大值处的波长与所设计波长的偏差来判断电池是否在目标波长处达到最高效率,但无法定量确定在某一波长下多结激光光伏电池中各结子电池的短路电流。由于多结激光光伏电池中各子电池一般采用相同的吸收材料,无法用加偏置光测光谱 响应的方法来获取子电池间电流匹配程度的信息,而且目前也没有比较好的检验多结激光光伏电池子电池在某一波长下电流匹配程度的方法。
发明内容
本申请的主要目的在于提供一种多结叠层光伏电池子电池电流及匹配度的检测方法,以克服现有技术中的不足。
为实现前述发明目的,本申请采用的技术方案包括:
本申请实施例提供了一种多结叠层光伏电池子电池电流及匹配度的检测方法,其包括:
通过测试多结叠层光伏电池的I-V特性,得到所述多结叠层光伏电池的I-V曲线;
通过量取所述I-V曲线中各电流台阶所对应的电流,得到所述多结叠层光伏电池中各结子电池的短路电流的近似值,再通过计算该一组电流的失配度,获得所述多结叠层光伏电池中子电池电流的失配度。
与现有技术相比,本申请的优点包括:本申请实施例提供的检测方法通过分析从反偏到正偏电压扫描或从正偏到反偏电压扫描得到的多结叠层光伏电池的I-V曲线,由曲线中出现的各个台阶得到各子电池的光电流,根据得到的各子电池光电流计算得到多结叠层光伏电池子电池的电流失配度;以及,本申请实施例提供的检测方法,检验过程快速简单,不需标准光源光谱、不需要加偏置光以及根据标准光源光谱积分等复杂耗时的过程。
附图说明
图1是本申请一典型实施案例中提供的一种多结叠层光伏电池的子电池电流及匹配度的检测系统的结构示意图;
图2是本申请实施例1中的一种六结1550nm InGaAs激光光伏电池的I-V曲线图。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本申请提供的一种多结叠层光伏电池子电池电流及匹配度的检测方法,通过测量多结叠层光伏电池的I-V特性,就可以得到各结子电池光电流(短路电流是电压为0V时的电流,理想情况下,一般认为,子电池的短路电流就等于子电池的光电流)的近似值;对于多结激光光伏电池,因各结子电池材料的带隙一致,各结子电池的反向击穿电压由掺杂浓度决定,若各结子电池PN结轻掺杂一侧掺杂浓度有所不同,则掺杂浓度较低的PN结子电池短路电流对应于曲线中较宽的电流台阶的电流,掺杂浓度较高的PN结子电池短路电流对应于曲线中较窄的电流台阶的电流,若各结子电池PN结掺杂相同,则不能明确各个电流台阶所对应的子电池,但可以定量得到一组子电池短路电流值,不论对于多结太阳电池还是多结激光光伏电池,本申请均可通过各结子电池的电流值来确定子电池电流的匹配度,无需通过外量子效率等间接手段来分析各结子电池电流的匹配度。
本申请公开了一种多结叠层光伏电池子电池电流及匹配度的检测方法,该检测方法所采用的检测工具包括高精度源表、功率稳定的光源(对于多结太阳电池为太阳光模拟器,对于激光光伏电池为功率可调激光器)、光伏电池I-V测试系统,所述检测方法包括用四线法将多结叠层光伏电池与高精度源表连接,以功率稳定光源照射多结叠层光伏电池,通过分析从反偏到正偏电压扫描或从正偏到反偏电压扫描得到的I-V曲线,量取I-V曲线中出现的所有台阶对应的电流值,经计算得出多结叠层光伏电池子电池电流失配度。
本申请实施例提供了一种多结叠层光伏电池子电池电流及匹配度的检测方法,其包括:
通过测试多结叠层光伏电池的I-V特性,得到所述多结叠层光伏电池的I-V曲线;
通过量取所述I-V曲线中各电流台阶所对应的电流,得到所述多结叠层光伏电池中各结子电池的短路电流的近似值,再通过计算该一组电流的失配度得到所述多结叠层光伏电池中子电池电流的失配度。
进一步的,所述的检测方法包括:以具有稳定输出功率的光源照射多结叠层光伏电池,同时在设定电压扫描范围内对所述多结叠层光伏电池进行扫描,得到所述I-V曲线。
进一步的,所述设定电压扫描范围为从反向偏压到正向偏压。
进一步的,所述设定电压扫描范围为从反向击穿电压至正向开路电压。
进一步的,所述设定电压扫描范围也可以为从正向偏压到反向偏压。
进一步的,所述设定电压扫描范围也可以为从正向开路电压至反向击穿电压。
进一步的,所述的检测方法具体包括:
以四线法将多结叠层光伏电池的正负极与高精度源表相连;
将多结叠层光伏电池放置于光源的光斑覆盖范围内;
设置并打开所述光源,同时对多结叠层光伏电池进行从反向偏压到正向偏压范围的扫描,或对多结叠层光伏电池进行从正向偏压到反向偏压范围的扫描,得到I-V曲线。
进一步的,所述多结叠层光伏电池包括N结激光光伏电池、N结太阳电池或N结热光伏电池,N≥2。
进一步的,所述多结叠层光伏电池为激光光伏电池,所述光源为输出功率稳定的激光器。
进一步的,所述多结叠层光伏电池为多结太阳电池,所述光源为稳态的太阳光模拟器。
进一步的,所述的检测方法具体包括:
分析所述I-V曲线中的各电流台阶,得到各电流台阶所对应的电流值I 1、I 2、I 3…I N,其中N为多结叠层光伏电池的结数,各电流台阶对应的电流值近似等于各结子电池的短路电流值;
利用下式(1)计算得到该一组电流的失配度M,即:
Figure PCTCN2021096753-appb-000001
其中,
Figure PCTCN2021096753-appb-000002
从而得到所述多结叠层光伏电池中子电池电流的失配程度,M越小,则子电池的电流失配越小,反之,子电池的电流失配越大。
进一步的,所述光源提供的入射光的波长与所述多结叠层光伏电池的设计目标波长相同或不同。
如下将结合附图对该技术方案、其实施过程及原理等作进一步的解释说明。
按照图1所示组装多结叠层光伏电池子电池电流匹配度的检测系统,其包括:光源3/8、高精度数字源表5和计算机7;其中,所述光源3/8至少用于提供对多结叠层光伏电池1进行照射的光,所述高精度数字源表5与被测多结叠层光伏电池1连接,并至少用于测量并采集被测多 结叠层光伏电池在被光源3/8照射时的I-V数据;所述计算机7分别与所述光源3/8、高精度数字源表5连接,并至少用于根据所述I-V数据绘制I-V曲线。
具体的,高精度数字源表5为多结叠层光伏电池的电子负载,高精度数字源表5通过四线法连接的方式与被测多结叠层光伏电池1的正负极连接,四线法接线用以消除引线串联电阻带来的电压测试误差,且该高精度数字源表5的电压扫描范围满足测试所需的电压扫描范围;计算机7用于控制光源和数字源表,主要包括向高精度数字源表发送电压扫描指令、对光源发出打开、关闭指令,以及,收集高精度数字源表所测得的I-V数据,根据I-V数据绘制I-V曲线。
具体的,所述被测多结叠层光伏电池可以是多结激光光伏电池或多结太能电池,当所述被测多结叠层光伏电池1为多结激光光伏电池时,所述光源为功率可调激光器3,功率可调激光器3的功率稳定,且中心波长为多结激光光伏电池所设计的目标应用波长,在测试激光光伏电池时,光纤4出光头距离多结叠层光伏电池表面不宜太近以免发生隧道结限流现象;当所述被测多结叠层光伏电池1为多结太阳电池时,可采用稳态的太阳光模拟器8作为光源。
具体的,所述计算机7和高精度数字源表5、计算机7和光源3通过串口通信数据线6连接,高精度数字源表5通过导线2与多结叠层光伏电池1的正负极连接。
具体的,一种多结叠层光伏电池子电池电流及匹配度的检测方法,主要包括以下步骤:
1)提供如图1所示的多结叠层光伏电池的子电池电流及匹配度的检测系统,
2)将多结叠层光伏电池贴于热沉上,确保多结叠层光伏电池具有良好的散热条件,且测试时入射光的照射时间应足够短以避免测试过程中多结叠层光伏电池温度的明显升高;
3)以串口线将计算机与高精度数字源表相连;
4)以四线法将多结叠层光伏电池的正负极与高精度源表相连;
5)将多结叠层光伏电池放置于光源的光斑覆盖范围内;
6)打开设置好功率的激光器或太阳光模拟器,使得多结叠层光伏电池受到稳定的光照,同时对多结叠层光伏电池进行电压扫描,待电压扫描完毕后得到多结叠层光伏电池的I-V数据,多结叠层光伏电池I-V测试系统中电压扫描的起始点设为光伏电池的反向击穿电压,电压扫描的终点设为多结叠层光伏电池的开路电压,或将电压扫描的起始点设为多结叠层光伏电池的正向开路电压,电压扫描的终点设为多结叠层光伏电池的反向击穿电压;
7)分析所述I-V曲线中的各电流台阶,得到各电流台阶所对应的电流值I 1、I 2、I 3…I N,其中N为多结叠层光伏电池的结数,各电流台阶对应的电流值近似等于各结子电池的短路电流值;
8)利用式(1)计算得到该一组电流的失配度M,从而得到所述多结叠层光伏电池中子电池电流的失配度,M越小,则子电池电流失配越小,反之,子电池电流失配越大。
具体的,对于多结激光光伏电池,各结子电池的短路电流与I-V曲线中各台阶的对应关系由子电池的击穿电压即PN结中低掺杂一侧的掺杂浓度决定;若影响子电池PN结反向击穿电压的低掺杂一侧的掺杂浓度有所不同,则较宽台阶对应的电流值对应于低掺杂浓度那一结子电池的短路电流,较窄台阶对应的电流值对应于较高掺杂浓度的那一结子电池的短路电流。
具体的,所述光源提供的入射光的波长与所述多结叠层光伏电池的设计目标波长相同或不同,即,对于多结激光光伏电池,入射激光的波长可以是设计的目标波长之外的某一波长,此时检测方法得到的是该入射激光波长下各子电池间的电流匹配度。
需要说明的是,本申请实施例提供的检测方法主要是针对多结叠层光伏电池目标波长处的匹配度,但本申请实施例提供的检测方法对多结叠层光伏电池目标波长之外的某一波长(即非目标波长)也是适用的。这是由于在电池器件的实际制作过程中,所采用的材料参数与设计参数存在偏差,导致最终制备形成的电池器件的最佳响应波长偏离目标波长,此时在目标波长下,多结叠层光伏电池的子电池电流是不匹配的。
具体的,以多结GaAs激光光伏电池为例,理想的多结GaAs激光光伏电池只是对某个单一波长(目标波长)的激光有最佳响应,比如,在同一功率的808nm激光照射下,多结GaAs激光光伏电池的短路电流最大,而在830nm的光照下,短路电流变小,但是,实际制作形成的激光光伏电池不一定在808nm下具有最佳响应。
具体的,在具体的检测过程中,为避免环境光的干扰,该检测过程应在暗室中进行,同时应当记录测试环境温度参数,因为各子电池电流的匹配度与温度有关,温度会影响材料的禁带宽度,进而影响材料对特定波长光的吸收系数;具体的,多结叠层光伏电池的子电池电流及匹配度与材料对光的吸收系数有关,该吸收系数又与光子能量相关,因此在不同波长的光照射下,材料的吸收系数是不同的;进而使得在不同波长下,子电池电流的匹配度也是不同的;以上几种情况都可以通过本申请实施例提供的检测方法获得多结叠层光伏电池子电池电流及其匹配度。
实施例1
以六结1550nm InGaAs激光光伏电池芯片为例,对多结叠层光伏电池子电池电流及其匹配度的检测方法进行说明,InGaAs激光光伏电池的子电池电流及匹配度的检测方法包括如下步骤:
1)粗测光伏电池的正向I-V特性,挑选一串联电阻较小,无严重漏电的InGaAs激光光伏电池,使用导电银浆将InGaAs激光光伏电池(片)1粘贴于能够良好散热的陶瓷覆铜片上,并使用引线机键合好金引线;
2)以四线法将InGaAs激光光伏电池与高精度数字源表5连接,InGaAs激光光伏电池1的正电极连接高精度数字源表的正极接线口,负电极连接高精度数字源表5的负极接线口,高精度数字源表5的工作模式设置为四线;
3)将激光器3的输出光纤4的头部用支架固定在InGaAs激光光伏电池1的上方,为避免InGaAs激光光伏电池因局部光强密度过大而导致局部光电流密度过大而出现限流现象,光纤4头部应与InGaAs激光光伏电池表面保持适当的距离(本实施例采用3cm的高度);
4)在计算机7上打开多结叠层光伏电池快速I-V测试程序,由于检测过程中得到的与多结电池中各子电池PN结相同掺杂浓度的单结InGaAs PN结的反向击穿电压在-1.5V左右,六结InGaAs激光光伏电池的反向击穿电压在-9V左右,开路电压接近3V,因此电压扫描的起点设为-9V,终点设为3V;或将电压扫描的起点设为3V,终点设为-9V;
5)开始对InGaAs激光光伏电池进行电压扫描,测试得到如图2所示的I-V曲线,由图2可以看到,I-V曲线在所扫描的电压范围内出现了若干个随电压变化时电流稳定不变的电流台阶,这若干个台阶就近似对应着不同结的子电池的光电流,读取各个台阶所对应的纵坐标值,即电流值″I 1″、″I 2″、″I 3″、″I 4″、″I 5″和″I 6″,计算所有台阶对应的多个电流值的失配度M,以所述失配度M判定所述多结叠层光伏电池中子电池电流的匹配程度,M越小,则子电池电流失配越小,反之,子电池电流失配越大。
本申请提供的检测方法,结合多结叠层光伏电池的实际结构,将各子电池PN结中轻掺杂一侧的掺杂浓度大小与I-V曲线中各台阶的宽度作比照,按照掺杂浓度越高,台阶宽度越小的原则,获得各结子电池所对应的台阶所对应的电流值。
需要说明的是,以上实施例仅仅是本申请的较佳应用范例,对本申请的保护范围不构成任何限制,本申请提出的利用I-V特性检测子电池电流匹配度的方法,不仅仅能够应用于多结激光光伏电池,也能够应用于多结太阳电池。
本申请实施例提供的检测方法通过分析从反偏到正偏电压扫描或从正偏到反偏电压扫描得到的多结叠层光伏电池的I-V曲线,并通过计算I-V曲线中出现的所有台阶电流的失配度,得出多结叠层光伏电池子电池的电流失配度。
本申请实施例提供的检测方法,检验过程快速简单,不需标准光源光谱、不需要加偏置光以及根据标准光源光谱积分等复杂耗时的过程;本申请实施例提供的检测方法适用于功率稳定的光源照射下多结叠层光伏电池各子电池短路电流值的提取及对多结叠层光伏电池子电池电流匹配度的定量化评价。
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。

Claims (13)

  1. 一种多结叠层光伏电池子电池电流及匹配度的检测方法,其特征在于包括:
    通过测试多结叠层光伏电池的I-V特性,得到所述多结叠层光伏电池的I-V曲线;
    通过量取所述I-V曲线中各电流台阶所对应的电流,得到所述多结叠层光伏电池中各结子电池的短路电流的近似值,再通过计算该一组电流的失配度,获得所述多结叠层光伏电池中子电池电流的失配度。
  2. 根据权利要求1所述的检测方法,其特征在于包括:以具有稳定输出功率的光源照射多结叠层光伏电池,同时在设定电压扫描范围内对所述多结叠层光伏电池进行扫描,从而得到所述I-V曲线。
  3. 根据权利要求2所述的检测方法,其特征在于:所述设定电压扫描范围为从反向偏压到正向偏压。
  4. 根据权利要求3所述的检测方法,其特征在于:所述设定电压扫描范围为从反向击穿电压至正向开路电压。
  5. 根据权利要求4所述的检测方法,其特征在于具体包括:
    以四线法将多结叠层光伏电池的正负极与高精度源表相连;
    将多结叠层光伏电池放置于光源的光斑覆盖范围内;
    设置并打开所述光源,同时对多结叠层光伏电池进行从反向偏压到正向偏压范围的扫描,得到I-V曲线。
  6. 根据权利要求2所述的检测方法,其特征在于:所述设定电压扫描范围为从正向偏压到反向偏压。
  7. 根据权利要求6所述的检测方法,其特征在于:所述设定电压扫描范围为从正向开路电压至反向击穿电压。
  8. 根据权利要求7所述的检测方法,其特征在于具体包括:
    以四线法将多结叠层光伏电池的正负极与高精度源表相连;
    将多结叠层光伏电池放置于光源的光斑覆盖范围内;
    设置并打开所述光源,同时对多结叠层光伏电池进行从正偏压到反向偏压范围的扫描,得到I-V曲线。
  9. 根据权利要求1所述的检测方法,其特征在于:所述多结叠层光伏电池包括N结激光光伏电池、N结太阳电池或N结热光伏电池,其中,N≥2。
  10. 根据权利要求1所述的检测方法,其特征在于:所述多结叠层光伏电池为激光光伏电池,所述光源为输出功率稳定的激光器。
  11. 根据权利要求1所述的检测方法,其特征在于:所述多结叠层光伏电池为多结太阳电池,所述光源为稳态的太阳光模拟器。
  12. 根据权利要求1所述的检测方法,其特征在于具体包括:
    分析所述I-V曲线中的各电流台阶,得到各电流台阶所对应的电流值I 1、I 2、I 3…IN,其中N为多结叠层光伏电池的结数,各电流台阶对应的电流值近似等于各结子电池的短路电流值;
    利用下式(1)计算得到该一组电流的失配度M,即:
    Figure PCTCN2021096753-appb-100001
    其中,
    Figure PCTCN2021096753-appb-100002
    从而得到所述多结叠层光伏电池中子电池电流的失配度,其中,M值越小,则子电池的电流失配越小,反之,则子电池的电流失配越大。
  13. 根据权利要求1所述的检测方法,其特征在于:所述光源提供的入射光的波长与所述多结叠层光伏电池的设计目标波长相同或不同。
PCT/CN2021/096753 2020-08-31 2021-05-28 多结叠层光伏电池子电池电流及匹配度的检测方法 WO2022041894A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/594,306 US11581849B2 (en) 2020-08-31 2021-05-28 Measurement method of subcell photocurrents and their matching degree of a multi-junction photovoltaic cell
EP21802579.9A EP3989436A4 (en) 2020-08-31 2021-05-28 TEST PROCEDURE FOR TESTING CURRENT OF SUB-CELLS OF A TANDEM JUNCTION PHOTOCELL AND DEGREE OF MATCHING BETWEEN CURRENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010894576.2A CN114123969A (zh) 2020-08-31 2020-08-31 多结叠层光伏电池子电池电流及匹配度的检测方法
CN202010894576.2 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022041894A1 true WO2022041894A1 (zh) 2022-03-03

Family

ID=80352546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096753 WO2022041894A1 (zh) 2020-08-31 2021-05-28 多结叠层光伏电池子电池电流及匹配度的检测方法

Country Status (4)

Country Link
US (1) US11581849B2 (zh)
EP (1) EP3989436A4 (zh)
CN (1) CN114123969A (zh)
WO (1) WO2022041894A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4075667B1 (en) * 2021-04-16 2023-08-16 Pasan Sa Photovoltaic device test method and test apparatus
CN117353660B (zh) * 2023-11-21 2024-05-28 北京卓立汉光仪器有限公司 一种多结电池光谱响应度测试方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140333319A1 (en) * 2013-05-10 2014-11-13 Sinton Consulting, Inc. Characterization of substrate doping and series resistance during solar cell efficiency measurement
CN106230379A (zh) * 2016-07-27 2016-12-14 天津三安光电有限公司 一种多结太阳电池芯片的检测装置及检测方法
CN111010087A (zh) * 2019-12-24 2020-04-14 阳光电源股份有限公司 一种光伏组串中失配组件的定位方法、装置及光伏系统
CN111262526A (zh) * 2020-03-26 2020-06-09 广东产品质量监督检验研究院(国家质量技术监督局广州电气安全检验所、广东省试验认证研究院、华安实验室) 一种自然光下测试高容性光伏组件电性能的检测方法
CN111555714A (zh) * 2020-04-30 2020-08-18 西交利物浦大学 一种特性失配光伏组串的功率峰数测量方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283845A (ja) * 2008-05-26 2009-12-03 Npc Inc 太陽電池出力特性評価装置および太陽電池出力特性評価方法
US20120053867A1 (en) * 2010-08-24 2012-03-01 Atonometrics, Inc. System and methods for high-precision string-level measurement of photovoltaic array performance
US8073645B2 (en) * 2011-05-30 2011-12-06 Cyrium Technologies Incorporated Apparatus and method to characterize multijunction photovoltaic solar cells
GB2559800B (en) * 2017-02-20 2019-06-12 Oxford Photovoltaics Ltd Multijunction photovoltaic device
CN106998190B (zh) * 2017-04-20 2019-12-06 华电电力科学研究院有限公司 一种光伏方阵串并联失配损失分析方法
US10720883B2 (en) * 2017-04-24 2020-07-21 Angstrom Designs, Inc Apparatus and method for testing performance of multi-junction solar cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140333319A1 (en) * 2013-05-10 2014-11-13 Sinton Consulting, Inc. Characterization of substrate doping and series resistance during solar cell efficiency measurement
CN106230379A (zh) * 2016-07-27 2016-12-14 天津三安光电有限公司 一种多结太阳电池芯片的检测装置及检测方法
CN111010087A (zh) * 2019-12-24 2020-04-14 阳光电源股份有限公司 一种光伏组串中失配组件的定位方法、装置及光伏系统
CN111262526A (zh) * 2020-03-26 2020-06-09 广东产品质量监督检验研究院(国家质量技术监督局广州电气安全检验所、广东省试验认证研究院、华安实验室) 一种自然光下测试高容性光伏组件电性能的检测方法
CN111555714A (zh) * 2020-04-30 2020-08-18 西交利物浦大学 一种特性失配光伏组串的功率峰数测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3989436A4 *

Also Published As

Publication number Publication date
CN114123969A (zh) 2022-03-01
EP3989436A1 (en) 2022-04-27
US20220311381A1 (en) 2022-09-29
US11581849B2 (en) 2023-02-14
EP3989436A4 (en) 2023-03-01

Similar Documents

Publication Publication Date Title
Smestad et al. Reporting solar cell efficiencies in solar energy materials and solar cells
CN101696942B (zh) 多结太阳能电池及各子电池交流电致发光测试方法和装置
WO2022041894A1 (zh) 多结叠层光伏电池子电池电流及匹配度的检测方法
Kumar et al. Solar PV module technologies
CN108694276B (zh) 一种计算串并联光伏组件输出特性的方法
CN106356410B (zh) 高功率太阳能电池模块
CN101090138A (zh) P+pin硅光电探测器
Lopez et al. Experimental coupling process efficiency and benefits of back surface reflectors in photovoltaic multi‐junction photonic power converters
CN207720094U (zh) 一种聚光光伏电池的测试装置
Schulte et al. Inverted metamorphic AlGaInAs/GaInAs tandem thermophotovoltaic cell designed for thermal energy grid storage application
CN111262526A (zh) 一种自然光下测试高容性光伏组件电性能的检测方法
CN108181015B (zh) 半片光伏组件热斑温度测试方法
Zhang et al. Comparison of double-side and equivalent single-side illumination methods for measuring the I–V characteristics of bifacial photovoltaic devices
Hong et al. Absolute electroluminescence imaging with distributed circuit modeling: Excellent for solar‐cell defect diagnosis
Tong et al. Modeling the edge effect for measuring the performance of mesoscopic solar cells with shading masks
Yang et al. Output performance analysis and power optimization of different configurations half-cell modules under partial shading
Lopez-Varo et al. Dynamic temperature effects in perovskite solar cells and energy yield
Helmers et al. On the influence of the photo-induced leakage current in monolithically interconnected modules
Zhao et al. Recent progress and spectral robustness study for mechanically stacked multi‐junction solar cells
CN110311626B (zh) 一种计算失配条件下双面光伏组件电流的方法
Phimu et al. Design of PERC Cell using SiO 2, Si 3 N 4, and Al 2 O 3 with the Novel technique for enhanced absorption of silicon selective emitter for solar cell processing
CN201078806Y (zh) 硅光电检测器
Wagner et al. Three-Terminal Perovskite/Silicon Tandem Solar Cells with Top and Interdigitated Back-Contacts
CN206629032U (zh) 一种双面太阳能电池双光源测试设备
Kumar et al. A real-time comparative data analysis of different types of solar panels during partial shading with distinct tilt angles

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021802579

Country of ref document: EP

Effective date: 20211118

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21802579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE