WO2022041366A1 - 一种基于多端柔性直流输电系统的电网调频方法 - Google Patents

一种基于多端柔性直流输电系统的电网调频方法 Download PDF

Info

Publication number
WO2022041366A1
WO2022041366A1 PCT/CN2020/116995 CN2020116995W WO2022041366A1 WO 2022041366 A1 WO2022041366 A1 WO 2022041366A1 CN 2020116995 W CN2020116995 W CN 2020116995W WO 2022041366 A1 WO2022041366 A1 WO 2022041366A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter station
grid frequency
converter
station
Prior art date
Application number
PCT/CN2020/116995
Other languages
English (en)
French (fr)
Inventor
李周
李亚洲
Original Assignee
东南大学溧阳研究院
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学溧阳研究院, 东南大学 filed Critical 东南大学溧阳研究院
Publication of WO2022041366A1 publication Critical patent/WO2022041366A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Abstract

本发明提供一种基于多端柔性直流输电系统的电网调频方法,换流站可依据所接交流系统的频率偏差自动选择该交流系统是否接受电网调频,也可依据调度系统的指令选择所接交流系统是否接受电网调频。同时,调度系统可通过指令选择一个或多个换流站所接的交流系统参与电网调频。该调频方法通过改变换流站的控制策略,结合若干采取主动功率平衡技术的功率平衡换流站,实现多个交流系统之间的联合调频。与现有技术相比,本发明只需改变本地换流站的控制策略,根据交流系统的不平衡功率量实时改变换流站的传输功率,且能够实现不同控制策略之间的平滑切换,提高了交流系统的频率调节速度与精确度。

Description

一种基于多端柔性直流输电系统的电网调频方法 技术领域
本发明属于电力系统技术领域,涉及电力系统安全稳定分析技术,具体涉及一种基于多端柔性直流输电系统的电网调频方法。
背景技术
基于电压源换流器的高压直流输电(Voltage Source Converter based High Direct Current Transmission,VSC-HVDC)技术也被称为柔性直流输电技术,具有可实现有功功率与无功功率解耦控制、可向无源网络供电、不会出现换相失败、换流站间无需通信以及易于构成多端直流系统等优点,是用于构建智能电网的重要技术之一,将得到广泛应用。
随着柔性直流输电技术的发展,柔性直流输电系统将向更高电压等级、更大输电容量发展,直流电网拓扑将更加复杂。相比于传统的交流电网,柔性直流输电系统基于大量电力电子设备构建而成,具有快速调节传输功率的能力,可用于互联交流电网之间的频率调节,实现互联电网间旋转备用的共享,提高互联交流电网的频率稳定性。
针对未来复杂结构下的直流电网,要实现互联电网的频率平衡,最直接的方法是换流站根据交流系统的不平衡功率直接调节换流站的实际传输功率值。但是,将交流电网不平衡功率直接引入直流电网,将影响直流电网的电压稳定。
发明内容
为解决上述问题,本发明提供一种基于多端柔性直流输电系统的电网调频方法,可根据交流系统不平衡功率调节换流站传输功率,同时,直流电网能够具有较强电压稳定性。
为了解决上述技术问题,本发明是通过以下技术方案实现的:
一种基于多端柔性直流输电系统的电网调频方法,包括如下步骤:将接受电网调频的交流系统所接换流站切换为交流平衡节点控制方式,当换流站控制策略切换时重置比例计分器的输出积分值;对工作于交流平衡节点控制方式下的换流站传输功率设置最大值,检测调频换流站的传输功率当其超过最大值时,将换流站的控制改为限功率传输控制方式;调度系统通过指令选择一个或多个换流站所接的交流系统参与电网调频;检测各换流站传输功率,计算直流输电系统的不平衡功率,根据不平衡功率动态调整功率平衡站的功率参考值实现功率平衡。
进一步的,还包括如下前提步骤:换流站在所接交流系统的频率偏差超过上门槛值时自 动选择该交流系统接受电网调频,或依据调度系统的指令选择所接交流系统是否接受电网调频。
进一步的,还包括如下后续步骤:在接受电网调频后,当换流站所连接的接受电网调频交流系统的频率偏差小于下门槛值时自动将接受电网调频的换流站切换为定有功功率控制方式,或由调度系统指令将接受电网调频的换流站切换为定有功功率控制方式,以使得所接交流系统不再接受电网调频;当换流站控制策略切换时重置比例计分器的输出积分值。
进一步的,具体包括以下步骤:
步骤(1),将换流站切换为交流平衡节点控制方式,控制换流站交流出口侧电压幅值和相角而非PCC点,使得换流站成为平衡节点,保证交流系统功率缺额无延时和无偏差导入直流系统中;
dq坐标系下,采取交流平衡节点控制的换流站的交流侧出口电压为:
Figure PCTCN2020116995-appb-000001
其中s是拉普拉斯算子,U sd和U sq是公共连接点交流电压的dq轴分量,U cd和U cq是换流站交流侧出口电压的dq轴分量,i sd和i sq是换流站交流侧电流的dq轴分量,k p和k i是比例积分器的比例系数和积分系数,R c和X c是换流站的等效电阻和换流电抗;
切换控制策略的过程中,重置比例计分器的输出积分值:
Figure PCTCN2020116995-appb-000002
其中,U s和U c是换流站交流侧出口的电压有效值和公共连接点的交流电压有效值,v dreset和v qreset是d轴控制中的积分器重置值和q轴控制中的积分器重置值,P s和Q s是公共连接点(PCC点)处注入的有功功率和无功功率;
步骤(2),对工作于交流平衡节点控制方式下的换流站传输功率设置最大值
Figure PCTCN2020116995-appb-000003
Figure PCTCN2020116995-appb-000004
检测调频换流站的传输功率,如果换流站传输功率P s超过
Figure PCTCN2020116995-appb-000005
将换流站的控制改为限功率传输控制,整定换流站交流侧出口电压;
dq坐标轴下,当换流站传输功率P s超出
Figure PCTCN2020116995-appb-000006
时,整定换流站的交流侧出口电压为:
Figure PCTCN2020116995-appb-000007
dq坐标轴下,当换流站传输功率P s超出
Figure PCTCN2020116995-appb-000008
时,整定换流站的交流侧出口电压为:
Figure PCTCN2020116995-appb-000009
其中,
Figure PCTCN2020116995-appb-000010
Figure PCTCN2020116995-appb-000011
为换流站传输功率最大值,其中
Figure PCTCN2020116995-appb-000012
代表整流方向传输功率最大值,即代表有功功率由交流系统注入换流站;
Figure PCTCN2020116995-appb-000013
代表逆变方向传输功率最大值,即有功功率由换流站注入交流系统;
步骤(3),调度系统通过指令选择一个或多个具有调频能力的交流系统作为功率平衡站;
步骤(4),检测各换流站传输功率,通过主动功率平衡技术计算直流输电系统的不平衡功率ΔP,根据ΔP动态调整功率平衡站的功率参考值;
直流输电系统的不平衡功率ΔP:
ΔP=∑(P ref1,P ref2,...,P refm,P m+1,P m+2,...,P n)
上式中,n为系统中换流站个数,前m个换流站为功率平衡站,第m+1至第n个换流站为采取交流平衡节点控制或定有功功率控制换流站的传输功率的实际值;
根据ΔP动态调整功率平衡站的功率参考值:
Figure PCTCN2020116995-appb-000014
其中,P refi为第i个换流站初始的有功功率参考值,
Figure PCTCN2020116995-appb-000015
为第i个换流站调整后的有功功率参考值,1≤i≤m,K i为功率平衡站的下垂系数。
进一步的,还包括如下前提步骤:
步骤1,获取交流系统公共连接点交流电压频率的实际值f;
步骤2,计算换流站所接交流系统电压频率f与标准频率f ref的偏移量Δf,并对交流电压频率偏差设置一个上门槛值Δf max,以及一个下门槛值Δf min
步骤3,当换流站所接交流系统频率偏差Δf尚未超过Δf max时,换流站自动选择利用交流 系统自身调节能力进行频率调节,或可由调度系统指令选择该换流站所接交流系统接受电网调频;当Δf超过Δf max时,换流站自动选择所接交流系统接受电网调频。
进一步的,所述交流系统包括与采取定有功功率控制方式换流站和采取定直流电压控制方式换流站相连的交流系统。
进一步的,还包括如下后续步骤:
步骤4,当所接接受电网调频交流系统的频率偏差Δf小于Δf min时,调度系统自动将接受电网调频的换流站切换为定有功功率控制方式,以使得所接交流系统不再接受电网调频;或调度系统根据需要,通过指令将接受电网调频的换流站切换为定有功功率控制方式,以使得所接交流系统不再接受电网调频;
切换控制策略的过程中,重置比例计分器的输出积分值,外环控制中积分器重置值为:
Figure PCTCN2020116995-appb-000016
其中,v dreset和v qreset分别为d轴和q轴的外环控制中的积分器重置值;
内环控制中积分器重置为:
Figure PCTCN2020116995-appb-000017
其中,v dreset和v qreset分别为d轴和q轴的内环控制中的积分器重置值。
进一步的,令有功功率参考值P ref等于当前换流站传输的有功功率实际值P。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明所提的调频策略可依据交流系统频率偏差自动进行调频控制,也可以根据实际需求由调度指令进行调频控制;
(2)当交流系统因功率缺额造成频率偏差时,本发明所提出的交流平衡节点控制使得换流站成为平衡节点,可将交流系统功率缺额无延时无偏差的直接导入直流系统中;
(3)当换流站进行控制策略切换时,重置积分器值保证了控制系统参数与直流系统电气参数的状态匹配,减小了切换控制过程的冲击和震荡,保证了系统的平稳运行;
(4)本发明所提出的限功率策略依据换流站容量上限限制了允许注入直流系统中的有功功率,保证了直流系统的安全性;
(5)本发明中所提出的主动功率平衡技术,调度系统指定一个或多个交流系统参与交流 系统频率调节,提高了调频控制的灵活性,以及功率和电压的动态稳定性;
(6)现有技术相比,本发明只需改变本地换流站的控制策略,根据交流系统的不平衡功率量实时改变换流站的传输功率,提高了交流系统的频率调节速度与精确度。
附图说明
图1为本发明系统的原理图。
图2为交流平衡节点控制结构图。
图3为有功无功解耦控制结构图,其中(a)定有功功率控制的外环控制结构图,(b)定无功功率控制的外环控制结构图,(c)定有功功率控制的内环控制结构图,(d)定无功功率控制的内环控制结构图。
图4为六端柔性直流输电系统仿真模型结构图。
图5为仿真波形图,其中图5(a)为交流电压频率,图5(b)为各端直流电压,图5(c)为各端传输有功功率,图中无调频控制用虚线表示。
具体实施方式
以下将结合具体实施例对本发明提供的技术方案进行详细说明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
本发明提供的基于多端柔性直流输电系统的电网调频方法中,换流站可依据所接交流系统的频率偏差自动选择该交流系统是否接受电网调频,也可依据调度系统的指令选择所接交流系统是否接受电网调频。同时,调度系统可通过指令选择一个或多个换流站所接的交流系统参与电网调频,改变换流站的控制策略,实现多个交流系统之间的联合调频。实现本发明控制方法的电力系统包括若干能够采取主动功率平衡技术的功率平衡换流站,若干能够采取定有功功率控制方式的换流站及若干能够采取交流平衡节点控制方式的换流站。本发明的控制方法包括以下步骤:
步骤1,获取交流系统公共连接点交流电压频率的实际值f,所述交流系统包括与定有功功率控制的换流站和采取定直流电压控制换流站相连的交流系统;
步骤2,计算换流站所接交流系统电压频率f与标准频率f ref的偏移量Δf,并对交流电压频率偏差设置一个上门槛值Δf max,以及一个下门槛值Δf min
步骤3,当换流站所接交流系统频率偏差Δf尚未超过Δf max时,换流站自动选择利用交流系统自身调节能力进行频率调节,或可由调度系统指令选择该换流站所接交流系统接受电网调频;当Δf超过Δf max时,换流站自动选择所接交流系统接受电网调频;接受电网调频的条 件也可进一步根据需要设定为其他。
具体的说,当换流站所接交流系统需要接受电网调频时,包括如下步骤:
步骤(1),将换流站切换为交流平衡节点控制方式,其原理如图2所示。控制换流站交流出口侧电压幅值和相角而非PCC点,使得换流站成为平衡节点,保证交流系统功率缺额无延时和无偏差导入直流系统中;
dq坐标系下,采取交流平衡节点控制的换流站的交流侧出口电压为:
Figure PCTCN2020116995-appb-000018
其中s是拉普拉斯算子,U sd和U sq是公共连接点交流电压的dq轴分量,U cd和U cq是换流站交流侧出口电压的dq轴分量,i sd和i sq是换流站交流侧电流的dq轴分量,k p和k i是比例积分器的比例系数和积分系数,R c和X c是换流站的等效电阻和换流电抗。
切换控制策略的过程中,应重置比例计分器的输出积分值:
Figure PCTCN2020116995-appb-000019
其中,U s和U c是换流站交流侧出口的电压有效值和公共连接点的交流电压有效值,v dreset和v qreset是d轴控制中的积分器重置值和q轴控制中的积分器重置值,P s和Q s是公共连接点(PCC点)处注入的有功功率和无功功率。积分器的重置保证了控制系统参数和直流系统电气参数的状态匹配,最大程度的减小了因切换控制策略而造成的冲击,减小了系统震荡,保证了系统的安全稳定性。如不进行初始化,则积分器初始值为0,那么控制器输出和直流系统电气参数状态不匹配,会造成系统较大震荡甚至失稳。
步骤(2),对工作于交流平衡节点控制方式下的换流站传输功率设置最大值
Figure PCTCN2020116995-appb-000020
Figure PCTCN2020116995-appb-000021
检测调频换流站的传输功率,如果换流站传输功率P s超过
Figure PCTCN2020116995-appb-000022
将换流站的控制改为限功率传输控制;
dq坐标轴下,当换流站传输功率P s超出
Figure PCTCN2020116995-appb-000023
时,整定换流站的交流侧出口电压为:
Figure PCTCN2020116995-appb-000024
dq坐标轴下,当换流站传输功率P s超出
Figure PCTCN2020116995-appb-000025
时,整定换流站的交流侧出口电压为:
Figure PCTCN2020116995-appb-000026
附图1中以换流站传输功率P s超出
Figure PCTCN2020116995-appb-000027
的情况为例。
本步骤根据换流站传输容量上限,计算Pcc点和换流站交流出口侧电压的相角差,进而调整换流站交流出口侧电压的相角,保证二者相角同步变化,从而达到限功率作用,从而能够约束由换流站注入直流系统的有功功率,保证换流站的安全性;同时能最大限度利用换流器容量,提高了直流系统的安全性和稳定性。
步骤(3),调度系统通过指令选择一个或多个具有调频能力的交流系统作为功率平衡站;
步骤(4),检测各换流站传输功率,通过主动功率平衡技术计算直流输电系统的不平衡功率ΔP,根据ΔP动态调整功率平衡站的功率参考值;
直流输电系统的不平衡功率ΔP:
ΔP=∑(P ref1,P ref2,...,P refm,P m+1,P m+2,...,P n)
上式中,n为系统中换流站个数,前m个换流站为功率平衡站,第m+1至第n个换流站为采取交流平衡节点控制或定有功功率控制换流站的传输功率的实际值。
根据ΔP动态调整功率平衡站的功率参考值:
Figure PCTCN2020116995-appb-000028
其中,P refi为第i(1≤i≤m)个换流站初始的有功功率参考值,
Figure PCTCN2020116995-appb-000029
为第i(1≤i≤m)个换流站调整后的有功功率参考值,K i为功率平衡站的下垂系数。
本步骤能够实时计算直流系统中的不平衡功率,保证了频率调节的精确性,同时调度系统指定一个或多个交流系统参与交流系统频率调节,提高了调频控制的灵活性,以及功率和电压的动态稳定性。
步骤4,当所接接受电网调频交流系统的频率偏差Δf小于Δf min时,调度系统自动将接受电网调频的换流站切换为定有功功率控制方式,以使得所接交流系统不再接受电网调频,其 原理如图3所示。调度系统可灵活根据需要,指令将接受电网调频的换流站切换为定有功功率控制方式,以使得所接交流系统不再接受电网调频。
为实现换流站的控制策略的稳定切换,令有功功率参考值P ref等于当前换流站传输的有功功率实际值P。切换控制策略的过程中,应重置比例计分器的输出积分值,外环控制中积分器重置值为:
Figure PCTCN2020116995-appb-000030
其中,v dreset和v qreset分别为d轴和q轴的外环控制中的积分器重置值。
内环控制中积分器重置为:
Figure PCTCN2020116995-appb-000031
其中,v dreset和v qreset分别为d轴和q轴的内环控制中的积分器重置值。
采用图4所示的六端柔性直流输电系统为例对本发明提出的协调控制策略进行具体说明。换流站VSC2、VSC3、VSC4和VSC5采取直流电压下垂控制,VSC1与风场相连和VSC6与无源电网相连,均采用幅相控制,以有功功率由交流系统注入直流系统为正方向。各换流站的传输功率范围为-750MW至750MW。
将传统主从控制策略与本发明新型协调控制策略进行对比。在主从控制策略下,VSC3站作为主站,采用定直流电压控制,VSC2、VSC4、VSC5站作为控制从站,采用定有功功率控制,当主站退出后依次承担电压控制工作。VSC1和VSC6采取幅相控制,多端柔性直流输电系统的电压等级为±500kV。
案例:VSC5站所连交流系统负荷突增,该仿真场景中,初始时刻,VSC1、VSC2、VSC3、VSC4、VSC5和VSC6的传输功率分别为700MW、600MW、230MW、-400MW、-450MW和-600MW。6s时VSC5站所连交流系统负荷突增200MW,16s时交流电网切除200MW负荷。设控制系统的功率基准值为750WVA,交电压基准值为500kV,直流电压基准值为500kV,换流电抗的标幺值为0.15。
对于本发明所提的本发明新型调频控制策略:
6s时VSC5站所连的交流电网的频率发生变化,频率变化超过门槛值Δfmax=0.05Hz后,VSC5站的控制策略切换为交流平衡节点控制。控制切换过程中,d轴电压和q轴电压重置值 为:v dreset=0.996,v qreset=0。
16s时,调节VSC5站所连的交流电网的负荷,切除200MW有功负荷,交流电网功率缺额低于VSC3的传输功率下限Pmin=-750MW,VSC5站的控制策略仍为交流平衡节点控制。
26s时,系统稳定。已知切除负荷后系统所需VSC5传输的功率为450MW,此时将系统切换为定有功功率控制和定无功功率控制,有功功率参考值为-450MW,无功功率参考值为0MVA,控制切换过程中,各积分器重置值为:i qreset=-0.6,i dreset=0,v dreset=0.007,v qreset=0.012。
仿真波形如图5所示,其中图5(a)为交流电压频率,图5(b)为各端传输有功功率,图5(c)为各端直流电压。
由图5可以看出,新型调频控制策略:发生功率扰动的交流系统(AC grid5),其不平衡功率换流站经直接流入直流电网,在直流电网快速功率调节策略下,不平衡功率被迅速导入合适的交流系统完成补充,频率调节的响应速度快。频率最低值为49.78Hz较传统的频率控制的49.09Hz偏差更小;同时,主动功率平衡技术保证直流电压的动态稳定。
以上仿真验证了本发明协调控制策略优于传统控制策略,动态响应速度快,稳态时系统直流电压处于标准工作电压,除幅相控制换流站以外,各换流站功率均为参考值,稳态控制性能良好。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (8)

  1. 一种基于多端柔性直流输电系统的电网调频方法,其特征在于,包括如下步骤:将接受电网调频的交流系统所接换流站切换为交流平衡节点控制方式,当换流站控制策略切换时重置比例计分器的输出积分值;对工作于交流平衡节点控制方式下的换流站传输功率设置最大值,检测调频换流站的传输功率当其超过最大值时,将换流站的控制改为限功率传输控制方式;调度系统通过指令选择一个或多个换流站所接的交流系统参与电网调频;检测各换流站传输功率,计算直流输电系统的不平衡功率,根据不平衡功率动态调整功率平衡站的功率参考值实现功率平衡。
  2. 根据权利要求1所述的基于多端柔性直流输电系统的电网调频方法,其特征在于,还包括如下前提步骤:换流站在所接交流系统的频率偏差超过上门槛值时自动选择该交流系统接受电网调频,或依据调度系统的指令选择所接交流系统是否接受电网调频。
  3. 根据权利要求1或2所述的基于多端柔性直流输电系统的电网调频方法,其特征在于,还包括如下后续步骤:在接受电网调频后,当换流站所连接的接受电网调频交流系统的频率偏差小于下门槛值时自动将接受电网调频的换流站切换为定有功功率控制方式,或由调度系统指令将接受电网调频的换流站切换为定有功功率控制方式,以使得所接交流系统不再接受电网调频;当换流站控制策略切换时重置比例计分器的输出积分值。
  4. 根据权利要求1所述的基于多端柔性直流输电系统的电网调频方法,其特征在于,具体包括以下步骤:
    步骤(1),将换流站切换为交流平衡节点控制方式,控制换流站交流出口侧电压幅值和相角而非PCC点,使得换流站成为平衡节点,使得交流系统功率缺额无延时和无偏差导入直流系统中;
    dq坐标系下,采取交流平衡节点控制的换流站的交流侧出口电压为:
    Figure PCTCN2020116995-appb-100001
    其中s是拉普拉斯算子,U sd和U sq是公共连接点交流电压的dq轴分量,U cd和U cq是换流站交流侧出口电压的dq轴分量,i sd和i sq是换流站交流侧电流的dq轴分量,k p和k i是比例积分器的比例系数和积分系数,R c和X c是换流站的等效电阻和换流电抗;
    切换控制策略的过程中,重置比例计分器的输出积分值:
    Figure PCTCN2020116995-appb-100002
    其中,U s和U c是换流站交流侧出口的电压有效值和公共连接点的交流电压有效值,v dreset和v qreset是d轴控制中的积分器重置值和q轴控制中的积分器重置值,P s和Q s是公共连接点(PCC点)处注入的有功功率和无功功率;
    步骤(2),对工作于交流平衡节点控制方式下的换流站传输功率设置最大值
    Figure PCTCN2020116995-appb-100003
    Figure PCTCN2020116995-appb-100004
    检测调频换流站的传输功率,如果换流站传输功率Ps超过
    Figure PCTCN2020116995-appb-100005
    将换流站的控制改为限功率传输控制,整定换流站交流侧出口电压;
    dq坐标轴下,当换流站传输功率P s超出
    Figure PCTCN2020116995-appb-100006
    时,整定换流站的交流侧出口电压为:
    Figure PCTCN2020116995-appb-100007
    dq坐标轴下,当换流站传输功率P s超出
    Figure PCTCN2020116995-appb-100008
    时,整定换流站的交流侧出口电压为:
    Figure PCTCN2020116995-appb-100009
    其中,
    Figure PCTCN2020116995-appb-100010
    Figure PCTCN2020116995-appb-100011
    为换流站传输功率最大值,其中
    Figure PCTCN2020116995-appb-100012
    代表整流方向传输功率最大值,即代表有功功率由交流系统注入换流站;
    Figure PCTCN2020116995-appb-100013
    代表逆变方向传输功率最大值,即有功功率由换流站注入交流系统;
    步骤(3),调度系统通过指令选择一个或多个具有调频能力的交流系统作为功率平衡站;
    步骤(4),检测各换流站传输功率,通过主动功率平衡技术计算直流输电系统的不平衡功率ΔP,根据ΔP动态调整功率平衡站的功率参考值;
    直流输电系统的不平衡功率ΔP:
    ΔP=∑(P ref1,P ref2,...,P refm,P m+1,P m+2,...,P n)
    上式中,n为系统中换流站个数,前m个换流站为功率平衡站,第m+1至第n个换流站为采取交流平衡节点控制或定有功功率控制换流站的传输功率的实际值;
    根据ΔP动态调整功率平衡站的功率参考值:
    Figure PCTCN2020116995-appb-100014
    其中,P refi为第i个换流站初始的有功功率参考值,
    Figure PCTCN2020116995-appb-100015
    为第i个换流站调整后的有功功率参考值,1≤i≤m,K i为功率平衡站的下垂系数。
  5. 根据权利要求4所述的基于多端柔性直流输电系统的电网调频方法,其特征在于,还包括如下前提步骤:
    步骤1,获取交流系统公共连接点交流电压频率的实际值f;
    步骤2,计算换流站所接交流系统电压频率f与标准频率f ref的偏移量Δf,并对交流电压频率偏差设置一个上门槛值Δf max,以及一个下门槛值Δf min
    步骤3,当换流站所接交流系统频率偏差Δf尚未超过Δf max时,换流站自动选择利用交流系统自身调节能力进行频率调节,或可由调度系统指令选择该换流站所接交流系统接受电网调频;当Δf超过Δf max时,换流站自动选择所接交流系统接受电网调频。
  6. 根据权利要求5所述的基于多端柔性直流输电系统的电网调频方法,其特征在于,所述交流系统包括与采取定有功功率控制方式换流站和采取定直流电压控制方式换流站相连的交流系统。
  7. 根据权利要求5或6所述的基于多端柔性直流输电系统的电网调频方法,其特征在于,还包括如下后续步骤:
    步骤4,当所接接受电网调频交流系统的频率偏差Δf小于Δf min时,调度系统自动将接受电网调频的换流站切换为定有功功率控制方式,以使得所接交流系统不再接受电网调频;或调度系统根据需要,通过指令将接受电网调频的换流站切换为定有功功率控制方式,以使得所接交流系统不再接受电网调频;
    切换控制策略的过程中,重置比例计分器的输出积分值,外环控制中积分器重置值为:
    Figure PCTCN2020116995-appb-100016
    其中,v dreset和v qreset分别为d轴和q轴的外环控制中的积分器重置值;
    内环控制中积分器重置为:
    Figure PCTCN2020116995-appb-100017
    其中,v dreset和v qreset分别为d轴和q轴的内环控制中的积分器重置值。
  8. 根据权利要求7所述的基于多端柔性直流输电系统的电网调频方法,其特征在于,令有功功率参考值P ref等于当前换流站传输的有功功率实际值P。
PCT/CN2020/116995 2020-08-26 2020-09-23 一种基于多端柔性直流输电系统的电网调频方法 WO2022041366A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010873966.1A CN112086991B (zh) 2020-08-26 2020-08-26 一种基于多端柔性直流输电系统的电网调频方法
CN202010873966.1 2020-08-26

Publications (1)

Publication Number Publication Date
WO2022041366A1 true WO2022041366A1 (zh) 2022-03-03

Family

ID=73729213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116995 WO2022041366A1 (zh) 2020-08-26 2020-09-23 一种基于多端柔性直流输电系统的电网调频方法

Country Status (3)

Country Link
CN (1) CN112086991B (zh)
LU (1) LU500835B1 (zh)
WO (1) WO2022041366A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377998A (zh) * 2022-09-20 2022-11-22 武汉大学 基于柔性负荷有功-电压耦合特性的电网频率控制方法
CN115864415A (zh) * 2023-02-16 2023-03-28 中国科学院电工研究所 弱网互联场景下柔性交直流配电系统稳定控制方法
WO2023185196A1 (zh) * 2022-04-02 2023-10-05 南京南瑞继保电气有限公司 交流电网互联用储能系统结构及控制方法
CN117878976A (zh) * 2024-03-13 2024-04-12 华北电力大学 一种基于三端柔性直流输电系统的受端频率支撑方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113929B (zh) * 2021-04-14 2022-06-14 南方电网科学研究院有限责任公司 柔性直流输电系统的电网构造型控制方法、装置及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180076622A1 (en) * 2017-03-07 2018-03-15 Thomas Alexander Wilkins Expanded Reactive Following for Distributed Generation and Loads of Other Reactive Controller(s)
CN108521139A (zh) * 2018-05-11 2018-09-11 国网经济技术研究院有限公司 一种频率电压协调控制方法及装置
CN109638839A (zh) * 2019-01-21 2019-04-16 东南大学 一种双极柔性直流输电系统潮流计算方法
CN110912158A (zh) * 2019-12-15 2020-03-24 兰州交通大学 风电参与调频的多端柔性直流输电系统频率稳定控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197068B2 (en) * 2010-09-30 2015-11-24 Abb Research Ltd. Coordinated control of multi-terminal HVDC systems
CN105552948B (zh) * 2016-02-05 2019-06-25 国网浙江省电力公司湖州供电公司 一种基于柔性直流输电系统的电网调频方法
CN108462196A (zh) * 2018-02-09 2018-08-28 清华大学 新能源vsg辅助调频p-v自适应下垂控制方法及系统
CN108923448B (zh) * 2018-06-19 2022-04-29 东南大学 一种多端柔性直流输电协调控制方法及系统
CN109120005B (zh) * 2018-06-22 2022-04-01 华北电力大学(保定) 一种多端柔性直流输电系统功率协调控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180076622A1 (en) * 2017-03-07 2018-03-15 Thomas Alexander Wilkins Expanded Reactive Following for Distributed Generation and Loads of Other Reactive Controller(s)
CN108521139A (zh) * 2018-05-11 2018-09-11 国网经济技术研究院有限公司 一种频率电压协调控制方法及装置
CN109638839A (zh) * 2019-01-21 2019-04-16 东南大学 一种双极柔性直流输电系统潮流计算方法
CN110912158A (zh) * 2019-12-15 2020-03-24 兰州交通大学 风电参与调频的多端柔性直流输电系统频率稳定控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master Thesis", 1 May 2019, SOUTHEAST UNIVERSITY, CN, article HE YAN: "RESEARCH ON THE ACTIVE POWER OPTIMAL DISPATCH AND COORDINATED CONTROL FOR VSC-MTDC", pages: 1 - 80, XP055902297 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023185196A1 (zh) * 2022-04-02 2023-10-05 南京南瑞继保电气有限公司 交流电网互联用储能系统结构及控制方法
CN115377998A (zh) * 2022-09-20 2022-11-22 武汉大学 基于柔性负荷有功-电压耦合特性的电网频率控制方法
CN115864415A (zh) * 2023-02-16 2023-03-28 中国科学院电工研究所 弱网互联场景下柔性交直流配电系统稳定控制方法
CN115864415B (zh) * 2023-02-16 2023-04-25 中国科学院电工研究所 弱网互联场景下柔性交直流配电系统稳定控制方法
CN117878976A (zh) * 2024-03-13 2024-04-12 华北电力大学 一种基于三端柔性直流输电系统的受端频率支撑方法

Also Published As

Publication number Publication date
CN112086991A (zh) 2020-12-15
CN112086991B (zh) 2022-06-03
LU500835B1 (en) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2022041366A1 (zh) 一种基于多端柔性直流输电系统的电网调频方法
WO2022077847A1 (zh) 一种用于混合微电网mmc互联变换器的虚拟同步机控制方法
WO2021217900A1 (zh) 一种基于下垂控制的微网无功功率精确分配方法
CN108521136B (zh) 一种基于真双极柔性直流输电系统的多目标协同控制方法
CN111431208B (zh) 风电机组的电压源和电流源双模自适应协调控制方法
CN105743130B (zh) 提高虚拟同步发电机无功功率动态响应性能的方法
CN108173278B (zh) 新能源vsg调频的直流电压控制装置、方法及优化方法
CN106712106B (zh) 一种可抑制并联运行逆变器环流的虚拟阻抗在线调节法
CN110061529B (zh) 柔性多状态开关的平滑切换控制方法
CN110323763B (zh) 一种综合旋转惯性模拟与一次调频控制的逆变器调频方法
CN105576646A (zh) 基于附加有功信号的vsc-mtdc系统平衡控制系统及其方法
CN112467784A (zh) 一种混合微网换流器自适应虚拟同步机控制方法
CN105656072B (zh) 一种lcc‑mmc型直流输电系统功率协调控制方法
CN109347121A (zh) 基于同步整流器的下垂控制方法及低电压穿越方法
CN107968410A (zh) 一种提高交直流混联电网直流功率提升能力的方法
CN113394819B (zh) 孤岛海上风电场混合直流并网系统的协调控制方法及系统
CN107482630A (zh) 一种用于改善mmc‑upfc串联侧补偿电压电能质量的混合调制策略
CN116961116B (zh) 基于自适应q轴电压反馈的构网逆变器暂态稳定提升方法
CN112467789A (zh) 一种基于功率传输原则的混合微网虚拟同步机控制方法
CN106786592B (zh) 一种适用于柔性直流输电系统的孤岛切换控制方法和装置
CN115296325A (zh) 用于锁相环-构网型mmc换流站并联供电系统的控制方法
CN112152259B (zh) 一种防止电压越限的分布式光伏并网协同控制方法及系统
WO2022041365A1 (zh) 一种适用于电压源型换流器的限功率方法
CN107592026A (zh) 基于vsm的两电平牵引整流器的控制策略
CN113489044A (zh) 考虑线路电阻的多端柔性直流输电自适应下垂控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951034

Country of ref document: EP

Kind code of ref document: A1