WO2022041211A1 - 冷却套和电机 - Google Patents

冷却套和电机 Download PDF

Info

Publication number
WO2022041211A1
WO2022041211A1 PCT/CN2020/112531 CN2020112531W WO2022041211A1 WO 2022041211 A1 WO2022041211 A1 WO 2022041211A1 CN 2020112531 W CN2020112531 W CN 2020112531W WO 2022041211 A1 WO2022041211 A1 WO 2022041211A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling jacket
channel
section
channels
sub
Prior art date
Application number
PCT/CN2020/112531
Other languages
English (en)
French (fr)
Inventor
王坤
黄建成
胡亮
刘伟干
Original Assignee
舍弗勒技术股份两合公司
王坤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 王坤 filed Critical 舍弗勒技术股份两合公司
Priority to CN202080101843.4A priority Critical patent/CN115885456A/zh
Priority to US18/019,555 priority patent/US20230336048A1/en
Priority to DE112020007571.0T priority patent/DE112020007571T5/de
Priority to PCT/CN2020/112531 priority patent/WO2022041211A1/zh
Publication of WO2022041211A1 publication Critical patent/WO2022041211A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets

Definitions

  • the present invention relates to the field of cooling jackets, and in particular to cooling jackets for electrical machines and electrical machines comprising the same.
  • a cooling jacket can be integrated on the motor housing in order to dissipate heat from the motor.
  • the cooling jacket usually has an interference fit with the stator of the motor inside it, and the heat generated inside the motor (eg, most of the iron and copper losses) can be transferred from the stator to the cooling jacket through the direct contact of the metal parts.
  • the peripheral wall of the cooling jacket defines a channel for circulating cooling liquid, and the cooling jacket can be cooled by circulating the cooling liquid by pumping the cooling liquid through the channel.
  • FIG. 1 shows a schematic diagram of the course of a possible cooling jacket and the passages 1 arranged thereon.
  • the cooling jacket has a cylindrical shape, and the channel 1 extends helically from one axial end of the outer peripheral wall of the cooling jacket to the other end.
  • the cooling liquid is supplied with pressure by an external pump and flows into the channel from the beginning end 1a of the channel 1, flows along the channel to the end 1b and then flows out of the cooling jacket, and then circulates again under the action of the pump.
  • the hollow arrows in the figure show the flow direction of the coolant.
  • FIG. 2 shows a schematic diagram of another possible cooling jacket and the passage 1 arranged thereon.
  • the channel 1 does not extend in a helical shape, but roughly circles around the circumference of the cooling jacket by a distance of one channel width along the inclined section, and then starts a new circle of annular channels, so reciprocating from the starting end 1a extends to terminal 1b.
  • both the start end 1a and the end end 1b of the channel 1 shown in FIGS. 1 and 2 are located at two different ends in the axial direction of the cooling jacket.
  • the above two solutions cannot meet the requirements.
  • the purpose of the present invention is to overcome or at least alleviate the above-mentioned deficiencies of the prior art, and to provide a cooling jacket and a motor.
  • a cooling jacket having a cylindrical shape and having an axial direction and a radial direction, the outer peripheral wall of the cooling jacket is partially recessed to form a passage for passing a cooling liquid, wherein,
  • the channel includes a plurality of straight sections and a plurality of inclined sections
  • the extension direction of the straight section is perpendicular to the axial direction, and the inclined section is connected with the straight section to change the direction of the passage,
  • At least part of the two straight sections connected at both ends of the inclined section are used for circulating cooling liquids in opposite directions.
  • the extending direction of the inclined section is not perpendicular to the extending direction of the axial direction and the straight section.
  • the extending directions of all the inclined segments are parallel to each other.
  • the channel has a beginning and a terminating end, and cooling fluid can flow along the channel from the beginning to the end and traverse the channel.
  • start end and the end end are aligned in the axial direction.
  • the channel is rounded at both the beginning and the end.
  • the portion where the straight section is connected to the inclined section forms a rounded corner.
  • the channel includes at least two sub-channels in parallel on the flow path.
  • the parallel-connected sub-channels do not run exactly the same over the entire flow path.
  • one of the sub-channels partially surrounds the other of the sub-channels in a partial section on the flow path.
  • the channel has a beginning and an end, and cooling fluid can flow along the channel from the beginning to the end and traverse each of the sub-channels.
  • the parallel sub-channels at the start end are parallel to each other, and the parallel sub-channels at the terminal end are parallel to each other.
  • the cross-sectional areas of the channels perpendicular to the flow direction are not exactly equal.
  • the cross-sectional areas of the channels perpendicular to the flow direction are not completely equal, and the parallel sub-channels have equal cross-sectional areas at the same cross-section on the flow path.
  • an electric motor including a rotor and a stator, characterized in that the electric motor further includes a cooling jacket according to the present invention, wherein the rotor and the stator are arranged inside the cooling jacket week.
  • the cooling jacket according to the present invention has a good heat dissipation effect, and the motor according to the present invention has the same advantages.
  • Figure 1 is a schematic diagram of one possible cooling jacket.
  • Figure 2 is a schematic diagram of another possible partial passage of the cooling jacket.
  • FIG 3 is a schematic view of a cooling jacket according to a first embodiment of the present invention.
  • 4 and 5 are schematic views of two different channels of a cooling jacket according to a second embodiment of the present invention.
  • Fig. 6 is a schematic view of a channel of a cooling jacket according to a third embodiment of the present invention.
  • A represents the axial direction of the cooling jacket, which is consistent with the axial direction of the motor;
  • R represents the radial direction of the cooling jacket, which is consistent with the radial direction of the motor.
  • the cooling jacket is cylindrical, the inner peripheral part of the cooling jacket is used for accommodating the rotor and the stator of the motor, and the outer periphery of the cooling jacket is used for covering the casing of the motor.
  • the outer peripheral wall of the cooling jacket is partially recessed radially inward to form a passage 10 for circulating the cooling liquid.
  • the channel 10 includes a plurality of straight sections and a plurality of inclined sections.
  • the straight section extends along the circumferential direction of the cooling jacket, or the extension direction of the straight section is perpendicular to the axial direction A.
  • each straight section When each straight section extends less than one circle in the circumferential direction, it is connected with an inclined section which guides the channel 10 to different regions in the axial direction A.
  • the inclined sections extend along the cylindrical helix, and the extension distance of each inclined section on the outer circumference of the cooling jacket is less than one circle.
  • the extending directions of all the inclined sections are parallel to each other.
  • the straight sections and the inclined sections are arranged alternately with each other, so that the channel 10 spirals around the outer circumference of the cooling jacket in a serpentine shape.
  • the directions of the two straight sections connected at both ends of the partial inclined section are opposite, so that the fluid flows in opposite directions in the two straight sections.
  • the straight section 112 and the straight section 114 connected to the inclined section 113 in FIG. 3 are adjacent and have opposite directions.
  • the inclined section will guide the channel 10 to reverse spirally toward the starting end, so that the beginning end 10a and the end 10b of the channel 10 are located on the axial direction A of the cooling jacket. same end to accommodate the flow path arrangement outside the cooling jacket.
  • the start end 10a and the end end 10b can also be located in the axial direction A Aligned up but not at the axial ends, eg both at the axial middle.
  • the channel 10 can spiral from one end of the axial direction to the other end of the axial direction, and can spiral from the other end of the axial direction to one end of the axial direction, it is also possible to make the start end 10a and the end end 10b misaligned in the axial direction A according to the needs. are not located at both ends of the axial direction.
  • the channel 10 includes two sub-channels connected in parallel on the flow path, and the two sub-channels lead from the start end 10a to the end end 10b in a partially identical (ie parallel) and partially different (ie non-parallel) orientation.
  • the hollow arrows and the shaded arrows in the figure show the direction of the two sub-channels, respectively.
  • two sub-channels are divided, which are the straight section 111 and the straight section 121 respectively.
  • the straight section 111 and the straight section 112 in the figure are actually the same straight section, and the straight section 121 and the straight section 122 are actually the same straight section.
  • the initial orientation of the two sub-channels is the same, that is, the segment formed by the straight section 111 (ie, the straight section 112 ) and the inclined section 113 is parallel to the section formed by the straight section 121 (ie, the straight section 122 ) and the inclined section 123 set up.
  • the course of the parallel subchannels is partially different, so that one subchannel partially surrounds the other subchannel.
  • the sub-channel following the inclined section 123 in FIG. 3 partially surrounds the outer circumference of another parallel sub-channel.
  • the two straight sections connected by the inclined section can change the direction of rotation, which enables the channel to spiral from one end to the other end in the axial direction A in such a way that the straight section does not make a full circle in the circumferential direction, and then from the other end.
  • the other end spirals back in the opposite direction; the parallel connection of the two sub-channels with different directions reduces the number of commutations of the channel during the circling process, so that the kinetic energy loss and pressure loss of the fluid during the commutation process are small.
  • a rounded corner is formed between the straight section and the inclined section, so as to reduce the pressure drop of the cooling liquid during the reversal process.
  • the channel 10 is rounded at both the start end 10a and the end end 10b.
  • the straight section 122 ⁇ inclined section 123 ⁇ straight section 124 the straight section 122 and the straight section 124 are separated by the width of a channel, and the flow direction of the cooling liquid is not reversed (only turned instead of reversed) direction), the angle between the straight section 122 and the inclined section 123 is greater than 90 degrees, and the angle between the inclined section 123 and the straight section 124 is also greater than 90 degrees, which reduces the flow resistance.
  • the straight section 112 is connected to the straight section 114 via the inclined section 113.
  • the straight section 112 and the straight section 114 are adjacent to each other and the cooling liquid flows in opposite directions.
  • the angle between is less than 90 degrees, and the straight section 112 is located upstream of the straight section 114 .
  • FIGS. 4 and 5 a cooling jacket according to a second embodiment of the present invention will be described with reference to FIGS. 4 and 5 .
  • This embodiment is a modification of the first embodiment, and descriptions of the same parts as those of the first embodiment are omitted.
  • FIG. 4 and FIG. 5 only schematically illustrate the direction of the channel 10 , and are not used to limit the specific structure of the channel 10 .
  • the channel 10 preferably has rounded corners at the reversal and ends.
  • the cross-sectional areas of the channel 10 perpendicular to the flow direction are not completely equal.
  • the cross-sectional areas of the parallel sub-channels at the same cross-section on the flow path are equal, so as to avoid the pressures in the parallel sub-channels being different and the fluid tending to flow to the sub-channels with lower pressure.
  • the cross-sectional width of the main section of the sub-channel of the channel 10 is W0
  • the cross-sectional width of the sub-channel at sections 101 and 102 is W1
  • the cross-section of the sub-channel at sections 103 and 104 The width is W2, W1>W0>W2.
  • the cross-sectional areas at sections 101 and 102 are larger than the cross-sectional areas at sections 103 and 104 .
  • the cooling jacket can dissipate heat faster in areas with smaller channel cross-sectional areas. That is, the heat of the cooling jacket area covered by sections 103 and 104 in FIG. 4 will be carried away by the cooling fluid more quickly.
  • the design that the heat dissipation speed of different areas on the surface of the cooling jacket is not equal is especially suitable for the phenomenon of uneven heating inside the motor.
  • FIG. 5 shows a way of reducing the cross-sectional area of the sub-channels of only a part of the sections.
  • the cross-sectional width of the main section of the sub-channels of the channel 10 is W0
  • the sub-channels of the sub-channels in sections 103 and 104 The section width at is W2, W0>W2.
  • FIG. 6 only schematically shows the direction of the channel 10 , and is not used to limit the specific structure of the channel 10 .
  • the channel 10 preferably has rounded corners at the reversal and the ends.
  • the channel 10 is not provided with sub-channels in parallel, but a single channel runs through the start end 10a and the end end 10b.
  • the flow paths are in sequence section 11, section 12, section 13, section 14, section 15, section 16, section 17, section 18, section 19, Section 20, Section 21, Section 22, Section 23, Section 24 to Section 25.
  • the straight sections connected at both ends of the inclined section are opposite, the straight sections are not connected end to end on each circumference around the cooling jacket, which provides space for the end 10b to return to the axial position where the beginning end 10a is located, so that the beginning end of the channel 10 10a and terminal 10b are located at the same end in the axial direction A of the cooling jacket.
  • the present invention also provides a motor including the above cooling jacket.
  • the starting end 10a and the end 10b of the cooling jacket channel 10 according to the present invention can be located at the same position or any different position on the axial direction A of the cooling jacket, which can adapt to different interior space designs of different models of vehicles.
  • the channel 10 of the cooling jacket according to the present invention can substantially cover the outer circumference of the cooling jacket, and there is no region where the cooling liquid is stationary, and the cooling jacket has good heat dissipation performance.
  • the cross-sectional area of the passage 10 of the cooling jacket according to the present invention is adjustable, and different cross-sectional areas of the passage can be designed according to the different heating rates of different areas on the surface of the cooling jacket, so that the cooling jacket can dissipate heat more efficiently.
  • the channel 10 of the cooling jacket according to the present invention can be formed by two or more sub-channels in parallel, and the directions of these sub-channels on the flow path are not exactly the same, so that the number of times of reversal of the channel 10 is less, cooling The pressure drop of the liquid along the channel 10 is small.
  • the channel 10 of the cooling jacket according to the present invention is designed with rounded corners at both ends and in the direction of reversal, so that the pressure drop of the cooling liquid in the process of circulating along the channel 10 is small, and it is not easy to form an area where the cooling liquid is still .
  • the channel of the cooling jacket according to the present invention may be only a part of a certain full channel, and the channel of this part can be connected with other channels to form the full channel of the cooling jacket.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种冷却套,其呈筒形并具有轴向(A)和径向(R),所述冷却套的外周壁部分地凹陷而形成用于使冷却液通过的通道,其中,所述通道包括多个直段和多个斜段,所述直段的延伸方向与所述轴向(A)垂直,所述斜段与所述直段相连以改变所述通道的走向,至少部分所述斜段的两端所连接的两个所述直段用于流通走向相反的冷却液。本发明还提供一种电机。

Description

冷却套和电机 技术领域
本发明涉及冷却套领域,且特别地涉及用于电机的冷却套和包括该冷却套的电机。
背景技术
通常,为了给电机散热,可以在电机壳体上集成冷却套。冷却套通常与位于其内部的电机的定子过盈配合,电机内部所产生的热量(例如大部分的铁损和铜损)可以通过金属件的直接接触而从定子传递给冷却套。冷却套的周壁限定出用于供冷却液流通的通道,通过循环地泵送冷却液,使冷却液流过上述通道,便能给冷却套降温。
图1示出了一种可能的冷却套及设置于其上的通道1的走向示意。该冷却套呈圆筒形,通道1呈螺旋形地从冷却套的外周壁的轴向一端延伸至另一端。冷却液由外部泵提供压力而从通道1的始端1a流入通道,在沿通道流至终端1b后流出冷却套,之后在泵的作用下再次循环。图中的空心箭头示出了冷却液的流向。
然而,通道1的螺旋走向使得冷却套上有部分区域不能被通道1覆盖,如图中虚线框所示,这部分区域由于得不到及时的降温而可能积聚过多的热量、有过高的温度。上述热量积聚区域的高温可能会影响功率集成单元(PEU)对电机的控制,使电机的运行功率受限;局部过高的温度也会加速位于冷却套和电机壳体之间的密封圈的老化,影响密封性能。
图2示出了另一种可能的冷却套及设置于其上的通道1的走向示意。该方案中,通道1不是沿螺旋形延伸,而是沿冷却套的周向大致环绕一周后沿斜段偏移一个通道宽度的距离,之后开始一圈新的环形通道,如此往复地从始 端1a延伸至终端1b。
该方案虽然使得通道1能覆盖冷却套周壁的大部分区域,然而,由于通道存在转向,在始端1a和终端1b的附近存在冷却液不容易流动、甚至静止的区域,如图2中虚线框部分所示。这部分区域仍然会存在热量积聚。
此外,图1和图2所示的通道1的始端1a和终端1b均位于冷却套的轴向上的两个不同的端部。对于电机或车辆内部有特殊设计要求而希望始端1a和终端1b位于冷却套的轴向上的同一个端部的情况,上述两种方案均无法满足要求。
发明内容
本发明的目的在于克服或至少减轻上述现有技术存在的不足,提供一种冷却套和电机。
根据本发明的第一方面,提供一种冷却套,其呈筒形并具有轴向和径向,所述冷却套的外周壁部分地凹陷而形成用于使冷却液通过的通道,其中,
所述通道包括多个直段和多个斜段,
所述直段的延伸方向与所述轴向垂直,所述斜段与所述直段相连以改变所述通道的走向,
至少部分所述斜段的两端所连接的两个所述直段用于流通走向相反的冷却液。
在至少一个实施方式中,所述斜段的延伸方向与所述轴向和所述直段的延伸方向均不垂直。
在至少一个实施方式中,所有所述斜段的延伸方向彼此平行。
在至少一个实施方式中,所述通道具有始端和终端,冷却液能沿所述通道从所述始端流至所述终端并遍历所述通道。
在至少一个实施方式中,所述始端和所述终端在所述轴向上对齐。
在至少一个实施方式中,所述通道在所述始端和所述终端处均形成圆角。
在至少一个实施方式中,所述直段与所述斜段相连的部分形成圆角。
在至少一个实施方式中,所述通道包括至少两个在流通路径上并联的子通道。
在至少一个实施方式中,并联的所述子通道在整个流通路径上的走向不完全相同。
在至少一个实施方式中,在所述流通路径上的部分区段,一个所述子通道部分地环绕另一个所述子通道。
在至少一个实施方式中,所述通道具有始端和终端,冷却液能沿所述通道从所述始端流至所述终端并遍历每个所述子通道。
在至少一个实施方式中,位于所述始端处的并联的所述子通道彼此平行,位于所述终端处的并联的所述子通道彼此平行。
在至少一个实施方式中,所述通道在垂直于流通方向上的截面积不完全相等。
在至少一个实施方式中,所述通道在垂直于流通方向上的截面积不完全相等,且并联的所述子通道在流通路径上的同一截面处的截面积相等。
根据本发明的第二方面,提供一种电机,其包括转子和定子,其特征在于,所述电机还包括根据本发明的冷却套,所述转子和所述定子设置于所述冷却套的内周。
根据本发明的冷却套散热效果好,根据本发明的电机具有同样的优点。
附图说明
图1是一种可能的冷却套的示意图。
图2是另一种可能的冷却套的部分通道的示意图。
图3是根据本发明的第一实施方式的冷却套的示意图。
图4和图5是根据本发明的第二实施方式的冷却套的两种不同的通道的示意图。
图6是根据本发明的第三实施方式的冷却套的通道的示意图。
具体实施方式
下面参照附图描述本发明的示例性实施方式。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本发明,而不用于穷举本发明的所有可行的方式,也不用于限制本发明的范围。
除非特别说明,参照图3至图6,A表示冷却套的轴向,该轴向A与电机的轴向一致;R表示冷却套的径向,该径向R与电机的径向一致。
(第一实施方式)
首先参照图3介绍根据本发明的第一实施方式的冷却套。
该冷却套呈圆筒形,冷却套的内周部分用于容纳电机的转子和定子,冷却套的外周用于套设电机的壳体。冷却套的外周壁部分地向径向内侧凹陷而形成用于流通冷却液的通道10。
通道10包括多个直段和多个斜段。
直段沿冷却套的周向延伸,或者说直段的延伸方向与轴向A垂直。
每个直段在沿周向延伸不足一圈时,与一个斜段相连,斜段将通道10导引至轴向A上的不同区域。斜段沿圆柱螺旋线延伸,且每个斜段在冷却套的外周的延伸距离不足一圈。优选地,为了使通道10在冷却套的周壁上覆盖尽量多的区域,所有斜段的延伸方向彼此平行。
直段和斜段彼此交替地设置,使得通道10呈蛇形地在冷却套的外周环绕 盘旋。
部分斜段两端所连接的两个直段的走向相反,以供流体在这两个直段内以相反的方向流通。例如,图3中的斜段113所连的直段112和直段114相邻且走向相反。
当通道10以蛇形从轴向A上的一端盘旋至另一端后,斜段将引导通道10向起始端反向盘旋,使得通道10的始端10a和终端10b位于冷却套的轴向A上的同一端,以适应冷却套外部的流路布置。
应当理解,除了图中所示的始端10a和终端10b均位于冷却套的轴向端部的方式,根据冷却套外部的流路的不同设计需求,也可以使始端10a和终端10b在轴向A上对齐但是不位于轴向端部,例如均位于轴向中部。此外,由于通道10既能从轴向一端朝轴向另一端盘旋,又能从轴向另一端朝轴向一端盘旋,因此也可以根据需要使始端10a和终端10b在轴向A上不对齐且不分别位于轴向两端。
在本实施方式中,通道10包括两个在流通路径上并联的子通道,这两个子通道以部分相同(即平行)、部分不相同(即不平行)的走向从始端10a通至终端10b。图中空心箭头和有阴影填充的箭头分别示出了这两个子通道的走向。
例如,图3中从始端10a出发分出两个子通道,分别为直段111和直段121。应当理解,图中的直段111和直段112实际上是同一个直段,直段121和直段122实际上是同一个直段。
两个子通道的初始走向相同,即,直段111(即,直段112)和斜段113所构成的区段与直段121(即,直段122)和斜段123所构成的区段平行地设置。
而在斜段113和斜段123之后,这两个子通道的走向不同。
在与终端10b相连的区段,上述两个子通道的走向又再次相同。
并联的子通道的走向部分地不相同,这使得一个子通道部分地环绕另一个子通道。例如,图3中斜段123之后的子通道部分地环绕在另一个与其并行的子通道的外周。
综上,被斜段相连的两个直段能改变环绕方向,这使得通道能以直段在周向上不绕满一整圈的方式在轴向A上从一端盘旋到另一端,之后再从另一端反向盘旋回来;而并联的、走向不完全相同的两个子通道使得通道在盘旋过程中的换向次数减少,使得流体在换向过程中的动能损失小,压力损失小。
优选地,通道10在每一次换向时,直段和斜段之间均形成圆角,以减小冷却液在换向过程中的压降。
优选地,通道10在始端10a和终端10b处均形成圆角。
参照图3,在直段122→斜段123→直段124的这一段通道中,直段122和直段124间隔开一个通道的宽度,冷却液的流向未发生反向(仅转向而非反向),直段122和斜段123之间的角度大于90度,斜段123和直段124之间的角度也大于90度,这减小了流阻。换言之,通道中存在如下部分,一个斜段使经该斜段相连接的两个直段在轴向A上间隔开一个或多个通道的宽度,在该部分中,冷却液的流向未发生反向。
直段112经由斜段113与直段114连接,直段112和直段114相邻且冷却液的流向相反,直段112和斜段113之间的角度大于90,斜段113和直段114之间的角度小于90度,直段112位于直段114的上游。换言之,通道中存在如下区段,一个斜段使经该斜段相连接的两个直段在轴向A上相邻或间隔开多个通道的宽度,在该区段中,冷却液的流向发生反向,即转向180度,斜段的两端形成的两个转角一个是钝角一个是锐角,钝角位于锐角的上游,这减小了流阻。
(第二实施方式)
接下来参照图4和图5介绍根据本发明的第二实施方式的冷却套。该实施方式是第一实施方式的变型,对于与第一实施方式相同的部分省略说明。应当理解,图4和图5只是示意性地示出了通道10的走向,而不用于限制通道10的具体结构,例如,通道10在换向处和端部处,优选是具有圆角的。
在本实施方式中,在流通路径上的不同区域,通道10在垂直于流通方向上的截面积不完全相等。优选地,并联的子通道在流通路径上的同一截面处的截面积相等,以避免并联的子通道内压力不同而使流体趋于流向压力较小的子通道。
参照图4,通道10的子通道的主区段的截面宽度为W0,而子通道在区段101和区段102处的截面宽度为W1,子通道在区段103和区段104处的截面宽度为W2,W1>W0>W2。换言之,区段101和区段102处的截面积大于区段103和区段104处的截面积。
根据流体力学的伯努利方程,在流量相同的情况下,通道截面积越小,流速越快。因此,冷却套在通道截面积较小的区域可以得到更快地散热。即,图4中的区段103和区段104所覆盖的冷却套区域的热量将会更快地被冷却液带走。
这种冷却套表面不同区域的散热速度不相等的设计,尤其适应于电机内部发热不均匀的现象。
应当理解,除了图4所示的使部分区段的子通道截面积变大、另一部分区段的子通道截面积变小的方式外,改变通道截面积也可以是只使一部分区段的子通道的截面积变小、或是只使一部分区段的子通道的截面积变大。
图5示出了只使一部分区段的子通道的截面积变小的方式,图5中通道10的子通道的主区段的截面宽度为W0,而子通道在区段103和区段104处的截 面宽度为W2,W0>W2。
(第三实施方式)
接下来参照图6介绍根据本发明的第三实施方式的冷却套。该实施方式是第一实施方式的变型,对于与第一实施方式相同的部分省略说明。应当理解,图6只是示意性地示出了通道10的走向,而不用于限制通道10的具体结构,例如,通道10在换向处和端部处,优选是具有圆角的。
在本实施方式中,通道10不设置并联的子通道,而是由单个通道贯穿始端10a和终端10b。对于图6所示的通道10,其流通路径依次为区段11、区段12、区段13、区段14、区段15、区段16、区段17、区段18、区段19、区段20、区段21、区段22、区段23、区段24至区段25。
由于斜段两端所连接的直段走向相反,直段在环绕冷却套的每一周上首尾均不相连,这为终端10b回到始端10a所在的轴向位置提供了空间,使得通道10的始端10a和终端10b位于冷却套的轴向A上的同一端。
应当理解,上述实施方式、尤其是第二和第三实施方式及其部分方面或特征可以适当地组合。
应当理解,本发明还提供一种包括上述冷却套的电机。
下面简单说明本发明的上述实施方式的部分有益效果。
(i)根据本发明的冷却套的通道10的始端10a和终端10b可以位于冷却套的轴向A上的相同位置、或任意不同位置,能够适应不同型号车辆的不同内部空间设计。
(ii)根据本发明的冷却套的通道10能在冷却套的外周实现基本全覆盖,且不存在冷却液静止不动的区域,冷却套的散热性能好。
(iii)根据本发明的冷却套的通道10的截面积是可调的,可以根据冷却套表面不同区域的不同发热速度而设计通道的不同截面积,使冷却套能更有 效地散热。
(iv)根据本发明的冷却套的通道10可以由两个或更多个子通道并联而成,且这些子通道在流通路径上的走向不完全相同,使得通道10的换向次数较少,冷却液在沿通道10流通过程中的压降较小。
(v)根据本发明的冷却套的通道10在端部和换向处均设计为圆角,使得冷却液在沿通道10流通过程中的压降较小,且不容易形成冷却液静止的区域。
应当理解,上述实施方式仅是示例性的,不用于限制本发明。本领域技术人员可以在本发明的教导下对上述实施方式做出各种变型和改变,而不脱离本发明的范围。例如,根据本发明的冷却套的通道可以只是某个全通道的一部分,这个部分的通道能与其它形式的通道相连而构成冷却套的全通道。

Claims (15)

  1. 一种冷却套,其呈筒形并具有轴向(A)和径向(R),所述冷却套的外周壁部分地凹陷而形成用于使冷却液通过的通道,其中,
    所述通道包括多个直段和多个斜段,
    所述直段的延伸方向与所述轴向(A)垂直,所述斜段与所述直段相连以改变所述通道的走向,
    至少部分所述斜段的两端所连接的两个所述直段用于流通走向相反的冷却液。
  2. 根据权利要求1所述的冷却套,其特征在于,所述斜段的延伸方向与所述轴向(A)和所述直段的延伸方向均不垂直。
  3. 根据权利要求1所述的冷却套,其特征在于,所有所述斜段的延伸方向彼此平行。
  4. 根据权利要求1所述的冷却套,其特征在于,所述通道具有始端(10a)和终端(10b),冷却液能沿所述通道从所述始端(10a)流至所述终端(10b)并遍历所述通道。
  5. 根据权利要求4所述的冷却套,其特征在于,所述始端(10a)和所述终端(10b)在所述轴向(A)上对齐。
  6. 根据权利要求4所述的冷却套,其特征在于,所述通道在所述始端(10a)和所述终端(10b)处均形成圆角。
  7. 根据权利要求1所述的冷却套,其特征在于,所述直段与所述斜段相连的部分形成圆角。
  8. 根据权利要求1所述的冷却套,其特征在于,所述通道包括至少两个在流通路径上并联的子通道。
  9. 根据权利要求8所述的冷却套,其特征在于,并联的所述子通道在整个流通路径上的走向不完全相同。
  10. 根据权利要求9所述的冷却套,其特征在于,在所述流通路径上的部分区段,一个所述子通道部分地环绕另一个所述子通道。
  11. 根据权利要求8所述的冷却套,其特征在于,所述通道具有始端(10a)和终端(10b),冷却液能沿所述通道从所述始端(10a)流至所述终端(10b)并遍历每个所述子通道。
  12. 根据权利要求11所述的冷却套,其特征在于,位于所述始端(10a)处的并联的所述子通道彼此平行,位于所述终端(10b)处的并联的所述子通道彼此平行。
  13. 根据权利要求1至12中任一项所述的冷却套,其特征在于,所述通道在垂直于流通方向上的截面积不完全相等。
  14. 根据权利要求8至12中任一项所述的冷却套,其特征在于,所述通道在垂直于流通方向上的截面积不完全相等,且并联的所述子通道在流通路径上的同一截面处的截面积相等。
  15. 一种电机,其包括转子和定子,其特征在于,所述电机还包括根据权利要求1至14中任一项所述的冷却套,所述转子和所述定子设置于所述冷却套的内周。
PCT/CN2020/112531 2020-08-31 2020-08-31 冷却套和电机 WO2022041211A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080101843.4A CN115885456A (zh) 2020-08-31 2020-08-31 冷却套和电机
US18/019,555 US20230336048A1 (en) 2020-08-31 2020-08-31 Cooling jacket and motor
DE112020007571.0T DE112020007571T5 (de) 2020-08-31 2020-08-31 Kühlmantel und Motor
PCT/CN2020/112531 WO2022041211A1 (zh) 2020-08-31 2020-08-31 冷却套和电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112531 WO2022041211A1 (zh) 2020-08-31 2020-08-31 冷却套和电机

Publications (1)

Publication Number Publication Date
WO2022041211A1 true WO2022041211A1 (zh) 2022-03-03

Family

ID=80354355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112531 WO2022041211A1 (zh) 2020-08-31 2020-08-31 冷却套和电机

Country Status (4)

Country Link
US (1) US20230336048A1 (zh)
CN (1) CN115885456A (zh)
DE (1) DE112020007571T5 (zh)
WO (1) WO2022041211A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3135577A1 (fr) * 2022-05-12 2023-11-17 Valeo Equipements Electriques Moteur Machine électrique tournante comprenant une chambre de refroidissement
WO2024017819A1 (de) * 2022-07-20 2024-01-25 Vitesco Technologies Germany Gmbh Gehäuse mit gehäusekühlung, elektrische maschine, verfahren zur kühlung der elektrischen maschine und kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340120A (zh) * 2007-07-03 2009-01-07 卡特彼勒公司 铸造槽电动机/发电机冷却机构
CN104037983A (zh) * 2013-03-04 2014-09-10 瑞美技术有限责任公司 具有带双向流动的冷却夹套的液体冷却的旋转电机
CN108377056A (zh) * 2018-04-26 2018-08-07 金勇� 一种电机液冷套
CN109510401A (zh) * 2018-11-02 2019-03-22 华南理工大学 外转子电机的冷却水道及其制造方法、外转子电机及其冷却系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340120A (zh) * 2007-07-03 2009-01-07 卡特彼勒公司 铸造槽电动机/发电机冷却机构
CN104037983A (zh) * 2013-03-04 2014-09-10 瑞美技术有限责任公司 具有带双向流动的冷却夹套的液体冷却的旋转电机
CN108377056A (zh) * 2018-04-26 2018-08-07 金勇� 一种电机液冷套
CN109510401A (zh) * 2018-11-02 2019-03-22 华南理工大学 外转子电机的冷却水道及其制造方法、外转子电机及其冷却系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3135577A1 (fr) * 2022-05-12 2023-11-17 Valeo Equipements Electriques Moteur Machine électrique tournante comprenant une chambre de refroidissement
WO2024017819A1 (de) * 2022-07-20 2024-01-25 Vitesco Technologies Germany Gmbh Gehäuse mit gehäusekühlung, elektrische maschine, verfahren zur kühlung der elektrischen maschine und kraftfahrzeug

Also Published As

Publication number Publication date
CN115885456A (zh) 2023-03-31
DE112020007571T5 (de) 2023-07-06
US20230336048A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
US10587169B2 (en) Rotor for an electric machine
WO2022041211A1 (zh) 冷却套和电机
US8026643B2 (en) Electrical machine with an internally cooled rotor
US20160141921A1 (en) Helical heat exchanger for electric motors
TWI455461B (zh) 冷卻套
KR100907937B1 (ko) 전동모터의 냉각장치
JP2004312886A (ja) 電動機の冷却構造
US20140102685A1 (en) Device for cooling a component of an electrical machine using cooling coils
WO2014093759A1 (en) High efficiency, low coolant flow electric motor coolant system
JP2019161798A (ja) 回転電機の冷却構造体
CN107534356B (zh) 具有有利的冷却机构的电机
CN115967208B (zh) 一种新能源汽车混合冷却式电机
CN110620478A (zh) 用于旋转电机的冷却装置和用于驱动车辆的旋转电机
CN106026449A (zh) 外转子电机冷却装置
CN213367539U (zh) 电动汽车用电机的水道结构、机壳及电机
CN111245144B (zh) 一种高效的三相异步电机
CN112865395A (zh) 用于高功率密度汽车电机的冷却系统
CN111980971A (zh) 泵装置
CN115425795B (zh) 一种双通道散热的电机壳体结构
CN111431323A (zh) 车辆的定子壳体和电机
KR102446038B1 (ko) 모터 장치
CN220122700U (zh) 电机的复合式水道机壳和车辆电机
CN220732450U (zh) 电机及车辆用动力系统
WO2022190183A1 (ja) 回転電機
CN108512364A (zh) 一种用于车辆悬挂电机的冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950880

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20950880

Country of ref document: EP

Kind code of ref document: A1