WO2022041194A1 - 极片、电化学装置和电子装置 - Google Patents

极片、电化学装置和电子装置 Download PDF

Info

Publication number
WO2022041194A1
WO2022041194A1 PCT/CN2020/112470 CN2020112470W WO2022041194A1 WO 2022041194 A1 WO2022041194 A1 WO 2022041194A1 CN 2020112470 W CN2020112470 W CN 2020112470W WO 2022041194 A1 WO2022041194 A1 WO 2022041194A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
edge region
pole piece
current collector
adhesive force
Prior art date
Application number
PCT/CN2020/112470
Other languages
English (en)
French (fr)
Inventor
朱珊
关婷
吴飞
曾巧
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to EP20950863.9A priority Critical patent/EP4203089A4/en
Priority to PCT/CN2020/112470 priority patent/WO2022041194A1/zh
Priority to CN202080009959.5A priority patent/CN113330601A/zh
Publication of WO2022041194A1 publication Critical patent/WO2022041194A1/zh
Priority to US18/175,824 priority patent/US20230231144A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electronic technology, in particular to pole pieces, electrochemical devices and electronic devices.
  • a bottom coating is usually added between the current collector and the active material layer.
  • the addition of the bottom coating can significantly improve the adhesion of the pole piece to the current collector, it loses the volumetric energy density of the electrochemical device (eg, lithium-ion battery). How to improve the electrical performance of electrochemical devices and ensure their volumetric energy density is a problem to be solved.
  • the present application adds a bottom coating to a specific area to improve the electrical performance and safety performance of the electrochemical device while minimizing the impact on the volumetric energy density of the electrochemical device.
  • Embodiments of the present application provide a pole piece, comprising: a current collector, including a first edge region, a second edge region, and a middle between the first edge region and the second edge region in a width direction regions; a first coating comprising first and second portions disposed on the first edge region and the second edge region, respectively; and a second coating, a portion of the second coating disposed on the On the middle region, another part of the second coating is disposed on the first coating, and the second coating includes an active material; wherein there is a first part between the first part and the first edge region adhesion, a second adhesion between the second portion and the second edge region, a third adhesion between the second coating and the intermediate region, the first adhesion Both the knot force and the second adhesion force are greater than the third adhesion force.
  • the first portion has a width d1
  • the second portion has a width d2
  • the second coating has a width D, 1% ⁇ d1/D ⁇ 20%, 1% ⁇ d2/D ⁇ 20%.
  • the first adhesion force and the second adhesion force are both 2 to 5 times the third adhesion force; and/or the first adhesion force and the third adhesion force are Both adhesive forces are greater than 10N/m.
  • the thickness of the first coating is h
  • the thickness of the second coating is H, 0.5 ⁇ m ⁇ h ⁇ 8 ⁇ m, and 20 ⁇ m ⁇ H ⁇ 200 ⁇ m.
  • the first coating includes a first conductive agent and a first binder
  • the first conductive agent includes conductive carbon black, carbon nanotubes, conductive graphite, graphene, acetylene black, or carbon nanofibers
  • the first binder includes polyvinylidene fluoride, vinylidene fluoride-fluorinated olefin copolymer, polyvinylpyrrolidone, polyacrylonitrile, polymethyl acrylate, polytetrafluoroethylene, carboxylate
  • the mass content of the first conductive agent is 30% to 80%
  • the mass of the first binder The content is 20% to 70%.
  • the first part and/or the second part are non-continuously coated in the length direction of the current collector, and the sum of the coating length of the first part and the second coating layer
  • the ratio of the coating length of the second portion is greater than 80%, and the ratio of the total coating length of the second portion to the length of the second coating layer is greater than 80%.
  • at least a portion of the current collector is etched.
  • the first edge region and the second edge region are etched, and the roughness of the first edge region and the second edge region is 2 to 4 times that of the intermediate region.
  • an electrochemical device comprising: a positive pole piece; a negative pole piece; and a separator disposed between the positive pole piece and the negative pole piece; wherein the positive pole piece
  • the pole piece and/or the negative pole piece is any one of the pole pieces described above.
  • Embodiments of the present application also provide an electronic device, including the above electrochemical device.
  • the present application by arranging coatings with different cohesive forces on the edge region of the current collector, so that the cohesive force between the coating and the current collector is greater than the cohesive force between the active material coating and the current collector, preventing the The current collector is peeled off during the cycle of the electrochemical device, which improves the electrical performance and safety performance of the electrochemical device, and at the same time, because the coating is only provided on the edge region of the current collector, the volume energy density of the electrochemical device can be minimized. Impact.
  • FIG. 1 shows a front view of a pole piece according to an embodiment of the present application.
  • Figure 2 shows a top view of the first coating (continuous) and current collector of an embodiment of the present application.
  • Figure 3 shows a top view of the first coating (discontinuous) and current collector of another embodiment of the present application.
  • FIG. 4 shows a front view of an electrode assembly of an electrochemical device according to an embodiment of the present application.
  • the pole piece may include a current collector 1 including a first edge region 4 , a second edge region 5 and an intermediate region 6 between the first edge region 4 and the second edge region 5 in the width direction. It should be understood that although the first edge region 4 , the second edge region 5 and the middle region 6 are distinguished by dashed lines in FIG. 1 , the demarcation at the dashed lines may not actually exist.
  • the pole piece further includes a first coating 2, which may include a first portion 7 and a second portion 8 disposed on the first edge region 4 and the second edge region 5, respectively.
  • the material, width and thickness, etc. of the first portion 7 and the second portion 8 may be the same or different.
  • the pole piece further includes a second coating 3, a part of the second coating 3 is provided on the middle region 6, another part of the second coating 3 is provided on the first coating 2, and the second coating 3 Include active material.
  • the first coating layer 2 is provided on the first edge region 4 and the second edge region 5 of the current collector 1, so that the adhesive force between the first coating layer 2 and the current collector 1 is greater than that of the second coating layer.
  • the adhesive force between the layer 3 and the intermediate region 6 prevents peeling between the current collector 1 and the second coating 3 during the cycle of the electrochemical device, improves the electrical performance and safety performance of the electrochemical device, and at the same time Since the coating is provided only on the first and second edge regions 4, 5 of the current collector 1, the influence on the volumetric energy density of the electrochemical device can be minimized.
  • the first portion 7 has a width d1
  • the second portion 8 has a width d2
  • the second coating 3 has a width D, 1% ⁇ d1/D ⁇ 20%, 1% ⁇ d2/D ⁇ 20%. If the width of the first part 7 or the second part 8 is too small, eg less than 1% of the width of the second coating 3, the first coating 2 improves the adhesion between the second coating 3 and the current collector 1. limited effect. Usually, because the binder content in the second coating is limited, the bonding force between it and the current collector is also relatively limited. If the first coating is not provided between the current collector and the second coating, the second coating The expansion and contraction that occur during the cycle tend to cause peeling between the second coating and the current collector.
  • the relationship between the second coating and the current collector is improved. Adhesion between the fluids, thereby avoiding peeling between the second coating and the current collector. If the width of the first portion or the second portion is too large, eg, greater than 20% of the width of the second coating, the volumetric energy density of the electrochemical device can be adversely affected. In some embodiments, in order to further reduce the impact on the volumetric energy density of the electrochemical device, while still achieving greater adhesion between the first coating and the current collector, 1% ⁇ d1/D ⁇ 10% , 1% ⁇ d2/D ⁇ 10%.
  • the first adhesion force and the second adhesion force are each 2 to 5 times the third adhesion force. In some embodiments, both the first adhesion force and the second adhesion force are greater than 10 N/m. In this way, the adhesion between the second coating and the current collector can be better improved.
  • the thickness of the first coating 2 is h
  • the thickness of the second coating 3 is H, 0.5 ⁇ m ⁇ h ⁇ 8 ⁇ m, and 20 ⁇ m ⁇ H ⁇ 200 ⁇ m.
  • the thickness H of the second coating refers to the thickness of the second coating 3 on the central region 6 or the sum of the thicknesses of the first part 7 of the first coating 2 and the second coating 3 on the first edge region 4 , or the sum of the thicknesses of the second portion 8 of the first coating 2 and the second coating 3 on the second edge region 5 . If the thickness of the first coating is too small, eg, less than 0.5 ⁇ m, the effect of improving the adhesion between the second coating and the current collector is limited.
  • the thickness of the first coating layer is too large, the volumetric energy density of the electrochemical device is adversely affected. If the thickness of the second coating is too small, the amount of active material per unit area will be too small, which will affect the volumetric energy density of the electrochemical device. If the thickness of the second coating layer is too large, the intercalation and deintercalation efficiency of lithium ions will be affected because the moving path of intercalation and deintercalation of lithium ions at the second coating layer near the current collector is too long.
  • the first coating 2 includes a first conductive agent and a first binder.
  • the first conductive agent includes at least one of conductive carbon black, carbon nanotubes, conductive graphite, graphene, acetylene black, or carbon nanofibers.
  • the first binder includes polyvinylidene fluoride, copolymers of vinylidene fluoride-fluorinated olefins, polyvinylpyrrolidone, polyacrylonitrile, polymethylacrylate, polytetrafluoroethylene, carboxymethyl At least one of sodium cellulose, styrene-butadiene rubber, polyurethane, fluorinated rubber or polyvinyl alcohol.
  • the mass content of the first conductive agent in the first coating is 30% to 80%, and the mass content of the first binder is 20% to 70%. If the mass content of the first conductive agent is too small, the conductivity of the first coating layer may be adversely affected. If the mass content of the first conductive agent is too large, the mass content of the first binder will be too small, which will affect the adhesion performance of the first coating.
  • FIG. 1 shows that the first coating 2 and the second coating 3 are formed on both sides of the current collector 1 , this is only an example, and it may be only on one side of the current collector 1 A first coating layer 2 and a second coating layer 3 are formed thereon.
  • FIG. 2 a top view of the first coating (continuous) and current collector of an embodiment of the present application is shown. For simplicity, only the intermediate region 6 of the current collector 1 and the first 7 and second 8 parts of the first coating 2 are shown. The dotted line in FIG. 2 shows the position of the pole piece.
  • the first coating 2 By disposing the first coating 2 on the edge region of the current collector, the influence of stress and the burr of the current collector can be reduced during the slicing process. produce.
  • the first portion 7 and/or the second portion 8 may be continuously coated along the length of the current collector 1 .
  • the first part 7 and/or the second part 8 may be non-continuously coated in the length direction of the current collector 1 , and the sum of the coating length of the first part 7 and the second coating
  • the ratio of the length of the layer 3 is greater than 80%, and the ratio of the sum of the coated lengths of the second portion 8 to the length of the second coating 3 is greater than 80%.
  • the regions in the current collector 1 are etched.
  • the roughness of the current collector can be correspondingly increased, thereby increasing the adhesive force between the current collector and the first coating layer or the second coating layer.
  • the first edge region and the second edge region are etched, and the roughness of the first edge region 4 and the second edge region 5 is 2 to 4 times that of the intermediate region 6 .
  • the etching may be performed at the region where the current collector of the first coating is provided.
  • the etching is mainly performed in the manner of browning or blackening. Of course, other suitable manners can also be used for etching.
  • the roughness of the etched regions of the current collector is 2 to 4 times that of the unetched regions. In some embodiments, the roughness of the unetched regions is less than 2 ⁇ m.
  • the pole piece of the present application can be either a positive pole piece or a negative pole piece.
  • an embodiment of the present application also provides an electrochemical device.
  • the electrochemical device includes a separator 11 , a positive electrode piece 12 and a negative electrode electrode piece 13 , and the separator film 11 is arranged on the positive electrode electrode piece 12 and the negative electrode electrode. Between the pieces 13, the positive pole piece 12 and/or the negative pole piece 13 are pole pieces of the above structure.
  • the positive electrode current collector of the positive electrode sheet 12 can be aluminum (Al) foil, of course, other positive electrode current collectors commonly used in the art can also be used.
  • the thickness of the positive electrode current collector may be 1 ⁇ m ⁇ 200 ⁇ m.
  • the active material of the second coating 3 may include lithium cobalt oxide, lithium manganate, lithium iron phosphate, lithium nickel cobalt manganate, lithium nickel cobalt aluminate or At least one of lithium nickel manganate.
  • the second coating 3 also includes a binder and a conductive agent.
  • the binder in the second coating 3 may include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, styrene-acrylate copolymer, styrene-butadiene copolymer , polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, sodium carboxymethyl cellulose, polyvinyl acetate, polyvinylpyrrolidone, polyvinyl ether, polymethyl methacrylate, poly At least one of tetrafluoroethylene or polyhexafluoropropylene.
  • the conductive agent in the second coating layer 3 may include at least one of conductive carbon black, Ketjen black, lamellar graphite, graphene, carbon nanotubes or carbon fibers.
  • the mass ratio of the positive electrode active material, the conductive agent and the binder in the second coating layer 3 may be 91-99:0.5-3:0.5-6. It should be understood that the above descriptions are only examples, and any other suitable materials, thicknesses and mass ratios may be used for the positive electrode active material layer.
  • At least one of copper foil, nickel foil or carbon-based current collector may be used as the negative electrode current collector of the negative electrode pole piece 13 , of course, other negative electrode current collectors commonly used in the art may also be used.
  • the thickness of the negative electrode current collector may be 1 ⁇ m ⁇ 200 ⁇ m.
  • the active material of the second coating layer 3 may include artificial graphite, natural graphite, hard carbon, mesocarbon microspheres, silicon alloy, tin alloy or pure silicon at least one of.
  • the second coating 3 may further include a conductive agent and a binder.
  • the conductive agent in the second coating 3 may include at least one of conductive carbon black, Ketjen black, lamellar graphite, graphene, carbon nanotubes or carbon fibers.
  • the binder in the second coating 3 may include carboxymethyl cellulose (CMC), polyacrylic acid, polyvinylpyrrolidone, polyaniline, polyimide, polyamideimide, polyamide At least one of siloxane, styrene-butadiene rubber, epoxy resin, polyester resin, polyurethane resin or polyfluorene.
  • CMC carboxymethyl cellulose
  • the materials disclosed above are only exemplary, and any other suitable materials may be adopted as the second coating layer 3 of the negative electrode active material layer.
  • the mass ratio of the negative electrode active material, the conductive agent and the binder in the second coating layer 3 may be 91 ⁇ 99:0 ⁇ 3:1 ⁇ 6. It should be understood that the above are only examples and any other suitable mass ratios may be employed.
  • the isolation film 11 includes at least one of polyethylene, polypropylene, polyvinylidene fluoride, polyethylene terephthalate, polyimide, or aramid.
  • the polyethylene includes at least one selected from high density polyethylene, low density polyethylene or ultra-high molecular weight polyethylene. Especially polyethylene and polypropylene, they have a good effect on preventing short circuits and can improve the stability of the battery through the shutdown effect.
  • the thickness of the isolation film is in the range of about 5 ⁇ m to 20 ⁇ m.
  • the surface of the isolation membrane may further include a porous layer, the porous layer is disposed on at least one surface of the isolation membrane, the porous layer includes inorganic particles and a binder, and the inorganic particles are selected from aluminum oxide (Al 2 O 3 ), Silicon oxide (SiO 2 ), magnesium oxide (MgO), titanium oxide (TiO 2 ), hafnium dioxide (HfO 2 ), tin oxide (SnO 2 ), ceria (CeO 2 ), nickel oxide (NiO), oxide Zinc (ZnO), calcium oxide (CaO), zirconium oxide (ZrO 2 ), yttrium oxide (Y 2 O 3 ), silicon carbide (SiC), boehmite, aluminum hydroxide, magnesium hydroxide, calcium hydroxide or sulfuric acid at least one of barium.
  • the pores of the isolation membrane have diameters in the range of about 0.01 ⁇ m to 1 ⁇ m.
  • the binder of the porous layer is selected from polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, polyamide, polyacrylonitrile, polyacrylate, polyacrylic acid, polyacrylate, sodium carboxymethyl cellulose, polyamide At least one of vinylpyrrolidone, polyvinyl ether, polymethyl methacrylate, polytetrafluoroethylene or polyhexafluoropropylene.
  • the porous layer on the surface of the separator can improve the heat resistance, oxidation resistance and electrolyte wettability of the separator, and enhance the adhesion between the separator and the pole piece.
  • the electrode assembly of the electrochemical device is a wound electrode assembly or a stacked electrode assembly.
  • the electrochemical device includes a lithium-ion battery, although the present application is not so limited.
  • the electrochemical device may also include an electrolyte.
  • the electrolyte may be one or more of a gel electrolyte, a solid electrolyte, and an electrolytic solution, and the electrolytic solution includes a lithium salt and a non-aqueous solvent.
  • the lithium salt is selected from LiPF6, LiBF4 , LiAsF6, LiClO4 , LiB ( C6H5 ) 4 , LiCH3SO3 , LiCF3SO3 , LiN ( SO2CF3 ) 2 , LiC ( SO2CF3 ) 3 , LiSiF 6 , LiBOB or one or more of lithium difluoroborate.
  • LiPF 6 is chosen as the lithium salt because it can give high ionic conductivity and improve cycle characteristics.
  • the non-aqueous solvent may be selected from carbonate compounds, carboxylate compounds, ether compounds, other organic solvents, or combinations thereof.
  • the carbonate compound may be selected from chain carbonate compounds, cyclic carbonate compounds, fluorocarbonate compounds, or a combination thereof.
  • the chain carbonate compound can be selected from diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl carbonate Ethyl esters (MEC) and combinations thereof.
  • the cyclic carbonate compound may be selected from ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylethylene carbonate (VEC), or a combination thereof.
  • the fluorocarbonate compound may be selected from fluoroethylene carbonate (FEC), 1,2-difluoroethylene carbonate, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate Fluoroethylene, 1,1,2,2-tetrafluoroethylene carbonate, 1-fluoro-2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2-carbonate -Difluoro-1-methylethylene carbonate, 1,1,2-trifluoro-2-methylethylene carbonate, trifluoromethylethylene carbonate, or a combination thereof.
  • FEC fluoroethylene carbonate
  • 1,2-difluoroethylene carbonate 1,1-difluoroethylene carbonate
  • 1,1,2-trifluoroethylene carbonate Fluoroethylene, 1,1,2,2-tetrafluoroethylene carbonate, 1-fluoro-2-methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2-carbonate -Difluoro-1-methylethylene carbonate, 1,1,2-trifluoro-2
  • the carboxylate compound can be selected from methyl acetate, ethyl acetate, n-propyl acetate, tert-butyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, decolactone, Valerolactone, mevalonolactone, caprolactone, methyl formate, or a combination thereof.
  • the ether compound may be selected from dibutyl ether, tetraglyme, diglyme, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxy Ethane, 2-methyltetrahydrofuran, tetrahydrofuran, or a combination thereof.
  • organic solvents can be selected from dimethyl sulfoxide, 1,2-dioxolane, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, methyl amide, dimethylformamide, acetonitrile, trimethyl phosphate, triethyl phosphate, trioctyl phosphate, and phosphate esters or combinations thereof.
  • the positive electrode, separator, and negative electrode are sequentially wound or stacked to form electrode parts, which are then packaged in, for example, an aluminum-plastic film, and then injected into an electrolytic film. Liquid, chemical formation, packaging, that is, into a lithium-ion battery. Then, the performance test of the prepared lithium-ion battery was carried out.
  • electrochemical devices eg, lithium ion batteries
  • electrochemical devices eg, lithium ion batteries
  • Other methods commonly used in the art may be employed without departing from the disclosure of the present application.
  • Embodiments of the present application also provide electronic devices including the above electrochemical devices.
  • the electronic device in the embodiment of the present application is not particularly limited, and it may be used in any electronic device known in the prior art.
  • electronic devices may include, but are not limited to, notebook computers, pen input computers, mobile computers, e-book players, portable telephones, portable fax machines, portable copiers, portable printers, headsets, VCRs, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notepads, calculators, memory cards, portable recorders, radios, backup power supplies, motors, automobiles, motorcycles, assisted bicycles, bicycles, Lighting equipment, toys, game consoles, clocks, power tools, flashlights, cameras, large-scale household storage batteries and lithium-ion capacitors, etc.
  • positive electrode sheet The positive active material lithium cobalt oxide, the conductive agent conductive carbon black, and the binder polyvinylidene fluoride (PVDF) are dissolved in N-methylpyrrolidone (NMP) in a weight ratio of 97.6:1.1:1.3 In the solution, a positive electrode slurry is formed. Using aluminum foil as the positive electrode current collector, the positive electrode slurry is coated on the positive electrode current collector with a coating thickness of 50 ⁇ m, and the positive electrode sheet is obtained after drying, cold pressing and slitting.
  • NMP N-methylpyrrolidone
  • the first binder polyvinylidene fluoride and the first conductive agent conductive carbon black are dissolved in N-methylpyrrolidone (NMP) solution in a weight ratio of 60:40 to form a first coating slurry.
  • NMP N-methylpyrrolidone
  • a copper foil with a thickness of 10 ⁇ m and a width of 80 mm was used as the negative electrode current collector.
  • the first coating slurry was applied to the edge positions of the negative electrode current collector.
  • the coating width of the two edge positions was 5 mm and the thickness was 2 ⁇ m. to obtain the first coating;
  • the negative active material artificial graphite and the binder styrene-butadiene rubber are dissolved in deionized water in a weight ratio of 98:2 to form a second coating slurry. Coating the second coating slurry on the negative electrode current collector and the first coating layer, drying, and cold pressing to obtain a negative electrode active material layer, the thickness of the negative electrode active material layer being 60 ⁇ m, and cutting to obtain a negative electrode pole piece.
  • the isolation film substrate is polyethylene (PE) with a thickness of 8 ⁇ m, and 2 ⁇ m alumina ceramic layers are coated on both sides of the isolation film substrate, and finally, 2.5 ⁇ m alumina ceramic layers are coated on both sides of the coated ceramic layer. mg of binder polyvinylidene fluoride (PVDF), dried.
  • PE polyethylene
  • PVDF binder polyvinylidene fluoride
  • Preparation of lithium ion battery stack the positive pole piece, the separator and the negative pole piece in order, so that the separator is in the middle of the positive pole piece and the negative pole piece to play a role of isolation, and coil to obtain the electrode assembly.
  • the electrode assembly is placed in the outer packaging aluminum-plastic film, and after dehydration at 80 °C, the above electrolyte is injected and packaged, and the lithium ion battery is obtained through the process of formation, degassing, and trimming.
  • Example 2 Other examples and comparative examples are parameter changes based on the steps of Example 1, wherein the negative electrode current collector in Example 5 is used to coat the two edge regions of the first part and the second part are etched, etched The roughness of the rear edge region was 3 ⁇ m, and the roughness of the other non-etched regions was 1 ⁇ m.
  • the specific parameters to be changed are shown in the table below.
  • the lithium-ion battery that reached a constant temperature was charged at a constant current of 0.5C to a voltage of 4.4V, then charged at a constant voltage of 4.4V to a current of 0.05C, discharged at 0.5C to a voltage of 3.0V, and the discharge energy was recorded.
  • Volume energy density discharge energy/(length*width*thickness of lithium-ion battery).
  • the lithium-ion battery was charged at a constant current of 0.5C to a voltage of 4.4V, and then charged at a constant voltage of 4.4V to a current of 0.05C, using the UL1642 test standard, in which the weight of the weight was 9.8kg and the diameter was 15.8mm, the drop height is 61 ⁇ 2.5cm, the drop direction is parallel to the longitudinal direction of the separator, and the impact test is carried out on the lithium-ion battery.
  • the impact test is that the lithium-ion battery does not explode, fire, and smoke as a pass.
  • Each group of 10 tests For lithium-ion batteries calculate the pass rate of the heavy object impact test for lithium ion batteries (if 4 pass the heavy object impact test, it will be expressed as 4/10).
  • Table 1 shows various parameters and evaluation results of Examples and Comparative Examples.
  • Example 1 By comparing Example 1 and Comparative Example 1, it can be seen that by coating the first coating only at the two edge regions of the current collector, the bonding force between the first coating and the current collector is greater than that between the second coating and the current collector. Cohesion between the intermediate regions of the fluid. Because the adhesion between the second coating and the current collector is weak, the active material coating and the current collector are easily peeled off during the impact, which improves the impact test pass rate of the lithium-ion battery from 4/10 to 8/ 10. In addition, since the coating area of the first coating layer is reduced, the thickness of the electrode assembly of the lithium ion battery is smaller, and the volume energy density of the lithium ion battery is improved by 1%.
  • Example 5 From Examples 2 to 5, it can be seen that by adjusting the width of the first coating, both the energy density and the pass rate of the impact test can be achieved, but the increase in the coating width tends to decrease the energy density improvement rate.
  • Example 5 By comparing Example 5 and Example 1, it can be seen that by etching the edge region of the current collector used for coating the first coating, the adhesive force between the first coating and the current collector can be improved, so that the lithium The impact test pass rate of the ion battery has also improved to 9/10.
  • the adhesion between the first coating and the current collector is improved by increasing the thickness of the first coating.
  • the thickness of the first coating layer has an optimum value, and a relatively small thickness of the first coating layer cannot ensure a good coating state, and the bonding force with the current collector is limited.
  • the thickness is too thick, the active material of the second coating in the edge area will be over-pressed, which will have a certain impact on the capacity.
  • the thickness adjustment of the first coating has little effect on the impact test, and the pass rate can reach 8/10, and the volume energy density increase rate tends to decrease with the increase of the thickness of the first coating.
  • the adhesive force between the edge of the first coating and the current collector can be achieved by adjusting the binder content of the first coating.
  • the increase in energy density is the same
  • the cohesion content is low, such as less than 20%
  • the cohesion between the first coating and the current collector will be too weak, which will adversely affect the thickness of the pole piece , part of the volume energy density will be lost, and the energy density improvement rate will be reduced to less than 0.8%. Because the adhesion between the second coating and the current collector is not changed, the impact on the pass rate of the impact test is small, and a pass rate of 8/10 can be guaranteed.
  • Example 15 By comparing Example 15 and Comparative Example 1, it can be seen that by making the adhesion between the first coating and the current collector greater than the adhesion between the second coating and the middle region of the current collector, the lithium ion battery is improved. Crash test pass rate increased from 4/10 to 8/10. In addition, by adopting the method of discontinuously coating the first coating layer and reducing the ratio of the width of the first coating layer and the second coating layer, the volume energy density of the lithium ion battery is increased by 1.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提供了极片、电化学装置和电子装置。极片包括:集流体,在宽度方向上包括第一边缘区域、第二边缘区域以及位于第一边缘区域和第二边缘区域之间的中间区域;第一涂层,包括分别设置在第一边缘区域和第二边缘区域上的第一部分和第二部分;以及第二涂层,部分第二涂层设置在中间区域上,另一部分第二涂层设置在第一涂层上,第二涂层包括活性材料;其中,第一部分与第一边缘区域之间具有第一粘结力,第二部分与第二边缘区域之间具有第二粘结力,第二涂层与中间区域之间具有第三粘结力,第一粘结力和第二粘结力均大于第三粘结力。本申请的实施例在最小化对电化学装置的体积能量密度的影响的情况下,提高了电化学装置的电性能和安全性能。

Description

极片、电化学装置和电子装置 技术领域
本申请涉及电子技术领域,尤其涉及极片、电化学装置和电子装置。
背景技术
目前,为了保证极片的加工和安全性能,通常会在集流体和活性材料层间添加底部涂层。虽然添加底部涂层可以显著提升极片与集流体的粘结力,但是会损失电化学装置(例如,锂离子电池)的体积能量密度。如何既提升电化学装置的电性能又保证其体积能量密度,是一个有待解决的问题。
发明内容
本申请针对特定的区域添加底部涂层,在最小化对电化学装置的体积能量密度的影响的情况下,提高了电化学装置的电性能和安全性能。
本申请的实施例提供了一种极片,包括:集流体,在宽度方向上包括第一边缘区域、第二边缘区域以及位于所述第一边缘区域和所述第二边缘区域之间的中间区域;第一涂层,包括分别设置在所述第一边缘区域和所述第二边缘区域上的第一部分和第二部分;以及第二涂层,部分所述第二涂层设置在所述中间区域上,另一部分所述第二涂层设置在所述第一涂层上,所述第二涂层包括活性材料;其中,所述第一部分与所述第一边缘区域之间具有第一粘结力,所述第二部分与所述第二边缘区域之间具有第二粘结力,所述第二涂层与所述中间区域之间具有第三粘结力,所述第一粘结力和所述第二粘结力均大于所述第三粘结力。
在一些实施例中,所述第一部分具有宽度d1,所述第二部分具有宽度d2,所述第二涂层具有宽度D,1%≤d1/D≤20%,1%≤d2/D≤20%。
在一些实施例中,所述第一粘结力和所述第二粘结力均为所述第三粘结力的2至5倍;和/或所述第一粘结力和所述第二粘结力均大于10N/m。
在一些实施例中,所述第一涂层的厚度为h,所述第二涂层的厚度为H,0.5μm<h<8μm,20μm<H<200μm。
在一些实施例中,所述第一涂层包括第一导电剂和第一粘结剂,所述第一导电剂包括导电炭黑、碳纳米管、导电石墨、石墨烯、乙炔黑或纳米碳纤维中的至少一种;所述第一粘结剂包括聚偏二氟乙烯、偏氟乙烯-氟化烯烃的共聚物、聚乙烯吡咯烷酮、聚丙烯腈、聚丙烯酸甲酯、聚四氟乙烯、羧甲基纤维素钠、丁苯橡胶、聚胺酯、氟化橡胶或聚乙烯醇中的至少一种;其中,所述第一导电剂的质量含量为30%~80%;第一粘结剂的质量含量为20%~70%。
在一些实施例中,在所述集流体的长度方向上,所述第一部分和/或所述第二部分是非连续涂布,且所述第一部分的涂布长度总和与所述第二涂层的涂布长度之比大于80%,所述第二部分的涂布长度总和与所述第二涂层的长度之比大于80%。在一些实施例中,所述集流体中的至少部分区域被刻蚀。
在一些实施例中,所述第一边缘区域和所述第二边缘区域被刻蚀,所述第一边缘区域和所述第二边缘区域的粗糙度为所述中间区域的2至4倍。
本申请的另一实施例提供了一种电化学装置,包括:正极极片;负极极片;以及隔离膜,设置在所述正极极片和所述负极极片之间;其中,所述正极极片和/或所述负极极片为上述任一所述的极片。
本申请的实施例还提供了一种电子装置,包括上述电化学装置。
本申请通过在集流体的边缘区域上设置具有不同粘结力的涂层,使得该涂层与集流体之间的粘结力大于活性材料涂层与集流体之间的粘结力,防止了在电化学装置的循环过程中集流体发生剥离,改善了电化学装置的电性能和安全性能,同时由于仅在集流体的边缘区域上设置涂层,能够最小化对电化学装置的体积能量密度的影响。
附图说明
图1示出了本申请一实施例的极片的主视图。
图2示出了本申请一实施例的第一涂层(连续的)和集流体的俯视图。
图3示出了本申请另一实施例的第一涂层(不连续的)和集流体的俯视图。
图4示出了本申请一实施例的电化学装置的电极组件的主视图。
具体实施方式
下面的实施例可以使本领域技术人员更全面地理解本申请,但不以任何方式限制本申请。
如图1所示,提供了本申请一实施例的极片的主视图(剖视图)。极片可以包括集流体1,集流体1在宽度方向上包括第一边缘区域4、第二边缘区域5以及位于第一边缘区域4和第二边缘区域5之间的中间区域6。应该理解,虽然图1中通过虚线将第一边缘区域4、第二边缘区域5和中间区域6区分开,但是实际上可能并不存在虚线处的分界。在一些实施例中,极片还包括第一涂层2,第一涂层2可以包括分别设置在第一边缘区域4和第二边缘区域5上的第一部分7和第二部分8。在一些实施例中,第一部分7和第二部分8的材料、宽度和厚度等可以相同或不同。
在一些实施例中,极片还包括第二涂层3,部分第二涂层3设置在中间区域6上,另一部分第二涂层3设置在第一涂层2上,第二涂层3包括活性材料。在一些实施例中,第一部分7与第一边缘区域4之间具有第一粘结力,第二部分8与第二边缘区域5之间具有第二粘结力,第二涂层3与中间区域6之间具有第三粘结力,第一粘结力和第二粘结力均大于第三粘结力。本申请的实施例通过在集流体1的第一边缘区域4和第二边缘区域5上设置第一涂层2,使得第一涂层2与集流体1之间的粘结力大于第二涂层3与中间区域6之间的粘结力,防止了在电化学装置的循环过程中集流体1与第二涂层3之间发生剥离,改善了电化学装置的电性能和安全性能,同时由于仅在集流体1的第一和第二边缘区域4、5上设置涂层,能够最小化对电化学装置的体积能量密度的影响。
在一些实施例中,第一部分7具有宽度d1,第二部分8具有宽度d2,第二涂层3具有宽度D,1%≤d1/D≤20%,1%≤d2/D≤20%。如果第一部分7或第二部分8的宽度太小,例如小于第二涂层3的宽度的1%,则第一涂层2改善第二涂层3与集流体1之间的粘结力的作用有限。通常地,第二涂层中因为粘结剂含量有限,其与集流体之间的粘结力亦比较有限,如果集流体和第二涂层之间未设置第一涂层,第二涂层在循环过程中发生的膨胀和收缩容 易使得第二涂层与集流体之间发生剥离,通过设置第一涂层且增加第一涂层中的粘结剂含量,改善了第二涂层与集流体之间的粘结力,进而避免第二涂层与集流体之间的剥离。如果第一部分或第二部分的宽度太大,例如大于第二涂层的宽度的20%,则会不利地影响电化学装置的体积能量密度。在一些实施例中,为了进一步减小对电化学装置的体积能量密度的影响,同时仍然实现第一涂层与集流体之间的较大的粘结力,1%≤d1/D≤10%,1%≤d2/D≤10%。
在一些实施例中,第一粘结力和第二粘结力均为第三粘结力的2至5倍。在一些实施例中,第一粘结力和第二粘结力均大于10N/m。如此,能够较好地改善第二涂层与集流体之间的粘结力。
在一些实施例中,第一涂层2的厚度为h,第二涂层3的厚度为H,0.5μm<h<8μm,20μm<H<200μm。第二涂层的厚度H指的是中间区域6上的第二涂层3的厚度,或者为第一边缘区域4上的第一涂层2的第一部分7和第二涂层3的厚度总和,或者为第二边缘区域5上的第一涂层2的第二部分8和第二涂层3的厚度总和。如果第一涂层的厚度太小,例如小于0.5μm,则改善第二涂层与集流体之间的粘结力的作用有限。如果第一涂层的厚度太大,则会不利地影响电化学装置的体积能量密度。如果第二涂层的厚度太小,会使得单位面积的活性材料的量太少,影响电化学装置的体积能量密度。如果第二涂层的厚度太大,由于靠近集流体的第二涂层处的锂离子的嵌入和脱嵌的移动路径太长,会影响锂离子的嵌入和脱嵌效率。
在一些实施例中,第一涂层2包括第一导电剂和第一粘结剂。在一些实施例中,第一导电剂包括导电炭黑、碳纳米管、导电石墨、石墨烯、乙炔黑或纳米碳纤维中的至少一种。在一些实施例中,第一粘结剂包括聚偏二氟乙烯、偏氟乙烯-氟化烯烃的共聚物、聚乙烯吡咯烷酮、聚丙烯腈、聚丙烯酸甲酯、聚四氟乙烯、羧甲基纤维素钠、丁苯橡胶、聚胺酯、氟化橡胶或聚乙烯醇中的至少一种。在一些实施例中,第一涂层中的第一导电剂的质量含量为30%~80%,第一粘结剂的质量含量为20%~70%。如果第一导电剂的质量含量太小,会不利地影响第一涂层的导电性。如果第一导电剂的质量含量太大,会使得第一粘结剂的质量含量太少,影响第一涂层的粘结性能。
应该理解,虽然图1中示出为在集流体1的两侧上均形成第一涂层2和第二涂层3,但是这仅是示例性的,也可以仅在集流体1的一侧上形成第一涂层2和第二涂层3。
如图2所示,示出了本申请一实施例的第一涂层(连续的)和集流体的俯视图。为了简单的目的,仅示出了集流体1的中间区域6和第一涂层2的第一部分7和第二部分8。图2中的虚线示出了极片的分条位置,通过在集流体的边缘区域上设置第一涂层2,可以在分条期间减小应力的影响以及减少分条时集流体的毛刺的产生。在一些实施例中,在集流体1的长度方向上,第一部分7和/或第二部分8可以是连续涂布的。
如图3所示,在一些实施例中,在集流体1的长度方向上,第一部分7和/或第二部分8可以是非连续涂布,且第一部分7的涂布长度总和与第二涂层3的长度之比大于80%,第二部分8的涂布长度总和与第二涂层3的长度之比大于80%。通过采用非连续涂布的方式,进一步减小了对电化学装置的体积能量密度的影响。另外,如果第一部分7和/或第二部分8的涂布长度太小,则会影响第一涂层2的粘结性能的充分发挥。
在一些实施例中,集流体1中的至少部分区域或全部区域被刻蚀。通过对集流体1进行蚀刻,能够相应地增大集流体的粗糙度,进而增大集流体与第一涂层或第二涂层之间的粘结力。在一些实施例中,第一边缘区域和第二边缘区域被刻蚀,第一边缘区域4和第二边缘区域5的粗糙度为中间区域6的2至4倍。通过对第一边缘区域4和第二边缘区域5进行刻蚀,进一步增强了集流体1与第一涂层2之间的粘结力。在一些实施例中,可以在设置第一涂层的集流体的区域处进行刻蚀。在一些实施例中,主要采用棕化或黑化的方式进行刻蚀,当然,也可以采用其他合适的方式刻蚀。在一些实施例中,集流体的刻蚀区域的粗糙度为未刻蚀区域的2至4倍。在一些实施例中,未刻蚀区域的粗糙度小于2μm。
应该理解,本申请的极片既可以是正极极片,也可以是负极极片。如图4所示,本申请的实施例还提供了一种电化学装置,电化学装置包括隔离膜11、正极极片12和负极极片13,隔离膜11设置在正极极片12和负极极片13之间,其中,正极极片12和/或负极极片13为上述结构的极片。
在一些实施例中,正极极片12的正极集流体可以采用铝(Al)箔,当然,也可以采用本领域常用的其他正极集流体。在一些实施例中,正极集流体的厚度可以为1μm~200μm。
在一些实施例中,当极片为正极极片12时,第二涂层3的活性材料可以包括钴酸锂、锰酸锂、磷酸铁锂、镍钴锰酸锂、镍钴铝酸锂或镍锰酸锂中的至少一种。在一些实施例中,第二涂层3还包括粘结剂和导电剂。在一些实施例中,第二涂层3中的粘结剂可以包括聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、苯乙烯-丙烯酸酯共聚物、苯乙烯-丁二烯共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素钠、聚醋酸乙烯酯、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯或聚六氟丙烯中的至少一种。在一些实施例中,第二涂层3中的导电剂可以包括导电炭黑、科琴黑、片层石墨、石墨烯、碳纳米管或碳纤维中的至少一种。在一些实施例中,第二涂层3中的正极活性材料、导电剂和粘结剂的质量比可以为91~99:0.5~3:0.5~6。应该理解,以上所述仅是示例,正极活性物质层可以采用任何其他合适的材料、厚度和质量比。
在一些实施例中,负极极片13的负极集流体可以采用铜箔、镍箔或碳基集流体中的至少一种,当然,也可以采用本领域常用的其他负极集流体。在一些实施例中,负极集流体的厚度可以为1μm~200μm。
在一些实施例中,当极片为负极极片13时,第二涂层3的活性材料可以包括人造石墨、天然石墨、硬碳、中间相碳微球、硅合金、锡合金或纯硅中的至少一种。在一些实施例中,第二涂层3中还可以包括导电剂和粘结剂。第二涂层3中的导电剂可以包括导电炭黑、科琴黑、片层石墨、石墨烯、碳纳米管或碳纤维中的至少一种。在一些实施例中,第二涂层3中的粘结剂可以包括羧甲基纤维素(CMC)、聚丙烯酸、聚乙烯基吡咯烷酮、聚苯胺、聚酰亚胺、聚酰胺酰亚胺、聚硅氧烷、丁苯橡胶、环氧树脂、聚酯树脂、聚氨酯树脂或聚芴中的至少一种。应该理解,以上公开的材料仅是示例性,作为负极活性材料层的第二涂层3可以采用任何其他合适的材料。在一些实施例中,第二涂层3中的负极活性材料、导电剂和粘结剂的质量比可以为91~99:0~3:1~6。应该理解,以上所述仅是示例,可以采用任何其他合适的质量比。
在一些实施例中,隔离膜11包括聚乙烯、聚丙烯、聚偏氟乙烯、聚对苯二甲酸乙二醇酯、聚酰亚胺或芳纶中的至少一种。例如,聚乙烯包括选自高密度聚乙烯、低密度聚乙烯或超高分子量聚乙烯中的至少一种。尤其是聚乙烯和聚丙烯,它们对防止短路具有良好的作用,并可以通过关断效应改善电池的稳定性。在一些实施例中,隔离膜的厚度在约5μm~20μm的范围内。
在一些实施例中,隔离膜表面还可以包括多孔层,多孔层设置在隔离膜的至少一个表面上,多孔层包括无机颗粒和粘结剂,无机颗粒选自氧化铝(Al 2O 3)、氧化硅(SiO 2)、氧化镁(MgO)、氧化钛(TiO 2)、二氧化铪(HfO 2)、氧化锡(SnO 2)、二氧化铈(CeO 2)、氧化镍(NiO)、氧化锌(ZnO)、氧化钙(CaO)、氧化锆(ZrO 2)、氧化钇(Y 2O 3)、碳化硅(SiC)、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙或硫酸钡中的至少一种。在一些实施例中,隔离膜的孔具有在约0.01μm~1μm的范围的直径。多孔层的粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、羧甲基纤维素钠、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯或聚六氟丙烯中的至少一种。隔离膜表面的多孔层可以提升隔离膜的耐热性能、抗氧化性能和电解质浸润性能,增强隔离膜与极片之间的粘接性。
在本申请的一些实施例中,电化学装置的电极组件为卷绕式电极组件或堆叠式电极组件。
在一些实施例中,电化学装置包括锂离子电池,但是本申请不限于此。在一些实施例中,电化学装置还可以包括电解质。电解质可以是凝胶电解质、固态电解质和电解液中的一种或多种,电解液包括锂盐和非水溶剂。锂盐选自LiPF 6、LiBF 4、LiAsF 6、LiClO 4、LiB(C 6H 5) 4、LiCH 3SO 3、LiCF 3SO 3、LiN(SO 2CF 3) 2、LiC(SO 2CF 3) 3、LiSiF 6、LiBOB或者二氟硼酸锂中的一种或多种。例如,锂盐选用LiPF 6,因为它可以给出高的离子导电率并改善循环特性。
非水溶剂可选自碳酸酯化合物、羧酸酯化合物、醚化合物、其它有机溶剂或它们的组合。
碳酸酯化合物可选自链状碳酸酯化合物、环状碳酸酯化合物、氟代碳 酸酯化合物或其组合。
链状碳酸酯化合物可选自碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)及其组合。所述环状碳酸酯化合物可选自碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)或者其组合。所述氟代碳酸酯化合物可选自碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯、碳酸三氟甲基亚乙酯或者其组合。
羧酸酯化合物可选自乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、γ-丁内酯、癸内酯、戊内酯、甲瓦龙酸内酯、己内酯、甲酸甲酯或者其组合。
醚化合物可选自二丁醚、四甘醇二甲醚、二甘醇二甲醚、1,2-二甲氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基乙烷、2-甲基四氢呋喃、四氢呋喃或者其组合。
其它有机溶剂可选自二甲亚砜、1,2-二氧戊环、环丁砜、甲基环丁砜、1,3-二甲基-2-咪唑烷酮、N-甲基-2-吡咯烷酮、甲酰胺、二甲基甲酰胺、乙腈、磷酸三甲酯、磷酸三乙酯、磷酸三辛酯、和磷酸酯或者其组合。
在本申请的一些实施例中,以锂离子电池为例,将正极极片、隔离膜、负极极片按顺序卷绕或堆叠成电极件,之后装入例如铝塑膜中进行封装,注入电解液,化成、封装,即制成锂离子电池。然后,对制备的锂离子电池进行性能测试。
本领域的技术人员将理解,以上描述的电化学装置(例如,锂离子电池)的制备方法仅是实施例。在不背离本申请公开的内容的基础上,可以采用本领域常用的其他方法。
本申请的实施例还提供了包括上述电化学装置的电子装置。本申请实施例的电子装置没有特别限定,其可以是用于现有技术中已知的任何电子装置。在一些实施例中,电子装置可以包括,但不限于,笔记本电脑、笔 输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
下面列举了一些具体实施例和对比例以更好地对本申请进行说明,其中,采用锂离子电池作为示例。
实施例1
正极极片的制备:将正极活性材料钴酸锂、导电剂导电炭黑、粘结剂聚偏氟乙烯(PVDF)按重量比97.6:1.1:1.3的比例溶于N-甲基吡咯烷酮(NMP)溶液中,形成正极浆料。采用铝箔作为正极集流体,将正极浆料涂覆于正极集流体上,涂布厚度为50μm,经过干燥、冷压、分切后得到正极极片。
负极极片的制备:将第一粘结剂聚偏氟乙烯和第一导电剂导电炭黑按重量比60:40的比例溶于N-甲基吡咯烷酮(NMP)溶液中,形成第一涂层浆料。采用10μm厚度和80mm宽度的铜箔作为负极集流体,将第一涂层浆料涂覆于负极集流体的边缘位置上,两个边缘位置的涂布宽度分别为5mm,厚度为2μm,干燥,得到第一涂层;
将负极活性材料人造石墨和粘结剂丁苯橡胶按重量比98:2的比例溶于去离子水中,形成第二涂层浆料。将第二涂层浆料涂覆于负极集流体和第一涂层上,干燥,冷压,得到负极活性材料层,负极活性材料层的厚度为60μm,分切后得到负极极片。
隔离膜的制备:隔离膜基材为8μm厚的聚乙烯(PE),在隔离膜基材的两侧各涂覆2μm氧化铝陶瓷层,最后在涂布了陶瓷层的两侧各涂覆2.5mg的粘结剂聚偏氟乙烯(PVDF),烘干。
电解液的制备:在含水量小于10ppm的环境下,将六氟磷酸锂与非水有机溶剂(碳酸乙烯酯(EC):碳酸二甲酯(DMC)=40:60,重量比)按重量比8:92配制以形成电解液。
锂离子电池的制备:将正极极片、隔离膜、负极极片按顺序依次叠好,使隔离膜处于正极极片和负极极片中间起到隔离的作用,并卷绕得到电极组件。将电极组件置于外包装铝塑膜中,在80℃下脱去水分后,注入上述电解液并封装,经过化成、脱气、切边等工艺流程得到锂离子电池。
其他实施例和对比例是在实施例1步骤的基础上进行参数变更,其中,实施例5中的负极集流体用于涂布第一部分和第二部分的两个边缘区域被刻蚀,刻蚀后的边缘区域的粗糙度为3μm,其他非刻蚀区域的粗糙度为1μm。具体变更的参数如下表所示。
下面描述本申请的各个参数的测试方法。
体积能量密度的测试方法:
将锂离子电池置于25℃恒温箱中,静置30分钟,使锂离子电池达到恒温。将达到恒温的锂离子电池以0.5C恒流充电至电压为4.4V,然后以4.4V恒压充电至电流为0.05C,0.5C放电至电压为3.0V,记录放电能量。
体积能量密度=放电能量/(锂离子电池的长度*宽度*厚度)。
锂离子电池的重物撞击测试:
在25℃下,将锂离子电池以0.5C恒流充电至电压为4.4V,之后以4.4V恒压充电至电流为0.05C,采用UL1642测试标准,其中,重锤质量为9.8kg、直径为15.8mm、下落高度为61±2.5cm,下落方向平行于隔离膜纵向,对锂离子电池进行撞击测试,撞击测试以锂离子电池不爆炸、不起火、不冒烟为通过,每组测试10个锂离子电池,计算锂离子电池的重物撞击测试通过率(若4个通过重物撞击测试则表示为4/10)。
表1示出了实施例和对比例的各个参数和评估结果。
表1
Figure PCTCN2020112470-appb-000001
Figure PCTCN2020112470-appb-000002
通过比较实施例1与对比例1可知,通过仅在集流体的两个边缘区域处涂布第一涂层,使得第一涂层与集流体之间的粘结力大于第二涂层与集流体 的中间区域之间的粘结力。因为第二涂层与集流体的粘结力较弱,在进行撞击时易实现活性物质涂层与集流体的剥离,提升了锂离子电池的撞击测试通过率,由4/10提升至8/10。另外,由于第一涂层的涂布区域减小,锂离子电池的电极组件的厚度更小,锂离子电池的体积能量密度提升了1%。由实施例2至5可知,通过调节第一涂层的宽度,均可以实现能量密度和撞击测试的通过率,但是涂布宽度的增加,对于能量密度的提升率会有变小的趋势。通过比较实施例5和实施例1可知,通过对用于涂布第一涂层的集流体的边缘区域进行刻蚀,能够提高第一涂层与集流体之间的粘结力,进而使得锂离子电池的撞击测试通过率也提升至9/10。
通过比较实施例1和6~8可知,通过增加第一涂层的厚度来提升第一涂层与集流体的粘结力。一般对于特定的第二涂层厚度,第一涂层的厚度存在最优值,相对较小的第一涂层厚度,不能保证良好的涂布状态,与集流体的粘结力受限。但是厚度过厚会导致边缘区域的第二涂层活性物质出现过压的情况,对于容量发挥存在一定的影响。第一涂层的厚度调节对撞击测试的影响较小,通过率均能达到8/10,而体积能量密度提升率随着第一涂层的厚度的增加有减小的趋势。
通过比较实施例1和9~11可知,对于不同的第二层涂布厚度,均可以利用该方法实现能量密度和撞击测试通过率的提升,但是极片厚度增加后,第一层涂布对于整体能量密度的提升有限,将发生一定的降低,从1%降至0.5%。撞击测试通过率的影响较小。
通过比较实施例1和12~14可知,通过第一涂层的粘结剂含量调控,可以实现第一涂层边缘与集流体的粘结力,在一定的情况下,对于能量密度提升是相同水平,均可以实现1%的提升效果,当粘结力含量较低时,如小于20%时,会使第一涂层与集流体的粘结力过弱,对于极片的厚度存在不利影响,会损失部分体积能量密度,能量密度提升率降低至0.8%以下。因为没有改变第二涂层与集流体的粘结力,所以对于撞击测试的通过率影响较小,均能够保证8/10的通过率。
通过比较实施例15和对比例1可知,通过使第一涂层与集流体之间的粘结力大于第二涂层与集流体的中间区域之间的粘结力,提升了锂离子电池的 撞击测试通过率,由4/10提升至8/10。另外,通过采用不连续涂布第一涂层的方式并且减小第一涂层与第二涂层的宽度的比例,使得锂离子电池的体积能量密度提升了1.3%。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

  1. 一种极片,其特征在于,包括:
    集流体,在宽度方向上包括第一边缘区域、第二边缘区域以及位于所述第一边缘区域和所述第二边缘区域之间的中间区域;
    第一涂层,包括分别设置在所述第一边缘区域和所述第二边缘区域上的第一部分和第二部分;以及
    第二涂层,部分所述第二涂层设置在所述中间区域上,另一部分所述第二涂层设置在所述第一涂层上,所述第二涂层包括活性材料;
    其中,所述第一部分与所述第一边缘区域之间具有第一粘结力,所述第二部分与所述第二边缘区域之间具有第二粘结力,所述第二涂层与所述中间区域之间具有第三粘结力,所述第一粘结力和所述第二粘结力均大于所述第三粘结力。
  2. 根据权利要求1所述的极片,其中,所述第一部分具有宽度d1,所述第二部分具有宽度d2,所述第二涂层具有宽度D,1%≤d1/D≤20%,1%≤d2/D≤20%。
  3. 根据权利要求1所述的极片,其中,所述第一粘结力和所述第二粘结力均为所述第三粘结力的2至5倍;和/或所述第一粘结力和所述第二粘结力均大于10N/m。
  4. 根据权利要求1所述的极片,其中,所述第一涂层的厚度为h,所述第二涂层的厚度为H,0.5μm<h<8μm,20μm<H<200μm。
  5. 根据权利要求1所述的极片,其中,所述第一涂层包括第一导电剂和第一粘结剂,所述第一导电剂包括导电炭黑、碳纳米管、导电石墨、石墨烯、乙炔黑或纳米碳纤维中的至少一种;
    所述第一粘结剂包括聚偏二氟乙烯、偏氟乙烯-氟化烯烃的共聚物、聚乙烯吡咯烷酮、聚丙烯腈、聚丙烯酸甲酯、聚四氟乙烯、羧甲基纤维素钠、丁苯橡胶、聚胺酯、氟化橡胶或聚乙烯醇中的至少一种;
    其中,所述第一导电剂的质量含量为30%~80%;第一粘结剂的质量含量为20%~70%。
  6. 根据权利要求1所述的极片,其中,在所述集流体的长度方向上,所述第一部分和/或所述第二部分是非连续涂布,且所述第一部分的涂布长度总和与所述第二涂层的涂布长度之比大于80%,所述第二部分的涂布长度总和与所述第二涂层的涂布长度之比大于80%。
  7. 根据权利要求1所述的极片,其中,所述集流体中的至少部分区域被刻蚀。
  8. 根据权利要求7所述的极片,其中,所述第一边缘区域和所述第二边缘区域被刻蚀,所述第一边缘区域和所述第二边缘区域的粗糙度为所述中间区域的2至4倍。
  9. 一种电化学装置,其特征在于,包括:
    正极极片;
    负极极片;以及
    隔离膜,设置在所述正极极片和所述负极极片之间;
    其中,所述正极极片和/或所述负极极片为根据权利要求1至8中任一项所述的极片。
  10. 一种电子装置,其特征在于,包括根据权利要求9所述的电化学装置。
PCT/CN2020/112470 2020-08-31 2020-08-31 极片、电化学装置和电子装置 WO2022041194A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20950863.9A EP4203089A4 (en) 2020-08-31 2020-08-31 ELECTRODE PLATE, ELECTROCHEMICAL DEVICE AND ELECTRONIC DEVICE
PCT/CN2020/112470 WO2022041194A1 (zh) 2020-08-31 2020-08-31 极片、电化学装置和电子装置
CN202080009959.5A CN113330601A (zh) 2020-08-31 2020-08-31 极片、电化学装置和电子装置
US18/175,824 US20230231144A1 (en) 2020-08-31 2023-02-28 Electrode plate, electrochemical apparatus, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/112470 WO2022041194A1 (zh) 2020-08-31 2020-08-31 极片、电化学装置和电子装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/175,824 Continuation US20230231144A1 (en) 2020-08-31 2023-02-28 Electrode plate, electrochemical apparatus, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2022041194A1 true WO2022041194A1 (zh) 2022-03-03

Family

ID=77413338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112470 WO2022041194A1 (zh) 2020-08-31 2020-08-31 极片、电化学装置和电子装置

Country Status (4)

Country Link
US (1) US20230231144A1 (zh)
EP (1) EP4203089A4 (zh)
CN (1) CN113330601A (zh)
WO (1) WO2022041194A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421094A (zh) * 2022-01-11 2022-04-29 宁德新能源科技有限公司 电化学装置及其制备方法以及电子装置
WO2023133844A1 (zh) * 2022-01-14 2023-07-20 宁德时代新能源科技股份有限公司 正极极片、二次电池、电池模块、电池包和用电装置
WO2024021025A1 (zh) * 2022-07-29 2024-02-01 宁德时代新能源科技股份有限公司 极片、电极组件、电池单体、电池和用电设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525591A (zh) * 2003-02-26 2004-09-01 三洋电机株式会社 非水电解质二次电池及其所使用的电极的制造方法
JP2010250978A (ja) * 2009-04-10 2010-11-04 Nissan Motor Co Ltd 電池用電極の製造方法、電池用電極、双極型電池、組電池、および車両
CN102842701A (zh) * 2012-08-17 2012-12-26 东莞新能源科技有限公司 锂离子电池阳极极片及包含该阳极极片的锂离子电池
KR20170021487A (ko) * 2015-08-18 2017-02-28 주식회사 엘지화학 도전성 접착층이 코팅된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
CN207233865U (zh) * 2017-09-13 2018-04-13 宁德时代新能源科技股份有限公司 电极极片及锂离子电池
CN207353383U (zh) * 2017-11-10 2018-05-11 宁德时代新能源科技股份有限公司 集流体、电极极片及锂离子电池
CN109088050A (zh) * 2018-06-26 2018-12-25 宁德新能源科技有限公司 极片及其锂离子电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100901533B1 (ko) * 2006-08-14 2009-06-08 주식회사 엘지화학 실란계 화합물이 균일한 패턴으로 코팅되어 있는 양극 및이를 포함하고 있는 이차전지
KR101120437B1 (ko) * 2006-10-23 2012-03-13 주식회사 엘지화학 도전성 고분자가 균일한 패턴으로 코팅되어 있는 음극 및이를 포함하고 있는 이차전지
JP6046538B2 (ja) * 2013-03-29 2016-12-14 トヨタ自動車株式会社 二次電池の製造方法
JP6301819B2 (ja) * 2014-11-26 2018-03-28 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法
CN111293277A (zh) * 2020-03-12 2020-06-16 深圳市量能科技有限公司 一种极片毛刺消除方法、锂离子电池极片及锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525591A (zh) * 2003-02-26 2004-09-01 三洋电机株式会社 非水电解质二次电池及其所使用的电极的制造方法
JP2010250978A (ja) * 2009-04-10 2010-11-04 Nissan Motor Co Ltd 電池用電極の製造方法、電池用電極、双極型電池、組電池、および車両
CN102842701A (zh) * 2012-08-17 2012-12-26 东莞新能源科技有限公司 锂离子电池阳极极片及包含该阳极极片的锂离子电池
KR20170021487A (ko) * 2015-08-18 2017-02-28 주식회사 엘지화학 도전성 접착층이 코팅된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
CN207233865U (zh) * 2017-09-13 2018-04-13 宁德时代新能源科技股份有限公司 电极极片及锂离子电池
CN207353383U (zh) * 2017-11-10 2018-05-11 宁德时代新能源科技股份有限公司 集流体、电极极片及锂离子电池
CN109088050A (zh) * 2018-06-26 2018-12-25 宁德新能源科技有限公司 极片及其锂离子电池

Also Published As

Publication number Publication date
EP4203089A4 (en) 2023-10-25
US20230231144A1 (en) 2023-07-20
CN113330601A (zh) 2021-08-31
EP4203089A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
CN113394375B (zh) 电化学装置和电子装置
WO2022204967A1 (zh) 电化学装置和电子装置
WO2022041194A1 (zh) 极片、电化学装置和电子装置
WO2022000226A1 (zh) 电化学装置和电子装置
WO2022204968A1 (zh) 电化学装置和电子装置
CN113366673B (zh) 电化学装置和电子装置
CN113066961B (zh) 负极极片、电化学装置和电子装置
CN113366689B (zh) 电化学装置和电子装置
WO2022262287A1 (zh) 电化学装置和电子装置
WO2022206128A1 (zh) 电化学装置和电子装置
CN113421999B (zh) 电化学装置和电子装置
CN113078293B (zh) 电化学装置和电子装置
EP3961750A1 (en) Electrode plate, electrochemical apparatus, and electronic apparatus
CN213878153U (zh) 极片、电化学装置和电子装置
WO2022141447A1 (zh) 极片、电化学装置和电子装置
WO2022041193A1 (zh) 极片、电化学装置和电子装置
CN113363417A (zh) 电化学装置和电子装置
CN113078287A (zh) 电化学装置和电子装置
CN112670444B (zh) 正极极片、电化学装置和电子装置
WO2022198403A1 (zh) 电化学装置和电子装置
WO2023173412A1 (zh) 电化学装置和电子装置
US20230238519A1 (en) Electrode plate, electrochemical apparatus, and electronic apparatus
US20240136535A1 (en) Electrochemical device and electronic device
WO2022188136A1 (zh) 电化学装置和电子装置
CN117543095A (zh) 电化学装置和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020950863

Country of ref document: EP

Effective date: 20230322

NENP Non-entry into the national phase

Ref country code: DE