WO2022041085A1 - 回传配置信息的更新或者释放方法及相关产品 - Google Patents

回传配置信息的更新或者释放方法及相关产品 Download PDF

Info

Publication number
WO2022041085A1
WO2022041085A1 PCT/CN2020/111931 CN2020111931W WO2022041085A1 WO 2022041085 A1 WO2022041085 A1 WO 2022041085A1 CN 2020111931 W CN2020111931 W CN 2020111931W WO 2022041085 A1 WO2022041085 A1 WO 2022041085A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
iab
source
host
switching
Prior art date
Application number
PCT/CN2020/111931
Other languages
English (en)
French (fr)
Inventor
卓义斌
朱元萍
刘菁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20950755.7A priority Critical patent/EP4199581A4/en
Priority to CN202080104037.2A priority patent/CN116134881A/zh
Priority to PCT/CN2020/111931 priority patent/WO2022041085A1/zh
Publication of WO2022041085A1 publication Critical patent/WO2022041085A1/zh
Priority to US18/173,183 priority patent/US20230199615A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/248Connectivity information update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0009Control or signalling for completing the hand-off for a plurality of users or terminals, e.g. group communication or moving wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method for updating or releasing backhauled configuration information and related products.
  • the fifth generation mobile communication (5G) has put forward more stringent requirements for network performance indicators, such as: capacity indicators increased by 1000 times, wider coverage requirements, etc.
  • at least one relay node for example, integrated access and backhaul
  • IAB nodes Integrated Access and Backhaul
  • the deployment cost of fiber backhaul can be reduced, and the flexibility of deployment can be improved.
  • the instability of the current backhaul link will result in data not being transmitted in time.
  • the IAB node will switch to other transmission paths to continue data transmission.
  • how to ensure the lossless transmission of user data is a technical problem to be solved by those skilled in the art.
  • the embodiments of the present application disclose a method and related products for updating or releasing backhaul configuration information, which can avoid data loss during switching of an IAB node and improve the resource utilization rate of backhaul configuration.
  • an embodiment of the present application discloses a method for updating or releasing backhauled configuration information, including: after the first node determines that it has received all data packets from the switching IAB node, sending the data packets to the source IAB host centralized unit CU
  • the first indication information the first node is the upstream IAB node of the source parent node of the switch IAB node or the source IAB host distributed unit DU
  • the source IAB host CU is the IAB host CU connected before the switch IAB node is switched
  • the source IAB host DU is The IAB host DU connected before switching the IAB node is switched
  • the first node receives the second indication information from the source IAB host CU
  • the first node updates or releases the loopback between the first node and the child nodes of the first node based on the second indication information.
  • the first node updates or releases the backhaul configuration information in time through the indication information, which can improve the resource utilization rate of the backhaul configuration.
  • the backhaul configuration information is updated or released after all the data packets from the handover IAB node have been received, which can avoid data loss of the IAB node during handover.
  • the first node when the first node receives the first data packet from the switching IAB node, the first node starts or restarts the first timer; during the running of the first timer, if the first node does not receive the first data packet, the first node starts or restarts the first timer; To other data packets from the switching IAB node, the first node determines that all data packets from the switching IAB node have been received. In this way, it is determined based on the timer whether all the data packets from the switching IAB node are received, which can prevent the first node from waiting to receive the data packets from the switching IAB node, and can improve the resource utilization of the backhaul configuration.
  • the first node receives third indication information from a child node of the first node; the first node determines, according to the third indication information, that all data packets from the switching IAB node have been received. In this way, it is determined based on the indication information that all the data packets from the switching IAB node have been received, which can improve the identification efficiency and accuracy.
  • the first node is the upstream IAB node of the source parent node of the switched IAB node, and after sending all the data packets from the switched IAB node to the parent node of the first node, the first node sends all data packets from the switched IAB node to the first node's parent node.
  • the parent node sends fourth indication information. In this way, the parent node of the first node can determine according to the indication information that all the data packets from the switching IAB node have been received, which improves the identification efficiency.
  • the first node receives a data packet, and the data packet includes the first backhaul adaptation protocol BAP routing identifier; the first node receives the first routing configuration information from the source IAB host CU, the first routing configuration information Including the first BAP routing identification, the path of the first BAP routing identification includes the path between the switching IAB node and the source parent node of the switching IAB node; the first node is based on the first BAP routing identification in the data packet and the first routing configuration information It is determined that the data packet is the data packet from the switching IAB node. In this way, determining whether the data packet comes from the handover IAB node based on the BAP routing identifier can improve the identification efficiency and accuracy.
  • the first node receives a data packet, and the data packet includes an identifier of the switching IAB node; the first node determines that the data packet is a data packet from the switching IAB node according to the identifier of the switching IAB node. In this way, whether the data packet is from the handover IAB node is directly determined based on the identifier of the handover IAB node, which can improve the identification efficiency and accuracy.
  • the embodiment of the present application provides another method for updating or releasing the returned configuration information, including: the source IAB host CU receives the first indication information from the first node, and the first node is the source parent node for switching the IAB node
  • the upstream IAB node or the source IAB host DU the source IAB host CU is the IAB host CU connected before the handover of the IAB node
  • the source IAB host DU is the IAB host DU connected before the handover of the IAB node
  • the first indication information is used to determine the first
  • the source IAB host CU sends the second indication information to the first node, and the second indication information is used to update or release the loopback between the first node and the child nodes of the first node Returns the configuration information corresponding to the switch IAB node on the transmission link.
  • the source IAB host CU receives the first indication information from the first node, and then sends the first node to update or release the backhaul configuration information
  • the second indication information can avoid the data loss of the IAB node during handover, and improve the resource utilization rate of the backhaul configuration.
  • the first node is the source IAB host DU
  • the source IAB host CU sends fifth indication information to the upstream IAB node of the source parent node that switches the IAB node, and the fifth indication information is used to update or release the upstream IAB
  • the backhaul configuration information corresponding to the IAB node is switched on the backhaul link between the node and the child nodes of the upstream IAB node. It can be seen that the source IAB host CU uniformly updates or releases the backhaul configuration corresponding to the switch IAB node on the backhaul link between each node and its child nodes after the source IAB host DU determines that it has received the data packet from the switching IAB node. information, which saves identification time and facilitates the improvement of resource utilization of backhaul configuration.
  • the source IAB host CU sends first routing configuration information to the first node, where the first routing configuration information includes the first BAP routing identifier, and the path of the first routing identifier includes the switching IAB node and the switching IAB node. Path between parent nodes. In this way, determining whether the data packet comes from the handover IAB node based on the BAP routing identifier can improve the identification efficiency and accuracy.
  • an embodiment of the present application provides a node, where the node is an upstream IAB node or a source IAB host DU of a source parent node of the switching IAB node, and the source IAB host DU is the IAB host DU connected before the switching of the switching IAB node,
  • the node includes: a processing unit for determining that all data packets from the switching IAB node have been received; a communication unit for sending first indication information to the source IAB host CU, where the source IAB host CU is connected to the switching IAB node before switching IAB host CU; and receiving second indication information from the source IAB host CU; the processing unit is further configured to update or release the IAB on the backhaul link between the first node and the child nodes of the first node based on the second indication information Returns configuration information corresponding to the node.
  • the first node updates or releases the backhaul configuration information in time through the indication information, which can improve the resource utilization rate of the backhaul configuration.
  • the backhaul configuration information is updated or released after all the data packets from the handover IAB node have been received, which can avoid data loss of the IAB node during handover.
  • the processing unit is further configured to start or restart the first timer when the communication unit receives the first data packet from the switching IAB node; If other data packets of the switching IAB node are switched, it is determined that all the data packets from the switching IAB node have been received. In this way, it is determined based on the timer whether all the data packets from the switching IAB node are received, which can avoid wasting resources.
  • the communication unit is further configured to receive third indication information from the child node of the first node; the processing unit is further configured to determine, according to the third indication information, that all messages from the switching IAB node have been received data pack. In this way, it is determined based on the indication information that all the data packets from the switching IAB node have been received, which can improve the identification accuracy.
  • the first node is the upstream IAB node of the source parent node of the switching IAB node
  • the communication unit is further configured to send all the data packets from the switching IAB node to the parent node of the first node, and then send the data packets to the first node.
  • the parent node of a node sends fourth indication information. In this way, the parent node of the first node can determine according to the indication information that all the data packets from the switching IAB node have been received, which improves the identification efficiency.
  • the communication unit is further configured to receive a data packet, where the data packet includes a first BAP routing identifier; and receive first routing configuration information from the source IAB host CU, where the first routing configuration information includes the first BAP Routing identifier, the path of the first BAP routing identifier includes the path between the switching IAB node and the source parent node of the switching IAB node; the processing unit is also used for determining according to the first BAP routing identifier and the first routing configuration information in the data packet
  • the data packet is the data packet from the switching IAB node. In this way, determining whether the data packet comes from the handover IAB node based on the BAP routing identifier can improve the identification efficiency and accuracy.
  • the communication unit is further configured to receive a data packet, where the data packet includes an identifier of the switching IAB node; the processing unit is further configured to determine that the data packet is a data packet from the switching IAB node according to the identifier of the switching IAB node . In this way, whether the data packet is from the handover IAB node is directly determined based on the identifier of the handover IAB node, which can improve the identification efficiency and accuracy.
  • an embodiment of the present application provides a node, where the node is an IAB host CU connected before switching the IAB node, the node includes: a communication unit for receiving first indication information from a first node, the first The node is the upstream IAB node or the source IAB host DU of the source parent node of the handover IAB node, the source IAB host DU is the IAB host DU connected before the handover IAB node is switched, and the first indication information is used to determine that the first node receives all data from the handover.
  • the data packet of the IAB node; the communication unit is further configured to send second indication information to the first node, where the second indication information is used to update or release the switch on the backhaul link between the first node and the child nodes of the first node Returns configuration information corresponding to the IAB node. It can be seen that after the first node has received all data packets from the switching IAB node, the source IAB host CU receives the first indication information from the first node, and then sends the first node to update or release the backhaul configuration information The second indication information can avoid the data loss of the IAB node during handover, and improve the resource utilization rate of the backhaul configuration.
  • the first node is the source IAB host DU
  • the communication unit is further configured to send fifth indication information to the upstream IAB node that switches the source parent node of the IAB node, and the fifth indication information is used to update or release
  • the backhaul configuration information corresponding to the IAB node is switched on the backhaul link between the upstream IAB node and the child nodes of the upstream IAB node.
  • the source IAB host DU determines that it has received the data packet from the switching IAB node
  • the source IAB host CU uniformly updates or releases the backhaul configuration corresponding to the switching IAB node on the backhaul link between each node and its child nodes information, which saves identification time and facilitates the improvement of resource utilization of backhaul configuration.
  • the communication unit is further configured to send first routing configuration information to the first node, where the first routing configuration information includes a first BAP routing identifier, and the path of the first routing identifier includes switching IAB nodes and switching IABs The path between the node's parents. In this way, determining whether the data packet comes from the handover IAB node based on the BAP routing identifier can improve the identification efficiency and accuracy.
  • the present application provides a network device, including a processor, a memory, a transceiver, a network interface, and an antenna, for performing the method of any one of the foregoing aspects.
  • the present application provides another network device, comprising a processor and a memory connected to the processor and a communication interface, wherein the memory is used to store one or more programs and is configured to be executed by the processor, the above-mentioned programs Include instructions for performing steps in the method of any of the above aspects.
  • the present application provides a chip system, the chip system includes at least one processor, a memory and an interface circuit, the memory, the transceiver and the at least one processor are interconnected by lines, and instructions are stored in at least one memory; the above instructions When executed by a processor, the method of any of the above aspects is implemented.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, when the computer-readable storage medium runs on a computer, the computer causes the computer to execute the method of any one of the foregoing aspects.
  • the present application provides a computer program product.
  • the computer program product is used to store a computer program, and when the computer program runs on a network device, the computer can execute the method of any one of the above-mentioned aspects.
  • an embodiment of the present application provides a communication system, including the nodes described in the third aspect and the fourth aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the framework of a first IAB network provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a separation architecture of a CU-DU provided by an embodiment of the present application.
  • 4A is a schematic diagram of a control plane protocol stack under a CU-DU separation architecture provided by an embodiment of the present application
  • 4B is a schematic diagram of a user plane protocol stack under a CU-DU separation architecture provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of the architecture of a second type of IAB network provided by an embodiment of the present application.
  • 6A is a schematic diagram of a control plane protocol stack under a CU-DU separation architecture in an IAB network provided by an embodiment of the present application;
  • 6B is a schematic diagram of a user plane protocol stack under a CU-DU separation architecture in an IAB network provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of the architecture of a third IAB network provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for updating or releasing returned configuration information provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another method for updating or releasing the returned configuration information provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an access network device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another network device provided by an embodiment of the present application.
  • FIG. 1 is an architectural diagram of a communication system 100 provided by an embodiment of the present application.
  • the communication system 100 includes at least one terminal (eg, terminal 110 or terminal 120 ), at least one relay node (RN) (eg, relay node 130 ), at least one access network device (eg, access network device) 140) and at least one core network device (eg, core network device 150).
  • RN relay node
  • access network device eg, access network device
  • core network device 150 eg, core network device 150
  • the terminal is connected with the relay node in a wireless manner, and the relay node is connected with the access network device in a wireless manner.
  • the relay node may be directly or indirectly connected to the access network device through other relay nodes.
  • the access network device 140 may be connected to the core network device in a wired or wireless manner.
  • the terminal 110 is wirelessly connected to the relay node 130
  • the relay node 130 is connected to the access network device 140 directly or through other relay nodes
  • the access network device 140 is wired to the core network device 150 is connected.
  • the communication system in the embodiments of the present application may be a communication system supporting a fourth generation (4G) access technology, for example, a long term evolution (long term evolution, LTE) access technology; or, the communication system may be a communication system supporting Fifth generation (5G) access technology communication system, for example, new radio (NR) access technology; or, the communication system may be a communication system supporting multiple wireless technologies, for example, supporting LTE technology and NR technology communication system.
  • 4G fourth generation
  • LTE long term evolution
  • NR new radio
  • the communication system may be a communication system supporting multiple wireless technologies, for example, supporting LTE technology and NR technology communication system.
  • the communication system can be adapted to future-oriented communication technologies.
  • a terminal (terminal) in this embodiment of the present application may be a device that provides voice or data connectivity to a user, and the terminal may be referred to as user equipment (user equipment, UE), mobile station (mobile station), subscriber unit (subscriber unit) ), station, terminal equipment (TE), etc.
  • the terminal may be a cellular phone, a personal digital assistant (PDA), a wireless modem, a handheld, a laptop computer, a cordless phone, a wireless Local loop (wireless local loop, WLL) station, tablet computer (pad), etc.
  • PDA personal digital assistant
  • WLL wireless Local loop
  • a device that can access a wireless communication network, communicate with a wireless network side, or communicate with other objects through a wireless network can be a terminal in the embodiments of the present application.
  • terminals and cars in intelligent transportation, household equipment in smart homes, power meter reading instruments in smart grids, voltage monitoring instruments, environmental monitoring instruments, video monitoring instruments in smart security networks, cash registers, etc. Terminals can be stationary or mobile.
  • the access network device in this embodiment of the present application may be a device on the access network side used to support terminals accessing the communication system, and the access network device may be called a base station (BS), for example, a 4G access technology communication system Evolved Node Base Station (eNB) in 5G Access Technology Communication System, Next Generation Node Base Station (gNB), Transmission Reception Point (TRP), Access Point ( access point, AP), etc., or an access network device may be referred to as a host node, an IAB donor (IAB donor), a host IAB, a host or host gNB (donor gNB, DgNB), and the like.
  • the access network device is used as an example for the IAB host.
  • the core network device in this embodiment of the present application may be connected to one or more access network devices, and may provide one of session management, access authentication, Internet protocol (IP) address allocation, and data transmission for terminals in the system. one or more functions.
  • the core network device may be a mobile management entity (MME) or a serving gateway (SGW) in a 4G access technology communication system, and the access and mobility management functions in a 5G access technology communication system (access and mobility management function, AMF) network element or user plane performance (user plane function, UPF) network element and so on.
  • MME mobile management entity
  • SGW serving gateway
  • Core network devices may be referred to as core network network elements.
  • the relay node in this embodiment of the present application may be a node that provides a wireless backhaul service, and the wireless backhaul service refers to a data and/or signaling backhaul service provided through a wireless backhaul link.
  • a relay node can provide wireless access services for terminals through an access link (AL); on the other hand, a relay node can use a one-hop or multi-hop backhaul link (BL) Connected to the access network equipment, thus, the relay node can realize the forwarding of data and/or signaling between the terminal and the access network equipment, and expand the coverage of the communication system.
  • AL access link
  • BL multi-hop backhaul link
  • Relay nodes can have different names in different communication systems.
  • relay nodes can be called wireless backhaul nodes or wireless backhaul devices; in 5G systems, relay nodes can be called integrated access and backhaul.
  • Node integrated access and backhaul node, IAB node
  • the relay node may also have different names, which is not limited here.
  • the relay node is the IAB node
  • the access network device is the IAB host
  • System 100 corresponding to the terminal, the relay node, and the access network device in FIG. 1 is further described.
  • System 100 may be referred to as an IAB network.
  • FIG. 2 is a schematic diagram of an IAB network 200 provided by an embodiment of the present application.
  • terminal 1 may correspond to terminal 110 in FIG. 1; IAB node (node) 2, IAB node 3, IAB node 1, IAB node 4 and IAB node 5 correspond to relay node 130 shown in FIG. 1 ; IAB host (donor) 1 may correspond to the access network device 140 in Figure 1; IAB donor 1 may be connected (eg, connected by wire) to the core network device 150 in Figure 1 (not shown in Figure 2).
  • the IAB network 200 includes 1 or more terminals (eg, terminal 1), 1 or more IAB nodes (eg, IAB node 2, IAB node 3, IAB node 1, IAB node 4, and IAB node 5), and 1 or more Multiple host nodes (eg IAB donor 1).
  • the terminal can be wirelessly connected to one or more IAB nodes, each IAB node can be wirelessly connected to one or more other IAB nodes, and one or more IAB nodes can wirelessly connect to one or more IAB nodes. connection to the host node.
  • one or more IAB nodes may also be connected to each other in a wireless manner, which is not limited in this application.
  • a transmission path between the terminal and the host node may include one or more IAB nodes.
  • Each IAB node needs to maintain the wireless backhaul link facing the parent node, and also needs to maintain the wireless link with the child nodes.
  • a wireless access link is formed between the IAB node and a sub-node (ie, a terminal), that is, the link between the terminal and the IAB node may be called an access link.
  • an IAB node is a node that provides backhaul services for terminals under other IAB nodes, there is a wireless backhaul link between the IAB node and its child nodes (that is, other IAB nodes), that is, the link between the IAB nodes and the IAB node.
  • the link with the host node may be referred to as the backhaul link.
  • the terminal 1 accesses the IAB node 2 through the wireless access link
  • the IAB node 2 is connected to the IAB node 3 through the wireless backhaul link
  • the IAB node 3 is connected to the IAB node through the wireless backhaul link 1.
  • IAB node 1 is connected to IAB donor 1 through a wireless backhaul link.
  • the IAB network supports the networking of multi-hop IAB nodes and multi-connection IAB nodes. Therefore, there may be multiple transmission paths between the terminal and the IAB host.
  • On a path there is a definite hierarchical relationship between the IAB nodes, as well as the IAB node and the host node serving the IAB node, and each IAB node regards the node that provides access services for the IAB node as a parent node. Accordingly, each IAB node can be regarded as a child node of its parent node.
  • the parent nodes of IAB node 1 and IAB node 5 are IAB donor 1
  • IAB node 1 is the parent node of IAB node 2
  • IAB node 2 is the parent node of IAB node 3 and IAB node 4
  • IAB node 2 is the parent node of terminal 1
  • IAB node 5 is the parent node of IAB node 4.
  • the uplink data packets of the terminal can be transmitted to the host node through one or more IAB nodes, and then sent by the host node to the mobile gateway device (such as the user plane function (UPF) network element in the 5G network), and the downlink data The packet will be received by the host node from the mobile gateway device, and then sent to the terminal via one or more IAB nodes.
  • the mobile gateway device such as the user plane function (UPF) network element in the 5G network
  • path 1 terminal 1 ⁇ IAB node 2 ⁇ IAB node 3 ⁇ IAB node 1 ⁇ IAB donor 1.
  • Path 2 Terminal 1 ⁇ IAB node 2 ⁇ IAB node 4 ⁇ IAB node 5 ⁇ IAB donor 1.
  • an IAB node accessed by a terminal may be referred to as an access IAB node, and other IAB nodes on the transmission path may be referred to as intermediate IAB nodes.
  • the intermediate IAB node can provide backhaul services for the terminal.
  • IAB node 2 is the access IAB node
  • IAB node 3 is the intermediate IAB node.
  • IAB node 3 provides access services for IAB node 2, and/or provides backhaul services for terminal 1
  • IAB node 1 provides access services for IAB node 3, and/or provides backhaul services for terminal 1.
  • an IAB node is an access IAB node.
  • it is an intermediate IAB node. Therefore, whether an IAB node is an access IAB node or an intermediate IAB node is not fixed and needs to be determined according to a specific application scenario.
  • IAB node 3 is an intermediate IAB node, and for terminal 2, IAB node 3 is an access IAB node.
  • one or more IAB nodes and one or more terminals served by an IAB node may be referred to as descendant nodes or downstream nodes of the IAB node.
  • a downstream node may include an IAB node served by the IAB node, such as child nodes, grandchild nodes, and grandchildren nodes, etc., and terminals that access these IAB nodes, such as access child nodes, grandchild nodes, and grandchildren. Terminals for nodes etc.
  • one or more IAB nodes that may serve an IAB node are referred to as ancestor nodes or upstream IAB nodes of the IAB node.
  • the upstream IAB node may include the IAB node between the IAB node and the IAB host, for example, including the parent node, the grandfather node, the parent node of the grandfather node, and so on.
  • the downstream nodes of IAB node 1 include terminal 1, IAB node 2 and IAB node 3.
  • the upstream IAB nodes of IAB node 2 include IAB node 3 and IAB node 1.
  • the above-mentioned IAB network is only an example.
  • the IAB network combining multi-hop and multi-connection, there are more other possibilities for the IAB network.
  • the host node and the IAB node under another host node form dual connections as terminals. Services, etc., will not be listed here.
  • Figure 2 takes the IAB network as an example for introduction.
  • the content of Figure 2 is also applicable to relay networks other than the IAB network.
  • the IAB in Figure 2 can be replaced by a relay, for example, IAB node 2 can be replaced Become relay node 2, IAB node 3 is replaced by relay node 3, IAB node 1 is replaced by relay node 1, and IAB donor 1 is replaced by host node 1.
  • IAB network 200 For the connection relationship, access link and backhaul link of each network element in the relay network, as well as the description of the parent node and child node, access relay node and intermediate access node, etc., reference may be made to the description of the IAB network 200 .
  • FIG. 3 is a schematic diagram of a separation architecture of a CU-DU provided by an embodiment of the present application.
  • the access network device in FIG. 1 or the IAB donor1 in FIG. 2 may adopt a CU-DU separation architecture, which will be described below with reference to FIG. 3 .
  • gNB can divide the protocol stack architecture and functions of traditional access network equipment into two parts, one part is called centralized Unit (central unit, CU), another part is called distributed unit (distributed unit, DU).
  • the segmentation of CU and DU can be divided according to the protocol stack.
  • One possible way is to aggregate the radio resource control (RRC) layer, service data adaptation protocol (SDAP) layer and packet data.
  • the protocol (packet data convergence protocol, PDCP) layer is deployed in the CU, and the rest of the radio link control (RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer is deployed in DU.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • one CU can be connected to one DU, or one CU can be connected to multiple DUs, which can save costs and facilitate network expansion. That is, the access network device may be composed of one CU and one or more DUs.
  • the CU and the DU are connected through the F1 interface, and the CU and the core network are connected through the next generation (NG) interface.
  • NG next generation
  • the gNB includes one gNB-CU and two gNB-DUs, wherein the gNB-CU and each gNB-DU establish an F1 interface, the gNB-CU and the 5G core network (5G core network, 5GC ), an NG interface is established between them.
  • 5G core network 5G core network
  • the CU may be a form in which a user plane (UP) (herein referred to as CU-UP) and a control plane (control plane, CP) (herein referred to as CU-CP) are separated, that is, the CU is formed by the CU.
  • UP user plane
  • CP control plane
  • CU-CP control plane
  • the terminal can access the CU through the DU, where the RLC layer, MAC layer and PHY layer equivalent to the UE are located on the DU, and the PDCP layer, SDAP layer and PDCP layer corresponding to the UE are located on the CU.
  • 4A and 4B are respectively a schematic diagram of a control plane protocol stack and a schematic diagram of a user plane protocol stack under the CU-DU separation architecture provided by an embodiment of the present application, which will be described below with reference to FIGS. 4A and 4B .
  • a peer-to-peer RRC layer and a PDCP layer are established between the UE and the CU.
  • the UE and the DU are connected through the user equipment (user equipment) interface (which may be called the Uu interface).
  • the UE and the DU have an equivalent RLC layer, MAC layer and PHY layer; between the DU and the CU, the F1 control plane (F1 -control plane, F1-C) interface connection, the peer F1 application protocol (F1 application protocol, F1AP) layer, stream control transmission protocol (stream control transmission protocol, SCTP) layer is established between DU and CU.
  • protocol, IP IP
  • layer layer (layer, L) 2 and layer (layer, L) 1.
  • a peer-to-peer SDAP layer and a PDCP layer are established between the UE and the CU.
  • the UE and the DU are connected through the Uu interface, and the equivalent RLC layer, MAC layer and PHY layer are established between the UE and the DU; the DU and the CU are connected through the F1 user plane (F1-user plane, F1-U) interface, and the DU
  • F1-user plane, F1-U F1 user plane
  • F1-U F1-U
  • a peer-to-peer general packet radio service (GPRS) tunneling protocol user plane (GPRS tunneling protocol-user plane, GTP-U) layer and user datagram protocol (UDP) layer are established between the CU and the CU. layer, IP layer, L2 and L1.
  • GPRS general packet radio service
  • IAB donor can be composed of CU (can be called IAB donor CU) and DU (can be called IAB donor DU). Similar in function, the IAB donor DU and the DU of the gNB in Figure 3 have similar functions.
  • an IAB node when the IAB node acts as a parent node, it can act as a similar access network device to provide access services to its child nodes. Uplink resources for transmitting uplink data.
  • an IAB node When an IAB node is a child node, it can act as a terminal for the parent node that provides services for the IAB node, access the wireless network like a terminal, and perform the functions of a terminal; through cell selection, random access and other operations, and The parent node establishes a connection, and obtains uplink resources scheduled by the parent node for transmitting uplink data.
  • the role of the IAB node as a terminal is referred to as the mobile terminal (mobile terminal, MT) side of the IAB node or the MT functional unit of the IAB node (may be referred to as IAB-MT or IAB-UE)
  • the role of the IAB node as a similar access network device is called the DU side of the IAB node or the DU functional unit of the IAB node (may be called IAB-DU).
  • IAB-MT and IAB-DU can be a logical division, and their functions are implemented by IAB nodes; or IAB-MT and IAB-DU can be a physical division, and IAB-MT and IAB-DU can be IAB nodes. different physical devices in .
  • the IAB-DU has similar functions to the DU of the gNB in FIG. 3
  • the IAB-MT has the function of the UE to provide data backhaul.
  • FIG. 5 is a schematic diagram of another IAB network 300 provided by an embodiment of the present application. Further description is given below with reference to FIG. 5 .
  • IAB donor 1 includes CU (may be called IAB donor CU1) and DU (may be called IAB donor DU1);
  • IAB node 1 includes the MT side of IAB node 1 (may be called IAB1-MT) and IAB DU side of node 1 (may be called IAB1-DU);
  • IAB node 2 includes MT side of IAB node 2 (may be called IAB2-MT) and DU side of IAB node 2 (may be called IAB2-DU);
  • IAB node 3 includes the MT side of the IAB node 3 (may be referred to as IAB3-MT) and the DU side of the IAB node 3 (may be referred to as IAB3-DU).
  • Figure 5 takes the IAB network as an example for introduction.
  • the content of Figure 5 is also applicable to the relay network other than the IAB network.
  • the IAB node 2 can be replaced by the relay node 2, and the relay node 2 has an MT and DU
  • IAB node 3 can be replaced by relay node 3
  • relay node 3 has MT and DU
  • IAB node 1 can be replaced by relay node 1
  • relay node 1 has MT and DU
  • IAB donor 1 can be replaced by host Node 1
  • the host node has CU and DU.
  • the MT side of the relay node performs the function of the terminal role of the relay node
  • the DU side of the relay node performs the function of the access network device role of the relay node. No longer.
  • the PHY layer, MAC layer and RLC layer that are equivalent to the terminal are located on the access IAB node, while the PDCP layer, SDAP layer and RRC layer that are equivalent to the UE are located on the IAB donor CU.
  • the IAB donor-CU Composed of CP and UP the RRC layer that is equivalent to the UE is located on the CP (that is, the donor-CU-CP) of the IAB donor CU, and the PDCP layer and SDAP layer that are equivalent to the UE are located in the UP of the IAB donor CU (that is, the donor-CU). -UP) on.
  • FIG. 6A and FIG. 6B are respectively a schematic diagram of a control plane protocol stack and a schematic diagram of a user plane protocol stack in an IAB network provided by an embodiment of the present application, which will be described below with reference to FIG. 6A and FIG. 6B .
  • a Uu interface is established between the terminal 1 and the IAB2-DU, and the peer-to-peer protocol layers include the RLC layer, the MAC layer, and the PHY layer.
  • IAB2-DU and IAB donor CU1 establish an F1-C interface, and the equivalent protocol layers include the F1AP layer, the SCTP layer and the IP layer.
  • the F1 interface in the IAB host is established between the IAB donor DU1 and the IAB donor CU1, and the equivalent protocol layers include the IP layer, L2 and L1.
  • BL is established between IAB node 2 and IAB node 3, between IAB node 3 and IAB node 1, and between IAB node 1 and IAB donor DU1, and the peer-to-peer protocol layers include Backhaul Adaptation Protocol , BAP) layer, RLC layer, MAC layer and PHY layer.
  • BAP Backhaul Adaptation Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • PHY Physical Layer
  • a peer-to-peer RRC layer and a PDCP layer are established between the terminal 1 and the IAB donor CU1, and a peer-to-peer IP layer is established between the IAB2-DU and the IAB donor DU1.
  • control plane protocol stack of the IAB network is compared with the control plane protocol stack of the single air interface.
  • the DU connected to the IAB node realizes the function of the gNB-DU of the single air interface (that is, establishing a peer RLC layer, MAC layer with the terminal). and the functions of the PHY layer, as well as the functions of the F1AP layer, SCTP layer, and IP layer that establish equivalence with the CU). It can be understood that the DU connected to the IAB node in the IAB network realizes the function of the single air interface gNB-DU; the IAB donor CU realizes the function of the single air interface gNB-CU.
  • the user plane protocol stack of the IAB network is compared with the user plane protocol stack of the single air interface. layer and PHY layer, as well as the functions of GTP-U layer, UDP layer and IP layer to establish equivalence with IAB donor CU1). It can be understood that the DU of the IAB access node realizes the function of the single air interface gNB-DU; the IAB donor CU realizes the function of the single air interface gNB-CU.
  • PDCP packets are encapsulated and transmitted in the GTP-U tunnel between the access IAB node and the IAB donor CU.
  • the GTP-U tunnel is established on the F1-U interface.
  • IAB nodes can be handed over.
  • the IAB node performing the handover is called the handover IAB node
  • the handover IAB node and the descendant nodes of the handover IAB node can be regarded as a group (group), and the group is connected together from the handover IAB node before the handover
  • the parent node of the switching IAB node is switched to the parent node connected after the switching IAB node, and the uplink data of each IAB node in the group is switched from the IAB host connected before the switching IAB node switching to the IAB host connected after the switching IAB node switching.
  • the handover IAB node may be an access IAB node, or an intermediate IAB node between the access IAB node and the IAB host.
  • the IAB host connected before switching the IAB node is called the source IAB host.
  • the source IAB host may include CU and DU, wherein the CU of the source IAB host is called the source IAB host CU, and the DU of the source IAB host is called the source IAB host. Hosts the DU for the source IAB.
  • the IAB host connected after switching the IAB node is referred to as the target IAB host.
  • the target IAB host may include CU and DU, wherein the CU of the target IAB host is called the target IAB host CU, and the DU of the target IAB host is called the target IAB host. Hosts the DU for the target IAB.
  • the parent node connected before the switching of the switching IAB node may be called the source parent node, and the parent node connected after the switching of the switching IAB node may be called the target parent node.
  • the handover IAB node before the handover IAB node is switched, the handover IAB node is connected to the source parent node, and the source parent node provides access services for the handover IAB node. After the handover IAB node is handed over, the handover IAB node is connected to the target parent node, and the target parent node is the handover node.
  • the IAB node provides access services.
  • the source parent node may be the source IAB host, or the source parent node is connected to the source IAB host through m other IAB nodes, where m is an integer greater than or equal to 1.
  • the target parent node may be the target IAB host, or the target parent node is connected to the target IAB host through n other IAB nodes, where n is an integer greater than or equal to 1. Exemplarily, referring to FIG.
  • the transmission path before switching is: terminal 2 ⁇ IAB node 6 ⁇ IAB node 2 ⁇ IAB node 3 ⁇ IAB node 1 ⁇ IAB donor DU1 ⁇ IAB donor CU1, after switching
  • the transmission path is terminal 2 ⁇ IAB node 6 ⁇ IAB node 2 ⁇ IAB node 4 ⁇ IAB node 5 ⁇ IAB donor DU2 ⁇ IAB donor CU1, switch the IAB node to IAB node 2, and the source parent node to IAB node 3, the upstream IAB node of the source parent node is IAB node1, the source IAB host CU is IAB donor CU1, the source IAB host DU is IAB donor DU1, the target IAB host CU is IAB donor CU1, and the target IAB host DU is IAB donor DU2.
  • the switch IAB node and the descendant nodes of the switch IAB node i.e. IAB node 2, IAB node 6 and terminal 2 can switch from IAB donor 3 to IAB donor 4 together as a group.
  • both the source IAB host and the target IAB host are IAB donor CU1.
  • IAB node DU1 If IAB node DU1 does not receive all the uplink data from IAB node 2, IAB node 6 and terminal 2, or receives part of the uplink data, IAB node DU1 updates/releases the callback between IAB node DU1 and IAB node 1
  • the return configuration information corresponding to IAB node 3 on the transmission link will cause the loss of uplink data that has not been transmitted to IAB node DU1, that is, IAB donor CU1 cannot receive all uplink data.
  • IAB donor DU1 updates/releases the backhaul configuration corresponding to IAB node 3 on the backhaul link between IAB donor DU1 and IAB node 1 information, the IAB donor DU will not be able to receive all uplink data, resulting in data loss.
  • IAB node DU1 does not update/release the backhaul configuration information corresponding to IAB node 3 on the backhaul link between IAB node DU1 and IAB node 1 after IAB donor CU1 receives all the uplink data, or update it too late /Release, the resource corresponding to the backhaul configuration information will not be used, thereby affecting the resource utilization rate of the backhaul link.
  • the embodiment of the present application updates or releases the backhaul configuration information corresponding to the switching IAB node according to the instruction information in time, which can avoid the IAB node during switching. Data is lost and resource utilization is improved.
  • FIG. 8 is a method for updating or releasing the returned configuration information provided by an embodiment of the present application.
  • Fig. 8 is illustrated with an IAB network. The method is specifically applied to a first node, which is an upstream IAB node or a source IAB host DU that switches the source parent node of the IAB node. The method includes but is not limited to the following steps:
  • Step S802 After determining that all data packets from the switching IAB node have been received, the first node sends first indication information to the source IAB host CU.
  • the data packet of the switching IAB node may be the data packet received by the switching IAB node from the downstream node of the switching IAB node before the switching, or may be the data packet of the switching IAB node itself, for example, the service data of the switching IAB node Or download data, etc.
  • the switching IAB node is IAB node 2
  • the data packet of switching the IAB node can be the downstream node of IAB node 2 (that is, terminal 2 and IAB node 6), and switching to the target transmission link at IAB node 2 (ie IAB node 4 ⁇ IAB node 5 ⁇ IAB donor DU2 ⁇ IAB donor CU1), the data packet sent to IAB node 2.
  • the data packet for switching the IAB node may include the data packet for IAB node 2.
  • the first node receives the data packet, and the data packet includes the identifier of the switching IAB node; the first node according to the switching IAB node The identifier of , determines that the data packet is a data packet from the switching IAB node.
  • the identification of the switching IAB node may include the network address of the switching IAB node (for example: Internet Protocol (Internet Protocol, IP) address), BAP address, physical address (for example: Media Access Control Address (Media Access Control Address, MAC)), etc., which are not limited here.
  • IP Internet Protocol
  • BAP Internet Protocol
  • Physical address for example: Media Access Control Address (Media Access Control Address, MAC)
  • the identity of the handover IAB node may be included in the header (header) of the data packet, or may be indicated by the indication information in the header, for example, a 1-bit indication is included in the BAP header of the BAP data packet to indicate that the BAP data packet comes from the handover IAB node.
  • the identifier of the switching IAB node may be obtained by marking the data packet by the switching IAB node, or may be obtained by marking the data packet by the source parent node of the switching IAB node, which is not limited herein. It can be understood that, when the source parent node receives the data packet from the switching IAB node, it can determine that the data packet is from the switching IAB node. Therefore, the source parent node can mark the data packet received from the switching IAB node, so that the upstream IAB node of the source parent node can directly determine whether the data packet comes from the switching IAB node according to the identification.
  • the source parent node i.e. IAB node 3
  • the data packet sent by the switching IAB node is marked, and the marked mark is the identification of the switching IAB node, then the IAB is switched.
  • the upstream IAB node IAB node 1 and IAB donor DU1 of the source parent node of the node can directly determine whether the data packet comes from the switching IAB node according to the identifier of the switching IAB node contained in the received data packet.
  • the identification of the switching IAB node can be obtained by switching the IAB node or switching the source parent node of the IAB node, after receiving the indication information from the source IAB host CU, and marking the data packet received from the switching IAB node.
  • the indication information may be sent by the source IAB host CU according to the measurement report obtained by the handover IAB node, and is used to instruct the handover IAB node to perform handover.
  • the measurement report may include the source transmission link corresponding to the switched IAB node, as well as the signal quality and transmission efficiency of other transmission links (which may include the switched IAB node, or not include the switched IAB node).
  • the measurement report may be periodically sent by the handover IAB node to the source IAB host CU, or the handover IAB node may reply to the source IAB host CU after receiving the measurement request from the source IAB host CU, etc., which are not limited here. . It can be understood that, after receiving the instruction information for switching the IAB node, the switching IAB node identifies the data packet from the switching IAB node, or the source parent node of the switching IAB node identifies the data packet from the switching IAB node without No identification is performed when switching, which can improve the identification efficiency.
  • the above-mentioned indication information may also include the reconfiguration information of the link after the handover of the handover IAB node, for example, the system message of the target cell, the random access channel (Random Access Channel). Access Channel, RACH) resources or radio link control signal (Radio Link Control Channel, RLC CH) resources, etc.
  • the reconfiguration information of the link after the handover of the handover IAB node for example, the system message of the target cell, the random access channel (Random Access Channel). Access Channel, RACH) resources or radio link control signal (Radio Link Control Channel, RLC CH) resources, etc.
  • whether the data packet is from the handover IAB node is determined by whether the received data packet contains the identifier of the handover IAB node, which can improve the identification efficiency and accuracy.
  • the first node receives a data packet, the data packet includes the first BAP routing identifier; the first node receives the first routing configuration information from the source IAB host CU; the first node according to the data packet The first BAP routing identifier and the first routing configuration information determine that the data packet is a data packet from the switching IAB node.
  • the BAP routing identifier is composed of the BAP address of the target node and the routing path identifier, that is, for the uplink transmission, the BAP address refers to the BAP address of the IAB donor DU, and for the downlink transmission, the BAP address refers to the terminal connected to the terminal.
  • BAP address of the incoming IAB node The packet header of the data packet itself includes the BAP routing identifier, which is used to indicate the transmission path of the data packet and the destination node that finally receives the data packet.
  • the first routing configuration information may include the first BAP routing identifier, and the path of the first BAP routing identifier includes the path between the switching IAB node and the source parent node of the switching IAB node, that is, when the received data packet includes the first BAP routing When identified, it can be determined that the data packet comes from the handover IAB node. It should be noted that the first routing configuration information may include one or more first BAP routing identifiers.
  • the source IAB host CU sends the first routing configuration information to the first node, that is, the source IAB host CU will switch the backhaul between the IAB node and the source parent node of the switch IAB node.
  • the first node is informed of all BAP routing identities associated with the path. Therefore, the first node can determine whether the data packet comes from the handover IAB node according to whether the received data packet includes the first BAP routing identifier, which improves the identification efficiency and accuracy.
  • This application does not limit the method for determining that all data packets from the switching IAB node have been received.
  • the first node starts or restarts when receiving the first data packet from the switching IAB node.
  • a first timer during the running of the first timer, if the first node does not receive other data packets from the switching IAB node, the first node determines that all data packets from the switching IAB node have been received.
  • the first data packet may be the first data packet received by the first node from the switching IAB node, or may be the data packet received by the first node again from the switching IAB node, which is not limited herein.
  • the first timer is started; when the first node receives the data packet from the switching IAB node again, the first timer is restarted.
  • the running period of the first timer refers to the time from when the first timer is turned on until it times out. Turning on means that the first timer starts timing from 0, and the timeout means that the timing time of the first timer exceeds the timing period.
  • the duration of a timer is not limited.
  • the timing of the first timer is 1 minute
  • the time of the first data packet received by the first node from the switching IAB node is 11:30
  • the first timer is started, at 11
  • the first node determines that all data packets from the switching IAB node have been received.
  • the first timer is started or restarted. And during the running of the first timer, monitor whether other data packets from the switching IAB node are received. If the time of the first timer reaches the timing length, and no other data packets from the switching IAB node have been received, it is determined that the child nodes of the first node will not send data packets from the switching IAB node, that is, the first node is determined to be the first node. The node has received a packet from the switching IAB node. Otherwise, the first timer is restarted until no other data packets from the switching IAB node are received during the running of the first timer. Determining whether all data packets from the switching IAB node are received based on the timer can prevent the first node from being in a state of waiting to receive data packets from the switching IAB node, and can improve the resource utilization of the backhaul configuration.
  • the first node receives third indication information from a child node of the first node; the first node determines, according to the third indication information, that all data packets from the switching IAB node have been received.
  • the third indication information may include indicating that the child nodes of the first node have determined to receive all data packets from the switching IAB node, or indicating that the child nodes of the first node have received all data from the switching IAB node The last data packet in the packet, or used to indicate that the child node of the first node has sent all the received data packets from the switching IAB node to the first node, which is not limited herein.
  • the backhaul configuration information corresponding to the handover IAB node refers to configuration information that provides backhaul services for the handover IAB node, for example, BAP routing configuration, or backhaul link radio link control channel (Backhaul Radio Link ControlChannel, BH RLC CH) configuration information, etc.
  • one or more backhaul link radio link control channels may be included between the node and the sub-node.
  • the first node can determine that all data packets from the switching IAB node have been received, which can improve the identification efficiency and accuracy.
  • the first node is the upstream IAB node of the source parent node of the switched IAB node, and after the first node sends all data packets from the switched IAB node to the parent node of the first node, the first node Send fourth indication information to the parent node of the first node.
  • the fourth indication information is similar to the third indication information, and details are not described herein again. It can be understood that the first node is the upstream IAB node that switches the source parent node of the IAB node, the first node can send fourth indication information to the parent node of the first node, and then the parent node of the first node can be determined according to the fourth indication information. All data packets from switching IAB nodes have been received, which can improve identification efficiency and accuracy.
  • the source IAB host DU determines that all data packets from the switching IAB node have been received, it means that the upstream IAB node of the source parent node of the switching IAB node sends all the data packets from the switching IAB node to the source IAB host. DU. Therefore, in step S802, the source IAB host DU can directly determine that all the data packets from the switching IAB node have been received, instead of determining each IAB node one by one, so that the IAB nodes between the switching IAB node and the source IAB host DU will not determine one by one that the data packets have been received. After receiving the data packet from the switching IAB node, that is, in the above-mentioned optional embodiment, the first node is the source IAB host DU.
  • the first indication information may include indicating that the first node has determined to receive all data packets from the switching IAB node, or indicating that the first node has received all data packets from the switching IAB node
  • the last data packet in or used to request the IAB host CU to update or release the backhaul configuration information corresponding to the switch IAB node on the backhaul link between the first node and the child nodes of the first node.
  • the source IAB host CU can determine that the first node has received all data packets from the switching IAB node, that is, the backhaul link between the downstream nodes of the first node has completed the switching of the IAB node.
  • the data transmission task can update or release the backhaul configuration information corresponding to the handover IAB node on the backhaul link between the first node and the downstream node.
  • the backhaul configuration information for switching the IAB node on the backhaul link between the nodes can be updated or released respectively.
  • the upstream IAB node sends the first indication information to the source IAB host CU respectively, and the source IAB host CU sends an update or release indication to each of the upstream IAB nodes after receiving the first indication information from each of the upstream IAB nodes. .
  • each IAB node in the upstream IAB node of the source parent node of the switching IAB node and the child node of the IAB node and the source IAB host DU and its child nodes can be updated or released uniformly
  • the backhaul configuration information of the IAB node is switched on the backhaul link between the IAB nodes.
  • the source IAB host CU receives the first indication information of the source IAB host DU, it sends the source IAB host DU and each upstream IAB node. Send update or release instructions.
  • Step S804 The first node receives the second indication information from the source IAB host CU.
  • the second indication information is used to instruct the first node that has received the second indication information to update or release the IAB node on the backhaul link between the first node and the child nodes of the first node Corresponding return configuration information.
  • the second indication information may be that after the source IAB host CU receives the first indication information from the first node, the source IAB host CU sends a message to the first node.
  • each node in the upstream IAB nodes can respectively update or release the backhaul configuration information of the switch IAB node on the backhaul link between the node and the child nodes of the node after receiving the second indication information .
  • the second indication information may be sent by the source IAB host CU to the source IAB host DU after the source IAB host CU receives the first indication information from the source IAB host DU.
  • the source IAB host CU can send to each node in the upstream IAB node of the source parent node of the switching IAB node, the update or release instruction information corresponding to the node, that is, the source IAB host DU and the upstream of the source parent node of the switching IAB node.
  • Each node in the IAB nodes may receive a fifth indication information from the source IAB host CU based on the node, where the fifth indication information is used to instruct each node in the upstream IAB nodes to update or release the node and the node's
  • the backhaul configuration information of the IAB node is switched on the backhaul link between the sub-nodes, so as to uniformly update or release the backhaul configuration information of the switched IAB node.
  • the first node is IAB node 1
  • IAB node 1 determines that all data packets from IAB node 2 have been received, it sends first indication information to IAB donor CU1.
  • the IAB donor CU1 sends the second indication information to the IAB node 1.
  • the IAB donor CU1 sends the second indication information to the IAB node 1, and sends the fifth indication information to the IAB donor DU1.
  • Step S806 The first node updates or releases the backhaul configuration information corresponding to the handover IAB node on the backhaul link between the first node and the child nodes of the first node based on the second indication information.
  • the first node updates or releases the backhaul configuration information in time through the indication information, which can improve the resource utilization rate of the backhaul configuration.
  • the backhaul configuration information is updated or released after all the data packets from the handover IAB node have been received, which can avoid data loss of the IAB node during handover.
  • FIG. 9 is another method for updating or releasing configuration information provided by an embodiment of the present application, and the method is applied to a host node.
  • Fig. 9 is illustrated with the IAB network, the method is specifically applied to the source IAB host CU, and the source IAB host CU is the IAB host CU connected before switching the IAB node switching, and the method includes but is not limited to the following steps:
  • Step S902 the source IAB host CU receives the first indication information from the first node.
  • the first node is the upstream IAB node or the source IAB host DU of the source parent node of the switching IAB node, and the source IAB host DU is the IAB host DU connected before the switching of the switching IAB node.
  • the first indication information is sent by the first node to the source IAB host CU after determining that it has received all the data packets from the switching IAB node.
  • Step S902 can refer to the description of step S802, which is not repeated here.
  • Step S904 the source IAB host CU sends the second indication information to the first node.
  • the second indication information is used to instruct the first node that has received the second indication information to update or release the IAB node on the backhaul link between the first node and the child nodes of the first node Corresponding return configuration information.
  • the second indication information may be that after the source IAB host CU receives the first indication information from the first node, the source IAB host CU sends a message to the first node.
  • the second indication information may be that the source IAB host CU sends the source IAB host DU to the source IAB host DU after receiving the first indication information from the source IAB host DU.
  • the source IAB host CU can send to each node in the upstream IAB node of the source parent node of the switching IAB node, the update or release instruction information corresponding to the node, that is, the source IAB host DU and the upstream of the source parent node of the switching IAB node.
  • Each node in the IAB nodes may receive a fifth indication information from the source IAB host CU based on the node, where the fifth indication information is used to instruct each node in the upstream IAB nodes to update or release the node and the node's
  • the backhaul configuration information of the IAB node is switched on the backhaul link between the sub-nodes, so as to uniformly update or release the backhaul configuration information of the switched IAB node.
  • the first node is the source IAB host DU
  • the above method further includes: the source IAB host CU sends fifth indication information to the upstream IAB node that switches the source parent node of the IAB node.
  • the fifth indication information is used to instruct the upstream IAB node receiving the fifth indication information to update or release the backhaul configuration information corresponding to the handover IAB node on the backhaul link between the IAB node and the child nodes of the IAB node.
  • the first node is IAB donor DU1
  • IAB donor DU1 determines that all data packets from IAB node 2 have been received, it sends first indication information to IAB donor CU1.
  • the IAB donor CU1 sends the second indication information to the IAB donor DU1, and sends the fifth indication information to the IAB node 1.
  • the source IAB host CU can send the second indication information to the source IAB host DU, and send the fifth indication information to the upstream IAB node in the source parent node of the switching IAB node.
  • Indication information so as to uniformly update or release the backhaul configuration information corresponding to the switching IAB node on the backhaul link between each node and its sub-nodes, which saves identification time and facilitates the improvement of backhaul configuration resource utilization.
  • source IAB host CU may also send sixth indication information to the source parent node that switches the IAB node.
  • the sixth indication information is used to instruct the source parent node of the handover IAB node to update or release the backhaul configuration information corresponding to the handover IAB node on the backhaul link between the source parent node and the handover IAB node.
  • the sixth indication information may be sent after the upstream IAB node of the source parent node of the switching IAB node sends the first indication information to the source IAB host CU, or may be sent after the source IAB host DU sends the first indication to the source IAB host CU
  • the information sent after the information is not limited here.
  • the first node is IAB node 1
  • IAB node 1 determines that all data packets from IAB node 2 have been received, it sends first indication information to IAB donor CU1.
  • the IAB donor CU1 sends the second indication information to the IAB node 1, and sends the fifth indication information to the IAB node 3.
  • the IAB donor CU1 receives the first indication information from the IAB donor DU1
  • the IAB donor CU1 sends the second indication information to the IAB donor DU1
  • Six instructions are examples of the first indication information to the IAB node 1
  • the source IAB host CU can determine, according to the first indication information sent by the upstream IAB node of the source parent node of the switching IAB node, or the first indication information sent by the source IAB host DU, that the source parent node of the switching IAB node has All packets from switching IAB nodes are sent to the parent node of this source parent node. Therefore, updating or releasing the source parent node and the backhaul configuration information corresponding to the source parent node can avoid data loss when the IAB node is switched, and is convenient to improve the backhaul configuration resource utilization.
  • the source IAB host CU receives the first indication information from the first node, and then sends a message to the first node for Updating or releasing the second indication information of the backhaul configuration information can avoid data loss of the IAB node during handover, and improve the backhaul configuration resource utilization.
  • the source IAB host CU sends the first routing configuration information to the first node.
  • the first routing configuration information includes a first BAP routing identifier, and a path of the first routing identifier includes a path between the handover IAB node and the parent node of the handover IAB node. In this way, determining whether the data packet comes from the handover IAB node based on the BAP routing identifier can improve the identification efficiency and accuracy.
  • FIGS. 10 to 12 The apparatuses provided in the embodiments of the present application are described below with reference to FIGS. 10 to 12 .
  • the apparatuses in FIGS. 10 to 12 can implement the methods in FIGS. 8 to 9 , and the content of the apparatus and the content of the method can be referred to each other.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device may be a relay node, and may implement the function of switching the upstream IAB node of the source parent node of the IAB node in the above method embodiments;
  • the network device may be a host node, and may implement the function of the source IAB host CU or the source IAB host DU in the foregoing method embodiments.
  • Figure 10 illustrates the main components of the network device, as shown in Figure 10:
  • the network device includes at least one processor 711 , at least one memory 712 , at least one transceiver 713 , at least one network interface 714 and at least one antenna 715 .
  • the processor 711, the memory 712, the transceiver 713 and the network interface 714 are connected, for example, through a bus. In this embodiment of the present application, the connection may include various interfaces, transmission lines, or buses, which are not limited in this embodiment. .
  • Antenna 715 is connected to transceiver 713 .
  • the network interface 714 is used to connect the network device with other network devices through a communication link.
  • the transceiver 713 can be used for converting the baseband signal to the radio frequency signal and processing the radio frequency signal, and the transceiver 713 can be connected to the antenna 715 .
  • the transceiver 713 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • one or more antennas 715 may receive radio frequency signals
  • the receiver Rx of the transceiver 713 is configured to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 711, so that the processor 711 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 713 is used for receiving the modulated digital baseband signal or the digital intermediate frequency signal from the processor 711, and converting the modulated digital baseband signal or the digital intermediate frequency signal into a radio frequency signal, and passing through an or A plurality of antennas 715 transmit the radio frequency signals.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, and the up-mixing processing and digital-to-analog conversion processing
  • the sequence of s is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the transmitter Tx and the receiver Rx may be implemented by different physical structures/circuits, or may be implemented by the same physical structure/circuit, that is, the transmitter Tx and the receiver Rx may be inherited together.
  • the transceiver 713 may be referred to as a transceiver unit, a communication unit, a transceiver, a transceiver, or the like.
  • the device used to implement the receiving function in the transceiver unit may be regarded as a receiving unit
  • the device used to implement the transmitting function in the transceiver unit may be regarded as a transmitting unit, that is, the transceiver unit includes a receiving unit and a transmitting unit, and the receiving unit may It is called a receiver, an input port, a receiving circuit, etc.
  • the sending unit can be called a transmitter, a transmitter or a transmitting circuit, etc.
  • a combination of Tx, Rx and antenna may be used as transceiver 713 .
  • the processor 711 may be configured to support the relay node to perform the actions described in the foregoing method embodiments.
  • the processor 711 eg, a baseband processor
  • the processor 711 may determine that all data packets from the switching IAB node have been received in the foregoing method embodiments, and for details, refer to the content of the foregoing method embodiments.
  • the transceiver 713 and the antenna 715 can realize the connection between the relay node and the source host node, and can also realize the transmission with the parent node of the relay node and/or the child node of the relay node.
  • the data sent by the child node or the data sent by the terminal send data to the parent node of the relay node or send data from the terminal, etc.; receive the indication information generated by the child node from the child node of the relay node, and send it to the parent node of the relay node
  • the node sends the indication information generated by the relay node, etc., or for details, refer to the content of the foregoing method embodiment.
  • the memory 712 is primarily used to store software programs and data.
  • the memory 712 may exist independently and be connected to the processor 711 .
  • the memory 712 may be integrated with the processor 711, for example, integrated within a chip, that is, an on-chip memory, or the memory 712 is an independent storage element, which is not limited in this embodiment of the present application.
  • the memory 712 can store program codes for implementing the technical solutions of the embodiments of the present application, and is controlled and executed by the processor 711 .
  • the memory 712 may store program codes and/or data for performing the operations performed by the relay node in the above method embodiments, and the execution is controlled by the processor 711 .
  • the memory 712 may store data and/or indication information received from a child node of the relay node, or may store indication information generated by the relay node. For details, refer to the content of the above method embodiments.
  • the network device is the upstream IAB node of the source parent node of the switched IAB node, and the processor 711 is used to determine that all data packets from the switched IAB node have been received; the transceiver 713 is used to send the source The IAB host CU sends the first indication information, and receives the second indication information from the source IAB host CU, wherein the source IAB host CU is the IAB host CU connected before the switching of the IAB node; the processor 711 , and is further configured to update or release the backhaul configuration information corresponding to the handover IAB node on the backhaul link between the network device and the child node of the network device based on the second indication information.
  • the processor 711 is further configured to start or restart the first timer when the transceiver 713 receives the first data packet from the switching IAB node; During the running of the timer, if no other data packets from the switching IAB node are received, it is determined that all the data packets from the switching IAB node have been received.
  • the transceiver 713 is further configured to receive third indication information from a sub-node of the network device; the processor 711 is further configured to determine according to the third indication information All packets from the switching IAB node have been received.
  • the transceiver 713 is further configured to send a fourth indication to the parent node of the network device after sending all the data packets from the switching IAB node to the parent node of the network device information.
  • the transceiver 713 is further configured to receive a data packet, where the data packet includes a first BAP routing identifier; and receive first routing configuration information from the source IAB host CU, wherein, The first routing configuration information includes the first BAP routing identifier, and the path of the first BAP routing identifier includes the path between the switching IAB node and the source parent node of the switching IAB node; the processor 711, further configured to determine that the data packet is a data packet from the switching IAB node according to the first BAP routing identifier and the first routing configuration information in the data packet.
  • the transceiver 713 is further configured to receive a data packet, where the data packet includes the identifier of the switching IAB node; the processor 711 is further configured to The identification determines that the data packet is a data packet from the handover IAB node.
  • the processor 711 may be configured to support performing the actions described in the above method embodiments. For example, the processor 711 may determine that all data packets from the switching IAB node are received in the foregoing method embodiments, and for details, reference may be made to the content of the foregoing method embodiments.
  • the transceiver 713 and the antenna 715 can realize the connection between the host node and the relay node, and can also realize the connection between the host DU and the host CU in the host node.
  • the source IAB host DU sends the data from the handover to the source IAB host CU. Data packets and/or indication information of the IAB node, etc.
  • the connection between the host node and the child node can also be realized.
  • the child node of the source IAB host DU sends the data packet and/or instruction information from the switching IAB node to the source IAB host CU.
  • the memory 712 may store program codes and/or data for executing the operations performed by the source host node in the above method embodiments, and the execution is controlled by the processor 711 .
  • the memory 712 may store data or indication information received from the child node, and for details, refer to the content of the foregoing method embodiments.
  • the network interface 714 may include a network interface between the host node and core network elements, such as an S1 interface.
  • the network interface may include a network interface between an access network device and other network devices, such as a network interface between a source host node and a target host node, such as an X2 or Xn interface.
  • FIG. 11 is a schematic structural diagram of an access network device provided by an embodiment of the present application, which may be a schematic structural diagram of a host node by way of example, the DU included in the DU may refer to the host DU, and the CU included in the device may refer to the host
  • the CU can be applied to the system shown in FIG. 1 or FIG. 2 or FIG. 5 or FIG. 7 to perform the functions of the host node (source IAB host CU and/or source IAB host DU) in the above method embodiments.
  • the access network equipment may include one or more DU1101 and one or more CU1102.
  • the DU 1101 may include at least one antenna 11011 , at least one radio frequency unit 11012 , at least one processor 11013 and at least one memory 11014 .
  • the DU1101 part is mainly used for the transceiver of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU 1102 may include at least one processor 11022 and at least one memory 11021 .
  • the CU1102 and the DU1101 can communicate through an interface, wherein the control plane interface can be F1-C, and the user plane interface can be F1-U.
  • the CU1102 part is mainly used to perform baseband processing, control the base station, and the like.
  • the DU1101 and the CU1102 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU1102 is the control center of the base station, or may be called a processing unit, and is mainly used to complete the baseband processing function.
  • the CU1102 may be used to control the base station to perform the operation procedures related to the network device in the foregoing method embodiments.
  • the baseband processing on the CU and the DU may be divided according to the protocol layer of the wireless network, and for details, please refer to the content in FIG. 3 .
  • the donor base station 110 may include one or more radio units (radio units, RU), one or more DUs and one or more CUs.
  • the DU may include at least one processor 11013 and at least one memory 11014
  • the RU may include at least one antenna 11011 and at least one radio frequency unit 11012
  • the CU may include at least one processor 11022 and at least one memory 11021 .
  • the CU1102 may be composed of one or more single boards, and the multiple boards may jointly support a wireless access network (such as a 5G network) with a single access indication, or may respectively support wireless access systems of different access standards.
  • Access network (such as LTE network, 5G network or other network).
  • the memory 11021 and the processor 11022 may serve one or more single boards. That is to say, each single board may be provided with a memory and a processor independently, or a plurality of single boards may share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the DU1101 can be composed of one or more boards, and multiple boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can support a wireless access network with different access standards (such as a 5G network). LTE network, 5G network or other network).
  • the memory 11014 and processor 11013 may serve one or more single boards. That is to say, each single board may be provided with a memory and a processor independently, or a plurality of single boards may share the same memory and processor. In addition, necessary circuits may also be provided on each single board.
  • the CU of the source host node may transmit with the child node through the DU, for example, in the downlink direction, the CU of the source host node may generate data (for example, PDCP data) and/or The indication information is then sent to the DU of the source host node through the interface between the CU and the DU, and the DU of the source host node sends the data to the child nodes of the DU through the antenna; in the uplink direction, the DU of the source host node can pass the antenna. Data is received from the child node and then sent to the CU of the source host node through the interface between the CU and the DU.
  • data for example, PDCP data
  • the network device is the source IAB host DU
  • the source IAB host CU is the IAB host CU connected before the handover IAB node is switched
  • the processor 711 is configured to determine that all the data from the handover IAB have been received.
  • the data packet of the node; the transceiver 713 is used to send the first indication information to the source IAB host CU, wherein the source IAB host DU is the IAB host DU connected before the handover IAB node is switched; from the source IAB host DU
  • the CU receives the second indication information; the processor 711 is further configured to update or release the corresponding switching IAB node on the backhaul link between the network device and the child node of the network device based on the second indication information return configuration information.
  • the processor 711 is further configured to start or restart the first timer when the transceiver 713 receives the first data packet from the switching IAB node; During the running of the timer, if no other data packets from the switching IAB node are received, it is determined that all the data packets from the switching IAB node have been received.
  • the transceiver 713 is further configured to receive third indication information from the child node of the network device; according to the third indication information, it is determined that all signals from the handover IAB have been received node's packets.
  • the transceiver 713 is further configured to receive a data packet, where the data packet includes a first BAP routing identifier; and receive first routing configuration information from the source IAB host CU, wherein, The first routing configuration information includes the first BAP routing identifier, and the path of the first BAP routing identifier includes the path between the switching IAB node and the source parent node of the switching IAB node; the processor 711, further configured to determine that the data packet is a data packet from the switching IAB node according to the first BAP routing identifier and the first routing configuration information in the data packet.
  • the transceiver 713 is further configured to receive a data packet, where the data packet includes the identifier of the switching IAB node; the processor 711 is further configured to The identification determines that the data packet is a data packet from the handover IAB node.
  • the network device is the source IAB host CU, and the source IAB host CU is the IAB host CU connected before the handover IAB node is switched, wherein:
  • a transceiver 713 configured to receive first indication information from a first node, where the first node is an upstream IAB node or a source IAB host DU of the source parent node of the switched IAB node, and the source IAB host DU For the IAB host DU connected before the handover IAB node is handed over, the first indication information is used to determine that the first node has received all the data packets from the handover IAB node; the transceiver 713 is also used to send all data packets to the handover IAB node. The first node sends second indication information, and the second indication information is used to update or release the switch corresponding to the IAB node on the backhaul link between the first node and the child nodes of the first node. Return configuration information.
  • the first node is the source IAB host DU
  • the transceiver 713 is further configured to send fifth indication information to the upstream IAB node of the source parent node of the switched IAB node
  • the fifth indication information is used to update or release the backhaul configuration information corresponding to the handover IAB node on the backhaul link between the upstream IAB node and the child nodes of the upstream IAB node.
  • the transceiver 713 is further configured to send first routing configuration information to the first node, where the first routing configuration information includes a first BAP routing identifier, the first routing identifier
  • the path includes the path between the switching IAB node and the parent node of the switching IAB node.
  • FIG. 12 is a schematic structural diagram of another network device provided by an embodiment of the present application.
  • the network device may execute the methods described in the foregoing method embodiments, and reference may be made to the descriptions of the foregoing method embodiments.
  • a network device may be used in a communication device, circuit, hardware component, or chip, eg, a network device may be a relay node (eg, an upstream IAB node in an IAB network that switches a source parent node of an IAB node) or a host node (eg, an IAB The chip in the source IAB host CU, the source IAB host DU node) in the network.
  • a relay node eg, an upstream IAB node in an IAB network that switches a source parent node of an IAB node
  • a host node eg, an IAB The chip in the source IAB host CU, the source IAB host DU node
  • the network device 1900 includes a processing unit 1901 and a communication unit 1902 .
  • the network device 1900 further includes a storage unit 1903 .
  • the processing unit 1901 may be a device with processing functions, and may include one or more processors.
  • the processor may be a general-purpose processor or a special-purpose processor, or the like.
  • the processor may be a baseband processor, or a central processing unit.
  • the baseband processor may be used to process communication protocols and communication data
  • the central processing unit may be used to control devices (eg, host nodes, relay nodes or chips, etc.), execute software programs, and process data of software programs.
  • the communication unit 1902 may be a device having signal input (reception) or output (transmission) for transmitting signals with other network devices or other devices in the device.
  • the storage unit 1903 may be a device with a storage function, and may include one or more memories.
  • processing unit 1901, the communication unit 1902 and the storage unit 1903 are connected through a communication bus.
  • the storage unit 1903 may exist independently and be connected to the processing unit 1901 through a communication bus.
  • the storage unit 1903 may also be integrated with the processing unit 1901 .
  • the network device 1900 may be a chip in a relay node or a host node in this embodiment of the present application.
  • the communication unit 1902 may be an input or output interface, a pin or a circuit, or the like.
  • the storage unit 1903 can be a register, cache or RAM, etc., and the storage unit 1903 can be integrated with the processing unit 1901; the storage unit 1903 can be a ROM or other types of static storage devices that can store static information and instructions, and the storage unit 1903 can be combined with The processing unit 1901 is independent.
  • the processing unit 1901 may include instructions, and the instructions may be executed on the processor, so that the network device 1900 executes the method of the relay node or the host node in the above embodiments.
  • the storage unit 1903 stores instructions, and the instructions can be executed on the processing unit 1901, so that the network device 1900 executes the method of the relay node or the host node in the above embodiment .
  • the storage unit 1903 may also store data.
  • the processing unit 1901 may also store instructions and/or data.
  • the network device 1900 may be the chip of the first node in this embodiment of the present application
  • the network device 1900 may implement the function of the first node in the foregoing method embodiments.
  • the processing unit 1901 determines that all data packets from the switching IAB node have been received
  • the communication unit 1902 sends the first indication information to the source IAB host CU
  • the receiving source IAB host DU sends the second indication information corresponding to the source IAB host DU Wait.
  • the network device 1900 may be the chip of the source IAB host CU in the embodiment of the present application
  • the network device 1900 may implement the function of the source IAB host CU in the above method embodiments.
  • the communication unit 1902 may receive the first indication information from the first node, send the second indication information to the first node, and the like.
  • the network device 1900 may be the target host node or the chip of the target host node in the embodiment of the present application, the network device 1900 may implement the function of the target host node in the foregoing method embodiments.
  • the processing unit 1901 may generate the indication information or data generated by the target host node in the foregoing method embodiments.
  • the communication unit 1902 may transmit with the child node of the target host node, such as sending data and/or indication information to the child node, receiving data and/or indication information from the child node, and the like.
  • the network device includes a first node, the first node is an upstream IAB node or a source IAB host DU of the source parent node of the handover IAB node, and the source IAB host DU is the connection before the handover IAB node is switched
  • the IAB host DU where:
  • the processing unit 1901 is configured to determine that all data packets from the handover IAB node have been received; the communication unit 1902 is configured to send first indication information to the source IAB host CU, where the source IAB host CU is the handover The IAB host CU connected before the IAB node is switched; receiving second indication information from the source IAB host CU; the processing unit 1901 is further configured to update or release the first node and the first node based on the second indication information The backhaul configuration information corresponding to the handover IAB node on the backhaul link between the child nodes of the node.
  • the processing unit 1901 is further configured to start or restart the first timer when the communication unit 1902 receives the first data packet from the switching IAB node; During the running of the timer, if no other data packets from the switching IAB node are received, it is determined that all the data packets from the switching IAB node have been received.
  • the communication unit 1902 is further configured to receive third indication information from a child node of the first node; the processing unit 1901 is further configured to, according to the third indication information, It is determined that all packets from the switching IAB node have been received.
  • the first node is the upstream IAB node of the source parent node of the switched IAB node
  • the communication unit 1902 is further configured to send all data from the source parent node of the first node to the parent node of the first node. After the switching of the data packet of the IAB node, the fourth indication information is sent to the parent node of the first node.
  • the communication unit 1902 is further configured to receive a data packet, where the data packet includes a first BAP routing identifier; and receive first routing configuration information from the source IAB host CU, wherein, The first routing configuration information includes the first BAP routing identifier, and the path of the first BAP routing identifier includes the path between the switching IAB node and the source parent node of the switching IAB node; the processing unit 1901 is further configured to determine that the data packet is a data packet from the handover IAB node according to the first BAP routing identifier and the first routing configuration information in the data packet.
  • the communication unit 1902 is further configured to receive a data packet, where the data packet includes the identifier of the switching IAB node; the processing unit 1901 is further configured to The identification determines that the data packet is a data packet from the handover IAB node.
  • the network device is the source IAB host CU, and the source IAB host CU is the IAB host CU connected before the handover IAB node is switched, wherein:
  • a communication unit 1902 configured to receive first indication information from a first node, where the first node is an upstream IAB node or a source IAB host DU of the source parent node of the switched IAB node, and the source IAB host DU For the IAB host DU connected before the handover IAB node is handed over, the first indication information is used to determine that the first node has received all data packets from the handover IAB node; the communication unit 1902 is also used to send all data packets to the handover IAB node.
  • the first node sends second indication information, and the second indication information is used to update or release the switch corresponding to the IAB node on the backhaul link between the first node and the child nodes of the first node. Return configuration information.
  • the first node is the source IAB host DU
  • the communication unit 1902 is further configured to send fifth indication information to the upstream IAB node of the source parent node of the switching IAB node,
  • the fifth indication information is used to update or release the backhaul configuration information corresponding to the handover IAB node on the backhaul link between the upstream IAB node and the child nodes of the upstream IAB node.
  • the communication unit 1902 is further configured to send first routing configuration information to the first node, where the first routing configuration information includes a first BAP routing identifier, the first routing identifier
  • the path includes the path between the switching IAB node and the parent node of the switching IAB node.
  • the relay node may have functional units (means) corresponding to the methods or steps of the relay node
  • the source host node eg CU and/or DU
  • One or more of the above modules or units may be implemented in software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions to implement the above method flow.
  • the processor in this application may include, but is not limited to, at least one of the following: a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a microcontroller (MCU), or Artificial intelligence processors and other types of computing devices that run software, each computing device may include one or more cores for executing software instructions to perform operations or processing.
  • the processor can be a separate semiconductor chip, or can be integrated with other circuits to form a semiconductor chip, for example, it can form a SoC (system) with other circuits (such as codec circuits, hardware acceleration circuits or various bus and interface circuits).
  • the processor may further include necessary hardware accelerators, such as field programmable gate arrays (FPGA), programmable logic devices (programmable logic devices), in addition to cores for executing software instructions for operation or processing. device, PLD), or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate arrays
  • PLD programmable logic device
  • the memory in this embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) , RAM) or other types of dynamic storage devices that can store information and instructions, or can be electrically erasable programmable-only memory (EEPROM).
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable-only memory
  • the memory may also be compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.) , a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, without limitation.
  • CD-ROM compact disc read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact disc, laser disc, optical
  • the bus may also include a power bus, a control bus, a status signal bus, and the like.
  • the various buses are labeled as buses in the figure.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the embodiment of the present application further provides a communication system, which includes the foregoing first node and the source IAB host CU.
  • An embodiment of the present application further provides a chip system, the chip system includes at least one processor, a memory, and an interface circuit, the memory, the transceiver, and the at least one processor are interconnected by lines, and the at least one memory Instructions are stored in the ; when the instructions are executed by the processor, the method flows shown in FIG. 8 and FIG. 9 are implemented.
  • Embodiments of the present application further provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium.
  • the program instructions are executed on a processor, the method flows shown in FIG. 8 and FIG. 9 are implemented. .
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, digital versatile discs (DVDs)), or semiconductor media (eg, solid state drives), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种回传配置信息的更新或者释放方法,包括:第一节点确定已接收到所有来自切换IAB节点的数据包后,向源IAB宿主集中式单元CU发送第一指示信息,第一节点为切换IAB节点的源父节点的上游IAB节点或源IAB宿主分布式单元DU,源IAB宿主CU为切换IAB节点切换前连接的IAB宿主CU,源IAB宿主DU为切换IAB节点切换前连接的IAB宿主DU;第一节点从源IAB宿主CU接收第二指示信息;第一节点基于第二指示信息更新或释放第一节点和第一节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息。采用本申请实施例,能够避免IAB节点切换时数据丢失,提高回传配置资源利用率。

Description

回传配置信息的更新或者释放方法及相关产品 技术领域
本申请涉及通信技术领域,尤其涉及一种回传配置信息的更新或者释放方法及相关产品。
背景技术
第五代移动通信(5G)针对网络性能指标提出了更严苛的要求,如:容量指标提升1000倍、更广的覆盖要求等。在现有技术中,考虑到高频载波频率资源丰富,但高频覆盖范围受限,因此在终端和接入网设备之间可以通过至少一个中继节点(例如,接入回传一体化(Integrated Access and Backhaul,IAB)节点)进行通信,通过部署IAB节点可降低光纤回传的部署成本,提高了部署的灵活性。此外,由于高频载波传播特性较差,受遮挡衰减严重,当前回传链路的不稳定将会导致数据无法及时传输。为了保证业务传输的时延,IAB节点将会切换至其他传输路径继续进行数据传输。当IAB节点发生切换时,如何保证用户数据的无损传输是本领域技术人员待解决的技术问题。
发明内容
本申请实施例公开了一种回传配置信息的更新或者释放方法及相关产品,能够避免IAB节点在切换时的数据丢失,同时提高回传配置资源利用率。
第一方面,本申请实施例公开了一种回传配置信息的更新或者释放方法,包括:第一节点确定已接收到所有来自切换IAB节点的数据包后,向源IAB宿主集中式单元CU发送第一指示信息,第一节点为切换IAB节点的源父节点的上游IAB节点或源IAB宿主分布式单元DU,源IAB宿主CU为切换IAB节点切换前连接的IAB宿主CU,源IAB宿主DU为切换IAB节点切换前连接的IAB宿主DU;第一节点从源IAB宿主CU接收第二指示信息;第一节点基于第二指示信息更新或释放第一节点和第一节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息。可见,第一节点通过指示信息及时更新或释放回传配置信息,可提高回传配置资源利用率。且该回传配置信息是在已接收到所有来自切换IAB节点的数据包之后才更新或释放的,可避免IAB节点在切换时的数据丢失。
在一种可能的示例中,第一节点在接收到来自切换IAB节点的第一数据包时,第一节点启动或重启第一定时器;在第一定时器运行期间,若第一节点未接收到来自切换IAB节点的其它数据包,则第一节点确定已接收到所有来自切换IAB节点的数据包。如此,基于定时器确定来自切换IAB节点的数据包是否全部接收,可避免第一节点处于等待接收来自切换IAB节点的数据包的状态,可提高回传配置资源利用率。
在一种可能的示例中,第一节点接收来自第一节点的子节点的第三指示信息;第一节点根据第三指示信息,确定已接收到所有来自切换IAB节点的数据包。如此,基于指示信 息确定来自切换IAB节点的数据包已全部接收,可提高识别效率和准确率。
在一种可能的示例中,第一节点为切换IAB节点的源父节点的上游IAB节点,向第一节点的父节点发送所有来自切换IAB节点的数据包后,第一节点向第一节点的父节点发送第四指示信息。如此,第一节点的父节点可根据指示信息确定来自切换IAB节点的数据包已全部接收,提高了识别效率。
在一种可能的示例中,第一节点接收数据包,数据包包括第一回传适配协议BAP路由标识;第一节点接收来自源IAB宿主CU的第一路由配置信息,第一路由配置信息包括第一BAP路由标识,第一BAP路由标识的路径包括切换IAB节点与切换IAB节点的源父节点之间的路径;第一节点根据数据包中的第一BAP路由标识和第一路由配置信息确定数据包为来自切换IAB节点的数据包。如此,基于BAP路由标识确定数据包是否来自切换IAB节点,可提高识别效率和准确率。
在一种可能的示例中,第一节点接收数据包,数据包包括切换IAB节点的标识;第一节点根据切换IAB节点的标识确定数据包为来自切换IAB节点的数据包。如此,直接基于切换IAB节点的标识确定数据包是否来自切换IAB节点,可提高识别效率和准确率。
第二方面,本申请实施例提供了另一种回传配置信息的更新或者释放方法,包括:源IAB宿主CU从第一节点接收第一指示信息,第一节点为切换IAB节点的源父节点的上游IAB节点或源IAB宿主DU,源IAB宿主CU为切换IAB节点切换前连接的IAB宿主CU,源IAB宿主DU为切换IAB节点切换前连接的IAB宿主DU,第一指示信息用于确定第一节点接收到所有来自切换IAB节点的数据包;源IAB宿主CU向第一节点发送第二指示信息,第二指示信息用于更新或释放第一节点和第一节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息。可见,源IAB宿主CU在第一节点已接收到所有来自切换IAB节点的数据包之后,接收到来自第一节点的第一指示信息,然后向第一节点发送用于更新或释放回传配置信息的第二指示信息,可避免IAB节点在切换时的数据丢失,并提高回传配置资源利用率。
在一种可能的示例中,第一节点为源IAB宿主DU,源IAB宿主CU向切换IAB节点的源父节点的上游IAB节点发送第五指示信息,第五指示信息用于更新或释放上游IAB节点和上游IAB节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息。可见,源IAB宿主CU在源IAB宿主DU确定已接收到来自切换IAB节点的数据包后,统一更新或者释放各个节点和其子节点之间的回传链路上切换IAB节点对应的回传配置信息,节省了识别时间,便于提高回传配置资源利用率。
在一种可能的示例中,源IAB宿主CU向第一节点发送第一路由配置信息,第一路由配置信息包括第一BAP路由标识,第一路由标识的路径包括切换IAB节点与切换IAB节点的父节点之间的路径。如此,基于BAP路由标识确定数据包是否来自切换IAB节点,可提高识别效率和准确率。
第三方面,本申请实施例提供了一种节点,该节点为切换IAB节点的源父节点的上游IAB节点或源IAB宿主DU,源IAB宿主DU为切换IAB节点切换前连接的IAB宿主DU,该节点包括:处理单元,用于确定已接收到所有来自切换IAB节点的数据包;通信单元,用于向源IAB宿主CU发送第一指示信息,源IAB宿主CU为切换IAB节点切换前连接的 IAB宿主CU;以及从源IAB宿主CU接收第二指示信息;处理单元,还用于基于第二指示信息更新或释放第一节点和第一节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息。可见,第一节点通过指示信息及时更新或释放回传配置信息,可提高回传配置资源利用率。且该回传配置信息是在已接收到所有来自切换IAB节点的数据包之后才更新或释放的,可避免IAB节点在切换时的数据丢失。
在一种可能的示例中,处理单元,还用于在通信单元接收来自切换IAB节点的第一数据包时,启动或重新第一定时器;在第一定时器运行期间,若未接收到来自切换IAB节点的其它数据包,则确定已接收到所有来自切换IAB节点的数据包。如此,基于定时器确定来自切换IAB节点的数据包是否全部接收,可避免资源浪费。
在一种可能的示例中,通信单元,还用于接收来自第一节点的子节点的第三指示信息;处理单元,还用于根据第三指示信息,确定已接收到所有来自切换IAB节点的数据包。如此,基于指示信息确定来自切换IAB节点的数据包已全部接收,可提高识别准确率。
在一种可能的示例中,第一节点为切换IAB节点的源父节点的上游IAB节点,通信单元,还用于向第一节点的父节点发送所有来自切换IAB节点的数据包后,向第一节点的父节点发送第四指示信息。如此,第一节点的父节点可根据指示信息确定来自切换IAB节点的数据包已全部接收,提高了识别效率。
在一种可能的示例中,通信单元,还用于接收数据包,数据包包括第一BAP路由标识;以及接收来自源IAB宿主CU的第一路由配置信息,第一路由配置信息包括第一BAP路由标识,第一BAP路由标识的路径包括切换IAB节点与切换IAB节点的源父节点之间的路径;处理单元,还用于根据数据包中的第一BAP路由标识和第一路由配置信息确定数据包为来自切换IAB节点的数据包。如此,基于BAP路由标识确定数据包是否来自切换IAB节点,可提高识别效率和准确率。
在一种可能的示例中,通信单元,还用于接收数据包,数据包包括切换IAB节点的标识;处理单元,还用于根据切换IAB节点的标识确定数据包为来自切换IAB节点的数据包。如此,直接基于切换IAB节点的标识确定数据包是否来自切换IAB节点,可提高识别效率和准确率。
第四方面,本申请实施例提供了一种节点,该节点为切换IAB节点切换前连接的IAB宿主CU,该节点包括:通信单元,用于接收来自第一节点的第一指示信息,第一节点为切换IAB节点的源父节点的上游IAB节点或源IAB宿主DU,源IAB宿主DU为切换IAB节点切换前连接的IAB宿主DU,第一指示信息用于确定第一节点接收到所有来自切换IAB节点的数据包;通信单元,还用于向第一节点发送第二指示信息,第二指示信息用于更新或释放第一节点和第一节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息。可见,源IAB宿主CU在第一节点已接收到所有来自切换IAB节点的数据包之后,接收到来自第一节点的第一指示信息,然后向第一节点发送用于更新或释放回传配置信息的第二指示信息,可避免IAB节点在切换时的数据丢失,并提高回传配置资源利用率。
在一种可能的示例中,第一节点为源IAB宿主DU,通信单元,还用于向切换IAB节点的源父节点的上游IAB节点发送第五指示信息,第五指示信息用于更新或释放上游IAB节点和上游IAB节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息。可见, 源IAB宿主CU在源IAB宿主DU确定已接收到来自切换IAB节点的数据包后,统一更新或者释放各个节点和其子节点之间的回传链路上切换IAB节点对应的回传配置信息,节省了识别时间,便于提高回传配置资源利用率。
在一种可能的示例中,通信单元,还用于向第一节点发送第一路由配置信息,第一路由配置信息包括第一BAP路由标识,第一路由标识的路径包括切换IAB节点与切换IAB节点的父节点之间的路径。如此,基于BAP路由标识确定数据包是否来自切换IAB节点,可提高识别效率和准确率。
第五方面,本申请提供了一种网络设备,包括处理器、存储器、收发器、网络接口和天线,用于执行上述任一方面的方法。
第六方面,本申请提供了另一种网络设备,包括处理器和与处理器连接的存储器和通信接口,其中,存储器用于存储一个或多个程序,并且被配置由处理器执行,上述程序包括用于执行上述任一方面的方法中的步骤的指令。
第七方面,本申请提供了一种芯片系统,该芯片系统包括至少一个处理器,存储器和接口电路,存储器、收发器和至少一个处理器通过线路互联,至少一个存储器中存储有指令;上述指令被处理器执行时,实现上述任一方面的方法。
第八方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述任一方面的方法。
第九方面,本申请提供了一种计算机程序产品,计算机程序产品用于存储计算机程序,当计算机程序在网络设备上运行时,使得计算机执行上述任一方面的方法。
第十方面,本申请实施例提供了一种通信系统,包括上述第三方面和第四方面中描述的节点。
附图说明
图1是本申请实施例提供的一种通信系统的构架示意图;
图2是本申请实施例提供的第一种IAB网络的构架示意图;
图3是本申请实施例提供的一种CU-DU的分离架构的示意图;
图4A是本申请实施例提供的一种CU-DU的分离架构下控制面协议栈的示意图;
图4B是本申请实施例提供的一种CU-DU的分离架构下用户面协议栈的示意图;
图5是本申请实施例提供的第二种IAB网络的构架示意图;
图6A是本申请实施例提供的一种IAB网络中CU-DU的分离架构下控制面协议栈的示意图;
图6B是本申请实施例提供的一种IAB网络中CU-DU的分离架构下用户面协议栈的示意图;
图7是本申请实施例提供的第三种IAB网络的构架示意图;
图8是本申请实施例提供的一种回传配置信息的更新或者释放方法的流程示意图;
图9是本申请实施例提供的另一种回传配置信息的更新或者释放方法的流程示意图;
图10是本申请实施例提供的一种网络设备的结构示意图;
图11是本申请实施例提供的一种接入网设备的结构示意图;
图12是本申请实施例提供的另一种网络设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请的实施例进行描述。
图1是本申请实施例提供的一种通信系统100的架构图。通信系统100包括至少一个终端(例如,终端110或者终端120)、至少一个中继节点(relay node,RN)(例如,中继节点130)、至少一个接入网设备(例如,接入网设备140)以及至少一个核心网设备(例如,核心网设备150)。
在上述通信系统100中,终端通过无线的方式与中继节点相连,中继节点通过无线的方式与接入网设备连接。示例性的,中继节点可以直接或通过其他中继节点间接与接入网设备连接。接入网设备140可以通过有线或者无线的方式与核心网设备连接。例如,在图1中,终端110通过无线的方式与中继节点130连接,中继节点130直接或者通过其他中继节点与接入网设备140连接,接入网设备140通过有线的方式与核心网设备150连接。
本申请实施例中的通信系统可以是支持第四代(fourth generation,4G)接入技术的通信系统,例如,长期演进(long term evolution,LTE)接入技术;或者,该通信系统可以是支持第五代(fifth generation,5G)接入技术通信系统,例如,新无线(new radio,NR)接入技术;或者,该通信系统可以是支持多种无线技术的通信系统,例如,支持LTE技术和NR技术的通信系统。另外,该通信系统可以适用于面向未来的通信技术。
本申请实施例中的终端(terminal)可以是一种向用户提供语音或者数据连通性的设备,终端可以称为用户设备(user equipment,UE)、移动台(mobile station)、用户单元(subscriber unit)、站台(station)、终端设备(terminal equipment,TE)等。终端可以为蜂窝电话(cellular phone)、个人数字助理(personal digital assistant,PDA)、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)、无线本地环路(wireless local loop,WLL)台、平板电脑(pad)等。随着无线通信技术的发展,可以接入无线通信网络、可以与无线网络侧进行通信,或者通过无线网络与其它物体进行通信的设备都可以是本申请实施例中的终端。譬如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监控仪器、收款机等等。终端可以是静态固定的,或者是移动的。
本申请实施例中的接入网设备可以是接入网侧用于支持终端接入通信系统的设备,接入网设备可以称为基站(base station,BS),例如,4G接入技术通信系统中的演进型基站(evolved node base station,eNB)、5G接入技术通信系统中的下一代基站(next generation node base station,gNB)、发送接收点(transmission reception point,TRP)、接入点(access point,AP)等等,或者接入网设备可以称为宿主节点、IAB宿主(IAB donor)、宿主IAB、宿主或宿主gNB(donor gNB,DgNB)等。在本申请实施例中,以接入网设备为IAB宿主进行举例说明。
本申请实施例中的核心网设备可以连接一个或者多个接入网设备,可以为系统中的终端提供会话管理、接入认证、互联网协议(internet protocol,IP)地址分配和数据传输中的一种或者多种功能。例如,核心网设备可以是4G接入技术通信系统中的移动管理实体 (mobile management entity,MME)或者服务网关(serving gateway,SGW),5G接入技术通信系统中的接入和移动性管理功能(access and mobility management function,AMF)网元或者用户面性能(user plane function,UPF)网元等等。核心网设备可以称为核心网网元。
本申请实施例中的中继节点可以是提供无线回传服务的节点,无线回传服务是指通过无线回传链路提供的数据和/或信令回传服务。一方面,中继节点可以通过接入链路(access link,AL)为终端提供无线接入服务;另一方面,中继节点可以通过一跳或者多跳回传链路(backhaul link,BL)连接到接入网设备,从而,中继节点可以实现终端和接入网设备之间的数据和/或信令的转发,扩大通信系统的覆盖范围。
中继节点在不同的通信系统中可以有不同的名称,例如,中继节点可以称为无线回传节点或者无线回传设备;在5G系统中,中继节点可以称为接入回传一体化节点(integrated access and backhaul node,IAB node)。当然,在未来的通信系统中,中继节点还可以有不同的名称,在此不作限制。
在本申请实施例中,以中继节点为IAB节点,接入网设备为IAB宿主,对图1中的终端、中继节点和接入网设备对应的通信系统100做进一步的说明,该通信系统100可以称为IAB网络。请参照图2,图2是本申请实施例提供的一种IAB网络200的示意图。
在图2中,终端1可以对应于图1中的终端110;IAB node(节点)2、IAB node 3、IAB node 1、IAB node 4和IAB node 5对应于图1所示的中继节点130;IAB宿主(donor)1可以对应于图1中的接入网设备140;IAB donor 1可以连接(例如通过有线方式连接)到图1中的核心网设备150(图2中未示出)。
IAB网络200包括1个或者多个终端(例如终端1),1个或者多个IAB节点(例如IAB node 2,IAB node 3、IAB node 1、IAB node 4和IAB node 5),以及1个或者多个宿主节点(例如IAB donor 1)。其中,终端可以通过无线方式与1个或者多个IAB节点连接,每个IAB节点可以通过无线方式与1个或者多个其他IAB节点连接,一个或者多个IAB节点可以通过无线方式与一个或者多个宿主节点连接。作为一种未来可能,一个或者多个IAB节点还可以通过无线方式彼此相互连接,本申请并不限定。
可以理解的是,在IAB网络中,终端和宿主节点之间的一条传输路径上,可以包含一个或多个IAB节点。每个IAB节点需要维护面向父节点的无线回传链路,还需要维护和子节点的无线链路。若一个IAB节点是终端接入的节点,该IAB节点和子节点(即终端)之间是无线接入链路,即终端和IAB节点之间的链路可以称为接入链路。若一个IAB节点是为其他IAB节点下的终端提供回传服务的节点,该IAB节点和子节点(即其他IAB节点)之间是无线回传链路,即IAB节点之间的链路以及IAB节点和宿主节点之间的链路可以称为回传链路。
示例性的,参见图2,终端1通过无线接入链路接入IAB node 2,IAB node 2通过无线回传链路连接到IAB node 3,IAB node 3通过无线回传链路连接到IAB node 1,IAB node 1通过无线回传链路连接到IAB donor 1。
为了保证业务传输的可靠性,IAB网络支持多跳IAB节点和多连接IAB节点组网。因此,在终端和IAB宿主之间可能存在多条传输路径。在一条路径上,IAB节点之间,以及 IAB节点和为IAB节点服务的宿主节点有确定的层级关系,每个IAB节点将为该IAB节点提供接入服务的节点视为父节点。相应地,每个IAB节点可视为其父节点的子节点。
示例性的,参见图2,IAB node 1和IAB node 5的父节点为IAB donor 1,IAB node 1为IAB node 2的父节点,IAB node 2为IAB node 3和IAB node 4的父节点,IAB node 2为终端1的父节点,IAB node 5为IAB node 4的父节点。
终端的上行数据包可以经一个或多个IAB节点传输至宿主节点后,再由宿主节点发送至移动网关设备(例如5G网络中的用户面功能(user plane function,UPF)网元),下行数据包将由宿主节点从移动网关设备处接收后,再经一个或多个IAB节点发送至终端。
示例性的,参见图2,终端1和IAB donor 1之间的数据传输有两条可用的路径,路径1:终端1←→IAB node 2←→IAB node 3←→IAB node 1←→IAB donor 1,路径2:终端1←→IAB node 2←→IAB node 4←→IAB node 5←→IAB donor 1。
在IAB网络中,在一条传输路径上,可将终端接入的IAB节点称为接入IAB节点,该条传输路径上的其他IAB节点称为中间IAB节点。中间IAB节点可以为终端提供回传服务。
示例性的,参见图2,在路径1“终端1←→IAB node 2←→IAB node 3←→IAB node1←→IAB donor 1”中,IAB node 2为接入IAB节点,IAB node 3和IAB node 1为中间IAB节点。IAB node 3为IAB node 2提供接入服务,和/或为终端1提供回传服务,IAB node 1为IAB node 3提供接入服务,和/或为终端1提供回传服务。
需要说明的是,一个IAB节点针对接入该IAB节点的终端而言,是接入IAB节点。针对接入其他IAB节点的终端而言,是中间IAB节点。因此,一个IAB节点是接入IAB节点还是中间IAB节点,并不是固定的,需要根据具体的应用场景确定。
示例性的,若终端2接入到IAB node 3,那么针对终端1而言,IAB node 3是中间IAB节点,针对终端2而言,IAB node 3是接入IAB节点。
在IAB网络中,可以将IAB节点服务的一个或者多个IAB节点和一个或者多个终端称为该IAB节点的后代(descendant)节点或者下游节点。可以理解,下游节点可以包括该IAB节点服务的IAB节点,例如包括子节点、孙节点和孙孙节点等等,以及接入这些IAB节点的终端,例如包括接入子节点、孙节点和孙孙节点等的终端。
在IAB网络中,可将为IAB节点提供服务的一个或者多个IAB节点称为该IAB节点的祖先(ancestor)节点或者上游IAB节点。可以理解,上游IAB节点可以包括该IAB节点和IAB宿主之间的IAB节点,例如包括父节点、祖父节点和祖父节点的父节点等等。
示例性的,参见图2,IAB node 1的下游节点包括终端1、IAB node 2和IAB node 3。IAB node 2的上游IAB节点包括IAB node 3和IAB node 1。
上述IAB网络仅仅是示例性的,在多跳和多连接结合的IAB网络中,IAB网络还有更多其他的可能性,例如,宿主节点和另一宿主节点下的IAB节点组成双连接为终端服务等,此处不再一一列举。
需要说明的是,图2以IAB网络为例进行了介绍,图2的内容同样适用于IAB网络以外的中继网络,可以将图2中的IAB替换成中继,例如可以将IAB node 2替换成中继节点2,IAB node 3替换成中继节点3,IAB node 1替换成中继节点1,IAB donor 1替换成宿主节点1。中继网络中各个网元的连接关系、接入链路和回传链路,以及父节点与子节点、 接入中继节点和中间接入节点等的描述可以参考IAB网络200的描述。
图3是本申请实施例提供的CU-DU的分离架构的示意图。图1中的接入网设备或者图2中的IAB donor1可以采用CU-DU的分离架构,下面结合图3进行说明。
由于未来接入网可以采用云无线接入网(cloud radio access network,C-RAN)架构来实现,gNB可以将传统接入网设备的协议栈架构和功能分割为两部分,一部分称为集中式单元(central unit,CU),另一部分称为分布式单元(distributed unit,DU)。CU和DU的切分可以按照协议栈切分,其中一种可能的方式是将无线资源控制(radio resource control,RRC)层、服务数据映射协议(service data adaptation protocol,SDAP)层以及分组数据汇聚协议(packet data convergence protocol,PDCP)层部署在CU,其余的无线链路控制(radio link control,RLC)层、介质访问控制(media access control,MAC)层以及物理(physical,PHY)层部署在DU。
其中,一个CU可以连接一个DU,或者一个CU可以连接多个DU,这样可以节省成本,且易于网络扩展。也就是说,接入网设备可以由一个CU、以及一个或者多个DU组成。CU和DU通过F1接口相连,CU和核心网之间通过下一代(next generation,NG)接口相连。
示例性的,参见图3,gNB包括一个gNB-CU和两个gNB-DU,其中,gNB-CU和每个gNB-DU建立有F1接口,gNB-CU和5G核心网(5G core network,5GC)之间建立有NG接口。
可选的,CU可以是用户面(user plane,UP)(本文中简称为CU-UP)和控制面(control plane,CP)(本文中简称为CU-CP)分离的形态,即CU由CU-CP和CU-UP组成。
在单空口的场景下,终端可以通过DU接入CU,其中,与UE对等的RLC层、MAC层和PHY层位于DU上,与UE对应的PDCP层、SDAP层和PDCP层位于CU上。图4A和图4B分别是本申请实施例提供的CU-DU的分离架构下控制面协议栈的示意图和用户面协议栈的示意图,下面结合图4A和图4B进行说明。
对于控制面而言,如图4A所示,UE与CU之间建立有对等的RRC层和PDCP层。UE与DU通过用户设备(user equipment)接口(可称为Uu接口)连接,UE与DU之间建立有对等的RLC层、MAC层和PHY层;DU与CU之间通过F1控制面(F1-control plane,F1-C)接口连接,DU与CU之间建立有对等的F1应用协议(F1application protocol,F1AP)层、流控制传输协议(stream control transmission protocol,SCTP)层、互联网协议(internet protocol,IP)层、层(layer,L)2和层(layer,L)1。
对于用户面而言,如图4B所示,UE与CU之间建立有对等的SDAP层和PDCP层。UE与DU通过Uu接口连接,UE与DU之间建立有对等的RLC层、MAC层和PHY层;DU与CU之间通过F1用户面(F1-user plane,F1-U)接口连接,DU与CU之间建立有对等的通用分组无线服务(general packet radio service,GPRS)隧道协议用户面(GPRS tunneling protocol-user plane,GTP-U)层、用户数据报协议(user datagram protocol,UDP)层、IP层、L2和L1。
IAB网络中,对于IAB donor而言,IAB donor可以由CU(可以称为IAB donor CU)和DU(可以称为IAB donor DU)组成,其中,IAB donor CU和图3中介绍的gNB的CU 的功能类似,IAB donor DU和图3中gNB的DU的功能类似。
在IAB网络中,对于IAB节点而言,IAB节点作为父节点时,可以充当一个类似接入网设备的角色,为其子节点提供接入服务,例如:可以通过调度为其子节点分配用于传输上行数据的上行资源。IAB节点作为子节点时,对于为该IAB节点提供服务的父节点而言可以充当一个终端的角色,像终端一样接入无线网络,执行终端的功能;通过小区选择、随机接入等操作,与父节点建立连接,获取父节点为其调度的用于传输上行数据的上行资源。
作为示例而非限定,本申请实施例将IAB节点作为终端的角色称为IAB节点的移动终端(mobile terminal,MT)侧或IAB节点的MT功能单元(可以称为IAB-MT或者IAB-UE),将IAB节点作为类似接入网设备的角色称为IAB节点的DU侧或IAB节点的DU功能单元(可以称为IAB-DU)。IAB-MT和IAB-DU可以是一种逻辑的划分,其功能均由IAB节点实现;或者IAB-MT和IAB-DU可以是一种物理的划分,IAB-MT和IAB-DU可以是IAB节点中的不同的物理设备。其中,IAB-DU和图3中gNB的DU的功能类似,IAB-MT具有UE的功能,用于提供数据回传。
图5是本申请实施例提供的另一种IAB网络300的示意图。下面结合图5做进一步的说明。
如图5所示,IAB donor 1包括CU(可以称为IAB donor CU1)和DU(可以称为IAB donor DU1);IAB节点1包括IAB节点1的MT侧(可以称为IAB1-MT)和IAB节点1的DU侧(可以称为IAB1-DU);IAB节点2包括IAB节点2的MT侧(可以称为IAB2-MT)和IAB节点2的DU侧(可以称为IAB2-DU);IAB节点3包括IAB节点3的MT侧(可以称为IAB3-MT)和IAB节点3的DU侧(可以称为IAB3-DU)。
需要说明的是,图5以IAB网络为例进行了介绍,图5的内容同样适用于IAB网络以外的中继网络,此时IAB node 2可以替换成中继节点2,中继节点2具有MT和DU,IAB node 3可以替换成中继节点3,中继节点3具有MT和DU,IAB node 1可以替换成中继节点1,中继节点1具有MT和DU,IAB donor 1可以替换成宿主节点1,宿主节点具有CU和DU。其中,中继节点的MT侧执行中继节点的终端角色的功能,中继节点的DU侧执行中继节点的接入网设备角色的功能,具体可以参考上述IAB网络300中的内容,在此不再赘述。
在IAB网络中,与终端对等的PHY层、MAC层和RLC层位于接入IAB节点上,而与UE对等的PDCP层、SDAP层和RRC层位于IAB donor CU上,若IAB donor-CU由CP和UP组成,则与UE对等的RRC层位于IAB donor CU的CP(即donor-CU-CP)上,UE对等的PDCP层和SDAP层位于IAB donor CU的UP(即donor-CU-UP)上。
图6A和图6B分别是本申请实施例提供的IAB网络中的控制面协议栈的示意图和用户面协议栈的示意图,下面结合图6A和图6B进行说明。
对于控制面而言,如图6A所示,终端1和IAB2-DU之间建立有Uu接口,对等的协议层包括RLC层、MAC层和PHY层。IAB2-DU和IAB donor CU1建立有F1-C接口,对等的协议层包括F1AP层、SCTP层和IP层。IAB donor DU1和IAB donor CU1之间建立有IAB宿主内的F1接口,对等的协议层包括IP层、L2和L1。IAB node 2和IAB node 3之 间、IAB node 3和IAB node 1之间,以及IAB node 1和IAB donor DU1之间均建立有BL,对等的协议层包括回传适配协议(Backhaul Adaptation Protocol,BAP)层、RLC层、MAC层以及PHY层。另外,终端1和IAB donor CU1之间建立有对等的RRC层和PDCP层,IAB2-DU和IAB donor DU1之间建立有对等的IP层。
可以看出,IAB网络的控制面协议栈与单空口的控制面协议栈相比,接入IAB节点的DU实现了单空口的gNB-DU的功能(即与终端建立对等RLC层、MAC层和PHY层的功能,以及与CU建立对等的F1AP层、SCTP层和IP层的功能)。可以理解,IAB网络中接入IAB节点的DU实现了单空口的gNB-DU的功能;IAB donor CU实现了单空口的gNB-CU的功能。
可以看出,IAB网络的用户面协议栈与单空口的用户面协议栈相比,IAB接入节点的DU实现了单空口的gNB-DU的部分功能(即与终端建立对等RLC层、MAC层和PHY层的功能,以及与IAB donor CU1建立对等的GTP-U层、UDP层和IP层的功能)。可以理解,IAB接入节点的DU实现了单空口的gNB-DU的功能;IAB donor CU实现了单空口的gNB-CU的功能。
在控制面上,PDCP数据包封装在接入IAB节点和IAB donor CU之间的GTP-U隧道中传输。GTP-U隧道建立在F1-U接口上。
IAB网络中,IAB节点可以发生切换。在本申请实施例中,将执行切换的IAB节点称之为切换IAB节点,切换IAB节点和切换IAB节点的后代节点可以作为一个群组(group),该群组一起从切换IAB节点切换前连接的父节点切换至切换IAB节点切换后连接的父节点,该群组中每一IAB节点的上行数据从切换IAB节点切换前连接的IAB宿主切换至切换IAB节点切换后连接的IAB宿主。
可选的,切换IAB节点可以是接入IAB节点,或者接入IAB节点和IAB宿主之间的中间IAB节点。
本申请将切换IAB节点切换前连接的IAB宿主称为源IAB宿主,具体地,源IAB宿主可以包括CU和DU,其中,源IAB宿主的CU称为源IAB宿主CU,源IAB宿主的DU称为源IAB宿主DU。
本申请将切换IAB节点切换后连接的IAB宿主称为目标IAB宿主,具体地,目标IAB宿主可以包括CU和DU,其中,目标IAB宿主的CU称为目标IAB宿主CU,目标IAB宿主的DU称为目标IAB宿主DU。
可选的,可以将切换IAB节点切换前连接的父节点称为源父节点,将切换IAB节点切换后连接的父节点称为目标父节点。可以理解,切换IAB节点切换前,切换IAB节点与源父节点连接,源父节点为切换IAB节点提供接入服务,切换IAB节点切换后,切换IAB节点与目标父节点连接,目标父节点为切换IAB节点提供接入服务。
源父节点可以是源IAB宿主,或者源父节点通过m个其他IAB节点与源IAB宿主连接,m为大于等于1的整数。目标父节点可以是目标IAB宿主,或者目标父节点通过n个其他IAB节点与目标IAB宿主连接,n为大于等于1的整数。示例性的,参见图7,切换前的传输路径为:终端2←→IAB node 6←→IAB node 2←→IAB node 3←→IAB node 1←→IAB donor DU1←→IAB donor CU1,切换后的传输路径为终端2←→IAB node  6←→IAB node 2←→IAB node 4←→IAB node 5←→IAB donor DU2←→IAB donor CU1,切换IAB节点为IAB node 2,源父节点为IAB node 3,源父节点的上游IAB节点为IAB node1,源IAB宿主CU为IAB donor CU1,源IAB宿主DU为IAB donor DU1,目标IAB宿主CU为IAB donor CU1,目标IAB宿主DU为IAB donor DU2。切换IAB节点和切换IAB节点的后代节点(即IAB node 2、IAB node 6和终端2)可作为群组一起从IAB donor 3切换至IAB donor 4。
需要说明的是,源IAB宿主和目标IAB宿主可以相同,或不相同。如图7所示,源IAB宿主和目标IAB宿主均为IAB donor CU1。
在图7中,对于IAB node2、IAB node6或终端2已发送给IAB node3的上行数据,需要保证其能够从IAB node3继续发往IAB node1,再发往IAB donor DU1,再发往IAB donor CU1。如果在IAB node DU1未接收到所有来自IAB node 2、IAB node 6和终端2的上行数据,或接收到部分的上行数据时,IAB node DU1更新/释放IAB node DU1和IAB node 1之间的回传链路上IAB node 3对应的回传配置信息,将会导致未传输给IAB node DU1的上行数据丢失,即IAB donor CU1无法接收到所有的上行数据。如果在IAB donor CU1未接收到上述的上行数据,或接收到部分上行数据时,IAB donor DU1更新/释放IAB donor DU1和IAB node 1之间的回传链路上IAB node 3对应的回传配置信息,将会导致IAB donor DU无法接收到所有的上行数据,从而导致数据丢失。如果在IAB donor CU1接收到所有的上行数据之后,IAB node DU1不对IAB node DU1和IAB node 1之间的回传链路上IAB node 3对应的回传配置信息进行更新/释放,或过晚更新/释放,则该回传配置信息对应的资源不会被使用,从而影响回传链路的资源使用率。
为了解决上述技术问题,本申请实施例在确定已接收到所有来自切换IAB节点的数据包之后,及时依据指示信息更新或释放切换IAB节点对应的回传配置信息,可避免IAB节点在切换时的数据丢失,提高了资源利用率。
具体的,请参见图8,图8是本申请实施例提供的一种回传配置信息的更新或者释放方法。图8以IAB网络进行举例说明,该方法具体应用于第一节点,该第一节点为切换IAB节点的源父节点的上游IAB节点或源IAB宿主DU,该方法包括但不限于如下步骤:
步骤S802:第一节点确定已接收到所有来自切换IAB节点的数据包后,向源IAB宿主CU发送第一指示信息。
其中,切换IAB节点的数据包可以是切换IAB节点在切换前已接收到的来自切换IAB节点的下游节点的数据包,或者可以是切换IAB节点本身的数据包,例如,切换IAB节点的业务数据或者下载数据等。
示例性的,参见图7,切换IAB节点为IAB node 2,切换IAB节点的数据包可以是IAB node 2的下游节点(即终端2和IAB node 6),在IAB node 2切换至目标传输链路(即IAB node 4←→IAB node 5←→IAB donor DU2←→IAB donor CU1)前,向IAB node 2发送的数据包。或者,切换IAB节点的数据包可以包括IAB node 2的数据包。
本申请对于确定数据包是否来自切换IAB节点的方法不做限定,在第一种可能的示例中,第一节点接收数据包,该数据包包括切换IAB节点的标识;第一节点根据切换IAB节点的标识确定该数据包为来自切换IAB节点的数据包。
其中,切换IAB节点的标识可包括切换IAB节点的网络地址(例如:网络互联协议(Internet Protocol,IP)地址)、BAP地址、物理地址(例如:媒体存取控制位址(Media Access Control Address,MAC))等,在此不做限定。
切换IAB节点的标识可以包含于数据包的包头(header)中,或者可以由包头中的指示信息指示,例如,在BAP数据包的BAP header中包括1bit指示,用于指示该BAP数据包来自切换IAB节点。
切换IAB节点的标识可以是切换IAB节点对数据包进行标记得到的,或者可以是切换IAB节点的源父节点对数据包进行标记得到的,在此不做限定。可以理解,源父节点在接收来自切换IAB节点的数据包时,可确定该数据包来自切换IAB节点。因此,源父节点可对从切换IAB节点接收到的数据包进行标记,从而使得源父节点的上游IAB节点可以直接依据该标识确定数据包是否来自切换IAB节点。
示例性的,参见图7,若切换IAB节点的源父节点(即IAB node 3),对切换IAB节点发送的数据包进行打标签,且打标签的标记为切换IAB节点的标识,则切换IAB节点的源父节点的上游IAB节点IAB node 1和IAB donor DU1可直接根据接收到的数据包中包含的切换IAB节点的标识,确定该数据包是否来自切换IAB节点。
切换IAB节点的标识可以切换IAB节点或切换IAB节点的源父节点,在接收到来自源IAB宿主CU的指示信息之后,对接收到来自切换IAB节点的数据包进行标记得到的。其中,该指示信息可以是源IAB宿主CU依据切换IAB节点获取的测量报告发送的,用于指示切换IAB节点进行切换。该测量报告可包括切换IAB节点对应的源传输链路,以及其它的传输链路(可包括切换IAB节点,或不包括该切换IAB节点)的信号质量、传输效率等。该测量报告可以是切换IAB节点定时向源IAB宿主CU发送的,或者可以是切换IAB节点在接收到来自源IAB宿主CU的测量请求之后,向源IAB宿主CU回复的等,在此均不作限定。可以理解,在接收到切换IAB节点的指示信息之后,切换IAB节点对来自切换IAB节点的数据包进行标识,或者由切换IAB节点的源父节点对来自切换IAB节点的数据包进行标识,而不进行切换时不进行标识,可提高识别效率。
若切换之后的链路中的接入IAB节点不变,上述的指示信息,还可包括切换IAB节点的切换后链路的重配置信息,例如,目标小区的系统消息、随机接入信道(Random Access Channel,RACH)的资源或无线链路控制信号(Radio Link ControlChannel,RLC CH)的资源等。
可以理解,在第一种可能的示例中,通过接收到的数据包是否包含切换IAB节点的标识,确定该数据包是否来自切换IAB节点,可提高识别效率和准确率。
在第二种可能的示例中,第一节点接收数据包,该数据包包括第一BAP路由标识;第一节点接收来自源IAB宿主CU的第一路由配置信息;第一节点根据该数据包中的第一BAP路由标识和第一路由配置信息确定该数据包为来自切换IAB节点的数据包。
其中,BAP路由标识由目标节点的BAP地址和路由路径标识组成,即对于上行传输而言,BAP地址指的是IAB donor DU的BAP地址,对于下行传输而言,BAP地址指的是终端所接入的IAB节点的BAP地址。数据包的包头本身包括BAP路由标识,用于指示该数据包的传输路径,以及最终接收该数据包的目标节点。
第一路由配置信息可包括第一BAP路由标识,第一BAP路由标识的路径包括切换IAB节点与切换IAB节点的源父节点之间的路径,即当接收到的数据包中包括第一BAP路由标识时,即可确定该数据包来自切换IAB节点。需要说明的是,第一路由配置信息可包括一个或多个第一BAP路由标识。
可以理解,在第二种可能的示例中,源IAB宿主CU将第一路由配置信息发送给第一节点,即源IAB宿主CU将切换IAB节点和切换IAB节点的源父节点之间的回传路径有关的所有BAP路由标识都告知了第一节点。因此,第一节点可根据接收到的数据包中是否包括第一BAP路由标识,确定该数据包是否来自切换IAB节点,提高了识别效率和准确率。
本申请对于确定已接收到所有来自切换IAB节点的数据包的方法不做限定,在第一种可能的示例中,第一节点在接收到来自切换IAB节点的第一数据包时,启动或重启第一定时器;在第一定时器运行期间,若第一节点未接收到来自切换IAB节点的其它数据包,则第一节点确定已接收到所有来自切换IAB节点的数据包。
其中,第一数据包可以是第一节点接收到的第一个来自切换IAB节点的数据包,或者可以是第一节点再次接收到的来自切换IAB节点的数据包,在此不做限定。当第一次接收到的第一个来自切换IAB节点的数据包,启动第一定时器;当第一节点再次接收到的来自切换IAB节点的数据包,重启第一定时器。
第一定时器运行期间是指第一定时器在开启到超时的时间,开启是指第一定时器从0开始计时,超时是指从第一定时器的计时时间超过定时时长,本申请对于第一定时器的定时时长不做限定。
示例性的,假设第一定时器的定时时长为1分钟,若第一节点接收到的第一个来自切换IAB节点的数据包的时间为11点30分,启动第一定时器,则在11点31分钟,第一节点未接收到来自切换IAB节点的其它数据包时,第一节点确定已接收到所有来自切换IAB节点的数据包。
可以理解,在第一节点接收到来自切换IAB节点的第一数据包时,启动或重启第一定时器。并在第一定时器运行期间,监控是否接收到来自切换IAB节点的其它数据包。若在第一定时器的时间到达定时时长,还未接收到来自切换IAB节点的其它数据包,则确定该第一节点的子节点不会再发送来自切换IAB节点的数据包,即确定第一节点已接收到来自切换IAB节点的数据包。否则,重启第一定时器,直至在第一定时器运行期间,未接收到来自切换IAB节点的其它数据包。基于定时器确定来自切换IAB节点的数据包是否全部接收,可避免第一节点处于等待接收来自切换IAB节点的数据包的状态,可提高回传配置资源利用率。
在第二种可能的示例中,第一节点接收来自第一节点的子节点的第三指示信息;第一节点根据第三指示信息,确定已接收到所有来自切换IAB节点的数据包。
其中,第三指示信息可包括用于指示第一节点的子节点已确定接收到所有来自切换IAB节点的数据包,或者用于指示第一节点的子节点已接收到所有来自切换IAB节点的数据包中的最后一个数据包,或者用于指示第一节点的子节点已将接收到的所有来自切换IAB节点的数据包发送给第一节点,在此不做限定。
在本申请实施例中,切换IAB节点对应的回传配置信息是指为该切换IAB节点提供回 传服务的配置信息,例如,BAP路由配置,或者回传链路无线链路控制信道(Backhaul Radio Link ControlChannel,BH RLC CH)的配置信息等。
需要说明的是,节点和子节点之间可包括一条或多条回传链路无线链路控制信道。
可以理解,通过第一节点的子节点发送的第三指示信息,第一节点可确定已接收到所有来自切换IAB节点的数据包,可提高识别效率和准确率。
在一种可选的实施例中,第一节点为切换IAB节点的源父节点的上游IAB节点,第一节点向第一节点的父节点发送所有来自切换IAB节点的数据包后,第一节点向第一节点的父节点发送第四指示信息。
其中,第四指示信息与第三指示信息类似,在此不再赘述。可以理解,第一节点为切换IAB节点的源父节点的上游IAB节点,第一节点可向第一节点的父节点发送第四指示信息,则第一节点的父节点可依据第四指示信息确定已接收到所有来自切换IAB节点的数据包,可提高识别效率和准确率。
需要说明的是,当源IAB宿主DU确定已接收所有来自切换IAB节点的数据包时,表示切换IAB节点的源父节点的上游IAB节点均将所有来自切换IAB节点的数据包发送给源IAB宿主DU。因此,步骤S802可由源IAB宿主DU直接确定已接收到所有来自切换IAB节点的数据包,而不用逐个IAB节点进行确定,从而切换IAB节点和源IAB宿主DU之间的IAB节点不会逐一确定已接收到来自切换IAB节点的数据包,即在上述可选的实施例中,第一节点为源IAB宿主DU。
在本申请实施例中,第一指示信息可包括用于指示第一节点已确定接收到所有来自切换IAB节点的数据包,或者用于指示第一节点已接收到所有来自切换IAB节点的数据包中的最后一个数据包,或者用于请求IAB宿主CU更新或释放第一节点和该第一节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息等。可以理解,通过第一指示信息,源IAB宿主CU可确定第一节点已接收到所有来自切换IAB节点的数据包,即第一节点的下游节点之间的回传链路已完成切换IAB节点的数据传输任务,可更新或释放第一节点和下游节点之间的回传链路上切换IAB节点对应的回传配置信息。
进一步的,当第一节点为切换IAB节点的源父节点的上游IAB节点时,可分别更新或释放节点之间的回传链路上切换IAB节点的回传配置信息,具体的,各个所述上游IAB节点分别向源IAB宿主CU发送所述第一指示信息,源IAB宿主CU在收到各个所述上游IAB节点的第一指示信息之后,分别向各个所述上游IAB节点发送更新或释放指示。当第一节点为源IAB宿主DU时,可统一更新或释放切换IAB节点的源父节点的上游IAB节点中每一IAB节点和该IAB节点的子节点之间以及源IAB宿主DU和其子节点之间的回传链路上切换IAB节点的回传配置信息,具体的,当源IAB宿主CU接收到源IAB宿主DU的第一指示信息后,向源IAB宿主DU和各个所述上游IAB节点发送更新或释放指示。
步骤S804:第一节点从源IAB宿主CU接收第二指示信息。
在本申请实施例中,第二指示信息用于指示接收到第二指示信息的第一节点更新或释放该第一节点和该第一节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息。当第一节点为切换IAB节点的源父节点的上游IAB节点时,第二指示信息可以是源IAB宿主CU在接收到来自第一节点的第一指示信息之后,源IAB宿主CU向第一节点发送的, 即上游IAB节点中的每一节点可以在接收到第二指示信息后,分别更新或释放该节点和该节点的子节点之间的回传链路上切换IAB节点的回传配置信息。当第一节点为源IAB宿主DU时,第二指示信息可以是源IAB宿主CU在接收到来自源IAB宿主DU的第一指示信息之后,源IAB宿主CU向源IAB宿主DU发送的。且源IAB宿主CU可以向切换IAB节点的源父节点的上游IAB节点中每一节点发送,与该节点对应的更新或释放指示信息,即源IAB宿主DU和切换IAB节点的源父节点的上游IAB节点中每一节点,均可基于该节点从源IAB宿主CU接收到一个第五指示信息,该第五指示信息用于指示上游IAB节点中的每一节点更新或释放该节点和该节点的子节点之间的回传链路上切换IAB节点的回传配置信息,从而统一更新或释放切换IAB节点的回传配置信息。
示例性的,参见图7,若第一节点为IAB node 1,则在IAB node 1确定已接收到所有来自IAB node 2的数据包后,向IAB donor CU1发送第一指示信息。IAB donor CU1向IAB node 1发送第二指示信息。或者,IAB donor CU1在接收到来自IAB donor DU1的第一指示信息之后,才向IAB node 1发送第二指示信息,并向IAB donor DU1发送第五指示信息。
步骤S806:第一节点基于第二指示信息更新或释放第一节点和第一节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息。
在图8所示的方法中,第一节点通过指示信息及时更新或释放回传配置信息,可提高回传配置资源利用率。且该回传配置信息是在已接收到所有来自切换IAB节点的数据包之后才更新或释放的,可避免IAB节点在切换时的数据丢失。
请参见图9,图9是本申请实施例提供的又一种配置信息的更新或者释放方法,该方法应用于宿主节点。图9以IAB网络进行举例说明,该方法具体应用于源IAB宿主CU,该源IAB宿主CU为切换IAB节点切换前连接的IAB宿主CU,该方法包括但不限于如下步骤:
步骤S902:源IAB宿主CU从第一节点接收第一指示信息。
其中,第一节点为切换IAB节点的源父节点的上游IAB节点或源IAB宿主DU,源IAB宿主DU为切换IAB节点切换前连接的IAB宿主DU。该第一指示信息是第一节点在确定已接收到所有来自切换IAB节点的数据包后,向源IAB宿主CU发送的,步骤S902可参考步骤S802的描述,在此不再赘述。
步骤S904:源IAB宿主CU向第一节点发送第二指示信息。
在本申请实施例中,第二指示信息用于指示接收到第二指示信息的第一节点更新或释放该第一节点和该第一节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息。当第一节点为切换IAB节点的源父节点的上游IAB节点时,第二指示信息可以是源IAB宿主CU在接收到来自第一节点的第一指示信息之后,源IAB宿主CU向第一节点发送的,即上游IAB节点中的每一节点可以在接收到第二指示信息后,分别更新或释放该节点和该节点的子节点之间的回传链路上切换IAB节点的回传配置信息。当第一节点为源IAB宿主DU时,第二指示信息可以是源IAB宿主CU在接收到来自源IAB宿主DU的第一指示信息之后,向源IAB宿主DU发送源IAB宿主DU的。且源IAB宿主CU可以向切换IAB节点的源父节点的上游IAB节点中每一节点发送,与该节点对应的更新或释放指示信息,即 源IAB宿主DU和切换IAB节点的源父节点的上游IAB节点中每一节点,均可基于该节点从源IAB宿主CU接收到一个第五指示信息,该第五指示信息用于指示上游IAB节点中的每一节点更新或释放该节点和该节点的子节点之间的回传链路上切换IAB节点的回传配置信息,从而统一更新或释放切换IAB节点的回传配置信息。
在一种可能的示例中,第一节点为源IAB宿主DU,上述方法还包括:源IAB宿主CU向切换IAB节点的源父节点的上游IAB节点发送第五指示信息。
其中,第五指示信息用于指示接收到第五指示信息的上游IAB节点更新或释放该IAB节点和该IAB节点的子节点之间的回传链路上切换IAB节点对应的回传配置信息。
示例性的,参见图7,若第一节点为IAB donor DU1,则在IAB donor DU1确定已接收到所有来自IAB node 2的数据包后,向IAB donor CU1发送第一指示信息。IAB donor CU1向IAB donor DU1发送第二指示信息,并向IAB node 1发送第五指示信息。
如前所述,可以直接由源IAB宿主DU确定已接收到所有来自切换IAB节点的数据包,而不用逐个IAB节点进行确定。因此,源IAB宿主CU在接收到来自源IAB宿主DU的第一指示信息后,可向源IAB宿主DU发送第二指示信息,并向切换IAB节点的源父节点中的上游IAB节点发送第五指示信息,从而统一更新或者释放各个节点和其子节点之间的回传链路上切换IAB节点对应的回传配置信息,节省了识别时间,便于提高回传配置资源利用率。
需要说明的是,源IAB宿主CU还可向切换IAB节点的源父节点发送第六指示信息。
其中,第六指示信息,用于指示切换IAB节点的源父节点更新或释放该源父节点和切换IAB节点之间的回传链路上切换IAB节点对应的回传配置信息。该第六指示信息可以是在切换IAB节点的源父节点的上游IAB节点向源IAB宿主CU发送第一指示信息之后发送的,或者可以是在源IAB宿主DU向源IAB宿主CU发送第一指示信息之后发送的,在此不做限定。
示例性的,参见图7,若第一节点为IAB node 1,则在IAB node 1确定已接收到所有来自IAB node 2的数据包后,向IAB donor CU1发送第一指示信息。IAB donor CU1向IAB node 1发送第二指示信息,并向IAB node 3发送第五指示信息。或者,IAB donor CU1在接收到来自IAB donor DU1的第一指示信息之后,IAB donor CU1向IAB donor DU1发送第二指示信息,并向IAB node 1发送第五指示信息,以及向IAB node 3发送第六指示信息。
可以理解,源IAB宿主CU可根据切换IAB节点的源父节点的上游IAB节点发送的第一指示信息,或根据源IAB宿主DU发送的第一指示信息,确定切换IAB节点的源父节点已将来自切换IAB节点的所有数据包发送给该源父节点的父节点。因此,更新或释放源父节点和该源父节点对应的回传配置信息,可避免IAB节点在切换时的数据丢失,便于提高回传配置资源利用率。
在图9所示的方法中,源IAB宿主CU在第一节点已接收到所有来自切换IAB节点的数据包之后,接收到来自第一节点的第一指示信息,然后向第一节点发送用于更新或释放回传配置信息的第二指示信息,可避免IAB节点在切换时的数据丢失,并提高回传配置资源利用率。在一种可能的示例中,源IAB宿主CU向第一节点发送第一路由配置信息。
其中,第一路由配置信息包括第一BAP路由标识,第一路由标识的路径包括所述切换 IAB节点与所述切换IAB节点的父节点之间的路径。如此,基于BAP路由标识确定数据包是否来自切换IAB节点,可提高识别效率和准确率。
下面结合图10至图12介绍本申请实施例提供的装置,图10至图12中的装置可以完成图8至图9中的方法,装置的内容可以与方法的内容相互参考。
图10是本申请实施例提供的一种网络设备的结构示意图,该网络设备可以是中继节点,可以实现上述方法实施例中的切换IAB节点的源父节点的上游IAB节点的功能;或者该网络设备可以是宿主节点,可以实现上述方法实施例中的源IAB宿主CU或者源IAB宿主DU的功能。为了便于说明,图10示意了网络设备的主要部件,如图10所示:
网络设备包括至少一个处理器711、至少一个存储器712、至少一个收发器713、至少一个网络接口714和至少一个天线715。处理器711、存储器712、收发器713和网络接口714相连,例如通过总线相连,在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线715与收发器713相连。网络接口714用于使得网络设备通过通信链路,与其它网络设备相连。
收发器713可以用于基带信号与射频信号的转换以及对射频信号的处理,收发器713可以与天线715相连。收发器713包括发射机(transmitter,Tx)和接收机(receiver,Rx)。具体地,一个或多个天线715可以接收射频信号,该收发器713的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器711,以便处理器711对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器713中的发射机Tx用于从处理器711接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线715发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。可选的,发射机Tx和接收机Rx可以是由不同的物理结构/电路实现,或者可以由同一物理结构/电路实现,也就是说发射机Tx和接收机Rx可以继承在一起。
收发器713可以称为收发单元、通信单元、收发机、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。或者,可以将Tx、Rx和天线的组合成为收发器713。
当网络设备是中继节点时,处理器711可以用于支持中继节点执行上述方法实施例中所描述的动作。例如,处理器711(例如基带处理器)可以确定上述方法实施例中已接收到所有来自切换IAB节点的数据包等,具体可以参考上述方法实施例的内容。
收发器713和天线715可以实现中继节点与源宿主节点的连接,还可以实现与中继节 点的父节点和/或中继节点的子节点进行传输,例如,中继节点接收中继节点的子节点发送的数据或终端发送的数据,向中继节点的父节点发送数据或发送来自终端的数据等;从中继节点的子节点接收该子节点生成的指示信息,以及向中继节点的父节点发送该中继节点生成的指示信息等,或者具体可以参考上述方法实施例的内容。
存储器712主要用于存储软件程序和数据。存储器712可以是独立存在,与处理器711相连。可选的,存储器712可以和处理器711集成在一起,例如集成在一个芯片之内,即片内存储器,或者存储器712为独立的存储元件,本申请实施例对此不做限定。其中,存储器712能够存储执行本申请实施例的技术方案的程序代码,并由处理器711来控制执行,被执行的各类计算机程序代码可被视为是处理器711的驱动程序。
存储器712可以实现存储执行上述方法实施例中由中继节点执行的操作的程序代码和/数据,并由处理器711来控制执行。例如,存储器712可以存储从中继节点的子节点接收的数据和/或指示信息,或者可以存储中继节点生成的指示信息,具体可以参考上述方法实施例的内容。
在本申请实施例中,网络设备为切换IAB节点的源父节点的上游IAB节点,处理器711用于确定已接收到所有来自所述切换IAB节点的数据包;收发器713,用于向源IAB宿主CU发送第一指示信息,以及从所述源IAB宿主CU接收第二指示信息,其中,所述源IAB宿主CU为所述切换IAB节点切换前连接的IAB宿主CU;所述处理器711,还用于基于第二指示信息更新或释放所述网络设备和所述网络设备的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
在一种可能的示例中,所述处理器711,还用于在所述收发器713接收来自所述切换IAB节点的第一数据包时,启动或重新第一定时器;在所述第一定时器运行期间,若未接收到来自所述切换IAB节点的其它数据包,则确定已接收到所有来自所述切换IAB节点的数据包。
在一种可能的示例中,所述收发器713,还用于接收来自所述网络设备的子节点的第三指示信息;所述处理器711,还用于根据所述第三指示信息,确定已接收到所有来自所述切换IAB节点的数据包。
在一种可能的示例中,所述收发器713,还用于向所述网络设备的父节点发送所有来自所述切换IAB节点的数据包后,向所述网络设备的父节点发送第四指示信息。
在一种可能的示例中,所述收发器713,还用于接收数据包,所述数据包包括第一BAP路由标识;以及接收来自所述源IAB宿主CU的第一路由配置信息,其中,所述第一路由配置信息包括所述第一BAP路由标识,所述第一BAP路由标识的路径包括所述切换IAB节点与所述切换IAB节点的源父节点之间的路径;所述处理器711,还用于根据所述数据包中的所述第一BAP路由标识和所述第一路由配置信息确定所述数据包为来自所述切换IAB节点的数据包。
在一种可能的示例中,所述收发器713,还用于接收数据包,所述数据包包括所述切换IAB节点的标识;所述处理器711,还用于根据所述切换IAB节点的标识确定所述数据包为来自所述切换IAB节点的数据包。
当网络设备是宿主节点时,处理器711可以用于支持执行上述方法实施例中所描述的 动作。例如,处理器711可以确定上述方法实施例中接收到所有来自切换IAB节点的数据包等,具体可以参考上述方法实施例的内容。
收发器713和天线715可以实现宿主节点与中继节点之间的连接,还可以实现与宿主节点中宿主DU和宿主CU之间的连接,例如,源IAB宿主DU向源IAB宿主CU发送来自切换IAB节点的数据包和/或指示信息等。还可以实现宿主节点和子节点之间的连接,例如,源IAB宿主DU的子节点向源IAB宿主CU发送来自切换IAB节点的数据包和/或指示信息等,具体可以参考上述方法实施例的内容。
存储器712可以实现存储执行上述方法实施例中由源宿主节点执行的操作的程序代码和/数据,并由处理器711来控制执行。例如,存储器712可以存储从子节点接收的数据或者指示信息,具体可以参考上述方法实施例的内容。
网络接口714可以包括宿主节点与核心网网元之间的网络接口,例如S1接口。网络接口可以包括接入网设备和其他网络设备之间的网络接口,例如源宿主节点和目标宿主节点之间的网络接口,例如X2或者Xn接口。
图11是本申请实施例提供的一种接入网设备的结构示意图,示例性地可以为宿主节点的结构示意图,其所包括的DU可以是指宿主DU,其所包括的CU可以是指宿主CU,可应用于如图1或图2或图5或图7所示的系统中,执行上述方法实施例中宿主节点(源IAB宿主CU和/或源IAB宿主DU)的功能。
接入网设备可包括一个或多个DU1101和一个或多个CU1102。所述DU1101可以包括至少一个天线11011,至少一个射频单元11012,至少一个处理器11013和至少一个存储器11014。所述DU1101部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU1102可以包括至少一个处理器11022和至少一个存储器11021。CU1102和DU1101之间可以通过接口进行通信,其中,控制面接口可以为F1-C,用户面接口可以为F1-U。
所述CU1102部分主要用于进行基带处理,对基站进行控制等。所述DU1101与CU1102可以是物理上设置在一起,或者可以物理上分离设置的,即分布式基站。所述CU1102为基站的控制中心,或者可以称为处理单元,主要用于完成基带处理功能。例如所述CU1102可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,具体可以参考图3中的内容。
此外,可选的,宿主基站110可以包括一个或多个射频单元(radio unit,RU),一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器11013和至少一个存储器11014,RU可以包括至少一个天线11011和至少一个射频单元11012,CU可以包括至少一个处理器11022和至少一个存储器11021。
在一个实例中,所述CU1102可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),或者可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器11021和处理器11022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器,或者可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU1101可以由一个或多 个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),或者可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器11014和处理器11013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器,或者可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
示例性的,当接入网设备是源宿主节点,源宿主节点的CU可以通过DU与子节点进行传输,例如,在下行方向,源宿主节点的CU可以生成数据(例如PDCP数据)和/或指示信息,然后通过CU与DU之间的接口发送至源宿主节点的DU,由源宿主节点的DU通过天线将该数据发送至DU的子节点;在上行方向,源宿主节点的DU可以通过天线从子节点接收数据,然后通过CU与DU之间的接口发送至源宿主节点的CU。
在本申请实施例中,网络设备为源IAB宿主DU,所述源IAB宿主CU为所述切换IAB节点切换前连接的IAB宿主CU,处理器711用于确定已接收到所有来自所述切换IAB节点的数据包;收发器713,用于向源IAB宿主CU发送第一指示信息,其中,所述源IAB宿主DU为所述切换IAB节点切换前连接的IAB宿主DU;从所述源IAB宿主CU接收第二指示信息;所述处理器711,还用于基于第二指示信息更新或释放所述网络设备和所述网络设备的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
在一种可能的示例中,所述处理器711,还用于在所述收发器713接收来自所述切换IAB节点的第一数据包时,启动或重新第一定时器;在所述第一定时器运行期间,若未接收到来自所述切换IAB节点的其它数据包,则确定已接收到所有来自所述切换IAB节点的数据包。
在一种可能的示例中,所述收发器713,还用于接收来自所述网络设备的子节点的第三指示信息;根据所述第三指示信息,确定已接收到所有来自所述切换IAB节点的数据包。
在一种可能的示例中,所述收发器713,还用于接收数据包,所述数据包包括第一BAP路由标识;以及接收来自所述源IAB宿主CU的第一路由配置信息,其中,所述第一路由配置信息包括所述第一BAP路由标识,所述第一BAP路由标识的路径包括所述切换IAB节点与所述切换IAB节点的源父节点之间的路径;所述处理器711,还用于根据所述数据包中的所述第一BAP路由标识和所述第一路由配置信息确定所述数据包为来自所述切换IAB节点的数据包。
在一种可能的示例中,所述收发器713,还用于接收数据包,所述数据包包括所述切换IAB节点的标识;所述处理器711,还用于根据所述切换IAB节点的标识确定所述数据包为来自所述切换IAB节点的数据包。
在本申请实施例中,网络设备为源IAB宿主CU,所述源IAB宿主CU为所述切换IAB节点切换前连接的IAB宿主CU,其中:
收发器713,用于接收来自第一节点的第一指示信息,其中,所述第一节点为所述切换IAB节点的源父节点的上游IAB节点或源IAB宿主DU,所述源IAB宿主DU为所述切换IAB节点切换前连接的IAB宿主DU,所述第一指示信息用于确定所述第一节点接收到所有来自所述切换IAB节点的数据包;收发器713,还用于向所述第一节点发送第二指示信息,所述第二指示信息用于更新或释放所述第一节点和所述第一节点的子节点之间的回 传链路上所述切换IAB节点对应的回传配置信息。
在一种可能的示例中,所述第一节点为所述源IAB宿主DU,所述收发器713,还用于向所述切换IAB节点的源父节点的上游IAB节点发送第五指示信息,所述第五指示信息用于更新或释放所述上游IAB节点和所述上游IAB节点的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
在一种可能的示例中,所述收发器713,还用于向所述第一节点发送第一路由配置信息,所述第一路由配置信息包括第一BAP路由标识,所述第一路由标识的路径包括所述切换IAB节点与所述切换IAB节点的父节点之间的路径。
图12为本申请实施例提供的另一种网络设备的结构示意图。网络设备可以执行上述方法实施例中描述的方法,可以参考上述方法实施例的说明。网络设备可以用于通信设备、电路、硬件组件或者芯片中,例如网络设备可以是中继节点(例如,IAB网络中的切换IAB节点的源父节点的上游IAB节点)或者宿主节点(例如,IAB网络中的源IAB宿主CU、源IAB宿主DU节点)中的芯片。
网络设备1900包括处理单元1901和通信单元1902。可选的,网络设备1900还包括存储单元1903。
处理单元1901可以是具有处理功能的装置,可以包括一个或者多个处理器。处理器可以是通用处理器或者专用处理器等。处理器可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对装置(如,宿主节点、中继节点或芯片等)进行控制,执行软件程序,处理软件程序的数据。
通信单元1902可以是具有信号的输入(接收)或者输出(发送)的装置,用于与其他网络设备或者设备中的其他器件进行信号的传输。
存储单元1903可以是具有存储功能的装置,可以包括一个或者多个存储器。
可选的,处理单元1901、通信单元1902和存储单元1903通过通信总线相连。
可选的,存储单元1903可以独立存在,通过通信总线与处理单元1901相连。存储单元1903还可以与处理单元1901集成在一起。
可选的,网络设备1900可以是本申请实施例的中继节点或者宿主节点中的芯片。通信单元1902可以是输入或者输出接口、管脚或者电路等。存储单元1903可以是寄存器、缓存或者RAM等,存储单元1903可以和处理单元1901集成在一起;存储单元1903可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储单元1903可以与处理单元1901相独立。
在一种可能的设计中,处理单元1901可以包括指令,所述指令可以在所述处理器上被运行,使得所述网络设备1900执行上述实施例中中继节点或者宿主节点的方法。
在又一种可能的设计中,存储单元1903上存有指令,所述指令可在所述处理单元1901上被运行,使得所述网络设备1900执行上述实施例中中继节点或者宿主节点的方法。可选的,所述存储单元1903中还可以存储有数据。可选的,处理单元1901中还可以存储指令和/或数据。
网络设备1900可以是本申请实施例中的第一节点的芯片时,网络设备1900可以实现 上述方法实施例中的第一节点的功能。例如,处理单元1901确定已接收到所有来自切换IAB节点的数据包,通信单元1902向源IAB宿主CU发送第一指示信息,以及接收源IAB宿主DU发送该源IAB宿主DU对应的第二指示信息等。
网络设备1900可以是本申请实施例中的源IAB宿主CU的芯片时,网络设备1900可以实现上述方法实施例中的源IAB宿主CU的功能。例如,通信单元1902可以接收来自第一节点的第一指示信息,向第一节点发送第二指示信息等。
网络设备1900可以是本申请实施例中的目标宿主节点或者目标宿主节点的芯片时,网络设备1900可以实现上述方法实施例中的目标宿主节点的功能。
例如,处理单元1901可以生成上述方法实施例中由目标宿主节点生成的指示信息或者数据等。例如,通信单元1902可以与目标宿主节点的子节点进行传输,例如向子节点发送数据和/或指示信息,从子节点接收数据和/或指示信息等。
在本申请实施例中,网络设备包括第一节点,第一节点为切换IAB节点的源父节点的上游IAB节点或源IAB宿主DU,所述源IAB宿主DU为所述切换IAB节点切换前连接的IAB宿主DU,其中:
处理单元1901,用于确定已接收到所有来自所述切换IAB节点的数据包;通信单元1902,用于向源IAB宿主CU发送第一指示信息,其中,所述源IAB宿主CU为所述切换IAB节点切换前连接的IAB宿主CU;从所述源IAB宿主CU接收第二指示信息;所述处理单元1901,还用于基于第二指示信息更新或释放所述第一节点和所述第一节点的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
在一种可能的示例中,所述处理单元1901,还用于在所述通信单元1902接收来自所述切换IAB节点的第一数据包时,启动或重新第一定时器;在所述第一定时器运行期间,若未接收到来自所述切换IAB节点的其它数据包,则确定已接收到所有来自所述切换IAB节点的数据包。
在一种可能的示例中,所述通信单元1902,还用于接收来自所述第一节点的子节点的第三指示信息;所述处理单元1901,还用于根据所述第三指示信息,确定已接收到所有来自所述切换IAB节点的数据包。
在一种可能的示例中,所述第一节点为所述切换IAB节点的源父节点的上游IAB节点,所述通信单元1902,还用于向所述第一节点的父节点发送所有来自所述切换IAB节点的数据包后,向所述第一节点的父节点发送第四指示信息。
在一种可能的示例中,所述通信单元1902,还用于接收数据包,所述数据包包括第一BAP路由标识;以及接收来自所述源IAB宿主CU的第一路由配置信息,其中,所述第一路由配置信息包括所述第一BAP路由标识,所述第一BAP路由标识的路径包括所述切换IAB节点与所述切换IAB节点的源父节点之间的路径;所述处理单元1901,还用于根据所述数据包中的所述第一BAP路由标识和所述第一路由配置信息确定所述数据包为来自所述切换IAB节点的数据包。
在一种可能的示例中,所述通信单元1902,还用于接收数据包,所述数据包包括所述切换IAB节点的标识;所述处理单元1901,还用于根据所述切换IAB节点的标识确定所述数据包为来自所述切换IAB节点的数据包。
在本申请实施例中,网络设备为源IAB宿主CU,所述源IAB宿主CU为所述切换IAB节点切换前连接的IAB宿主CU,其中:
通信单元1902,用于接收来自第一节点的第一指示信息,其中,所述第一节点为所述切换IAB节点的源父节点的上游IAB节点或源IAB宿主DU,所述源IAB宿主DU为所述切换IAB节点切换前连接的IAB宿主DU,所述第一指示信息用于确定所述第一节点接收到所有来自所述切换IAB节点的数据包;通信单元1902,还用于向所述第一节点发送第二指示信息,所述第二指示信息用于更新或释放所述第一节点和所述第一节点的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
在一种可能的示例中,所述第一节点为所述源IAB宿主DU,所述通信单元1902,还用于向所述切换IAB节点的源父节点的上游IAB节点发送第五指示信息,所述第五指示信息用于更新或释放所述上游IAB节点和所述上游IAB节点的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
在一种可能的示例中,所述通信单元1902,还用于向所述第一节点发送第一路由配置信息,所述第一路由配置信息包括第一BAP路由标识,所述第一路由标识的路径包括所述切换IAB节点与所述切换IAB节点的父节点之间的路径。
上面介绍了本申请实施例的方法流程图,要理解的是,中继节点可以存在与中继节点的方法或者步骤对应的功能单元(means),源宿主节点(例如CU和/或DU)可以存在与源宿主节点的方法(例如CU和/或DU)或者步骤对应的功能单元。以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令以实现以上方法流程。
本申请中的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,或者可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个SoC(system on a chip,片上系统),或者可以作为一个专用集成电路(application-specific integrated circuit,ASIC)的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、或者实现专用逻辑运算的逻辑电路。
本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,或者可以是电可擦可编程只读存储器(electrically erasable programmable-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘 存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
该总线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的第一节点和源IAB宿主CU。
本申请实施例还提供一种芯片系统,所述芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,图8和图9所示的方法流程得以实现。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述程序指令在处理器上运行时,图8和图9所示的方法流程得以实现。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,该数字编号可以替代为其他数字编号。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产 品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字通用磁盘(digital versatile disc,DVD))、或者半导体介质(例如固态硬盘)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种回传配置信息的更新或者释放方法,其特征在于,包括:
    第一节点确定已接收到所有来自切换接入回传一体化IAB节点的数据包后,向源IAB宿主集中式单元CU发送第一指示信息,所述第一节点为所述切换IAB节点的源父节点的上游IAB节点或源IAB宿主分布式单元DU,所述源IAB宿主CU为所述切换IAB节点切换前连接的IAB宿主CU,所述源IAB宿主DU为所述切换IAB节点切换前连接的IAB宿主DU;
    所述第一节点从所述源IAB宿主CU接收第二指示信息;
    所述第一节点基于所述第二指示信息更新或释放所述第一节点和所述第一节点的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一节点确定已接收到所有来自切换IAB节点发送的数据包,包括:
    所述第一节点在接收到来自所述切换IAB节点的第一数据包时,所述第一节点启动或重启第一定时器;
    在所述第一定时器运行期间,若所述第一节点未接收到来自所述切换IAB节点的其它数据包,则所述第一节点确定已接收到所有来自所述切换IAB节点的数据包。
  3. 根据权利要求1所述的方法,其特征在于,所述第一节点确定已接收到所有来自切换IAB节点发送的数据包,包括:
    所述第一节点接收来自所述第一节点的子节点的第三指示信息;
    所述第一节点根据所述第三指示信息,确定已接收到所有来自所述切换IAB节点的数据包。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一节点为所述切换IAB节点的源父节点的上游IAB节点,所述方法还包括:
    所述第一节点向所述第一节点的父节点发送所有来自所述切换IAB节点的数据包后,所述第一节点向所述第一节点的父节点发送第四指示信息。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收数据包,所述数据包包括第一回传适配协议BAP路由标识;
    所述第一节点接收来自所述源IAB宿主CU的第一路由配置信息,所述第一路由配置信息包括所述第一BAP路由标识,所述第一BAP路由标识的路径包括所述切换IAB节点与所述切换IAB节点的源父节点之间的路径;
    所述第一节点根据所述数据包中的所述第一BAP路由标识和所述第一路由配置信息确定所述数据包为来自所述切换IAB节点的数据包。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    所述第一节点接收数据包,所述数据包包括所述切换IAB节点的标识;
    所述第一节点根据所述切换IAB节点的标识确定所述数据包为来自所述切换IAB节点的数据包。
  7. 一种回传配置信息的更新或者释放方法,其特征在于,包括:
    源IAB宿主CU从第一节点接收第一指示信息,所述第一节点为切换IAB节点的源父节点的上游IAB节点或源IAB宿主DU,所述源IAB宿主CU为所述切换IAB节点切换前连接的IAB宿主CU,所述源IAB宿主DU为所述切换IAB节点切换前连接的IAB宿主DU,所述第一指示信息用于确定所述第一节点接收到所有来自所述切换IAB节点的数据包;
    所述源IAB宿主CU向所述第一节点发送第二指示信息,所述第二指示信息用于更新或释放所述第一节点和所述第一节点的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一节点为所述源IAB宿主DU,所述方法还包括:
    所述源IAB宿主CU向所述切换IAB节点的源父节点的上游IAB节点发送第五指示信息,所述第五指示信息用于更新或释放所述上游IAB节点和所述上游IAB节点的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    所述源IAB宿主CU向所述第一节点发送第一路由配置信息,所述第一路由配置信息包括第一BAP路由标识,所述第一路由标识的路径包括所述切换IAB节点与所述切换IAB节点的父节点之间的路径。
  10. 一种节点,其特征在于,所述节点为切换IAB节点的源父节点的上游IAB节点或源IAB宿主DU,所述源IAB宿主DU为所述切换IAB节点切换前连接的IAB宿主DU,所述节点包括:
    处理单元,用于确定已接收到所有来自所述切换IAB节点的数据包;
    通信单元,用于向源IAB宿主CU发送第一指示信息,所述源IAB宿主CU为所述切换IAB节点切换前连接的IAB宿主CU;以及从所述源IAB宿主CU接收第二指示信息;
    所述处理单元,还用于基于所述第二指示信息更新或释放所述节点和所述节点的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
  11. 根据权利要求10所述的节点,其特征在于,所述处理单元,还用于在所述通信单元接收来自所述切换IAB节点的第一数据包时,启动或重新第一定时器;在所述第一定时器运行期间,若未接收到来自所述切换IAB节点的其它数据包,则确定已接收到所有来自所述切换IAB节点的数据包。
  12. 根据权利要求10所述的节点,其特征在于,所述通信单元,还用于接收来自所述节点的子节点的第三指示信息;所述处理单元,还用于根据所述第三指示信息,确定已接收到所有来自所述切换IAB节点的数据包。
  13. 根据权利要求10-12任一项所述的节点,其特征在于,所述节点为所述切换IAB节点的源父节点的上游IAB节点,所述通信单元,还用于向所述节点的父节点发送所有来自所述切换IAB节点的数据包后,向所述节点的父节点发送第四指示信息。
  14. 根据权利要求10-13任一项所述的节点,其特征在于,所述通信单元,还用于接收数据包,所述数据包包括第一BAP路由标识;以及接收来自所述源IAB宿主CU的第一路由配置信息,所述第一路由配置信息包括所述第一BAP路由标识,所述第一BAP路由标识的路径包括所述切换IAB节点与所述切换IAB节点的源父节点之间的路径;所述处理 单元,还用于根据所述数据包中的所述第一BAP路由标识和所述第一路由配置信息确定所述数据包为来自所述切换IAB节点的数据包。
  15. 根据权利要求10-13任一项所述的节点,其特征在于,所述通信单元,还用于接收数据包,所述数据包包括所述切换IAB节点的标识;所述处理单元,还用于根据所述切换IAB节点的标识确定所述数据包为来自所述切换IAB节点的数据包。
  16. 一种节点,其特征在于,所述节点为切换IAB节点切换前连接的IAB宿主CU,所述节点包括:
    通信单元,用于接收来自第一节点的第一指示信息,所述第一节点为所述切换IAB节点的源父节点的上游IAB节点或源IAB宿主DU,所述源IAB宿主DU为所述切换IAB节点切换前连接的IAB宿主DU,所述第一指示信息用于确定所述第一节点接收到所有来自所述切换IAB节点的数据包;
    通信单元,还用于向所述第一节点发送第二指示信息,所述第二指示信息用于更新或释放所述第一节点和所述第一节点的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
  17. 根据权利要求16所述的源IAB宿主CU,其特征在于,所述第一指示信息来自所述源IAB宿主DU,所述通信单元,还用于向所述切换IAB节点的源父节点的上游IAB节点发送第五指示信息,所述第五指示信息用于更新或释放所述上游IAB节点和所述上游IAB节点的子节点之间的回传链路上所述切换IAB节点对应的回传配置信息。
  18. 根据权利要求16或17所述的源IAB宿主CU,其特征在于,所述通信单元,还用于向所述第一节点发送第一路由配置信息,所述第一路由配置信息包括第一BAP路由标识,所述第一路由标识的路径包括所述切换IAB节点与所述切换IAB节点的父节点之间的路径。
  19. 一种网络设备,其特征在于,包括用于执行权利要求1-9任一项所述的方法的单元。
  20. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行时,权利要求1-9任一所述的方法得以实现。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当所述程序指令在处理器上运行时,权利要求1-9任一所述的方法得以实现。
  22. 一种计算机程序产品,其特征在于,当所述计算机程序产品在网络设备上运行时,权利要求1-9任一项所述的方法得以实现。
PCT/CN2020/111931 2020-08-27 2020-08-27 回传配置信息的更新或者释放方法及相关产品 WO2022041085A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20950755.7A EP4199581A4 (en) 2020-08-27 2020-08-27 UPDATE OR RELEASE PROCEDURES FOR BACKHAUL CONFIGURATION INFORMATION AND RELATED PRODUCT
CN202080104037.2A CN116134881A (zh) 2020-08-27 2020-08-27 回传配置信息的更新或者释放方法及相关产品
PCT/CN2020/111931 WO2022041085A1 (zh) 2020-08-27 2020-08-27 回传配置信息的更新或者释放方法及相关产品
US18/173,183 US20230199615A1 (en) 2020-08-27 2023-02-23 Method for updating or releasing backhaul configuration information and related product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/111931 WO2022041085A1 (zh) 2020-08-27 2020-08-27 回传配置信息的更新或者释放方法及相关产品

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/173,183 Continuation US20230199615A1 (en) 2020-08-27 2023-02-23 Method for updating or releasing backhaul configuration information and related product

Publications (1)

Publication Number Publication Date
WO2022041085A1 true WO2022041085A1 (zh) 2022-03-03

Family

ID=80354272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111931 WO2022041085A1 (zh) 2020-08-27 2020-08-27 回传配置信息的更新或者释放方法及相关产品

Country Status (4)

Country Link
US (1) US20230199615A1 (zh)
EP (1) EP4199581A4 (zh)
CN (1) CN116134881A (zh)
WO (1) WO2022041085A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035453A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 数据处理方法及相关设备
CN110636570A (zh) * 2018-06-25 2019-12-31 中兴通讯股份有限公司 Iab网络中iab节点信息的处理方法及装置
CN110719614A (zh) * 2018-07-13 2020-01-21 普天信息技术有限公司 一种数据传输方法和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477712B2 (en) * 2018-06-21 2022-10-18 Google Llc Maintaining communication and signaling interfaces through a network role transition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110035453A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 数据处理方法及相关设备
CN110636570A (zh) * 2018-06-25 2019-12-31 中兴通讯股份有限公司 Iab网络中iab节点信息的处理方法及装置
CN110719614A (zh) * 2018-07-13 2020-01-21 普天信息技术有限公司 一种数据传输方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Discussion on IAB link switch and topology adaptation", 3GPP DRAFT; R2-1812467 DISCUSSION ON IAB LINK SWITCH AND TOPOLOGY ADAPTATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Gothenburg, Sweden; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051522065 *

Also Published As

Publication number Publication date
US20230199615A1 (en) 2023-06-22
EP4199581A1 (en) 2023-06-21
EP4199581A4 (en) 2023-10-11
CN116134881A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
KR102416256B1 (ko) 무선 백홀 통신 처리 방법 및 관련 디바이스
WO2020103807A1 (zh) 一种通信方法及装置
CN113556794B (zh) 通信方法、装置及系统
WO2022016473A1 (zh) 一种用于接入回传一体化iab系统中的通信方法和通信装置
WO2022082679A1 (zh) 一种通信方法及相关设备
WO2020098747A1 (zh) 传输路径的配置方法及装置
WO2022041249A1 (zh) 一种节点的切换方法以及相关设备
WO2022001503A1 (zh) 一种用于iab网络通信的方法及相关设备
WO2022022484A1 (zh) 一种逻辑信道lch的配置的方法、通信装置和通信系统
WO2023011245A1 (zh) 通信方法和通信装置
WO2023016501A1 (zh) 传输数据的方法和装置
WO2021238882A1 (zh) 一种实现业务连续性的方法及装置
WO2021026706A1 (zh) 一种f1接口管理方法及装置
WO2021174377A1 (zh) 切换方法和通信装置
KR20230078761A (ko) 무손실 데이터 전송 통신 방법, 장치, 및 시스템
WO2022041085A1 (zh) 回传配置信息的更新或者释放方法及相关产品
WO2021159238A1 (zh) 一种数据处理方法、通信装置和通信系统
WO2022082690A1 (zh) 群组切换的方法、装置和系统
WO2022082543A1 (zh) Iab节点的移植方法及装置
WO2021189269A1 (zh) 一种实现业务连续性的方法及装置
JP2024503681A (ja) 通信方法および装置
WO2023246746A1 (zh) 一种通信方法及相关设备
JP7516578B2 (ja) Iabネットワーク通信方法及び関連デバイス
WO2024032594A1 (zh) 一种通信方法及通信装置
WO2023184542A1 (zh) 配置信息的方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020950755

Country of ref document: EP

Effective date: 20230315

NENP Non-entry into the national phase

Ref country code: DE