WO2022041035A1 - 一种轧辊表面激光无序均匀毛化加工方法 - Google Patents

一种轧辊表面激光无序均匀毛化加工方法 Download PDF

Info

Publication number
WO2022041035A1
WO2022041035A1 PCT/CN2020/111698 CN2020111698W WO2022041035A1 WO 2022041035 A1 WO2022041035 A1 WO 2022041035A1 CN 2020111698 W CN2020111698 W CN 2020111698W WO 2022041035 A1 WO2022041035 A1 WO 2022041035A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
roll
texturing
textured
point
Prior art date
Application number
PCT/CN2020/111698
Other languages
English (en)
French (fr)
Inventor
符永宏
何玉洋
纪敬虎
符昊
汤发全
张航成
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010855188.3A external-priority patent/CN112171066B/zh
Priority claimed from CN202010855511.7A external-priority patent/CN112171067B/zh
Application filed by 江苏大学 filed Critical 江苏大学
Priority to JP2021539050A priority Critical patent/JP7236771B2/ja
Publication of WO2022041035A1 publication Critical patent/WO2022041035A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment

Definitions

  • the invention relates to the field of roll surface processing, in particular to a method for laser disordered and uniform texturing of the roll surface.
  • Cold-rolled strip is widely used in many fields because of its advantages of accurate size, flat shape, good surface quality and high production efficiency.
  • Surface texturing of cold-rolled rolls is a surface pretreatment technology for producing high-quality sheets. During the rolling process, the textured morphology is transferred to the surface of the sheet, which has a great impact on the stamping formability, sharpness and corrosion resistance of cold-rolled sheets. Elevation is crucial.
  • the texturing technologies on the surface of the rolls include laser texturing, electric spark texturing, shot peening, and electron beam texturing. Shot peening has poor quality, poor repeatability, and serious dust pollution, and has been basically eliminated.
  • electron beam texturing the rolls must be rotated in high vacuum, which is technically difficult and expensive, and is not suitable for industrial scale production.
  • the EDM textured morphology has poor retention, which is easy to cause fluctuations in the amount of steel passed during the rolling process, and the manufacturing equipment is mainly imported, and the operating cost is expensive.
  • equipment manufacturers monopolize key core technologies, which seriously restricts the expansion of my country's cold rolling technology and process application level.
  • Laser texturing is favored by the industry because of its high topographical quality, environmental friendliness, and moderate operating costs.
  • laser texturing has the characteristics of regularity and consistency.
  • the regular distribution of the textured points will lead to defects such as "Moiré fringes", uneven oiling, local punching and shock marks on the sheet.
  • the roll is rolling the strip, through the transfer, there are straight lines evenly distributed along the length direction of the plate surface. Therefore, under the irradiation of light, the plate has strong reflection from several angles, which finally leads to different reflection effects on the surface of the plate when observed at different angles, which affects the appearance of the surface of the steel plate, and has become a large-scale project that hinders the laser texturing technology of rollers for many years. Prominent issues in promoting applications.
  • the patent discloses a processing method and processing equipment for the surface of a laser disorderly textured roll.
  • the duty ratio and frequency of the pulsed laser are controlled by a random signal generator, so as to change the shape of the processed light spots, and at the same time, realize the textured point on the roll
  • the circumferential spacing is random.
  • the advantage is that the textured point can be controlled and random in the circumferential direction of the roll, but the disadvantage is that the surface textured morphology is directional.
  • the patent discloses a laser processing system and method for surface texturing of rollers with irregular image textured micro-pits.
  • the irregular image switching device receives the 1, 0 information switch of irregular black and white images, and drives the laser processing device to the surface of the roller. Processed to achieve irregularly distributed textured dimples.
  • the advantage is that the irregular textured pits on the surface of the roll can be visualized through images.
  • the disadvantage is that the density of textured points is low, and the axial textured distribution still has strong regularity, which is easy to produce surface after coating. Striped chromatic aberration defect.
  • Another example is the patent discloses a laser texturing method to achieve uniform and random distribution of texturing points.
  • a random signal generator is used to generate pseudo-random signals, and the random delay and random deflection of laser pulses are controlled to generate uniform and random distribution of texturing points.
  • the advantage is to achieve two-dimensional disordered distribution in the circumferential and axial directions, and to solve the problem that the surface textured morphology is directional.
  • the disadvantage is that the effect of laser textured treatment cannot be predicted and adjusted.
  • the present invention provides a method for processing the surface of a roll with a laser disordered and uniform texturing.
  • the coordinate set of the two-dimensional disordered and uniform texturing point distribution on the unrolled surface of the roll is used as the processing input of the laser texturing equipment. parameters, simplify the hardware equipment of the control system, and the input coordinate lattice coordinate parameters are processed by the control system and converted into control signals for each movement and execution component of the equipment, and the surface of the roll is laser-textured to achieve a disordered and uniform distribution technology Require.
  • the present invention achieves the above technical purpose through the following technical means.
  • a laser disordered and uniform texturing processing method on the surface of a roll comprising the following steps:
  • the laser trigger time tk and the laser beam deflection angle ⁇ determine the laser trigger time tk and the laser beam deflection angle ⁇ ;
  • the described determination of the textured point distribution coordinate set (x, y) specifically includes the following steps:
  • the random offset coordinate value is superimposed with the regular uniform distribution coordinate value to obtain the hairy point distribution coordinate set (x, y).
  • the grid cell size is determined according to the area occupancy rate ⁇ 0 of the textured point and the outer diameter D of the textured point, and the details are as follows:
  • is the set area as the magnification factor
  • the grid cell size is obtained by the area A0 of the grid cell.
  • a random offset coordinate value is generated, specifically:
  • a pair of random numbers is drawn from the random number sequence pair, and the random offset coordinates ( ⁇ x i , ⁇ y i ) are obtained by scaling operation, and the random offset coordinates ( ⁇ x i , ⁇ y i ) fall within the grid cells .
  • the evaluation index is calculated for the obtained hairy point distribution coordinate set (x, y), specifically:
  • the evaluation index includes an evaluation index of lattice disorder and an evaluation index of lattice uniformity
  • Random sampling is performed in the area where the coordinate set (x, y) of the distribution of hairy points is obtained, the shape of the sampling area is a circle or a polygon, and the number of points falling in the sampling area is counted to obtain a set of point data [m 1 , m 2 , m 3 ,...m i ], calculate the mean value of the statistic and the mean variance D(m) of the statistic, and the variance of the statistic is used as the evaluation index of the uniformity of the lattice;
  • the roll length L is divided into M equal parts, and in one rotation cycle of the roll, the unfolded roll is divided into N equal parts, for dividing the motion track of the laser beam;
  • the right boundary line X right and the left boundary line X lift are constructed by the F-1, F+1 bisectors of the roll axis upward, namely
  • R is the radius of the roll
  • L is the length of the roll
  • RA is the rotation angle of each equal part of the roll
  • Dx is the distance from the laser beam to the end face of the roll
  • the boundary lines form the laser texturing area.
  • ⁇ 2 ⁇ R/N is a laser
  • the laser trigger time tk and the laser beam deflection angle ⁇ specifically:
  • Rot is the rotational speed of the roll
  • V is the translational speed of the laser beam along the axis of the roll
  • V Rot*L/M.
  • the laser disordered and uniform texturing processing method on the surface of the roll according to the present invention adopts the designed texturing point distribution coordinate set, which is directly converted into the processing parameters of the laser texturing equipment, without adding a random signal generator to realize the roll surface.
  • the textured morphology is disordered and evenly distributed in closed-loop processing to achieve the effect of visual processing.
  • the processing efficiency of the laser texturing point can reach 100K/s, which is much higher than the processing efficiency of the existing laser texturing point.
  • the geometric parameters of the texturing point can be precisely regulated by changing the laser parameters, and the mapping between the geometric parameters of the laser texturing point and the laser parameters is established based on the process parameter data. It can meet the technical requirements of different cold-rolled sheet production processes for the texture point.
  • Fig. 1 is a flow chart of the laser disordered and uniform texturing method on the surface of the roll according to the present invention.
  • FIG. 2 is a flow chart of the method for designing a coordinate set of textured point distribution according to the present invention.
  • FIG. 3 is a schematic diagram of the roll filling grid according to the present invention.
  • FIG. 4 is a flow chart of grid size determination according to the present invention.
  • FIG. 5 is a schematic diagram of superposition of rule coordinates and offset coordinates according to the present invention.
  • FIG. 6 is a schematic structural diagram of the roller laser texturing equipment according to the present invention.
  • FIG. 7 is a schematic view of the roll according to the present invention when the roll rotates one circle and the plane is unfolded.
  • FIG. 8 is a schematic diagram of the processing area of the beam spot at time t f according to the present invention.
  • FIG. 9 is a schematic diagram of solving the deflection angle of the laser beam according to the present invention.
  • FIG. 10 is a schematic diagram of the control of the laser texturing processing device of the present invention.
  • Figure 11 shows the principle of the disorder evaluation method.
  • Fig. 12 shows the principle of the evenness index evaluation method.
  • the laser texturing processing device shown in Figure 6 has a 5-axis motion function, which can realize the translation X in the height direction Z, the roll radial direction Y and the roll axial direction, and the rotation along the central axis ⁇ of the roll and the laser beam to ⁇ Angle deflection. Combined with the processing method proposed in the present invention, it can meet the technical requirements of rapid processing of a large number of lattice coordinate data to form the processing parameters of the laser texturing device, and ensure that the disordered and uniform textured points on the surface of the rolls are highly matched with the designed lattice coordinates, and can be processed through motion. Control and drive the spindle of the machine tool to rotate and the laser to translate to complete the texturing process on the surface of the roll.
  • the laser disordered and uniform texturing processing method on the surface of the roll according to the present invention comprises the following steps:
  • the motion parameters refer to the translational speed V of the laser beam along the axis X of the roll and the rotational speed Rot of the roll along the central axis ⁇ of the roll.
  • the length L of the roll is divided into M equal parts, and each equal part of the roll needs to rotate once;
  • Textured point parameters textured point shape, textured point outer circle diameter D, textured point raised height H and textured point area occupancy rate ⁇ 0 .
  • Roll parameters roll radius R and roll length L.
  • S02.1 Randomly determine a regular NUM polygonal mesh; as shown in Figure 3, the regular NUM polygonal mesh can be a regular triangle, a regular quadrilateral, or a regular hexagon.
  • the outer diameter of the textured point The morphology of a single textured point processed by specific laser parameters mainly includes two types: spherical pristine textured point and crater textured point.
  • the outer diameter of multiple textured points processed by the same parameter is measured. Take the mean value to determine the diameter D of the outer circle of the textured point. According to the diameter D of the outer circle of the textured point, determine the area A 0 of the grid unit circumscribing the textured point;
  • is the set area as the magnification factor
  • the area occupancy rate of the textured point ⁇ 0 is The area occupancy rate of the texturing point specified by the technical requirements to be achieved.
  • the grid cell size is obtained by the area A0 of the grid cell.
  • S02.3 Use the positive NUM polygonal grid and the grid unit size to divide the roll unrolling plane, and obtain the coordinates of the grid center point as the regular and uniform coordinate values (X i0 , Y i0 );
  • the long side of the textured area is the roll circumference L, and the broad side of the textured area is the roll diameter ⁇ .
  • the textured area is meshed with square grid filling.
  • S02.4 Generate a random number sequence pair by a true random number generator, and the random number sequence pair will be scaled to generate random offset coordinate values ( ⁇ x i , ⁇ y i );
  • the true random number generator is designed by using the oscillator sampling principle to generate true random numbers. At the same time, the existence of thermal noise of the circuit is used to affect the oscillator during operation, and a small range of fluctuations occurs. When the sampling signal is just sampled into the jitter range, it is guaranteed that the data generated by sampling has complete randomness.
  • the true random number generator is composed of a high-frequency oscillator, a low-frequency oscillator and a D flip-flop, the output of the high-frequency oscillator is used as the input of the flip-flop, and the output of the low-frequency oscillator is used as the clock signal input of the flip-flop. Every time the rising edge of the low frequency oscillator output signal comes, the D flip-flop will sample the high frequency oscillator to generate one bit of data.
  • a pair of random numbers is drawn from the random number sequence pair, and is processed by scaling operation to obtain random offset coordinates ( ⁇ x i , ⁇ y i ); the random offset coordinates ( ⁇ x i , ⁇ y i ) fall within the grid cells.
  • the two-dimensional lattice coordinate distribution data set (X i , Y i ) here is the hairy point distribution coordinate set (x, y).
  • S02.6 Calculate the evaluation index for the obtained texture point distribution coordinate set (x, y), and judge whether the set value is met: when the set value is not met, change the grid shape to a positive NUM+1 polygon, and re- Determine the two-dimensional lattice coordinate distribution data set, specifically:
  • the evaluation index includes an evaluation index of lattice disorder and an evaluation index of lattice uniformity
  • a number of S_L*S_B strip rectangular sampling areas are randomly set in the area where the two-dimensional lattice coordinate distribution dataset is obtained, and the center of the rectangle is used as the origin to rotate, and the angular resolution ⁇ is adjusted according to the sampling accuracy.
  • the number of points in the rectangular sampling area is N rectangles , and a set of point data [n 1 , n 2 , n 3 ,...n i ] is obtained, and the mean value of statistics is calculated and the statistic mean variance D(n), The variance of the statistic is used as the evaluation index of the disorder degree of the lattice;
  • random sampling is carried out in the area where the two-dimensional lattice coordinate distribution data set is obtained, the shape of the sampling area is a circle or a polygon, and the number of points falling in the sampling area N circles is counted to obtain a set of point data [ m 1 ,m 2 ,m 3 ,...m i ], calculate the mean value of the statistic and statistic mean variance D(m), The variance of the statistic is used as the evaluation index of the uniformity of the lattice;
  • the grid shape is changed to positive NUM+1 polygon, and the two-dimensional lattice coordinate distribution data set is re-determined.
  • the texturing parameters include the texturing point type, the texturing point diameter D, and the texturing point height h.
  • the laser power P and the pulse width ⁇ are directly selected and output.
  • the establishment of the mapping database between the geometric parameters of the laser texturing point and the laser parameters is based on the process parameter data, and a large number of laser texturing point processing technology tests need to be carried out.
  • the right boundary line X right and the left boundary line X lift are constructed by the F-1, F+1 bisectors of the roll axis upward, namely
  • R is the radius of the roll
  • L is the length of the roll
  • RA is the rotation angle of each equal part of the roll
  • Dx is the distance from the laser beam to the end face of the roll.
  • S05 Calculate and determine the textured point that needs to be processed in the processing area at time t f .
  • the specific calculation method is as follows:
  • the textured point that meets the requirements is the textured point that needs to be processed in the laser textured processing area.
  • S06 Convert the coordinates of the textured points in the processing area into laser processing parameters, that is, the laser trigger time t k and the laser beam deflection angle ⁇ .
  • the trigger time t k is between the time t f and the time t f+1 , the shortest distance D_laser_roll from the end face of the laser to the surface of the roll after the laser is focused on the surface of the roll, and the trigger for the processing of the textured points in the output processing area is calculated and output At time t k , the deflection angle ⁇ of the laser beam.
  • Rot is the rotational speed of the roll
  • V is the translational speed of the laser beam along the axis of the roll
  • V Rot*L/M.
  • S07 Control the laser texturing processing device to realize the texturing point processing on the surface of the roll.
  • the servo drive motor in the height direction Z of the laser texturing processing device and the diameter direction Y of the roll is responsible for the reset and focus adjustment according to the set translation speed V, and the translation X in the axial direction of the roll is along the central axis of the roll.
  • the servo drive motor of ⁇ moves according to the set X-direction translation speed V and the roll rotates Rot along the central axis of the roll ⁇ .
  • the laser processing parameter trigger time t k controls the laser on-off pulse excitation signal of the acousto-optic Q-switched driver at the time, the laser processing parameter deflection angle ⁇ controls the laser micro-swing, the laser processing parameter power P, and the pulse width ⁇ control the energy of the laser beam .
  • the laser outputs high-energy beams according to the requirements of laser processing parameters. At the same time, the laser translates and the roll rotates to realize the laser texturing processing of the roll surface.
  • the invention is based on the disordered and uniformly distributed lattice coordinates of the textured appearance generated on the unrolled surface of the roll, and realizes the transformation of the disordered and uniformly distributed lattice coordinates and the laser processing parameters, without adding a random signal generating device in the control system.
  • the closed-loop processing of laser texturing points on the surface of the roll, this control method can be used for various laser texturing lasers, such as YAG lasers, fiber lasers, and carbon dioxide lasers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

一种轧辊表面激光无序均匀毛化加工方法,包括如下步骤:根据毛化点参数和轧辊参数,确定毛化点分布坐标集;根据毛化点参数确定激光功率P和激光脉宽λ;根据轧辊转动角度RA和激光光束到轧辊端面的距离Dx,确定激光毛化加工的区域;根据激光毛化加工区域内需要加工的毛化点,确定激光触发时刻tk和激光光束偏摆角度η;对轧辊表面毛化点加工。通过将轧辊展开表面二维无序均匀的毛化点分布坐标集作为激光毛化设备加工输入参数,简化控制系统硬件设备,同时输入的坐标点阵坐标参数经控制系统处理后,转化成设备各运动和执行部件的控制信号,对轧辊表面进行激光毛化处理,达到无序均匀分布的技术要求。

Description

一种轧辊表面激光无序均匀毛化加工方法 技术领域
本发明涉及轧辊表面加工领域,特别涉及一种轧辊表面激光无序均匀毛化加工方法。
背景技术
冷轧板带因其尺寸精确、板形平直、表面质量好、生产效率高等优势,在众多领域得到广泛应用。冷轧辊表面毛化是一种生产优质薄板的表面预处理技术,在轧制过程中将毛化形貌转印到板材表面,对冷轧薄板冲压成形性、鲜映性和耐蚀耐磨性等的提升至关重要。
目前,轧辊表面的毛化技术有激光毛化、电火花毛化、喷丸毛化、电子束毛化等。喷丸毛化形貌质量差、重复性差,且粉尘污染严重,已基本被淘汰。电子束毛化时轧辊须在高真空中旋转,技术难度大且工艺成本高,并不适用于工业化规模生产。电火花毛化形貌保持性差,易引起轧制过程中过钢量波动,且制造装备主要依赖进口,运行费用昂贵。而且,设备商垄断关键核心技术,严重制约了我国冷轧技术和工艺应用水平的拓展。激光毛化则因其形貌质量高、环境友好、运行费用适中等优点,备受行业青睐。
有别于电火花毛化的随机性和紊乱性,激光毛化具有规则性和一致性特征。毛化点的规则分布,将会导致板材出现“莫尔条纹”、涂油不均、局部冲裂和震纹等缺陷。当轧辊轧制板带时,通过转印,板面在沿长度方向存在均匀分布的直线。因此,板在光的照射下,有几个角度反射强烈,最后导致在不同的角度观察板面有不同的反射效果,影响了钢板表面的外观,成为多年来阻碍轧辊激光毛化技术大规模工程推广应用的突出问题。
针对工程应用中关于毛化板微坑无规则分布的技术要求,众多专家学者围绕提高激光毛化处理后轧辊表面形貌质量开展了大量的工作,从激光毛化设备出发,通过随机信号发生源,加入随机因素,控制脉冲激光与轧辊的作用方式,实现无规则分布的技术要求。
如专利公开了一种激光无序毛化轧辊表面的加工方法和加工设备,通过随机信号发生器控制脉冲激光的占空比和频率,改变加工出光的斑点形状,同时,实现毛化点在轧辊的周向上间距随机。其优点是实现了毛化点在轧辊圆周方向上的可控随机,其缺点是表面毛化形貌具有方向性。
又如专利公开了一种无规则图像毛化微坑的辊类表面毛化激光加工系统及方法,无规则图像开关装置接收无规则黑白图像的1、0信息开关,驱动激光加工装置对轧辊表面进行处理,实现无规则分布的毛化微坑。其优点是轧辊表面无规则的毛化微坑通过图像实现可视化,其缺点是毛化点密集程度低,以及轴向的毛化分布依然存在较强的规则性,板料涂装后容易产 生表面条纹状色差缺陷。
再如专利公开了一种实现毛化点均匀随机分布的激光毛化方法,通过随机信号发生器产生伪随机信号,控制激光脉冲的随机延时和随机偏转,生成均匀随机分布的毛化点。其优点是实现圆周向和轴向的二维无序分布,解决表面毛化形貌具有方向性的问题,其缺点是无法预测和调整激光毛化处理效果。
综上所述,虽然众多专家学者针对激光毛化点随机分布开展大量工作,但仍未能从设计到加工处理,形成完善的解决激光毛化点无序分布的技术体系。现有技术直接从激光毛化设备入手,通过随机信号发生器,加入伪随机信号,控制激光器出光,生成的毛化点难以控制调整,同时,毛化点加工效率受限于振镜的转动频率。另外,采用无规则图像开关装置接收预先生成的黑白图像信息开光,毛化点密集度与图像像素密切相关,毛化点密集度偏低。上述两种技术方案,在工程应用中也均存在问题,不能完全实现轧辊表面毛化形貌的无序均匀分布。
发明内容
针对现有技术中存在的不足,本发明提供了一种轧辊表面激光无序均匀毛化加工方法,通过将轧辊展开表面二维无序均匀的毛化点分布坐标集作为激光毛化设备加工输入参数,简化控制系统硬件设备,同时输入的坐标点阵坐标参数经控制系统处理后,转化成设备各运动和执行部件的控制信号,对轧辊表面进行激光毛化处理,达到无序均匀分布的技术要求。
本发明是通过以下技术手段实现上述技术目的的。
一种轧辊表面激光无序均匀毛化加工方法,包括如下步骤:
根据毛化点参数和轧辊参数,确定毛化点分布坐标集(x,y);
根据毛化点参数确定激光功率P和激光脉宽λ;
根据轧辊转动角度RA和激光光束到轧辊端面的距离Dx,确定激光毛化加工的区域;
根据激光毛化加工区域内需要加工的毛化点,确定激光触发时刻t k和激光光束偏摆角度η;
对轧辊表面毛化点加工。
进一步,所述确定毛化点分布坐标集(x,y)具体包括如下步骤:
随机确定正NUM边形网格;
根据毛化点面积占有率β 0和毛化点的外圆直径D,确定网格单元尺寸;
用正NUM边形网格和网格单元尺寸对轧辊展开平面进行网格划分,获取网格中心点坐标,作为规则均匀分布坐标值(X i0,Y i0);
通过真随机数发生器生成随机数序列对,随机数序列对经放缩处理后生成随机偏移坐标 值(Δx i,Δy i);
随机偏移坐标值与规则均匀分布坐标值叠加,得到毛化点分布坐标集(x,y)。
进一步,所述根据毛化点面积占有率β 0和毛化点的外圆直径D,确定网格单元尺寸,具体如下:
根据毛化点外圆直径D,确定与毛化点相外切的网格单元的面积A 0
计算实际面积占有率β:
Figure PCTCN2020111698-appb-000001
其中:α为设定的面积当放大系数;
比较毛化点面积占有率β 0和实际面积占有率β:当实际面积占有率β<β 0,则重新调整面积放大系数,直至β≥β 0
当β≥β 0时,通过网格单元的面积A 0得到网格单元尺寸。
进一步,随机数序列对经放缩处理后生成随机偏移坐标值,具体为:
在随机数序列对里抽取一对随机数,经缩放运算方式处理得到随机偏移坐标(Δx i,Δy i),且所述随机偏移坐标(Δx i,Δy i)落在网格单元内。
进一步,对得到毛化点分布坐标集(x,y)计算评价指标,具体为:
所述评价指标包括点阵无序度的评价指标和点阵均匀度的评价指标;
在得到毛化点分布坐标集(x,y)的面域内随机设置若干矩形采样区域,以矩形中心为原点旋转,统计落在矩形采样区域内点的数量,得到一组点数数据[n 1,n 2,n 3,…n i],计算统计量均值
Figure PCTCN2020111698-appb-000002
和统计量均值方差D(n),统计量的方差作为点阵无序度的评价指标;
在得到毛化点分布坐标集(x,y)的面域内随机采样,采样区域形状为圆形或者多边形,统计落在采样区域内点的数量,得到一组点数数据[m 1,m 2,m 3,…m i],计算统计量均值
Figure PCTCN2020111698-appb-000003
和统计量均值方差D(m),统计量的方差作为点阵均匀度的评价指标;
采集标准样本数据,利用统计学得到的设定值为无序度
Figure PCTCN2020111698-appb-000004
和均匀度
Figure PCTCN2020111698-appb-000005
当点阵无序度的评价指标
Figure PCTCN2020111698-appb-000006
且点阵均匀度的评价指标
Figure PCTCN2020111698-appb-000007
时,得到毛化点分布坐标集(x,y)满足要求。
进一步,根据轧辊转动角度RA和激光光束到轧辊端面的距离Dx,确定激光毛化加工的区域,具体如下:
将轧辊长度L划分成M等份,在轧辊一个转动周期内,将展开的轧辊划分N等份,用于 对激光光束的运动轨迹进行划分;
以等份点为中心,且以L/2M为间距,构建平行于轧辊径向的上边界线Y up和下边界线Y down,即
Y up=R×{[round(RA)/360°]+2π/N}
Y down=R×{[round(RA)/360°]-2π/N};
以轧辊轴向上的F-1,F+1等分线构建右边界线X right和左边界线X lift,即
X right=Dx+L/2M
X lift=Dx-L/2M;
其中,R为轧辊半径;L为轧辊长度;轧辊转动角度RA为每一等份轧辊转动角度;Dx为激光光束到轧辊端面的距离;
所述边界线形成激光毛化加工区域。
进一步,确定激光毛化加工区域内需要加工的毛化点,具体如下:
在毛化点分布坐标集(x,y)中,满足|x-Dx|≤L/2M,且|y-R×[round(RA)/360°]|≤2πR/N条件的毛化点为激光毛化加工区域内需要加工的毛化点。
进一步,根据激光毛化加工区域内需要加工的毛化点,确定激光触发时刻t k和激光光束偏摆角度η,具体为:
测量激光在轧辊表面聚焦时,激光光束的出光口到轧辊表面的最短距离D_laser_roll;
确定激光毛化加工区域内毛化点加工的触发时刻t k和激光光束偏摆角度η:
t k=y/(2Rot*πR)
η=arctan[(x-V×t k)/D_laser_roll]
其中,Rot为轧辊的转速;V为激光光束沿轧辊轴线平动速度,V=Rot*L/M。
本发明的有益效果在于:
1.本发明所述的轧辊表面激光无序均匀毛化加工方法,采用设计的毛化点分布坐标集,直接转化成激光毛化设备的加工参数,无需在增添随机信号发生器,实现轧辊表面毛化形貌无序均匀分布闭环加工,达到可视化处理的效果。
2.本发明所述的轧辊表面激光无序均匀毛化加工方法,激光毛化点的加工效率可达到100K/s,远高于现有发明激光毛化点的加工效率。
3.本发明所述的轧辊表面激光无序均匀毛化加工方法,毛化点几何参数可以通过改变激光参数精确调控,以工艺参数数据为基础,建立激光毛化点几何参数与激光参数的映射关系,能够满足不同冷轧板生产过程对毛化点的技术要求。
附图说明
图1为本发明所述的轧辊表面激光无序均匀毛化加工方法流程图。
图2为本发明所述的毛化点分布坐标集设计方法流程图。
图3为本发明所述的轧辊填充网格示意图。
图4为本发明所述的网格尺寸确定流程图。
图5为本发明规则坐标与偏移坐标叠加示意图。
图6为本发明所述的轧辊激光毛化设备结构示意图。
图7为本发明所述的轧辊转动一周平面展开等分示意图。
图8为本发明所述的t f时刻光束点加工区域示意图。
图9为本发明所述的激光光束偏转角度求解示意图。
图10为本发明激光毛化加工装置控制示意图。
图11为无序度评价方法原理。
图12为均匀度指标评价方法原理。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
采用如图6所示的激光毛化加工装置具备5轴运动功能,能够实现高度方向Z、轧辊径向Y和轧辊轴向的平动X,及沿轧辊中心轴Ψ的转动和激光光束以η角度偏摆。结合本发明提出的加工方法,能够满足大量点阵坐标数据快速处理形成激光毛化装置加工参数的技术要求,保证轧辊表面加工无序均匀毛化点与设计的点阵坐标高度匹配,并通过运动控制驱动机床主轴转动、激光器平动,完成对轧辊表面的毛化加工。
如图1所示,本发明所述的轧辊表面激光无序均匀毛化加工方法,包括如下步骤:
S01:确定运动参数、毛化点参数和轧辊参数;
其中,运动参数是指激光光束沿轧辊轴线X方向平动速度V和轧辊沿沿轧辊中心轴Ψ转速Rot,将轧辊长度L划分成M等份,每一等份轧辊需转动一周;
建立起轧辊轴线X方向平动速度V和Ψ轴转速Rot:
Rot=MV/L。
毛化点参数:毛化点形状、毛化点外圆直径D、毛化点凸起高度H和毛化点面积占有率β 0
轧辊参数:轧辊半径R和轧辊长度L。
S02:根据毛化点参数和轧辊参数,确定毛化点分布坐标集(x,y),如图2所示:
S02.1:随机确定一种正NUM边形网格;如图3所示,正NUM边形网格可以是正三角形,也可以是正四边形,还可以是正六边形。
S02.2:如图4所述,根据毛化点面积占有率β 0和毛化点的外圆直径D,确定网格单元尺寸,具体如下:
毛化点外圆直径,特定激光参数加工的单个毛化点形貌主要有球冠毛化点和火山口毛化点两类,对同一参数加工的多个毛化点外圆直径进行测量,取均值确定毛化点外圆直径D。根据毛化点外圆直径D,确定与毛化点相外切的网格单元的面积A 0
计算实际面积占有率β:
Figure PCTCN2020111698-appb-000008
其中:α为设定的面积当放大系数;
比较毛化点面积占有率β 0和实际面积占有率β:当实际面积占有率β<β 0,则重新调整面积放大系数,直至β≥β 0;此处毛化点面积占有率β 0为需要达到的技术要求规定的毛化点面积占有率。
当β≥β 0时,通过网格单元的面积A 0得到网格单元尺寸。
S02.3:用正NUM边形网格和网格单元尺寸对轧辊展开平面进行网格划分,获取网格中心点坐标,作为规则均匀分布坐标值(X i0,Y i0);
轧辊展开表面,毛化区域的长边是轧辊周长L,毛化区域的宽边轧辊直径φ。采用正方形网格填充的方式,对毛化区域进行网格划分。
S02.4:通过真随机数发生器生成随机数序列对,随机数序列对经放缩处理后生成随机偏移坐标值(Δx i,Δy i);
采用振荡器采样原理设计真随机数发生器,生成真随机数,同时利用电路热噪声的存在,振荡器在工作时受到影响,出现小范围的波动。当采样信号刚好采样到抖动区间的时候,保证采样生成的数据具有完全的随机性。
其中,真随机数发生器由一个高频率振荡器、低频率振荡器和一个D触发器构成,高频振荡器的输出作为触发器的输入,低频振荡器的输出作为触发器的时钟信号输入。在低频振荡器输出信号上升边沿每次到来时,D触发器会对高频振荡器进行采样,生成一位数据。
在随机数序列对里抽取一对随机数,经缩放运算方式处理得到随机偏移坐标(Δx i,Δy i);所述随机偏移坐标(Δx i,Δy i)落在网格单元内。
S02.5:如图5所示,随机偏移坐标值与规则均匀分布坐标值叠加,得到二维点阵坐标分布数据集(X i,Y i),其中:
X i=X i0+Δx i
Y i=Y i0+Δy i
此处的二维点阵坐标分布数据集(X i,Y i)即为毛化点分布坐标集(x,y)。
S02.6:对得到毛化点分布坐标集(x,y)计算评价指标,判断是否满足设定值:当不满足设定值时,将网格形状改为正NUM+1边形,重新确定二维点阵坐标分布数据集,具体为:
所述评价指标包括点阵无序度的评价指标和点阵均匀度的评价指标;
如图11所示,在得到二维点阵坐标分布数据集的面域内随机设置若干S_L*S_B条状矩形采样区域,以矩形中心为原点旋转,角度分辨率θ根据采样精度作调整,统计落在矩形采样区域内点的数量N 矩形,得到一组点数数据[n 1,n 2,n 3,…n i],计算统计量均值
Figure PCTCN2020111698-appb-000009
和统计量均值方差D(n),
Figure PCTCN2020111698-appb-000010
统计量的方差作为点阵无序度的评价指标;
如图12所示,在得到二维点阵坐标分布数据集的面域内随机采样,采样区域形状为圆形或者多边形,统计落在采样区域内点的数量N 圆形,得到一组点数数据[m 1,m 2,m 3,…m i],计算统计量均值
Figure PCTCN2020111698-appb-000011
和统计量均值方差D(m),
Figure PCTCN2020111698-appb-000012
统计量的方差作为点阵均匀度的评价指标;
采集标准样本数据,利用统计学得到的设定值为无序度
Figure PCTCN2020111698-appb-000013
和均匀度
Figure PCTCN2020111698-appb-000014
当点阵无序度的评价指标
Figure PCTCN2020111698-appb-000015
且点阵均匀度的评价指标
Figure PCTCN2020111698-appb-000016
时,得到二维点阵坐标分布数据集满足要求。
当不满足设定值时,将网格形状改为正NUM+1边形,重新确定二维点阵坐标分布数据集。
S03:根据毛化点参数,确定激光加工参数,即激光功率P和激光脉宽λ。
其中,毛化参数包括毛化点类型,毛化点直径D,以及毛化点高度h,通过激光毛化参数与激光参数的映射关系,直接选择并输出激光功率P和脉宽λ。建立激光毛化点几何参数与激光参数的映射数据库是以工艺参数数据为基础,需要开展大量的激光毛化点加工工艺试验。
S04:根据t f时刻反馈的轧辊转动角度RA和激光光束到轧辊固定端面的距离Dx,确定t f时刻激光毛化加工的区域。
如图7所示,在轧辊轴线X方向上每一转动周期内,X方向位置传感器和Ψ轴的增量编码器都反馈N次信号;
将一个周期内加工的轧辊展开,按照N等份,对激光光束的运动轨迹进行划分;
如图8所示,以等份点为中心,且以L/2M为间距,构建平行于轧辊径向的上边界线Y up和下边界线Y down,即
Y up=R×{[round(RA)/360°]+2π/N}
Y down=R×{[round(RA)/360°]-2π/N};
以轧辊轴向上的F-1,F+1等分线构建右边界线X right和左边界线X lift,即
X right=Dx+L/2M
X lift=Dx-L/2M;
其中,R为轧辊半径;L为轧辊长度;轧辊转动角度RA为每一等份轧辊转动角度;Dx为激光光束到轧辊端面的距离。
S05:计算并确定t f时刻加工区域内需要加工的毛化点,具体计算方法如下:
将毛化点分布坐标集(x,y)与t f时刻激光光束在轧辊展开平面上的位置进行判断,确定t f时刻加工区域需要加工的毛化点。
|x-Displacement_x|≤πL/M
|y-R×[round(Rotate-Angle)/360°]|≤2πR/N。
满足要求的毛化点则是激光毛化加工区域内需要加工的毛化点。
S06:将加工区域内毛化点坐标转化成激光加工参数,即激光触发时刻t k和激光光束偏摆角度η。
如图9所示,触发时刻t k位于t f时刻和t f+1时刻之间,激光在轧辊表面聚焦后激光器端面到轧辊表面的最短距离D_laser_roll,计算输出加工区域内毛化点加工的触发时刻t k,激光光束偏摆角度η。
t k=y/(2Rot*πR)
η=arctan[(x-V×t k)/D_laser_roll]
其中,Rot为轧辊的转速;V为激光光束沿轧辊轴线平动速度,V=Rot*L/M。
S07:控制激光毛化加工装置,实现对轧辊表面毛化点加工。
如图10所示,激光毛化加工装置的高度方向Z、轧辊直径方向Y伺服驱动电机负责按照设定的平动速度V进行复位和聚焦调整,轧辊轴线方向的平动X,沿轧辊中心轴Ψ的伺服驱动电机按照设定的X方向平动速度V和轧辊沿沿轧辊中心轴Ψ转速Rot。
激光加工参数触发时刻t k控制声光调Q驱动器在时刻激光器开闭脉冲激发信号,激光加工参数偏摆角度η控制激光器微偏摆,激光加工参数功率P,以及脉宽λ控制激光器光束的 能量。
激光器按照激光加工参数要求输出高能量光束,同时,激光器平动和轧辊转动,实现对轧辊表面的激光毛化加工。
本发明是以轧辊展开表面生成毛化形貌无序均匀分布点阵坐标为基础,实现对无序均匀分布点阵坐标与激光加工参数的转化,无需在控制系统中添加随机信号发生装置,实现轧辊表面激光毛化点的闭环加工,此控制方法可用于各类激光毛化的激光器,如YAG激光器,光纤激光器,以及二氧化碳激光器等。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (8)

  1. 一种轧辊表面激光无序均匀毛化加工方法,其特征在于,包括如下步骤:
    根据毛化点参数和轧辊参数,确定毛化点分布坐标集(x,y);
    根据毛化点参数确定激光功率P和激光脉宽λ;
    根据轧辊转动角度RA和激光光束到轧辊端面的距离Dx,确定激光毛化加工的区域;
    根据激光毛化加工区域内需要加工的毛化点,确定激光触发时刻t k和激光光束偏摆角度η;
    对轧辊表面毛化点加工。
  2. 根据权利要求1所述的轧辊表面激光无序均匀毛化加工方法,其特征在于,所述确定毛化点分布坐标集(x,y)具体包括如下步骤:
    随机确定正NUM边形网格;
    根据毛化点面积占有率β 0和毛化点的外圆直径D,确定网格单元尺寸;
    用正NUM边形网格和网格单元尺寸对轧辊展开平面进行网格划分,获取网格中心点坐标,作为规则均匀分布坐标值(X i0,Y i0);
    通过真随机数发生器生成随机数序列对,随机数序列对经放缩处理后生成随机偏移坐标值(Δx i,Δy i);
    随机偏移坐标值与规则均匀分布坐标值叠加,得到毛化点分布坐标集(x,y);
    对得到毛化点分布坐标集(x,y)计算评价指标,判断是否满足设定值:当不满足设定值时,将网格形状改为正NUM+1边形,重新确定毛化点分布坐标集(x,y)。
  3. 根据权利要求2所述的轧辊表面激光无序均匀毛化加工方法,其特征在于,所述根据毛化点面积占有率β 0和毛化点的外圆直径D,确定网格单元尺寸,具体如下:
    根据毛化点外圆直径D,确定与毛化点相外切的网格单元的面积A 0
    计算实际面积占有率β:
    Figure PCTCN2020111698-appb-100001
    其中:α为设定的面积当放大系数;
    比较毛化点面积占有率β 0和实际面积占有率β:当实际面积占有率β<β 0,则重新调整面积放大系数,直至β≥β 0
    当β≥β 0时,通过网格单元的面积A 0得到网格单元尺寸。
  4. 根据权利要求2所述的轧辊表面激光无序均匀毛化加工方法,其特征在于,随机数序列对经放缩处理后生成随机偏移坐标值,具体为:
    在随机数序列对里抽取一对随机数,经缩放运算方式处理得到随机偏移坐标(Δx i,Δy i), 且所述随机偏移坐标(Δx i,Δy i)落在网格单元内。
  5. 根据权利要求2所述的轧辊表面激光无序均匀毛化加工方法,其特征在于,对得到毛化点分布坐标集(x,y)计算评价指标,具体为:
    所述评价指标包括点阵无序度的评价指标和点阵均匀度的评价指标;
    在得到毛化点分布坐标集(x,y)的面域内随机设置若干矩形采样区域,以矩形中心为原点旋转,统计落在矩形采样区域内点的数量,得到一组点数数据[n 1,n 2,n 3,…n i],计算统计量均值
    Figure PCTCN2020111698-appb-100002
    和统计量均值方差D(n),统计量的方差作为点阵无序度的评价指标;
    在得到毛化点分布坐标集(x,y)的面域内随机采样,采样区域形状为圆形或者多边形,统计落在采样区域内点的数量,得到一组点数数据[m 1,m 2,m 3,…m i],计算统计量均值
    Figure PCTCN2020111698-appb-100003
    和统计量均值方差D(m),统计量的方差作为点阵均匀度的评价指标;
    采集标准样本数据,利用统计学得到的设定值为无序度
    Figure PCTCN2020111698-appb-100004
    和均匀度
    Figure PCTCN2020111698-appb-100005
    当点阵无序度的评价指标
    Figure PCTCN2020111698-appb-100006
    且点阵均匀度的评价指标
    Figure PCTCN2020111698-appb-100007
    时,得到毛化点分布坐标集(x,y)满足要求。
  6. 根据权利要求1所述的轧辊表面激光无序均匀毛化加工方法,其特征在于,根据轧辊转动角度RA和激光光束到轧辊端面的距离Dx,确定激光毛化加工的区域,具体如下:
    将轧辊长度L划分成M等份,在轧辊一个转动周期内,将展开的轧辊划分N等份,用于对激光光束的运动轨迹进行划分;
    以等份点为中心,且以L/2M为间距,构建平行于轧辊径向的上边界线Y up和下边界线Y down,即
    Y up=R×{[round(RA)/360°]+2π/N}
    Y dow=R×{[round(RA)/360°]-2π/N};
    以轧辊轴向上的F-1,F+1等分线构建右边界线X right和左边界线X lift,即
    X rigt=Dx+L/2M
    X lift=Dx-L/2M;
    其中,R为轧辊半径;L为轧辊长度;轧辊转动角度RA为每一等份轧辊转动角度;Dx为激光光束到轧辊端面的距离;
    所述边界线形成激光毛化加工区域。
  7. 根据权利要求6所述的轧辊表面激光无序均匀毛化加工方法,其特征在于,确定激光毛化加工区域内需要加工的毛化点,具体如下:
    在毛化点分布坐标集(x,y)中,满足|x-Dx|≤L/2M,且|y-R×[round(RA)/360°]|≤2πR/N条件的毛化点为激光毛化加工区域内需要加工的毛化点。
  8. 根据权利要求6所述的轧辊表面激光无序均匀毛化加工方法,其特征在于,根据激光毛化加工区域内需要加工的毛化点,确定激光触发时刻t k和激光光束偏摆角度η,具体为:
    测量激光在轧辊表面聚焦时,激光光束的出光口到轧辊表面的最短距离D_laser_roll;
    确定激光毛化加工区域内毛化点加工的触发时刻t k和激光光束偏摆角度η:
    t k=y/(2Rot*πR)
    η=arctan[(x-V×t k)/D_laser_roll]
    其中,Rot为轧辊的转速;V为激光光束沿轧辊轴线平动速度,V=Rot*L/M。
PCT/CN2020/111698 2020-08-24 2020-08-27 一种轧辊表面激光无序均匀毛化加工方法 WO2022041035A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021539050A JP7236771B2 (ja) 2020-08-24 2020-08-27 レーザーによる圧延ロール表面の無秩序均一粗面化加工方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010855188.3 2020-08-24
CN202010855188.3A CN112171066B (zh) 2020-08-24 2020-08-24 一种轧辊展开表面毛化形貌无序均匀分布的设计方法
CN202010855511.7A CN112171067B (zh) 2020-08-24 2020-08-24 一种轧辊表面激光无序均匀毛化加工方法
CN202010855511.7 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022041035A1 true WO2022041035A1 (zh) 2022-03-03

Family

ID=80352311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111698 WO2022041035A1 (zh) 2020-08-24 2020-08-27 一种轧辊表面激光无序均匀毛化加工方法

Country Status (2)

Country Link
JP (1) JP7236771B2 (zh)
WO (1) WO2022041035A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114952008A (zh) * 2022-05-12 2022-08-30 哈尔滨工业大学 一种激光无序毛化方法及毛化装置
CN115070344A (zh) * 2022-03-23 2022-09-20 胡凌山 一种电极集流体制备方法及电极集流体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668152B1 (en) * 2002-09-13 2003-12-23 Hewlett-Packard Development Company, L.P. Textured fuser roller and method for texturing toner
CN101642849A (zh) * 2009-08-04 2010-02-10 苏州市博海激光科技有限公司 轧辊表面激光毛化处理方法
CN103433623A (zh) * 2013-08-28 2013-12-11 武汉钢铁(集团)公司 一种毛化点间距的校准方法、装置及毛化加工设备
CN107274824A (zh) * 2017-08-08 2017-10-20 上海天马微电子有限公司 一种显示面板及生成随机图块坐标的方法
CN107511588A (zh) * 2016-06-17 2017-12-26 宝山钢铁股份有限公司 一种实现毛化点均匀随机分布的激光毛化方法
CN109365993A (zh) * 2018-11-27 2019-02-22 江苏大学 一种轧辊激光毛化加工设备及其加工方法
CN208673132U (zh) * 2018-06-01 2019-03-29 武汉富乐瑞激光工程有限公司 一种辊类表面激光毛化数控系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668152B1 (en) * 2002-09-13 2003-12-23 Hewlett-Packard Development Company, L.P. Textured fuser roller and method for texturing toner
CN101642849A (zh) * 2009-08-04 2010-02-10 苏州市博海激光科技有限公司 轧辊表面激光毛化处理方法
CN103433623A (zh) * 2013-08-28 2013-12-11 武汉钢铁(集团)公司 一种毛化点间距的校准方法、装置及毛化加工设备
CN107511588A (zh) * 2016-06-17 2017-12-26 宝山钢铁股份有限公司 一种实现毛化点均匀随机分布的激光毛化方法
CN107274824A (zh) * 2017-08-08 2017-10-20 上海天马微电子有限公司 一种显示面板及生成随机图块坐标的方法
CN208673132U (zh) * 2018-06-01 2019-03-29 武汉富乐瑞激光工程有限公司 一种辊类表面激光毛化数控系统
CN109365993A (zh) * 2018-11-27 2019-02-22 江苏大学 一种轧辊激光毛化加工设备及其加工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115070344A (zh) * 2022-03-23 2022-09-20 胡凌山 一种电极集流体制备方法及电极集流体
CN115070344B (zh) * 2022-03-23 2024-01-19 胡凌山 一种电极集流体制备方法及电极集流体
CN114952008A (zh) * 2022-05-12 2022-08-30 哈尔滨工业大学 一种激光无序毛化方法及毛化装置

Also Published As

Publication number Publication date
JP2022543717A (ja) 2022-10-14
JP7236771B2 (ja) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2022041035A1 (zh) 一种轧辊表面激光无序均匀毛化加工方法
CN106001927B (zh) 一种测量加工一体化的激光平整化抛光方法
CN112171066B (zh) 一种轧辊展开表面毛化形貌无序均匀分布的设计方法
JP6334536B2 (ja) 金属材料、特に鋼材からなる平板製品、このような平板製品の使用、およびこのような平板製品を製造するためのロールと方法。
WO2020107613A1 (zh) 一种轧辊激光毛化加工设备及其加工方法
CN112171067B (zh) 一种轧辊表面激光无序均匀毛化加工方法
CN102990308B (zh) 一种干气密封螺旋槽的激光刻槽加工方法
CN109420680A (zh) 用于钢板表面形貌轧制的轧辊及其制造方法
Pal et al. Fabrication of texturing tool to produce array of square holes for EDM by abrasive water jet machining
CN107511588A (zh) 一种实现毛化点均匀随机分布的激光毛化方法
CN110006935A (zh) 基于dic微区动态应变测试的超快激光精细差异化散斑制备方法
CN101642849A (zh) 轧辊表面激光毛化处理方法
CN105728946A (zh) 基于透射式振镜的轧辊表面激光无序毛化加工方法及加工装置
CN201693296U (zh) 聚焦光点无规则偏转的激光辊类表面毛化加工装置
Kibria et al. Investigation and analysis on pulsed Nd: YAG laser micro-turning process of aluminium oxide (Al 2 O 3) ceramic at various laser defocusing conditions
Kunar et al. Investigation on surface structuring generated by electrochemical micromachining
CN202877731U (zh) 聚焦光点可控偏摆的激光毛化加工装置
Kunar et al. Electrochemical microsurface texturing with reusable masked patterned tool
CN111889893B (zh) 一种干气密封微米级沟槽的超短脉冲激光精密加工方法
CN205798711U (zh) 一种测量加工一体化的激光平整化抛光装置
Wang et al. Improving the quality of femtosecond laser processing micro-hole array by coated with aluminum film on fused silica sheet
Liu et al. Investigation on the profile of microhole generated by electrochemical micromachining using retracted tip tool
Venkatakrishnan et al. Effect of scanning resolution and fluence fluctuation on femtosecond laser ablation of thin films
CN201693292U (zh) 聚焦光点小范围二维摆动式激光辊类表面毛化加工装置
CN108406093A (zh) 一种金属焊接头的超快激光差异微纳米织构方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021539050

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950707

Country of ref document: EP

Kind code of ref document: A1