WO2022039065A1 - Head control device, head control method and program, liquid ejection device, and printing device - Google Patents

Head control device, head control method and program, liquid ejection device, and printing device Download PDF

Info

Publication number
WO2022039065A1
WO2022039065A1 PCT/JP2021/029506 JP2021029506W WO2022039065A1 WO 2022039065 A1 WO2022039065 A1 WO 2022039065A1 JP 2021029506 W JP2021029506 W JP 2021029506W WO 2022039065 A1 WO2022039065 A1 WO 2022039065A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
discharge
ejection
nozzle
head
Prior art date
Application number
PCT/JP2021/029506
Other languages
French (fr)
Japanese (ja)
Inventor
忠 京相
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2022039065A1 publication Critical patent/WO2022039065A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/18Ink recirculation systems

Definitions

  • the present invention relates to a head control device, a head control method and program, a liquid discharge device, and a printing device, and particularly relates to a technique for inspecting a liquid discharge head.
  • a printing machine that prints an image by ejecting a liquid such as ink from a liquid ejection head onto a printing substrate is known.
  • the discharge element that discharges the liquid of the liquid discharge head from the discharge port may deteriorate in the discharge state during printing.
  • there is a method of printing an inspection pattern that does not affect the image quality on the printing substrate, reading it with a scanner, and analyzing it to determine whether an ejection abnormality has occurred (patented). Refer to Documents 1 and 2).
  • the ejection element waits during printing and there is no opportunity to eject the liquid, the ink viscosity inside the ejection port increases, and the analysis result by the inspection pattern becomes worse as a result.
  • the ejected element deteriorated in this way recovers its state by ejecting a predetermined amount of liquid and can be used for printing, so that there is a problem that an abnormality is detected excessively. rice field.
  • the present invention has been made in view of such circumstances, and provides a head control device, a head control method and program, a liquid discharge device, and a printing device that inspect a liquid discharge head without detecting an excessive abnormality. With the goal.
  • One embodiment of the head control device for achieving the above object comprises a memory for storing instructions to be executed by the processor and a processor for executing instructions stored in the memory, and the processor is used for print data. Based on this, the liquid is discharged from the discharge port of the discharge element of the liquid discharge head to print a user image on the base material, and when the deterioration state of the discharge element is equal to or less than the index for ensuring the inspection accuracy of the discharge element, it is substantially.
  • An inspection pattern that does not affect the image quality is formed in the area of the user image by the ejection element, the reading result obtained by reading the inspection pattern by the scanner is obtained, the reading result is analyzed, the degree of abnormality of the ejection element is obtained, and the ejection element is obtained. It is a head control device that takes measures according to the degree of abnormality.
  • the liquid discharge head can be inspected without detecting an excessive abnormality.
  • the index is preferably defined as a value at which an abnormality in the discharge element due to deterioration of the liquid in the discharge port is not detected. As a result, the degree of abnormality of the discharge element can be appropriately detected.
  • the index is determined from the deteriorated volume of the liquid for each standby time by changing the standby time during which the discharge element does not discharge the liquid continuously. As a result, the index can be appropriately acquired.
  • the processor discharges the liquid until the deterioration state of the discharge element becomes equal to or less than the index.
  • the deterioration state of the discharge element can be set to the index or lower.
  • the processor discharges the liquid into the area of the user image in an amount that does not substantially affect the image quality. As a result, the liquid can be discharged without affecting the image quality.
  • the processor acquires image data representing a user image, generates print data in which an inspection pattern is arranged on the image data, and forms the inspection pattern on the base material by the print data.
  • the inspection pattern can be appropriately formed in the area of the user image.
  • liquid discharge device for achieving the above object is a liquid discharge device including a liquid discharge head and the above head control device. According to this aspect, the liquid discharge head can be inspected without detecting an excessive abnormality.
  • the liquid is preferably a water-based ink.
  • This aspect is suitable for a liquid ejection head that ejects water-based ink whose viscosity increases due to evaporation of water from the ejection port of the ejection element.
  • the liquid discharge head includes a supply flow path for supplying the liquid to the discharge element and a recovery flow path for collecting the liquid supplied to the discharge element, and the recovery flow path is preferably provided around the discharge port. .. This aspect is suitable for a liquid discharge head provided with a recovery flow path around the discharge element.
  • One aspect of the printing device for achieving the above object is to relatively move the liquid ejection device, the scanner that reads the inspection pattern and generates the reading result, and the substrate, the liquid ejection head, and the scanner.
  • One aspect of the head control method for achieving the above object is a user image printing step of ejecting liquid from the ejection port of the ejection element of the liquid ejection head to print a user image on a substrate based on print data.
  • an inspection pattern forming step of forming an inspection pattern substantially unaffected by the image quality in the area of the user image by the ejection element.
  • the liquid discharge head can be inspected without detecting an excessive abnormality.
  • One aspect of the program for achieving the above object is a program for causing a computer to execute the head control method described above.
  • a computer-readable non-temporary storage medium on which this program is recorded may also be included in this embodiment.
  • the liquid discharge head can be inspected without detecting an excessive abnormality.
  • the liquid discharge head can be inspected without detecting an excessive abnormality.
  • FIG. 1 is an overall configuration diagram of an inkjet printing apparatus.
  • FIG. 2 is a plan perspective view showing a structural example of the inkjet head.
  • FIG. 3 is a cross-sectional view taken along the line 3-3 of FIG.
  • FIG. 4 is a block diagram showing a configuration of a control system of an inkjet printing apparatus.
  • FIG. 5 is a diagram showing an example of a paper on which an abnormality nozzle detection pattern is printed.
  • FIG. 6 is a diagram showing an example of a paper on which only a user image is printed.
  • FIG. 7 is a diagram showing an example of printing an inspection pattern in a user image.
  • FIG. 8 is an enlarged view of the nozzle portion shown in FIG. FIG.
  • FIG. 9 is a graph for explaining the transition of the deteriorated volume of a certain nozzle.
  • FIG. 10 is a graph showing the relationship between the discharge drop amount of the nozzle waiting for 10 seconds and the discharge speed.
  • FIG. 11 is a graph showing an example of the relationship between the deteriorated volume of the inkjet head and the number of abnormal inspection nozzles.
  • FIG. 12 is a diagram showing a paper on which a reference dot pattern for acquiring a dot diameter and a dot shape in a normal state is printed.
  • FIG. 13 is a flowchart showing each step of the head control method.
  • FIG. 1 is an overall configuration diagram of the inkjet printing apparatus 10 according to the present embodiment.
  • the inkjet printing apparatus 10 is a printing machine that prints an image on a web-shaped paper 1 by a single pass method.
  • General-purpose printing paper is used as the paper 1.
  • the general-purpose printing paper is not a so-called inkjet-only paper, but a paper mainly composed of cellulose such as coated paper used for general offset printing and the like.
  • the inkjet printing apparatus 10 includes a transport unit 20, a feed unit 30, a pretreatment liquid application unit 40, a printing unit 50, a drying unit 70, and a winding unit 80. It is composed.
  • the transport section 20 transports the paper 1 from the feed section 30 to the take-up section 80 along the transport path.
  • the transport unit 20 includes a plurality of pass rollers 22 that function as guide rollers.
  • the delivery unit 30 includes a delivery roll 32.
  • the feed roll 32 includes a reel (not shown) that is rotatably supported. Paper 1 before the image is printed is wound on the reel in a roll shape.
  • the take-up unit 80 includes a take-up roll 82.
  • the take-up roll 82 includes a rotatably supported reel (not shown). One end of the paper 1 is connected to the reel.
  • the take-up roll 82 includes a take-up motor (not shown) for rotationally driving the reel.
  • the paper 1 is conveyed by the conveying unit 20 in a roll-to-roll manner along the conveying path from the sending roll 32 to the take-up roll 82.
  • the transport path of the paper 1 may be simply referred to as a “transport path”.
  • the pretreatment liquid application unit 40 is arranged on the upstream side of the transport path with respect to the printing unit 50.
  • the pretreatment liquid application unit 40 applies the pretreatment liquid to the printed surface of the paper 1.
  • the pretreatment liquid is a liquid containing water and a component that aggregates, insolubilizes, or thickens the color material component in the water-based ink, and thickens by reacting with the water-based ink.
  • the pretreatment liquid coating unit 40 includes a coating roller 42, an opposing roller 44, and a pretreatment liquid drying unit 46.
  • the paper 1 conveyed from the feeding section 30 is guided by the pass roller 22 and conveyed to a position facing the coating roller 42.
  • the coating roller 42 is rotated by a motor (not shown).
  • a pretreatment liquid is supplied to the surface of the coating roller 42 from a coater (not shown), and then excess pretreatment liquid is scraped off by a blade (not shown).
  • the coating roller 42 sandwiches the paper 1 with the facing roller 44, brings the surface to which the pretreatment liquid is supplied into contact with the printing surface of the paper 1, and causes the pretreatment liquid supplied to the surface to come into contact with the printing surface of the paper 1. Apply to.
  • the method of applying the pretreatment liquid to the printed surface of the paper 1 is not limited to the method using a coating roller, and may be, for example, a method using a liquid ejection head.
  • the paper 1 coated with the pretreatment liquid is conveyed to the pretreatment liquid drying unit 46.
  • the pretreatment liquid drying unit 46 includes a hot air heater (not shown). The pretreatment liquid drying unit 46 blows warm air from the warm air heater toward the printing surface of the paper 1 to dry the pretreatment liquid.
  • the paper 1 on which the pretreatment liquid has been dried is guided by the pass roller 22 and conveyed to the printing unit 50.
  • the printing unit 50 prints an image on the printing surface of the paper 1.
  • the printing unit 50 includes a printing drum 52, inkjet heads 54K, 54C, 54M, 54Y, and a scanner 56.
  • the paper 1 conveyed from the pretreatment liquid application unit 40 is guided by a plurality of pass rollers 22 and conveyed to the printing drum 52.
  • the print drum 52 is rotated by a motor (not shown), and the paper 1 is held on the outer peripheral surface and conveyed.
  • the print drum 52 has a plurality of suction holes (not shown) on the outer peripheral surface.
  • the print drum 52 sucks the paper 1 on the outer peripheral surface by sucking the suction holes by a pump (not shown).
  • the paper 1 conveyed by the print drum 52 is conveyed to a position facing the inkjet heads 54K, 54C, 54M, 54Y.
  • the inkjet heads 54K, 54C, 54M, and 54Y eject water-based inks (examples of liquid) of black (K), cyan (C), magenta (M), and yellow (Y), respectively.
  • the water-based ink refers to an ink in which a coloring material such as a dye or a pigment is dissolved or dispersed in water and a solvent soluble in water.
  • Water-based ink is supplied to each of the inkjet heads 54K, 54C, 54M, and 54Y from an ink tank of a corresponding color (not shown) via a piping path (not shown).
  • the inkjet heads 54K, 54C, 54M, and 54Y are each composed of a line-type recording head that can be printed by scanning once with respect to the paper 1 conveyed by the printing drum 52.
  • the inkjet heads 54K, 54C, 54M, and 54Y may be configured by connecting a plurality of head modules in the X direction.
  • the nozzle surfaces of the inkjet heads 54K, 54C, 54M, and 54Y are arranged so as to face the printing drum 52, respectively.
  • the inkjet heads 54K, 54C, 54M, 54Y are arranged at regular intervals along the transport path.
  • the scanner 56 includes an image pickup device that captures an image printed on the print surface of the paper 1 and converts it into an electric signal.
  • a color CCD (Charge Coupled Device) linear image sensor can be used as the image pickup device.
  • a color CMOS (Complementary Metal Oxide Semiconductor) linear image sensor can also be used instead of the color CCD linear image sensor.
  • the printing unit 50 ejects droplets of water-based ink from at least one of the inkjet heads 54K, 54C, 54M, and 54Y toward the printing surface of the paper 1 conveyed by the printing drum 52.
  • the ejected droplets of the water-based ink adhere to the paper 1, so that an image is printed on the printing surface of the paper 1.
  • the scanning result is acquired by scanning the printed surface of the paper 1 conveyed by the printing drum 52 with the scanner 56.
  • the transport unit 20 corresponds to a moving device that relatively moves the paper 1 and the inkjet heads 54K, 54C, 54M, 54Y, and the scanner 56.
  • the drying unit 70 dries the ink on the printing surface of the paper 1.
  • the drying unit 70 includes a drying drum 72.
  • the paper 1 conveyed from the printing unit 50 is conveyed to the drying drum 72.
  • the drying drum 72 is rotated by a motor (not shown) to hold and convey the paper 1 on the outer peripheral surface.
  • the drying drum 72 has a plurality of suction holes (not shown) on the outer peripheral surface. The drying drum 72 sucks the paper 1 on the outer peripheral surface by sucking the suction holes by a pump (not shown).
  • the drying unit 70 is provided with a hot air heater (not shown) around the drying drum 72.
  • the drying unit 70 blows warm air from the hot air heater toward the printing surface of the paper 1 to dry the ink.
  • FIG. 2 is a plan perspective view showing a structural example of the inkjet head 54 (an example of a liquid ejection head), and FIG. 3 is a sectional view taken along the line 3-3 of FIG.
  • the inkjet head 54 includes a nozzle plate 130 in which a nozzle 102, which is an ink droplet ejection port, is formed, and a flow path plate 132 in which an ink flow path is formed.
  • the nozzle plate 130 and the flow path plate 132 are laminated and joined.
  • the flow path plate 132 has a structure in which one or a plurality of substrates are laminated.
  • the nozzle plate 130 and the flow path plate 132 can be processed into a required shape by a semiconductor manufacturing process using silicon as a material.
  • the inkjet head 54 is provided with a plurality of nozzles 102 on the nozzle surface 100 which is the bottom surface. Further, a plurality of ink chamber units 106 (an example of an ejection element) composed of pressure chambers 104 and the like provided corresponding to each nozzle 102 are two-dimensionally arranged in a fixed arrangement pattern. As a result, a substantially high density of nozzle spacing is achieved, which is projected so as to line up along the X direction.
  • the pressure chamber 104 communicates with the supply tributary 110 (an example of the supply flow path) via the supply throttle 108, and each supply tributary 110 communicates with the common flow path 112. Further, the descender 114 communicating with each pressure chamber 104 is communicated with the circulation common flow path 120 via the ink circulation path 116 (an example of the recovery flow path) and the recovery tributary 118.
  • the inkjet head 54 is provided with a supply port 122 and a discharge port 124, the supply port 122 communicates with the common flow path 112, and the discharge port 124 communicates with the circulation common flow path 120.
  • the supply port 122 and the discharge port 124 of the inkjet head 54 have a common flow path 112, a supply tributary 110, a supply throttle 108, a pressure chamber 104, a descender 114, an ink circulation path 116, a recovery tributary 118, and a circulation common flow. It is configured to be communicated via the road 120.
  • the ink supplied to the supply port 122 flows through the common flow path 112, the supply tributary 110, the supply throttle 108, the pressure chamber 104, and the descender 114, a part of the ink is discharged from each nozzle 102, and the remaining ink is ink. It is discharged from the discharge port 124 via the circulation path 116, the recovery tributary 118, and the circulation common flow path 120.
  • the ink circulation path 116 is preferably configured to be provided around the nozzle 102.
  • the ink circulation path 116 is provided in a region communicating with the descender 114 and in contact with the nozzle plate 130 of the flow path plate 132. As a result, the ink circulates in the vicinity of the nozzle 102, so that the ink thickening inside the nozzle 102 is prevented and stable ejection is possible.
  • an actuator 128 having an individual electrode is joined to the diaphragm 126 which constitutes the top surface of the pressure chamber 104 and is also used as a common electrode.
  • the actuator 128 is deformed in the direction of contracting the pressure chamber 104.
  • ink is ejected from the nozzle 102.
  • the actuator 128 is deformed in the direction of expanding the pressure chamber 104.
  • new ink is supplied to the pressure chamber 104 from the common flow path 112 through the supply tributary 110 and the supply throttle 108.
  • the actuator 128 is applied as a means for generating the ejection force of the ink ejected from the nozzle 102, but a thermal method is provided in which a heater is provided in the pressure chamber 104 and the ink is ejected by using the pressure of the film boiling due to the heating of the heater. It is also possible to apply.
  • the arrangement structure of the nozzle 102 is not limited to the illustrated example, and various nozzle arrangement structures such as an arrangement structure having one row of nozzles in the X direction can be applied.
  • FIG. 4 is a block diagram showing a configuration of a control system of the inkjet printing apparatus 10.
  • the inkjet printing apparatus 10 includes a transport control unit 150, a pretreatment liquid application control unit 152, a print control unit 154, a drying control unit 156, a general control unit 158, and a user interface 164.
  • the transport control unit 150 unwinds the paper 1 from the feed roll 32 by rotationally driving the take-up roll 82 with a motor (not shown).
  • the transport unit 20 guides the paper 1 by a plurality of pass rollers 22, and the take-up unit 80 winds the printed paper 1 on the take-up roll 82.
  • the paper 1 is conveyed to the feeding unit 30, the pretreatment liquid application unit 40, the printing unit 50, the drying unit 70, and the winding unit 80.
  • the transport control unit 150 controls a pump (not shown) to attract the paper 1 to the outer peripheral surface of the printing drum 52.
  • the transport control unit 150 rotates the print drum 52 by a motor (not shown). Further, the transfer control unit 150 acquires an encoder value from a rotary encoder (not shown) arranged on the print drum 52.
  • the transport control unit 150 controls a pump (not shown) to attract the paper 1 to the outer peripheral surface of the drying drum 72.
  • the transport control unit 150 rotates the drying drum 72 by a motor (not shown).
  • the pretreatment liquid application control unit 152 applies the pretreatment liquid to the printed surface of the paper 1 by the coating roller 42. Further, the pretreatment liquid application control unit 152 dries the pretreatment liquid applied to the printed surface of the paper 1 by a warm air heater (not shown) of the pretreatment liquid drying unit 46.
  • the print control unit 154 controls the ejection of ink by the inkjet heads 54K, 54C, 54M, 54Y based on the print data.
  • the print control unit 154 directs black, cyan, magenta, and yellow ink droplets toward the paper 1 by the inkjet heads 54K, 54C, 54M, and 54Y, respectively, in synchronization with the encoder value acquired via the transport control unit 150. And discharge. As a result, a color image is printed on the printed surface of the paper 1, and the paper 1 becomes a "printed matter".
  • the print control unit 154 causes the scanner 56 to read the image printed on the paper 1 in synchronization with the encoder value acquired via the transport control unit 150, and acquires the reading result.
  • the inkjet printing apparatus 10 may acquire information on the location of the nozzle 102 with a ejection defect by forming a detection pattern by the print control unit 154 and analyzing the reading result read by the scanner 56.
  • the print control unit 154 may output information on the location of the nozzle 102 having a ejection failure to the control unit 158.
  • the print control unit 154 may have a compensation function of correcting the print data and compensating for the print area of the nozzle 102 having a ejection defect. As an example, there is a compensation function for compensating for a nozzle 102 with defective ejection by increasing the volume of ink droplets of a plurality of adjacent nozzles 102.
  • the print control unit 154 outputs information on the portion compensated by the compensation function of the printed matter to the integrated control unit 158.
  • the drying control unit 156 controls heating by a hot air heater (not shown), so that the drying unit 70 dries the paper 1.
  • the integrated control unit 158 controls the operation of the inkjet printing device 10 by controlling the transfer control unit 150, the pretreatment liquid application control unit 152, the print control unit 154, and the drying control unit 156, respectively.
  • the integrated control unit 158 includes a processor 160 and a memory 162.
  • the processor 160 executes an instruction stored in the memory 162.
  • the hardware structure of the processor 160 is various processors as shown below.
  • the various processors include a CPU (Central Processing Unit), which is a general-purpose processor that executes software (programs) and acts as various functional units, and a GPU (Graphics Processing Unit), which is a processor specialized in image processing.
  • a circuit specially designed to execute specific processing such as PLD (Programmable Logic Device), ASIC (Application Specific Integrated Circuit), which is a processor whose circuit configuration can be changed after manufacturing FPGA (Field Programmable Gate Array), etc.
  • One processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types (for example, a plurality of FPGAs, or a combination of CPU and FPGA, or with a CPU. It may be composed of a combination of GPUs).
  • a plurality of functional units may be configured by one processor.
  • one processor is configured by a combination of one or more CPUs and software, as represented by a computer such as a client or a server. There is a form in which the processor acts as a plurality of functional parts.
  • SoC System On Chip
  • IC Integrated Circuit
  • the hardware-like structure of these various processors is, more specifically, an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
  • the memory 162 stores an instruction to be executed by the processor 160.
  • the memory 162 includes a RAM (RandomAccessMemory) and a ROM (ReadOnlyMemory) (not shown).
  • the processor 160 uses the RAM as a work area, executes software using various programs and parameters including a head control program stored in the ROM, and uses the parameters stored in the ROM or the like to perform inkjet printing. Various processes of the device 10 are executed.
  • the integrated control unit 158 corresponds to the head control device. Further, the integrated control unit 158 and the inkjet heads 54K, 54C, 54M, 54Y correspond to a liquid ejection device.
  • the user interface 164 includes an input unit (not shown) for the user to operate the inkjet printing device 10 and a display unit (not shown) for presenting information to the user.
  • the input unit is, for example, an operation panel that receives input from a user.
  • the display unit is, for example, a display that displays image data and various types of information. The user can have the inkjet printing device 10 print a desired image by using the user interface 164.
  • the inkjet printing machine In an inkjet printing machine such as the inkjet printing apparatus 10, since tens of thousands of ejection elements are controlled to form a printed image, it is inevitable that an ejection element causing an abnormality will occur during printing. Therefore, the inkjet printing machine reads the "abnormal nozzle detection pattern" printed in the gap between the user images by the scanner installed inside the device, and determines whether the ejection element is operating normally from the read abnormal nozzle detection pattern. Technology is used.
  • FIG. 5 is a diagram showing an example of paper 1 on which an abnormality nozzle detection pattern is printed.
  • a plurality of user images GU are printed along the transport direction of the paper 1, and an abnormality nozzle detection pattern PN is printed between the user image GU and the user image GU . ing.
  • the abnormality nozzle detection pattern PN of the paper 1 becomes a loss. Further, when the printed roll is post-processed, there is a problem that it is necessary to remove this abnormality nozzle detection pattern PN . Therefore, it is preferable that the abnormality nozzle detection pattern PN is not printed between the user image GU and the user image GU .
  • FIG. 6 is a diagram showing an example of paper 1 on which only the user image GU is printed. As shown in FIG. 6, if the abnormality nozzle detection pattern PN is not printed and there is no gap between the user images GUs , there is no loss area and post-processing is easy.
  • the abnormality of the nozzle cannot be detected by utilizing the abnormality nozzle detection pattern PN . Therefore, it is conceivable to perform ejection at a level permitted by the user in the area of the user image GU and read it with a scanner to determine whether or not there is an abnormality in the nozzle.
  • FIG. 7 is a diagram showing an example of printing the inspection pattern PD in the user image GU .
  • F7A shown in FIG. 7 shows paper 1 on which a plurality of user images GU are printed.
  • F7B shown in FIG. 7 is an enlarged view of one of the plurality of user image GUs .
  • a plurality of user images GU are printed on the paper 1 along the transport direction of the paper 1.
  • the abnormality nozzle detection pattern PN is not printed on the paper 1, and there is no gap between the user images GU .
  • an inspection pattern PD composed of a plurality of dots D is arranged on the user image GU.
  • the dot D is expressed in a size relatively larger than the actual size, but the inspection pattern PD is not visible to the human eye and has virtually no effect on the image quality.
  • the abnormality nozzle detection pattern PN shown in FIG. 5 can be arranged between the user images GU , a certain amount of space can be secured, so that the ink ejection amount can be increased and the influence of water evaporation can be ignored.
  • the inspection pattern PD composed of the dots D shown in FIG. 7 the ink ejection amount cannot be increased and the viscosity of the ink may increase. Such a phenomenon may occur even in oil-based inks and UV (UltraViolet) inks.
  • FIG. 8 is an enlarged view of the nozzle 102 portion shown in FIG.
  • the nozzle 102 has a minute constricted region 102A in which ink is not circulated.
  • the region formed by the nozzle plate 130 is applicable.
  • Ink circulation cannot flow in the volume of the narrowed region 102A (hereinafter referred to as the nozzle volume), and the ink becomes thickened. Therefore, there is a case where a technique of moving the actuator 128 (see FIG. 3) to the extent that the ink is not ejected and stirring the ink in the nozzle 102 is adopted.
  • the technique of stirring the ink in the nozzle 102 may not be applicable because the power consumption increases and the stirring operation leads to unstable ejection depending on the ink. Therefore, it is necessary to consider the ink thickening corresponding to the nozzle volume on the premise that it can occur.
  • the present invention defines a parameter that allows printing of an inspection pattern, and proposes an inkjet printing apparatus 10 that forms an inspection pattern when the condition is better than that.
  • the deteriorated volume is the volume of the ink in the nozzle whose state has deteriorated, and is defined in the range from 0 [pL] to the nozzle volume Vn [pL] which is the volume of the narrowed region of the nozzle.
  • the deterioration volume speed [pL / s] is defined. This is the ink volume that deteriorates per second. It is considered that the ink corresponding to the deteriorated volume is discharged by ejecting the ink from the nozzle.
  • FIG. 9 is a graph for explaining the transition of the deteriorated volume of a certain nozzle.
  • the horizontal axis represents time [s] and the vertical axis represents deterioration volume [pL].
  • the period from time T1 to time T2 , the period from time T3 to time T4 , the period from time T6 to time T7, and the period from time T9 to time T10 are It shows how the deteriorated volume of the ink in the nozzle increases at a constant rate because the ink is not ejected from the nozzle.
  • the ink in the nozzle is ejected by ejecting the ink. It shows how the deteriorated volume decreases.
  • the ink in the nozzle is not deteriorated and is in a fresh state by continuously ejecting ink from the nozzle. It shows how to maintain. Further, the period after the time T10 shows that the deterioration state is saturated.
  • the deterioration volume speed is 5 [pL / s]
  • the ink ejection amount from the nozzle is 1 [pL] to 100 [pL] per shot (1 dot)
  • the nozzle volume is 10 [pL] to 1000 [pL]. ].
  • the deterioration volume speed can be measured by the following method.
  • the deterioration state of the ink in the nozzle can be measured by using the ink ejection speed as an example.
  • the discharge rate can be measured with a light source and a camera.
  • FIG. 10 is a graph showing the relationship between the discharge drop amount of the nozzle waiting for 10 seconds and the discharge speed.
  • the horizontal axis represents the ejection droplet amount [pL]
  • the vertical axis represents the ink ejection speed [m / s].
  • the amount of ejected drops is the product of the number of droplets [emitted] of the ejected ink and the amount of droplets [pL] per drop.
  • the ejection speed of the ink that has not deteriorated is defined as VF [m / s].
  • the ink in the nozzle deteriorated by waiting for 10 seconds is then ejected by repeating the ink ejection.
  • the discharge speed becomes VF [m / s], and it can be seen that the inside of the nozzle is completely fresh.
  • the deteriorated state of the nozzle is eliminated by ejecting 50 [pL] of ink. Since the deterioration is 50 [pL] after waiting for 10 seconds, the deterioration volume speed is 5 [pL / s].
  • the ejection droplet amount may be defined by the ejection droplet amount of a typical size.
  • the index Vth for ensuring the inspection accuracy of the nozzle can be determined by the following method.
  • One is a nozzle whose ejection condition has deteriorated due to deterioration of ink due to standby (cause a). Since this type of nozzle can be recovered by discharging to some extent, it is not preferable to detect it as an abnormality.
  • the other is a nozzle with a poor ejection condition for a reason different from the deterioration of ink due to standby (cause b). This type of nozzle does not recover when ejecting ink.
  • the state in which the nozzle detected by the cause a becomes zero can be defined as the index Vth.
  • FIG. 11 is a graph showing an example of the relationship between the deteriorated volume of the inkjet head and the number of abnormal inspection nozzles.
  • the horizontal axis shows the deteriorated volume [pL]
  • the vertical axis shows the number of abnormal inspection nozzles [pieces].
  • the deteriorated volume can be controlled by the waiting time.
  • the deteriorated volume after waiting for 10 seconds is 50 [pL].
  • the deteriorated volume for each waiting time is obtained while changing the waiting time, the abnormal nozzle inspection is performed during the waiting time, and the number of detected abnormal nozzles is plotted on the vertical axis. be.
  • the index Vth can be obtained.
  • the index Vth is, for example, 100 [pL].
  • the calculation of the index Vth is performed before the actual printing.
  • the number of abnormal nozzles due to cause b is constant regardless of the deteriorated volume.
  • the number of abnormal nozzles due to cause a is not detected until the deterioration volume reaches the index Vth, but increases as the deterioration volume increases when the deterioration volume exceeds the index Vth.
  • the abnormality nozzle inspection can be realized by reading the inspection pattern with a scanner and analyzing the read inspection pattern. In this case, it is common to compare the inspection pattern with the normal dot diameter and dot shape. Alternatively, normality or abnormality may be determined based on whether or not there is a dot at the position observed by the scanner, whether or not the landing position of the line deviates from the target position, and the like.
  • FIG. 12 is a diagram showing a paper 1 on which a reference dot pattern PR for acquiring a dot diameter and a dot shape in a normal state is printed.
  • F12A shown in FIG. 12 shows the discarded area A and the reference dot pattern PR.
  • F12B shown in FIG. 12 is an enlarged view of the reference dot pattern PR.
  • the discarding area A is located on the upstream side of the reference dot pattern PR in the transport direction of the paper 1.
  • the discarding area A is an area where a sufficient amount of discarding is performed for each nozzle. Each nozzle is thrown away until the deteriorated volume becomes equal to or less than the index Vth.
  • the inkjet printing machine reads the reference dot pattern PR by a scanner, and obtains the dot diameter and the dot shape formed by the ejection from each nozzle in the normal state from the reading result.
  • the ink may be ejected until the deteriorated volume of the nozzle becomes equal to or less than the index Vth.
  • the inspection pattern may be formed without discarding within 20 seconds.
  • FIG. 13 is a flowchart showing each step of the head control method.
  • step S1 the processor 160 of the integrated control unit 158 acquires image data representing the user image GU to be printed on the paper 1.
  • step S2 the processor 160 acquires the deterioration state of each nozzle 102 of the inkjet heads 54K, 54C, 54M, 54Y.
  • the deteriorated volume is acquired as the deteriorated state.
  • step S3 the processor 160 controls the inkjet printing device 10 to print the user image GU on the paper 1.
  • step S4 (an example of the inspection pattern forming step), the processor 160 determines the inkjet heads 54K, 54C, 54M when the deterioration state of the nozzle 102 is equal to or less than the index Vth for ensuring the inspection accuracy (an example of the inspection pattern or less).
  • 54Y causes an inspection pattern P D that has substantially no effect on image quality to be formed in the region of the user image GU. Since the inkjet printing apparatus 10 prints an image by a single-pass method, steps S3 and S4 print the user image GU and the inspection pattern PD in one transfer of the paper 1.
  • the processor 160 generates print data in which the inspection pattern PD composed of the dots D formed by the nozzle 102 whose deterioration volume is the index Vth or less is arranged in the image data acquired in step S1. Further, the processor 160 forms the user image GU and the inspection pattern PD on the paper 1 on the base material by the print data.
  • the processor 160 can calculate the deteriorated volume of the nozzle 102 from the nozzle volume Vn [pL], the time [s] from the previous ejection, and the deteriorated volume speed [pL / s].
  • the processor 160 may eject (discard) the ink until the deteriorated state of the nozzle 102 becomes equal to or less than the index Vth. In this case, the processor 160 ejects ink to the area of the user image GU in an amount that does not substantially affect the image quality.
  • the inspection pattern P D that has substantially no effect on the image quality is a distinction between the user image GU including the inspection pattern P D and the user image GU not including the inspection pattern P D when visually viewed by the user. Refers to the inspection pattern PD that does not work.
  • step S5 an example of the reading result acquisition process
  • the processor 160 causes the scanner 56 to read the inspection pattern P D together with the user image GU , and acquires the reading result of the inspection pattern P D.
  • step S6 an example of the abnormality degree calculation step
  • the processor 160 analyzes the reading result of the inspection pattern PD and obtains the abnormality degree of the nozzle 102.
  • step S7 an example of the treatment step
  • the processor 160 treats the nozzle 102 according to the degree of abnormality.
  • the drive voltage of the corresponding actuator 128 is controlled.
  • the ejection amount of the adjacent nozzle 102 in the X direction is increased to correct the streaks caused by the non-ejection nozzle.
  • the inkjet head 54 that circulates ink around the nozzle 102 has been described as an example, but the present embodiment can also be applied to an inkjet head that does not circulate ink.

Abstract

Provided are a head control device for inspecting a liquid ejection head without excessively detecting abnormality, a head control method and a program, a liquid ejection device, and a printing device. A liquid is caused to be ejected from an ejection port of an ejection element of a liquid ejection head on the basis of printing data to print a user image on a base material. When a deteriorated state of the ejection element is below an index for securing inspection accuracy of the ejection element, an inspection pattern having substantially no influence on image quality is formed in a region of the user image by the ejection element, a reading result obtained by reading the inspection pattern with a scanner is acquired, the reading result is analyzed, an abnormality degree of the ejection element is calculated, and treatment is performed on the ejection element according to the abnormality degree.

Description

ヘッド制御装置、ヘッド制御方法及びプログラム、液体吐出装置、印刷装置Head control device, head control method and program, liquid discharge device, printing device
 本発明はヘッド制御装置、ヘッド制御方法及びプログラム、液体吐出装置、印刷装置に係り、特に液体吐出ヘッドを検査する技術に関する。 The present invention relates to a head control device, a head control method and program, a liquid discharge device, and a printing device, and particularly relates to a technique for inspecting a liquid discharge head.
 液体吐出ヘッドから印刷基材にインク等の液体を吐出して画像を印刷する印刷機が知られている。液体吐出ヘッドの液体を吐出口から吐出する吐出素子は、印刷中に吐出状態が悪化する場合がある。その吐出状態を把握するために、印刷基材上に画質に影響しない検査パタンを印刷し、それをスキャナで読み込み、解析することで、吐出異常が発生しているかを判定する方法がある(特許文献1、2参照)。 A printing machine that prints an image by ejecting a liquid such as ink from a liquid ejection head onto a printing substrate is known. The discharge element that discharges the liquid of the liquid discharge head from the discharge port may deteriorate in the discharge state during printing. In order to grasp the ejection state, there is a method of printing an inspection pattern that does not affect the image quality on the printing substrate, reading it with a scanner, and analyzing it to determine whether an ejection abnormality has occurred (patented). Refer to Documents 1 and 2).
特開2005-313625号公報Japanese Unexamined Patent Publication No. 2005-313625 特許第5899222号Patent No. 5899222
 吐出素子は印刷中に待機して液体を吐出する機会がない場合に、吐出口内部のインク粘度が上昇し、検査パタンによる解析結果が結果的に悪くなる。このように悪化した吐出素子は、液体を所定量吐出することにより、状態が回復して印刷に使うことができるようになるので、過剰に異常を検出していることになるという問題点があった。 When the ejection element waits during printing and there is no opportunity to eject the liquid, the ink viscosity inside the ejection port increases, and the analysis result by the inspection pattern becomes worse as a result. The ejected element deteriorated in this way recovers its state by ejecting a predetermined amount of liquid and can be used for printing, so that there is a problem that an abnormality is detected excessively. rice field.
 本発明はこのような事情に鑑みてなされたもので、過剰に異常を検出することなく液体吐出ヘッドの検査を行うヘッド制御装置、ヘッド制御方法及びプログラム、液体吐出装置、印刷装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a head control device, a head control method and program, a liquid discharge device, and a printing device that inspect a liquid discharge head without detecting an excessive abnormality. With the goal.
 上記目的を達成するためのヘッド制御装置の一の態様は、プロセッサに実行させるための命令を記憶するメモリと、メモリに記憶された命令を実行するプロセッサと、を備え、プロセッサは、印刷データに基づいて液体吐出ヘッドの吐出素子の吐出口から液体を吐出させて基材にユーザ画像を印刷させ、吐出素子の悪化状態が吐出素子の検査精度を担保するための指標以下である場合に、実質的に画質に無影響な検査パタンを吐出素子によりユーザ画像の領域に形成させ、スキャナにより検査パタンを読み取った読取結果を取得し、読取結果を解析し、吐出素子の異常度を求め、吐出素子に対して異常度に応じた処置をする、ヘッド制御装置である。 One embodiment of the head control device for achieving the above object comprises a memory for storing instructions to be executed by the processor and a processor for executing instructions stored in the memory, and the processor is used for print data. Based on this, the liquid is discharged from the discharge port of the discharge element of the liquid discharge head to print a user image on the base material, and when the deterioration state of the discharge element is equal to or less than the index for ensuring the inspection accuracy of the discharge element, it is substantially. An inspection pattern that does not affect the image quality is formed in the area of the user image by the ejection element, the reading result obtained by reading the inspection pattern by the scanner is obtained, the reading result is analyzed, the degree of abnormality of the ejection element is obtained, and the ejection element is obtained. It is a head control device that takes measures according to the degree of abnormality.
 本態様によれば、過剰に異常を検出することなく液体吐出ヘッドの検査を行うことができる。 According to this aspect, the liquid discharge head can be inspected without detecting an excessive abnormality.
 指標は、吐出口内の液体が悪化したことによる吐出素子の異常が非検知となる値に規定されることが好ましい。これにより、吐出素子の異常度を適切に検知することができる。 The index is preferably defined as a value at which an abnormality in the discharge element due to deterioration of the liquid in the discharge port is not detected. As a result, the degree of abnormality of the discharge element can be appropriately detected.
 指標は、吐出素子が液体を非吐出の状態が連続する待機時間を変化させ、待機時間毎の悪化した液体の体積から決定されることが好ましい。これにより、指標を適切に取得することができる。 It is preferable that the index is determined from the deteriorated volume of the liquid for each standby time by changing the standby time during which the discharge element does not discharge the liquid continuously. As a result, the index can be appropriately acquired.
 プロセッサは、吐出素子の悪化状態が指標以下となるまで液体を吐出させることが好ましい。これにより、吐出素子の悪化状態を指標以下にすることができる。 It is preferable that the processor discharges the liquid until the deterioration state of the discharge element becomes equal to or less than the index. As a result, the deterioration state of the discharge element can be set to the index or lower.
 プロセッサは、ユーザ画像の領域に実質的に画質に無影響な量だけ液体を吐出させることが好ましい。これにより、画質に影響を与えずに液体を吐出させることができる。 It is preferable that the processor discharges the liquid into the area of the user image in an amount that does not substantially affect the image quality. As a result, the liquid can be discharged without affecting the image quality.
 プロセッサは、ユーザ画像を表す画像データを取得し、画像データに検査パタンを配置した印刷データを生成し、印刷データによって検査パタンを基材に形成させることが好ましい。これにより、検査パタンをユーザ画像の領域に適切に形成させることができる。 It is preferable that the processor acquires image data representing a user image, generates print data in which an inspection pattern is arranged on the image data, and forms the inspection pattern on the base material by the print data. As a result, the inspection pattern can be appropriately formed in the area of the user image.
 上記目的を達成するための液体吐出装置の一の態様は、液体吐出ヘッドと、上記のヘッド制御装置と、を備える液体吐出装置である。本態様によれば、過剰に異常を検出することなく液体吐出ヘッドの検査を行うことができる。 One aspect of the liquid discharge device for achieving the above object is a liquid discharge device including a liquid discharge head and the above head control device. According to this aspect, the liquid discharge head can be inspected without detecting an excessive abnormality.
 液体は、水性インクであることが好ましい。本態様は、吐出素子の吐出口から粘度が水分蒸発により増加する水性インクを吐出させる液体吐出ヘッドに好適である。 The liquid is preferably a water-based ink. This aspect is suitable for a liquid ejection head that ejects water-based ink whose viscosity increases due to evaporation of water from the ejection port of the ejection element.
 液体吐出ヘッドは、吐出素子に液体を供給する供給流路と、吐出素子に供給された液体を回収する回収流路と、を備え、回収流路は、吐出口の周辺に設けられることが好ましい。本態様は、吐出素子の周辺に回収流路が設けられた液体吐出ヘッドに好適である。 The liquid discharge head includes a supply flow path for supplying the liquid to the discharge element and a recovery flow path for collecting the liquid supplied to the discharge element, and the recovery flow path is preferably provided around the discharge port. .. This aspect is suitable for a liquid discharge head provided with a recovery flow path around the discharge element.
 上記目的を達成するための印刷装置の一の態様は、上記の液体吐出装置と、検査パタンを読み取って読取結果を生成するスキャナと、基材と液体吐出ヘッド及びスキャナとを相対的に移動させる移動装置と、を備える印刷装置である。本態様によれば、過剰に異常を検出することなく液体吐出ヘッドの検査を行うことができる。 One aspect of the printing device for achieving the above object is to relatively move the liquid ejection device, the scanner that reads the inspection pattern and generates the reading result, and the substrate, the liquid ejection head, and the scanner. A printing device including a mobile device. According to this aspect, the liquid discharge head can be inspected without detecting an excessive abnormality.
 上記目的を達成するためのヘッド制御方法の一の態様は、印刷データに基づいて液体吐出ヘッドの吐出素子の吐出口から液体を吐出させて基材にユーザ画像を印刷させるユーザ画像印刷工程と、吐出素子の悪化状態が吐出素子の検査精度を担保するための指標以下である場合に、実質的に画質に無影響な検査パタンを吐出素子によりユーザ画像の領域に形成させる検査パタン形成工程と、スキャナにより検査パタンを読み取った読取結果を取得する読取結果取得工程と、読取結果を解析し、吐出素子の異常度を求める異常度算出工程と、吐出素子に対して異常度に応じた処置をする処置工程と、を備えるヘッド制御方法である。 One aspect of the head control method for achieving the above object is a user image printing step of ejecting liquid from the ejection port of the ejection element of the liquid ejection head to print a user image on a substrate based on print data. When the deterioration state of the ejection element is equal to or less than the index for ensuring the inspection accuracy of the ejection element, an inspection pattern forming step of forming an inspection pattern substantially unaffected by the image quality in the area of the user image by the ejection element. A reading result acquisition process for acquiring the reading result obtained by scanning the inspection pattern with a scanner, an abnormality degree calculation process for analyzing the reading result and obtaining the abnormality degree of the ejection element, and a treatment according to the abnormality degree for the ejection element. It is a head control method including a treatment step.
 本態様によれば、過剰に異常を検出することなく液体吐出ヘッドの検査を行うことができる。 According to this aspect, the liquid discharge head can be inspected without detecting an excessive abnormality.
 上記目的を達成するためのプログラムの一の態様は、上記に記載のヘッド制御方法をコンピュータに実行させるためのプログラムである。このプログラムが記録された、コンピュータが読み取り可能な非一時的記憶媒体も本態様に含んでよい。 One aspect of the program for achieving the above object is a program for causing a computer to execute the head control method described above. A computer-readable non-temporary storage medium on which this program is recorded may also be included in this embodiment.
 本態様によれば、過剰に異常を検出することなく液体吐出ヘッドの検査を行うことができる。 According to this aspect, the liquid discharge head can be inspected without detecting an excessive abnormality.
 本発明によれば、過剰に異常を検出することなく液体吐出ヘッドの検査を行うことができる。 According to the present invention, the liquid discharge head can be inspected without detecting an excessive abnormality.
図1は、インクジェット印刷装置の全体構成図である。FIG. 1 is an overall configuration diagram of an inkjet printing apparatus. 図2は、インクジェットヘッドの構造例を示す平面透視図である。FIG. 2 is a plan perspective view showing a structural example of the inkjet head. 図3は、図2の3-3断面図である。FIG. 3 is a cross-sectional view taken along the line 3-3 of FIG. 図4は、インクジェット印刷装置の制御系の構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of a control system of an inkjet printing apparatus. 図5は、異常ノズル検知パタンが印刷された用紙の一例を示す図である。FIG. 5 is a diagram showing an example of a paper on which an abnormality nozzle detection pattern is printed. 図6は、ユーザ画像のみが印刷された用紙の一例を示す図である。FIG. 6 is a diagram showing an example of a paper on which only a user image is printed. 図7は、検査パタンをユーザ画像内に印刷する一例を示す図である。FIG. 7 is a diagram showing an example of printing an inspection pattern in a user image. 図8は、図3に示したノズル部分の拡大図である。FIG. 8 is an enlarged view of the nozzle portion shown in FIG. 図9は、あるノズルの悪化体積の推移を説明するためのグラフである。FIG. 9 is a graph for explaining the transition of the deteriorated volume of a certain nozzle. 図10は、10秒待機したノズルの吐出滴量と吐出速度との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the discharge drop amount of the nozzle waiting for 10 seconds and the discharge speed. 図11は、インクジェットヘッドの悪化体積と検査異常ノズル数の関係の一例を示すグラフである。FIG. 11 is a graph showing an example of the relationship between the deteriorated volume of the inkjet head and the number of abnormal inspection nozzles. 図12は、正常時のドット径及びドット形状を取得するためのリファレンスドットパタンが印刷された用紙を示す図である。FIG. 12 is a diagram showing a paper on which a reference dot pattern for acquiring a dot diameter and a dot shape in a normal state is printed. 図13は、ヘッド制御方法の各工程を示すフローチャートである。FIG. 13 is a flowchart showing each step of the head control method.
 以下、添付図面に従って本発明の好ましい実施形態について詳説する。 Hereinafter, preferred embodiments of the present invention will be described in detail according to the accompanying drawings.
 〔インクジェット印刷装置の構成〕
 図1は、本実施形態に係るインクジェット印刷装置10の全体構成図である。インクジェット印刷装置10は、ウェブ状の用紙1にシングルパス方式で画像を印刷する印刷機である。用紙1には汎用の印刷用紙が使用される。汎用の印刷用紙とは、いわゆるインクジェット専用紙ではなく、一般のオフセット印刷等に用いられる塗工紙等のセルロースを主体とした用紙をいう。
[Structure of inkjet printing device]
FIG. 1 is an overall configuration diagram of the inkjet printing apparatus 10 according to the present embodiment. The inkjet printing apparatus 10 is a printing machine that prints an image on a web-shaped paper 1 by a single pass method. General-purpose printing paper is used as the paper 1. The general-purpose printing paper is not a so-called inkjet-only paper, but a paper mainly composed of cellulose such as coated paper used for general offset printing and the like.
 図1に示すように、インクジェット印刷装置10は、搬送部20と、送り出し部30と、前処理液塗布部40と、印字部50と、乾燥部70と、巻取り部80と、を備えて構成される。 As shown in FIG. 1, the inkjet printing apparatus 10 includes a transport unit 20, a feed unit 30, a pretreatment liquid application unit 40, a printing unit 50, a drying unit 70, and a winding unit 80. It is composed.
 〔搬送部・送り出し部・巻取り部〕
 搬送部20は、送り出し部30から巻取り部80まで、用紙1を搬送経路に沿って搬送する。搬送部20は、ガイドローラとして機能する複数のパスローラ22を備える。
[Transporting section / Sending section / Winding section]
The transport section 20 transports the paper 1 from the feed section 30 to the take-up section 80 along the transport path. The transport unit 20 includes a plurality of pass rollers 22 that function as guide rollers.
 送り出し部30は、送り出しロール32を備える。送り出しロール32は、回転可能に支持された不図示のリールを備えている。リールには、画像が印刷される前の用紙1がロール状に巻かれている。 The delivery unit 30 includes a delivery roll 32. The feed roll 32 includes a reel (not shown) that is rotatably supported. Paper 1 before the image is printed is wound on the reel in a roll shape.
 一方、巻取り部80は、巻取りロール82を備える。巻取りロール82は、回転可能に支持された不図示のリールを備えている。リールには、用紙1の一端が接続されている。巻取りロール82は、リールを回転駆動させる不図示の巻取りモータを備えている。 On the other hand, the take-up unit 80 includes a take-up roll 82. The take-up roll 82 includes a rotatably supported reel (not shown). One end of the paper 1 is connected to the reel. The take-up roll 82 includes a take-up motor (not shown) for rotationally driving the reel.
 用紙1は、搬送部20によって、送り出しロール32から巻取りロール82までの搬送経路をロールツーロール方式で搬送される。なお、本明細書では、用紙1の搬送経路を単に「搬送経路」と呼ぶ場合がある。 The paper 1 is conveyed by the conveying unit 20 in a roll-to-roll manner along the conveying path from the sending roll 32 to the take-up roll 82. In this specification, the transport path of the paper 1 may be simply referred to as a “transport path”.
 〔前処理液塗布部〕
 前処理液塗布部40は、印字部50よりも搬送経路の上流側に配置される。前処理液塗布部40は、用紙1の印刷面に前処理液を塗布する。前処理液は、水性インク中の色材成分を凝集、又は不溶化、又は増粘させる成分と水とを含む液体であり、水性インクと反応することで増粘する。
[Pretreatment liquid application part]
The pretreatment liquid application unit 40 is arranged on the upstream side of the transport path with respect to the printing unit 50. The pretreatment liquid application unit 40 applies the pretreatment liquid to the printed surface of the paper 1. The pretreatment liquid is a liquid containing water and a component that aggregates, insolubilizes, or thickens the color material component in the water-based ink, and thickens by reacting with the water-based ink.
 前処理液塗布部40は、塗布ローラ42と、対向ローラ44と、前処理液乾燥部46と、を備える。送り出し部30から搬送された用紙1は、パスローラ22によって案内されて、塗布ローラ42と対向する位置に搬送される。 The pretreatment liquid coating unit 40 includes a coating roller 42, an opposing roller 44, and a pretreatment liquid drying unit 46. The paper 1 conveyed from the feeding section 30 is guided by the pass roller 22 and conveyed to a position facing the coating roller 42.
 塗布ローラ42は、不図示のモータによって回転する。塗布ローラ42の表面には不図示のコータから前処理液が供給され、その後不図示のブレードにより余分な前処理液が掻き取られる。塗布ローラ42は、対向ローラ44との間に用紙1を挟み込み、前処理液が供給された表面を用紙1の印刷面に当接させ、表面に供給された前処理液を用紙1の印刷面に塗布する。 The coating roller 42 is rotated by a motor (not shown). A pretreatment liquid is supplied to the surface of the coating roller 42 from a coater (not shown), and then excess pretreatment liquid is scraped off by a blade (not shown). The coating roller 42 sandwiches the paper 1 with the facing roller 44, brings the surface to which the pretreatment liquid is supplied into contact with the printing surface of the paper 1, and causes the pretreatment liquid supplied to the surface to come into contact with the printing surface of the paper 1. Apply to.
 なお、用紙1の印刷面に前処理液を塗布する方法は、塗布ローラを用いる方法に限定されず、例えば液体吐出ヘッドを用いる方法であってもよい。 The method of applying the pretreatment liquid to the printed surface of the paper 1 is not limited to the method using a coating roller, and may be, for example, a method using a liquid ejection head.
 前処理液が塗布された用紙1は、前処理液乾燥部46に搬送される。前処理液乾燥部46は、不図示の温風ヒータを備える。前処理液乾燥部46は、温風ヒータから用紙1の印刷面に向けて温風を吹き付け、前処理液を乾燥させる。 The paper 1 coated with the pretreatment liquid is conveyed to the pretreatment liquid drying unit 46. The pretreatment liquid drying unit 46 includes a hot air heater (not shown). The pretreatment liquid drying unit 46 blows warm air from the warm air heater toward the printing surface of the paper 1 to dry the pretreatment liquid.
 前処理液が乾燥された用紙1は、パスローラ22によって案内されて、印字部50に搬送される。 The paper 1 on which the pretreatment liquid has been dried is guided by the pass roller 22 and conveyed to the printing unit 50.
 〔印字部〕
 印字部50は、用紙1の印刷面に画像を印刷する。印字部50は、印字ドラム52と、インクジェットヘッド54K、54C、54M、54Yと、スキャナ56と、を備える。
[Printing section]
The printing unit 50 prints an image on the printing surface of the paper 1. The printing unit 50 includes a printing drum 52, inkjet heads 54K, 54C, 54M, 54Y, and a scanner 56.
 前処理液塗布部40から搬送された用紙1は、複数のパスローラ22によって案内されて印字ドラム52に搬送される。 The paper 1 conveyed from the pretreatment liquid application unit 40 is guided by a plurality of pass rollers 22 and conveyed to the printing drum 52.
 印字ドラム52は、不図示のモータによって回転し、用紙1を外周面に保持して搬送する。印字ドラム52は、外周面に複数の不図示の吸着孔を有する。印字ドラム52は、不図示のポンプにより吸着孔が吸引されることで、外周面に用紙1を吸着する。 The print drum 52 is rotated by a motor (not shown), and the paper 1 is held on the outer peripheral surface and conveyed. The print drum 52 has a plurality of suction holes (not shown) on the outer peripheral surface. The print drum 52 sucks the paper 1 on the outer peripheral surface by sucking the suction holes by a pump (not shown).
 印字ドラム52によって搬送された用紙1は、インクジェットヘッド54K、54C、54M、54Yと対向する位置に搬送される。 The paper 1 conveyed by the print drum 52 is conveyed to a position facing the inkjet heads 54K, 54C, 54M, 54Y.
 インクジェットヘッド54K、54C、54M、54Yは、それぞれクロ(K)、シアン(C)、マゼンタ(M)、及びイエロー(Y)の水性インク(液体の一例)を吐出する。水性インクとは、水と水に可溶な溶媒に染料、顔料等の色材とを溶解又は分散させたインクをいう。インクジェットヘッド54K、54C、54M、54Yのそれぞれには、対応する色の不図示のインクタンクから不図示の配管経路を経由して、水性インクが供給される。 The inkjet heads 54K, 54C, 54M, and 54Y eject water-based inks (examples of liquid) of black (K), cyan (C), magenta (M), and yellow (Y), respectively. The water-based ink refers to an ink in which a coloring material such as a dye or a pigment is dissolved or dispersed in water and a solvent soluble in water. Water-based ink is supplied to each of the inkjet heads 54K, 54C, 54M, and 54Y from an ink tank of a corresponding color (not shown) via a piping path (not shown).
 インクジェットヘッド54K、54C、54M、54Yは、それぞれ印字ドラム52によって搬送される用紙1に対して1回の走査によって印刷可能なライン型記録ヘッドで構成される。インクジェットヘッド54K、54C、54M、54Yは、それぞれ複数のヘッドモジュールをX方向に繋ぎ合わせて構成されてもよい。インクジェットヘッド54K、54C、54M、54Yは、それぞれノズル面が印字ドラム52に対向して配置される。インクジェットヘッド54K、54C、54M、54Yは、搬送経路に沿って一定の間隔をもって配置される。 The inkjet heads 54K, 54C, 54M, and 54Y are each composed of a line-type recording head that can be printed by scanning once with respect to the paper 1 conveyed by the printing drum 52. The inkjet heads 54K, 54C, 54M, and 54Y may be configured by connecting a plurality of head modules in the X direction. The nozzle surfaces of the inkjet heads 54K, 54C, 54M, and 54Y are arranged so as to face the printing drum 52, respectively. The inkjet heads 54K, 54C, 54M, 54Y are arranged at regular intervals along the transport path.
 スキャナ56は、用紙1の印刷面に印刷された画像を撮像して電気信号に変換する撮像デバイスを含む。撮像デバイスとしてカラーCCD(Charge Coupled Device)リニアイメージセンサを用いることができる。なお、カラーCCDリニアイメージセンサに代えて、カラーCMOS(Complementary Metal Oxide Semiconductor)リニアイメージセンサを用いることもできる。 The scanner 56 includes an image pickup device that captures an image printed on the print surface of the paper 1 and converts it into an electric signal. A color CCD (Charge Coupled Device) linear image sensor can be used as the image pickup device. A color CMOS (Complementary Metal Oxide Semiconductor) linear image sensor can also be used instead of the color CCD linear image sensor.
 印字部50では、印字ドラム52によって搬送される用紙1の印刷面に向けて、インクジェットヘッド54K、54C、54M、54Yのうち少なくとも1つから水性インクの液滴を吐出する。吐出された水性インクの液滴が用紙1に付着することにより、用紙1の印刷面に画像が印刷される。 The printing unit 50 ejects droplets of water-based ink from at least one of the inkjet heads 54K, 54C, 54M, and 54Y toward the printing surface of the paper 1 conveyed by the printing drum 52. The ejected droplets of the water-based ink adhere to the paper 1, so that an image is printed on the printing surface of the paper 1.
 また、印字ドラム52によって搬送される用紙1の印刷面をスキャナ56によって読み取らせることで、読取結果を取得する。 Further, the scanning result is acquired by scanning the printed surface of the paper 1 conveyed by the printing drum 52 with the scanner 56.
 このように、搬送部20は、用紙1とインクジェットヘッド54K、54C、54M、54Y、及びスキャナ56とを相対的に移動させる移動装置に相当する。 As described above, the transport unit 20 corresponds to a moving device that relatively moves the paper 1 and the inkjet heads 54K, 54C, 54M, 54Y, and the scanner 56.
 〔乾燥部〕
 乾燥部70は、用紙1の印刷面のインクを乾燥させる。乾燥部70は、乾燥ドラム72を備える。
[Dry part]
The drying unit 70 dries the ink on the printing surface of the paper 1. The drying unit 70 includes a drying drum 72.
 印字部50から搬送された用紙1は、乾燥ドラム72に搬送される。乾燥ドラム72は、不図示のモータによって回転し、用紙1を外周面に保持して搬送する。乾燥ドラム72は、外周面に複数の不図示の吸着孔を有する。乾燥ドラム72は、不図示のポンプにより吸着孔が吸引されることで、外周面に用紙1を吸着する。 The paper 1 conveyed from the printing unit 50 is conveyed to the drying drum 72. The drying drum 72 is rotated by a motor (not shown) to hold and convey the paper 1 on the outer peripheral surface. The drying drum 72 has a plurality of suction holes (not shown) on the outer peripheral surface. The drying drum 72 sucks the paper 1 on the outer peripheral surface by sucking the suction holes by a pump (not shown).
 乾燥部70は、乾燥ドラム72の周囲に不図示の温風ヒータを備える。乾燥部70は、温風ヒータから用紙1の印刷面に向けて温風を吹き付け、インクを乾燥させる。 The drying unit 70 is provided with a hot air heater (not shown) around the drying drum 72. The drying unit 70 blows warm air from the hot air heater toward the printing surface of the paper 1 to dry the ink.
 〔インクジェットヘッドの構成〕
 インクジェットヘッド54K、54C、54M、54Yの構造について説明する。なお、インクジェットヘッド54K、54C、54M、54Yの構造は共通しているため、ここではインクジェットヘッド54として説明する。
[Inkjet head configuration]
The structures of the inkjet heads 54K, 54C, 54M, and 54Y will be described. Since the structures of the inkjet heads 54K, 54C, 54M, and 54Y are common, the inkjet head 54 will be described here.
 図2は、インクジェットヘッド54(液体吐出ヘッドの一例)の構造例を示す平面透視図であり、図3は図2の3-3断面図である。 FIG. 2 is a plan perspective view showing a structural example of the inkjet head 54 (an example of a liquid ejection head), and FIG. 3 is a sectional view taken along the line 3-3 of FIG.
 インクジェットヘッド54は、インク滴の吐出口であるノズル102が形成されたノズルプレート130と、インクの流路が形成された流路板132と、を含んでいる。ノズルプレート130と流路板132は、積層接合されている。流路板132は1枚又は複数枚の基板を積層した構造である。ノズルプレート130及び流路板132は、シリコンを材料として半導体製造プロセスによって所要の形状に加工することが可能である。 The inkjet head 54 includes a nozzle plate 130 in which a nozzle 102, which is an ink droplet ejection port, is formed, and a flow path plate 132 in which an ink flow path is formed. The nozzle plate 130 and the flow path plate 132 are laminated and joined. The flow path plate 132 has a structure in which one or a plurality of substrates are laminated. The nozzle plate 130 and the flow path plate 132 can be processed into a required shape by a semiconductor manufacturing process using silicon as a material.
 インクジェットヘッド54は、底面であるノズル面100にノズル102を複数備えている。また、各ノズル102に対応して設けられた圧力室104等からなる複数のインク室ユニット106(吐出素子の一例)が、一定の配列パタンで2次元的に配置されている。これにより、X方向に沿って並ぶように投影される実質的なノズル間隔の高密度化を達成している。 The inkjet head 54 is provided with a plurality of nozzles 102 on the nozzle surface 100 which is the bottom surface. Further, a plurality of ink chamber units 106 (an example of an ejection element) composed of pressure chambers 104 and the like provided corresponding to each nozzle 102 are two-dimensionally arranged in a fixed arrangement pattern. As a result, a substantially high density of nozzle spacing is achieved, which is projected so as to line up along the X direction.
 圧力室104は,供給絞り108を介して供給支流110(供給流路の一例)と連通されており、各供給支流110は、共通流路112と連通されている。また、各圧力室104に連通するディセンダー114は、インク循環路116(回収流路の一例)、及び回収支流118を介して循環共通流路120と連通されている。インクジェットヘッド54には、供給口122及び排出口124が設けられており、供給口122は共通流路112と連通され、排出口124は循環共通流路120と連通されている。 The pressure chamber 104 communicates with the supply tributary 110 (an example of the supply flow path) via the supply throttle 108, and each supply tributary 110 communicates with the common flow path 112. Further, the descender 114 communicating with each pressure chamber 104 is communicated with the circulation common flow path 120 via the ink circulation path 116 (an example of the recovery flow path) and the recovery tributary 118. The inkjet head 54 is provided with a supply port 122 and a discharge port 124, the supply port 122 communicates with the common flow path 112, and the discharge port 124 communicates with the circulation common flow path 120.
 このように、インクジェットヘッド54の供給口122及び排出口124は、共通流路112、供給支流110、供給絞り108、圧力室104、ディセンダー114、インク循環路116、回収支流118、及び循環共通流路120を介して連通された構成となっている。 As described above, the supply port 122 and the discharge port 124 of the inkjet head 54 have a common flow path 112, a supply tributary 110, a supply throttle 108, a pressure chamber 104, a descender 114, an ink circulation path 116, a recovery tributary 118, and a circulation common flow. It is configured to be communicated via the road 120.
 したがって、供給口122に供給されたインクは、共通流路112、供給支流110、供給絞り108、圧力室104、及びディセンダー114を流れ、一部は各ノズル102から吐出され、残りのインクはインク循環路116、回収支流118、及び循環共通流路120を経由して排出口124から排出される。 Therefore, the ink supplied to the supply port 122 flows through the common flow path 112, the supply tributary 110, the supply throttle 108, the pressure chamber 104, and the descender 114, a part of the ink is discharged from each nozzle 102, and the remaining ink is ink. It is discharged from the discharge port 124 via the circulation path 116, the recovery tributary 118, and the circulation common flow path 120.
 なお、インク循環路116は、ノズル102の周辺に設けられる構成が好ましい。ここでは、インク循環路116は、ディセンダー114と連通する領域であって、流路板132のノズルプレート130と接する領域に設けられている。これにより、ノズル102近傍をインクが循環するようになるので、ノズル102内部のインク増粘が防止され、安定吐出が可能となる。 The ink circulation path 116 is preferably configured to be provided around the nozzle 102. Here, the ink circulation path 116 is provided in a region communicating with the descender 114 and in contact with the nozzle plate 130 of the flow path plate 132. As a result, the ink circulates in the vicinity of the nozzle 102, so that the ink thickening inside the nozzle 102 is prevented and stable ejection is possible.
 また、圧力室104の天面を構成し、共通電極と兼用される振動板126には、不図示の個別電極を備えたアクチュエータ128が接合されている。個別電極に所定の電圧が印加されると、アクチュエータ128は圧力室104を収縮させる方向に変形する。これにより、ノズル102からインクが吐出される。その後、アクチュエータ128は圧力室104を膨張させる方向に変形する。これにより、共通流路112から供給支流110、供給絞り108を通って新しいインクが圧力室104に供給される。 Further, an actuator 128 having an individual electrode (not shown) is joined to the diaphragm 126 which constitutes the top surface of the pressure chamber 104 and is also used as a common electrode. When a predetermined voltage is applied to the individual electrodes, the actuator 128 is deformed in the direction of contracting the pressure chamber 104. As a result, ink is ejected from the nozzle 102. After that, the actuator 128 is deformed in the direction of expanding the pressure chamber 104. As a result, new ink is supplied to the pressure chamber 104 from the common flow path 112 through the supply tributary 110 and the supply throttle 108.
 ここでは、ノズル102から吐出させるインクの吐出力発生手段としてアクチュエータ128を適用したが、圧力室104内にヒータを備え、ヒータの加熱による膜沸騰の圧力を利用してインクを吐出させるサーマル方式を適用することも可能である。 Here, the actuator 128 is applied as a means for generating the ejection force of the ink ejected from the nozzle 102, but a thermal method is provided in which a heater is provided in the pressure chamber 104 and the ink is ejected by using the pressure of the film boiling due to the heating of the heater. It is also possible to apply.
 ノズル102の配置構造は図示の例に限定されず、X方向に1列のノズル列を有する配置構造等、様々なノズル配置構造を適用できる。 The arrangement structure of the nozzle 102 is not limited to the illustrated example, and various nozzle arrangement structures such as an arrangement structure having one row of nozzles in the X direction can be applied.
 〔インクジェット印刷装置の制御系〕
 図4は、インクジェット印刷装置10の制御系の構成を示すブロック図である。インクジェット印刷装置10は、搬送制御部150と、前処理液塗布制御部152と、印字制御部154と、乾燥制御部156と、統括制御部158と、ユーザインターフェース164と、を備える。
[Control system for inkjet printing equipment]
FIG. 4 is a block diagram showing a configuration of a control system of the inkjet printing apparatus 10. The inkjet printing apparatus 10 includes a transport control unit 150, a pretreatment liquid application control unit 152, a print control unit 154, a drying control unit 156, a general control unit 158, and a user interface 164.
 搬送制御部150は、不図示のモータにより巻取りロール82を回転駆動させることで送り出しロール32から用紙1を巻き出させる。搬送部20は、用紙1を複数のパスローラ22によって案内し、巻取り部80は印刷済みの用紙1を巻取りロール82に巻き取らせる。これにより、用紙1は、送り出し部30、前処理液塗布部40、印字部50、乾燥部70、及び巻取り部80を搬送される。 The transport control unit 150 unwinds the paper 1 from the feed roll 32 by rotationally driving the take-up roll 82 with a motor (not shown). The transport unit 20 guides the paper 1 by a plurality of pass rollers 22, and the take-up unit 80 winds the printed paper 1 on the take-up roll 82. As a result, the paper 1 is conveyed to the feeding unit 30, the pretreatment liquid application unit 40, the printing unit 50, the drying unit 70, and the winding unit 80.
 搬送制御部150は、不図示のポンプを制御し、用紙1を印字ドラム52の外周面に吸着させる。搬送制御部150は、不図示のモータによって印字ドラム52を回転させる。また、搬送制御部150は、印字ドラム52に配置された不図示のロータリエンコーダからエンコーダ値を取得する。 The transport control unit 150 controls a pump (not shown) to attract the paper 1 to the outer peripheral surface of the printing drum 52. The transport control unit 150 rotates the print drum 52 by a motor (not shown). Further, the transfer control unit 150 acquires an encoder value from a rotary encoder (not shown) arranged on the print drum 52.
 搬送制御部150は、不図示のポンプを制御し、用紙1を乾燥ドラム72の外周面に吸着させる。搬送制御部150は、不図示のモータによって乾燥ドラム72を回転させる。 The transport control unit 150 controls a pump (not shown) to attract the paper 1 to the outer peripheral surface of the drying drum 72. The transport control unit 150 rotates the drying drum 72 by a motor (not shown).
 前処理液塗布制御部152は、塗布ローラ42によって用紙1の印刷面に前処理液を塗布させる。また、前処理液塗布制御部152は、前処理液乾燥部46の不図示の温風ヒータによって、用紙1の印刷面に塗布された前処理液を乾燥させる。 The pretreatment liquid application control unit 152 applies the pretreatment liquid to the printed surface of the paper 1 by the coating roller 42. Further, the pretreatment liquid application control unit 152 dries the pretreatment liquid applied to the printed surface of the paper 1 by a warm air heater (not shown) of the pretreatment liquid drying unit 46.
 印字制御部154は、印刷データに基づいて、インクジェットヘッド54K、54C、54M、54Yによるインクの吐出を制御する。印字制御部154は、搬送制御部150を介して取得したエンコーダ値に同期させて、インクジェットヘッド54K、54C、54M、54Yによって、それぞれクロ、シアン、マゼンタ、及びイエローのインク滴を用紙1に向けて吐出させる。これにより、用紙1の印刷面にカラー画像が印刷され、用紙1は「印刷物」となる。 The print control unit 154 controls the ejection of ink by the inkjet heads 54K, 54C, 54M, 54Y based on the print data. The print control unit 154 directs black, cyan, magenta, and yellow ink droplets toward the paper 1 by the inkjet heads 54K, 54C, 54M, and 54Y, respectively, in synchronization with the encoder value acquired via the transport control unit 150. And discharge. As a result, a color image is printed on the printed surface of the paper 1, and the paper 1 becomes a "printed matter".
 印字制御部154は、搬送制御部150を介して取得したエンコーダ値に同期させて、スキャナ56によって用紙1に印刷された画像を読み取らせ、読取結果を取得する。 The print control unit 154 causes the scanner 56 to read the image printed on the paper 1 in synchronization with the encoder value acquired via the transport control unit 150, and acquires the reading result.
 インクジェット印刷装置10は、印字制御部154によって検知パタンを形成させ、スキャナ56で読み取った読取結果を解析することで、吐出不良のノズル102の箇所の情報を取得してもよい。なお、印字制御部154は、吐出不良のノズル102の箇所の情報を統括制御部158に出力してもよい。 The inkjet printing apparatus 10 may acquire information on the location of the nozzle 102 with a ejection defect by forming a detection pattern by the print control unit 154 and analyzing the reading result read by the scanner 56. The print control unit 154 may output information on the location of the nozzle 102 having a ejection failure to the control unit 158.
 また、印字制御部154は、印刷データを補正して吐出不良のノズル102の印刷領域を補償する補償機能を有してもよい。一例として、吐出不良のノズル102に対し、隣り合う複数のノズル102のインク滴の体積を増大させることによって補償する補償機能がある。印字制御部154は、印刷物の補償機能により補償された箇所の情報を統括制御部158に出力する。 Further, the print control unit 154 may have a compensation function of correcting the print data and compensating for the print area of the nozzle 102 having a ejection defect. As an example, there is a compensation function for compensating for a nozzle 102 with defective ejection by increasing the volume of ink droplets of a plurality of adjacent nozzles 102. The print control unit 154 outputs information on the portion compensated by the compensation function of the printed matter to the integrated control unit 158.
 乾燥制御部156は、不図示の温風ヒータによる加熱を制御することで、乾燥部70によって用紙1を乾燥させる。 The drying control unit 156 controls heating by a hot air heater (not shown), so that the drying unit 70 dries the paper 1.
 統括制御部158は、搬送制御部150、前処理液塗布制御部152、印字制御部154、及び乾燥制御部156をそれぞれ制御することで、インクジェット印刷装置10の動作を統括制御する。統括制御部158は、プロセッサ160と、メモリ162と、を備える。プロセッサ160は、メモリ162に記憶された命令を実行する。 The integrated control unit 158 controls the operation of the inkjet printing device 10 by controlling the transfer control unit 150, the pretreatment liquid application control unit 152, the print control unit 154, and the drying control unit 156, respectively. The integrated control unit 158 includes a processor 160 and a memory 162. The processor 160 executes an instruction stored in the memory 162.
 プロセッサ160のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の機能部として作用する汎用的なプロセッサであるCPU(Central Processing Unit)、画像処理に特化したプロセッサであるGPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるPLD(Programmable Logic Device)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 The hardware structure of the processor 160 is various processors as shown below. The various processors include a CPU (Central Processing Unit), which is a general-purpose processor that executes software (programs) and acts as various functional units, and a GPU (Graphics Processing Unit), which is a processor specialized in image processing. A circuit specially designed to execute specific processing such as PLD (Programmable Logic Device), ASIC (Application Specific Integrated Circuit), which is a processor whose circuit configuration can be changed after manufacturing FPGA (Field Programmable Gate Array), etc. A dedicated electric circuit or the like, which is a processor having a configuration, is included.
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサ(例えば、複数のFPGA、又はCPUとFPGAの組み合わせ、あるいはCPUとGPUの組み合わせ)で構成されてもよい。また、複数の機能部を1つのプロセッサで構成してもよい。複数の機能部を1つのプロセッサで構成する例としては、第1に、クライアント又はサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の機能部として作用させる形態がある。第2に、SoC(System On Chip)等に代表されるように、複数の機能部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の機能部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 One processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types (for example, a plurality of FPGAs, or a combination of CPU and FPGA, or with a CPU. It may be composed of a combination of GPUs). Further, a plurality of functional units may be configured by one processor. As an example of configuring a plurality of functional units with one processor, first, one processor is configured by a combination of one or more CPUs and software, as represented by a computer such as a client or a server. There is a form in which the processor acts as a plurality of functional parts. Secondly, as typified by SoC (System On Chip), there is a form of using a processor that realizes the functions of the entire system including a plurality of functional units with one IC (Integrated Circuit) chip. As described above, the various functional units are configured by using one or more of the above-mentioned various processors as a hardware-like structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)である。 Furthermore, the hardware-like structure of these various processors is, more specifically, an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
 メモリ162は、プロセッサ160に実行させるための命令を記憶する。メモリ162は、不図示のRAM(Random Access Memory)、及びROM(Read Only Memory)を含む。プロセッサ160は、RAMを作業領域とし、ROMに記憶されたヘッド制御プログラムを含む各種のプログラム及びパラメータを使用してソフトウェアを実行し、かつROM等に記憶されたパラメータを使用することで、インクジェット印刷装置10の各種の処理を実行する。 The memory 162 stores an instruction to be executed by the processor 160. The memory 162 includes a RAM (RandomAccessMemory) and a ROM (ReadOnlyMemory) (not shown). The processor 160 uses the RAM as a work area, executes software using various programs and parameters including a head control program stored in the ROM, and uses the parameters stored in the ROM or the like to perform inkjet printing. Various processes of the device 10 are executed.
 統括制御部158は、ヘッド制御装置に相当する。また、統括制御部158とインクジェットヘッド54K、54C、54M、54Yとは、液体吐出装置に相当する。 The integrated control unit 158 corresponds to the head control device. Further, the integrated control unit 158 and the inkjet heads 54K, 54C, 54M, 54Y correspond to a liquid ejection device.
 ユーザインターフェース164は、ユーザがインクジェット印刷装置10を操作するための不図示の入力部と、ユーザに情報を提示するための不図示の表示部とを備える。入力部は、例えばユーザからの入力を受け付ける操作パネルである。表示部は、例えば画像データと各種の情報とを表示するディスプレイである。ユーザは、ユーザインターフェース164を使用することで、インクジェット印刷装置10に所望の画像を印刷させることができる。 The user interface 164 includes an input unit (not shown) for the user to operate the inkjet printing device 10 and a display unit (not shown) for presenting information to the user. The input unit is, for example, an operation panel that receives input from a user. The display unit is, for example, a display that displays image data and various types of information. The user can have the inkjet printing device 10 print a desired image by using the user interface 164.
 〔インクジェット印刷機の問題点〕
 インクジェット印刷装置10のようなインクジェット印刷機では、数万個の吐出素子を制御して印刷画像を形成するため、印刷中に異常をきたす吐出素子が発生することは避けられない。そこで、インクジェット印刷機は、装置内部に備えられたスキャナによってユーザ画像同士の隙間に印刷された「異常ノズル検知パタン」を読み取り、読み取った異常ノズル検知パタンから吐出素子が正常に動作しているか判断する技術が用いられる。
[Problems with inkjet printing machines]
In an inkjet printing machine such as the inkjet printing apparatus 10, since tens of thousands of ejection elements are controlled to form a printed image, it is inevitable that an ejection element causing an abnormality will occur during printing. Therefore, the inkjet printing machine reads the "abnormal nozzle detection pattern" printed in the gap between the user images by the scanner installed inside the device, and determines whether the ejection element is operating normally from the read abnormal nozzle detection pattern. Technology is used.
 図5は、異常ノズル検知パタンが印刷された用紙1の一例を示す図である。図5に示す例では、用紙1の搬送方向に沿って複数のユーザ画像Gが印刷されており、かつユーザ画像Gとユーザ画像Gとの間に異常ノズル検知パタンPが印刷されている。 FIG. 5 is a diagram showing an example of paper 1 on which an abnormality nozzle detection pattern is printed. In the example shown in FIG. 5, a plurality of user images GU are printed along the transport direction of the paper 1, and an abnormality nozzle detection pattern PN is printed between the user image GU and the user image GU . ing.
 しかしながら、用紙1の異常ノズル検知パタンPを印刷した領域はロスになるという問題点があった。また印刷したロールを後加工する際はこの異常ノズル検知パタンPを除く必要性が発生するという問題点もあった。したがって、ユーザ画像Gとユーザ画像Gとの間には異常ノズル検知パタンPが印刷されないことが好ましい。 However, there is a problem that the area where the abnormality nozzle detection pattern PN of the paper 1 is printed becomes a loss. Further, when the printed roll is post-processed, there is a problem that it is necessary to remove this abnormality nozzle detection pattern PN . Therefore, it is preferable that the abnormality nozzle detection pattern PN is not printed between the user image GU and the user image GU .
 図6は、ユーザ画像Gのみが印刷された用紙1の一例を示す図である。図6に示すように、異常ノズル検知パタンPが印刷されず、ユーザ画像G同士の隙間がない状態であれば、ロスになる領域が無く、かつ後加工が容易となる。 FIG. 6 is a diagram showing an example of paper 1 on which only the user image GU is printed. As shown in FIG. 6, if the abnormality nozzle detection pattern PN is not printed and there is no gap between the user images GUs , there is no loss area and post-processing is easy.
 しかしながら、図6に示す例では、異常ノズル検知パタンPを活用したノズルの異常検知をすることができない。そこで、ユーザ画像Gの領域の中に、ユーザから許容されるレベルの吐出を実施し、それをスキャナで読み取ってノズルの異常有無を判断する方法が考えられる。 However, in the example shown in FIG. 6, the abnormality of the nozzle cannot be detected by utilizing the abnormality nozzle detection pattern PN . Therefore, it is conceivable to perform ejection at a level permitted by the user in the area of the user image GU and read it with a scanner to determine whether or not there is an abnormality in the nozzle.
 図7は、検査パタンPをユーザ画像G内に印刷する一例を示す図である。図7に示すF7Aは、複数のユーザ画像Gが印刷された用紙1を示している。また、図7に示すF7Bは、複数のユーザ画像Gのうちの1つのユーザ画像Gを拡大した図である。 FIG. 7 is a diagram showing an example of printing the inspection pattern PD in the user image GU . F7A shown in FIG. 7 shows paper 1 on which a plurality of user images GU are printed. Further, F7B shown in FIG. 7 is an enlarged view of one of the plurality of user image GUs .
 F7Aに示すように、用紙1には用紙1の搬送方向に沿って複数のユーザ画像Gが印刷されている。用紙1には異常ノズル検知パタンPは印刷されず、ユーザ画像G同士の隙間がない状態である。また、F7Bに示すように、ユーザ画像Gには、複数のドットDから構成される検査パタンPが配置されている。なお、ここでは、説明のためにドットDを実際よりも相対的に大きいサイズで表現しているが、検査パタンPは人の目に視認されず、実質的に画質に無影響である。 As shown in F7A, a plurality of user images GU are printed on the paper 1 along the transport direction of the paper 1. The abnormality nozzle detection pattern PN is not printed on the paper 1, and there is no gap between the user images GU . Further, as shown in F7B , an inspection pattern PD composed of a plurality of dots D is arranged on the user image GU. Here, for the sake of explanation, the dot D is expressed in a size relatively larger than the actual size, but the inspection pattern PD is not visible to the human eye and has virtually no effect on the image quality.
 特に水性インクを使用する場合、印刷中の待機時間中にノズル内のインクの粘度が、水分蒸発により増加する。よって、吐出状態は待機により悪化し、待機後に異常検査をしようとすると、過剰に異常を検知してしまう可能性がある。 Especially when water-based ink is used, the viscosity of the ink in the nozzle increases due to water evaporation during the waiting time during printing. Therefore, the discharge state is deteriorated by the standby, and if an abnormality inspection is attempted after the standby, there is a possibility that an abnormality is detected excessively.
 図5に示した異常ノズル検知パタンPをユーザ画像G間に配置することができれば、ある程度スペースが確保できるため、インク吐出量を稼ぐことができ、水分蒸発の影響は無視できる。しかしながら、図7に示したドットDから構成される検査パタンPによってノズルの異常を検知する場合は、インク吐出量を稼ぐことができず、インクの粘度が増加する可能性がある。このような現象は、油性インク及びUV(UltraViolet)インクであっても発生する可能性がある。 If the abnormality nozzle detection pattern PN shown in FIG. 5 can be arranged between the user images GU , a certain amount of space can be secured, so that the ink ejection amount can be increased and the influence of water evaporation can be ignored. However, when the abnormality of the nozzle is detected by the inspection pattern PD composed of the dots D shown in FIG. 7, the ink ejection amount cannot be increased and the viscosity of the ink may increase. Such a phenomenon may occur even in oil-based inks and UV (UltraViolet) inks.
 一方、インクジェット印刷装置10のインクジェットヘッド54では、図2及び図3に示したように、インク循環によりノズル102周辺に新鮮なインクを送り続けることで、ノズル102内のインクの粘度の増加を防止している。 On the other hand, in the inkjet head 54 of the inkjet printing apparatus 10, as shown in FIGS. 2 and 3, fresh ink is continuously sent around the nozzle 102 by ink circulation to prevent an increase in the viscosity of the ink in the nozzle 102. is doing.
 図8は、図3に示したノズル102部分の拡大図である。ノズル102にはインクが循環されない微小な狭窄領域102Aが存在する。ここでは、ノズルプレート130によって形成された領域が該当する。この狭窄領域102Aの体積(以下ノズル体積)分はインクの循環の流れができず、インクが増粘してしまう。そこで、アクチュエータ128(図3参照)をインクが吐出しない程度に動かし、ノズル102内のインクを撹拌する技術を採用する場合もある。しかし、消費電力の増加、及びインクによっては撹拌作業が吐出不安定につながることから、ノズル102内のインクを撹拌する技術の適用ができない場合もある。このため、ノズル体積分のインク増粘は起こりうる前提で考える必要がある。 FIG. 8 is an enlarged view of the nozzle 102 portion shown in FIG. The nozzle 102 has a minute constricted region 102A in which ink is not circulated. Here, the region formed by the nozzle plate 130 is applicable. Ink circulation cannot flow in the volume of the narrowed region 102A (hereinafter referred to as the nozzle volume), and the ink becomes thickened. Therefore, there is a case where a technique of moving the actuator 128 (see FIG. 3) to the extent that the ink is not ejected and stirring the ink in the nozzle 102 is adopted. However, the technique of stirring the ink in the nozzle 102 may not be applicable because the power consumption increases and the stirring operation leads to unstable ejection depending on the ink. Therefore, it is necessary to consider the ink thickening corresponding to the nozzle volume on the premise that it can occur.
 これに対し、待機中にノズル内のインクの状態が悪化しないように、所定時間間隔で用紙上に捨てうちする技術が知られている(特許文献2参照)。この捨てうちの技術と、前述したユーザ画像G中の検査パタンPの読み取り検査を組み合わせると、読み取り検査の前に捨てうちをすることが考えられる。 On the other hand, there is known a technique of discarding ink on paper at predetermined time intervals so that the state of ink in the nozzle does not deteriorate during standby (see Patent Document 2). Combining this discarding technique with the reading inspection of the inspection pattern PD in the user image GU described above, it is conceivable to discard before the reading inspection.
 しかし、闇雲にノズルの良い状態を作ろうとすると、検査前のユーザ画像上のインク捨てうち量を増やす必要があり、ユーザ画像G上のインクドットが視認しやすくなってしまう。また、状態が良いノズルでも捨てうちする必要があり、状態が悪いノズルの捨てうち量を実施することになってしまう。 However, in order to create a good nozzle condition in the dark clouds, it is necessary to increase the amount of ink discarded on the user image before inspection, and the ink dots on the user image GU become easily visible. Further, even a nozzle in a good condition needs to be thrown away, and the amount of the nozzle in a bad condition is thrown away.
 そこで本発明では、検査用パタンを印刷することが許容されるパラメータを定義し、それよりも良い状態である場合に、検査用パタンを形成するインクジェット印刷装置10を提案する。 Therefore, the present invention defines a parameter that allows printing of an inspection pattern, and proposes an inkjet printing apparatus 10 that forms an inspection pattern when the condition is better than that.
 〔悪化体積〕
 ここで、より定量的な議論をするために、悪化体積[pL]という考え方を導入する。悪化体積は、ノズル内のインクのうち状態が悪化したインクの体積であり、0[pL]からノズルの狭窄領域の体積であるノズル体積Vn[pL]までの範囲で定義される。
[Deteriorated volume]
Here, in order to have a more quantitative discussion, the idea of deteriorated volume [pL] is introduced. The deteriorated volume is the volume of the ink in the nozzle whose state has deteriorated, and is defined in the range from 0 [pL] to the nozzle volume Vn [pL] which is the volume of the narrowed region of the nozzle.
 また、悪化体積速さ[pL/s]を定義する。これは、1秒あたりに悪化するインク体積である。悪化体積分のインクは、ノズルからインクを吐出することで排出されると考える。 Also, the deterioration volume speed [pL / s] is defined. This is the ink volume that deteriorates per second. It is considered that the ink corresponding to the deteriorated volume is discharged by ejecting the ink from the nozzle.
 図9は、あるノズルの悪化体積の推移を説明するためのグラフである。図9では、横軸は時間[s]、縦軸は悪化体積[pL]を示している。 FIG. 9 is a graph for explaining the transition of the deteriorated volume of a certain nozzle. In FIG. 9, the horizontal axis represents time [s] and the vertical axis represents deterioration volume [pL].
 図9において、時間Tから時間Tまでの期間、時間Tから時間Tまでの期間、時間Tから時間Tまでの期間、及び時間Tから時間T10までの期間は、ノズルからインクを吐出していないためにノズル内のインクの悪化体積が一定の比率で増加する様子を示している。また、時間Tから時間Tまでの期間、時間Tから時間Tまでの期間、及び時間Tから時間Tまでの期間は、ノズルからインクを吐出したことでノズル内のインクの悪化体積が減少する様子を示している。 In FIG . 9 , the period from time T1 to time T2 , the period from time T3 to time T4 , the period from time T6 to time T7, and the period from time T9 to time T10 are It shows how the deteriorated volume of the ink in the nozzle increases at a constant rate because the ink is not ejected from the nozzle. In addition, during the period from time T 2 to time T 3 , the period from time T 4 to time T 5 , and the period from time T 7 to time T 8 , the ink in the nozzle is ejected by ejecting the ink. It shows how the deteriorated volume decreases.
 また、時間Tから時間Tまでの期間、及び時間Tから時間Tまでの期間は、ノズルからインクを吐出し続けていることで、ノズル内のインクが悪化せずに新鮮な状態を維持している様子を示している。さらに、時間T10以降の期間は、悪化状態が飽和した様子を示している。 In addition, during the period from time T 5 to time T 6 and the period from time T 8 to time T 9 , the ink in the nozzle is not deteriorated and is in a fresh state by continuously ejecting ink from the nozzle. It shows how to maintain. Further, the period after the time T10 shows that the deterioration state is saturated.
 図9において、縦軸の悪化体積が0に近い場合は、ノズル内のインクは新鮮な状態である。これは通常の印刷に使われているノズルの状態を示しており、この場合、インクの悪化による吐出不良は発生しない。 In FIG. 9, when the deterioration volume on the vertical axis is close to 0, the ink in the nozzle is in a fresh state. This shows the state of the nozzle used for normal printing, and in this case, ejection failure due to deterioration of ink does not occur.
 一方、ノズルが使用されずに待機する(非吐出の状態が連続する)場合、先に定義した悪化体積速さで悪化する。この悪化は、通常のインクジェット印刷機で行われる連続印刷の時間であれば、ノズル体積Vnで飽和する。 On the other hand, when the nozzle is not used and stands by (non-ejection state continues), it deteriorates at the deterioration volume speed defined above. This deterioration is saturated with the nozzle volume Vn during the continuous printing time performed by a normal inkjet printing machine.
 一例として、悪化体積速さは5[pL/s]、ノズルからのインク吐出量は1発(1ドット)あたり1[pL]~100[pL]、ノズル体積は10[pL]~1000[pL]である。 As an example, the deterioration volume speed is 5 [pL / s], the ink ejection amount from the nozzle is 1 [pL] to 100 [pL] per shot (1 dot), and the nozzle volume is 10 [pL] to 1000 [pL]. ].
 〔悪化体積速さの測定方法〕
 悪化体積速さは、以下のような方法で測定することができる。
[Measurement method of deterioration volume speed]
The deterioration volume speed can be measured by the following method.
 ノズル内のインクの悪化状態は、一例として、インクの吐出速度を使って測定することができる。吐出速度は、光源及びカメラがあれば測定することができる。 The deterioration state of the ink in the nozzle can be measured by using the ink ejection speed as an example. The discharge rate can be measured with a light source and a camera.
 図10は、10秒待機したノズルの吐出滴量と吐出速度との関係を示すグラフである。図10では、横軸は吐出滴量[pL]、縦軸はインクの吐出速度[m/s]を示している。なお、吐出滴量は、吐出したインクの滴数[発]と1滴あたりの滴量[pL]との積である。ここでは、悪化していないインクの吐出速度をV[m/s]とする。 FIG. 10 is a graph showing the relationship between the discharge drop amount of the nozzle waiting for 10 seconds and the discharge speed. In FIG. 10, the horizontal axis represents the ejection droplet amount [pL], and the vertical axis represents the ink ejection speed [m / s]. The amount of ejected drops is the product of the number of droplets [emitted] of the ejected ink and the amount of droplets [pL] per drop. Here, the ejection speed of the ink that has not deteriorated is defined as VF [m / s].
 図10に示すように、10秒待機により悪化したノズル内のインクは、その後インク吐出を繰り返すことにより吐出されていく。50[pL]吐出されると吐出速度がV[m/s]となり、ノズル内が完全にフレッシュな状態になったことがわかる。ここでは、50[pL]のインクを吐出することにより、ノズルの悪化状態が解消したと考えられる。10秒待機で50[pL]の悪化であるので、悪化体積速さは5[pL/s]である。 As shown in FIG. 10, the ink in the nozzle deteriorated by waiting for 10 seconds is then ejected by repeating the ink ejection. When 50 [pL] is discharged, the discharge speed becomes VF [m / s], and it can be seen that the inside of the nozzle is completely fresh. Here, it is considered that the deteriorated state of the nozzle is eliminated by ejecting 50 [pL] of ink. Since the deterioration is 50 [pL] after waiting for 10 seconds, the deterioration volume speed is 5 [pL / s].
 なお、複数のインク滴サイズを画像形成に活用している場合、吐出滴量は代表的なサイズの吐出滴量で定義すればよい。 When a plurality of ink droplet sizes are used for image formation, the ejection droplet amount may be defined by the ejection droplet amount of a typical size.
 〔指標の測定方法〕
 ノズルの検査精度を担保するための指標Vthは、以下のような方法で決定することができる。
[Measurement method of index]
The index Vth for ensuring the inspection accuracy of the nozzle can be determined by the following method.
 考え方として、吐出状態が悪いノズルの原因を以下の2種類に分ける。 As a way of thinking, the causes of nozzles with poor ejection conditions are divided into the following two types.
 1つは、待機によるインクの悪化で吐出状態が悪くなったノズルである(原因a)。このタイプのノズルはある程度吐出すれば回復することができるため、異常と検知するのは好ましくない。 One is a nozzle whose ejection condition has deteriorated due to deterioration of ink due to standby (cause a). Since this type of nozzle can be recovered by discharging to some extent, it is not preferable to detect it as an abnormality.
 もう1つは、待機によるインクの悪化とは異なる理由で吐出状態が悪いノズルである(原因b)。このタイプのノズルはインクを吐出しても回復しない。 The other is a nozzle with a poor ejection condition for a reason different from the deterioration of ink due to standby (cause b). This type of nozzle does not recover when ejecting ink.
 本実施形態におけるユーザ画像内の検査パタンで異常を検知すべきなのは、原因bの種類のノズルである。したがって、原因aで検知されるノズルがゼロになる状態(異常が非検知となる値)を指標Vthとして規定することができる。 It is the nozzle of type b that should detect the abnormality in the inspection pattern in the user image in this embodiment. Therefore, the state in which the nozzle detected by the cause a becomes zero (value at which the abnormality is not detected) can be defined as the index Vth.
 図11は、インクジェットヘッドの悪化体積と検査異常ノズル数の関係の一例を示すグラフである。図11では、横軸は悪化体積[pL]、縦軸は検査異常ノズル数[個]を示している。 FIG. 11 is a graph showing an example of the relationship between the deteriorated volume of the inkjet head and the number of abnormal inspection nozzles. In FIG. 11, the horizontal axis shows the deteriorated volume [pL], and the vertical axis shows the number of abnormal inspection nozzles [pieces].
 悪化体積は、待機時間によりコントロールすることができる。例えば、図10を用いて説明したように、10秒待機した際の悪化体積は50[pL]である。図11に示すグラフは、待機時間を変化させながらその待機時間毎の悪化体積を求め、その待機時間での異常ノズル検査を実施して、検知された異常ノズル数を縦軸にプロットしたものである。 The deteriorated volume can be controlled by the waiting time. For example, as described with reference to FIG. 10, the deteriorated volume after waiting for 10 seconds is 50 [pL]. In the graph shown in FIG. 11, the deteriorated volume for each waiting time is obtained while changing the waiting time, the abnormal nozzle inspection is performed during the waiting time, and the number of detected abnormal nozzles is plotted on the vertical axis. be.
 このグラフから、指標Vthを求めることができる。指標Vthは、例えば100[pL]である。指標Vthの算出は、もちろん本番の印刷前に実施しておく。図11に示すように、原因bによる異常のノズルの数は、悪化体積にかかわらず一定である。一方、原因aによる異常のノズルの数は、悪化体積が指標Vthまでは検知されないが、悪化体積が指標Vthを超えると悪化体積の増加とともに増加する。 From this graph, the index Vth can be obtained. The index Vth is, for example, 100 [pL]. Of course, the calculation of the index Vth is performed before the actual printing. As shown in FIG. 11, the number of abnormal nozzles due to cause b is constant regardless of the deteriorated volume. On the other hand, the number of abnormal nozzles due to cause a is not detected until the deterioration volume reaches the index Vth, but increases as the deterioration volume increases when the deterioration volume exceeds the index Vth.
 ここで、異常ノズル検査は、検査用パタンをスキャナで読み込み、読み込んだ検査用パタンを解析することで実現することができる。この際には、検査用パタンを正常時のドット径及びドット形状と比較することが一般的である。又は、スキャナで観察した位置にドットがあるか否か、ラインの着弾位置が狙い位置からずれているか否か、等によって正常及び異常を判断してもよい。 Here, the abnormality nozzle inspection can be realized by reading the inspection pattern with a scanner and analyzing the read inspection pattern. In this case, it is common to compare the inspection pattern with the normal dot diameter and dot shape. Alternatively, normality or abnormality may be determined based on whether or not there is a dot at the position observed by the scanner, whether or not the landing position of the line deviates from the target position, and the like.
 図12は、正常時のドット径及びドット形状を取得するためのリファレンスドットパタンPが印刷された用紙1を示す図である。図12に示すF12Aは、捨てうち領域AとリファレンスドットパタンPとを示している。また、図12に示すF12Bは、リファレンスドットパタンPの拡大図である。 FIG. 12 is a diagram showing a paper 1 on which a reference dot pattern PR for acquiring a dot diameter and a dot shape in a normal state is printed. F12A shown in FIG. 12 shows the discarded area A and the reference dot pattern PR. Further, F12B shown in FIG. 12 is an enlarged view of the reference dot pattern PR.
 F12Aに示すように、捨てうち領域Aは、リファレンスドットパタンPよりも用紙1の搬送方向の上流側に位置する。捨てうち領域Aは、各ノズルについて十分な量の捨てうちが行われる領域である。各ノズルは、悪化体積が指標Vth以下となるまで捨て打ちが行われる。 As shown in F12A , the discarding area A is located on the upstream side of the reference dot pattern PR in the transport direction of the paper 1. The discarding area A is an area where a sufficient amount of discarding is performed for each nozzle. Each nozzle is thrown away until the deteriorated volume becomes equal to or less than the index Vth.
 F12Bに示すように、リファレンスドットパタンPは、各ノズルからの吐出によって形成されるドットが規則的に配置される。インクジェット印刷機は、スキャナによってリファレンスドットパタンPを読み取り、読み取り結果から正常時の各ノズルからの吐出によって形成されるドット径及びドット形状を取得する。 As shown in F12B , in the reference dot pattern PR, dots formed by ejection from each nozzle are regularly arranged. The inkjet printing machine reads the reference dot pattern PR by a scanner, and obtains the dot diameter and the dot shape formed by the ejection from each nozzle in the normal state from the reading result.
 なお、検査ではなく、実際の印刷に使用する前に、指標Vthよりも低い悪化体積の状態にすべきであれば、意図的に捨てうち量を増やすことで、より適切な状態を確保することができる。すなわち、ノズルの悪化体積が指標Vth以下となるまでインクを吐出させればよい。 In addition, if it should be in a state of deterioration volume lower than the index Vth before using it for actual printing instead of inspection, it is necessary to intentionally increase the amount of waste to ensure a more appropriate state. Can be done. That is, the ink may be ejected until the deteriorated volume of the nozzle becomes equal to or less than the index Vth.
 〔Vthの適用方法〕
 ノズル体積Vnを200[pL]、指標Vthを100[pL]としたとき、本発明を適用すると以下のような考え方になる。
[How to apply Vth]
When the nozzle volume Vn is 200 [pL] and the index Vth is 100 [pL], the following idea is obtained when the present invention is applied.
 あるノズルの悪化状態が飽和しているとして、検査を実施したいとする。その場合、Vn-Vth=200[pL]-100[pL]=100[pL]分のインクを捨て打ちしたあと、検査パタンを形成する。それ以上のインクを捨てうちすることは画質劣化を招くリスクが増えるため、不要である。 Suppose that the deterioration condition of a certain nozzle is saturated and you want to carry out an inspection. In that case, an inspection pattern is formed after discarding ink for Vn-Vth = 200 [pL] -100 [pL] = 100 [pL]. It is not necessary to discard more ink because it increases the risk of image quality deterioration.
 また、例えば、悪化体積が0[pL]のフレッシュな状態のノズルがあるとして、それを放置した後に、捨て打ち無しで検査を実施してよいかの判断をしようとする。この場合、悪化体積速さ5[pL/s]とすると、20秒以内であれば、捨て打ち無しで検査パタンを形成してもよいことがわかる。 Also, for example, assuming that there is a nozzle in a fresh state with a deteriorated volume of 0 [pL], after leaving it unattended, an attempt is made to determine whether or not the inspection can be carried out without discarding. In this case, if the deterioration volume speed is 5 [pL / s], it can be seen that the inspection pattern may be formed without discarding within 20 seconds.
 〔ヘッド制御方法〕
 インクジェット印刷装置10によるヘッドの制御方法について説明する。図13は、ヘッド制御方法の各工程を示すフローチャートである。
[Head control method]
A method of controlling the head by the inkjet printing apparatus 10 will be described. FIG. 13 is a flowchart showing each step of the head control method.
 ステップS1では、統括制御部158のプロセッサ160は、用紙1に印刷するユーザ画像Gを表す画像データを取得する。 In step S1, the processor 160 of the integrated control unit 158 acquires image data representing the user image GU to be printed on the paper 1.
 ステップS2では、プロセッサ160は、インクジェットヘッド54K、54C、54M、54Yのノズル102毎の悪化状態を取得する。ここでは、悪化状態として悪化体積を取得する。 In step S2, the processor 160 acquires the deterioration state of each nozzle 102 of the inkjet heads 54K, 54C, 54M, 54Y. Here, the deteriorated volume is acquired as the deteriorated state.
 ステップS3(ユーザ画像印刷工程の一例)では、プロセッサ160は、インクジェット印刷装置10を制御し、用紙1にユーザ画像Gを印刷させる。 In step S3 (an example of the user image printing process), the processor 160 controls the inkjet printing device 10 to print the user image GU on the paper 1.
 ステップS4(検査パタン形成工程の一例)では、プロセッサ160は、ノズル102の悪化状態が検査精度を担保するための指標Vth以下(指標以下の一例)である場合に、インクジェットヘッド54K、54C、54M、54Yによって実質的に画質に無影響な検査パタンPをユーザ画像Gの領域に形成させる。インクジェット印刷装置10は、シングルパス方式で画像を印刷するため、ステップS3及びステップS4は、用紙1の1回の搬送でユーザ画像G及び検査パタンPを印刷する。 In step S4 (an example of the inspection pattern forming step), the processor 160 determines the inkjet heads 54K, 54C, 54M when the deterioration state of the nozzle 102 is equal to or less than the index Vth for ensuring the inspection accuracy (an example of the inspection pattern or less). , 54Y causes an inspection pattern P D that has substantially no effect on image quality to be formed in the region of the user image GU. Since the inkjet printing apparatus 10 prints an image by a single-pass method, steps S3 and S4 print the user image GU and the inspection pattern PD in one transfer of the paper 1.
 すなわち、プロセッサ160は、ステップS1で取得した画像データに、悪化体積が指標Vth以下であるノズル102が形成するドットDからなる検査パタンPを配置した印刷データを生成する。さらに、プロセッサ160は、印刷データによってユーザ画像Gと検査パタンPとを用紙1に基材に形成させる。 That is, the processor 160 generates print data in which the inspection pattern PD composed of the dots D formed by the nozzle 102 whose deterioration volume is the index Vth or less is arranged in the image data acquired in step S1. Further, the processor 160 forms the user image GU and the inspection pattern PD on the paper 1 on the base material by the print data.
 なお、プロセッサ160は、ノズル102の悪化体積をノズル体積Vn[pL]と、前回の吐出からの時間[s]と、悪化体積速さ[pL/s]とから算出することができる。 The processor 160 can calculate the deteriorated volume of the nozzle 102 from the nozzle volume Vn [pL], the time [s] from the previous ejection, and the deteriorated volume speed [pL / s].
 プロセッサ160は、検査しようとするノズル102の悪化体積が指標Vthより大きい場合、ノズル102の悪化状態が指標Vth以下となるまでインクを吐出(捨てうち)させてもよい。この場合、プロセッサ160は、ユーザ画像Gの領域に実質的に画質に無影響な量だけインクを吐出させる。 When the deteriorated volume of the nozzle 102 to be inspected is larger than the index Vth, the processor 160 may eject (discard) the ink until the deteriorated state of the nozzle 102 becomes equal to or less than the index Vth. In this case, the processor 160 ejects ink to the area of the user image GU in an amount that does not substantially affect the image quality.
 ここで、実質的に画質に無影響な検査パタンPとは、ユーザが目視した際に検査パタンPを含むユーザ画像Gと検査パタンPを含まないユーザ画像Gとの区別がつかない程度の検査パタンPを指す。 Here, the inspection pattern P D that has substantially no effect on the image quality is a distinction between the user image GU including the inspection pattern P D and the user image GU not including the inspection pattern P D when visually viewed by the user. Refers to the inspection pattern PD that does not work.
 ステップS5(読取結果取得工程の一例)では、プロセッサ160は、スキャナ56によりユーザ画像Gとともに検査パタンPを読み取らせ、検査パタンPの読取結果を取得する。 In step S5 (an example of the reading result acquisition process), the processor 160 causes the scanner 56 to read the inspection pattern P D together with the user image GU , and acquires the reading result of the inspection pattern P D.
 ステップS6(異常度算出工程の一例)では、プロセッサ160は、検査パタンPの読取結果を解析し、ノズル102の異常度を求める。 In step S6 (an example of the abnormality degree calculation step), the processor 160 analyzes the reading result of the inspection pattern PD and obtains the abnormality degree of the nozzle 102.
 ステップS7(処置工程の一例)では、プロセッサ160は、ノズル102に対して異常度に応じた処置をする。 In step S7 (an example of the treatment step), the processor 160 treats the nozzle 102 according to the degree of abnormality.
 例えば、ノズル102の吐出インク量が適切でない場合は、対応するアクチュエータ128の駆動電圧を制御する。ノズル102からインクが吐出されていない(不吐出ノズルである)場合は、X方向について隣接するノズル102の吐出量を増加させて、不吐出ノズルに起因するスジを補正する。 For example, if the amount of ink ejected from the nozzle 102 is not appropriate, the drive voltage of the corresponding actuator 128 is controlled. When ink is not ejected from the nozzle 102 (it is a non-ejection nozzle), the ejection amount of the adjacent nozzle 102 in the X direction is increased to correct the streaks caused by the non-ejection nozzle.
 このように、指標Vthを用いることで、適切な状態でインクジェットヘッド54K、54C、54M、54Yの検査を行うことができる。 In this way, by using the index Vth, it is possible to inspect the inkjet heads 54K, 54C, 54M, 54Y in an appropriate state.
 〔その他〕
 ここでは、ノズル102の周辺にインクを循環するインクジェットヘッド54を例に説明したが、本実施形態はインクを循環させないインクジェットヘッドにも適用可能である。
〔others〕
Here, the inkjet head 54 that circulates ink around the nozzle 102 has been described as an example, but the present embodiment can also be applied to an inkjet head that does not circulate ink.
 本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。各実施形態における構成等は、本発明の趣旨を逸脱しない範囲で、各実施形態間で適宜組み合わせることができる。 The technical scope of the present invention is not limited to the scope described in the above embodiment. The configurations and the like in each embodiment can be appropriately combined between the embodiments without departing from the spirit of the present invention.
1…用紙
10…インクジェット印刷装置
20…搬送部
22…パスローラ
30…送り出し部
32…送り出しロール
40…前処理液塗布部
42…塗布ローラ
44…対向ローラ
46…前処理液乾燥部
50…印字部
52…印字ドラム
54…インクジェットヘッド
54C…インクジェットヘッド
54K…インクジェットヘッド
54M…インクジェットヘッド
54Y…インクジェットヘッド
56…スキャナ
70…乾燥部
72…乾燥ドラム
80…巻取り部
82…巻取りロール
100…ノズル面
102…ノズル
102A…狭窄領域
104…圧力室
106…インク室ユニット
110…供給支流
112…共通流路
114…ディセンダー
116…インク循環路
118…回収支流
120…循環共通流路
122…供給口
124…排出口
126…振動板
128…アクチュエータ
130…ノズルプレート
132…流路板
150…搬送制御部
152…前処理液塗布制御部
154…印字制御部
156…乾燥制御部
158…統括制御部
160…プロセッサ
162…メモリ
164…ユーザインターフェース
A…領域
D…ドット
…ユーザ画像
…検査パタン
…異常ノズル検知パタン
…リファレンスドットパタン
S1~S7…ヘッド制御方法の各工程
1 ... Paper 10 ... Inkjet printing device 20 ... Conveying unit 22 ... Pass roller 30 ... Feeding unit 32 ... Feeding roll 40 ... Pretreatment liquid coating unit 42 ... Coating roller 44 ... Opposing roller 46 ... Pretreatment liquid drying unit 50 ... Printing unit 52 ... Printing drum 54 ... Inkjet head 54C ... Inkjet head 54K ... Inkjet head 54M ... Inkjet head 54Y ... Inkjet head 56 ... Scanner 70 ... Drying unit 72 ... Drying drum 80 ... Winding unit 82 ... Winding roll 100 ... Nozzle surface 102 ... Nozzle 102A ... Narrowing region 104 ... Pressure chamber 106 ... Ink chamber unit 110 ... Supply tributary 112 ... Common flow path 114 ... Decender 116 ... Ink circulation path 118 ... Recovery tributary 120 ... Circulation common flow path 122 ... Supply port 124 ... Discharge port 126 ... Vibrating plate 128 ... Actuator 130 ... Nozzle plate 132 ... Flow path plate 150 ... Transfer control unit 152 ... Pretreatment liquid application control unit 154 ... Print control unit 156 ... Drying control unit 158 ... General control unit 160 ... Processor 162 ... Memory 164 ... User interface A ... Area D ... Dot GU ... User image P D ... Inspection pattern PN ... Abnormal nozzle detection pattern PR ... Reference dot pattern S1 to S7 ... Each step of the head control method

Claims (13)

  1.  プロセッサに実行させるための命令を記憶するメモリと、
     メモリに記憶された命令を実行するプロセッサと、
     を備え、
     前記プロセッサは、
     印刷データに基づいて液体吐出ヘッドの吐出素子の吐出口から液体を吐出させて基材にユーザ画像を印刷させ、
     前記吐出素子の悪化状態が前記吐出素子の検査精度を担保するための指標以下である場合に、実質的に画質に無影響な検査パタンを前記吐出素子により前記ユーザ画像の領域に形成させ、
     スキャナにより前記検査パタンを読み取った読取結果を取得し、
     前記読取結果を解析し、前記吐出素子の異常度を求め、
     前記吐出素子に対して前記異常度に応じた処置をする、
     ヘッド制御装置。
    A memory that stores instructions for the processor to execute,
    A processor that executes instructions stored in memory, and
    Equipped with
    The processor
    Based on the print data, the liquid is discharged from the discharge port of the discharge element of the liquid discharge head to print the user image on the base material.
    When the deterioration state of the ejection element is equal to or less than the index for ensuring the inspection accuracy of the ejection element, an inspection pattern having substantially no effect on the image quality is formed in the region of the user image by the ejection element.
    The reading result of reading the inspection pattern with a scanner is acquired, and
    The reading result is analyzed, and the degree of abnormality of the discharge element is obtained.
    The discharge element is treated according to the degree of abnormality.
    Head control device.
  2.  前記指標は、前記吐出口内の前記液体が悪化したことによる前記吐出素子の異常が非検知となる値に規定される請求項1に記載のヘッド制御装置。 The head control device according to claim 1, wherein the index is defined as a value at which an abnormality of the discharge element due to deterioration of the liquid in the discharge port is not detected.
  3.  前記指標は、前記吐出素子が前記液体を非吐出の状態が連続する待機時間を変化させ、待機時間毎の悪化した前記液体の体積から決定される請求項2に記載のヘッド制御装置。 The head control device according to claim 2, wherein the index is determined from the deteriorated volume of the liquid for each standby time by changing the standby time in which the discharge element continuously discharges the liquid.
  4.  前記プロセッサは、前記吐出素子の悪化状態が前記指標以下となるまで前記液体を吐出させる請求項1から3のいずれか1項に記載のヘッド制御装置。 The head control device according to any one of claims 1 to 3, wherein the processor discharges the liquid until the deterioration state of the discharge element becomes equal to or less than the index.
  5.  前記プロセッサは、前記ユーザ画像の領域に実質的に画質に無影響な量だけ前記液体を吐出させる請求項4に記載のヘッド制御装置。 The head control device according to claim 4, wherein the processor discharges the liquid into the area of the user image in an amount that does not substantially affect the image quality.
  6.  前記プロセッサは、
     前記ユーザ画像を表す画像データを取得し、
     前記画像データに前記検査パタンを配置した印刷データを生成し、
     前記印刷データによって検査パタンを前記基材に形成させる請求項1から5のいずれか1項に記載のヘッド制御装置。
    The processor
    The image data representing the user image is acquired, and the image data is obtained.
    Print data in which the inspection pattern is arranged on the image data is generated.
    The head control device according to any one of claims 1 to 5, wherein an inspection pattern is formed on the substrate by the print data.
  7.  液体吐出ヘッドと、
     請求項1から6のいずれか1項に記載のヘッド制御装置と、
     を備える液体吐出装置。
    With the liquid discharge head,
    The head control device according to any one of claims 1 to 6.
    A liquid discharge device equipped with.
  8.  前記液体は、水性インクである請求項7に記載の液体吐出装置。 The liquid ejection device according to claim 7, wherein the liquid is a water-based ink.
  9.  前記液体吐出ヘッドは、
     前記吐出素子に前記液体を供給する供給流路と、
     前記吐出素子に供給された前記液体を回収する回収流路と、
     を備え、
     前記回収流路は、前記吐出口の周辺に設けられる請求項7又は8に記載の液体吐出装置。
    The liquid discharge head is
    A supply flow path for supplying the liquid to the discharge element,
    A recovery flow path for recovering the liquid supplied to the discharge element, and a recovery flow path.
    Equipped with
    The liquid discharge device according to claim 7 or 8, wherein the collection flow path is provided around the discharge port.
  10.  請求項7から9のいずれか1項に記載の液体吐出装置と、
     前記検査パタンを読み取って読取結果を生成するスキャナと、
     前記基材と前記液体吐出ヘッド及び前記スキャナとを相対的に移動させる移動装置と、
     を備える印刷装置。
    The liquid discharge device according to any one of claims 7 to 9,
    A scanner that reads the inspection pattern and generates a reading result,
    A moving device that relatively moves the base material, the liquid discharge head, and the scanner.
    A printing device equipped with.
  11.  印刷データに基づいて液体吐出ヘッドの吐出素子の吐出口から液体を吐出させて基材にユーザ画像を印刷させるユーザ画像印刷工程と、
     前記吐出素子の悪化状態が前記吐出素子の検査精度を担保するための指標以下である場合に、実質的に画質に無影響な検査パタンを前記吐出素子により前記ユーザ画像の領域に形成させる検査パタン形成工程と、
     スキャナにより前記検査パタンを読み取った読取結果を取得する読取結果取得工程と、
     前記読取結果を解析し、前記吐出素子の異常度を求める異常度算出工程と、
     前記吐出素子に対して前記異常度に応じた処置をする処置工程と、
     を備えるヘッド制御方法。
    A user image printing process in which a liquid is discharged from a discharge port of a discharge element of a liquid discharge head based on print data to print a user image on a base material.
    When the deterioration state of the ejection element is equal to or less than the index for ensuring the inspection accuracy of the ejection element, an inspection pattern that causes the ejection element to form an inspection pattern that does not substantially affect the image quality in the area of the user image. The formation process and
    A reading result acquisition process for acquiring a reading result obtained by scanning the inspection pattern with a scanner, and
    An abnormality degree calculation step of analyzing the reading result and obtaining an abnormality degree of the discharge element, and
    A treatment step of treating the discharge element according to the degree of abnormality, and
    Head control method.
  12.  請求項11に記載のヘッド制御方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the head control method according to claim 11.
  13.  非一時的かつコンピュータ読取可能な記録媒体であって、請求項12に記載のプログラムが記録された記録媒体。 A non-temporary, computer-readable recording medium on which the program according to claim 12 is recorded.
PCT/JP2021/029506 2020-08-17 2021-08-10 Head control device, head control method and program, liquid ejection device, and printing device WO2022039065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020137249 2020-08-17
JP2020-137249 2020-08-17

Publications (1)

Publication Number Publication Date
WO2022039065A1 true WO2022039065A1 (en) 2022-02-24

Family

ID=80322782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029506 WO2022039065A1 (en) 2020-08-17 2021-08-10 Head control device, head control method and program, liquid ejection device, and printing device

Country Status (1)

Country Link
WO (1) WO2022039065A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6637853B1 (en) * 1999-07-01 2003-10-28 Lexmark International, Inc. Faulty nozzle detection in an ink jet printer by printing test patterns and scanning with a fixed optical sensor
JP2010120254A (en) * 2008-11-19 2010-06-03 Canon Inc Printer and method of detecting non-ejecting nozzle
JP2017001321A (en) * 2015-06-12 2017-01-05 キヤノン株式会社 Printing device and inspection method
WO2018101290A1 (en) * 2016-12-02 2018-06-07 富士フイルム株式会社 Inkjet head and inkjet recording device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6637853B1 (en) * 1999-07-01 2003-10-28 Lexmark International, Inc. Faulty nozzle detection in an ink jet printer by printing test patterns and scanning with a fixed optical sensor
JP2010120254A (en) * 2008-11-19 2010-06-03 Canon Inc Printer and method of detecting non-ejecting nozzle
JP2017001321A (en) * 2015-06-12 2017-01-05 キヤノン株式会社 Printing device and inspection method
WO2018101290A1 (en) * 2016-12-02 2018-06-07 富士フイルム株式会社 Inkjet head and inkjet recording device

Similar Documents

Publication Publication Date Title
JP6318054B2 (en) System and method for processing an image receiving surface of an indirect inkjet printer
US8136914B2 (en) Image recording method and image recording apparatus
US7798588B2 (en) Liquid ejecting apparatus and liquid ejecting method
US8091974B2 (en) Coloring material recording device, coloring material recording program, and image forming apparatus
US8777396B2 (en) System and method for imaging and evaluating printing parameters in an aqueous inkjet printer
JP4845651B2 (en) Image forming apparatus
JP2011201050A (en) Test pattern print method and inkjet recording apparatus
JP6625484B2 (en) Nozzle surface wiping device, liquid ejection device, and head cleaning method
JP6761545B2 (en) Image forming apparatus and its control method
JP6763386B2 (en) Image forming device and quality judgment method
US9056495B2 (en) System and method for imaging and evaluating coating on an imaging surface in an aqueous inkjet printer
US9457562B2 (en) Liquid ejection device and dummy jet method
JP5680362B2 (en) Inkjet recording apparatus and method
JP2011126208A (en) Image recorder, image processor, image processing method, and program
US8702189B2 (en) Liquid ejection apparatus, control apparatus, and storage medium storing program
JP5545997B2 (en) Image recording apparatus and method
US9878546B2 (en) Liquid ejection device and cleaning method
WO2022039065A1 (en) Head control device, head control method and program, liquid ejection device, and printing device
JP2012176545A (en) Wiping unit, maintenance device, liquid ejector, and wiping method
JP2010082934A (en) Method for maintenance of liquid ejection head and liquid ejection device
JP2012250472A (en) State monitoring device of inkjet recording head and inkjet recording apparatus
US9073357B1 (en) Indirect inkjet printer and blower for treatment of a hydrophilic layer on an image receiving surface in the indirect inkjet printer
JPWO2020095822A1 (en) Recording head cleaning device, recording head cleaning method, and recording device
JP2020023178A (en) Recording device and inspection method for the same
EP3683061A1 (en) Printing apparatus, printing method, varnish information output method, and recoding medium information output method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21858212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21858212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP